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Abstract

This thesis is about pricing swaptions under the SABR model or a variant thereof. In the interest
market a stochastic local volatility is often used by practitioners to describe the volatility curve in
the strike dimension of swaptions. It is a fast approach to inter- and extrapolate market quotes.
It is however well-known that this approach is not arbitrage-free. This led to the investigation
of approaches that are arbitrage-free. Several approaches have been proposed in the literature
to resolve the arbitrage. Computationally rapid approaches that are arbitrage-free are desired
as an alternative for Hagan’s formulas. These approaches can be used to describe the volatility
curve in the strike dimension. The focus will be on an approach that is analytically exact
under the SABR model, an approach that reduces the dimensionality in the dynamics of the
SABR process and the stochastic collocation method (SCM). The SCM will be used to remove
the arbitrage in the stochastic local volatility approach. All approaches will be calibrated to
swaption volatility curves and the impact on the inter- and extrapolation of the market quotes is
investigated. This is done by investigating the extrapolation of the volatilities, the sensitivities
and pricing constant maturity swap (CMS) derivatives using a convexity adjustment method
dependent on the complete volatility curve.

Keywords: SABR, volatility, swap, swaption, constant maturity swap, arbitrage, stochastic
collocation method, convexity adjustment.
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Glossary

LIBOR London interbank offered rate.
EURIBOR Euro interbank offered rate.
bp Basis point, a unit equal to 1/100th of 1%.
D(t, T ) The zero-coupon bond price, contracted at time t with ma-

turity T .
Swap An agreement where two parties exchange a floating rate to

a fixed rate.
Swap rate The value of the fixed rate that gives the swap zero value as

seen from today.
Swaption An option to enter in a swap at a future time. In a receiver

swaption the holder of the option agrees to pay the floating
rate in the underlying swap, in a payer swaption the holder
of the option agrees to pay the fixed rate in the underlying
swap.

CMS Constant maturity swap.
Call option An option to buy a financial quantity for a fixed price at a

prescribed time in the future.
Option price the price of the corresponding option, i.e. call price is the

price of a call option.
At-the-money An option where the strike is equal to the forward is called

at-the-money. A swaption is at-the- money if the strike is
equal to the swap rate of the underlying swap.

A Annuity.
PDE Partial differential equation.
Q Risk-neutral measure.
QA Annuity measure.
QT T -forward measure.
f Probability density function.
F Cumulative density function.

(x)+ A function, where (x)+ := max(0, x) = x1{x≥0}, with 1{·}
the indicator function. Not be confused with possible nota-
tions as x+ (without parentheses).

Itô’s Lemma A lemma to switch between the dynamics of processes.
Fokker-Planck equation A PDE to describe the probability density function of a pro-

cess.
Bachelier’s model A model to value options, see Section 2.3.1.
Black’s model A model to value options, see Section 2.3.2.
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Implied Bachelier volatility The value of the volatility in Bachelier’s model such that
Bachelier’s model gives the market option price.

Implied Black volatility The value of the volatility in Black’s model such that Black’s
model gives the market price.

CEV process Constant elasticity of variance process, see Section 2.4.1.
SABR An abbreviation of Stochastic Alpha Beta Rho.
α, β, ρ, ν The model parameters in the SABR model, where α is the

volatility, β is the skewness parameter, ρ is the correla-
tion between the Brownian motions described in the SABR
model and ν is the volatility of the volatility.

Norm(µ, σ2) A normal distribution with mean µ and standard deviation
σ.

Gam(αΓ, βΓ). A gamma distribution with shape parameter αΓ and rate
parameter βΓ.

Hagan’s formulas The approximations of Hagan et al. to describe the implied
Black and Bachelier volatilities under the SABR model, see
Section 2.5.

Hagan’s AF SABR model A model derived by a reduction of dimensionality in the
dynamics of the SABR model by Hagan et al, see Section
3.1.

Uncorrelated Antonov An approach to price call options under the SABR model
for the uncorrelated case, see Section 3.2.

SCM Stochastic collocation method, see Chapter 4.
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Chapter 1

Introduction

This thesis investigates different arbitrage-free approaches for pricing interest rate derivatives
under the SABR model, focusing on the impact on the prices and vega sensitivities. To formulate
the research question, an introduction on financial products is given.

A financial derivative is a security whose price depends on a certain underlying asset. This
underlying asset can be for instance a stock, the oil price, a bond price or an interest rate. One
of the most common derivatives are options. For example, a call option on a share, gives the
holder the right but not the obligation to buy the share on a predefined time in the future, for
a predefined price.

In the Over-The-Counter (OTC) market derivatives are traded directly between two coun-
terparties instead of via an exchange. The trade can be fully customized to the needs of the
counterparties. Table 1.1 summarizes the notional amounts outstanding of the OTC derivates.
The interest rate derivatives market is the largest, with approximately 81% of the total notional.

Forwards and swaps Options

Foreign exchange 61,331 13,451
Interest rate 513,848 49,442
Equity 2,433 4,508
Commodities 1,474 732
Credit default swaps 19,462 -
Unallocated 22,274 2,535

All contract 620,823 70,668

Table 1.1: Notional amounts of outstanding OTC derivatives in billions of US dollars, end-June
2014 [10].

An example of an interest rate derivative is a swap. When two parties enter into a swap, one
party exchanges a fixed rate to a floating rate with the other party. The fixed and floating rates
are exchanged at a predefined set of dates. The floating rate is usually based on a reference
rate, like LIBOR or EURIBOR. LIBOR is the London interbank offered rate and EURIBOR
is the euro interbank offered rate. These are the average interest rates estimated by a panel of
banks in London and in the Eurozone respectively, at which banks would charge other banks for
unsecured borrowing. The time-length of the swap is called the swap tenor. A vanilla swap is
frequently traded within the interest rate derivative market, and considered as one of the most
liquid interest rate products.
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4 CHAPTER 1. INTRODUCTION

Another commonly traded interest rate product within the interest derivatives market is a
swaption. The holder of this option has the right to enter into a swap at a predefined future
time. The date when this decision has to be made is called the option maturity. Prices of
swaptions are quoted for different sets of fixed rates, option maturities and swap tenors.

These market quotes are however only given for a limited set of fixed rates, option maturities
and swap tenors. Outside these points one has to inter- and extrapolate the market quotes. It
is important to inter- and extrapolate market quotes in an arbitrage-free way. An arbitrage
opportunity is an opportunity where one has the possibility of making a profit and is certain to
make no loss, without initial costs. An adequate market risk management is based on the fair
prices and sensitivities and therefore requires arbitrage-free approaches.

More complex derivatives can depend on the the inter- and extrapolation of the market
quotes. In the interest rate market, constant maturity swaps (CMS) derivatives depend on the
inter- and extrapolation of the market quotes. These have to be fairly prices as with with the
swaptions for adequate risk management.

The SABR model or a variant of the SABR model [29] is widely used in the interest rate
market for inter- and extrapolating swaption prices in the strike (fixed rate) dimension. The
approach by Hagan et al. [29], the so-called Hagan’s formulas, is one of these variants and
is considered the market standard in the interest rate market. This approach is very fast in
practice to inter- and extrapolate market quotes. It is however well-known that this approach
is not arbitrage-free [30].

The goal of this thesis is to find an arbitrage-free approach for pricing swaptions under
the SABR model or a variant of the SABR model. This approach must be fast, accurate and
competitive against recently proposed approaches. After such an approach is found, the impact
on the inter- and extrapolation of market quotes is investigated. The research question is:

What is the impact of an arbitrage-free approach on the inter- and extrapolation
of market quotes compared to Hagan’s formulas?

To answer this research question, the thesis is structured as follows. Chapter 2 starts with the
mathematical fundamentals and a price derivation for a swap and a swaption. Bachelier’s model
and Black’s model will be presented and it is discussed how they are related to market quotes.
The SABR model will be presented by a constant elasticity of variance (CEV) process. Finally
in this chapter, Hagan’s formulas are presented, along with its benefits and drawbacks. Hagan’s
formulas will be used as a benchmark with which the other approaches will be compared, since
it is one of the market standards approaches.

Chapter 3 - 6 are the core of the thesis. Chapter 3 discusses in more detail two recently
proposed approaches that are arbitrage-free and computationally rapid such that these can inter-
and extrapolate market quotes in practice. These two approaches are the approaches by Hagan
et al. [30] and Antonov et al. [3], which are referred to as Hagan’s AF SABR and uncorrelated
Antonov. The first approach is a reduction of dimensionality in the dynamics of the SABR
model, creating a new model. The latter one gives an analytically exact solution for a swaption
under a special case in the dynamics the SABR model, the uncorrelated case.

For Hagan’s AF SABR a PDE has to be solved. In this thesis the approach by Le Floch et
al. [15] is followed to ensure a sufficiently efficient implementation and an alternative integration
technique is proposed for more stability. With uncorrelated Antonov, more insight into of the
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SABR model is created. The stability of the approach is investigated and it is shown when this
approach is less stable.

The stochastic collocation method (SCM) introduced by Grzelak et al. [25, 26] is presented
in Chapter 4. It is an approach in which an expensive random variable is mapped to a simpler
random variable. The mapping will be used to remove the arbitrage in Hagan’s formulas.
In this chapter, different interpolation techniques are considered to approximate the mapping
accurately. In the approach by Grzelak et al, a normal distribution is considered for the simpler
random variable in the mapping, where in this chapter it is compared to a gamma distribution.
It is discussed when a gamma distribution can give more accurate results. A direct approach
of Grzelak et al. does not directly guarantee that the approach is completely arbitrage-free.
Therefore, the approach is extended such that it removes the arbitrage completely, whereas the
other two approaches provide this a priori. It is thus an approach that gives a posteriori an
arbitrage-free approach.

Chapter 5 and 6 compare the approaches. Chapter 5 compares the approaches by inter-
and extrapolating the market quotes. The impact on prices and sensititivies of swaptions are
investigated. In this chapter it will be shown how one can stabilize the approach of Hagan et al.
[3] during calibration for daily use and it its investigated if the uncorrelated case of the SABR
model can fit the market quotes accurately.

Chapter 6 compares the approaches by pricing CMS derivatives. The prices of CMS deriva-
tives depend on the entire inter- and extrapolation of the market quotes and the impact of the
approaches can therefore be measured by comparing the prices of these derivatives. To do so,
CMS swaplets, floorlets and caplets are priced by a convexity adjustment method.

Chapter 7 concludes after summarizing the main results and describes possible future re-
search.
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Chapter 2

The SABR model and Hagan’s
formulas

This chapter gives basic definitions of stochastic processes. These are important to understand
since they are the mathematical backbone for the pricing framework and used throughout the
thesis. The pricing framework for derivatives is introduced and it is shown how to price a swap
and swaption. For the latter one, it is desired to price in an arbitrage-free way in the inter-
and extrapolation of market prices. To explain how market prices are quoted, Bachelier’s and
Black’s model are introduced and are linked to the market quotes. To inter- and extrapolate
market quotes, it is chosen to use the SABR model or a variant of the SABR model. The
SABR model is widely used in the interest rate market due to the approximation formulas of
Hagan et al. [29], i.e. Hagan’s formulas. Hagan’s formulas have a drawback, namely that they
can generate arbitrage. It is shown in which manner they generate arbitrage. This give rise to
alternative approaches, which are guaranteed to be arbitrage-free which will be investigated in
later chapters. Finally, this chapter ends with a summary.

2.1 Mathematical preliminaries

Mathematical definitions, lemmas and theorems are introduced that are used as the basis of in
the pricing framework of derivatives. First, the definition of a martingale, stopping time and
theorem of a stopped martingale process will be given. The background is based on Steele [38]
and Jeanblanc [13].

Definition 2.1 (Martingale). A stochastic process Xt : [0, T ] × Ω → R is a martingale with
respect to a filtration Ft and a probability measure P if

• Ft is a filtration of the underlying probability space (Ω,F ,P).

• Xt is adapted to the filtration Ft.

• E [|Xt|] <∞ for each t.

• E [Xt| Fs] = Xs for each s ≤ t and Fs ⊂ F .

Definition 2.2 (Stopping time). A stochastic process St : [0, T ]×Ω :→ R∪{+∞} with respect
to the filtration Ft is called a stopping time if

{ω : St(ω) ≤ t} ∈ Ft for all t ≥ 0.

7



8 CHAPTER 2. THE SABR MODEL AND HAGAN’S FORMULAS

Theorem 2.3 (Stopped Martingale Theorem). Let St denote a stopping time and Xt be a
martingale. Then the process Xt∧St is also a martingale, where t ∧ St = min {t,St}.

Proof. A proof can be found in Steele [38].

If a process {Xt}t≥0 is stopped, for example at zero with X0 > 0, it accumulates mass in its
probability density function at zero. If there are no other points where the process is stopped,
the probability density function can be written as

fX(t, x) =

{
f(t, x), for x > 0,
P0(t)δ(x), for x ≤ 0,

where f(t, x) is the probability density function for x > 0, δ is the Dirac function and P0 is the
point mass at zero. The point mass at zero can be computed by P0(t) = 1−

∫∞
0 f(t, x) dx. This

convention will be used in the thesis. Furthermore, a stopped process can be seen as absorption
at some point (in the above case, absorption at zero is assumed).

The definition of a Brownian motion is presented to introduce Itô’s Lemma and the Fokker-
Planck equation.

Definition 2.4 (Brownian Motion). A stochastic process Wt for t ∈ [0,∞) is called a Brownian
motion if:

• W0 = 0 and Wt ∼ Norm(0, t) for t > 0.

• It has stationary, independent increments.

• It is continuous with probability one.

Lemma 2.5 (Itô’s Lemma). Suppose Xt follows an Itô process:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, with X0 = x0,

i.e.

Xt = X0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs,

with µ(t,Xt) being the drift term and σ(t,Xt) the diffusion term. Let g(t,Xt) be a function with
continuous derivatives (up to second order). Then Yt := g(t,Xt) follows an Itô process with the
same Brownian motion Wt:

dYt =

(
∂g

∂x
µ+

∂g

∂t
+

1

2

∂2g

∂x2
σ2

)
dt+

∂g

∂x
σ dWt.

Proof. A proof can be found in Steele [38].

Lemma 2.6 (Fokker-Planck Equation). If Xt follows the Itô process:

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt,

the probability density f(x, t) of Xt satisfies the Fokker-Planck equation

∂f(x, t)

∂t
= − ∂

∂x
(µ(x, t)f) +

1

2

∂2

∂x2

(
σ2(x, t)f(x, t)

)
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Proof. A proof can be found in Jeanblanc [13].

Lemma 2.7. Let Xt be an Itô process with drift term µ and diffusion term σ such that µ(t, x) ≡ 0
and

∫ +∞
−∞ σ2(t, x) dx for t ≥ 0. Then the process Xt is a martingale.

Proof. A proof can be found in Steele [38].

In the financial modeling, financial quantities are often described by an Itô process, also
known as a stochastic differential equation (SDE). Itô’s lemma shows how to switch between
processes. With a well chosen transformation, a simpler SDE can be derived and in some cases
an analytically expression can be derived for the solution of the SDE. If the drift term in the
SDE is set equal to zero, the process becomes a martingale. The measure under which a financial
quantity is described, is often chosen such that the financial quantity is a martingale and it is
therefore easier to model (the drift term does not have to be described). The Fokker-Planck
equation can give more insight to the process by giving the PDE for the probability density
function. Solving this PDE gives the distribution of the process. This gives the mathematical
background needed for pricing options.

2.2 Pricing preliminaries

The basic financial quantities are defined in this section that are required for pricing swaptions.
The background is based on Andersen et al. [33]. Unless stated otherwise, time is denoted in
years.1

Definition 2.8 (Basic Financial Quantities).

• A zero-coupon bond is a financial product that delivers 1 unit of currency at maturity T .
D(t, T ) denotes the price of a zero-coupon bond at time t ≤ T .

• It can be shown that the fair forward price of a zero coupon bond that starts at time T
and matures at time T + τ , at time t ≤ T is equal to:

D(t, T, T + τ) :=
D(t, T + τ)

D(t, T )
.

• The simple compounded forward rate L(t, T, T + τ) is defined as:

L(t, T, T + τ) :=
1

τ

(
1

D(t, T, T + τ)
− 1

)
, (2.1)

which originates from the relation

D(t, T, T + τ) =
1

1 + τL(t, T, T + τ)
.

1In general, financial contracts are specified in dates, but for convenience year fractions are used. Year fractions
can be obtained by a particular day counting rule. For more details on this subject, see Andersen et al.[33].



10 CHAPTER 2. THE SABR MODEL AND HAGAN’S FORMULAS

• The instantaneous forward rate is defined as:

h(t, T ) :=
∂ln (D(t, T ))

∂T
,

which originates from the relation

D(t, T, T + τ) = exp

(
−
∫ T+τ

T
h(t, u) du

)
.

• The short rate is given by

r(t) := h(t, t).

• A tenor structure is a set of predefined dates

0 ≤ T0 < T1 < . . . < TM ,

where for each interval τn := Tn+1 − Tn for 0 ≤ n ≤M − 1. If M = 1, it is called a tenor.

• Let k,M ∈ N such that 0 ≤ k < M and a tenor structure be given as above. The annuity
factor Ak,M is defined as:

Ak,M (t) =
M−1∑
n=k

D(t, Tn+1)τn.

With the basic financial quantities, mathematical theorems for pricing interest rate deriva-
tives can be presented.

2.2.1 Mathematical fundaments in pricing interest rate derivatives

Arbitrage is an important concept in pricing and will play an important role in this thesis. It is
defined as follows:

Definition 2.9 (Arbitrage). An arbitrage opportunity occurs when there exists a self-financing
strategy which has value m such that m(0) = 0 and, for some t ∈ [0, T ],

m(t) ≥ 0 with probability one, and P(m(t) > 0) > 0.

Thus, an arbitrage opportunity is an opportunity where one can trade in a product or a set
of products with no initial costs. This can involve buying and selling products. At the end of
the life-time of the products, one has or had the possibility of making a profit, but no possibility
of making a loss. The main concept in the arbitrage opportunity is the possibility of a profit
and the certainty of no loss. One can make money out of no money.

A numeraire is defined to introduce the equivalent martingale measure theorem.

Definition 2.10 (Numeraire). A numeraire is a continuously tradeable asset which is strictly
positive and pays no dividends.
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Definition 2.11 (Equivalent Martingale Measure). Let

X(t) := (X1(t), . . . , XM (t)) ,

be a random variable under a measure P. LetN (t) denote a numeraire, and define the normalized
asset process

XN (t) :=

(
X1(t)

N (t)
, . . . ,

XM (t)

N (t)

)T

.

Then the measure QN is an equivalent martingale measure induced by N with respect to P, if
QN is equivalent to the measure P and XN (t) is a martingale with respect to QN .

A numeraire can be seen as a reference asset that is chosen to normalize all other asset
prices with respect to it. A widely used measure in finance is the risk-neutral measure Q. It is

the measure defined by the continuously compounded money market account B(t) := e
∫ t
0 r(u) du,

where r(u) is the short rate. If there exist the risk-neutral measure, it has been proven that

there is no arbitrage [33]. Let V (t) be the price of a derivative at time t, then the process V (t)
B(t)

is a martingale under the risk-neutral measure [33]. This leads to the pricing formula:

V (t) = B(t)EQ
[
V (T )

B(T )

∣∣∣∣Ft] .
For pricing it is sometimes more convenient to switch to another measure induced by a different
numeraire. Switching to a different measure is usually done such that the process to be modeled
is a martingale under this measure. Modeling a martingale is more convenient when the process
is described by a SDE, since the drift term in the SDE does not have to be modeled. Switching
between measures can be done with the Change of Numeraire theorem.

Theorem 2.12 (Change Of Numeraire). Consider two numeraires N (t) and Ñ (t), inducing

equivalent martingale measures QN and QÑ , respectively. If the market is complete, then the
density of the Radon-Nikodym derivative relating the two measures is uniquely given by

Z(t) = EQN
[

dQÑ

dQN

∣∣∣∣∣Ft
]

=
Ñ (t)N (0)

N (t)Ñ (0)
.

Proof. A proof can be found in Andersen et al. [33].

Two other measures that are relevant for swaption pricing are the annuity measure and the
T -forward measure.

Definition 2.13 (Annuity And T -forward Measures).

• The annuity measure QA is the measure induced by taking the annuity Ak,M as the
numeraire.

• The T -forward measure QT is the measure induced by taking the zero coupon bond price
D(t, T ) as the numeraire.

With these definitions and theorems swaps and swaptions can be priced.
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2.2.2 Interest rate derivatives and pricing formulas

Interest rate derivatives and their pricing formulas are introduced in this section. First, a swap
is introduced. It is a product where two parties exchange rates. The swap is defined to introduce
a swaption, which is an option on a swap. It is a product used to inter- and extrapolate market
quotes.

Definition 2.14 (Swap). Let a tenor structure 0 ≤ T0 < T1 < . . . < TM , τn := Tn+1 − Tn
for 0 ≤ n ≤ M − 1, the corresponding annuity, a fixed rate K and a floating rate L be given.
One party pays simple compounded interest based on the fixed rate K in return for simple
interest payments based on the floating rate fixing on date Tn, for each period [Tn, Tn+1], n =
0, . . . ,M − 1. The payments are exchanged at the end of each period, i.e. Tn+1. The payments
are assumed to have the same tenor structure, day count convention and business day convention.
The payments based on the fixed rate are called the fixed leg and the payments based on the
floating rate are called the floating leg. The net cash flow from perspective of the fixed rate
payer is at time Tn+1:

Nτn(L(Tn, Tn, Tn+1)−K).

The value of a swap is a summation of these payments discounted by zero-coupon bonds to get
the present value. It can be shown that the value of a swap at Tk−1 ≤ t ≤ Tk is:

Vswap(t) = N
M−1∑
n=k

τnD(t, Tn+1)(L(t, Tn, Tn+1)−K)

= NAk,M (t)

(∑M−1
n=k τnD(t, Tn+1)L(t, Tn, Tn+1)

Ak,M (t)
−K

)
,

where Ak,M is the annuity, N is the notional, i.e. the amount of money on which interest rate
is payed for.

If M = 1, the swap reduces to a Forward Rate Agreement (FRA), with the slight difference
that the payment is done at time T1 for a swap and is done at time T0 for the FRA. A useful
quantity for the swap is the swap rate. This is the quantity that will be modeled in this thesis
under the annuity measure.

Definition 2.15 (Forward Swap Rate). The forward swap rate Sk,M (t) is defined as the fixed
rate that gives the swap the value zero as seen from time t. From the pricing formula of a swap,
it follows that:

Sk,M (t) :=

∑M−1
n=k τnD(t, Tn+1)L(t, Tn, Tn+1)

Ak,M (t)
, t ≤ Tk. (2.2)

It follows from the equivalent martingale measure that the swap rate Sk,m(t) is a martingale
under the annuity measure Ak,m. The annuity measure is therefore also known as the swap
measure.

Definition 2.16 (Swaption). A swaption gives the holder the right, but not the obligation, to
enter into a swap at a pre-defined future time T . Time T is called the option maturity, often
referred to as the exercise time.
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The length of the underlying tenor structure of a swap is often referred to as the swap
tenor. A xYzY swaption is shorthanded for a swaption with maturity T = x years, where the
underlying swap has a swap tenor of y years. Assuming that the underlying swap starts on the
expiry date T0, the value of a swaption at maturity T0, is given by

Vswaption(T0) = (Vswap(T0))+,

where (x)+ = max(x, 0). It is chosen to use the annuity measure as the measure to price a
swaption. This ensures that the swap rate can be modeled by a martingale. This gives the value
of a swaption at time t ≤ T0:

Vswaption(t) = A0,M (t)NEA
[
A0,M (T0)

(
S0,M (T0)−K
A0,M (T0)

)+
∣∣∣∣∣Ft
]

= A0,M (t)NEA
[
(S0,M (T0)−K)+

∣∣Ft] .
All the above is derived for a payer-swaption, where the holder has the option to enter into

a swap where he receives the floating rate in exchange for paying fixed rate. It can be observed
that the value of a swaption is the price of a call option on the swap rate under the annuity
measure. The same can be derived for a receiver-swaption, where the holder has the option to
enter into a swap where he receives the fixed rate in exchange for paying the floating rate. In
this case the value of a swaption is the price of a put option on the swap rate under the annuity
measure. The prices of a call (C) and put (P) options will be denoted by:

C(t, T,K) = A(t)NEA
[
(S(T )−K)+

∣∣St] , (2.3)

P(t, T,K) = A(t)NEA
[
(K − S(T ))+

∣∣St] , (2.4)

where for convenience the swap rate is written by S(t) := S0,M (t). In the special case K = S(t),
the swaption is called an at-the-money swaption. The prices of a call and put option will be
referred to as call and put prices respectively. For some fixed strikes, option maturities and swap
tenors, the prices of swaptions are quoted in the market. This is explained in the next section.

2.3 Market quotes

Under the annuity measure the swap rate is a martingale. It is however not known what the
dynamics of the swap rate are under the annuity is. Therefore, a model is needed to describe
the dynamics of the swap rate. Bachelier’s model and Black’s model will be introduced, which
are well-known models in financial modeling. These two models will give insight on how market
quotes are given, for which the implied volatility curve is introduced.

2.3.1 Bachelier’s model

Under Bachelier’s model it is assumed that a financial quantity follows the SDE:

dSt = µdt+ σ dWt, S(0) = S0 > 0,

where Wt is a Brownian motion under a measure P. The parameters µ and σ are called the drift
and volatility parameter respectively.
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Usually, one switches to an equivalent measure Q∗ such that the underlying process is a
martingale. For the swap rate, this equivalent measure is the annuity measure. The underlying
process satisfies the following SDE under this equivalent measure:

dSt = σ dWt, S(0) = S0 > 0,

where Wt is the standard Brownian motion under Q∗, and σ ∈ R≥0. This gives the well-known
solution:

S(t) = S0 + σWt.

The call and put price under Bachelier’s model are given by Lemma 2.17:

Lemma 2.17 (Bachelier’s Call and Put Price). The price of a call option (C) and put option
(P) with maturity T under Bachelier’s model for strike K at time t is:

CBachelier(t, T,K, σ) = (S(t)−K)FN (−d) + σ
√
T − tfN (d), (2.5)

PBachelier(t, T,K, σ) = (K − S(t))FN (−d) + σ
√
T − tfN (d), (2.6)

with

d =
K − S(t)

σ
√
T − t

,

and where fN (·) is the probability density function and FN (·) is the cumulative density function
of the standard normal distribution. These formulas will be referred to as Bachelier’s formulas.

Proof. A proof can be found in Iwasawa [22].

2.3.2 Black’s model

Under Black’s model it is assumed that a financial quantity is log-normally distributed at option
time T and can be written as

S(T ) = S0 exp

(
−σ

2

2
T + σWT

)
,

at option date T . WT is a Brownian motion under a measure Q∗. For the swap rate, Q∗ is
the annuity measure. S0 is extracted from forward contracts. For the swap rate, the forward
rate agreements imply rates by the market quotes such that the swap rate can be computed.
This model originates from the Black and Scholes model, where it is assumed that a financial
quantity follows the SDE:

dSt = µSt dt+ σSt dWt, S(0) = S0 > 0.

The parameter µ is set equal to zero such that St is a martingale in Black’s model under the
appropriate measure, which is the annuity measure for the swap rate. For Black’s model the
call and put price can be derived analytically and are given in Lemma 2.18.

Lemma 2.18 (Black’s Call and Put Price). The price of a call option (C) and put option (P)
with option date T under Black’s model for strike K at time t is:

CBlack(t, T,K, σ) = S(t)FN (d1)−KFN (d2), (2.7)

PBlack(t, T,K, σ) = KFN (−d2)− S(t)FN (−d1), (2.8)
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with

d1 =
log
(
S(t)
K

)
+ 1

2σ
2(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

These formulas will be referred to as Black’s formulas.

Proof. A proof can be found in Shreve [37].

2.3.3 Implied volatility

Before the market crash of 1987 it was assumed that Black’s model was a good approximation
of the dynamics of the forward swap rate. Prices were quoted in terms of a constant Black
volatility for all strikes, but the volatility differed for different maturities and tenors [19]. All
other model parameters (S0, t, T,K) could be observed from the market and therefore the prices
of swaptions were known.

Market prices ceased being quoted with a constant Black volatility for all strikes after the
market crash of 1987. Market prices are still quoted by Black volatilities, however the volatility
differs for the strikes, i.e. each strike for which a market quote is provided has its own Black
volatility. These volatilities are the implied Black volatilities, which means that these volatilities
give the correct price given the wrong model. For example, let N be the notional of the under-
lying swap, A(t) the annuity of the swap at time t, S(t) the swap rate, T the option maturity
of the swaption, Ki the corresponding fixed rate and σmarket

i be the volatility implied by the
market. The price of a swaption at time t is given by

NA(t)CBlack(t, T,Ki, σ
market
i ).
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(b) Bachelier’s implied volatilities.

Figure 2.1: Quotations for swaptions in implied volatilities plotted against relative strikes, i.e.
the difference between the swap rate and the strike.

The implied volatilities vary in the strike, maturity and tenor direction. If the implied
volatilities are described for one, two or all directions, it is called a volatility curve, surface or
cube respectively. For convenience, the volatility curve described in the strike dimension will be
referred to as the volatility curve.
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Quotations can also be done in terms of implied Bachelier volatilities. For example, consider
Figure 2.1a for the implied Black volatilities and Figure 2.1b for the implied Bachelier volatilities
quoted on June 26th, 2014. Market quotes are plotted for xY zY swaptions, where it is chosen to
set approximately x+ y ≡ constant. Volatility curves are assumed to be more stable over time
than option prices [19], which is the reason why quotations are done in volatilities. To determine
the prices of swaptions outside the market quotes, a model is needed that can accurately describe
the market quotes.

2.4 The SABR model

Bachelier’s and Black’s model can not replicate the volatility curve of the market quotes. There-
fore, a more advanced model is needed which can capture the market volatility curve. In this
thesis it is chosen to do so with the SABR model or a derivation of it. It is well-known that the
SABR model can capture the market volatility curve accurately [29].

2.4.1 CEV process

The SABR model is presented by a constant elasticity of variance (CEV) process. Using the
CEV process to model a financial quantity will be referred to as a CEV model. The CEV model
is a special case of the SABR model and will give insight into the SABR model. The dynamics
of a CEV process St is given by the SDE:

dSt = σSβt dWt,

where it is chosen that 0 < β < 1. The cases β = 0 and β = 1 relate to Bachelier’s and Black’s
model respectively. For other cases, the process does not have a unique solution to the SDE.2

It is shown below how a CEV process relates to a Bessel process and how properties for a
CEV process can be derived by a Bessel process. A brief introduction on Bessel processes can
be found in Appendix A.1. Define Xt := 1

σ(1−β)S
1−β
t . It follows by Itô’s Lemma that:

dXt = dWt −
β

2(1− β)

1

Xt
dt.

Therefore, X is Bessel process of negative index 1
2(1−β) , it hits zero in finite time for 0 ≤ β < 1.

