
 
 

Delft University of Technology

Inversion of Electromagnetic Induction Log in Anisotropic Media using an Adjoint Integral
Equation Method

Saputera, D.H.; Jakobsen, M.; Jahani, N.; van Dongen, K.W.A.; Alyaev, S.; Eikrem, K.S.

DOI
10.3997/2214-4609.2024101259
Publication date
2024
Document Version
Final published version
Citation (APA)
Saputera, D. H., Jakobsen, M., Jahani, N., van Dongen, K. W. A., Alyaev, S., & Eikrem, K. S. (2024).
Inversion of Electromagnetic Induction Log in Anisotropic Media using an Adjoint Integral Equation Method.
Paper presented at 85th EAGE Annual Conference & Exhibition 2024, Oslo, Lillestrøm, Norway.
https://doi.org/10.3997/2214-4609.2024101259
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3997/2214-4609.2024101259
https://doi.org/10.3997/2214-4609.2024101259


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



 
 

 

85th EAGE Annual Conference & Exhibition 

Inversion of Electromagnetic Induction Log in Anisotropic Media using an 

Adjoint Integral Equation Method 
 

D.H. Saputera1, M. Jakobsen1, N. Jahani2, K.W.A. Van Dongen3, S. Alyaev2, K.S. Eikrem2 

 

 
1 University Of Bergen; 2 NORCE Norwegian Research Centre; 3 Delft University of Technology 

 

 

Summary 
 
Inversion of electromagnetic induction log while drilling provides structural information around 

borehole for geosteering decision process. Imaging a complex three-dimensional (3D) anisotropic 

formation is very challenging due to the significant cost of the forward solver. To overcome this 

challenge, we have developed an inversion algorithm using an adjoint Integral Equation Method for 

logging while drilling scenarios in anisotropic media with several inexpensive approaches in this study. 

We use a quasi-Newton method with L-BFGS algorithm and implement a matrix-free adjoint Integral 

Equation method for efficient update of inverted model parameters. In addition, we propose the use of 

limited number of iterations for solving the adjoint equation as an approximation to the gradient for a 

faster computation time. To regularize the inverted models, we adopt the use of multiplicative 

regularization and weighted L2 total variation. Additionally, we impose priori information in our 

formulations, such as 2D parameterization and the range of conductivity values. We show a numerical 

example of logging while drilling inversion on a 2.5D faulted anisotropic formation. Numerical 

experiments show that our inversion workflow shows a good structural agreement of the inverted model 

within the sensitive range of the tool. 
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Inversion of Electromagnetic Induction Log in Anisotropic Media using an Adjoint Integral 

Equation Method  

 

Introduction 

 

Electromagnetic (EM) induction logging tools are commonly used to assist the optimal trajectory 

decision process while drilling. The tool typically has multiple axial components with different 

sensitivities to the subsurface structure and anisotropy. Three-dimensional (3D) inversion of induction 

logs enables imaging of complex geological formations (Puzyrev et al., 2019). However, it is still very 

challenging because of the significant computational cost of the 3D forward modelling. This motivates 

the study of inexpensive approaches to the inverse problem. 

 

In this study, we have developed an inversion algorithm using an adjoint Integral Equation Method for 

logging while drilling scenarios in anisotropic media with several inexpensive approaches. The 

inversion is done by minimizing an objective function using a quasi-Newton method with the L-BFGS 

algorithm (Liu and Nocedal, 1989). This method only requires the objective function gradient to update 

the parameters. For efficient gradient calculations, we adopted the matrix-free variant of the Distorted 

Born Iterative (DBI) and adjoint method (Jakobsen et al., 2023). In addition, we tested the using a 

limited number of GMRES (Saad, 2003) iterations for solving the adjoint equation as an approximation 

to the gradient for a faster computation time. We adopt the use of multiplicative regularization and 

weighted L2 total variation (Van Den Berg and Abubakar, 2001) which enables adaptive regularization 

parameters and edge preservation of the inverted model. Additionally, we impose priori information in 

our formulations, such as 2D parameterization and the range of conductivity values. 

