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I1l. CONCLUSIONS

In this paper, we have presented a sufficient condition for the globm
uniform asymptotic stability of an equilibrium of a switched system.
We have shown that when the switched system is composed of a fi-
nite family of subsystems, the global asymptotic stability of each sub-
system and the pairwise commutativity of their flows are sufficient for
the global asymptotic stability of the switched system. We have also
shown, by combining this result with the converse Lyapunov theorem Abstract—in this paper a set of sufficient conditions is developed in terms
obtained in [9], that these conditions are also sufficient for the exister@fecontrollability and observability functions under which a given state-
of a common Lyapunov function. The results here presented generaﬁ? ce realization of aformal power series is minimal. Specifically, itis shown

h btained in [11] for linear systems and those local ones obtai at positivity of these functions, in addition to a stability requirementand a

F 0sé 0 - Y technical conditions, implies minimality. Using the nonlinear analogue

in [13] for exponentially stable systems. of the Kalman decomposition, connections are then established between
minimality, singular value functions, balanced realizations, and various no-
tions of reachability and observability for nonlinear systems.
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|. INTRODUCTION

The problem of determining when the dimension of a state-space
realization for a given input—output map is minimal is a fundamental
[1] A. A. Agrachev and D. Liberzon, “Lie-algebraic conditions for expo-problem in systems. It connects to many other topics in realization

nential stability of switched systems,” Rroc. 38th Conf. Decision and theory like controllability and observability properties, similarity
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connections to the nonlinear extensions of the Gramians, which hav8he value of the controllability function at, is the minimum
been developed for nonlinear balancing [3], [4], [14]-[16]. But thessmount of control energy required to reach the stateand the value
connections are also largely unknown at present. of the observability function at, is the amount of output energy
The primary purpose of this paper is to develop a set of sufficiegenerated byto. Obviously, L.(x) and L,(x) are nonnegative. It is
conditions in terms of controllability and observability functions undesissumed throughout thdt. and L, are finite and smoothfunctions
which a given state-space realization of a formal power series is mof-z:.
imal. Specifically, it will be shown that positivity of these so-called Theorem 2.2 [14]: If f(x) is asymptotically stable on a neighbor-
energy functionsplus a few technical conditions, implies minimality.hood1V of 0, then for all: € W, L, () is the unique smooth solution
Of course there exists well-known necessary and sufficient conditiosifsthe following Lyapunov-type equation:
for minimality in terms of Kalman-type rank conditions on the acces- I
sibility and observability distributions [6], [11]. So the novelty of the -
approach taken here is in establishing a connection between these dif- 3 ) . .
ferential geometric type minimality conditions and properties of ef.urthermore foralk € W, L.(x) is the unique smooth solution of the
ergy functions, which are connected with Hamilton—Jacobi type off!loWing Hamilton—Jacobi equation:
timal control theory. Then, using the nonlinear analogue of the Kalman L. . 1 dL. y 'L,
decomposition, we establish connections between minimality, singular 5, (@)f(2) + 2 ox (@)g(x)g” (x) D (x) =0,
value functions and the various notions of reachability and observ- L.(0)=0 (5)
ability for nonlinear systems which preliminarily appeared in [16]. . T T i
The paper is organized as follows. In Section II, the background mith —(f (@) + g(x)g" (x) (9" L./dx) (x)) asymptotically stable on
terial pertaining to all the relevant subjects is briefly reviewed. In sell- ) . U
tion Ill, we then develop relationships between positivity of the energy Rémark 2.3:1f we assume thaf () is asymptotically stable and
functions and the accessibility/observability rank conditions that are t8at (4) has a smooth solution, it then follows taf, as in (3), ex-
lated to minimality. Then in Section IV, we introduce as an applicatiotS: i-€-, is finite, [14]. See [1] for more results about the existence
of the new minimality results, the decomposition material. Section §1d the continuity of.,, (in [1] L. also plays an important role in the
concludes with two examples, where one includes some related cdbtext of stability and invariance). Furthermore, if we assume that

(@f () + 5 h @R =0, L0)=0. (@

T

putational issues. (5) has a smooth solutioh. that is antistabilizing (i.e.—(f(z) +
Notation: The mathematical notation used throughout s fairly star(+)g(z)" (9" L./dx) (x)) is asymptotically stable), it follows that
dard. Vector norms are represented|py| = V27 for 2 € R*. Le, asin(2), exists [14]. O

Lo(a,b) represents the set of Lebesgue measurable functions, posIheorem 2.4 [14]: Assume f(x) is asymptotically stable on

sibly vector-valued, with finitel.» norm ||z|s, = /j; () dt. a neighborhood?" of 0 and (5) has a smooth solutidih. on W.