In the case 1
2 ≤ β < 1 it corresponds to a Bessel process with dimension w with 0 ≤ w < 2 and

the processes stops naturally at zero. Therefore, it has a point mass at zero. For 0 < β < 1
2

it corresponds to a Bessel process with negative dimension and a boundary condition has to be
chosen when the process hits zero. If it is stopped at zero, the process stays a martingale by
the stopped martingale theorem. The probability density function of a CEV process from S0 to
St = y is given by [6]:

fA(t, y) =
1

σ2(1− β)

y1−2β

t

(
y

S0

)− 1
2

e−
q2+q20

2t I|η|

(qq0

t

)
. (2.9)

The process can also be reflected at zero, but then the process does not stay a martingale. If
the process is reflected for 0 ≤ β < 1

2 at zero, the probability density is given by [6]:

fR(t, y) =
1

σ2(1− β)

y1−2β

t

(
y

S0

)− 1
2

e−
q2+q20

2t Iη

(qq0

t

)
, (2.10)

2See Shreve [37] for an existence and uniqueness theorem for SDEs.
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where η = −1
2(1−β) , q0 =

S1−β
0

σ(1−β) and q = y1−β

σ(1−β) . The probability density function describes
the distribution of the process over time and option prices can be calculated as an integral by
calculation the expectation E [V (ST )| Ft] =

∫ +∞
−∞ V (x)f(T, x) dx. Under the CEV process, an

analytically expression for a call price can be derived [20]. The probability density function of
a CEV process will be used as a fundamental in Chapter 3 and 4.

The cumulative density function of a CEV process for 1
2 ≤ β < 1 and assuming absorption

for 0 < β < 1
2 is given by [20]:

F (y) = 1− Fχ2(b,c(y))(a), (2.11)

with

a =
S

2(1−β)
0

(1− β)2σ2T
, b =

1

1− β
, c(y) =

y2(1−β)

(1− β)2σ2T
,

where Fχ2(b,c) is the cumulative density function of the non-central chi-squared distribution with
b degrees of freedom and the non-central parameter c.

2.4.2 An introduction to the SABR model

The SABR model is an extension of the CEV process, where the volatility of the model is chosen
to be a stochastic process. The dynamics of a financial quantity St under the SABR model are
given by:  dSt = αtS

β
t dW 1

t , S(0) = S0 > 0,
dαt = ναt dW 2

t , α(0) = α > 0,
dW 1

t dW 2
t = ρdt.

with ν > 0, 0 ≤ β ≤ 1 and −1 ≤ ρ ≤ 1. St is the value of the financial quantity at time t and
αt is its volatility.

SABR is an abbreviation for Stochastic Alpha Beta Rho, a name derived from the corre-
sponding model parameters. The SABR model is an example of a stochastic volatility model,
since the volatility αt is modeled by a process driven by a Brownian motion W 2

t . If ν = 0 it
reduces to Black’s model for β = 1, Bachelier’s model for β = 0 and a CEV model for 0 < β < 1.

As for the CEV process, the process has to be stopped for 0 < β < 1
2 in order to remain a

martingale [18]. For 1
2 ≤ β < 1, it has a natural absorption at zero and remains a martingale

[18]. Only for β = 0, the SABR model allows the financial quantity to become negative.

By modeling the swap rate with the SABR model, prices for swaptions can be computed
for a given set of parameters. With these prices, an implied volatility for Black’s or Bachelier’s
model can be obtained for each strike. In general these implied volatilities will give not a constant
volatility curve in the strike dimension, but it will vary like the market quotes. Furthermore, the
four model parameters of the SABR model have the following impact on this implied volatility
curve [29]3:

• α controls the overall height of the curve.

• ν controls how much curvature the curve exhibits.

• β and ρ control the skewness of the curve.

3This impact should not be confused with Hagan’s formulas. Hagan’s formulas have a similar impact in the
volatility curve as the SABR model.
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The SABR model is often used in the interest rate market to construct a volatility curve
implied by the model to fit the volatility curve of the market. The impact on the implied
volatility curve of the model by the parameters make it an easy to understand model. It is
known that this model can fit the market volatility curve accurately [29].

In general, no closed-form solutions for option prices are known under the SABR model.
The exception is the special case of ρ = 0, for which a two-dimensional integral is derived by
Antonov et al. [3]. For the general case, one could consider to apply the multivariate version of
the Fokker-Planck equation to the SABR model. This gives the full SABR (S, α, t)-PDE for the
probability density function f :

∂f(t, S, α)

∂t
=

1

2

∂2
(
α2S2βf(t, S, α)

)
∂S2

+
∂2
(
ρνσ2Sβf(t, S, α)

)
∂S∂α

+
1

2

∂2
(
ν2α2f(t, S, α)

)
∂α2

.

This is a two-dimensional PDE and therefore computationally expensive to solve numerically.
It is however desired to have a fast approach such that it can be used in practice.

2.5 Hagan’s Formulas

Hagan’s formulas are introduced along with their benefits and drawbacks. These are approxima-
tions of the Black’s and Bachelier’s volatility implied by the SABR model, which is a stochastic
local volatility model. The volatility is locally described, where the volatility is implied by a
stochastic process. The benefit of describing the volatility curve directly is that it is directly
linked to the market quotes.

These formulas are derived under the assumption that:

α
√
T � 1, ν

√
T � 1 and

|S0 −K|
α
√
T

= O(1). (2.12)

These are not the exact implied Black and Bachelier volatility, but the unstated argument by
Hagan et al. is that “instead of treating these formulas as a reasonably accurate approximation
to the SABR model, they should be treated as the exact solution to some other model which is
well approximated by the SABR model” [30]4.

2.5.1 Hagan’s Black formula

Under the SABR model, the implied Black volatility can be approximated under the assumptions
in Equation (2.12) by5[29]:

σB = I1 · (1 + I2 · T ), (2.13)

4Hagan et al. argues that these formulas should not be considered as the SABR model, but a different model for
which the dynamics of the underlying process are not known. Rather, these formulas will give a parameterization
of the volatility curve. As discussed earlier, it is known that the market volatility curve stays approximately
constant over time [19], and it therefore makes sense to describe the market volatility curve rather than a process.

5The functions I1 and I2 are only introduced for as dummy functions and should not be confused with the
modified Bessel function. Similarly it holds for the functions z, χ and ζ. They should only be considered as
dummy functions.
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where

I1 := I1(α, β, ρ, ν, S0,K) =
αz

χ(z) (S0K)
1−β

2

(
1 + (1−β)2

24 log2
(
S0
K

)
+ (1−β)4

1920 log4
(
S0
K

)) ,
I2 := I2(α, β, ρ, ν, S0,K) =

(1− β)2

24

α2

(S0K)1−β +
1

4

ρβνα

(S0K)
1−β

2

+
2− 3ρ2

24
ν2,

z := z(α, β, ν) =
ν

α
(S0K)

1−β
2 log

(
S0

K

)
,

χ := χ(z, ρ) = log

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

This formula will be referred to as Hagan’s Black formula.

2.5.2 Hagan’s Bachelier formula

Under the SABR model, the implied Bachelier volatility can be approximated under the as-
sumption in Equation (2.12) by5[29]:

σN = I1 · (1 + I2 · T ), (2.14)

where

I1 := I1(α, β, ρ, ν, S0,K) =
α(1− β)(S0 −K)

S1−β
0 −K1−β

ζ

χ(ζ)
,

I2 := I2(α, β, ρ, ν, S0,K) =
β(β − 2)α2

24
(S0K)β−1 +

αβρν

4
(S0K)

β−1
2 +

2− 3ρ2

24
ν2,

ζ := ζ(α, β, ν, S0,K) =
ν (S0 −K)

α (S0K)
β
2

,

χ := χ(ζ, ρ) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)
.

This formula will be referred to as Hagan’s Bachelier formula. Hagan’s Black and Bachelier
formulas will be referred to as Hagan’s formulas.

2.5.3 Benefits of Hagan’s formulas

The implied volatilities derived by Hagan et al. are straightforward to implement compared
to more sophisticated methods. This is one of the benefits of Hagan’s formulas. It is also
well-known by market practitioners that the implied volatility curve by Hagan’s formulas can
be fitted to the market accurately by choosing the SABR parameters α, β, ρ, ν such that the
difference between the market quotes and the implied volatility curve by Hagan’s formulas is
minimal. As an example, a 30Y10Y swaption quoted on 26th of June 2014 is taken. The result
is presented in Figure 2.2. This figure show that that Hagan’s formulas can accurately capture
the market volatility, even for a long maturity. The latter may seem contradictory against the
derivation of the formulas, but this shows that these formulas seem usable for longer maturities
too.
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(a) Fit by Hagan’s Bachelier formula.
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Figure 2.2: Fit with Hagan’s formulas to volatility curve for a 30Y10Y swaption in the euro
market. The calibrated parameters are given by Table 2.1.

General parameters Hagan’s Black formula Hagan’s Bachelier formula

T S0 α β ρ ν α β ρ ν

30 0.02407 0.0411 0.5960 -0.3538 0.1309 0.0662 0.7117 -0.4788 0.1309

Table 2.1: Calibrated SABR parameters for Hagan’s formulas in Figure 2.2.
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Figure 2.3: Hagan’s implied volatility for Bachelier’s and Black’s model for different values of
the parameters. Fixed parameters are given by Table 2.1.
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(e) Different values of ν in Hagan’s
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Figure 2.4: Hagan’s implied volatility for Bachelier’s and Black’s model for different values of
the parameters. Fixed parameters are given by Table 2.1.
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In Figures 2.3a–2.4f α, β, ρ and ν are varied respectively to investigate the impact of each
parameter on the implied volatility curve as predicted by Hagan’s formulas. One can indeed
observe that α controls the overall height of the curve, β and ρ control the skewness of the
volatility curve, and ν controls how much curvature the volatility curve exhibits. The SABR
parameter β also influences the height of the volatility curve. This is since β can be seen as
varying in type of distribution, β = 0 corresponds to a Bachelier’s model and β = 1 corresponds
to Black’s model with a stochastic volatility. In general, one needs a higher volatility for the
same price under Black’s model compared to Bachelier’s model. Figure 2.2 presents an example
for the comparison between the volatilities of Black’s and Bachelier’s model. For this figure the
Black volatility is approximately 200 times higher than the Bachelier volatility.

2.5.4 Arbitrage in Hagan’s formulas

The drawbacks of Hagan’s formulas is that they are not arbitrage-free. This is shown with
Lemma 2.19 and butterfly option prices.

Lemma 2.19. Let the price of a call (C) and put (P) be given by:

C(K) := C(t, T,K) = D(t)EA
[
(ST −K)+

∣∣Ft] ,
P (K) := P (t, T,K) = D(t)EA

[
(K − ST )+

∣∣Ft] ,
for some function D(t). The prices satisfy the following relations to the probability density
function f and the cumulative density function F :

∂2C

∂K2
(K) =

∂2P

∂K2
(K) = D(t)f(K), (2.15)

∂C

∂K
(K) = D(t)(F (K)− 1), (2.16)

∂P

∂K
(K) = D(t)F (K), (2.17)

where St is a well-defined martingale process.

Proof. The proof can be found in Appendix A.2.

Definition 2.20 (Butterfly Option). A butterfly option is a portfolio of call options with pay-off
VB at maturity T :

VB(K,∆K) := VB(t, T,K,∆K) = C(t, T,K + ∆K)− 2C(t, T,K) + C(t, T,K −∆K), (2.18)

where ∆K > 0. The quantity ∆K will be referred to as the call spread of a butterfly option.

Figure 2.5 presents an example of a pay-off at maturity of a butterfly option with. The
value of a butterfly option is nonnegative. Assuming D(t) = 1, the following relation between a
butterfly option and the probability density function f of St holds:

f(K) =
∂2C

∂K2
(K) ≈ C(K + ∆K)− 2C(K) + C(K −∆K)

∆K2
=

VB(K,∆K)

∆K2
, (2.19)

for ∆K � 1.
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Figure 2.5: Example of a Pay-off of a butterfly option for different strikes with ∆K = 1, ST = 5.

General parameters Hagan’s Bachelier formula

T S0 α β ρ ν

30 0.02407 0.0987 1.000 -0.2174 0.5768

Table 2.2: Parameters for the construction of Figure 2.6.
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(b) Hagan’s Bachelier formula.

Figure 2.6: Butterfly option prices implied by Hagan’s formulas for a call spread ∆K = 1
bp. Parameters are taken from Table 2.1 for Hagan’s Black formula and Table 2.2 for Hagan’s
Bachelier formula.

By valuing butterfly options, it can be shown that Hagan’s formulas contain arbitrage. For
the butterfly options it Figures 2.6a and 2.6b shows examples of such cases.

The butterfly option can attain negative values for some strikes under Hagan’s formulas.
This implies that one would assign a negative value to a butterfly option when pricing it with
Hagan’s formulas. So, a guaranteed profit is assured for a butterfly option when its price is
assigned with Hagan’s formulas. This is an arbitrage opportunity which is called a butterfly-
arbitrage. If this occurs, it implies that the underlying process is governed by a negatively valued
probability density function due to the relation in Equation (2.19). This implied negatively
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Figure 2.7: An arbitrage-free implied probability density function for Hagan’s Black formula.
Parameters are taken from Table 2.3.

General parameters Hagan’s Black formula

T S0 α β ρ ν

1 0.025 0.15 0.6 -035 0.1

Table 2.3: A parameter set for which Hagan’s Black formula is arbitrage free.

valued probability density function is often referred to as a butterfly-arbitrage as well. Some
practitioners prefer to reverse this statement, i.e. butterfly-arbitrage implies a negatively valued
probability density function. Hagan’s formulas do not always contain arbitrage. If Hagan’s
formulas do not imply butterfly arbitrage, they imply a well-defined process as a model for the
financial quantity, like the swap rate. This underlying process has a positively valued probability
density function with a point mass at zero which is aligned with the SABR model. Figure 2.7
presents an example of such an underlying probability density function implied by Hagan’s
formulas. Like the SABR model, this probability density function implies a point mass at zero.
In this case, it is approximately equal to 0.004.

The implied negatively valued probability density function is caused by a discontinuity in
Hagan’s formulas, as noted by Doust [11]. This discontinuity causes the volatility curve to blow
up to infinity for strikes near zero. In this case, call prices are too high for low strikes, such
that they are either no longer convex and imply an underlying process with a negatively valued
probability density function, or they remain convex but imply an underlying process for which
the probability density function blows up at zero. A combination is also possible. Figures 2.6a
and 2.6b are examples of such cases.

Another way to verify if an approach holds arbitrage, is via put-call parity. This is a well-
known relation in finance that must hold to ensure no arbitrage is applied by the approach:

C(t, T,K) = P (t, T,K) +D(t)(St −K). (2.20)

In the case of swaptions D(t) = A(t)N . If the relation (2.20) does not hold, one can construct
arbitrage via a portfolio of a call option, a put option and a forward agreement. If St is a well-
defined process and a martingale at time T , it can be proven that put-call parity holds. Hagan’s
formulas satisfy the put-call-parity. Only Hagan’s Black formula implies a positive martingale
process with an absorption at zero. To elaborate on this, let ST be the process at time T implied
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by Hagan’s Black formula. The positive expectation is equal to the call price with strike equal to
zero. The latter one is yet again equal to S0 under Black’s model, independent of the volatility.
Hence:

E
[
(ST )+] = CBlack(t, T, 0, σ) = S0.

This follows from the fact that Black’s model assumes a positive underlying process for the
financial quantity, like the swap rate. This is in alignment with the SABR model for β > 0.

Hagan’s Bachelier formula does not guarantee a martingale process with absorption at zero,
since it holds CBachelier(t, T, 0, σ) > S0 for S0 > 0 and σ > 0. It only provides a positive process
with a point mass at zero if σ = 0 for K = 0. This follows from the fact that Bachelier’s model
assumes a underlying process that can become negative. It is however in alignment with the
SABR model for β = 0. To be fully aligned with the SABR model for β > 0, one should derive
the call price under Bachelier’s model, where the underlying process is stopped at zero. For this
case, an analytical expression for the call price can be found in Park [31].

Other conditions to exclude arbitrage for approaches can be derived from other options or
relations between derivatives. For example, arbitrage can occur by interpolation in the maturity
of options. A condition for arbitrage in the direction of the maturity and tenor for a swaption
is provided by Johnson et al. [24]. The focus in this thesis will be on arbitrage in the direction
of the strikes. To ensure no arbitrage occurs in the interpolation in the tenor and maturity
direction, one has to ensure first that the inter- and extrapolation of the market quotes in the
strike dimension is arbitrage-free. It can be proven that if the approach implies a positively
valued underlying density and the martingale property, the approach is arbitrage-free.

2.6 Summary

This chapter presented the mathematical background to price swaps and swaptions. It is ex-
plained how market prices are quoted and how they are related to Black’s and Bachelier’s model.
The market quotes its prices in Black volatilities. Furthermore, the volatility curve stays ap-
proximately constant over time [19]. Hagan’s formulas can capture the market volatility curve
accurately and is therefore used by practitioners. However, it holds butterfly arbitrage, which
is not desired. Therefore, more advanced approaches which are fast and arbitrage-free must be
investigated and compared to Hagan’s formulas. These will be investigated in the Chapters 3
and 4.
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Chapter 3

Arbitrage-free approaches for pricing
swaptions

Many alternative approaches to address the arbitrage issue in Hagan’s formulas were recently
proposed in the literature. In this chapter, two of these approaches will be discussed which
seemed promising. A more detailed list of alternatives can be found in the bibliography. These
approaches were selected since they are arbitrage-free and are computationally rapid. These
approaches can be used in practice to parametrize the market volatility curve of swaptions in
the strike direction for a fixed tenor and maturity. Approaches that are not computationally
rapid, cannot be used in practice to parametrize the market volatility curve.

This chapter starts by explaining the approach by Hagan et al. [30] in Section 3.1, which
will be referred to as Hagan’s AF SABR. It is an approach based on solving a PDE for the
marginal probability density function of a stochastic process. The PDE itself implies a well-
defined process, making it arbitrage-free. Choosing the process implied by the PDE for the
financial quantity will be referred to as Hagan’s AF SABR model.1 The PDE will be solved
numerically by the approach of Le Floch et al. [15]. In this approach a change of variables
is introduced to ensure that few discretization points have to be used such that the PDE can
be solved computationally rapid. After the PDE is solved numerically, the probability density
function has to be described between the discretization points. An alternative technique will be
proposed compared to the technique of Le Floch et al. for more stable butterfly option prices.
Lastly, Section 3.1 presents convergence results by Hagan’s AF SABR and discusses whether
Hagan’s AF SABR model is in align with the SABR model.

After Hagan’s AF SABR, the approach by Antonov et al. [3] is introduced in Section
3.2. This approach gives an analytically exact solution of a call price under the SABR model
for ρ = 0, i.e. the uncorrelated case. Since this approach gives the analytical solution it is
arbitrage-free. This solution is expressed as a two-dimensional integral and is approximated by
an one-dimensional integral. The benefits and drawbacks of this one-dimensional integral will
be discussed. Furthermore, it is discussed how to price call options under the correlated case in
this approach, but as this approach is not arbitrage-free, it is not considered in this thesis.

This chapter concludes with a summary and discussion of Hagan’s AF SABR and uncorre-
lated Antonov by comparison of these approaches.

1Hagan’s AF SABR model should not be confused with Hagan’s AF SABR. The first one is a model, the latter
one is an approach to price options under this model.

27
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3.1 Hagan’s Arbitrage-Free SABR

As discussed in Section 2.4.2, the full SABR PDE is expensive to solve numerically. Hagan et
al. reduced the dimension of this PDE by removing the dependency of the volatility α. This
reduction of dimensionality is done by analyzing the dynamics of the SABR model using a small
time expansion.

The result is an approximation of the marginal probability density function Q(T, S) :=∫ +∞
−∞ f (ST , αT |S0, α) dαT and is described by the one-dimensional PDE:{

∂Q
∂T = ∂2(H(T,S)Q)

∂F 2 ,
Q(T = 0, S) = δ(S − S0).

(3.1)

with

H(T, S) =
1

2
O2(S)E(T, S),

O(S) = α
√

1 + 2ρνy(S) + ν2y2(S)Sβ, E(T, S) = eρναΘ(S)(T−t),

y(S) =
S1−β − S1−β

0

1− β
, Θ(S) =

Sβ − Sβ0
S − S0

.

The derivation of the PDE can be found in Appendix B.1.1. The resulting PDE is a one-
dimensional PDE and therefore easier to solve numerically than the full SABR PDE. The PDE
implies a well-defined process, since if one applies the Fokker-Planck equation to the process

dSt =
√
H(T, St) dWt, (3.2)

one can observe that this process St implies the one-dimensional PDE derived by Hagan et al.
The PDE therefore itself implies a nonnegative probability density function. This process St
should not be confused with the SABR model and in the remainder of this section St will be
the process that satisfies the SDE in Equation (3.2). This reduction of dimensionality creates a
new model, which will be referred to as Hagan’s AF SABR model, where AF is shorthanded for
arbitrage-free. Pricing options under Hagan’s AF SABR model by solving the PDE numerically
will be referred to as Hagan’s AF SABR.

The function H(T, S) is only defined for S ≥ 0 for the real line. Therefore, it is chosen to
stop the process St on a point Smin ≥ 0. For numerically solving the PDE, the PDE has to be
described on a finite domain. Therefore it is assumed that the process St is stopped at a Smax

too. The probability density function will be therefore be written in the form:

Q(T, S) =


QL(T )δ(S − Smin) for S = Smin,
Qc(S, t) for Smin < S < Smax,
QR(T )δ(S − Fmax) for S = Smax,

(3.3)

where δ is the Dirac function, QL and QR are the probability masses accumulated at Smin

and Smax respectively. Qc satisfies the one-dimensional PDE in Equation (3.1) on the interval
[Smin, Smax]. Smax is chosen such that the probability that the process St hits zero is small,
i.e. QR(T ). This will be made more concrete after the transformation of variables in the next
section.
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The boundary conditions are given by

lim
S→Smin

H2(F )Qc(T, S) = 0, lim
S→Smax

H2(F )Qc(T, S) = 0,

dQL

dT
= lim

S→Smin

1

2
α2∂

[
H2(S)Qc

]
∂S

,
dQR

dT
= − lim

S→Smax

1

2
α2∂

[
H2(S)Qc

]
∂S

.

The boundary conditions make sure that the total probability sums up to one and that the
martingale property is preserved. For the derivation of the boundary conditions, see Hagan et
al. [30]. In order to be alignment with the SABR model, it is chosen to set Smin = 0 in the
thesis. In the next section, when the transformation of variables is introduced, this will be made
more concrete.

The limiting case for y(S) can be computed with l‘Hopital’s rule:

lim
β→1

y(S) = log

(
S

S0

)
.

Pricing options under Hagan’s AF SABR model will be restricted by solving the PDE for
the probability density function and approximating option prices with a numerical integration
technique.2 To solve the PDE, numerical techniques will be employed. To ensure that the PDE
is solved a computationally rapid, the approach by Le Floch et al. will be followed in the next
section.

3.1.1 A change of variable to efficiently solve the PDE numerically

The PDE can be solved computationally rapid with the transformation by Le Floch et al with
numerical techniques, since fewer discretization points are needed for a similar accuracy com-
pared to the original PDE derived by Hagan et al. The PDE for the probability density function
will be derived for the variable

z(S) :=

∫ S

S0

1

O(u)
du = −1

ν
log


√

1− ρ2 +
(
ρ+ νỹ(S)

α

)2
− ρ− ν−νỹ(S)

α

1− ρ

 . (3.4)

Reversely, the transformation implies:

S(z) =
(
S1−β

0 + (1− β)ỹ(z)
) 1

1−β
, ỹ(z) =

α

ν
(sinh(νz) + ρ(cosh(νz)− 1)) .

−10 0 10 20
Discretization of z

(a) Grid for variable z.

0 0.2 0.4 0.6 0.8
Discretization of S

(b) Grid for variable s.

Figure 3.1: Grid in z and s compared for the approach by Le Floch et al. The parameter used
to construct this Figure are in Table 3.2.

2Other techniques, like Monte Carlo, can also be applied to the process St.
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General parameters SABR parameters

T S0 α β ρ ν

10 0.025 0.15 0.6 -035 0.1

Table 3.1: Parameter set to construct Figure 3.1.

The result of the transformation of variables is that by a uniform discretization of z, the
discretization is more dense in S near S0 and more coarse away from S0. Furthermore, a
reasonably sized interval of z, can lead to a wide interval in S. Thus fewer discretization points
have to be used to solve the transformed PDE compared to the direct approach by Hagan et al.
For example, see Figure 3.1.

The new probability density function under z is defined by:

θ(T, z) := Q(T, S(z))O(S(z)),

where

θ(T, z) =


PL(T )δ(z − z−) for, z ≤ z−,
θc(T, z), for z− < z < z+,
PR(T )δ(z − z+), for z ≥ z+,

(3.5)

with

z− := z(Smin), z+ := z(Smax),

and PL and PR are the probability masses at z− and z+ respectively.

The PDE for θ(T, z) is given by:

∂θ(T, z)

∂T
=

∂

∂z

{
1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

}
, (3.6)

where O(z) := O(S(z)) and E(T, z) := E(T, S(z)). The derivation of this PDE is done in
Appendix B.1.2. The PDE becomes singular at S = 0, since O(z(0)) = 0. Therefore, one must
ensure in the discretization that z > z(0).

The boundary conditions are given by

∂PL(T )

∂T
=

1

C(z)

∂

∂z
{C(z)E(T, z)θ(T, z)}

∣∣∣∣
z=z−

,
∂PR(T )

∂T
= − 1

C(z)

∂

∂z
{C(z)E(T, z)θ(T, z)}

∣∣∣∣
z=z+

,

C(z)E(T, z)θ(T, z)|z=z− = 0, C(z)E(T, z)θ(T, z)|z=z+ = 0.

The derivation of the boundary conditions is given in Appendix B.1.3.

It is claimed by Le Floch et al. and Hagan et al. that the new probability density function
as function of z is close to a normal distribution. This can be concluded from the dynamics
in Equation (3.2) [30]. Smax can be chosen such that 1 − FN (z+) is small, where FN is the
cumulative density function of a normal distribution with mean zero and standard deviation√
T . For example, one can choose z+ = 6 ·

√
T , this gives 1 − FN (z+) = 9.9 · 10−10 for T = 1.

It is suggested by Hagan et al. and Le Floch et al. to choose z+
√
T

between four and six.
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Remark 3.1. Le Floch et al. [15] made a consistent writing error in the function E, where H

is written as H = 1
2O

2E2, so E = e
1
2
ρναΘ(S)T . Thereafter, the square in the definition of H

is forgotten. We tested our implementation by setting E = e
1
2
ρναΘ(S)T and could reproduce the

results by Le Floch et al. In our implementation we set thereafter E = eρναΘ(S)T , since it did
not impact the main results by Le Floch et al.

3.1.2 Numerical scheme

The discretization is described for time and spatial directions in the approach of Le Floch et
al. [15] in this section. It is investigated under which conditions the solution of the numerical
scheme satisfies the necessary properties to be arbitrage-free.

Time t and the spatial direction z are discretized uniformly:

ti = i∆t, i = 0, . . . ,M, T = M∆t,

zj = z− + jh, h =
1

J + 1

(
z+ − z−

)
, j = 0, . . . , J + 1.

Hence the discretization of S is given by sj = S(zj), where it is chosen such that S0 is centered
between sj0 and sj0+1 for some j0 in order to have the martingale property at time t = 0.3

The PDE can be written in a more convenient form

∂θ(T, z)

∂T
=

∂

∂z

{
∂

∂S
{O(z)E(T, z)θ(T, z)}

}
, (3.7)

where S ≡ S(z) and 1
O(z)

∂
∂z ≡

∂
∂S . To describe the discretization in time, the discrete operator

L(θ) is introduced:

Ln
j (θ(z, tn)) :=

1

h

Ôj−1

ŝj − ŝj−1
Êj−1(tn)θnj−1 −

1

h

(
Ôj

ŝj+1 − ŝj
+

Ôj
ŝj − ŝj−1

)
Êj(tn)θnj

+
1

h

Ôj+1

ŝj+1 − ŝj
Êj+1(tn)θnj+1,

where

ŝj = S

(
zj −

1

2
h

)
, Ôj = O (ŝj) , Θ̂j = Θ(ŝj), Êj(tn) = E(ŝj , tn), θnj ≈ θ(zj , tn),

The discrete operator L describeds a discretization for a finite volume technique, see Leveque[27]
for information on this topic.

The Lawson-Swayne scheme is chosen to numerically solve the PDE, since it converges the
fastest of the proposed schemes by Le Floch et al. and is unconditionally stable [15]. See Figure
3.2 for the convergence rates of the schemes compared, where the error in the probability density
function is measured in the infinity norm and two norm.4

3s is introduced here as a dummy variable for the discretization of the process St and should not be confused
with the time indication s as used in other chapters.

4For a vector [a1, . . . , aM ], the two-norm is given by
√∑M

i=1 |ai|2 and the infinity norm is given by

max{i=1,...,M} |ai|.
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General parameters SABR parameters

T S0 J α β ρ ν

10 0.025 1000 0.2 0.9 -0.5 0.3

Table 3.2: Parameter set to construct Figure 3.1.
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(b) Two-norm.

Figure 3.2: Convergence numerical schemes. Parameters are taken from Table 3.2.

Figures 3.2a-3.2b employ the following abbreviations: Lawson Swayne (LS), implicit Euler
(IE), backward differentiation formula (BDF2), Rannacher (R), trapezium rule backward differ-
entiation formula (TR-BDF2) and implicit Richardson extrapolation (IRE). For a more detailed
description of these schemes, see Le Floch et al. [15].

The Lawson-Swayne scheme is given by:

θn+b
j = θnj + b∆tLn+b

j

(
θn+b
j

)
,

θn+2b
j = θn+b

j + b∆tLn+2b
j

(
θn+2b
j

)
,

θn+1
j = (

√
2 + 1)θn+2b

j −
√

2θn+b
j ,

where b = 1 −
√

2
2 . The Lawson-Swayne scheme consists of applying the implicit Euler scheme

twice with time stepping b∆t, followed by an interpolation in time.

The discretization for the boundaries is based on a second order approximation in spatial
direction and is given by:

Ô0

ŝ1 − ŝ0
Ê0(tn)θn0 = − Ô1

ŝ1 − ŝ0
Ê1(tn)θn1 ,

ÔJ+1

ŝJ+1 − ŝJ
ÊJ+1(tn)θnJ+1 = − ÔJ

ŝJ+1 − ŝJ
ÊJ(tn)θnJ .

For the discretization for PL and PR, the operators LL and LR are introduced:

LnL(PnL, θn) =
Ô1

ŝ1 − ŝ0
Ê1(tn)θn1 −

Ô0

ŝ1 − ŝ0
Ê0(tn)θn0 ,

LnR(PnR, θn) = − ÔJ+1

ŝJ+1 − ŝJ
ÊJ+1(tn)θnJ+1 +

ÔJ
ŝJ+1 − ŝJ

ÊJ(tn)θnJ ,
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where PnL ≈ PL(tn) and PnL ≈ PR(tn). The time stepping procedure is defined by the scheme,
as it is for θ. For example, the discretization of PL(T ) for the implicit Euler scheme is given by:

Pn+1
L − PnL = ∆t

(
Ô1

ŝ1 − ŝ0
Ê1(tn+1)θn+1

1 − Ô0

ŝ1 − ŝ0
Ê0(tn+1)θn+1

0

)
.