 

We focus on the implementation of a tilted vertical transverse isotropic (VTI) medium where the drilling 

trajectory is at a certain angle to the anisotropic structure. We show a numerical example of logging 

while drilling inversion on a 2.5D faulted anisotropic formation. To demonstrate inversion while 

drilling, we assume a moving simulation and inversion window with the drilling tools. The conductivity 

inverted from the previous window is used as the initial model in the overlapping zone between two 

windows. Numerical experiments show that our inversion workflow shows a good structural agreement 

of the inverted model within the sensitive range of the tool. Since we use a 3D forward solver, our 

implementation can be straightforwardly generalized into the 3D problem. 

 

Theory 

 

Forward Model. We use the Integral Equation (IE) method to compute the magnetic fields at receiver 

locations. In the IE method, we solve the following equations (Zhdanov, 2009): 

 𝐄(b)(𝐫) = 𝐄(0)(𝐫) + ∫ 𝐆(0,E) (𝐫, 𝐱′)
Ω

Δ𝛔(𝐱′)𝐄(b)(𝐱′)  d3𝐱′, (1) 

 𝐇(b)(𝐫) = 𝐇(0)(𝐫) + ∫ 𝐆(0,H) (𝐫, 𝐱′)
Ω

Δ𝛔(𝐱′)𝐄(b)(𝐱′)  d3𝐱′, (2) 

where 𝐄, 𝐇 denote the electric and magnetic fields, 𝐆 indicates the Green’s function, and r is the receiver 

locations. The upper scripts (0) and (b) refer to the fields and Green’s function defined for homogeneous 

isotropic medium and heterogeneous anisotropic medium, respectively. Ω is the domain with the 

conductivity contrast Δ𝛔(𝐱) = 𝛔 − σ0𝐈 with 𝛔 the actual anisotropic medium and the σ0 background 

medium and 𝐈 the identity tensor. The electric Green’s tensor  𝐆(0,E) and the magnetic Green’s tensor 

𝐆(0,H) are (Fang et al., 2006) 

 𝐆(0,E) = (iωμ0 𝐈 +
∇∇

𝜎0
) g(𝐱, 𝐱′), and 𝐆(0,H) = (iωμ0)−1∇ × 𝐆(0,E), (3) 

where g(𝐱, 𝐱′) =
eik0|𝐱−𝐱′|

4π|𝐱−𝐱′|
 is the scalar Green’s function with k0

2 = iωμ0σ0, i = √−1, 𝜔 is the angular 

frequency, and 𝜇0 is the magnetic permeability of free space. The subsurface model is discretized into 

a set of grid blocks and the electric fields in the heterogenous medium are obtained by solving the 

following linear system of equations 

 (𝐈 − 𝐆(0,E)Δ𝛔)𝐄(b) = 𝐄(0), (4) 
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which can be solved efficiently using Krylov subspace-based iterative solvers and the FFT convolution 

algorithm. Afterward, the magnetic fields at the receiver positions can be calculated directly from 

equation (2). For more details on our implementation, we refer to the paper of Saputera et al. (2023). 

 

Model Parameterization. The conductivity tensor 𝝈 of a tilted VTI medium to the drilling angle in the 

2.5D inversion frame can be expressed as(Gao, 2006) 

 

𝛔 = 𝐑𝐓 [
σ1 0 0
0 σ1 0
0 0 σ2

] 𝐑, and 𝐑 = [
𝑐𝑜𝑠 𝛼 0 − 𝑠𝑖𝑛 𝛼

0 1 0
𝑠𝑖𝑛 𝛼 0 𝑐𝑜𝑠 𝛼

], (5) 

where R is a rotation tensor, 𝜎1 and 𝜎2 correspond to the horizontal and vertical conductivity in the 

global coordinate frame, respectively, with 𝛼 the drilling angle. To impose conductivity boundaries, we 

propose the following model parameterization (Abubakar et al., 2006): 

 σk = 0.5(σmax + σmin) + 0.5(σmax − σmin) sin(mk), k = 1,2, (6) 

where 𝑚 is the inverted model parameters. For 2.5D inversion, we set the model such that it is invariant 

in the y-direction. To include this condition, we can parameterize the model with 𝒎3D = 𝐏𝒎2D where 

𝑚2Dand 𝑚3D indicate a vector that describes the model parameters distribution in the 2D and 3D space, 

respectively, and P is an operator that maps the conductivity from 2D to 3D space. In this study, we 

simply use an 𝑁3𝐷 × 𝑁2𝐷 matrix of ones for this purpose.  