If L:R" — R is a differentiable function, then its partial derivativ Then L.(z) > 0fora € W, # 0, if and only if —(f(x) +

S ) o ‘ g(x)g” (x) (8" L./0z) (¢)) is asymptotically stable oW’ . O
?I:/ fr W'ILIbEJEﬁer:)r;VO;':;(tgr)Of F:jrtt'alt dir'vit)w:frfc( t?e?ﬂ:,(\; hsc:ﬁj For the analysis in this paper the definitions of locsdchability,
=1l,...,n. Lll2) = § 2,01, 1,1 -

tion at timéz‘a of the systems = f(x) + g()u with initial condition (strong) accessib_ilit,yandobservabilityare needed. We_ r_e_fer to stan-

- . - dard references like [5], [6], [11], and [13]. These definitions are usu-
e(ty) = a1 and inputu:[t1, ;] — R™. A condition about 0 means . iven in the context where only piecewise constant inputs are ad-
that this conditions holds for a neighborhood of 0. Finatlit- o) is ally gv Y PIECEWISE P :
an abbreviation folim;_. . #(#). m|53|ble._Howe_ver, the effepts of approximations pf more gengral in-

puts by piecewise constant inputs have been considered in earlier work

[18], and statements about these properties holding for larger classes
of inputs can be found in [17], [21], and [19]. For clarity we mention a
A. Controllability and Observability Functions for Stable Nonlinear special case of observability, though also well known, itis less standard,
Systems namely,zero-state observabilitysystem (1) izero-state observablé
ANy trajectory where(¢) = 0, y(¢) = 0 impliesz(¢) = 0. We say
that (1) islocally zero-state observahlé there exists a neighborhood

" of 0 where the system is zero-state observable. The following the-
orem is closely related to results that appear in [5] and [13]. It reveals
an important relationship between zero-state observability and positive
definiteness of the observability function.

1. BACKGROUND

Controllability and observability functions play an important role i
balancing and model reduction for stable nonlinear systems [14].
this section we give a brief review of the results that are important f
the minimality theory presented in Section Ill.

Consider a smooth, i.e({*°, nonlinear system of the form

i =f(x) +g(x)u Theorem 2.5 [14]: Assumef(z) is asymptotically stable on a

y =h(x) (1) neighborhoodW of 0. If (1) is zero-state observable g, then

_ m _ p Lo(z) > 0,Yoe e W, #0. O

whereu = (ui,...,um) € R,y = (y1,...,yp) € R?, and . S
& = (21,...,xn) are local coordinates for a smooth state space man-'t i well known, e.g., [11], that for the accessibility distribution,

ifold denoted by . Throughout we assume that the system has &% the strong accessibility distributioy, and the observation space,

equilibrium. Without loss of generality we take this equilibrium to bé?' WiFh its .corresponding codistribu.ti.o.dO, there exist rank gqndi—
at0, i.e..f(0) = 0, and we also take(0) = 0. tions implying local (strong) accessibility and local observability. For

Definition 2.1 [14]: Thecontrollability andobservability functions local zero-state observability a similar rank condition exists with the
of (1) are defined as zero-state observation spa@e defined by the linear space of functions

Lo on M containingh.,...,h, and all repeated Lie derivativdé’}hj,
Lo(xo) = min 5 / [l (t)||2 dt 2 Jel....p,k=12,... Asaconsequence, local zero-state ob-
u€lo(=o00) 2 J o servability implies local observability at 0. Furthermore, it follows that

z(—o0)=0, z(0)=x e . . T
! local strong accessibility at, implies local accessibility ato .

Lo(x0) = % / lly(O)])? dt, 2(0) = o, Local zero-state observability is certainly more restrictive than local
0 observability. The previous results in a more general observability
u(f) =0, 01 < oo (3)  setting require the input to play a role. Given the systefry, h),
respectively. OO0 the corresponding homogeneous system is denoted by, "),
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whereg,(x) = g(«) — g(0). Thus, under our general assumptions LetS be a given input—output map represented by a convergent gen-
(£(0),g,n(0),h(0)) = (0,0,0). Itis easily shown thatf, g, ») and its erating series
homogeneous counterpart always have the same observability spaces,

and thus have basically the same observability properties. Consider Siu — y(t) = Z c(n)E,[u](t, to)
the following definition. neL*
Definition 2.6 [3], [4]: Thenatural observability functioffor (1) is -t
defined as Eiy i [u](t, to) :/L wir (T) iy ig[ul(7, to) dm (7)
N L[ e ’
Lo (xo) = zflel%)i 2 /0 g™ dt (©) wherel* is the set of multi-indices for the index det= {0, 1,...,m},
=(0)=z0, 2(c0)=0 c(n) € RP, fort € [to, T] with Ey(t.to) [u] := 1 anduo(t) := 1.

whereB, := {u € L2[0,00): [Jul]|lL, < a} witha > 0 afixedreal The mappingS can then also be represented by a formal power
number, and; is the output response of the corresponding homogseries in noncommuting monomialg = {20521,y 2m} Vid
neous system. O ¢ = Znel* c(n)zy, Wherez, = z;, ...z, whenn = (ig...i0).