It is important to know that under the discretization described as above, the numerical
solution of the PDE is arbitrage-free. The solution of the PDE is arbitrage-free if it implies the
martingale property and is nonnegative. Therefore, it is proven in the following two lemmas
under which conditions the probability density function integrates to one, is nonnegative and is
such that the martingale property is satisfied.

Lemma 3.2. Under the discretization described in this section and under the assumption that∫ sj

sj−1

Q(T, u) du = hθnj ,

∫ sj

sj−1

uQ(T, u) du = hŝjθ
n
j ,

it holds that:

1 =
J∑
i=1

hθni + PnL + PnR, S0 =
J∑
i=1

hθni si + PnLSmin + PnRSmax.

Proof. The proof is given for the implicit Euler scheme. For other schemes the proof is similar
or a direct result from this lemma.
The initial conditions are chosen such that for n = 0 it holds that:

1 =
J∑
i=1

hθ0
i + P0

L + P0
R, S0 =

J∑
i=1

hθ0
i si + P0

LSmin + P0
RSmax.

If n ≥ 1, for both cases, it holds that:

∆t

(
J∑
i=1

hθni + PnL + PnR −
J∑
i=1

hθn−1
i − Pn−1

L − Pn−1
R

)

=
J∑
j=1

hLnj θnj +

{
Ô1

ŝ1 − ŝ0
Ê1(tn)θn1 −

Ô0

ŝ1 − ŝ0
Ê0(tn)θn0

}
+

{
− ÔJ+1

ŝJ+1 − ŝJ
ÊJ+1(tn)θnJ+1 +

ÔJ
ŝJ+1 − ŝJ

ÊJ

}

=

J∑
j=1

{
Ôj−1

ŝj − ŝj−1
Êj−1(tn)θnj−1 −

(
Ôj

ŝj+1 − ŝj
+

Ôj
ŝj − ŝj−1

)
Êj(tn)θnj +

Ôj+1

ŝj+1 − ŝj
Êj+1(tn)θnj+1

}

+ 2
Ô1

ŝ1 − ŝ0
Ên1 θ

n
1 + 2

ÔK
ŝJ+1 − ŝJ

ÊnJ θ
n
J

= 0.
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And:

∆t

(
J∑
i=1

hθni ŝi + PnLSmin + PnRSmax −
J∑
i=1

hθn−1
i ŝi − Pn−1

L Smin − Pn−1
R Smax

)

=

J∑
j=1

hŝiLnj θnj + 2
Ô1

ŝ1 − ŝ0
Ên1 θ

n
1Smin + 2

ÔK
ŝJ+1 − ŝJ

ÊnJ θ
n
JSmax

=
J∑
j=1

{
Ôj−1

ŝj − ŝj−1
Êj−1(tn)θnj−1ŝi −

(
Ôj

ŝj+1 − ŝj
+

Ôj
ŝj − ŝj−1

)
Êj(tn)θnj ŝi

+
Ôj+1

ŝj+1 − ŝj
Êj+1(tn)θnj+1ŝj

}
+ 2

Ô1

ŝ1 − ŝ0
Ên1 θ

n
1F0 + 2

ĈJ
ŝJ+1 − ŝJ

ÊnJ θ
n
J ŝJ+1

= 0

As a consequence:

1 =
J∑
i=1

hθni + PnL + PnR, S0 =

J∑
i=1

hθni ŝi + PnLSmin + PnRSmax.

Lemma 3.3. If θn ≥ 0 for j = 1, . . . , J and if

1 +
∆t

h

(
Ôj

ŝj+1 − ŝj
+

Ôj
ŝj − ŝj−1

)
Êj(tn) >

∆t

h

(
Ôj−1

ŝj − ŝj−1
Êj−1(tn) +

Ôj−1

ŝj − ŝj−1
Êj−1(tn)

)
,

(3.8)
then the implicit Euler scheme gives θn+1 ≥ 0.

Proof. A proof can be found in Appendix B.2.

In general, the conditions in Equation (3.8) will hold and the implicit Euler scheme will
directly provide an arbitrage-free probability density function.5 If the time stepping is not too
large, the Lawson Swayne scheme will provide an arbitrage-free probability density function too.
The Lawson Swayne scheme consists of applying the implicit Euler scheme twice, followed by an
interpolation in time. The first steps are arbitrage-free if the conditions in Equation (3.8) will
hold. The main problem lies in the interpolation step, where θn+1

j = (
√

2 + 1)θn+2b
j −

√
2θn+b
j .

In this case, one has to constrain the discretization such that for each time step it holds that
(
√

2 + 1)θn+2b
j ≥

√
2θn+b
j for j = 1, . . . , J . Refining the time step ensures that this will hold.

Arbitrage can therefore only occur if the discretization is not fine enough. For most practical
problems, a time step of one-tenth of a year is used, i.e. ∆t = 0.1. This results in a positively
valued probability density function in practice.

3.1.3 Numerical integration for option pricing

The probability density function is only known on the discretization points after the solution of
the PDE is approximated. For integration, it is desired to describe it outside these discretization
points too. Call and put prices are computed by Le Floch et al. by integrating with the mid-point

5A situation in which the condition in Equation (3.8) did not hold was not encountered during the thesis.
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rule where it is assumed that the numerical probability density function is piecewise constant
on each discretized interval. The call price with strike K and maturity T is:

C(0, T,K)

D(0)
=


S0 −K, for z∗ ≤ z−,

h
4(sk−ŝk)(sk −K)2θMk
+
∑J−1

j=k+1(ŝj −K)hθMj + (Smax −K)PR, for z− < z∗ < z+,

0, for z∗ ≥ z+,

(3.9)

where zk−1 < z∗ ≤ zk with z∗ = z(K) and D(t) denotes a function known at time t. In the
case of a swaption, the function D equals the annuity times the notional. The downside of
this approach for integration is that butterfly option prices with a small call spread are not
stable. For example, consider Figure 3.3a. The call spread between the butterfly options is
1 bp. The butterfly option prices are normalized such that they approximate the probability
density function.

General parameters SABR parameters

T S0 M J for flat PDF J for linear PDF α β ρ ν

10 0.025 100 3000 200 0.05 0.2 0.3 0.17

Table 3.3: Parameter set to construct Figure 3.3.
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(a) Probability density function is flat con-
tinued.
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continued.

Figure 3.3: Stability of the probability density function implied by butterfly options. Parameters
are taken from Table 3.3.

Therefore, a different approach is chosen, which gives more stable butterfly option prices.
It is chosen to use a linear continuation of Q(T, S) = a + bS on each interval [sj−1, sj ].

6 The
coefficients a and b are fixed such that in each interval it holds∫ sj

sj−1

Q(T, u) du = hθnj ,

∫ sj

sj−1

uQ(T, u) du = hŝjθ
n
j .

6This is a known technique to describe the slope for finite volume techniques, See Leveque [27] for more
information.
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These constraints make sure that the numerical probability density function integrates to one
and is such that the martingale property is satisfied, as already discussed in Lemma 3.2.

Equation (3.10) gives the linear representation of Q(T, S) on the interval [sj−1, sj ]:

Q(T, S) ≈ hθj
sj − sj−1

(
1 + 3 · (2S − sj − sj−1) · 2ŝj − sj − sj−1

(sj − sj−1)2

)
. (3.10)

As a consequence:∫ sk

K
(u−K)Q(T, u) du ≈ hθk (sk −K)2

2 (sk − sk−1)

(
1 + (sk + 2K − 3sk−1) · 2ŝk − sk − sk−1

(sk − sk−1)2

)
,∫ K

sk−1

(K − u)Q(T, u) du ≈ hθk (K − sk−1)2

2 (sk − sk−1)

(
1− (3sk − 2K − sk−1) · 2ŝk − sk − sk−1

(sk − sk−1)2

)
,

Assuming sk−1 < K < sk, it can be easily computed that:

C(0, T,K)

D(0)
≈
hθMk (sk −K)2

2 (sk − sk−1)

(
1 + (sk + 2K − 3sk−1) · 2ŝk − sk − sk−1

(sk − sk−1)2

)

+
N∑
j=k

hθMj (sj −K) + (Smax −K)PMR ,

P (0, T,K)

D(0)
≈
hθMk (K − sk−1)2

2 (sk − sk−1)

(
1− (3sk − 2K − sk−1) · 2ŝk − sk − sk−1

(sk − sk−1)2

)

+

k−1∑
j=1

hθMj (sj −K) + (K − Smin)PML .

See Figure 3.3b for the more stable butterfly options.

This approach does not directly imply a nonnegative probability density function. This is
easily verified, since the extrema of a linear function on a finite interval are on the bound-
aries of the interval. To have a nonnegative probability density function, it must hold that
min {a+ bsj−1, a+ bsj} ≥ 0 for each interval [sj−1, sj ], where a and b can be deduced from
the linear representation of Q(T, S). Refining the grid or switching to the proposed integration
technique by Le Floch et al. provides this. Switching between the proposed integration tech-
niques is possible since the integration techniques coincide on the discretization points sj . For
an interval [sj−1, sj ] it holds for both integration techniques that

∫ sj
sj−1

Q(T, u) du = hθj and∫ sj
sj−1

uQ(T, u) du = hŝjθj . This ensures that if the linear continuation of Q(T < S) becomes

negative on a interval [sj−1, sj ], the flat continuation of Q(T, S) can be used on this interval
without the need to completely switch to a flat continuation of Q.

3.1.4 Results

The convergence of call prices is discussed by the direct approach of Hagan et al. and the
approach by Le Floch et al. Furthermore, the volatility curve behavior is investigated. The set
of parameters are presented in Table 3.4. These parameters are close to the SABR parameters
calibrated in Section 2.5.4, which generated arbitrage in Hagan’s formulas. Smax was chosen

equal to Smax = S0

(
10 + 5α

√
T
)
≈ 28% for the approach of Hagan et al. [30]. This is a
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heuristic rule for Smax which worked in most practical cases, without setting Smax = S(z+) with
4
√
T < z+ < 6

√
T or higher, this would require 0.33 < Smax < 1 . In this case it holds that

Smax < S(z+) and thus fewer discretization points are needed.

General parameters SABR parameters

T S0 D(0) α β ρ ν

10 0.025 1 0.05 0.6 -0.35 0.13

Table 3.4: Parameter set for the convergence investigation.

Table 3.5 presents the convergence of a call price with strike K = S0 for the approach of
Hagan et al. using the BDF-2 scheme [15]. The results in Table (3.5) are compared to the
results for M = 1200 and J = 1600, where M is the number of time steps and J is the number
of spatial grid points. The reference value is therefore 0.0111254. The convergence was tested
for larger sets of α, β, ν, ρ, T and the strike K and the conclusion was that the convergence
was similar as in Table 3.5.

J\M 150 300 600

100 0.455 0.454 0.454

200 0.150 0.149 0.149

400 0.0554 0.0548 0.0547

800 0.0208 0.0202 0.0200

Table 3.5: Error call price (bp) for a direct approach of Hagan et al. with the parameter set in
Table 3.4.

The convergence of a call price is investigated for the set in Table 3.4 with the approach by
Le Floch et al. and the Lawson and Swayne scheme with the linear continuation of Q(T, S).
Table 3.6a presents the results of the convergence of a call price for different set of strikes:
K = S0, K = 0.005 and K = 0.1. The results in Table 3.6a are compared to the results for
M = 1200 and J = 1600. The reference value for K = S0 is 0.0111268, which is approximately
the same as the result of solving the untransformed PDE by Hagan et al. The result of the
approach by Le Floch et al. is more accurate. The convergence is similar for different sets of α,
β, ν, ρ, T .

As one can observe from Tables 3.5 and 3.6, solving the transformed PDE by Le Floch et al.
provides faster convergence for option pricing. A small time step does not have much influence
on the convergence of option prices. In general if α an ν are chosen to be large (in this example
α = 0.3, ν = 0.4), the time discretization plays a more dominant role, but in most practical
problems the discretization in z has the dominant role in convergence. However, one cannot take
a too large time stepping with the Lawson Swayne scheme since this can lead to a negatively
valued numerical probability density function as explained in Section 3.1.2.

Finally, the implied volatility curve implied by Hagan’s AF SABR model is investigated.
It is investigated whether the impact of the SABR parameters α, β, ρ, ν under Hagan’s AF
SABR model have a similar impact on the volatility curve as the SABR model. The results for a
variation in α, β, ρ, ν are presented in Figures 3.4a–3.4d, respectively. As can be observed, the
parameters in Hagan’s AF SABR model have the same implied volatility curve characteristics
as the SABR model. This makes Hagan’s AF SABR model in alignment with the SABR model.
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J\M 150 300 600

100 0.689 ·10−2 0.693 ·10−2 0.695 ·10−2

200 0.147 ·10−2 0.152 ·10−2 0.154 ·10−2

400 0.272 ·10−3 0.324 ·10−3 0.337 ·10−3

800 0.141 ·10−5 0.507 ·10−4 0.637 ·10−4

(a) K = S0

J\M 150 300 600

100 0.352 ·10−2 0.353 ·10−2 0.353 ·10−2

200 0.780·10−3 0.0789 ·10−3 0.791 ·10−3

400 0.111 ·10−3 0.119 ·10−3 0.121 ·10−3

800 0.151 ·10−4 0.238 ·10−4 0.260 ·10−4

(b) K = 0.005

J\M 150 300 600

100 0.183 ·10−1 0.183 ·10−1 0.183 ·10−1

200 0.0438 ·10−2 0.0444 ·10−2 0.445 ·10−2

400 0.924 ·10−3 0.980 ·10−3 0.995 ·10−3

800 0.130 ·10−3 0.186 ·10−3 0.200 ·10−3

(c) K = 0.1

Table 3.6: Error call price (bp) for different strikes K with the parameter set in Table 3.7.

3.1.5 Discussion of the approach

Hagan’s AF SABR is arbitrage-free since it implies a well-defined process and therefore creates
Hagan’s AF SABR model. In this section the approach by Le Floch et al. was followed for a
fast implementation.7 An alternative integration technique was proposed to produce more stable
option prices. Convergence properties were investigated showing that a coarse discretization led
to fast convergence in option prices under Hagan’s AF SABR. Furthermore, the impact of
the SABR parameters α, β, ρ, ν on the implied volatility curve was investigated and it was
concluded that the impact of the parameters was similar to the impact of the parameters by
the SABR model. A downside of this approach is that the approach becomes more expensive
for longer maturities. Therefore, an approach that does not become more expensive for longer
maturities is investigated.

3.2 An exact solution of the SABR model

It will be shown how analytical expressions of options under the SABR model can be derived
for the uncorrelated case, following the approach by Antonov et al. [3]. A global overview of
this derivation of a call price under the SABR model for the uncorrelated case will be given and
it will be discussed how this relates to the correlated case. The final result is a two-dimensional
integral for a call price. Since this is the exact solution of a call price under the SABR model,
this approach is arbitrage-free. Antonov et al. approximated this two-dimensional integral by
a one-dimensional integral to speed up the approach. This approach a drawback, which will be
discussed. Approximating this one-dimensional integral numerically for the uncorrelated case
will be referred to as uncorrelated Antonov.

7In the convergence section, the CPU time for ∆t = 0.1 and J = 200 with the approach by Le Floch et al.
was approximetely 0.1 s. in an Matlab implementation.
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(b) Different values of β.
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Figure 3.4: Implied Black volatility curve. The fixed parameters are taken from Table 3.4.

3.2.1 Price derivation under the SABR model

The dynamics of the SABR model for the uncorrelated case are given by: dSt = αtS
β
t dW 1

t S(0) = S0 > 0,
dαt = ναt dW 2

t α(0) = α0 > 0,
dW 1

t dW 2
t = 0.

To price a call option, Lemma 3.4 is introduced. It illustrates in which manner one can
switch from the SABR process to a CEV process by changing to an alternative time.8

Lemma 3.4. Suppose that a continuous function g : [0,∞)→ R satisfies g(s) > 0 for all s > 0
and ∫ t

0
g2(s) ds→∞ as t→∞.

Let

τt = inf

{
u :

∫ u

0
g2(s) ds ≥ t

}
and Yt =

∫ St
0

g(s) dWs,

then the process {Yt : 0 ≤ t} is a standard Brownian motion.

8The CEV process was investigated in more detail in Section 2.4.1.
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Proof. A proof can be found in Steele [38].

Similarly as in the lemma, let τ be defined by τ := τt =
∫ t

0 α
2
s ds. Define W 3

τ := W 1
τt , then it

holds that W 3
τ ∼ Norm

(
0,
∫ t

0 α
2
s ds

)
, where Norm indicates a normal distribution. This relation

holds since W 1
t and W 2

t are independent and knowing τs for 0 ≤ s ≤ t is equivalent to knowing
αs for 0 ≤ s ≤ t. Define Xτ := Sτt ; it follows that Xτ is a CEV process given τ and therefore

dXu = Xβ
u dW 3

u .

A more detailed proof can be found in Islah [20]. This does not hold if ρ 6= 0, since then W 3
τ

would not be a standard Brownian motion under time τ due to the correlation effect between
the Brownian motion W 1

t and W 2
t . In the case of ρ 6= 0, one has also to know αt. If one knows

αs and τs for 0 ≤ s ≤ t, it holds that αs is a given function such that W 3
τ is a standard Brownian

motion. This can be best understood by writing the solution for αt for the general case, in the
following manner:

αt =α0 exp

(
−ν

2t

2
+ νW 2

t

)
=α0 exp

(
−ν

2(1− ρ2)t

2
+ ν
√

1− ρ2W̃ 2
t

)
exp

(
−ν

2ρ2t

2
+ νρW 1

t

)
,

where W 1
t and W̃ 2

t are two independent Brownian motions, i.e. W 2
t is written as W 2

t = ρW 1
t +√

1− ρ2W̃ 2
t . Hence, in the correlated case one also needs to know

exp

(
−ν

2ρ2t

2
+ νρW 1

t

)
.

The probability density function of τ is derived by Antonov et al. for the uncorrelated case.
Using the conditional expectation, the call price can be derived under the SABR model with
absorption at zero and ρ = 0 [3]:

C(0, t,K)

D(0)
= (S0 −K)+ +

2

π

{∫ s+

s−

sin(ηφ(s))

sinh(s)
H(tν2, s) ds+ sin(ηπ)

∫ ∞
s+

e−ηΨ(s)

sinh(s)
H(tν2, s) ds

}
,

where

H(t, s) = 2
√

2
e−

t
8

t
√

2πt

∫ ∞
s

ue−
u2

2t

√
cosh(u)− cosh(s) ds,

φ(s) = 2 tan−1

(√
sinh2(s)− sinh2(s−1)

sinh2(s+)− sinh2(s)

)
, Ψ(s) = 2 tanh−1

(√
sinh2(s)− sinh2(s+)

sinh2(s)− sinh2(s−)

)
,

s− = sinh−1

(
ν|q − q0|

α0

)
, s+ = sinh−1

(
ν(q + q0)

α0

)
,

η =

∣∣∣∣ 1

2(β − 1)

∣∣∣∣ , q =
K1−β

1− β
, q0 =

S1−β
0

1− β
,

and D(t) denotes a function known at time t. In the case of a swaption, the function equals the
annuity times the notional.
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For practical purposes, the integral∫ ∞
s+

e−ηΨ(s)

sinh(s)
H(tν2, s) ds,

has to be limited to a definite integral such that it can be approximated, i.e.∫ ∞
s+

e−ηΨ(s)

sinh(s)
H(tν2, s) ds ≈

∫ sbound

s+

e−ηΨ(s)

sinh(s)
H(tν2, s) ds,

for some large sbound. Noting that 1
sinh(s) ∼

e−s

2 , indicates that this part of the integral converges.

Approximating Ψ(s) ≈ s for large s, one can approximate e−ηΨ(s)

sinh(s) ≈
e−s(η+1)

2 .9 Lastly, H(t, s) can

be bounded and then approximated by the expected value of E
[
Z1{Z≥s}

]
with Z ∼ Norm(µ, σ2).

This follows from the relations
√

cosh(u)− cosh(s) ≤
√

cosh(u) ≈ e
u
2√
2

for large u. This expecta-

tion converges rapidly to zero. Combining these facts, can give a crude approximation for sbound

to have a accurate approximation of∫ ∞
s+

e−ηΨ(s)

sinh(s)
H(tν2, s) ds ≈

∫ sbound

s+

e−ηΨ(s)

sinh(s)
H(tν2, s) ds.

An approximation for the two-dimensional integral

Antonov et al. derived an approximation for the function H(t, s) in an analytical expression. As
a consequence only a one-dimensional integral has to be approximated. Their approximation is
given by

H(t, s) ≈
√

sinh(s)

s
e−

s2

2t (R(t, s) + δR(t, s)) ,

where

R(t, s) = 1 +
3tκ(s)

8s2
− 5t2(−8s2 + 2κ2(s) + 24κ(s))

128s4
+

35t3(−40s2 + 3κ3(s) + 24κ2(s) + 120κ(s))

1024s6
,

κ(s) = scoth(s)− 1, δR(t, s) = e
t
8 − 3072 + 384t+ 24t2 + t3

3072
.

A detailed derivation for this approximation is given by Van der Have [42]. This approximation

of H(t, s) is based on an expansion of s−1 and gives

√
sinh(s)
s e−

s2

2tR(t, s). This approximation is

therefore not accurate when s ≈ 0. For K = S0, it can be easily verified that s− = 0. To have
a satisfactory result, Antonov et al. proposed to add the term δR(t, s) to the approximation of
R(t, s) such that H(t, 0) = 1. Furthermore, they proposed a fourth-order Taylor expansion for

small s for R(t, s) and

√
sinh(s)
s , to ensure that these functions are accurate approximated for

small s. The fraction sinh(s)
s cannot be evaluated accurately by a numerical program, since both

the numerator as denominator go to zero as s goes to zero. Similar problems hold for R(t, s).
Using the Taylor expansion ensures that a numerical program uses a accurate approximation
for small s of these terms.

In order to approximate the one-dimensional integral, a numerical integration technique has
to be chosen. The composite Simpson’s rule is chosen for this thesis to provide accurate results.
The composite Simpson’s rule applies the Simpson’s rule on multiple intervals [xi, xi+1] for some

9This is a crude approximation, since Ψ(s) > O(s) for large s.
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Figure 3.5: An application of uncorrelated SABR implied by the approach of Antonov et al.
Parameters are taken from Table 3.7.

discretization c = x1 < . . . < xN = d of the interval [c, d]. For an interval [a, b], Simpson’s rule
is given by: ∫ b

a
g(x) dx ≈ b− a

6

[
g(a) + 4g

(
a+ b

2

)
+ g(b)

]
.

The error is given by
1

90

(
b− a

2

)5 ∣∣∣g(4)(ζ)
∣∣∣ , for some ζ ∈ [a, b].

An example of the result of the approach by Antonov et al. is presented in Figure 3.5. Figure
3.5a presents the probability density function implied by a second order numerical approximation
using call prices, i.e. f(K) = 1

D(0)
∂2C
∂K2 (K) ≈ 1

D(0)
C(K+ε)−2C(K)−C(K−ε)

ε2
as discussed in Section

2.5.4. The choice was made to set ε = 2bp, i.e. normalized butterfly options with a call spread
of 2bp.

General parameters SABR parameters

T S0 α β ν

10 0.02576 0.06 0.55 0.33

Table 3.7: Parameter set for Figure 3.5. This set follows from a calibration result.

The saw tooth behavior for strikes away from K = S0 can be reduced by refining the step
size used for the numerical integration. The probability density function is also computed by a
numerical approximation with call prices where the difference in strike is 5bp. The call prices
are computed for strikes away from S0. Call prices with strikes near S0 are obtained by a spline
interpolation. This numerical approximation of the probability density function in Figure 3.5a
is referred to as the smoothed density.

Due to the approximation of R(t, s) and

√
sinh(s)
s by a Taylor expansion for small s, the

instability of the approximation of H(T, S) is not directly observed in the call prices. Figure
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3.5b presents the Black volatility implied by the call prices used to produce the butterfly option
prices in Figure 3.5a. The volatility curve seems to not suffer for strikes around K = S0.

3.2.2 An approach by Antonov et al. for the correlated case

In order to price options for the correlated case, a mapping is derived by Antonov et al, based on
a small time expansion. The mapping is used to get from the general case of the SABR model
to a mimicking model, i.e. the uncorrelated SABR model:

dS̃t = α̃tS
β̃
t dW̃ 1

t , S̃(0) = S0 > 0,

dα̃t = ν̃α̃t dW̃ 2
t , α̃(0) = α̃0 > 0,

dW̃ 1
t dW̃ 2

t = 0.

For the call price with strike K, the following parameters are used for the mimicking model to
price a call option:

β̃ := β̃(β), α̃ := α̃(α0, β, ρ, ν, S0,K), ν̃ := ν̃(α0, β, ρ, ν, S0).

The function α̃, β̃, ρ̃ are given by Antonov et al. [7]. This mapping is based on a small time
expansion like Hagan et al. [29] and is not guaranteed to be arbitrage-free [3]. The difference in
these approaches is that Antonov et al. map the SABR model to an uncorrelated SABR model.
Hagan et al. map the SABR model to Black’s and Bachelier’s model.

In this thesis only arbitrage-free approaches are investigated to compare to Hagan’s formulas.
Therefore, the approach by Antonov et al. will be limited to the uncorrelated case and called
uncorrelated Antonov. It will be investigated whether it can capture market volatility curves
accurately with this limitation. For the SABR model it holds that β and ρ have a similar impact
on the volatility curve. Therefore, the hypothesis is that setting ρ equal to zero, the approach
of Antonov et al. can capture the market quotes accurately.

3.2.3 Discussion of the approach

Antonov et al. derived a two-dimensional integral for a call price under the SABR model for the
uncorrelated case. Approximating this two-dimensional integral is an arbitrage-free approach. A
one-dimensional integral is derived as an approximation for the two-dimensional integral. This
approximation works very accurately for call prices, but not for butterly option prices with a
strike near S0. For real pricing the two-dimensional integral should be used to approximate the
call prices. The one-dimensional integral can be used to fit the market volatility curve.

The main advantage of the approach of Antonov et al. is the approximation in the form of
a one-dimensional integral, as it is fast enough for market applications.10 However, it is still
not as fast as Hagan’s formulas and does not directly parametrize the volatility curve. Another
advantage of the approach is that it does not become more expensive for longer maturities. A
disadvantage of the approach by Antonov et al. is that it must be limited to the the uncorrelated
case to ensure it is arbitrage-free.

10The CPU time for one call price was approximately 20ms. in a Matlab implementation.
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3.3 Summary

This chapter gave an overview of two approaches in literature that looked very promising com-
pared to other approaches recently proposed. Hagan’s AF SABR is a reduction of dimensionality
of the SABR model. Pricing options can therefore be done fast and in a arbitrage-free fashion.
It is however an approach that becomes computationally expensive for longer maturities. The
approach of Antonov et al. is an exact solution of a call price under the SABR model for the
uncorrelated case and it is therefore arbitrage-free for this case. An approximation is made for
the two-dimensional integral in the form of a one-dimensional integral. This one-dimensional
integral numerically can be approximated numerically rapid. This approach does not become
more expensive for longer maturities. Preferably, it would be optimal to have an approach that
is (almost) computationally rapid as Hagan’s formulas and does not become more expensive
for longer maturities, is not limited to a special case (like ρ = 0), is consistent with the SABR
model and is arbitrage-free. Ideally, it should give a parameterization of the volatility curve.
Therefore, in the next chapter an approach is investigated that removes the arbitrage in Hagan’s
formulas in a sophisticated fashion.



Chapter 4

The Stochastic Collocation Method

This chapter explains the approach by Grzelak et al. [25], the stochastic collocation method
(SCM). The SCM is a general approach introduced by Grzelak et al. [26] to efficiently do
Monte Carlo simulations for a random variable with an computationally expensive distribution.
To achieve this, the expensive random variable is mapped to a simpler random variable. This
mapping is approximated by a Lagrange polynomial in the approaches of Grzelak et al. [25, 26].
In the approach by Grzelak et al. [25] this mapping is used to transform the negative part of
the probability density function implied by Hagan’s formulas into a positively valued probability
density function. Following this approach ensures that butterfly arbitrage is removed in Hagan’s
formulas.

Error estimations will be derived when applying the SCM with a Lagrange polynomial to
provide an indication for the convergence of this approach. Different interpolation techniques
will be compared to a Lagrange polynomial to see whether if another interpolation technique
gives more satisfactory results. In the approach of Grzelak et al. [25], the process implied
by Hagan’s formulas is mapped to a normal distribution. In this thesis the process implied
by Hagan’s formulas will be mapped to a gamma distribution too. It will be discussed which
distribution should be used in which case. Lastly, this approach will be reformulated to ensure
the martingale property holds to make this approach completely arbitrage-free. This chapter
ends with a summary and conclusion.

4.1 Introduction of the Stochastic Collocation Method

For the SCM it is assumed that X and Y are two well-defined random variables. X has a compu-
tationally simple distribution, like a standard normal random variable, Y has a computationally
expensive distribution, like the process St of the SABR model. However, it is assumed that the
cumulative density function (CDF) of Y is known or can be approximated accurately.

The main goal of this approach is to compute the expectations of Y as rapidly as the
expectations of X. To do so, Y will be approximated as a function of X, i.e. Y ≈ gN (X). This
approximation of the relation between X and Y will be based on the relation:

FY (Y ) ∼ U(0, 1) ∼ FX(X), (4.1)

where F is the CDF of a random variable and U(0, 1) is the uniform distribution. Using the
relation in Equation (4.1), one can observe that the exact mapping m, satisfies the relation:

y = m(x) = F−1
Y (FX(x)).

45
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This mapping is one-to-one if X and Y are defined on the same Borel set, and therefore mono-
tonic. The goal is to approximate the mapping m without performing many inversions of FY
and preserve monotonicity. Ideally, there should be a close relation between X and Y , preferably
linear. This results in few inversions, but the existence of such a X is not guaranteed for an
expensive random variable Y .

In order to approximate m, one uses a set of collocation points. This is a set of points {x̃i}Ni=1

for X and {ỹi}Ni=1 for Y, for which the mapping is exact, i.e. ỹi = m(x̃i). It follows from the
mapping that {x̃i} and {ỹi} are sorted, i.e. x̃1 < . . . < x̃N and ỹ1 < . . . < ỹN .

A Lagrange polynomial gN is used to inter- and extrapolate the collocation points in this
approach [25, 26]. Other inter- and extrapolation techniques can be used, but it is known that
the Lagrange polynomial converges exponentially to the mapping on the interval [x̃1, x̃N ]. This
will be discussed in more detail in Section 4.6 and Section 4.8 for the SCM.

A Lagrange polynomial that interpolates between the points {(xi, yi)}Ni=1 can be written as

gN (x) =

N∑
i=1

yiλi(x), λi(x) = ΠN
j=1,j 6=i

x− xj
xi − xj

.

The Lagrange polynomial can also be expressed by a monic polynomial:

gN (x) = a0 + a1x+ . . .+ aNx
N−1,

where N is the number of collocation points. In this case, the coefficients ai can be determined
by solving the Vandermonde equation V(x)a = y, where

V(x) =

 1 x1 . . . xN−1
1

...
... . . .

...

1 xN . . . xN−1
N

 , a =

 a0
...

aN−1

 , y =

 y1
...
yN

 .
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Figure 4.1: Runge oscillation for a Lagrange polynomial.