 

Inversion Objective Function. We adopt the use of the multiplicative objective function described in 

Van Den Berg and Abubakar (2001) 

 Φ = ΦD ⋅ ΦTV, (7) 

where ΦD is the weighted data misfit and ΦTV is the total variation regularization cost. The advantage 

is that the data misfit adaptively determines the regularization weighting parameter. To minimize this 

objective function, we use a built-in MATLAB function with a quasi-Newton algorithm and L-BFGS 

algorithm as the inverse Hessian approximation (Liu and Nocedal, 1989). 

 

Weighted Data Misfit. The weighted data misfit is defined as the weighted difference between the 

observed and calculated magnetic fields (𝐇(b,obs) and 𝐇(b,calc), respectively): 

 ΦD = 0.5 ⋅ ⟨𝐖Δ𝐇, 𝐖Δ𝐇⟩D, (8) 

 Δ𝐇 =  𝐇(b,obs) − 𝐇(b,calc), (9) 

with ⟨⋅,⋅⟩D denotes the scalar product in the data space and 𝐖 is the weight that is defined as the inverse 

Frobenius norm of the magnetic fields at receiver positions with different configurations: 

 
𝐖(𝐫j) = ‖𝐇(obs)‖

F

−1
,  j = 1,2, … ,  Nreceiver, (10) 

where 𝐫 is the receiver position and F is the Frobenius norm. The derivative of ΦD with respect to the 

isotropic conductivity using the adjoint rule can be written as: 

 𝜕Φ𝐷

𝜕𝜎
(𝐱) = Re ⟨− 𝐄(b)(𝐱), [𝐆(b,H)]

†
𝐖𝟐Δ𝐇⟩

D
, (11) 

where 𝐆(b,H) denotes the ‘heterogeneous background’ Magnetic fields Green’s function is defined as 

 
𝐆(b,H) = 𝐆(0,H) [𝐈 + Δ𝛔(𝐈 − 𝐆(0,E)Δ𝛔)

−1
𝐆(0,E)]. (12) 

We define the adjoint electric field as 𝐄(a) = [𝐆(b,H)]
†

𝐖𝟐Δ𝐇 which is backpropagated from the source 

receivers to the inversion domain. The gradient of the weighted data misfit function is the correlation 

between the total and adjoint electric fields. Calculating equation (11) involves solving the adjoint 

problem of equation (4). This costs additional forward solver calls when using an iterative solver. 

Hence, we propose to use a few iterations when solving the adjoint problem. Using the scattering 

potential decomposition technique (Jakobsen et al., 2023) on the conductivity tensor and chain rule, the 

derivative with respect to the 2.5D model parameterization is written as  

 ∂ΦD

∂m𝑘
(𝐱𝐦) =

∂σk

∂m𝑘
(𝐱𝐦) ⊙ 𝐏TRe⟨−𝐄(b)(𝐱), 𝐑T𝐁k𝐑𝐄(a)(𝐱)⟩

D
, k = 1,2, (13) 
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𝐁1 = [
1 0 0
0 1 0
0 0 0

] and 𝐁2 = [
0 0 0
0 0 0
0 0 1

], (14) 

where 𝐱𝐦 denotes the space of the model parameters and ⊙ is the elementwise multiplication. 𝐏T is 

the transpose of the mapping operator and its action is summing over the y-direction in our study case. 