Clearly L, (o) is the maximum output energy one could expeatiow defineR(Z) as the set of polynomials ifi overR, andR? {(Z))
from initializing the homogeneous system:a0) = xo and applying as the set of formal power series # over R?. The (block) Hankel
any input with energy bounded hy. Whena = 0, we have the ob- mapping associated withis defined as th&-vector space morphism
servability function given in Definition 2.1. Adefining equation b’ #: R(Z) — RP((Z)), uniquely specified by the generalized shifting
analogous to (4) exists. We refer to [3] and [4] for the details. A smoogitoperty[H (z:)](n) = c(n ¢), wherey, ¢ € I*. In this context we
solution to this equation implies the existence§f and as is also the have the following definition.
case forL,, the converse can be stated. The following theorem givesDefinition 2.9: The Lie rankof a formal power series is defined
the relation between observability and positivitylgf . aspr(c) = dim(H(L(Z))), whereL(Z) denotes the smallest Lie

Theorem 2.7 [3], [4]: Suppose 0is an asymptotically stable equilibalgebra containing . O
rium of the systen(f, g, ) on a neighborhoot” of 0 and. (0) = 0. If An analytic state space realizatiorif, g, k) defined lo-
the systent f, g, h) is observable with respect 8, thenL’ (x) > 0 cally about xy is said to realize a formal power series: if

whenz € W, 2 # 0. U elig...ig) = Lx; Lx, ---Lx, h(zo) for every(ix...io) € I%,
o whereX; € {f,g1,...,9m}. Itis well known that if a certain growth
B. Balanced Realizations condition on the coefficients{c(1))},c/+ is satisfied, then there

Balanced realizations play an important role in a variety of realiz&xists a realization of if and only if the Lie rank ofc is finite. A
tion and control problems. The classic linear case was first introduce@lization(f, g, h) aboutzo of a formal power series is minimal
by Moore in [10]. The extension to the nonlinear case appears in [li#ijts dimension is less than or equal to the dimension of any other
and [15]. Consider a nonlinear system of the form (1) with smooth afigalization ofc. The following results characterize minimality.

well-defined controllability and observability functiah. andL,, re- ~ Theorem 2.10 [6]: An analytic realizatior(f, g. k) aboutzo of a
spectively, as in Definition 2.1. Additionally, assume the following. formal power series is minimal if and only if its dimension is equal
1) f(«) is asymptotically stable on some neighborhaodf 0. to the Lie rankp. (c). _ o U
2) The system is zero-state observableran Theorem 2.11 _[6]: An fin_alytlc_: reallzatloqf,_g, h) aboutx, of a
3) (8°L./d2) (0) > 0and(9°L,/dx>)(0) > 0. formal power series is minimal if and only if dimC(x¢) = » and

From Morse’s lemma, e.g., [8], one can bring the system into inpfi™ 7€ (x0) = n. =

normal form. Furthermore, by applying the Fundamental Theorem of
Integral Calculus and smoothness results from [7], the following input- [lI. MINIMALITY AND ENERGY FUNCTIONS
normal/output-diagonal results are obtained.

Theorem 2.8 [14]: Consider (1) with certain technical condition
(see [7] and [8]). Then there exists a neighborh&bdf 0 and a co- In this section we develop connections between the controllability
ordinate transformatiom = (=), ¥/(0) = 0, such that in the new function and the accessibility rank condition in order to apply The-
coordinates: € W := ¢~ *(U) the functionsL., andL, are of the orem 2.11. It is assumed throughout that the system (1) is asymptoti-

sA. The Controllability Function and the Accessibility Rank Condition

form cally stable on a neighborhodd of 0.
§ (2) 1= Lo(v(2)) = 17T, The following relation is easily deduced (following the lines of the
AT/ T ReATAR g proof of [13, Th. 13])
T1(2) 0
9 ol -0
Lo(2) :=Lo(¢(2)) = %3[ z L.(xo) = Ly (o) := inf 1 / u(t)||*dt  (8)
0 (z wELo(—1,0) 2 J_3
7 (2) o
wherer, (z) > ... > 7,(z) are the smootisingular value functions. 2(=00)=0, 2(0)=z0

- - o U and thus reachability from, implies well-definedness ok, for all
The form of the controllability and observability function is not yet, € M, and likewise forL.. However, reachability is not implied

entirely balanced. For that we need a simple additional coording{gm, 4 well-defined and positive definite.. For our application it is

transformation. We refer to [14] for the details on this matter. sufficient (as observed from Theorem 2.4) to consider only the antista-

bilizability of the solution of the Hamilton—Jacobi equation (5), which

is a condition that can be seen as reachability from 0 in infinite time
In this section we briefly review a theory of minimal state space r¢so-called asymptotic reachability from 0). This notion is formally de-

alizations for input—output systems that can be represented by a forifixgéd below.

power series (Chen—Fliess functional expansion). A detailed treatmenDefinition 3.1: System (1) is said to basymptotically reachable

may be found in [6]. Ultimately this leads to the well-known rank confrom =, on a neighborhoodV of z, if Vo € W there exists

ditions, which are necessary and sufficient conditions for a realizatiaru. € L2(0,00) such thaty(7,0,z0,u) € W for = > 0, and

to be minimal. limy oo (t,0, 20, u) = 2.