A drawback of a Lagrange polynomial, is that it can suffer from Runge oscillation as in Figure
4.1. In this figure the function 1

1+25x2 is approximated by a 9th order Lagrange polynomial on
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the interval [−1, 1]. The collocation points are chosen according to a uniform discretization of the
interval. It is therefore desired for the Lagrange polynomial to be stable (no Runge oscillation).
In order to have a stable Lagrange polynomial, one has to use a set of collocation points that
provide a stable interpolation. Grzelak et al. showed that if it is chosen to relate the Lagrange
polynomial to the orthogonal polynomials, this will provide a stable interpolation in the SCM.

Definition 4.1 (Orthogonal Polynomials). A sequence of orthogonal polynomials {pn}Nn=0 with
deg(pn) = n is said to be orthogonal in L2 with respect to the probability density function
fX(X) of X, if the following holds:

E [pi(X)pj(X)] =

∫
R(X)

pi(X)pj(X)fX(x) dx = δijE
[
p2
i (X)

]
, i, j = 0, . . . , N,

where R(X) is the support of X and δij the Kronecker delta function.

The collocation points ofX will be computed first. The location of the collocation points ofX
are chosen such that the Lagrange polynomial is equal to a weighted summation of the orthogonal
polynomials under the probability measure of X. These collocation points are related to the
Gaussian quadrature points. Grzelak et al. [26] gives an algorithm to compute these collocation
points. Theorem 4.2 shows that the orthogonal polynomials are completely determined by the
moments of X and one can compute these polynomials from the moments. As a result, the
collocation points are chosen such that the moments of Y and the Lagrange polynomial gN are
matched, i.e.

E
[
Y i
]

= E
[
giN (X)

]
, for i = 0, . . . , N − 1.

Theorem 4.2 (Recurrence In Orthogonal Polynomials). For any given probability density func-
tion fX(·), a unique sequence of monic orthogonal polynomials pn(X) exists, with deg(pn(X)) =
n, which can be constructed as follows,

pi+1(x) = (x− ai)pi(x)− bipi−1, i = 2, . . . , N − 1

where p0(x) ≡ 0, p1(x) ≡ 1 and where ai and bi are the recurrence coefficients,

ai =
E
[
Xp2

i (X)
]

E
[
p2
i (X)

] , for i = 1, . . . , N − 1,

bi =
E
[
p2
i (X)

]
E
[
p2
i−1(X)

] , for i = 2, . . . , N − 1.

Proof. A proof can be found in Favard [16].

These collocation points will be referred to as the optimal collocation points. For example,
in the special case that X is chosen to be normally distributed, the optimal collocation points
{x̃i} are

√
2 times the Gaussian quadrature points. The collocation points {ỹi} follow from the

relation in Equation (4.1) by evaluationg ỹi = F−1
Y (FX(x̃i)). Therefore, FY must be inverted

accurately.

To illustrate in more detail an application of the SCM, a CEV process is considered in the
next section and in which manner the SCM can be applied.



48 CHAPTER 4. THE STOCHASTIC COLLOCATION METHOD

4.2 Application of the SCM to a CEV process

It will be shown how the SCM can be applied to a CEV process, where it will be mapped to
a normal distribution. The CEV process has an absorption at zero. Therefore, the random
variables are not defined on the same Borel set, i.e. a CEV process does not become negative,
whereas a normal distribution can become negative.

As introduced in Section 2.4.1, the cumulative density function FCEV(t, y) of a CEV process
is given by:

FCEV(t, y) = 1− Fχ2(b,c(y))(a),

where

a =
S

2(1−β)
0

(1− β)2σ2t
, b =

1

1− β
, c(y) =

y2(1−β)

(1− β)2σ2t
.

Fχ2(b,c) is the cumulative density function of the non-central chi-squared distribution with b
degrees of freedom and the non-centrality parameter c(y).

In this example, the set of parameters is provided by Table 4.4.

General parameters CEV parameters

T S0 σ β

2 0.07 0.05 0.6

Table 4.1: CEV parameter for the example in Tables 4.2 and 4.3 .

For convenience it is written FCEV(T, y) = FCEV(y). The probability of hitting zero is
P(ST = 0) = FCEV(0) = 0.6456. In this example, X is chosen to be the standard normal variable
and five collocation points will be used. The optimal collocation points of X are provided by
Table 4.2.

Variable Optimal collocation points Absorption point

x̃1 x̃2 x̃3 x̃4 x̃5 x∗

x̃i -2.857 -1.3556 0 1.3556 2.857 0.3736

FX(x̃i) 0.0021 0.0876 0.5 0.9124 0.9979 0.6456

yi = F−1
CEV(FX(x̃i)) - - - 0.2770 0.9901 0

Table 4.2: Mapping specifications for the parameters of Table 4.1.

In this example, the CEV process has a cumulative density function with the properties
FCEV(T, y) = 0 for y < 0 and FCEV(T, y) ≥ 0.6456 for y > 0. Therefore, the values of the
CEV process cannot be determined for ỹ1, ỹ2 and ỹ3. These points are therefore called virtual
collocation points. These points cannot be used to construct a mapping between the CEV
process and the normal distribution.

For this example, if the Lagrange polynomial would be used to extrapolate the approximation
of the mapping for x < x4, the SCM would be not able to model the absorption point. In order
to get a satisfactory extrapolation of the mapping, gN is linearly extrapolated. An x∗ is found
for which it holds that FX(x∗) = FCEV(0) and gN is linearly extrapolated for [x∗, x4) such that
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gN (x∗) = 0. It can be found that x∗ = 0.3736. This results in the CDF being exact at x∗ and
that the point mass of the CEV process can be modeled with gN . The result of the mapping
is given in Figure 4.2a and the CDFs are compared in Figure 4.2b. For this example, the point
x∗ will be seen as a collocation point too and x∗, x4, and x5 are considered here to be the
collocation points.
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Figure 4.2: Application of the SCM to a CEV process.

Figure 4.2a shows that the mapping is not accurate when using these collocation points. This
is because the variables are not defined on the same Borel set. To improve the approximation
of the mapping function, the concept of grid-stretching will be used. It will be explained what
this concept is and how it can be applied to the example of the CEV process.

4.2.1 An improvement through the concept of grid-stretching

As in the previous example, the optimal collocation points {x̃i} are determined and some of these
optimal collocation points are virtual. They cannot be replicated by Y and an approximation
of the mapping cannot be determined by these points.

Another problem with the optimal collocation points can be that they imply FX(x̃i) > 1− ε
or FX(x̃i) < ε for some i with ε � 1. The collocation points of Y are determined by inverting
FY , i.e. ỹi = F−1

Y (FX(x̃i)). Inverting FY cannot always be done accurately, for example if FY
is a numerical approximation. This depends on the accuracy that the numerical approximation
can achieve.

Therefore, a πmin is defined which can be inverted accurately and which Y can replicate,
i.e. there exists a y such that FY (y) = πmin. A πmax is defined such that F−1

Y (πmax) can
be inverted accurately.1 After defining πmin and πmax, the optimal collocation points {x̃i} are
linearly mapped to a set of collocation points {xi} such that FX(x1) = πmin and FX(xN ) = πmax,
i.e. x→ ax̃+ b. This is just a linear replacement of the optimal collocation points.

1Note that πmin and πmax are real numbers between 0 and 1 and should not be confused with the number π.
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Variable Grid-stretched collocation points

x1 x2 x3 x4 x5

xi 0.374 1.026 1.615 2.205 2.857

FX(xi) 0.6456 0.8476 0.9469 0.9863 0.9979

yi = F−1
CEV(FX(xi)) 0 0.1680 0.3748 0.6360 0.9901

Table 4.3: Mapping specifications with grid-stretching for the parameters of Table 4.1.

In the case that X is chosen to be a normal distribution, grid-stretching can be seen as using
the optimal collocation points from a different normal distribution X̃. This is due to the relation
X ∼ µ + σZ, where X ∼ Norm(µ, σ2) and Z ∼ Norm(0, 1). Grid-stretching preserves stability
of the Lagrange polynomial since it is a linear replacement of the optimal collocation points,
but the Lagrange polynomial loses its theoretical optimality for the degree of integration. Using
the optimal collocation points and grid-stretching will be considered as the standard approach
in the remainder of this thesis.
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Figure 4.3: Application of the SCM to a CEV process.
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The example of the CEV process is reconsidered with grid-stretching. It is chosen to set
πmin = F (ST = 0) so that the absorption point can be modeled accurately. The resulting
collocation points are in Table 4.3, where it is chosen to let πmax be defined by the optimal
collocation point, i.e. only x1, x2, x3, x4 are mapped linearly during grid-stretching. The result
of the mapping is given in Figure 4.3a and the CDFs are compared in Figure 4.3b. The difference
between the exact case and the approximation is not visible in these figures. Therefore, the
error in the CDF is presented in Figure 4.3d and compared to the case without grid-stretching
in Figure 4.3c. It can be concluded that grid-stretching can improve the accuracy.

This example provided a well-defined random variable. In the next section the concept of
applying the SCM to Hagan’s formulas will be explained.

4.3 Application of the SCM to Hagan’s formulas

It will be explained how the SCM can be applied to Hagan’s formulas in a similar fashion as in
the example for the CEV process. It assumed that S is the random variable implied by Hagan’s
formulas. This random variable S will be referred to as Hagan’s implied random variable. When
the SCM can be applied to the general case, Y will be used as with the CEV process and not S.

Since this random variable S can imply a negatively valued “probability density function”,
one cannot construct a mapping based on the CDF. This chapter is limited to the cases for
which S implies a negatively valued probability density function. The concept of transforming
the negative part of the probability density function to a positively valued probability density
function will be explained. When the probability density function remains positive, there is no
arbitrage and the SCM does not have to be applied to Hagan’s formulas.

Define s− > 0 such that the probability density function of S is only positive on the interval
(s−,∞) and negative on [0, s−]. The cumulative density function is not well-defined on [0, s−],
since on this interval it is decreasing. Therefore, it is chosen to use the survival density function
(SDF) G, and not the cumulative density function to construct the mapping. The mapping will
be based on the relation:

GS(S) ∼ U(0, 1) ∼ GX(X), (4.2)

where the survival density function G is defined as:

G(x) :=

∫ +∞

x
f(x) dx.

For a well-defined process, the relation G(x) = 1 − F (x) holds. For the implied SDF of S, it
has the natural limit lims→+∞GS(s) = 0 [25], and in general the probability density function
stays positive for high values of the underlying process. Therefore, the SDF can be used for
most practical problems.2 Figure 4.4 presents an example of the (implied) probability density
function and survival density function of S in the figure on the left and right respectively. In
this example, the set of parameters is provided by Table 4.4.

General parameters SABR parameters

T S0 α β ρ ν

10 1 0.25 0.6 -0.8 0.3

Table 4.4: SABR parameter for Figure 4.4.

2Hagan’s formulas can imply a negatively valued probability density function for high values of the underlying
process too according to some articles, but this was not encountered during the thesis.
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Figure 4.4: Hagan’s Black formula.

From Lemma 2.19, it is known that GS can be computed using the relation:3

GS(s) = − 1

D(t)

∂C

∂K
(K)

∣∣∣∣
K=s

, (4.3)

where C(K) = C(t, T,K) is the price of a call option with strike K at time t and with maturity
T and D(t) is a function known at time t. In the case of a swaption, the function D(t) is equal to
the notional times the annuity. This relation will be used on an interval [s∗,+∞) with s∗ ≥ s−.
A derivation of the SDF and the PDF implied by Hagan’s formulas is done in Appendix C.1.
For convenience, this chapter limits the results to Hagan’s Black formula, the results for Hagan’s
Bachelier formula can be obtained in an equivalent fashion.

As in the CEV example, first the optimal collocation points {x̃i} are determined. Then,
grid-stretching will be applied based on the SDF. The optimal collocation points of Y can imply
GX(x̃i) < ε or GX(x̃i) > 1−ε for some i with ε� 1. The collocation points of Y are determined
by inverting GS , i.e. s̃i = G−1

S (GX(x̃i)). This inversion can not always be replicated by S, since
like the CEV process S has a point mass at zero. For example, the SABR parameters imply that
GS(s) ≤ 0.817 in Figure 4.4. It can also not be guaranteed that GS can be accurately inverted
if GX(x̃i) < ε or GX(x̃i) > 1− ε.

Therefore a ζmax is defined which S can replicate, i.e. there exists a s such that GS(s) = ζmax.
A ζmin is defined such that G−1

S (ζmin) can be accurately inverted. These ζmin and ζmax relate
to πmax and πmin respectively for the example with the CEV process, i.e. ζmin = 1− πmax and
ζmax = 1− πmin.

After defining ζmin and ζmax, the optimal collocation points {x̃i} are linearly mapped to a
set of collocation points {xi} such that GX(x1) = ζmax and GX(xN ) = ζmin. This approach
is equivalent to the standard approach and therefore will also be referred to as the standard
approach.

3In Lemma 2.19 it was derived that ∂C
∂K

(K) = F (K)− 1 for a well-defined process. In the proof, this involved
using the relation G(x) = 1 − F (X), i.e. ∂C

∂K
(K) = −G(K) = F (K) − 1. For Hagan’s formulas the relation

∂C
∂K

(K) = −G(K) should be used, since Hagan’s formulas do not guarantee to imply a well-defined random
variable.
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After applying the standard approach, the collocation points {si} and the Lagrange poly-
nomial are determined, as in Section 4.1. S can be approximated by gN (X) and extrapolated
outside [x1, xN ] by gN . The Lagrange polynomial provides a natural extension to S.

Before examples of the SCM to Hagan’s formulas are given, first a detailed investigation of
the properties of the SCM are investigated to understand the approach better.

4.4 Properties of the SCM

4.4.1 The probability density function implied by the SCM

In the application of the SCM to Hagan’s formulas, Hagan’s implied random variable S is
replaced by the variable gN (X) for s < s∗. In order to obtain a well-defined SDF, there should
be a one-to-one correspondence between X and gN (X). Thus gN has to be one-to-one. If gN is
a Lagrange polynomial it should be (strictly) monotonic. In order for gN (X) to be monotonic,
it must hold that

dgN
dx

(x) ≥ 0 ∀ x ∈ R(X),

where R(X) is the range of X.

If gN is strictly monotonic, the implied probability density function of gN (X) is well-defined,
since then the following holds:

GX(x) = GgN (gN (x))⇒ fgN (gN (x)) = fX(x)

(
dgN
dx

(x)

)−1

.

Section 4.5 presents in detail an algorithm to test that the Lagrange polynomial is strictly
monotonic. If the Lagrange polynomial is strictly monotonic, it holds that dgN

dx (x) > 0 ∀ x ∈ R.

If gN is not strictly monotonic, i.e. there exists a point x∗ for which it holds dgN
dx (x∗) = 0,

it implies that limx→x∗ fgN (gN (x)) = ∞. If gN is not monotonic, the relationship between X
and S is not one-to-one and the relationship between the probability density functions described
above does not hold anymore. Using this relationship implies then a negative probability density
function and thus arbitrage. Furthermore, for option pricing an inversion of gN is needed, thus
it is required that gN is monotonic. In the remainder of the thesis, gN is required to be strictly
monotonic.

The mapping or the Lagrange polynomial gN do not have to be strictly monotonic on the
entire real line. As with the CEV process, Y can be a process with an absorption at zero. For
this example, this is done by considering gN (x)1{gN (x)≥0}. This is a powerful feature of the
method. In this thesis only the case of absorption at zero will be discussed for Hagan’s formulas
since this is in alignment with the SABR model. Furthermore, this is most natural for Hagan’s
Black Formula, since then:

E
[
(ST )+] = CBlack(0, T, 0, σ) = S0,

as described in more detail in Section 2.5.4. This will be investigated in more detail in Section
4.9. First, Lemma 4.3 will be given, under which conditions the probability density function
of the variable h(X) integrates to one, where h is a differentiable function. The Lagrange
polynomial is a special case of a differentiable function. A distinction between absorption and
no absorption is made in lemma 4.3.
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Lemma 4.3. Let h̄1, h2 be differentiable functions, and assume dh̄1
dx > 0 on [x∗,∞] and dh2

dx (x) >
0 for all x ∈ R. Define h1(X) = h̄1(x)1{X>x∗}. Let X be a random variable. Define Y1 := h1(X)
with an absorption point at y∗ = h̄1(x∗) with point mass FX(x∗). Define Y2 = h2(x). Then the
probability density functions of Y1 and Y2 integrate to one.

Proof. First, it is noted that:

fY1(y) =
fX(x)
dh1
dx (x)

,

on (x∗,∞). It follows by the monotonicity of h1 on [x∗,∞) that limx→∞ h1(x) =∞. Hence by
change of variables from y = h1(x) to x:∫ +∞

−∞
fY1(y) dy =

∫ +∞

y∗
fY1(Y ) dy

= FX(x∗) +

∫ ∞
(y∗)+

fY (Y ) dy

= FX(x∗) +

∫ ∞
x∗

fX(x)
dh1
dx (x)

dh1

dx
(x) dx

= FX(x∗) +

∫ +∞

x∗
fX(X) dx = 1.

The proof for Y2 is done in a similar fashion, where compared to the absorption case, one uses
the fact limx→−∞ h2(x) = −∞ in the change of variables.

Thus if h = gN is a Lagrange polynomial or any other function that is strictly monotonic
and X is a random variable, then it holds that Y = h(X) is a well-defined random variable for
which the probability density function can trivially be determined. One could also extend the
process Y to a process with absorption at zero.

Applying the SCM on the Hagan’s implied random variable, it is not guaranteed that the
new process gN (X) satisfies the martingale property, i.e. E [gN (X)] 6= S0. This is not constraint
in the approach by Grzelak et al. In the example of Table 4.4 and choosing six collocation points
and setting ζmax = 0.8 and ζmin = 0.0001 gave E

[
(gN )+ (X)

]
= 1.0018 > 1 = S0. Without the

martingale property, put-call-parity does not hold which generates an arbitrage opportunity.
This can be obtained by setting this as a constraint on the coefficients a0, . . . , aN−1 of the
Lagrange polynomial gN . An example on how to do so, is presented in Section 4.9.

4.4.2 Option prices

Analytic expressions for call and put prices can be derived when using a Lagrange polynomial
as an approximation gN for the mapping m. This will be done for a general polynomial; the
Lagrange polynomial is special case. Lemmas 4.4, 4.5 and Corollary 4.6 are used when X is
chosen to be a normal distribution, see also Grzelak et al. [25]. Lemmas 4.4, 4.7 and Corollary
4.8 are used when X is chosen to be a gamma distribution. Call and put prices can usually be
expressed as

C(t, T,K) = D(t)E
[
(ST −K)+

]
, P (t, T,K) = D(t)E

[
(K − ST )+

]
,

for some function D(t). For swaptions D(t) is the notional times the annuity. The focus will be
on the expectation, since D(t) can be determined at time t.
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Lemma 4.4. Let p be a strictly monotonic polynomial on [x̄,∞) and x∗ ≥ x̄ with p(x̄) = 0.
Express p as

p(x) = a0 + . . . aN−1x
N−1.

Furthermore, let x∗ be such that p(x∗) = K with K ≥ 0. Define h(x) = p(x)1{p(x)≥0} = (p(x))+

and define the process Y := h(X). Assume that at time t the distribution of a financial quantity,
like the forward swap rate, for time T is given by the process Y . Then the price of a call option
(C) and put option (P) on the financial quantity with strike K ≥ 0 under the process Y are
given by:

E
[
(h(X)−K)+] = E [(h(X)−K) 1X≥x∗ ] =

N−1∑
i=0

aiE [X1X≥x∗ ]−K(1− FX(x∗)),

E
[
(K − h(X))+] = (E [h(X)]−K) + E

[
(h(X)−K)+] .

Lemma 4.5 and Corollary 4.6 are used to compute the expectations in Lemma 4.4 in the case
that X is chosen to be a normal random variable.

Lemma 4.5. Let Z be a standard normal distributed random variable. Let a, b ∈ R, then it
holds that:

II0(a, b) := E
[
1{a≤Z<b}

]
= FN (b)− FN (a),

II1(a, b) := E
[
1{a≤Z<b}Z

]
= fN (a)− fN (b),

IIi(a, b) := E
[
1{a≤Z<b}Z

i
]

= ai−1fN (a)− bi−1fN (b) + (i− 1)Ii−2(a, b), for i ≥ 2.4

where FN (·) is the cumulative density function and fN (·) is the probability density function of
a standard normal random variable. It holds that fN (x) ∈ S, the Swartz-space, therefore:

lim
x→±∞

xαfN (x) = 0,

for any α ∈ R.

Proof. The case m = 0 follows directly from direct integration and the case m ≥ 1 follows from
integration by parts.

Corollary 4.6. Let X ∼ Norm(0, σ2) with σ ∈ R+. Let a, b ∈ R and IIi(a, b) be defined as in
Lemma 4.5, it holds that:

E
[
1{a≤X<b}X

i
]

= σiIIi

(
a

σ
,
b

σ

)
.

Proof. The proof directly follows from substituting X = σZ, where Z ∼ Norm(0, 1).

Lemma 4.7 and Corollary 4.7 are used to compute the expectations in Lemma 4.4 in the case
that X is chosen to be a random variable distributed according to a gamma distribution.
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Lemma 4.7. Let a, b, βΓ ∈ R+ and n ∈ N, it holds that:∫ b

a
e−βΓx dx = −β−1

Γ e−βΓx
∣∣∣b
x=a

,∫ b

a
xne−βΓx dx = −β−1

Γ xne−βΓx
∣∣∣b
x=a

+ n

∫ b

a
xn−1β−1

Γ e−βΓx dx.

Note that e−βΓ|x| ∈ S, the Swartz-space, therefore:

lim
x→+∞

xαe−βΓx = 0,

for α ∈ R.

Proof. The case n = 0 follows directly from integration and the case n ≥ 1 follows from inte-
gration by parts.

Corollary 4.8. Let X be a gamma distributed random variable, i.e. X ∼ Gam(αΓ, βΓ) with

αΓ ∈ N≥1, probability density function fX(x) =
β
αΓ
Γ

Γ(αΓ)x
αΓ−1e−βΓx and Γ is the Gamma function.

Let a, b, βΓ ∈ R+, it holds that:

E
[
1{a≤X<b}X

n
]

= −
βαΓ

Γ

Γ(αΓ)

(
n+αΓ−1∑
i=0

(n+ αΓ − 1)!

(n+ αΓ − 1− i)!
xn+αΓ−1−iβ

−(i+1)
Γ

)
e−βΓx

∣∣∣∣∣
b

x=a

for n ≥ 0.

Proof. The proof follows directly from Lemma 4.7.

Remark 4.9. The optimal collocation points depend entirely on the moments of X. If X ∼
Gam(αΓ, βΓ), then E [Xn] = Γ(αΓ+n)

Γ(αΓ)βnΓ
and X ∼ β−1

Γ Z with Z ∼ Gam(αΓ, 1). From the latter

relation, it follows that the optimal collocation points of X are equal to {xi} = {β−1
Γ x̃i} where

{x̃i} are the optimal collocation points of Z. To determine the location of the optimal collocation
points by the procedure of Grzelak et al. [26] from the moments, this can be done accurately if
one uses a βΓ � 1 to compute the optimal collocation points. The moments of X with a large βΓ

are smaller compared to a X with a small βΓ. As a consequence, smaller numerical errors are
being produced. The relation X ∼ β−1

Γ Z provides the optimal collocation points for any gamma
distribution with the same αΓ.

4.5 Assessing the monotonicity of polynomials

As mentioned in Section 4.4, it is required that the Lagrange polynomial gN satisfies the property
dgN
dx (x) > 0, ∀ x ∈ I(X) ⊆ R(X), to have an arbitrage-free approach with the SCM. The interval
I(X) ⊆ R(X) on which the Lagrange polynomial must be monotonic depends on the variables X
and Y . If X is chosen to be a gamma distribution, then I(X) = R(X) = R≥0. In the case that
Y has absorption at some point y∗, this may decrease the size of the interval I(X). For example,
if y∗ = 0 and gN (x∗) = 0 for some x∗ > 0, then it must hold that dgN

dx (x) > 0 ∀ x ∈ [x∗,∞) and
therefore I(X) = [x∗,∞).

A strictly monotonic Lagrange polynomial is not directly guaranteed by the approach of
Grzelak et al. In fact, if N is odd, then gN is a polynomial of order N − 1 and its derivative is
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Figure 4.5: Mapping in the SCM for Hagan’s Black formula and a seventh order Lagrange
polynomial (eight collocation points). The parameters are taken from Table 4.4 with ζmin =
max(GX(xN ), 0.0001), and ζmax = 0.95 ·maxy GY (y).

a polynomial of order N − 2 and therefore odd. In that case it is certain that dgN
dx (x) < 0, for

some x ∈ R. In the case N is even, it is also not guaranteed that the Lagrange polynomial is
monotonic. Figure 4.5 presents the resulting collocation points and Lagrange polynomial, where
the Lagrange polynomial is not monotonic.

The collocation points imply that the mapping is monotonic. The collocation points and grid-
stretching are chosen such that the Lagrange polynomial does not suffer from Runge oscillation.
This results for most practical problems in a monotonic Lagrange polynomial. Sturm’s theorem
will be used to verify that a polynomial is monotonic. To introduce Sturm’s theorem, the
definition of a Sturm chain and an algorithm to obtain a Sturm chain will be introduced. These
are taken from Akritas [2].

Definition 4.10 (Sturm chain). A Sturm chain or Sturm sequence is a finite sequence of
polynomials p0, . . . , pn of decreasing degree with the following properties:

• p0 = p is square free, i.e. no repeated roots,

• if p(x) = 0, then sign(p1(x)) = sign(p
′
(x)),

• if pi(x) = 0 for some 0 < i < n, then sign(pi−1(x)) = − sign(pi+1(x)),

• pn(x) does not change sign.

Algorithm 1 (Obtaining a Sturm chain). Let p0 be square-free, then

p0(x) := p(x),

p1(x) := p
′
(x)

pi(x) := − rem(pi−2, pi−1),

...

0 := − rem(pn−1, pn),

where rem(pi, pj) is the remainder of polynomial long division. Polynomial long division can be
expressed as pi = pjq + rem(pi, pj), where q is quotient of the polynomial long division.
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For example, let

p1(x) = 3x2 − 12x+ 11, p2(x) = −2

3
x+

4

3
.

Then p1(x) = p2(x)
(−2

9 x+ 9
)
− 1, i.e. rem(p1, p2) = −1 and q(x) = −2

9 x + 9, which followed
from the polynomial long division.

−2

3
x+

4

3
/3x2 − 12x+ 11\−2

9
x+ 9

3x2 − 6x+ 0

− 6x+ 11

− 6x+ 12

− 1

Theorem 4.11 (Sturm’s Theorem). Let p be a square-free polynomial and let p0, . . . , pn be
the Sturm chain constructed by Algorithm 1. Let sign(x) denote the number of sign changes
(ignoring zeroes) in the sequence

p0(x), . . . , pn(x).

For each two real numbers a < b, the number of distinct roots of p in the half-open interval
(a, b] is equal to sign(a) − sign(b). If p is a non-square-free polynomial, then p0, . . . , pn is the
canonical Sturm chain constructed by Algorithm 1. The number of distinct roots of p in the
half-open interval (a, b] is equal to sign(a)− sign(b), given that neither a nor b is a multiple root
of p.

Proof. A proof can be found in Sturm [40].

Here, an application of Sturm’s Theorem will be given. The following polynomial will be
considered:

p(x) = (x− 1)(x− 2)(x− 3) = x3 − 6x2 + 11x− 6.

Hence, the following Sturm chain is obtained:

p0(x) = x3 − 6x2 + 11x− 6,

p1(x) = 3x2 − 12x+ 11,

p2(x) =
2

3
x− 4

3
,

p3(x) = 1

So p1 is the derivative of p0. p2 and p3 follow from polynomial long division.

It is desired to determine the number of zeros in the interval [0, 4]. To do so, one computes

p0(0) = −6, p1(0) = 11, p2(0) = −4

3
, p3(0) = 1,

p0(4) = 6, p1(4) = 11, p2(4) =
4

3
, p3(4) = 1.

Hence,

sign(p0(0)) = −, sign(p1(0)) = +, sign(p2(0)) = −, sign(p3(0)) = +,

sign(p0(4)) = +, sign(p1(4)) = +, sign(p2(4)) = +, sign(p3(4)) = +.
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Thus number of sign changes at 0 and 4 is 3 and 0 respectively. Thus Sturm’s Theorem implies
3− 0 = 3 zeros, which is indeed the number of zeros on [0, 4].

It will be explained how Sturm’s Theorem can be used to verify that a polynomial is strictly
monotonic on the real line. For a bounded interval or half-bounded interval the algorithm works
similarly to this example on the real line. For example, the polynomial p(x) = 1

3x
3 + x is used.

This is a strictly monotonic polynomial on the entire real line.5 Sturm’s Theorem is applied to
verify this. In the construction of a Sturm chain one sets p0(x) = p

′
(x) and computes that:

p0(x) = p
′
(x) = x2 + 1,

p1(x) = p
′
0(x) = 2x,

p2(x) = −1.

In the limits for x→ ±∞ it can be proven that the sign of a polynomial p(x) = anx
n + . . .+ a0

is determined by the highest order coefficient an of the polynomial. For example, this can be
done for x→∞ and an > 0 by proving that there exists a number b such that p(x) > 0 for all

x > b. It can be proven that p(x) > 0 for all x > b provided that b ≥ max
{

1,
∑n−1
i=1 |ai|
an

}
. This

follows from the fact that anx
n > an−1x

n−1 + . . . a0x
n−1 > an−1x

n−1 + . . . a0 for x > b. This
implies that p(x) has no zeros for x > b. Thus checking the number of zeros of a polynomial is
completely determined by the highest order coefficients of the polynomials in the Sturm chain.

This gives the following result for this example:

sign( lim
x→∞

p0(x)) = +, sign( lim
x→∞

p1(x)) = +, sign( lim
x→∞

p2(x)) = −,

sign( lim
x→−∞

p0(x)) = +, sign( lim
x→−∞

p1(x)) = −, sign( lim
x→−∞

p2(x)) = −.

The sign changes in the limits are both 1, so p
′
(x) has 1− 1 = 0 zeros. Thus p(x) is monotonic

on the real line. Sturm’s Theorem 4.11 is a computationally rapid method of verifying the
monotonicity of a polynomial a posteriori.

The algorithm can be summarized as follows:

• Input a polynomial and the interval (a,b) on which the monotonicity of the polynomial
needs to be verified.

• Compute the Sturm chain for the derivative of the polynomial.

• Compute the signs changes of the Sturm chain for a and b.

• If the difference between the sign changes is zero, the polynomial is strictly monotonic.
Otherwise, it is not strictly monotonic.

Remark 4.12. Since the Lagrange coefficients can be computed by solving the VanDerMonde
matrix equation V(x)a = y and the inverse of V(x) is known from Turner [24], in theory one
could find under which condition of {xi} and {yi} imply a strictly monotonic polynomial. This
however will be a tough exercise to work out for the general case. For practical purposes it is
checked with the above construction. Finding the conditions under which a Lagrange polynomial
is strictly monotonic does not give a priori knowledge in which fashion the points xi have to be
chosen, since the monotonicity will also depend on yi. Thus, knowledge on yi is required too.