 

Weighted L2 Regularization. We chose to regularize the log of conductivity to equalize the difference 

in the resistive and conductive regions. Following Van Den Berg and Abubakar (2001), we write the 

weighted L2 total variation as: 

 
ΦTV

(n)[σk] =
1

V
∫

|WTV
(n−1)

(𝐱)𝛁 log[σk(𝐱)]|
2

+δ(n−1)

|WTV
(n−1)

(𝐱)𝛁 log[σk(𝐱)(n−1)]|
2

+δ(n−1)
d3𝐱

Ω
, k= 1,2, (15) 

where V is the volume or area that encloses the inversion domain Ω, 𝑛 is the iteration number. 𝛿 is a 

perturbation factor defined as δ(n−1) = γΦD
(n−1)

(Δ)−2 with Δ the grid size and γ a relaxation parameter 

controls how much the inverted model is regularised. If there is no update, then γ is increased by a 

factor of two. WTV is a weighting term to avoid regularization beyond the tool’s sensitivity. This weight 

depends on the gradient of the data misfit specified in the following: 

 

WTV
(n−1)

(𝐱) = max [|
∂ΦD

∂σ1

(n−1)

| (𝐱), |
∂ΦD

∂σ2

(n−1)

| (𝐱)] ⋅ (max [|
∂ΦD

∂σ1

(n−1)

| , |
∂ΦD

∂σ2

(n−1)

|])
−1

. (16) 

The total variation regularization cost is then the sum of the weighted L2-norm of both parameters: 

 ΦTV = ΦTV[𝜎1] + ΦTV[𝜎2]. (17) 

 

Numerical Examples and Discussion 

 

Figure 1. shows a schematic of the moving simulation and inversion window. This window is moving 

along with the induction tool and the grid points inside the windows coincide with each other. Each 

simulation window is discretized into 32 x 32 x 32 grid blocks with a size of 1 x 1 x 1 m3. We simulate 

induction logs across faulted anisotropic formations with an 80o drilling angle as shown in Figure 2a 

and 2c. The transmitter spacing is 2 m and there are 126 logging positions in total. The transmitter has 

frequencies of 12, 24, and 48 kHz with three receivers 5, 10, and 15 m behind the transmitter. We set 

homogeneous isotropic background conductivity 𝜎0 = 0.1 S/m for all simulations and add 2% 

uniformly distributed random noise to the data. 

 

The inversion is done sequentially using the data at one logging position at a time. The inverted model 

in all positions initialized equal to the conductivity of the previous window in the overlapping region 

and equal to 𝜎0 in the other region. We set the inverted conductivity boundaries between 0.1 𝜎0 – 10 

𝜎0. When solving the adjoint problem, we use ten GMRES (Saad, 2003) iterations for faster calculation 

time. Additionally, we implement the frequency hopping strategy where the data is inverted from the 

low- to high-frequency data (Van Den Berg and Abubakar, 2001). The inversion is stopped when the 

norm of the data misfit normalized with the norm of the observed data is less than 0.02. This process 

can be repeated back-forth from the starting to the end position so that the data misfit calculated from 

the latest inversion results gives a better match in all positions. Figure 2 shows the model obtained from 

eleven forward and backward repetitions of the sequential inversion. The process took approximately 

10 hours on a laptop with AMD Ryzen 7 4800H CPU and NVIDIA GeForce RTX 3060 Laptop GPU. 

 

  
Figure 1 Sketch of the moving forward modelling and inversion window. 
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Figure 2 The x-z plane view of the true and inverted model parameters. 𝜎1 and 𝜎2 refer to the horizontal 

and vertical conductivity, respectively. The dots are the transmitter positions. 

 

The inverted model shows a similar structure close to the drilling trajectory. Qualitatively, the model is 

better reconstructed in the resistive area compared to the conductive area and the σ1 is better recovered 

compared to the σ2. This may be related to the limited sensitivity of the tool configurations. 

 

Conclusions 

 

We have developed an efficient inversion algorithm using an adjoint Integral Equation Method for 

logging while drilling scenarios in anisotropic media. We use several inexpensive approaches including 

the quasi-Newton method with L-BFGS algorithm and limited GMRES iteration for solving the adjoint 

problems. In the future study, we aim to optimize the inversion workflow by including different 

assimilation strategies between the inversion window and a priori knowledge about the anisotropic 

media for better convergence and inversion results, especially for dealing with 3D structures.  
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