C. Minimal Realizations Via Formal Power Series
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System (1) is said to blecally asymptotically reachable fromy, if i) If f(ay) € Co(axo), then by continuityf(q) ¢ Co(q) for all
there exists a neighborhod# of x¢ such that the system is asymptot- ¢ € U, U C U is a neighborhood ok, and dimC(q) =
ically reachable from:y on every neighborhood C W of xy. O dimCo(gq) + 1 for all ¢ € U. In this case, one can select the

Clearly, this notion of asymptotic reachability corresponds tothe no-  coordinatestyi, ..., &, in such a way tha1S\lT,0 = {q €
tion of antistabilizability, which is related to the positivity and finite- Ul#rya(q) = T, #ry42(q) = ... = #a(q) = 0} contains
ness ofL. in Remark 2.3 and Theorem 2.4. B (x0, T') we denote RY(x0,T) for anyT > 0. Again, we have two cases: (a) If
the reachable set from, at time7" > 0, following the trajectories dim Co(x0) < n — 1, then this implies that alj € U such that
which remain in the neighborhood of z, for ¢ < T, and define q ¢ S, are not asymptotically reachable frar on V', and
RY (x0) := Ur<r R (w0, 7). In the following theorem, we obtain the thus the local asymptotic reachability fram is contradicted.
relation between local asymptotic reachability fram and local ac- (b) If dim Co(20) = n— 1, thenallg € U such thati, = — K,
cessibility from.o. K > 0, are not asymptotically reachable fram on . This

Theorem 3.2: Assume that the accessibility distributi6Ghhas con- concludes the proof. ™

stant dimension about,. Then local asymptotic reachability from
implies that the system is locally accessible from

Proof: Suppose that the system is not locally accessible frgm
then we know from standard results in the literature (e.g., [11]) that
dimC(xz0) = k < n.Hence from [11, Proposition 3.12] there musB. The Observability Function and the Observability Rank Condition
exist a neighborhoodl” of x, and local coordinates,, ..., z, such
that the submanifold., = {¢ € V|xi(¢) = wi(x0),i = k +

This theorem gives rise to corollaries similar to Corollaries 3.3 and
3.5, except with accessibility replaced by strong accessibility.

For the observability counterpart of the previous section we con-
) i | = i sider the observability functions as defined in (3) and (6). It is assumed
L,....n} containsRy (o) for any neighborhood” C V' of wo and  y,15,hout that (1) is asymptotically stable on a neighborida 0.
forall T > 0. This implies that all; € V" such thay ¢ 5., aré not  \ye giart with the observability function in (6) for which observability
asymptotically reachable fronn onV, and thus the local asymptotic .. respect to the input clasB. plays an important role. The cor-

rele)chablllty fror_mo IS cor_ltratdlcteld.t th itive definit responding results for the observability function (3) then follow as a
ur main aim now is to relate the positive definiteness a”é%ecial case whem = 0.

finiteness of the controllability function to the accessibility rank Lemma 3.7: Let LY be the natural observability function (6) for

condition. Note that havind.(x) finite on ¥ implicitly implies that ) N .
AT . . d some fixedv > 0.Assumethal, («) is smooth and finite for system
o(7,—00,0,u) € W forall 7 < 0. This, combined with Remark 2.3 (1) on a neighborhool” of 0. ThenZY (z) > 0 for & € W, x % 0,

and Theorem 2.4 gives rise to the following corollary. S ; :
Corollary 3.3: Assume that the accessibility distributi6rhas con- implies thaft (1) is locally obs_ervable at 0 with respectio. .
) : - . Proof: Assume that (1) is not locally observable at 0 with respect
stant dimension about 0, and assume thé locally asymptotically 4 -
to B.. Then the corresponding homogeneous system is also not locally

stable. If there exists a neighborhotid of 0 such that the controlla- . . S
bility function L.(x) is smo%th finite and satisfiek.(z) > 0 for observable at 0 with respect #,. Hence there exists an initial state

2 €V, 220, forallVV C W, then dimC(0) = n. O e #0 SU(Eh thath(¢(t,0,0,u)) = hp(t,0,z4,u),t > 0,Vu €
Remark 3.4: The above corollary is restricted by local requirement@_"_’ where,(-) denotes the so!l_Jtlon to homogeneous system. By def-

on L., since we need local asymptotic reachability from 0 in order ggition of the na_tL_Jr_aI obs%r\_/ablllty functlon,wyve have ttiz (0) = 0
use Theorem 3.2. Only asymptotic reachability on a neighborfiisod a1d Py the positivity ofZ," it follows that L, (va) > 0. However,

of 0 does not suffice. An example of a smooth system that is asynjf2M (6) it follows immediately that the maximum overe B, for
totically reachable on a neighborhodid of 0 and that is not locally POth states 0 an]gi,l results in the same optimal input This implies
accessible is easy to construct. However, if we assume thatdiipis thatZo (0) = L' (x.), and yields the desired contradiction to prove
lytic, then we can relax the local requirementslorto requirements on the lemma. S N u