5This can be shown to be true if one looks at its derivative, since the derivative has no zeros.



60 CHAPTER 4. THE STOCHASTIC COLLOCATION METHOD

4.6 Convergence properties and error estimates

This section starts with an error expression for the Lagrange polynomial for a general function.
This error expression will be used to derive an error bound for the expectation of the process
implied by the SCM. These error bounds indicate convergence for call prices.

Lemma 4.13 (Error Expression For A Lagrange Polynomial). Let gN be the Lagrange polyno-
mial that interpolates a N + 1 differentiable function h on the points {x1, . . . , xN}. Then, there
exists a κx for each x such that:

h(x)− gN (x) =
h(N)(κx)

N !
ΠN
i=1(x− xi).

Furthermore, κx is continuous.

Proof. The proof can be found in Stewart [39].

Lemma 4.14 (Error Bound On The Expectation By A Lagrange Polynomial). Let X be a
random variable with probability density function fX(x) and assume Y := h(X) is a well-defined
variable with h a strictly monotonic function. Let gN (x) be the Lagrange polynomial that inter-
polates h(x) ∈ Cn+1 on the set of points {x1, . . . , xn}. Then∣∣∣∣∫ b

a
(h(x)− gN (x))fx(x) dx

∣∣∣∣ ≤ 1

N !
max
κ∈[a,b]

|h(N)(κ)| max
x̄∈[a,b]

ΠN
i=1|x̄− xi|.

Proof. By Lemma 4.13, it follows that:∣∣∣∣∫ b

a
(h(x)− gN (x))fx(x) dx

∣∣∣∣ =
1

N !

∣∣∣∣∫ b

a
h(N)(κx)ΠN

i=1(x− xi)fx(x) dx

∣∣∣∣
≤ 1

N !

∫ b

a

∣∣∣h(N)(κx)ΠN
i=1(x− xi)

∣∣∣ fx(x) dx

≤ 1

N !
max
κ∈[a,b]

h(N)(κ) max
x̄∈[a,b]

ΠN
i=1|x̄− xi|

∫ b

a
fx(x) dx

≤ 1

N !
max
κ∈[a,b]

h(N)(κ) max
x̄∈[a,b]

ΠN
i=1|x̄− xi|.

Remark 4.15. It must be noted that the Chebyshev nodes minimize the condition

max
x̄∈[−1,1]

ΠN
i=1|x̄− xi| = 21−N ,

such that [39]:
min

xi∈[−1,1], i=1,...,N
max

x̄∈[−1,1]
ΠN
i=1|x̄− xi| = 21−N .

Therefore, these will be investigated in Section 4.8 and compared to the optimal collocation points.

Similar to the expectation of the process, analytical expressions for error estimations for a
call price is derived. The mapping between X and S is dependent on the derivatives of call
prices. Thus it is important to investigate the convergence of call prices.

Lemma 4.16. For convenience, the call price at maturity is written as C(x) = (x−K)+ where
K is the strike of the option. It satisfies the following relation:

|C(x)− C(y)| ≤ |x− y|.
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Proof. A proof can be found in Appendix C.2.

Corollary 4.17. Let the call price at maturity be written as C(x) = (x − K)+, where K is
the strike of the option. Let X be a random variable with probability density function fX(x).
Assume that gN is the Lagrange polynomial that approximates h(x) on the interval [a, b]. Then:∣∣∣∣∫ b

a
(C(h(x))− C(gN (x))) fx(x) dx

∣∣∣∣ ≤ 1

N !
max
κ∈[a,b]

|h(N)(ζ)| max
x̄∈[a,b]

ΠN
i=1|x̄− xi|.

Proof. It follows that∣∣∣∣∫ b

a
(C(h(x))− C(gN (x))) fx(x) dx

∣∣∣∣ ≤ ∫ b

a
|C(h(x))− C(gN (x))| fx(x) dx

≤
∫ b

a
|h(x)− gN (x)| fx(x) dx.

The rest of the proof is analogous to the proof of Lemma 4.14.

By using Lemmas 4.17 and 4.16, a bound on the error of a call option is derived. The error
for expectations in the extrapolation interval for the Lagrange polynomial will be investigated
too. This is based on the choice of grid-stretching by setting a ζmin. First, Lemmas 4.18 and
4.19 are given, which will give a bound if GX(xN ) = ε is chosen for the Lagrange polynomial.

Lemma 4.18. Let X be a random variable and x∗ ∈ R and h(x) ∈ C. Then:

E [h(X)1X>x∗ ] = E [h(X)|X > x∗]GX(x∗).

Proof.

E [h(X)1X>x∗ ] = E [E [h(X)1X>x∗ |X]]

= E [E [h(X)1X>x∗ |X > x∗]P(X > x∗) + E [h(X)1X>x∗ |X ≤ x∗]P(X ≤ x∗)]
= E [h(X)|X > x∗]GX(x∗).

Lemma 4.19. Let X be a random variable and Y be a random variable satisfying Y := h(X).
Let gN (x) be the Lagrange polynomial that interpolates h(x) on the set of points {x1, . . . , xN}
and let {y1, . . . , yn} = {h(x1), . . . , h(xn)}. Let GY (yn) = GX(xn) ≤ ε. Then:∣∣∣∣∫ +∞

xN

(h(x)− gN (x)) fx(x) dx

∣∣∣∣ ≤ εE [ |h(x)− gN (X)||X > xn] .

Proof. ∣∣∣∣∫ +∞

xN

(h(x)− gN (x)) fx(x) dx

∣∣∣∣ ≤ ∫ +∞

xN

|h(x)− gN (X)|fX(x) dx

≤ GX(xn)E [ |h(x)− gN (X)||X > xn]

≤ εE [ |h(x)− gN (X)||X > xn] .

In general it can be expected that the expectation E[h̃(X)|X > xN ] goes to zero when xN
goes to infinity for some function h̃. Combining Lemmas 4.18 and 4.19 indicates that choosing
ζmin = GX(xn) � 1 gives a good bound on the error made in the expectations. Thus applying
the SCM on a process will have a minimal impact on option prices if ζmax is chosen to be small.
This will be investigated by applying the SCM to Hagan’s formulas.
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4.7 Results by a direct application of Grzelak et al.

Direct applications of Grzelak et al. [25] for Hagan’s Black formula will be shown. For the simpler
variable X in the mapping a normal distribution will be compared against a gamma distribution.
The parameters are given by Table 4.5. It can be computed that maxsGS(s) ≈ 0.8167. The
parameters for the gamma distribution were chosen for this example such that they gave the
most accurate results.

General parameters SABR parameters Normal distribution Gamma distribution

T S0 α β ρ ν µ σ αΓ βΓ

10 1 0.25 0.6 -0.8 0.3 0 1 6 1

Table 4.5: Parameters for Figures 4.6–4.8.

Figure 4.6 presents the result where X is chosen to be a standard normal distribution,
whereas Figure 4.7 presents the result where X is chosen to be a gamma distribution. In both
cases ζmin = max(GX(xN ), 0.0001) and ζmax = 0.98 · maxsGS(s) in the figure on the left and
ζmax = 0.9 ·maxsGS(s) in the right on the figure respectively. The probability density functions
implied by the SCM are not negative, whereas the probability density function implied by
Hagan’s Black formula is negative for low values of the underlying process. Absorption was not
used in these figures, such that the extrapolation of the probability density function implied
by the SCM could be investigated. These figures imply a similar extension of the probability
density function for both distributions when at least six collocation points are used and there is
not visual a difference between the probability densities functions in these figures when at least
eight collocation points are used.
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Figure 4.6: (Implied) probability density functions for the normal distribution. Parameters are
given by Table 4.5.

Figure 4.8 presents the error in the probability density function made by the SCM for the
normal distribution in the figure on the left and the gamma distribution in the figure on the
right. They are compared on the interval [s1, sN ]. It is chosen to investigate the error in the
probability density function and not in the mapping or the SDF. If the probability density
function converges on the interval [s1, sN ], the SDF, the mapping and the option prices implied
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Figure 4.7: (Implied) probability density functions for the gamma distribution. Parameters are
given by Table 4.5.
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Figure 4.8: Error in (Implied) probability density functions. Parameters are given by Table 4.5.

by the SCM will converge. For each distribution eight collocation points were used. Using the
normal distribution leads to the fastest convergence of the probability density function on the
interval [s1, sN ] compared to the gamma distribution for this example.

If Hagan’s Black formula implies a process which has a distribution that is more skewed, it
makes more sense to map the process to a Gamma distribution. Figure 4.6 presents such an
example.

General parameters SABR parameters Normal distribution Gamma distribution

T S0 α β ρ ν µ σ αΓ βΓ

10 1 0.3 0.6 -0.4 0.37 0 1 6 1

Table 4.6: Parameter for Figure 4.9.

The distribution implied by Hagan’s Black formula is now more skewed than in the previous
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Figure 4.9: SCM: normal distribution compared to gamma distribution. Parameters are in Table
4.6.

example. Eight collocation points are used and ζmax = 0.90 ·maxy GY (y) for both distributions.
In this figure it can be observed that the gamma distribution can capture the distribution implied
by Hagan’s Black formula more accurately. Besides the random variable X in the mapping, the
interpolation technique for the mapping must be investigated too.

4.8 Different types of interpolation

This section compares two different interpolation techniques to the standard approach. These are
a first order Hermite interpolation and a Lagrange polynomial implied by the Chebyshev nodes.
Other interpolation techniques like (monotonic) splines, second order Hermite interpolation and
linear interpolation were investigated too, however those interpolation techniques did not gave
satisfactory results compared to the standard approach.

For the Lagrange polynomial implied by the Chebyshev nodes, the standard approach is
used. The difference is that the location of the collocation points is different. Like the standard
approach, a ζmin and ζmax are found such that the collocation points are chosen by the Chebyshev
nodes on a interval for [a, b] = [G−1

X (ζmin), G−1
X (ζmax)]:

xk =
1

2
(a+ b) +

1

2
(b− a) cos

(
2k − 1

N
π

)
, k = 1, . . . , N. (4.4)

For the Hermite interpolation the following set of mapping points is used:

Set I : {yi} = S0 · [0.4, 0.6, 0.8, 1, 1.1, 1.4, 1.8, 3, 5, 8, 13],

Set II : {yi} = S0 · [0.5, 0.65, 0.8, 1, 1.1, 1.2, 1.4, 1.6, 2, 2.5, 4, 10].

These sets are chosen for the Hermite polynomial since they give satisfactory results. For
example, for the Lagrange polynomials 8 and 10 collocation points are used for Set I and II
respectively, where the SABR parameters are taken from Table 4.7.
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General parameters SABR parameters

T S0 α β ρ ν

10 1 0.25 0.6 -0.8 0.3

Table 4.7: Parameter for Figures 4.10–4.11.
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Figure 4.10: (Implied) probability density function.
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Figure 4.11: Error of the probability density functions compared to the one implied by Hagan’s
Black formula. Parameters are taken from Table 4.7. For the Lagrange polynomials eight
and ten collocation points are used in the figures on the left and right respectively. ζmax =
0.98 ·maxy GY (y).

Figure 4.10 presents the resulting PDFs. Figure 4.11a and 4.11b presents the convergence
of the three different types of interpolation. The standard approach converges fastest for high
values of the underlying process, but has the largest mismatch in the probability density function
for low values of the underlying process. The Chebyshev nodes do not give a faster convergence
than the standard approach and do not provide a more accurate result for high values of the
underlying process. Lastly, the Hermite interpolation is more accurate for low values of the
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underlying process, but the relative error is larger for high values of the underlying process
compared to the other two interpolation techniques. Furthermore, the computation of option
prices and the inversion are computationally more expensive for the Hermite interpolation.
Lastly, there is no general set of collocation points that directly imply a stable interpolation for
the Hermite interpolation, whereas this is usually the case for the standard approach and the
Chebyshev nodes.

The focus for the convergence of the probability density function should be on the high
values for the underlying process. In the application of the SCM for Hagan’s formulas, one uses
Hagan’s implied random variable. Hagan’s implied random variable is derived from call prices.
The expectation in a call price can be computed by∫ ∞

K
(s−K)fS(s) ds.

A large error in the approximation of the probability density function by the SCM for high values
of the underlying process, can give larger mismatches in the call prices. Thus the approximation
is less accurate if there are large mismatches in the probability density function for high values
of the underlying process. Therefore, the standard approach seems to be the most promising
interpolation technique for the SCM. However, the standard approach does not directly imply
the martingale property, which is needed to exclude arbitrage. It will be investigated in the next
section in which manner the martingale property can be obtained.

4.9 The martingale property using a virtual collocation point

It will be described how one can obtain the martingale property by using virtual collocation
points. In the approach by Grzelak et al, this is needed to make this approach arbitrage-free. If
the martingale property does not hold, put-call-parity does not hold and this implies arbitrage.
For this approach, the original approach of Grzelak et al. was followed as closely as possible, since
it gave satisfactory results. It is investigated whether in general one can obtain the martingale
property using only a Lagrange polynomial. This section describes the approach, presents some
results where this approach works satisfactorily and presents some extreme cases of Hagan’s
formulas. In this section, cases where Hagan’s formulas imply no arbitrage, or imply a wildly
behaving probability density function will be considered too.

4.9.1 Description of the approach

As in Section 4.3 it is assumed that S is well-defined for some s∗ ≥ 0. Like the standard approach,
the optimal collocation points x̃1, . . . , x̃N andζmax are determined first. The optimal collocation
points x̃1, . . . , x̃N are then mapped linearly to an equivalent set of collocation points x1, . . . , xN .
Unlike the standard approach, this linear map is obtained by setting GX(x2) = ζmax and not
GX(x1) = ζmax for the grid-stretching.6 As a consequence, when applying the grid-stretching,
the collocation points for X, {xi}Ni=1 are obtained and for S only {si}Ni=2. The collocation point
s1 is a now virtual collocation point. This virtual collocation s1 will be used to ensure the
martingale property.

In this approach y1 is calibrated such that the martingale property is obtained, i.e.
E
[
(gN (X))+] = S0. During calibration gN is constrained such that dgN

dx > 0 ∀ x ∈ R and only

6For ζmax a heuristic rule was developed for Hagan’s formulas. This rule has been tested in many calibration
results in Chapter 5 and produced satisfactory results.
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even N are considered. The results will be limited where X is chosen to be a standard normal
distribution and the approach will only be used for Hagan’s Black formula. This is to illustrate
the approach and similar results can be obtained for other distributions.

This approach can also be reformulated as an optimization problem for which a polynomial
pN has to be fitted, which fits the points {(xi, yi)}Ni=2 under the condition dpN

dx > 0, ∀ x ∈ R,

and E
[
(pN )+ (X)

]
= S0.

The idea of this approach is that one controls the polynomial and therefore the mapping for
x < x2. By controlling the polynomial, the martingale property can be obtained and arbitrage
can be removed in the strike dimension.

Since for the exact mapping m and the constrained pN , it holds that∫ ∞
−∞

(m(x))+ fX(x) dx = S0 =

∫ ∞
−∞

(pN (x))+ fX(x) dx,

convergence can be expected on the interval [x2, xN ]. This is also the reason why absorption at
zero comes as a natural extension for Hagan’s Black formula. Hagan’s Black formula originates
from the SABR model and therefore implies a point mass at zero as discussed in Section 2.5.7

Furthermore, Hagan’s Black formula directly implies the martingale property for the implied
underlying process. The result of the point mass is omitted, since it will have no effect on the
call and put prices. Due to the constraint of dgN

dx (x) > 0 ∀ x ∈ R one obtains a well-defined
variable compared to Y , i.e. it has a nonnegative probability density function and implies the
martingale property. In the case that one wants to use more virtual collocation points (e.g.
one wants to ensure an accurate fit for some option price), one might get issues due to a less
stable polynomial. If more constraints are available, then more virtual collocation points can be
used, but it might be that less virtual points are needed than the number of constraints. This
approach shall be referred to as the M-SCM, where M comes from martingale.

The algorithm can be summarized as:

• Input the SABR parameters and the number of collocation points.

• Determine an appropriate ζmax and compute {xi}Ni=1, {si}Ni=2.

• Optimize s1 such that the Lagrange polynomial implies the martingale property, while
constraining it to be strictly monotonic.

4.9.2 Accurate results

Cases for which this approach works accurately are presented. Table 4.8 provides the parameter
sets that are investigated. For each set 8, 10 and 12 collocation points are used.

The first three sets represent cases where Hagan’s formulas give an unsatisfactory probability
density function. For Set I, Hagan’s formulas imply a process where the probability density
function is negative around zero for the underlying process. For Set II, Hagan’s formulas imply
a process where the probability density function goes negative and then blows up around zero
for the underlying process. For Set III, Hagan’s formulas imply a process where the probability

7The case β = 0 is not considered here. The SABR model allows the financial quantity to become negative
for β = 0, whereas the financial quantity cannot become negative for Black’s model. It is therefore not natural
to use Hagan’s Black formula with β = 0.
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density function stays positive, but goes to infinity around zero for the underlying process. For
cases similar to Set III, it can happen that the probability density function integrates to some
number larger than one. For Set IV, Hagan’s formulas imply a well-defined process. In this
case, it is investigated whether this virtual collocation approach remains stable.

S0 α β ρ ν T

Set I 1 0.25 0.6 -0.8 0.3 10

Set II 0.5 0.04 0.05 -0.2 0.3 10

Set III 0.5 0.2 0.2 -0.2 0.4 1

Set IV 0.5 0.6 0.9 -0.2 0.2 1

Table 4.8: SABR parameter sets for investigation.
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Figure 4.12: Set I of Table 4.8.
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Figure 4.13: Set II of Table 4.8.
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Figure 4.14: Set III of Table 4.8.
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Figure 4.15: Set IV of Table 4.8.

Figures 4.12-4.15 present the probability density functions implied by Hagan’s Black formula
and the SCM in the figures on the left. In the figures on the right, the errors in the probability
density functions made by using the SCM on the interval [s2, sN ] are presented. As can be
observed from the figures, there is convergence for each set on [s2, sN ]. Furthermore, for each
set the martingale property is obtained.

Figure 4.16 presents the volatility curves for Hagan’s formulas and the SCM. As can be
observed, the difference is small between the volatility curves of Hagan’s Black formula and the
SCM. Table 4.9 summarizes the error and difference in the volatility for the interpolation and
extrapolation respectively. It can be concluded that the M-SCM is accurate on the interpolation
and decreases the value of the volatility for a low strike with a relative small difference. It removes
the discontinuity in Hagan’s formulas in a sophisticated manner for strikes near zero.
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(c) Set III.
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(d) Set IV.

Figure 4.16: Volatility curve for the parameter sets from Table 4.8.

Set Interpolation (bp) Extrapolation (%)8

I 5 2

II 2 3

III 0.2 20

IV 0.5 2

Table 4.9: Maximum difference between the volatility implied by Hagan’s formulas and SCM-
Hagan on the inter- and extrapolation of the Lagrange polynomial.

These four sets either imply only a small problem or no problem with Hagan’s formulas.
Therefore, this approach worked satisfactorily. Now, some investigation is done on some param-
eter sets where Hagan’s formulas imply a more “extreme” probability density function. These
will be cases in which Hagan’s formulas imply arbitrage on a wider set of strikes, not only for
strikes near zero.

8With the exceptions when the volatility curves implied by SCM-Hagan are down sloping.
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4.9.3 Some extreme cases

Table 4.10 gives sets for which the behavior of Hagan’s formulas can be considered extreme for
the implied probability density function. Again 8, 10 or 12 collocation points are used, where the
first one is a virtual one. Figures 4.17a-4.18c present the probability density functions and the
errors made by the M-SCM on the interval [s2, sN ] respectively. Figures 4.18e - 4.18d present
the resulting volatilities.

S0 α β ρ ν T

Set V 0.5 0.8 0.8 -0.2 0.5 1

Set VI 0.5 0.04 0.2 -0.2 0.4 10

Set VII 1 0.5 0.6 -0.4 0.3 10

Table 4.10: Parameter set under investigation.

These three sets give rise to undesired results with Hagan’s formulas. In the cases of Set
V and VII one may argue that the probability density function was changed too much by the
M-SCM to directly apply it to Hagan’s formulas, but this comes mainly from the fact that for
these cases Hagan’s formulas are behaving wildly. Therefore, one can observe differences up to
15% in the volatility. In the interpolation, a similar inaccuracy is observed as for Sets I-IV for
12 collocation points. This could be up to an error of 3bp in the volatility.
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Figure 4.17: Set V of Table 4.10.

In the case of Set VI, the approach was not able to guarantee a martingale process for 8
and 10 collocation points. This mostly has to do with the fact that where the Hagan’s formulas
generate arbitrage a probability density function was needed that was almost equal to zero.

Since the probability density function implied by the SCM is equal to fx(x)
(

dgN
dx (x)

)−1
, it

is required that dgN
dx (x) � 1 in this area. This could be obtained in this case with a higher

order polynomial. Setting a higher ζmax could provide the martingale property too for 8 and 10
collocation points, but then the M-SCM still gives an unsatisfactory result for the probability
density function, i.e. the probability density function was altered too much.
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(a) (Implied) probability density functions
for Set VI.
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(b) Errors made in new probability density
functions for Set VI.
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(c) (Implied) probability density functions
for Set VI.
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(d) Volsurfaces for Set VII.
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(e) Volsurfaces for Set V.
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Figure 4.18: Sets are taken from Table 4.10.
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4.10 Discussion of the approach

The SCM maps an expensive distribution to a simpler distribution and it works accurately for
processes that are well-defined [26]. As can be observed from this chapter, this mapping can
be used to give satisfactory results for a process that is not well-defined like those arising from
Hagan’s formulas by correcting its probability density function. This mapping is approximated
by a Lagrange polynomial, which was compared to other standard interpolation techniques.
This showed that the Lagrange polynomial was the most accurate interpolation technique. For
the simpler distribution in the mapping, a normal distribution has been compared to a gamma
distribution. It has been shown the gamma distribution can provide more accurate results if the
distribution of the process implied by Hagan’s formulas is strongly skewed.

The approximation technique should be monotonic to guarantee that this approach is arbitrage-
free. Therefore, a computationally rapid algorithm was developed to verify the monotonicity of
a polynomial. With this algorithm an extension of this approach was developed to include the
martingale property to make this approach completely arbitrage-free. With an explicit analyti-
cal expression and practical problems, the convergence and stability of this approach has been
shown.

Furthermore, the M-SCM is computationally rapid9, does not become more expensive for
longer maturities, Hagan’s formulas can still be used and for most practical problems with
Hagan’s formulas, the M-SCM seems suitable to remove the arbitrage. This will be verified by
calibrating all the approaches discussed in this thesis in the next chapter.

9In matlab, the average CPU time was 100 ms. for 12 collocation points.
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Chapter 5

Calibration to market data

This chapter compares the approaches discussed in this thesis by calibrating them to a set of
market data. These are the approaches of Hagan et al. [29], Antonov et al. [3], Grzelak et al.
[25] and Hagan et al. [30]. These approaches will be abbreviated as Hagan’s Black formula,
uncorrelated Antonov, SCM-Hagan and Hagan’s AF SABR respectively. The SCM will be
used to remove the arbitrage in Hagan’s Black formula. Therefore, it will be abbreviated as
SCM-Hagan.

It is chosen to focus on 1Y1Y, 2Y2Y, 5Y5Y and 10Y10Y swaptions in the months April, July
and December 2014 with the EURIBOR (euro interbank offered rate) as the underlying floating
rate. The standard conventions will be used for the swaptions in the euro market. The focus
will be on the stability and the extrapolation of the Black volatility curve of the approaches.
Only Black volatilities are considered in this chapter, since only positive rates are considered.
Section 5.1 describes the market data, Section 5.2 describes the calibration procedure, Section
5.3 presents results and Section 5.4 gives a conclusion on the results.

5.1 Description of the market data

For the construction of volatility curves the forward swap rates and at-the-money (swaptions
where the strike is equal to the forward swap rate) volatilities are used from market data. From
the first day of the month the curvature of the volatility curve is extracted from a volatility
representation of ING. To produce a volatility curve for the remaining days of the month, it
is assumed that the shape of the volatility curve is preserved over time. This means that the
absolute difference between the volatility at a strike and the at-the-money volatility remain the
same on a grid of strikes relative to the forward swap rate. See Figure 5.1 as an example for
a 10Y10Y swaption from April 2014. It is assumed that the right figure remains constant over
time. The strikes relative to the forward swap rate will be referred to as the relative strikes. The
volatilities relative to the at-the-money volatility will be referred to as the volatility add-ons.

To be more precise, the volatility add-ons for the Black volatilities are computed on the first
day of the month. The following grid of relative strikes (%) is used:

K̄ =
{
K̄i

}19

i=1
= {−5,−4,−3,−2.5,−2,−1.5,−1,−0.5,−0.25, 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5}

(5.1)
If S0 is the swap rate, the quoted market volatilities are given on the strikes S0 + K̄. For
calibration, only positive strikes and rates are used. Thus a subset of K̄ is used, such that

75
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Figure 5.1: Volatility curve (left) and relative volatility curve (right).

S0 + K̄ > 0. The strikes for which the market quotes are given, are defined by Ki := S0 + K̄i.
The relative volatility add-ons for the Black volatility are computed by:

σ̄ = {σ̄i}Ni=1 =
{
σ1

1 − σ1
∗, . . . , σ

1
n − σ1

∗
}
, (5.2)

where σm∗ is the at-the-money volatility on the m-th day of the month, σmi is the volatility
corresponding to strike Ki and N is the number of elements in the set {K̄i ∈ K̄ : S0 + K̄i > 0},
i.e. the relative strikes which give an absolute positive strike. The market volatilities for the
remaining days of the month are computed by:

σmi = σm∗ + σ̄i.

5.2 Calibration procedure

For each approach, the SABR model parameters α, β, ρ and ν have to be chosen such that
they closely match the market data. The difference in the volatilities implied by the market and
the approaches will be minimized, which has the advantage that the volatility curve is captured
best compared to fitting it to the option prices. This will be done by solving a minimization
problem, where function Tar is minimized:

min
α,β,ρ,ν

Tar(α, β, ρ, ν) =
1

n

√√√√ n∑
i=1

(ωi {σMarket(Ki)− σModel(Ki)})2
, (5.3)

where α, β, ρ, ν are the model parameters of the SABR model, Ki are the strikes for which
a market volatility is given, σMarket(Ki) is the market volatility corresponding to strike Ki,
σModel(Ki) is the volatility implied by the model corresponding to strike Ki and ωi are weights.
Function Tar will be referred to as the target function. The weights ωi are given by

ωi =
σMarket(K1)

σMarket(Ki)
.

The weight ωi ensures that the relative error for each volatility is compared equally. Therefore,
the shape of the volatility curve will be fitted accurately. As can be observed from Figure 5.1,
the volatilities can differ up to double the value for a different strike. Minimizing a two norm
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(ωi = 1 for each i) would value the volatility that is the largest as the most important and
captures therefore the market quotes less accurately. After α, β, ρ and ν are fitted for each
model, α is re-calibrated to fit the at-the-money volatility with an error of less than 1bp.1 This
strike is traded the most and therefore important to match exactly.

5.3 Results

Hagan’s Black formula, uncorrelated Antonov, SCM-Hagan and Hagan’s AF SABR are com-
pared by fitting the approaches to the market data by solving the minimization problem de-
scribed in the previous section.

For SCM-Hagan, the virtual collocation technique will be used, i.e. M-SCM as discussed in
Section 4.9. Furthermore, twelve collocation points will be used in this approach. For Hagan’s
AF SABR it is chosen to set z+

√
T

= 6, i.e. Smax = S(z+ = 6).2 Setting z+
√
T

= 4 could undervalue

call prices for high strikes due to a the fact Smax is chosen too small.3. This could affect the
calibration. Furthermore, 200 points are used for the discretization in the spatial direction and
a time step of ∆t = 0.1, i.e. one-tenth of a year, is used. Due to the analysis of Section 3.1, this
is sufficiently accurate and computationally rapid for calibration. Table 5.1 gives an overview
of the main ideas behind the approaches and the settings of the approaches.

Method Main idea Specific sections

Hagan’s Black formula Map the SABR model to the
volatility in Black’s model.

-

Hagan’s AF SABR Reduction of dimensionality in
the dynamics in the SABR pro-
cess.

z+
√
T

= 6, J = 200, ∆t = 0.1

Uncorrelated Antonov Exact solution of the SABR
model for ρ = 0.

-

SCM-Hagan Removes arbitrage in Hagan’s
formulas by altering the under-
lying probability density func-
tion.

12 collocation points, M-SCM.

Table 5.1: Settings for the approaches.

5.3.1 Stability and interpolation

Figure 5.2 presents the calibrated parameters of β and ρ for Hagan’s AF SABR during the month
of April for the 5Y5Y swaptions. As can be observed, these parameters do not remain stable
over time. Therefore, the day-to-day change in β is constrained to 0.05 in the remainder of this
chapter, i.e. if βn is the calibrated value of the parameter β on the nth day, the calibration of

1Hagan’s Black formula can match the at-the-money exactly by solving a polynomial equation of maximum
order three. To equally compare the approaches it is chosen not to use this benefit of Hagan’s Black formula.
Each approach is re-calibrated to minimize the target function by only calibrating α and using the at-the-money
volatility.

2For the definition of z and S := S(z) see Equation (3.4).
3If Smax is chosen to be too small, this impacts the extrapolation of the volatility curve for high strikes. It can

undervalue the volatility curve implied by Hagan’s AF SABR model, since E
[
(ST −K)+] =

∫∞
K

(s−K)f(s) ds ≈∫ Smax

K
(s−K) ds.
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β on the (n + 1)th day is limited to the domain [max {βn − 0.05, 0} ,min {βn + 0.05, 1}]. This
constraint is based on a heuristic rule which is fair compared to the other approaches. For the
other approaches, this was not needed.
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Figure 5.2: Calibration of Hagan‘s AF-SABR: time series of β and ρ.

Figures 5.3a - 5.3d present the calibrated parameters α, β, ρ and ν respectively for a
5Y5Y swaption in April 2014 for all approaches. There are no calibrated parameters for SCM-
Hagan, since it will only be applied to Hagan’s Black formula to remove the arbitrage. For all
approaches the parameters remain stable over time. For the other test periods and swaptions
in scope, similar behavior was observed for the stability of the parameters. The results are
therefore limited to April in the remainder of the thesis. The time series for the parameters
α, β and ν are similar for each approach. For example, if β increases from day n to day n+1 for
one approach, all approaches show this behavior for the calibrated parameter. The parameters
β and ρ are more stable over time in Hagan’s AF SABR due to the constraint for β. This holds
especially for β. It did not change significantly compared to the other approaches for every type
of swaption. It was almost constant over time as can be observed from Figure 5.3b. For other
test periods in scope there was not a change of more than 0.05 in the overall change of β, i.e.
the absolute difference between the highest and lowest calibrated value for β for Hagan’s AF
SABR was 0.05 for a fixed month and swaption. This is due to the effect that β and ρ have a
similar impact on the volatility curve.

Figures 5.4a and 5.4b display the value of the target function for the 5Y5Y and 10Y10Y
swaption in April. Hagan’s Black formula and SCM-Hagan give similar fit errors when fitting
the market data for the 5Y5Y swaption. For the 10Y10Y swaption the value of the target
function of SCM-Hagan is up to double the value of the target value of Hagan’s Black formula.
For most days, the value of the target function of SCM-Hagan gives a similar or lower value
than uncorrelated Antonov and Hagan’s AF SABR.