a neighborhood¥” of 0. This is due to the fact that asymptotic reacha- Motivated by the minimality conditions of Theorem 2.11, we next
bility from =, implies local accessibility from, for analytic systems, obtain the following corollary, which follows straightforwardly from
e.g., [17] and [21]. Analyticity is actually not a strong restriction in oufh€ previous lemma and some standard results from [6] and [11].
setting, since it is also a standing assumption for the realization theonfeorollary 3.8: Assume that the observability codistributié® has

in Section II-C. [0 constant dimension about 0. If the natural observability function (6) is
The analysis in Remark 3.4 results in the following corollary. ~ smooth, finite and satisfies) (x) > 0forz € W,x # 0, then
Corollary 3.5: Let (1) be analytic. Assume that the accessibilitﬁlmdo(()) =n. O

distribution C' has constant dimension about 0, and assumefthat ~ Now, if we letor = 0, then we obviously return to the observability
asymptotically stable on a neighborholdd of 0. If the controllability ~function of (3), and the observability with respect to the input class
function L.(x) is smooth, finite and satisfiel. (=) > 0forx € W, becomes zero-state observability. The following special case of Corol-
x # 0, then dimC(0) = n. O lary 3.8 is useful in Section IV.

So far, the focus has been on the concept of local accessibility. How-Corollary 3.9: Assume that the zero-observability codistribution
ever, for the state space analysis presented in Section IV, we usedti® has constant dimension about 0. If the observability function
nonlinear counterpart of the Kalman decomposition, and thus we ng8)lis smooth, finite and satisfies.(x) > 0,2 € W, x # 0, then
to use the concept of local strong accessibility. The local strong accdan dO,(0) = n.
sibility version of Theorem 3.2 is given below. Remark 3.10:1t is interesting to compare the results of this sec-

Theorem 3.6: Assume that the strong accessibility distributiOn tion to those of the previous section. They do not completely follow
has constant dimension about. Then local asymptotic reachability along similar or “dual” lines. Specifically, the results related to the ob-
from 2y implies that the system is locally strongly accessible frem  servability functions as given by (3) and (6) are given in terms of the

Proof: Suppose that the system is not locally strongly accessilitero-state observability and observability rank condition, respectively.
from o, then we know from standard results in the literature (e.g., [L1tarting with the rank conditions the converse of Corollaries 3.8 and
that dimCy(z9) = & < n. Hence from [11, Proposition 3.22] there3.9 also hold by applying Theorem 2.5. However, for the controlla-
are two possibilities: bility function, we are considering asymptotic reachability which im-

i) If f(xo) € Co(xo), then the proof here follows similar to the plies local accessibility, which in turn can be related to the accessi-
Proof of Theorem 3.2. bility rank condition. The reverse direction is far less obvious in this
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case, however, because accessibility from 0 is not sufficient for asyntpy = spar{d/dx*,3/8+*} and kerd©®y = spar{d/ds?,8/9x*}.
totic reachability from 0. If asymptotic reachability can somehow b&he system takes the form
assumed for a given system, then the converse of Corollaries 3.3 and

3.5 would follow for the controllability function. Mo (,rl, r“) N Z ! (,rl, 2, 14) " 10)
C. Sufficient Conditions for Minimality =
Briefly summarized below is a main result of the paper. it =t ) + Z gi (@' e? 2 ) ey (1)
Theorem 3.11:Assume that the observability codistributi@® (or 7=l
the zero-observability codistributiai©,, respectively) and the acces- it =f? (rg) (12)
sibility distributionC' of a system(f, g, i) each have constant dimen- it =t (lﬁ’ lfl) (13)
sion about 0. Furthermore, assume that the analytic systemn) is 13
a realization of the formal power seriesand thatf () is asymptoti- y=h(z27). (14)
cally stable. Then, i) < L.(x) < oc and0 < LY (x) < oo (or o o _
0 < Lo(x) < oc, respectively) for € W, x # 0, then(f. g. k) is Proof: The proof is similar to that given in [11,_ Th. 3.51], which
a minimal realization of. [ uses Frobenius’ theorem. The primary difference is that here we deal

These conditions are not necessary due to the fact that, contrary{§) the zero-observable partinstead of the observable part. Therefore,
the linear case, accessibility and controllability are not equivalent {ar this proof it is enough to observe that the codistributitifl, is
general. Only under additional assumptions can a converse resuliB@riant for the dynamics = f(x) sinceL ;dOo C d0,. Hence ker
obtained. dQo = spar{d/d=?} is an invariant distribution foi: = f(«). Since

kerdQq C kerdh, the theorem is proven. [ |
Remark 4.2: Another way to view the difference between the de-
IV. LOCAL STATE DECOMPOSITIONS composition above and that given by [11, Th. 3.51] is in the form of
the input vector field in (10). For zero-state observability, the input

For linear systems it is well known that the Hankel singular valuggctor field does not matter, while for the more general concept of ob-
are independent of the chosen state space realization and only deggitdability itmaymatter. That means that andzs are zero-state ob-
on the input—output behavior of the system. In fact, they are the sigervable, and thus observable, and thatndz, are not zero-state
gular values of the Hankel operator of the system (e.g., Glover [2]).dbservable, but they still may be observable! However, since we are
we consider a nonminimal linear state space system with controllabiliterested only in the Hankel structure, and specifically in the singular

Gramiani¥” and observability Gramiah/, the nonzero eigenvalues of yalue functions of the nonlinear system, the above decomposition is the
MW correspond exactly to the squared Hankel singular values, ap@st suitable. O

the number of zero eigenvalues@fi¥” equals the difference between | et n, be the dimension of’, i = 1,2, 3,4, and let}” be a neigh-
the state-space dimension of the given system and the state spacggthood of 0 where the decomposition above is valid. Then clearly
mension of any minimal representation. In this section we extend thgge), (12), and (14) form the zero-state observable part of the system,
observations to the nonlinear setting. We are interested iblémkel while (10) and (11) is the strongly accessible part of the system. To
structure of the system and the related nonlinear balancing concept pigsure that for (10), (12), and (14) the observability function exists,
sented in Section 1I-B. Since the system Hankel operator correspoRg@sassume that in these local coordinates equation (4) in Theorem 2.2
to the mapping from past inputs to future outputs (where the inputiigs a smooth solution fde:', 0, 4%,0) € Y. Furthermore, note that
zero for positive time) we consider the controllability function as de-2 (2%)?, f4(2*, 2*)*)" is asymptotically stable, and by the form of
fined in (2) and the observability function as defined in (3). (12) and (13) itis impossible for ( f (x:)4+g(x)g(x)T (8T L./0x) ()

Consider the nonlinear system (1) and assume that it is localty be asymptotically stable dri. To assure that for (10) and (11) the
asymptotically stable. In this section we dwt assume local controllability function exists, we assume that in these local coordi-
zero-state observability, and hence the observability function is neites equation (5) has an antistabilizing solution as in Theorem 2.2 for
necessarily positive definite. Furthermore, we wat assume that (', 2%,0,0) € Y. In fact, the assumption on the existence of the con-
—(f(x)+g(x)g(x)" (0" L./0x) (x)) is locally asymptotically stable trollability function for the strongly accessible part of the system im-
(or in other words: we daotassume asymptotic reachability from 0) plies thatthe part of the system that is asymptotically reachable from 0
and thus the controllability function need not be finite foraall corresponds exactly to the strongly accessible part of the system

One can use Frobenius’ theorem to construct the zero-state observFheorem 4.3:If the above assumptions on existence of solutions
able “part” of the system. In order to be able to do the same for th@d antistabilizing solutions to (4) and (5), respectively, on parts of the
asymptotically reachable “part” of the system, one must consider tSgite space are fulfilled, then:
part of the state space system that is asymptotically reachable from O

sl g2 3 4 R g
ie. where 1) Lo(x, 2%, 2°,2%) > 0 whenever(z", 2%, 2°,2%) € Y, and

(', 2%) # (0,0);
o1 2) L,(0,2%,0,2%) = 0forall (0,2%,0,2*) €Y}
_ <f(,r) + g(x)g" (2) ¢ (m)) 9) 3) L.(2', 2% 2% 2") is infinite whenever(z', 2%, 2, 2*) € Y,
Ow (2, 2%) # (0,0);

) . . _ 4)0 < L(z%2%,0,0) < oo forall («*,27%,0,0) € Y,
is asymptotically stable. In the linear case this part equals the control- (x4, 2%) # (0,0)

lable part of the system. In the nonlinear case, the converses of Theo- )
rems 3.2 and 3.6 are not always true. So, in order to be able to construct PJOOf_Pr?Ofk ~of 1) and 2t is clear that
a decomposition analogous to the known nonlinear generalization”dpvw'(T)woa_l’ (7)) = 0 forall - > 0. By the form of (10) and
the Kalman decomposition (e.g., [11, Th. 3.51]), we must consider thE2) We obtain that
strongly accessible part of the system. -
Theorem 4.1: Assume that the distributionS,, kerd©®, andCy + L,(0,2%,0,2%) = 1 / 1(0,2%(7),0, m4(,.))'f
ker dO, all have constant dimension and tidat+ ker dQO; is involu- 2
tive. Then one can find local coordinates= («', 2, z*, #*) such that 1 (0,2%(7),0,2" (1)) dT = 0
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forw = 0, and for all(0,«,0,2*) € Y. Again, by the form of S/ S S /) S S

(10), (12), and (14) we then have, (2!, 2%) = Lo(z!, 2%, 2%, 2)
for u = 0, whereL, is the observability function of (10), (12), and
(14). By assumptior, = L, exists and is smooth. By Theorem 2.5
Lu(wl,;vz,ars,ar4) = Z:U(xl,ars) > 0 for (a:l,;v3) #(0,0).

Proof of 3) and 4): The controllability functionL. must satisfy
(2). Since the system formed by (12) and (13) is asymptotically
stable, it follows immediately thaf..(z', 2%, 2°, 2*) = oo for
all (z',2% 2%, 2*) € Y, with (z*,2*) # (0,0). By Theorem
2.2 L.(z',2%,0,0) < oo for all («',2%,0,0) € Y. Further-
more, by Theorem 2.4 it follows that. (', z%,0,0) > 0 for all
(a',2%,0,0) €Y, (2, 2?) # (0,0). ]

Remark 4.4: L. is infinite on the subsystem thatri®t strongly ac-
cessible. Hence, that subsystem is aisb asymptotically reachable
from 0. This in essence yields another proof of Theorem 3.6. [0  Fig. 1. The double pendulum.