In the special case that Hagan’s Black formula fits a ρ close to zero, uncorrelated Antonov
gives a similar accuracy in fit. On the other hand, if Hagan’s Black formula calibrates ρ not
near zero, uncorrelated Antonov could not fit the shape of the volatility curve as accurately as
Hagan’s Black formula. Due to the constraint in the variation of β for Hagan’s AF SABR, this
approach fits the market data less accurately. The value for the target function is up to ten times
higher than the one implid by Hagan’s Black formula and five times than the one implied by
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Figure 5.3: Times series of model parameters.
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(a) 5Y5Y swaption, April.
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(b) 10Y10Y swaption, April.

Figure 5.4: Times series of the target function.

SCM-Hagan. Without this constraint, it could be fitted as accurately as Hagan’s Black formula
and the SCM-Hagan.
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(b) Volatility curve.

Figure 5.5: 10Y10Y swaptions, April 15th.

If all approaches calibrate with a similar precision, they imply approximately the same
underlying probability density function and volatility curve.4 No general conclusion can be
made regarding in which manner they differ in the interpolation of the market data. Figure
5.5a presents the underlying probability density functions of the approaches when fitted to the
market data with a different value of the target function. The underlying probability density
functions of the approaches are presented when they were fitted to a 10Y10Y swaption for the
15th of April. For this example, Hagan’s AF-SABR and uncorrelated Antonov could not fit the
market quotes as well as the other approaches. The underlying probability density functions
implied by the approaches and the volatility curve match closely, just like the volatility curve,
see Figure 5.5b. This can be explained, as each approach originate from the SABR model.
Furthermore, Hagan’s Black formula generates arbitrage in this example.
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(a) 1Y1Y swaption.
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(b) 2Y2Y swaption.

Figure 5.6: Volatility curve for swaptions, April 15th.

4Uncorrelated Antonov has an inaccurate approximation for butterfly options near at-the-money due to the
one-dimensional approximation. This results in an inaccurate approximation of the probability density function.
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Figure 5.7: Volatility curve for 1Y1Y swaptions, April 15th.

Uncorrelated Antonov could not fit swaptions with short maturities accurately compared
to the other approaches. See Figure 5.6b and 5.6a for the 15th of April as an example. For
short maturities, uncorrelated Antonov needs the effect of the correlation parameter ρ to fit the
volatility curve accurately.

It is investigated whether uncorrelated Antonov could produce a better fit where the at-
the-money volatility is still closely matched for the short maturities. Therefore, β and ν are
calibrated in the target function. Within this loop of calibrating β and ν, α is calibrated for a
given β and ν to match the at-the-money volatility. Figure 5.7 gives the resulting volatility curve
of uncorrelated Antonov compared to the other approaches. This procedure did not give a more
accurate result compared the original calibration procedure and it led to unstable time series
of the parameters. Therefore, it can be concluded that uncorrelated Antonov cannot be fitted
accurately to the market quotes for short maturities due to the missing effect of the correlation.
For the remainder of the thesis, the calibration procedure is therefore limited to the procedure
as described in Section 5.2.

To investigate the errors of each approach in the volatility and the prices on the market
quotes, Tables 5.2 and 5.3 present the errors in the volatilities and prices for the 1Y1Y payer
swaption on the 30th of April and the 10Y10Y swaption on the 15th of April respectively. By
prices the values of a payer-swaption are meant.

For the 1Y1Y swaption, Hagan’s Black formula and SCM-Hagan are the most accurate for
swaptions with strikes near at-the-money (near the swap rate). Uncorrelated Antonov has the
largest mismatch for the market quotes for all strikes. This can be up to 335bp in the volatility.
Hagan’s Black formula and SCM-Hagan perform the best on average. In the prices of the 1Y1Y
payer swaptions there is at most a mismatch of 0.35bp in price for uncorrelated SABR and
0.05bp in price for the other approaches.

For the 10Y10Y swaption Hagan’s Black formula and SCM-Hagan are again most accurate
for swaptions with strikes at-the-money (near the swap rate). Uncorrelated Antonov could fit the
market quotes reasonably, for relative strikes higher than −1%. Threre it has a maximum error
of 10bp in the volatility and 2.5bp in price. Hagan’s Black formula and SCM-Hagan perform the
best on average, but each aproach gave satisfactory results. Only Hagan’s Black formula gave an
unsatisfactory result by implying arbitrage for low strikes in the form of an implied negatively
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valued probability density function. In the prices for the 10Y10Y payer swaptions a mismatch is
observed of at most 3.5 bp in price for uncorrelated SABR, 3 bp in price for Hagan’s AF SABR
and 1 bp in price for the Hagan’s Black formula and SCM-Hagan.

Relative Market Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
strikes (%) volatility (%) formula (bp) (bp) AF SABR (bp) Antonov (bp)

0.00 68.90 -0.8 -1.3 -0.5 0.2

0.25 63.44 17.8 17.4 36.5 124.0

0.50 61.33 39.9 39.2 75.9 256.0

1.00 61.50 41.1 39.7 93.9 335.0

1.50 63.37 24.9 22.3 81.0 300.0

2.00 65.43 9.8 5.2 64.4 237.0

2.50 67.38 -2.37 -9.46 49.5 168.0

3.00 69.14 -12.0 -22.3 36.7 101.0

4.00 72.19 -26.2 -45.0 16.5 -22.0

5.00 74.72 -36.0 -65.7 1.3 -130.0

Average of absolute difference 21.1 26.8 45.6 167.2

(a) 1Y1Y swaption, April 30th, 2014.

Relative Market Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
strikes (%) volatility (%) formula (bp) (bp) AF SABR (bp) Antonov (bp)

-2.50 40.15 10.8 -11.9 29.2 42.0

-2.00 33.28 -6.3 -7.8 6.7 31.4

-1.50 29.10 -5.6 -5.4 -4.7 20.1

-1.00 26.29 -2.8 -2.7 -7.5 10.1

-0.50 24.34 -0.5 -0.5 -4.8 3.0

-0.25 23.61 0.2 0.2 -2.4 0.6

0.00 23.02 0.4 0.4 0.1 -0.7

0.25 22.53 0.8 0.9 2.8 -2.5

0.50 22.13 0.9 0.9 5.1 -3.4

1.00 21.58 0.6 0.6 8.3 -4.0

1.50 21.26 0.1 0.1 9.4 -4.1

2.00 21.09 -0.3 -0.3 8.8 -4.2

2.50 21.03 -0.6 -0.6 6.9 -4.4

3.00 21.04 -0.6 -0.6 4.2 -5.0

4.00 21.18 -0.2 -0.1 -2.5 -6.8

5.00 21.40 0.9 0.9 -9.6 -9.1

Average of absolute difference 2.0 2.1 7.0 9.5

(b) 10Y10Y swaption, April 15th, 2014.

Table 5.2: Difference in volatility compared to the market quotes for each approach.

General comments

For some days, Hagan’s AF SABR fitted with β ≈ 1. This was the case for the 1Y1Y swaptions
in particular. The singularity in the PDE in the approach by Le Floch et al. [15] is more
pronounced in this case, especially for strikes near zero which can give numerical issues. It
might be better to cap β when fitting to market data, e.g. by constraining β to be smaller than
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Relative Market Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
strikes (%) price (bp) formula (bp) (bp) AF SABR (bp) Antonov (bp)

0.00 0.1306 -0.0015 -0.0023 -0.0009 0.0004

0.25 0.0567 0.0326 0.0317 0.0667 0.2280

0.50 0.0253 0.0540 0.0532 0.1030 0.3540

1.00 0.0069 0.0256 0.0248 0.0594 0.2250

1.50 0.0027 0.0079 0.0071 0.0263 0.1060

2.00 0.0014 0.0018 0.0010 0.0122 0.0486

2.50 0.0008 -0.0003 -0.0011 0.0061 0.0219

3.00 0.0005 -0.0010 -0.0019 0.0031 0.0090

4.00 0.0003 -0.0012 -0.0021 0.0008 -0.0010

5.00 0.0002 -0.0011 -0.0020 0.0000 -0.0037

Average of absolute difference 0.012 0.012 0.0279 0.0996

(a) 1Y1Y swaption, April 30th, 2014.

Relative Market Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
strikes (%) price (bp) formula (bp) (bp) AF SABR (bp) Antonov (bp)

-2.50 21.91 0.60 -0.66 1.63 2.35

-2.00 18.37 -0.69 -0.85 0.73 3.47

-1.50 15.10 -0.95 -0.91 -0.79 3.41

-1.00 12.17 -0.63 -0.62 -1.71 2.32

-0.50 9.65 -0.14 -0.14 -1.33 0.84

-0.25 8.55 0.06 0.06 -0.70 0.18

0.00 7.56 0.13 0.14 0.02 -0.22

0.25 6.69 0.28 0.28 0.96 -0.81

0.50 5.91 0.29 0.30 1.70 -1.12

1.00 4.63 0.19 0.20 2.77 -1.35

1.50 3.67 0.03 0.04 3.07 -1.35

2.00 2.94 0.10 -0.09 2.73 -1.29

2.50 2.38 -0.17 -0.16 2.00 -1.27

3.00 1.96 -0.17 -0.16 1.12 -1.32

4.00 1.37 -0.03 -0.03 -0.56 -1.53

5.00 1.00 0.17 0.17 -1.80 -1.71

Average of absolute difference 0.29 0.30 1.47 1.53

(b) 10Y10Y swaption, April 15th, 2014.

Table 5.3: Difference in price for payer swaptions compared to the market quotes for each
approach.

0.95.

The prices of swaptions with a short maturity can be fitted best by Hagan’s formulas. Only in
a few exceptions did Hagan’s Black formula resulted in a process with an underlying negatively
valued probability density function. In these cases, the negatively valued probability density
function was fixed with SCM-Hagan in a satisfactory fashion without decreasing the value of
target function significantly. This can be explained by the fact that Hagan’s formulas were
originally derived only for options with short maturities [29]. Therefore, the underlying process
is almost equal to the SABR process and the SCM can be applied to the well-defined part to
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get a naturally well-defined extension based on an accurate approximation of the SABR model.

Swaptions with a long maturity could most often be almost fitted equally by all approaches.
In general, Hagan’s formulas generated arbitrage by an implied underlying process with a neg-
atively valued probability density function. Applying SCM-Hagan generally resulted in a new
underlying arbitrage-free probability density function with only a small impact on the volatility
curve. In general, the volatility curve implied by SCM-Hagan had a lower value of the target
function than the other two approaches.

5.3.2 Extrapolation

In the previous section it was observed that all the considered approaches gave similar results
in the interpolation of the strike interval, with the exception of uncorrelated Antonov for the
short maturities. It is investigated how the approaches perform in the extrapolation of the
strike interval. To do so, for each approach the volatility add-ons for relative strikes in the
extrapolation are computed. With volatility add-on the difference between the volatility and
the at-the-money volatility is meant. For example, see Figures 5.8a and 5.8b for the volatility
add-ons for 10Y10Y swaptions in April with strikes near zero and relatively high strikes. S0

denotes the value of the swap rate. As a low strike S0 − 3% is taken, as a high strike S0 + 10%,
where S0 ≈ 3.2% for April 2014. As a reference, the volatility for K = S0 on the first day of the
month was 22.7%.
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(a) Low strikes, K = S0 − 3%.
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(b) High strikes, K = S0 + 10%.

Figure 5.8: Volatility add-on, 10Y10 swaption April.

The approaches gave a similar volatility add-on for low strikes. Only Hagan’s formulas gave
a higher volatility add-on for long maturities for low strikes. It was not arbitrage-free in these
cases. In Figure 5.8a this difference is approximately 2%. For high strikes the volatility curves
were very similar in most cases. The differences are within 1%, which is small for such a high
strike. Uncorrelated Antonov could suffer for short maturities and therefore gives a high or low
extrapolation of the volatility curve compared to the other approaches, but in these cases it
could also not fit the market data accurately. This is mainly due to the constraint ρ = 0 which
guarantees that the approach is arbitrage-free.
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day Payer swaption Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
price with a strike formula (bp) (bp) AF SABR (bp) Antonov (bp)
equal to zero (bp)

1 222.7 2.87 2.86 2.85 3.65

2 230.6 3.34 3.34 3.37 4.27

3 222.2 2.61 2.61 2.65 3.37

4 208.4 1.49 1.49 1.53 1.99

7 206.5 1.32 1.32 1.36 1.79

8 212.4 1.63 1.62 1.68 2.20

9 219.4 2.09 2.09 2.15 2.78

10 208.7 1.38 1.37 1.42 1.87

11 204.4 1.13 1.12 1.17 1.55

14 208.1 1.36 1.36 1.41 1.85

15 196.9 0.66 0.66 0.69 0.96

(a) Prices 2Y2Y receiver swaptions for low strikes, K = S0 − 0.9%.

day Payer swaption Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
price with a strike formula (bp) (bp) AF SABR (bp) Antonov (bp)
equal to zero (bp)

1 222.7 0.415 0.408 0.416 0.291

2 230.6 0.295 0.289 0.286 0.192

3 222.2 0.328 0.322 0.318 0.224

4 208.4 0.396 0.390 0.392 0.294

7 206.5 0.387 0.382 0.384 0.290

8 212.4 0.281 0.277 0.276 0.198

9 219.4 0.232 0.228 0.224 0.155

10 208.7 0.302 0.297 0.297 0.217

11 204.4 0.362 0.357 0.359 0.271

14 208.1 0.324 0.320 0.321 0.237

15 196.9 0.408 0.402 0.411 0.320

(b) Prices 2Y2Y payer swaptions for high strikes, K = S0 + 10%.

Table 5.4: Prices payer and receiver 2Y2Y swaptions.

To investigate the price impact on a swaption on these strikes, Tables 5.4 and 5.5 present
the prices of payer and receiver swaptions for the low and high strikes respectively for 2Y2Y and
10Y10Y swaptions from 1st until 15th of April. The remaining days gave similar results. The
second column presents the price of a payer swaption with strike 0 as a reference value. The
value of the payer swaption is presented for the relatively high strike and the receiver swaption
for the relative low strike, such that the differences are more pronounced. The value of the other
swaptiontype can be determined by put-call-parity.

For the 2Y2Y swaption, this was done at relative strikes S0 − 0.9% and S0 + 10%, since the
swap rate was around 1%. The difference in price was at most 1bp for low strikes and 0.1bp for
high strikes for the 2Y2Y swaptions. For the 10Y10Y swaptions Hagan’s Black formula was up
to 6 bp higher than the other approaches for low strikes. The other approaches did not differ
more than 1.5 bp. For the high strikes, Hagan’s Black formula and SCM-Hagan could be up to
4 bp higher than the other approaches, but in general with a difference less than 1bp.
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day Payer swaption Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
price with a strike formula (bp) (bp) AF SABR (bp) Antonov (bp)
equal to zero (bp)

1 2715 26.0 20.5 21.3 20.7

2 2734 29.7 23.5 24.4 23.6

3 2740 30.2 24.0 24.8 24.1

4 2722 26.4 20.8 21.7 21.2

7 2730 27.5 21.8 22.6 21.8

8 2738 28.8 22.8 23.6 22.7

9 2735 28.2 22.4 23.2 22.6

10 2700 21.9 17.2 18.1 17.5

11 2683 17.5 14.4 15.4 14.7

14 2695 19.5 16.2 17.2 16.6

15 2662 14.2 11.7 12.7 12.5

(a) Prices 10Y10Y receiver swaptions for low strikes, K = S0 − 3%.

day Payer swaption Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
price with a strike formula (bp) (bp) AF SABR (bp) Antonov (bp)
equal to zero (bp)

1 2715 29.5 29.5 29.8 30.6

2 2734 28.8 28.8 29.7 29.1

3 2740 28.1 28.1 29.1 29.3

4 2722 28.6 28.6 29.0 29.5

7 2730 27.3 27.3 27.9 28.3

8 2738 26.2 26.2 27.0 27.2

9 2735 25.8 25.8 26.5 26.6

10 2700 27.5 27.5 27.3 28.1

11 2683 30.5 30.5 27.4 28.6

14 2695 30.0 30.1 27.3 28.3

15 2662 31.6 31.6 27.7 29.1

(b) Prices 10Y10Y payer swaptions for high strikes, K = S0 + 10%.

Table 5.5: Prices payer and receiver 10Y10Y swaptions.

The difference in the volatility add-ons is further investigated by computing vega, i.e. ∂V
∂σ

(V denotes the option price). Vega is used in finance to get an indication of the impact on the
price by a parallel shift in the volatility curve. Vega is approximated here by

Vega(0, T,Ki, σ
Approach) ≈ A(0)

CBlack(0, T,Ki, σ
Approach + ∆σ)− CBlack(0, T,Ki, σ

Approach)

∆σ
,

where A(0) is the annuity, ∆σ = 1%, Ki is the strike, T is the maturity of the swaption and C
is computed by Black’s formula.

Figures 5.9a - 5.10b present the results of the volatility sensitivity of the 2Y2Y and 10Y10Y
swaption in April. The focus is on relatively high and low strikes again. This is done for the
same relatively high and low strike as for the volatility add-ons.

For comparison, the following value for vega can be computed for K = S0 of the first day
at the month in April for the 2Y2Y and 10Y10Y swaption respectively: 1.16% and 320.2%. For
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(a) Low strikes, K = S0 − 0.9%.
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(b) High strikes, K = S0 + 10%.

Figure 5.9: Vega, 2Y2Y swaptions, April.
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(a) Low strikes, K = S0 − 3%.
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(b) High strikes, K = S0 + 10%.

Figure 5.10: Vega, 10Y10Y swaptions, April.

the short maturity it is observed that each approach gives a similar value to vega and that the
differences are relatively small. Only for the approach of uncorrelated Antonov vega is inaccurate
for the 2Y2Y swaption compared to the other approaches, since it could not be fitted accurately
to the market quotes as discussed. For the long maturities and low strikes Hagan’s Black formula
gives higher values to vega compared to the other approaches, just like the volatility implied by
Hagan’s Black formula as investigated earlier. This difference was up to 0.15% higher compared
to an average value of 1.5% for the other approaches. For high strikes, Hagan’s AF SABR gives
lower sensitivities for some days, since it could not fit the market quotes accurately for high
strikes. This is only due to the constraint in the model parameters.5

5The day-to-day change for β is constrained in Hagan’s AF SABR such that a stable time series of parameters
is obtained. Without this constraint, the approach gave more accurate results, such that the values for vega were
more in alignment compared to the other approaches.
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To express the impact of the difference in vega in terms of volatilities, the difference in prices
between the approaches and Hagan’s Black formula are expressed in terms of vega implied by
Hagan’s Black formula, i.e. the following quantity will be computed:

A(0)
CBlack(0, T,Ki, σ

Approach)− CBlack(0, T,Ki, σ
Hagan′s Black formula)

Vega(0, T,Ki, σHagan′s Black formula)
,

where A(0) is the annuity. This is done for uncorrelated Antonov, Hagan’s AF SABR and SCM-
Hagan. The quantity will be referred to as the price difference in vega. Vega was approximated
by:

∂C

∂σ
(0, T,Ki, σ

Approach) ≈ A(0)
CBlack(0, T,Ki, σ

Approach + ∆σ)− CBlack(0, T,Ki, σ
Approach)

∆σ
,

with ∆σ = 1% This gives that the price difference in vega is expressed as:

∆σ
CBlack(0, T,Ki, σ

Approach)− CBlack(0, T,Ki, σ
Hagan′s Black formula)

CBlack(0, T,Ki, σHagan′s Black formula + ∆σ)− CBlack(0, T,Ki, σHagan′s Black formula)
.

Thus the impact of the difference in vega is expressed in volatilities by this sensitivity.
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(a) Low strikes, K = S0 − 0.9%.

0 10 20 30
−20

−15

−10

−5

0

5

10

days

P
ric

e 
di

ffe
re

nc
e 

in
 V

eg
a 

(b
p)

 

 

Hagan’s AF SABR
SCM−Hagan

(b) High strikes, K = S0 + 10%.

Figure 5.11: Price difference in vega with Hagan’s Black formula, 2Y2Y swaptions, April.

This is done for strikes in the extrapolation region of the market quotes for the 2Y2Y and
10Y10Y swaptions, with the exception of uncorrelated Antonov for the 2Y2Y swaptions, since
it could not be fitted accurately to the market volatility curve. The results are presented in
Figure 5.11b–5.12b. From these figures, it can be observed that for the 2Y2Y swaptions there
is approximately a difference of 0.15% for the high strikes and 0.5% for the low strikes.6 For
the 10Y10Y swaptions there is a difference of 0.5% approximately for the high strikes. These
differences are small and can be considered to be in the model risk as all methods fit the
market quotes accurately and the arbitrage impact is negligible. The difference for the 10Y10Y
swaptions is approximately 2% on average for the low strikes. Hagan’s Black formula consistently
gives a higher sensitivity (price difference in vega) compared to the other approaches.

6Uncorrelated Antonov could give a difference of up to 7% compared to the other approaches for the 2Y2Y
swaptions.
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(a) Low strikes, K = S0 − 3%.
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(b) High strikes, K = S0 + 10%.

Figure 5.12: Price difference in vega with Hagan’s Black formula, 10Y10Y swaptions, April.
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Figure 5.13: Price difference in vega with SCM-Hagan, Low strikes, K = S0 − 3%.

As a benchmark, the price difference in vega is computed with SCM-Hagan too, i.e.

CBlack(0, T,Ki, σ
Approach)− CBlack(0, T,Ki, σ

SCM−Hagan)

Vega(0, T,Ki, σSCM−Hagan)
,

for Antonov, Hagan’s AF SABR and Hagan’s Black formula. This is presented only for the
10Y10Y swaption, with low strikes, since there Hagan’s Black formula generated arbitrage and
gave a higher value to vega. This gives a better indication for the impact of the arbitrage in Ha-
gan’s Black formula. As can be observed, the price difference in vega for Hagan’s Black formula
is approximately 2% higher on average than the arbitrage-free approaches. These differences in
volatilities can be used by risk management to estimate uncertainties in the valuation of pricing
methods.

5.4 Conclusion

This chapter compared Hagan’s formulas, Hagan’s AF SABR, uncorrelated Antonov and SCM-
Hagan by calibrating them to market data. This gives insights on how they inter- and extrapolate
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the market quotes. The approaches are compared on stability of the parameters, accuracy of
the fit and the impact of the extrapolation in the prices and sensitivities.

Hagan’s AF SABR has shown that if the model parameter β is not fixed or limited in its
day-to-day change, the time series of the SABR parameters do not remain stable compared to
the other approaches. It has been shown that restricting the model parameter β, gives a stable
time series of the SABR parameters. Hagan’s AF SABR could still be fitted accurately to the
market volatility curve with this constraint, but less accurate compared to Hagan’s formulas
and SCM-Hagan. For uncorrelated Antonov, it has been shown that the approach did not fit
the market volatility accurately due to the limitation of the SABR to the uncorrelated case.

For short maturities, Hagan’s Black formula and SCM-Hagan could be fitted best to the
market data and was arbitrage-free in almost every case. It was not needed in most cases
to apply SCM-Hagan, since for the short maturities Hagan’s Black formula was often already
arbitrage-free. For the long maturities, Hagan’s formulas often generated an excessively high
volatility near zero and therefore arbitrage. This could be fixed with the SCM in a satisfactory
fashion. Hagan’s AF SABR produced similar results as the SCM for low strikes.

SCM-Hagan has shown to be very stable during calibration. Choosing twelve collocation
points gave satisfactory results in the sense of an arbitrage-free approach and with a minimal
impact on the volatility curve of Hagan’s Black formula. The corrected probability density
function was very similar to the probability density function of the SABR model and Hagan’s
AF SABR. It looks like a very natural extension and proved to be stable in market examples.
Furthermore, SCM-Hagan is computationally less expensive to calibrate compared to Hagan’s
AF SABR and uncorrelated Antonov, since it only has to be applied to Hagan’s formulas.

Applying uncorrelated Antonov gave the insight that the SABR model seems to have the
same stability as Hagan’s formulas and SCM-Hagan. This holds also for long maturities. Un-
fortunately, it still has no fast approach that is stable.7

It seems therefore that SCM-Hagan performs better than Hagan’s formulas, uncorrelated
Antonov and Hagan’s AF-SABR. On the other hand, it is dependent on Hagan’s formulas and
therefore one has to check the probability density function implied by Hagan’s formulas and
apply the SCM in a clever way. By doing so, it produces satisfactory results (no arbitrage and
an accurate fit) for most practical problems.

On the extrapolation of the market quotes, the impact of the arbitrage in Hagan’s formulas
was investigated and mainly contributed to a higher volatility and option price for options with
a long maturity and a low strike compared to the arbitrage-free approaches. In the extrapolation
of high strikes, Hagan’s formulas and SCM-Hagan gave higher prices to swaptions compared to
uncorrelated Antonov and Hagan’s AF SABR. All approaches were arbitrage-free in this region
and no general conclusion could be made based on arbitrage.

In the extrapolation vega, and the difference in vega have been investigated too. For the
swaptions with a long maturity and a low strike, Hagan’s formulas generated higher sensitivities,
which was larger than the average model risk of an approach. No general conclusion could be

7The one-dimensional integral in the approach of Antonov et al. [3] is unstable around K = S0. The two-
dimensional integral is expensive to approximate, especially when an entire volatility curve has to be constructed.
No fast approaches that produce prices implied by the SABR model are known for the general case, i.e. ρ 6= 0
and a long maturity. By fast, comparable in computational cost of Hagan’s Black formula, Hagan’s AF SABR or
SCM-Hagan is meant.



5.4. CONCLUSION 91

made for other extrapolation regions, since the difference for the other extrapolation regions
between the sensitivities was small.

In this chapter, swaptions have been used to compare the approaches. To further investigate
how the approaches inter- and extrapolate the market quotes, more complex products will be
priced in the next chapter. This gives more insights into the impact of each approach on the
inter- and extrapolation.
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Chapter 6

Pricing of exotic interest rate
derivatives

In this thesis, the approaches by Hagan et al. [29], Hagan et al. [30], Antonov et al. [3]
and Grzelak et al. [25] have been considered, which are abbreviated by Hagan’s formulas,
Hagan’s AF SABR, uncorrelated Antonov and SCM-Hagan respectively. This chapter compares
the approaches by pricing products that depend on the inter- and extrapolation of the market
quotes. By pricing these products, the impact of the inter- and extrapolation on the volatility
curve of the approach will be investigated further. This section will price constant maturity
swap (CMS) derivatives. The focus will be on CMS swaplets, floorlets and caplets priced with a
convexity adjustment method [17]. With this method, it will be shown how the pricing of these
products depends on the inter- and extrapolation of the market quotes. The difference in these
prices will be compared to measure the impact of the inter- and extrapolation of the market
quotes and the impact of the arbitrage in Hagan’s formulas. For the pricing of these products,
the calibrated volatility curves of the 10Y10Y swaptions of April 2014 from Chapter 5 will be
used. This chapter ends with a summary and a conclusion.

6.1 CMS products

The main difference between a CMS swap and a swap as defined in Section 2.2.2 is that the
floating rate is chosen to be a swap rate and not LIBOR or EURIBOR. The swap rate has a
fixed underlying tenor structure1, which is the origin of the term constant maturity and it is
therefore referred to as a CMS rate in a CMS swap. Compared to a swap, a CMS swap has more
exposure to the curvature of the yield curve. The yield curve is a representation of the interest
rates implied by the market quotes, often referred to as the zero-coupon curve. Furthermore,
a CMS swap is less exposed to a change in the absolute level of the interest rate [41]. A CMS
swap can be used to profit from the shape of the yield curve.

A CMS swaplet is one coupon of the floating rate of the CMS swap, i.e. one payment based
on the swap rate. A CMS swap consists of M of these payments, where they are exchanged to a
fixed rate.2 The fixed rate can have its own tenor structure as with the swap. If the underlying
fixed tenor structure of the swap rate is known and the payments of the floating rate and fixed
rate are assumed to be on the same days, a CMS swap could be defined by:

1By which it is meant that it has a fixed tenor structure for the floating rate and a fixed tenor structure for
the fixed rate.

2For simplicity, a fixed rate is assumed, but a floating rate or even a combination could also be used.
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Definition 6.1 (CMS Swap). Let a tenor structure T0, . . . TM , τn = Tn+1−Tn for n = 0, . . . ,M−
1, a fixed rate K and a CMS rate S be given. One party pays simple compounded interest based
on the fixed rate K in return for simple interest payments based on the CMS rate fixed on date
Tn, for each period [Tn, Tn+1]. The payments are exchanged at the end of each period, i.e. Tn+1.
The payments are assumed to have the same tenor structure, day count convention and business
day convention. The net cash flow from the perspective of the fixed rate payer is at time Tn+1:

Nτn(S(Tn)−K).

It can be shown that the value of a CMS swap at Tk−1 ≤ t ≤ Tk is:

VCMS swap(t) = N
M−1∑
n=k

τnD(t, Tn+1)ETn+1 [S(Tn)−K] ,

where N is the notional of the CMS swap. For the remainder of this chapter, the notional is set
equal to one. D(t, T ) is the price of a zero-coupon bond and ET is the expectation under the
T -forward measure.

One must be aware that S(Tn) is usually not a martingale under the Tn+1 forward measure.
Therefore, it holds in general that ETn+1 [S(Tn)] 6= S(0). This is the main problem in pricing a
CMS swap. Therefore, the focus lies on pricing a CMS swaplet. The CMS swaplet price is given
by Vswaplet(0, Tn, Tn+1) = D(0, Tn+1)ETn+1 [S(Tn)] for which the focus will be on computing
ETn+1 [S(Tn)].

It can be shown that the expectation ETn+1 [S(Tn)] at t = 0 is given by [17]:

ETn+1 [S(Tn)] = S(0) +
1

A(0)

(∫ +∞

S(0)
C(x)v

′′
(x) dx+

∫ S(0)

−∞
P (x)v

′′
(x) dx

)
, (6.1)

where

v(x) := (x−K)

(
w(x)

w(S(0))
− 1

)

w(S(Tn)) := S(Tn)

(
1 + S(Tn)

q

)M−∆

(
1 + S(Tn)

q

)M
− 1

≈ D(Tn, Tn+1)

A(Tn)
,

and where q is the frequency of the swap (thus q = 1 for annual, q = 2 for semi-annual, etc.),
∆ = qTn+1, A is the annuity corresponding to the swap rate S(Tn), and C(x) and P (x) denote
the price of a payer and receiver swaption respectively, with strike x and corresponding to the
tenor structure of the swap rate S(Tn). For the CMS swaplet one sets K = S(0) in v(x). This
derivation is based on switching between the T -forward measure and the annuity measure. After
this switch, the expectation is cleverly split into multiple parts.