Remark 4.5: Now assume that the full system is locally accessible
(remember that this is, together with local observability, a condition V. EXAMPLES
that implies minimality), buhotlocally strongly accessible. We know
from Theorem 4.3 that the states which are not locally strongly ac- The first example is an academic one meant to simply illustrate the
cessible force the controllability functioh. to become infinite. Thus, basic theory presented in this paper. The second example is physical
one can conclude, contrary to the linear case, that minimality for a ndi-nature and reveals some computational issues related to solving

linear system as discussed in the previous sectionsradesisure that Hamilton—Jacobi equations.

the controllability function is finite. O Example 5.1: Consider the following system (1), where:

Remark 4.6: The observability counterpart to Remark 4.5 is similar, —x + 2
but in fact easier to describe. Assume that the full system is locally ob- flz) = —xy — )
servable, bunotlocally zero-state observable. We know from Theorem —z3 + 2122 + x32% — 23
4.3 that the part of the system which is not locally zero-state observable : s
corresponds to the observability functiép being zero. Thus one can 0 - \/2 = 2(z1 + 23)% + 223
conclude, again contrary to the linear case, that minimality for a non- g)=| 0 V2=2(x1 + a3)? + 242
linear system doesotensure the observability function to be positive. S
However, we have introduced the natural observability funcifnin V2 2= 2(x0 +a3)% + 243
Section II-A. For this function to be positive definite, we only need ob- 9 I

e . .. 21L1 + 2.L3

servability with respect td,., and not the more restrictive zero-state h(x) = NG

observability. If observability with respect 8., is equivalent to ob- . . i ) )
servability (which is not very restrictive, since we only require the inpukhiS System is asymptotically stable and analytic on a neighborhood
to have finite energy), we can repeat the analysis of this sectidi/for of 0. The rank qf the access_lblllt_y distributian at 0 is 2 (it is easily
with zero-state observability replaced by observability. The new an&fen that the Lie bracket directions are already give9), and
ysis results in the generalized Kalman decomposition as found in [143(0))- The accessibility distribution equals in this case the strong-ac-
and straightforwardly we obtain similar results asEar, with the addi- cessibility distribution. The rank of the observability codistributith
tional property that fo. ) the results do coincide with the usual resultéit 0 is also 2 (the two directions of the zero-state observability codistri-
for the observability function in the linear case. 0 butionin O are given by%1(0), anddh»(0)). The observability codis-

If additionally one assumes th&b?L,)/(9=')?(0) > 0 and tribution equals in this case the zero-state observability codistribution.
(0°L.)/(dx")*(0) > 0, then it becomes clear from Theorem 4.3BY Corollaries 3.5 and 3.9 we know now that there exist R* such
that L,(z',0,0,0) and L.(x",0,0,0) may be transformed into thatL.(xz) = 0 with z # 0 andL.(x) infinite, with 2 finite. Now, to
the form of Theorem 2.8. In fact, there exists a logalcoordinate bring the system in the form of Theorem 4.1 apply the transformation

transformationz* = ¥(z), ¥(0) = 0, (v~ '(z"),0,0,0) € Y, 0 -1 1

such thatL.(¥(2).0,0,0) and L,(¢'(z),0,0,0) are in the form — , —7.—= [0 1 0|z

of Theorem 2.8. Thus this part of the system may be bal- 1 1 _1

anced on a neighborhood of 0 with singular value functions L, /3

7i(2) > ... > 7.,(2). Furthermore, if we also considef, then = ""1332 Tuiv2, . : Y= 2z

there exist local coordinates:',-2) = o~ '(z'.2?) such that eN{ 2= —z — 2 +u2y/2 — 227 + 225 o = V220
Lo(6(21,22),0,0) = (1/2)2" 2' + (1/2)2* 2. Now write i3 = -z,

Lo(6(z',2%),0,0) = (1/2)(:1T ;2T)A/I(21122)(21T ;2T)Tl If Obviously, z3 is the nonaccessible and nonobservable part of
the assumptions of Theorem 2.8 are fulfilled, one may diagonalifke system. By Theorem 4.3, we have tHaf(0,0,z3) = 0, that
M(z"',2?). The functions on the diagonaty(z',22) > ... > Lo(z1,22.23) > 0for (z1,22) # (0,0),that0 < Leo(z1,22,0) <
Ty ing (21, %) are such that;(z',0) = 7i(z),i = 1....,ny, and 0, and thatL.(z, z2, z3) is infinite for z3 # 0. This also directly
7;(0,2?) = 0,j = n1 + 1,...,n1 + nz. This is analogous to the follows from trying to solve the corresponding Hamilton—Jacobi