The part

1

A(0)

(∫ +∞

S(0)
C(x)v

′′
(x) dx+

∫ S(0)

−∞
P (x)v

′′
(x) dx

)
,

is called the convexity adjustment in Equation (6.1). It is the part for which the expectation
ETn+1 [S(Tn)] differs from the forward swap rate. This accounts for the drift of the swap rate
under the T -forward measure.
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Equation (6.1) shows that the pay-off of a CMS swaplet can be replicated by a continuous
set of payer and receiver swaptions. The expectation ETn+1 [S(Tn)] (and thus a CMS swaplet
too) therefore depends on the entire volatility surface in the strike and maturity direction, since
the convexity adjustment is given by two integrals of weighted prices of payer and receiver
swaptions in the strike dimension. It is also dependent on the maturity direction for the CMS
swap, since the swap rates is exchanged on multiple times in the future for which there might
be no market quotes given. The focus will be on the strike dimension since there it has been
shown that Hagan’s formulas imply arbitrage. Computing ETn+1 [S(Tn)]−S(0) gives the impact
of the inter- and extrapolation of the market quotes of each approach in the strike dimension.

To further investigate the impact of the inter- and extrapolation of the market quotes, CMS
caplets and floorlets will be priced too. These are a call and put option on the swap rate
respectively.

Definition 6.2 (CMS Caplet). A CMS caplet gives the holder the right, but not the obligation,
to pay a fixed rate in exchange for receiving a swap rate fixed at Tn at a pre-defined future time
Tn+1.

Definition 6.3 (CMS Floorlet). A CMS floorlet gives the holder the right, but not the obliga-
tion, to pay a swap rate fixed at Tn in exchange for receiving a fixed rate at a pre-defined future
time Tn+1.

A CMS caplet and floorlet give protection to the holder of the option if the swap rate becomes
too high or too low respectively. For example, suppose that one goes into a CMS swap, where
one agrees to pay a swap rate in exchange for a fixed rate K1. Buying a CMS caplet with a
strike K2 ≥ K1 ensures that one never has to pay more that K2. One can limit the loss with
this option if the swap rate becomes large.

The price of a CMS caplet and floorlet at time t = 0 with fixing date Tn for the swap rate,
paying date Tn+1 and strike K are given by:

Vcaplet(0, Tn, Tn+1,K) = D(0, Tn+1)ETn+1
[
(S(Tn)−K)+] ,

Vfloorlet(0, Tn, Tn+1,K)) = D(0, Tn+1)ETn+1
[
(K − S(Tn))+] .

In a similar fashion as for the CMS swaplet, this can be reduced to [17]:

Vcaplet(0, Tn, Tn+1,K) =
D(0, Tn+1)

A(0)

(
C(K) + v

′
(K)C(K) +

∫ +∞

K
C(x)v

′′
(x) dx

)
, (6.2)

Vfloorlet(0, Tn, Tn+1,K)) =
D(0, Tn+1)

A(0)

(
P (K) + v

′
(K)P (K)−

∫ K

−∞
P (x)v

′′
(x) dx

)
. (6.3)

where A, C, P and v are as defined in Equation (6.1).

Like the CMS swaplet, the CMS caplet and floorlet prices depend on the volatility curve. In
this case, the expressions

C(K) + v
′
(K)C(K) +

∫ +∞

K
C(x)v

′′
(x) dx,

P (K) + v
′
(K)P (K)−

∫ K

−∞
P (x)v

′′
(x) dx,
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depend on the inter- and extrapolation of the market quotes. These expressions will therefore
be replicated with the calibrated volatility curves in Chapter 5.

Furthermore, like a call and a put option, if there exists no arbitrage, there exists a put-call
parity for a CMS swaplet, floorlet and caplet:

Vcaplet(t, Tn, Tn+1,K)− Vfloorlet(t, Tn, Tn+1,K) = (Vswaplet(t, Tn, Tn+1)−D(0, Tn+1)K) . (6.4)

6.2 Pricing results

The decision was made to focus on CMS swaplets, floorlets and caplets where the underlying
CMS rate has a tenor of 10 years. This is one of the more frequently traded swap rates in CMS
derivatives (thus CMS rate with a swap tenor of 10 years). The fixing date is set equal to 10
years, i.e. Tn = 10 years in Equations (6.1-6.3). For the other specifications of the CMS swap
the standard euro conventions are used. Test in this section are done with the data from April,
2014. For each day the calibrated volatility curve implied by Hagan’s Black formula generated
arbitrage. To price the CMS swaplets, caplets and floorlets the integrals in Equations (6.1-6.3)
are approximated by a discrete variant.

day swap rate Hagan’s Black SCM-Hagan Hagan’s Uncorrelated Max difference
(%) formula (bp) (bp) AF SABR Antonov (bp) w.r.t. Hagan’s

(bp) Black formulas
(bp)

1 3.209 31.9 31.8 32.0 32.1 0.2

2 3.236 31.8 31.7 32.0 31.8 0.2

3 3.241 31.5 31.5 31.8 31.8 0.3

4 3.213 31.6 31.5 31.7 31.7 0.1

7 3.224 31.0 31.0 31.2 31.2 0.2

8 3.236 30.6 30.6 30.8 30.8 0.2

9 3.233 30.4 30.4 30.6 30.6 0.1

10 3.183 30.9 30.9 30.9 31.0 0.4

11 3.158 31.4 31.4 31.0 31.1 0.3

14 3.175 31.3 31.3 30.9 31.0 0.4

15 3.131 31.7 31.7 31.1 31.3 0.6

16 3.133 31.7 31.7 31.1 31.4 0.6

17 3.146 31.9 31.9 31.3 31.6 0.6

22 3.167 31.8 31.8 31.3 31.4 0.5

23 3.152 31.9 31.8 31.3 31.5 0.6

24 3.130 32.1 32.1 31.5 31.7 0.6

25 3.070 32.7 32.7 31.4 31.9 1.3

28 3.076 33.1 33.1 31.7 32.2 1.4

29 3.103 32.7 32.7 31.7 32.1 1.0

30 3.093 33.0 33.0 31.9 32.4 1.1

Table 6.1: The forward swap rate and the convexity adjustment implied by each approach for
April, 2014.

First, CMS swaplet prices are investigated to compare the impact of inter- and extrapolation
of the market quotes in the strike dimension for each approach. As discussed in the previous
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section, the focus is on the convexity adjustment part since this part of the CMS swaplet price
is affected by the inter- and extrapolation of the market quotes. Thus for each approach the
followed expression is computed:

1

A(0)

(∫ +∞

S(0)
C(x)f

′′
(x) dx+

∫ S(0)

−∞
P (x)f

′′
(x) dx

)
.

Table 6.1 presents the convexity adjustment of the CMS swaplets for each approach. For
a fixed day in the month, there is a deviation in the convexity adjustment varying from 0.2bp
up to 1.1bp in the approaches. Between SCM-Hagan and Hagan’s Black formula, there is a
maximum difference of 0.04bp. The relative difference of 0.04bp in the convexity adjustment
compared to a swap rate of 3% is approximately 0.013% and thus small. The relative difference
of 1.1bp in the convexity adjustment compared to a swap rate of 3% is approximately 0.37%,
which is considered small too here. Furthermore, there is no bias between the approaches, i.e.
no approach gives a consistently higher price compared to the other approaches.

Prices of CMS floorlets and caplets with a strike equal to the swap rate are now compared.
These will be called at-the-money CMS floorlets and caplets respectively.3 Like the CMS swaplet,
the focus of the CMS caplet and floorlet prices will be on the part that depends on the volatility
surface. For the CMS caplet and floorlet, these are respectively:

C(K) + v
′
(K)C(K) +

∫ +∞

K
C(x)v

′′
(x) dx,

P (K) + v
′
(K)P (K)−

∫ K

−∞
P (x)v

′′
(x) dx.

These expressions are referred to as prices.4 Due to the put-call parity between a CMS swaplet,
caplet and floorlet, the results of CMS swaplets are omitted. These do not give complementary
insights.

Table 6.2 presents the results. For a fixed day in the month, there is a deviation in the CMS
floorlet prices up to 0.8bp in the approaches. For fixed day in the month, there is there is a
deviation in the CMS caplet price of up to 1.1bp for the approaches . Between SCM-Hagan
and Hagan’s Black formula, there is a maximum difference of 0.04bp difference in the floorlets.
The relative difference of 0.04bp in price compared to an at-the-money floorlet price of 80bp
is 0.05%. The relative difference of 0.8bp in price compared to an at-the-money floorlet price
of 80bp is 1%. These differences are considered to be small too. Furthermore, there is no bias
between the approaches.

3An at-the-money option is usually an option for which the forward is equal to the strike. It would be more
correct to set the strike equal to ETn+1 [S(Tn)], however the value of this expectation depends on the approach.

4Effectively these are prices of CMS floorlets and caplets with a notional equal to A(0)
D(0,Tn+1)

.



98 CHAPTER 6. PRICING OF EXOTIC INTEREST RATE DERIVATIVES

day Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
formula (bp) (bp) AF SABR (bp) Antonov (bp)

1 80.43 80.47 80.43 80.39

2 80.36 80.41 80.38 80.49

3 80.19 80.24 80.21 80.20

4 80.18 80.22 80.15 80.15

7 79.70 79.74 79.72 79.70

8 79.34 79.39 79.33 79.36

9 79.10 79.14 79.10 79.09

10 79.53 79.56 79.52 79.49

11 79.60 79.62 79.60 79.59

14 79.51 79.53 79.50 79.51

15 79.76 79.78 79.75 79.65

16 79.79 79.81 79.78 79.77

17 79.97 79.99 79.94 79.92

22 79.86 79.88 79.83 79.82

23 79.92 79.94 79.89 79.88

24 80.07 80.09 80.07 80.05

25 80.14 80.15 80.15 80.13

28 80.40 80.41 80.41 80.40

29 80.41 80.42 80.41 80.39

30 80.60 80.60 80.59 80.57

Table 6.2: At-the-money CMS floorlet price for each approach for April, 2014.

In the results of 16th of April, 2014, there is one of the largest differences between the
approaches in the CMS swaplet price.5 The focus will therefore be on pricing out-of-the-money
CMS caplets and floorlets, where CMS caplets are taken with the strikes higher than the swap
rate and CMS floorlets with the strikes lower than the swap rate. The strikes are chosen to vary
relative to the swap rate up to 10%, i.e. for CMS floorlet strikes in the regions 0 to S0, for the
CMS caplets strikes in the region S0 to S0 + 10%. A difference of 1% between the strikes was
taken.

Table 6.3 presents the results. For a fixed day in the month, there is between the approaches
a deviation in price up to 1.5bp for the caplets and up to 0.3bp for the floorlets. Between Hagan’s
Black formula and SCM-Hagan, there is a maximum difference of 0.04bp overall, except for the
CMS floorlet with a strike of S0− 3%, for which the difference is 0.3bp. The CMS floorlet price
for this strike was between 1.2 and 1.5bp for all the approaches. Hagan’s Black formula was at
least 0.2bp higher compared to the other approaches in this case. The arbitrage in Hagan’s Black
formula resulted in a higher price compared to the other approaches which were arbitrage-free
in this relatively low strike for a floorlet. For the caplet, Hagan’s Black formula and SCM-Hagan
gave higher prices for high strikes compared to Hagan’s AF SABR and uncorrelated Antonov.
This difference was up to 1.5bp compared to the lowest price of 7bp for Hagan’s AF SABR of
a caplet with strike S0 + 10%. In this case there is a bias between the approaches for the more
“extreme” strikes. The absolute difference between the approaches for these extreme strikes is

5There are larger differences for later dates, but for these dates Hagan’s AF SABR could not fit the market
quotes accurately for high strikes compared to the other approaches due to a limitation in the SABR parameter
β as disccused in Section 5.3.
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considered to be small. These are options not actively traded and therefore the difference is
considered to be in the bid-offer spread6 (the difference in the price for which an option can be
sold and bought).

Relative Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
strike (%) formula (bp) (bp) AF SABR (bp) Antonov (bp)

0 111.50 111.50 110.90 111.20

1 73.07 73.07 72.75 72.76

2 49.66 49.67 49.33 49.42

3 35.50 35.50 34.92 35.20

4 26.59 26.59 25.73 26.17

5 20.70 20.70 19.62 20.17

6 16.62 16.63 15.39 16.00

7 13.68 13.68 12.35 13.00

8 11.48 11.48 10.10 10.76

9 9.79 9.80 8.40 9.05

10 8.47 8.47 7.09 7.72

(a) CMS caplet.

Relative Hagan’s Black SCM-Hagan Hagan’s Uncorrelated
strike (%) formula (bp) (bp) AF SABR (bp) Antonov (bp)

0 79.79 79.81 79.78 79.77

-1 37.82 37.83 37.68 37.87

-2 13.86 13.86 14.00 13.96

-3 1.46 1.20 1.30 1.22

(b) CMS floorlet.

Table 6.3: Out-of-the-money CMS floorlets and caplets, 16th of April, 2014.

6.3 Conclusion

All approaches have been compared by pricing CMS swaplet, caplets and floorlets with a con-
vexity adjustment by using the calibrated volatility curves for the 10Y10Y swaptions in April,
2014 of Chapter 5. For the caplets and floorlets the strikes were varied in a wide range for the
16th of April, 2014.

Between the approaches, there was a difference of at most of 1.1bp for CMS swaplets, and at-
the-money CMS floorlets and caplets. This difference was relatively small compared to the CMS
swaplet, caplet and floorlet prices. No approach was biased compared to the other approaches.
The arbitrage in Hagan’s formulas did not have an impact on these prices.

Between the approaches, there was a difference of at most 1.5bp for the prices of out-of-the-
money CMS floorlets and caplets. The absolute differences between the approaches was in an
acceptable region; they were in the bid-offer spread region. CMS floorlets with a low strike were
priced the highest by Hagan’s Black formula. The arbitrage in Hagan’s Black formula generated
a higher price for these strikes compared to the other approaches which were arbitrage-free. CMS
caplets with a high strike were priced the highest by Hagan’s Black formula and SCM-Hagan.

6In these options the bid-offer spread are around 2.5bp for a CMS swaplet, caplet or floorlet.
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The extrapolation for high strikes of Hagan’s Black formula and therefore also of SCM-Hagan
gave higher prices for these relatively high strikes. In this region Hagan’s Black formula was
arbitrage-free too.

Hence, the general conclusion is that the arbitrage in Hagan’s formulas leads to an overpricing
of options in the low strike region compared to other approaches that are arbitrage-free. For
the other regions no general conclusion could be made whether one approach is biased or not.



Chapter 7

Conclusion

Hagan’s formulas [29] are widely used in the interest rate market to parametrize the volatility
curve of swaptions to inter- and extrapolate market quotes in the strike dimension. They are
an approximation of the Black and Bachelier volatilities implied by the Stochastic Alpha Beta
Rho (SABR) model. It is known that these approximations are not arbitrage-free. They can
imply negative values for butterfly options or equivalently a negatively valued probability density
function as has been shown in this thesis. It is undesired to have arbitrage in the approach,
since this does not give the fair price and can impact the sensitivities to market movements of
these products. This results in an incorrect computation of the sensitivities and the risk of the
products, although reasonably describing the implied Black volatility curve.

Several approaches in the literature have been addressed the issue of arbitrage in Hagan’s
formulas, by either proposing a new method to price under the SABR model or altering Ha-
gan’s formulas. In this thesis, the approaches are chosen such that these are arbitrage-free and
computationally rapid. The goal of the thesis was to investigate the impacts of an arbitrage-free
approach on the inter- and extrapolation of market quotes compared to Hagan’s formulas. In
this thesis the approaches by Hagan et al. [30], Antonov et al. [3] and Grzelak et al. [25] were
investigated and are referred to as Hagan’s AF SABR, uncorrelated Antonov and SCM-Hagan
in the thesis.

For Hagan’s AF SABR model, the approach by Le Floch et al. [15] has been followed to
ensure a sufficiently efficient implementation. In this approach a one-dimensional PDE has to be
solved, which gives the probability density function of the underlying process. The discretization
of the PDE has been analyzed to derive sufficient conditions to ensure that the numerical solution
of the PDE is arbitrage-free. An alternative integration technique is suggested, which leads to
more stable butterfly option prices compared to the one proposed by Le Floch et al. The
convergence of this integration technique has been tested and gave accurate results. In Chapter
5 it has also been shown that during calibration, the SABR parameter β must be limited in
Hagan’s AF SABR to ensure a sufficiently stable time series of the model parameters.

Uncorrelated Antonov gives the exact call price under the SABR model for the uncorrelated
case. In order to speed up the approach, Antonov et al. derived an approximation of this
two-dimensional integral in the form of a one-dimensional integral. The drawback of this one-
dimensional integral is that it can lead to inaccuracies in the butterfly option prices and in the
implied probability density function, although reasonably describing the implied Black volatility
curve. In Chapter 5 it has been shown that uncorrelated Antonov could not fit the market quotes
accurately for options with a short maturity.
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The SCM maps a computationally expensive distribution to a simpler distribution. The map-
ping has been used to transform the negative part of the probability density function implied
by Hagan’s formulas to a positively valued probability density function, following the approach
by Grzelak et al, which led to an approach fast enough for market practice. This mapping is
approximated by a Lagrange polynomial and should be strictly monotonic to have an arbitrage-
free approach. Therefore, a computationally rapid algorithm has been developed to check if a
polynomial is strictly monotonic, based on some classical results in mathematics. This provides
the knowledge that the Lagrange polynomial is usually strictly monotonic in the SCM. Different
interpolation techniques compared to a Lagrange polynomial have been compared as well, show-
ing that the Lagrange polynomial gives the most accurate results. For the simpler distribution
in the mapping, a normal distribution has been compared to a gamma distribution. It has been
shown the gamma distribution can provide even more accurate results if the distribution of the
process implied by Hagan’s formulas is strongly skewed. Furthermore, the approach has been
extended by a virtual collocation technique to incorporate the martingale property to make
this approach completely arbitrage-free. It has been shown that this approach is stable too.
This approach is referred to as the M-SCM and applying this approach for Hagan’s formulas is
referred to as SCM-Hagan.

Each approach has been tested to a realistic market setting and compared to Hagan’s for-
mulas for the volatility curves, option prices and sensitivities in the inter- and extrapolation of
market quotes. During calibration it has been shown that Hagan’s formulas did not generate
arbitrage in general for options with short maturities and thus are suitable for market practice.
For these cases, Hagan’s formulas and SCM-Hagan performed best to fit the market volatil-
ity curve. For long maturities, Hagan’s formulas generated butterfly arbitrage for low strikes.
SCM-Hagan has shown that it could remove this arbitrage in a satisfactory fashion, it was stable
during calibration for practical problems and gave similar results for options with low strikes as
Hagan’s AF-SABR and uncorrelated Antonov.

The impact of the arbitrage in Hagan’s formulas was investigated and mainly contributed to
a higher volatility and option price for options with a long maturity and a low strikes compared
to the arbitrage-free approaches. In the extrapolation of high strikes, Hagan’s formulas and
SCM-Hagan gave higher prices to swaptions compared to uncorrelated Antonov and Hagan’s
AF SABR. Since all approaches were arbitrage-free in this region and, no general conclusion
could be made based on arbitrage. Lastly, vega was approximated to investigate the sensitivities
implied by the approaches. Vega is used in finance to get an indication of the impact on the
price by a parallel shift in the volatility curve. The vega sensitivities seemed to be stable and
did not differ significantly, except for the cases with long maturities and low strikes, for which
Hagan’s formulas implied higher sensitivities.

To further investigate the impact of the inter- and extrapolation of market quotes for all
approaches, each approach was compared in pricing more complex products that depend on
the inter- and extrapolation of market quotes. The focus was on CMS swaplets, caplets and
floorlets as the prices of these products can be expressed as an integral of swaptions in the strike
dimension. For the CMS swaplets, the difference in price was insignificantly as with the at-the-
money options CMS floorlets and caplets. As with the swaptions, the impact of the arbitrage in
Hagan’s formulas was yet again overpricing options with low strikes compared to the arbitrage-
free approaches. In the extrapolation of high strikes, Hagan’s formulas and SCM-Hagan gave
higher prices to CMS caplets compared to uncorrelated Antonov and Hagan’s AF SABR. Since
all approaches were arbitrage-free in this region and, no general conclusion could be made based
on arbitrage.
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Further research

The following issues are recommended for future research.

• Negative rates.
Currently, negative rates are observed in the market and a therefore extensions to negative
rates must also be investigated. Antonov et al. [6] propose the free-boundary SABR model

and suggest an extension of this model by setting dSt = αt
(
S2
t + ε2

)β
2 dWt in the dynamics

for the forward swap rate. The suggestion removes a discontinuity in the probability
density function implied by the free-boundary SABR model. For this model no analytical
expressions for prices are yet derived. The approaches by Hagan et al. [29, 30] are still
applicable. For Hagan et al. [29], it can be investigated if arbitrage can be removed by
the SCM yet again.

• Arbitrage in the maturity and tenor direction?
This thesis investigates the impact of arbitrage in the strike dimension. Arbitrage in
the maturity and tenor directions should be investigated too, since this impacts prices
and sensitivities too. For the equity market, arbitrage in the maturity direction can be
defined as negative values to calendar spread options. For the interest rate market, this is
less trivially achieved. It could be investigated if interpolation in the probability density
functions of processes for different annuities can be used to interpolate in time and how this
compares to other approaches. In particular, the SCM can be used for this interpolation
in the probability density functions.

• Enhancements to the SCM.
In this thesis, the SCM has been used to map the implied random variable by Hagan’s
formulas to a normal and a gamma distribution. Ideally, there should be a close relation
between the processes in the SCM. Hagan’s formulas originate from the SABR model,
which is a stochastic CEV process. It could thus be investigated if the implied distribution
of the CEV process would result in less collocation points and thus a faster approach.1

Further research should also be done on the interpolation technique used in the SCM.
The interpolation technique should imply directly a monotonic function independent of
the location of the collocation points.2

1As an alternative when one cannot determine analytical expressions under the CEV process, one can choose
to use the SCM to map the CEV process once again to a normal distribution as discussed in Section 4.2.

2An interpolation technique by Witteveen et al [23] can be used as a starting point.
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Appendix A

Background and proofs for Chapter 2

A.1 Bessel processes

To investigate the CEV process, Bessel processes are used in Section 2.4.1. This section presents
a more detailed discussion on Bessel processes, where Bessel processes will be related to the
Euclidean norm of a n-dimensional Brownian motion. All definitions are taken from Jeanblanc
[13].

Definition A.1 (Euclidean Norm Of The n-Dimensional Brownion Motion). Let Wt = (W1, . . . ,Wn)
be a n-dimensional Brownian motion where n ∈ N and define the process X as Xt := ||Wt||, i.e.
X2
t =

∑n
i=1W

2
i (t). Itô’s Lemma gives dX2

t =
∑n

i=1 2Wi(t) dWi(t) + n dt.

It can be proven that

dWt :=
1

Xt

n∑
i=1

Wi(t) dWi(t),

is a Brownian motion [13]. Introducing Yt = X2
t , it follows that:

dYt = 2Xt dWt + n dt = 2
√
Yt dWt + n dt. (A.1)

Using Itô’s formula, it follows that:

dXt = dWt +
n− 1

2Xt
dt

These two SDEs of Xt and Yt describe the dynamics of the norm and the squared norm of the
n-dimensional Brownian respectively. To define such a process for a general positive dimension,
the definition of a squared Bessel process is given, which relates to the process Yt.

Definition A.2 (w-Dimensional Squared Bessel Process (With Positive Dimension)). For every
w ≥ 0 and y ≥ 0, the unique strong solution to the equation

Yt = y + wt+ 2

∫ t

0

√
Ys dWs, Yt ≥ 0

is called a squared Bessel process with dimension w, starting at y and is denoted by BESQw
y .

The quantity w corresponds to the dimensionality of the n-dimensional Brownian motion.
The Bessel process will be introduced by the squared Bessel process. As the name suggests, the
squared Bessel process is the square of a Bessel process and relates to the process Xt.
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Definition A.3 (w-Dimensional Bessel Process (With Positive Dimension w)). Let Y be a
BESQw

x . The process X =
√
Y is called a Bessel process of dimension w, starting at x =

√
y

and is denoted by BESwx . The family of Bessel processes with the index η is given by η = w
2 − 1.

It will be written as BESQ(η)

To elaborate on the (squared) Bessel processes further, several of its properties are presented[13]:

• If w > 2, the process BESwx will never reach zero and is a transient process.

• If w = 2, the process BES2
x will never reach zero.

• If 0 < w < 2, the processes BESwx and X reach zero in finite time and is stopped naturally
at zero.

• The probability density function from x at time 0 to y at time t is given by:

f
(η)
t (x, y) =

y

t

(y
x

)η
e−

x2+y2

2t Iη

(xy
t

)
,

where Iη is the modified Bessel function with index η.

• The modified Bessel function can be written as

Iη(u) =
(u

2

)η ∞∑
k=0

(
u2

4

)k
k!Γ(η + k + 1)

=
1

π

∫ π

0
eu cos(x) cos(µx) dx−sin(µπ)

π

∫ ∞
0

e−u cosh(y)−µy dy,

(A.2)
where Γ is the Gamma function.

A more general definition of a squared Bessel process will be presented, such that it can be
extended for all w ∈ R. Thus (squared) Bessel processes with a negative dimensionality will be
included.

Definition A.4 (w-Dimensional Squared Bessel Process). The solution to the equation

dYt = w dt+ 2
√
|Yt|dWt, X0 = x.

where w, x ∈ R, is called the square of a w-dimensional Bessel process starting from x.

The process Xt =
√
Yt is the general w-dimensional Bessel process. It satisfies the SDE

dXt = dWt +
w − 1

2Xt
dt.

A.2 Proof of Lemma 2.19

Proof. For a call option, it holds1:

C(t, T,K, t) = D(t)E
[
(ST −K)+

∣∣Ft] ,
= D(t)

∫ ∞
K

(ST −K)f(ST |St) dST ,

1The expectation is to be assumed under the appropriate measure, under which the process St is a martingale.
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where f(ST |St) = f(T, ST |St) is the probability density function. Setting D(t) = 1 and rewriting
the integral as: ∫ ∞

x
(y − x)f(y) dy,

simplifies the expression. For convenience the Leibniz rule is stated [1]2:

∂

∂θ

(∫ b(θ)

a(θ)
g(x, θ) dx

)
=

∫ b(θ)

a(θ)

∂g(x, θ)

∂θ
dx+ g(b(θ), θ)b

′
(θ)− g(a(θ), θ)a

′
(θ).

For a martingale process, it holds that E [|St|] < ∞ t > 0, and
∫∞
−∞ |f(y)|dy = 1 < ∞. This

justifies taking the limit out of the integral below:

∂

∂x

∫ ∞
x

(y − x)f(y) dy =
∂

∂x
lim
c→∞

∫ c

x
(y − x)f(y) dy

= lim
c→∞

∂

∂x

∫ c

x
(y − x)f(y) dy

= lim
c→∞

∫ c

x
−f(y) dy + (c− x)f(c) · 0− (x− x)f(x) · 1

=

∫ ∞
x
−f(y) dy = −G(x) = −(1− F (x)),

where G and F are the survival density function and cumulative density function respectively.
By justifying that

∫∞
−∞ |f(y)| dy = 1 <∞, it can be computed that:

∂

∂x

∫ ∞
x
−f(y) dy =

∂

∂x
lim
c→∞

∫ c

x
−f(y) dy,

= lim
c→∞

∂

∂x

∫ c

x
−f(y) dy = lim

c→∞

∫ c

x
0 dy + f(c) · 0−−f(x) · 1 = f(x),

Hence, it has been shown that

∂C

∂K
(t, T,K) = D(t)(F (K)− 1),

∂2C

∂K2
(t, T,K) = D(t)f(K).

By put-call-parity, it follows that:

∂P

∂K
(t, T,K) = D(t)F (K),

∂2P

∂K2
(t, T,K) = D(t)f(K).

2The function g is in this section only used to indicate a differentiable function and should not be confused
with other notation in the thesis.
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Appendix B

Derivations and proofs for Chapter 3

B.1 Derivations for Hagan’s AF SABR

B.1.1 Derivations of the untransformed PDE

Following Hagan et al. [29], the SABR dynamics are investigated by using a singular perturba-
tion technique, i.e. the SDE is investigated in the form1:

dS̃ = εÃC(S̃) dW̃ 1,

dÃ = ενÃdW̃ 2,

dW̃1 dW̃2 = ρdt,

in the limit ε � 1, where C(S) = Sβ in the SABR model. Thus only a small change in the
dynamics of the SABR model is assumed and therefore the time indication is omitted in the
dynamics. Let f(t, St, α, T, S,A) be the probabiliy density function such that S̃(T ) = S and
Ã(T ) = A, given that S̃(t) = St and Ã(t) = α. For convenience, f denotes f(t, St, α, T, S,A).
Furthermore, the following moments are defined by:

Q(k)(t, St, α, T, S) :=

∫ ∞
0

Akf(t, St, α, T, S,A) dA,

where δ is the Dirac function. Hence

Q(k)(t, St, α, T, S) =

∫ ∞
0

Akf(t, St, α, T, S,A) dA

=

∫ ∞
0

∫ ∞
0

Akδ(S̃ − S)f(t, St, α, T, S̃, A) dS̃ dA

= E
[
Akδ(S̃ − S)

∣∣∣ S̃(t) = St, Ã(t) = α
]
.

Thus, the zeroth moment Q0 is the probability density function at time T and Q(T, S) will be
defined as:

Q(T, S) := Q0(t, St, α, T, S).

This is the variable for which a PDE will be derived. Applying the Fokker-Planck equation, it
is follows that the probability density function f satisfies the PDE:{

∂f
∂T = 1

2ε
2 ∂
∂S2

[
C2(S)A2f

]
+ ε2ρν ∂2

∂S∂A

[
C(S)A2f

]
+ 1

2ε
2ν2 ∂2

∂A2

[
A2f

]
for T > t,

f = δ(S − St)δ(A− α) for T = t.

1C is in this section defined as a function, and should not be confused with the call price as used throughout
the thesis. Furthermore, α is replaced by A in the dynamics of the SABR model.
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Integrating over A gives:∫ ∞
0

∂2

∂S∂A

[
C(S)A2f

]
dA =

∂

∂S

[
C(S)A2f

]∣∣∣∣A=+∞

A=0

= 0.

This is justified since C(S) is finite and positive for S ∈ R≥0 and it can be proven that f <
O(A−2) as A→∞. This can be deducted from the fact that A is a martingale and thus using the
tower property α = E [A(T )] = E [E [A(T )|S]] =

∫∞
0

∫ +∞
−∞ Af dS dA. Note the double integral

can only converge if f < O(A−2) if A→∞. Furthermore, it holds∫ ∞
0

∂2

∂A2

[
A2f

]
dA =

[
A2f

]
A

∣∣+∞
A=0

= 0,

which is justified by the similar argument as above. Hence integrating the Fokker-Planck equa-
tion overA gives: ∫ ∞

0

∂

∂T
f dA =

∫ ∞
0

1

2
ε2

∂2

∂A2

[
C2(S)A2f

]
dA.

This implies

Q
(0)
T =

1

2
ε2
∂2

∂S2

[
C2(S)Q(2)

]
.

Switching differentiation and integration is justified due to the convergence of the integrals and
positiveness of the integration kernel. Also by using a similar argument as above, it can be
deduced that Q(k) is finite also for k ≥ 2, since A has finite moments, which is known from the
Black-and-Scholes model.

In a similar way it can be deduced by using the multivariate version of the Feynmac-Kac
theorem [13] that the moments Q(k) satisfy the PDE:{

∂Qk

∂T + 1
2ε

2A2C2(S)∂
2Q(k)

∂S2 + ε2ρνA2C(S)∂
2Q(k)

∂S∂A + 1
2ε

2ν2A2 ∂2Q(k)

∂A2 = 0 for t < T,
Qk(t, St, α, T, S) = αkδ(S − St) for T = t.

In the next part terms of order O(ε2) will be neglected. So from here on, the real approximation
wil be prepared. First the change to the following variables will be done:

τ = T − t, z =
1

εA

∫ S

St

1

C(u)
du,

and the following function will be introduced B(εAz) := C(S).2 It is then found by basic
calculation for the transformation of variable that:

∂

∂S
≡ ∂

∂z

∂z

∂S
=

−1

εαB(εAz)

∂

∂z
,

∂

∂A
≡ ∂

∂A
+

∂

∂z

∂z

∂A
=

∂

∂A
− z

A

∂

∂z
,

∂2

∂S2
=

∂

∂S

(
∂

∂S

)
≡ 1

ε2α2B2(εAz)

(
∂2

∂z2
− εA

∂B(εAz)
∂z

B(εAz)

∂

∂z

)
,

∂2

∂S∂A
=

∂

∂S

(
∂

∂A

)
≡ 1

εAB(εAz)

(
− ∂2

∂z∂A
+
z

A

∂2

∂z2
+

1

A

∂

∂z

)
,

∂2

∂A2
=

∂

∂A

(
∂

∂A

)
≡ ∂2

∂A2
− 2z

A

∂2

∂z∂A
+

z2

∂A2

∂2

∂z2
+

2z

α2

∂

∂z
.

2The variable z in this section is only used in this section and should not be confused with the transformation
done in Section 3.1.1. B is in this section defined as a function and should not be confused with the continuously
compounded money market account.
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Where “≡” means equal to the original partial derivative under the transformation. Following
[30], there is a less-straightforward statement:

δ(S − St) = δ(εAzC(St)) =
1

εAB(0)
δ(z).

The first statement can be justified by

lim
S→St

εAzC(S) = lim
S→St

C(St)

∫ S

St

1

C(u)
du

=C(St)

∫ St

St

1

C(u)
du = 0.

So then it follows for S > 0 for all time∫ +∞

−∞
g(S)δ(εAzC(F )) dS = g(St) =

∫ +∞

−∞
g(S)δ(S − St) dS,

where g is any continuous function. For the second equation the well-known property δ(ax) =
δ(x)
|a| is used and the fact when S = St that z = 0 is used. Thus, it follows that C(St) =

B(0). Let Q(k)(t, St, α, S(z), A) be written as Q(k)(τ, z, A) := Q(k)(t, St, α, S(z), A) under this
transformation of variable, Q(k) satisfies the PDE:

∂Q(k)

∂τ = 1
2

(
1 + 2ερνz + ε2ν2z2

) ∂2Q(k)

∂z2 − 1
2εA

∂B(εAz)
∂z

B(εAz)
∂Q(k)

∂z

+
(
ερν + ε2ν2z

) (
−A∂2Q(k)

∂A∂z + ∂Q(k)

∂z

)
+ 1

2ε
2ν2A2 ∂2Q(k)

∂A2 , for τ > 0,

Q(k)(0, z, α) = αkδ(S − St) = αk

εαB(0)δ(z) = ak−1

εB(0)δ(z), for τ = 0.

In order to align the initial condition for each Q(k), Q̂(k)(τ, z, α) is defined by:

Q(k)(τ, z, A) :=
Ak−1

εB(0)
Q̂(k)(τ, z, A).

Then, Q̂k(τ, z, A) satisfies the PDE:

∂Q̂(k)

∂T
=

1

2

(
1 + 2ερνz + ε2ν2z2

) ∂2Q̂(k)

∂z2
− 1

2
εA

∂B(εAz)
∂z

B(εAz)

Q̂(k)

∂z

−
(
ερν + ε2ν2z

)
(k − 2)

∂Q̂(k)

∂z
−
(
ερν + ε2ν2z

)
A
∂2Q̂(k)

∂A∂z

+
1

2
ε2ν2

(
A2∂

2Q̂(k)

∂A2
+ 2(k − 1)A

∂Q̂(k)

∂A
+ (k − 1)(k − 2)Q̂(k)

)
,

for τ > 0 and the boundary condition Q̂(k)(0, z, α) = δ(z). Here the true approximation starts
and the PDE that will follow, will only be an accurate approximation for the SABR model for
small maturities. First, it is noticed that to leading order of ε the PDE satisfies{

∂Q̂(k)

∂τ ≈ 1
2
∂2Q̂(k)

∂z2 , for τ > 0,

Q̂(k)(0, z, α) = δ(z).

These PDEs are independent of A [30]. So when one expands Q̂k in ε as:

Q̂(k)(τ, z, A) = Q̂
(k)
0 (τ, z) + εQ̂

(k)
1 (τ, z, A) + ε2Q̂

(k)
2 (τ, z, A) + . . . ,
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Q̂
(k)
0 does not depend on A (however Q̂

(k)
1 does depend on A). Thus, the derivatives w.r.t. A

are already at least of order O(ε) and therefore the terms

ε2
∂2Q̂(k)

∂A∂z
, ε2

∂2Q̂(k)

∂A2
, ε2

∂Q̂(k)

∂A
,

are no larger than O(ε3). These will be therefore neglected, since only an expansion up to second
order in ε is needed. Therefore, the following approximation is done:

∂Q̂(k)

∂τ
≈1

2

(
1 + 2ερνz + ε2ν2z2

) ∂2Q̂(k)

∂z2
− 1

2
εA

∂B(εαz)
∂z

B(εαz)

∂Q̂(k)

∂z

−
(
ερν + ε2ν2z

)
(k − 2)

∂Q̂(k)

∂z
− ερνA∂

2Q̂(k)

∂A∂z
+

1

2
ε2ν2(k − 1)(k − 2)Q̂(k),

with boundary condition Q̂(k) = δ(z) for τ = 0. The derivation starting here deviates from
Hagan et al. [29]. It is noted that for k = 0 and k = 2 it gives the following two PDEs:

∂Q̂(k)

∂τ
≈1

2

(
1 + 2ερνz + ε2ν2z2

) ∂2Q̂(0)

∂z2
− 1

2
εA

∂B(εAz)
∂z

B(εAz)

∂Q̂(0)

∂z
− ερνA∂

2Q̂(0)

∂A∂z
,

∂Q̂(0)

∂τ
≈1

2

(
1 + 2ερνz + ε2ν2z2

) ∂2Q̂(0)

∂z2
− 1

2
εA

∂B(εαz)
∂z

B(εαz)

∂Q̂(0)

∂z

+ 2
(
ερν + ε2ν2z

) ∂Q̂(0)

∂z
− ερνA∂

2Q̂(k)

∂A∂z
+ ε2ν2Q̂(0),

=
1

2

∂2

∂z2

[
1 + 2ερνz + ε2ν2z2Q̂(0)

]
− 1

2
εA

∂B(εAz)
∂z

B(εAz)

∂Q̂(0)

∂z
− ερνA∂

2Q̂(k)

∂A∂z
.

Some straightforward details will be left out. The following variable is introduced:

U(τ, z, A) := (1 + 2ερνz + ε2ν2z2)eε
2ρνAΘτ Q̂(0)(τ, z, A),

with

Θ = −
∂B(εAz)

∂z

B(εAz)
= −C ′(S).

It will satisfy the same PDE as Q̂(2) does up to order O(ε2), i.e.

Q̂(2)(τ, z, A) = eε
2ρνAΘτ Q̂(0)(τ, z, A)(1 + 2ερνz + ε2ν2z2 + . . .).

Thus it gives:

Q(2)(t, St, α, T, S,A) = A2Q(0)(t, St, α, T, S)
(
1 + 2ερνz + ε2ν2z2 + . . .

)
eε

2ρνAΘ(τ−t).

Putting this in the integrated Fokker-Planck equation gives the PDE for Q:

∂Q(0)

∂T
≈ 1

2
ε2A2 ∂2

∂S2

[(
1 + 2ερνz + ε2ν2z2

)
eε

2ρνAΘ(τ−t)C2(S)Q(0)
]
.

It is argued Hagan et al. [30]that the choice

Θ =
C(S)− C(St)

S − St
,

gives better results than Θ = −C ′(S). This is a first order Taylor expansion around St. This
covers up a discontinuity at S = 0 in the definition of Θ for the SABR model case, i.e. C(S) = Sβ.
However it still satisfy

lim
S→St

Θ(S) = −C ′(St).

Thus it gives a similar function for S = St. Setting ε = 1 and A = α gives the resulting PDE.
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B.1.2 Derivation of transformed PDE

The derived PDE by Hagan et al. [30] is given by:

∂Q

∂T
(T, S) =

∂2

∂S2
(H(T, S)Q(T, S)) ,

with
H(T, S) = O2(S)E(T, S).

The transformation is defined by the variable:

z(S) :=

∫ S

S0

1

O(u)
du.

For convenience it is written z := z(S) and S := S(z). It is computed that

∂

∂S
≡ ∂

∂z

∂z

∂S
=

1

O(S)

∂

∂z
,

∂2

∂S2
≡ 1

O(S)

∂

∂z

{
1

O(S)

∂

∂z

}
.

For ease of computation O(S) is written as O(z) := O(S(z)) and E(T, S) is written as E(T, z) :=
E(T, S(z)) in the new variables z and the new function θ is introduced:

θ(T, z) := Q(T, S(z))O(z).

Putting this in the PDE results into:

∂

∂T

{
1

O(z)
θ(T, z)

}
=

∂2

∂S2
{O(z)E(T, z)θ(T, z)} ,

⇒∂θ(T, z)

∂T
=

∂

∂z

{
∂

∂S
{O(z)E(T, z)θ(T, z)}

}
,

⇒∂θ(T, z)

∂T
=

∂

∂z

{
1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

}
.

B.1.3 Derivation of the boundary conditions for the transformed PDE

The probabilities that accumulate the mass at the boundaries z− and z+ are respectively PL(T )
and PR(T ). In order that the total mass of the new probability density function integrates to
one, it must hold that:

∂

∂T

(
PL(T ) +

∫ z+

z−
θ(T, z) dz + PL(T )

)
= 0,

⇒ ∂PL(T )

∂T
+

∫ z+

z−

∂θ(T, z)

∂T
dz +

∂PL(T )

∂T
= 0,

⇒ ∂PL(T )

∂T
+

∫ z+

z−

∂

∂z

{
1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

}
dz +

∂PL(T )

∂T
= 0,

⇒
(
∂PL(T )

∂T
− 1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

∣∣∣∣
z=z−

)
+

(
∂PR(T )

∂T
+

1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

∣∣∣∣
z=z+

)
= 0.
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This gives the conditions for PL and PR:

∂PL(T )

∂T
=

1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

∣∣∣∣
z=z−

,
∂PR(T )

∂T
= − 1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

∣∣∣∣
z=z+

.

In order for St to stay an martingale, it must hold:

∂

∂T

(
SminPL(T ) +

∫ z+

z−
S(z)θ(T, z) dz + SmaxPL(T )

)
= 0,

⇒ Smin
∂PL(T )

∂T
+

∫ z+

z−
S(z)

∂θ(T, z)

∂T
dz + Smax

∂PL(T )

∂T
= 0,

⇒ Smin
∂PL(T )

∂T
+

∫ z+

z−
S(z)

∂

∂z

{
1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

}
dz + Smax

∂PL(T )

∂T
= 0,

by integration by parts:

⇒ Smin
∂PL(T )

∂T
+ S(z)

1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

∣∣∣∣z=z+

z=z−

+

∫ z+

z−

∂S(z)

∂z

1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}dz + Smax

∂PL(T )

∂T
= 0.

Now note that

Smin
∂PL(T )

∂T
+ S(z)

1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}

∣∣∣∣z=z+

z=z−
+ Smax

∂PL(T )

∂T
= 0,

due to the conditions of PL and PR and that it holds:

d

dz
S(z) =

d

dz

(
z−1(S(z))

)
=

1

z′(S(z))
= O(z).

This gives:

⇒
∫ z+

z−

∂S(z)

∂z

1

O(z)

∂

∂z
{O(z)E(T, z)θ(T, z)}dz = 0,

⇒
∫ z+

z−

∂

∂z
{O(z)E(T, z)θ(T, z)}dz = 0,

⇒ O(z)E(T, z)θ(T, z)|z=z
+

z=z− = 0,

since ∂S(z)
∂z = O(z). This gives the boundary conditions

O(z)E(T, z)θ(T, z)|z=z− = 0, O(z)E(T, z)θ(T, z)|z=z+ = 0.

B.2 Proof of Lemma 3.3

Three definitions and a theorem by Saad [35] are presented, which will be used to derive the
proof of Lemma 3.3.

Definition B.1 (Irreducible Matrix). The matrix A is called irreducible iff no permutation
matrix P exists such that PAPT is block upper triangular.
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Definition B.2 (Irreducible Diagonal Dominant Matrix). The matrix A is called irreducibly
diagonal dominant iff A is irreducible and

|Aii| ≥
n∑

j=1,j 6=i
|Aij | ∀ i = 1, . . . , n

with strict inequality from at least one i.

Definition B.3 (M -Matrix). The matrix A is an M -matrix iff it satisfies the following four
properties

1. Aii > 0 for i = 1, . . . , n.

2. Aij ≥ 0 for i 6= j, i, j = 1, . . . , n.

3. A is non-singular.

4. A−1 ≥ 0.

Theorem B.4. If the matrix A satisfies the following three properties

1. Aii > 0 for i = 1, . . . , n.

2. Aij ≤ 0 for i 6= j, i, j = 1, . . . , n.

3. A is irreducibly diagonally dominant.

Then A is a M -matrix.

Proof. A proof can be found in Saad [35].

Now the proof of Lemma 3.3 is given.

Proof. First it must be noted that for the Euler scheme the discretization leads to the matrix
equation

θn = Mθn+1, (B.1)

where

M11 = 1 +
∆t

h

(
Ô1Ê1(tn)

ŝ2 − ŝ1
+

2Ô1Ê1(tn)

ŝ1 − ŝ0

)
, Mjj = 1 +

∆t

h

(
Ôj

ŝj+1 − ŝj
+

Ôj
ŝj − ŝj−1

)
Êj(tn),

MJJ = 1 +
∆t

h

(
2ÔJ ÊJ(tn)

ŝJ+1 − ŝJ
+
ÔJ ÊJ(tn)

ŝJ − ŝJ−1

)
, Mj,j−1 = −∆t

h

(
Ôj−1

ŝj − ŝj−1
Êj−1(tn)

)
,

Mj,j+1 = −∆t

h

(
Ôj+1

ŝj+1 − ŝj
Êj+1(tn)

)
.

for j = 1, . . . , J . All other indices of matrix M are zero. Now, note that due to the three
diagonal structure of Matrix M , M is irreducible.

Furthermore, it is easy to verify that for S > 0, it holds that E(T, S), O(S) > 0, hence
Mii > 0 and Mij < 0 for i 6= j. Due to condition 3.8, it follows that M is a irreducibly
diagonally dominant matrix. The strict inequalities follow for row 1 and J .

Hence by Theorem B.4 it follows that M is a M -matrix. As a consequence it follows that
M−1 ≥ 0. Hence

θn+1 = M−1θn ≥ 0
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Appendix C

Derivations and proofs for Chapter 4

C.1 Derivation of the implied SDF and PDF for Hagan’s for-
mulas

In this section the first and second derivative of a call price with respect to the strike are
computed. The survival density and probability density function can be computed using Lemma
2.19. All functions defined here are only used in this section and should not be confused with
other functions. In the first two sections, general derivatives w.t.r. Hagan’s Black and Bachelier
formulas are derived respectively, followed by a third section where some general derivatives and
limiting cases are computed.

C.1.1 Hagan’s Black formula

The call price under Black’s model is given by:

CBlack(t, T,K, σ) = S(t)FN (d1)−KFN (d2), (C.1)

with

d1 =
log
(
S(t)
K

)
+ 1

2σ
2(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

where FN (x) is the CDF of the standard normal distribution and fN (x) is the PDF of the
standard normal distribution. For convenience, CBlack(t, T,K, σ) is written by C and St by S.
The implied Black volatilities for Hagan’s Black formula are given by:

σB = I1 · (1 + I2 · T ), (C.2)

where

I1 := I1(α, β, ρ, ν, S,K) =
αz

χ (SK)
1−β

2

(
1 + (1−β)2

24 log2
(
S
K

)
+ (1−β)4

1920 log4
(
S
K

)) ,
I2 := I2(α, β, ρ, ν, S,K) =

(1− β)2

24

α2

(SK)1−β +
1

4

ρβνα

(SK)
1−β

2

+
2− 3ρ2

24
ν2,

z := z(α, β, ν) =
ν

α
(SK)

1−β
2 log

(
S

K

)
,

χ := χ(z, ρ) = log

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

For convenience, σB is written by σ and τ is introduced and defined by τ := T − t.

117
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First derivative

It can be derived that:

∂C

∂K
= SfN (d1)

∂d1

∂K
−KfN (d2)

∂d2

∂K
− FN (d2),

where

d1

∂K
=
σ
√
T
(
−K−1 + σ ∂σ

∂K τ
)

+
√
τ ∂σ∂K

(
log
(
S
K

)
+ 1

2σ
2τ
)

σ2τ
,

∂d2

∂K
=
∂d1

∂K
− ∂σ

∂K

√
τ ,

∂σ

∂K
=
∂I1

∂K
(1 + I2T ) + I1

∂I2

∂K
T.

Where

∂I2

∂K
=

(1− β)2

24
α2Sβ−1(β − 1)Kβ−2 +

1

4
ρβναS

β−1
2
β − 1

2
K

β−3
2 ,

∂I1

∂K
=α

∂

∂K

{
(SK)

β−1
2

} z

χ(z)
(

1 + (1−β)2

24 log2
(
S
K

)
+ (1−β)4

1920 log4
(
S
K

))


+α(SK)
β−1

2
∂

∂K

{
z

χ(z)

}{
1

1 + (1−β)2

24 log2
(
S
K

)
+ (1−β)4

1920 log4
(
S
K

)}

+α(SK)
β−1

2
z

χ(z)

∂

∂K

{
1

1 + (1−β)2

24 log2
(
S
K

)
+ (1−β)4

1920 log4
(
S
K

)} ,
∂z

∂K
=
ν

α

(
1− β

2
S

1−β
2 K−

β+1
2 log

(
S

K

)
−K−1 (SK)

1−β
2

)
.

Define1

g(K) :=

(
1 +

(1− β)2

24
log2

(
S

K

)
+

(1− β)4

1920
log4

(
S

K

))
,

then

g
′
(K) =

−(1− β)2

12
log

(
S

K

)
K−1 − (1− β)4

480
log3

(
S

K

)
K−1,

g
′′
(K) =

(1− β)2

12
K−2

(
1 + log

(
S

K

))
+

(1− β)4

480
log2

(
S

K

)
K−2

(
log

(
S

K

)
+ 3

)
,

∂

∂K

{
1

g(K)

}
=
g
′
(K)

g2(K)
,

∂2

∂K2

{
1

g(K)

}
=

∂

∂K

{
− g

′
(K)

g2(K)

}
= −g

′′
(K)g2(K)− 2g

′
(K)g2(K)

g4(K)
.

1The derivatives of z
χ(z)

will be provided in the general derivatives section, but it will involve the derivatives
of z.
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Second derivative

It can be derived

∂2C

∂K2
=SfN (d1)

(
∂2d1

∂K2
− d1

(
∂d1

∂K

)2
)
− 2fN (d2)

∂d2

∂K
+KfN (d2)

(
d2

(
∂d2

∂K

)2

− ∂2d2

∂K2

)
,

∂2d1

∂K2
=

1

σ4τ2

((
K−2 +

((
∂σ

∂K

)2

+ σ
∂2σ

∂K2

)
τ

)
σ3τ

3
2 −

(
log

(
S

K

)
+

1

2
σ2τ

)
σ2τ

∂2σ

∂K2

√
τ

−2σ2τ

(
σ
∂σ

∂K
τ −K−1

)√
τ
∂σ

∂K
+ 2

(
log

(
S

K

)
+

1

2
σ2τ

)
σ
√
ττ

(
∂σ

∂K

)2
)
,

∂2d2

∂K2
=
∂2d1

∂K2
− ∂2σ

∂K2

√
τ .

Where

∂2σ

∂K2
=
∂2I1

∂K2
(1 + I2T ) + 2

∂I1

∂K

∂I2

∂K
T + I1

∂2I2

∂K2
T,

∂2I2

∂K2
=

(1− β)2

24
α2Sβ−1(β − 1)(β − 2)Kβ−3 +

1

4
ρβναS

β−1
2
β − 1

2

β − 3

2
K

β−5
2 ,

∂2I1

∂K2
=α

∂2

∂K2

{
(SK)

β−1
2

}{ z

χ(z)g(K)

}
+ α(SK)

β−1
2

∂2

∂K2

{
z

χ(z)

}
1

g(K)

+ α(SK)
β−1

2
z

χ(z)

∂2

∂K2

{
1

g(K)

}
+ 2α

∂

∂K

{
(SK)

β−1
2

} ∂

∂K

{
z

χ(z)

}
1

g(K)
,

+ 2α
∂

∂K

{
(SK)

β−1
2

} ∂

∂K

{
1

g(K)

}
z

χ(z)
+ 2α

{
(SK)

β−1
2

} ∂

∂K

{
z

χ(z)

}
∂

∂K

{
1

g(K)

}
,

with

∂2

∂K2

{
(SK)

β−1
2

}
=S

β−1
2
β − 1

2

β − 3

2
K

β−5
2 ,

∂2

∂K2
z =

∂

∂K

{
ν

α

(
1− β

2
S

1−β
2 K−

β+1
2 log

(
S

K

)
−K−1 (SK)

1−β
2

)}
=
ν

α
S

1−β
2

(
1 + β

2
K−

3+β
2 − 1− β

2
K−

β+3
2

(
1 +

β + 1

2
log

(
S

K

)))
=− ν

α
S

1−β
2 K−

β+3
2

(
1 + β

2

(
log

(
S

K

)
1− β

2
− 1

)
− 1− β

2

)
.

C.1.2 Hagan’s Bachelier formula

The call price under Bachelier’s model is given by:

CBachelier(t, T,K, σ) = (St −K)FN (−d) + σ
√
T − tfN (d), (C.3)

with

d =
K − St
σ
√
T − t

.

where FN (x) is the CDF of the standard normal distribution and fN (x) is the PDF of the
standard normal distribution. For convenience, CBlack(t, T,K, σ) is written by C and St by S.
The implied Bacheliers volatilities for Hagan’s Bachelier formula are given by:

σN = I1 · (1 + I2 · T ), (C.4)
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where

I1 := I1(α, β, ρ, ν, S,K) =
α(1− β)(S −K)

S1−β −K1−β
ζ

χ
,

I2 := I2(α, β, ρ, ν, S,K) =
β(β − 2)α2

24
(SK)β−1 +

αβρν

4
(SK)

β−1
2 +

2− 3ρ2

24
ν2,

ζ := ζ(α, β, ν, S,K) =
ν (S −K)

α (SK)
β
2

,

χ := χ(z, ρ) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)
.

For convenience, σN is written by σ and τ is introduced and defined by τ := T − t.

First derivative

It can be computed:

∂C

∂K
= fN (d)

√
τ
∂σ

∂K
− FN (−d), since (K − S) = dσ

√
τ ,

with

∂σ

∂K
=
∂I1

∂K
(1 + I2T ) + I1

∂I2

∂K
T,

where2

∂I1

∂K
= α(1− β)

(
ζ

χ(ζ)

∂

∂K

{
S −K

S1−β −K1−β

}
+

S −K
S1−β −K1−β

∂

∂K

{
ζ

χ(ζ)

})
,

∂

∂K

{
S −K

S1−β −K1−β

}
=
βK1−β − S1−β + (1− β)SK−β

(S1−β −K1−β)
2 ,

∂I2

∂K
=
β(β − 2)α2

24
Sβ−1(β − 1)Kβ−2 +

1

4
ρβναS

β−1
2
β − 1

2
K

β−3
2 ,

∂ζ

∂K
=
ν

α
(KS)−

β
2

(
β

2
− 1− β

2
SK−1

)
.

Second derivative

It can be computed:

∂2C

∂K2
=
√
τfN (d)

{
∂2σ

∂K2
+ σ

(
∂d

∂K

)2
}
, since

(K − S)√
τ

= dσ ⇒ 1√
τ

= σ
∂d

∂K
+ d

∂σ

∂K
,

∂2σ

∂K2
=
∂2I1

∂K2
(1 + I2T ) + 2

∂I1

∂K

∂I2

∂K
T + I1

∂2I2

∂K2
T,

∂d

∂K
=

1 +
√
τd ∂σ∂K

σ
√
τ

.

2The derivatives of ζ
χ(ζ)

will be provided in the general derivatives section, but it will involve the derivatives
of z.
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Where

∂2I1

∂K2
=

∂

∂K

{
α(1− β)

(
ζ

χ(ζ)

∂

∂K

{
S −K

S1−β −K1−β

}
+

S −K
S1−β −K1−β

∂

∂K

{
ζ

χ(ζ)

})}
= α(1− β)

(
ζ

χ(ζ)

∂2

∂K2

{
S −K

S1−β −K1−β

}
+ 2

∂

∂K

{
S −K

S1−β −K1−β

}
∂

∂K

{
ζ

χ(ζ)

}
+

+
S −K

S1−β −K1−β
∂2

∂K2

{
ζ

χ(ζ)

})
,

∂I2

∂K
=
β(β − 2)α2

24
Sβ−1(β − 1)(β − 2)Kβ−3 +

1

4
ρβναS

β−1
2
β − 1

2

β − 3

2
K

β−5
2 ,

∂2ζ

∂K2
=
νβ

2α
(KS)−

β
2

(
K−1

(
1− β

2

)
+ SK−2

(
β

2
+ 1

))
,

with

∂2

∂K2

{
S −K

S1−β −K1−β

}
=

1

(S1−β −K1−β)
3

{(
β(1− β)K−β − Sβ(1− β)K−(1+β)

)(
S1−β −K1−β

)
+
(
βK1−β − S1−β + (1− β)SK−β

)(
2(1− β)K−β

)}
.

C.1.3 Limit cases and general derivatives

It can be noted that χ(z) ≡ χ(ζ). Thus only the derivatives of z
χ(z) and χ(z) are derived. Since

all functions are dependent on one variable, let fun
′
, fun

′′
and fun(n) denote the first, second

and nth derivative of a function fun. First, it is noted that

lim
K→S

z = 0, lim
K→S

χ(z) = 0.

Write χ(z) = log(u(z))− log(1− ρ). Then:

u(z) =
√

1− 2ρz + z2 + z − ρ, lim
K→S

u(z) = 1− ρ,

u
′
(z) = 1 +

z − ρ√
1− 2ρz + z2

, lim
K→S

u
′
(z) = 1− ρ,

u
′′
(z) =

1√
1− 2ρz + z2

− (z − ρ)2

(1− 2ρz + z2)
3
2

, lim
K→S

u
′′′

(z) = 1− ρ2.

Then

χ
′
(z) =

u
′
(z)

u(z)
, χ

′′
(z) =

u
′′
(z)u(z)−

(
u
′
(z)
)2

u2(z)
.
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Then

∂

∂K

{
z

χ(z)

}
=
χ(z)− χ′(z)z

χ2(z)

∂z

∂K
,

∂2

∂K2

{
z

χ(z)

}
=
−χ′′(z)zχ2(z)− 2χ(z)χ

′
(z)
(
χ(z)− χ′(z)z

)
χ4(z)

(
∂z

∂K

)2

+
χ(z)− χ′(z)z

χ2(z)

∂2z

∂K2
,

∂2

∂K2

{
z

χ(z)

}
=
−χ′′(z)zχ2(z)− 2χ(z)χ

′
(z)
(
χ(z)− χ′(z)z

)
χ4(z)

(
∂z

∂K

)2

+
χ(z)− χ′(z)z

χ2(z)

∂2z

∂K2
.

Now limits are derived for K → S are computed the functions above:

lim
K→S

z

χ(z)
= 1, lim

K→S
χ
′
(z) = lim

K→S

u
′
(z)

u(z)
= 1,

lim
K→S

χ
′′
(z) = lim

K→S

u
′′
(z)u(z)−

(
u
′
(z)
)2

u2(z)
=

(1− ρ2)(1− ρ)− (1− ρ)2

(1− ρ)2
= ρ,

lim
K→S

χ(z)− χ′(z)z
χ2(z)

= −ρ
2

(by applying two times L′Hopital),

lim
K→S

−χ′′(z)zχ2(z)− 2χ(z)χ
′
(z)
(
χ(z)− χ′(z)z

)
χ4(z)

= lim
K→S

−
(
z

χ

)3 zχ
′′
χ+ 2χ

′
(χ− zχ′)

z3

=
1

2
ρ2 − 1

3
χ(3)(by applying two times L′Hopital).

These limiting cases depend on the following calculations:

χ(3)(z) =

(
u(3)u+ u

′′
u
′ − 2u

′
u
′′
)
u2 − 2uu

′
(
u
′′
(z)u(z)−

(
u
′
(z)
)2
)

u4
→ 3ρ2 − 1 as K → S,

u(3)(z) = −3
z − ρ

(1− 2ρz + z2)
3
2

+
3(z − ρ)3

(1− 2ρz + z2)
5
2

→ 3ρ(1− ρ)(1 + ρ) as K → S.

As a consequence

lim
K→S

∂2

∂K2

{
z

χ(z)

}
=

1

3
− 1

2
ρ2.

Lastly, limiting cases of the derivatives of
(

(1− β) S−K
S1−β−K1−β

)
are computed:
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lim
K→S

∂

∂K

(
(1− β)

S −K
S1−β −K1−β

)
=
β

2
Sβ−1,

lim
K→S

∂2

∂K2

(
(1− β)

S −K
S1−β −K1−β

)
=
β

6
(β − 2)Sβ−2,

∂

∂K

(
lim
β→1

(1− β)
S −K

S1−β −K1−β

)
=

∂

∂K

(
S −K

log(S)− log(K)

)
=

log(K)− log(S) +K−1S − 1

(log(S)− log(K))2 ,

∂2

∂K2

(
lim
β→1

(1− β)
S −K

S1−β −K1−β

)
=

∂2

∂K2

(
S −K

log(S)− log(K)

)
=

1

(log(S)− log(K))3

{(
K−1 −K−2S

)
(log(S)− log(K))

+2K−1
(
log(K)− log(S) +K−1S − 1

)}
.

C.2 Proof of Lemma 4.16

Proof. For convenience at maturity the call price is written as C(x) = (x−K)+, where K
is the strike of the call option. There will be three cases distinguished: {x ≤ K, y ≤ K},
{x ≥ K, y ≤ K} and {x ≥ K, y ≥ K}. The case {x ≤ K, y ≥ K} is analogously to the case
{x ≥ K, y ≤ K}.

If x ≤ K, y ≤ K, then:

|C(x)− C(y)| = |0− 0|
≤ |x− y|.

If x ≥ K, y ≤ K, then:

|C(x)− C(y)| = |x−K|
= x−K
≤ x− y
≤ |x− y|.

If x ≥ K, y ≥ K, then:

|C(x)− C(y)| = |x−K − y +K|
= |x− y|.
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