linear case, where the unobservable part corresponds to zero Hagilations (4) and (5). For the, z2) subsystem (i.e., the minimal
singular values. Note that it is not possible to transform the whosélbsystem) note thét. andL, are already in the form of Theorem 2.8,
system into the form of Theorem 2.8, sinkg(0, 0, 2%, 2*) is infinite,  i.€.,Le(2) = (1/2)z"z andLo(z) = (1/2)=" diag2,1 + ={)z. The

but this is still in agreement with the linear theory, since here we aséhgular value functions are therefargz) = 2 andra(2) = 1 + 22,
dealing with the “inverse of the controllability Gramian.” Hence that |

part of the system that is not strongly accessible yields an “inverse ofExample 5.2: Consider a frictionless double pendulum (or two-link
the controllability Gramian” that is infinite, and thus a “controllabilityrobot manipulator) with control torque applied at the first joint; see
Gramian” that is singular. Fig. 1. The dynamics of such a double pendulum may be obtained via
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Fig. 2. The controllability (left) and observability (right) functions for Example 5.2.

the Hamiltonian formalism. We derive the equations for the simptaen

Hamiltonian form in order to be able to consider the associated gra- Lo(x) = lJ,TNJ, + Lh(l,)

dient system, which is of smaller order, and therefore computation- ¢ 2 ¢

ally easier to handle, but still captures the physical properties of the _P(x) o'V (¢) = — RQu + f"(x)

system. Furthermore, the frictionless system is only Lyapunov stable, ox T e

but not asymptotically stable, while the associated gradient system is 1 OO = 1 THT Ha + 0" (o 17
asymptotically stable, and thus fulfills the requirements of this paper. 2 ()" C(2) 2" e+ 8 (@) 7

Let# = (61,62) andf = (#:,6-). The kinetic coenergy is given by whereL! (), " (=) and#” () contain higher-order terms (beginning
the sum of the kinetic coenergies of the massasandm., respec- with degrees 3, 2, and 3, respectively). The Lyapunov type equation (4)
tively. This yields the equations shown at the bottom of the page. Naiglits into two parts: the first part is the Lyapunov equation of the ob-
that M (¢) is a positive definite matrix for ever§. Similarly the po-  servability Gramian of the linearized gradient system, while the second
tential energyy” is the sum of the potential energies of the two massegart is a higher-order equation. Thah order termd.\™ (z) of L,(z)
i.e,V(0) = —migli cos 01 — magly cos 61 — magls cos(f1 + 62).  can now be computed inductively for > 3. Denote thenth order
Defineq := ¢, andp := M(#)f, thusq = M(q) 'p. Furthermore, termsin(dL,/dx)f" () + 6" (x) by K,.(x). Then, since- RQ has
denote byQ the manifold with local coordinates , ¢. The Hamil-  all eigenvalues in the left half-plane, it follows that
tonianH can be written asl (¢,p) = 1p" M(¢)~'p + V(q), where oLl
the kinetic energy in théy, p) coordinates is given by the Riemannian °
metric M (¢) on @ andV (g) is the potential energy. We obtain that Ox oo
the output mapC' is given byC(¢) = ¢1. In the (¢,p) coordinates = / K., (e_HQ‘x> dt. (18)
the equations of the double pendulum in simple Hamiltonian form are 0
given by It is easily seen thatK,.(x) only depends onZL{™ %,
 OH L2 LY, and therefore (18) determinds™ inductively
=%, (a.p) starting from L' = (1/2)2" Na. This procedure can also be
OH 1 followed for the controllability functiorl.. It yields for our gradient
p=— N (¢,p) + <0) u system the following result:

y=(1 0)q (15) Lo(x1,22) =0.03437527 + 0.0021228627 + 00187512
— 0.00465962, x5 — 0.00168806x7 x5
T . + 0.00015811x} x5 + 0.00312523
&= —P(x) 80 v (x) + P(x) <0) u, y=(1 0)z. (16) — 0.000909133z5
Jx .

_ L.(x1,32) =360x; — 107.41127 + 400z, 2
Here, we only consider the case whére= 1> = 1, andm, = 94 16671 2% — 191.252222
mo = 1. Mathematica software was employed to approximately solve e ‘l}i‘% - : 2 L1 ,
the Hamilton—Jacobi equations for the observability and controllability — 230.595x vy + 12025 + 21.875x5.
function, L, andL., for the gradient system (16). Specifically, (4) and - Examining these functions near the origin (see Fig. 2) it is evident
(5), are solved up to order 4 using an iterative procedure from Luk@fat they are strictly positive, and hence, the system is minimal. This

(2)RQu = K, (z) = LI (2)

Let P(q) = M(q)~'. The associated gradient system is given by

[9]. If we write corresponds to our physical intuition. Observe that the observability
_ 9%L, function is quite close to zero at some values. This gives us a kind
N= 922 (0), R=P(0) of measure for “weak” zero-observability. Likewise, for the controlla-
92V aC bility function we can make a similar observation for “weak” asymp-
Q=570 =5, 0 totic reachability. O

Gy 14T, oy ‘ :
T(0) = 29 M(9), M(6) < mglé + molils cos B2 1‘11,215

mllf + mgl}z + 77121% + 2molils cos B2 mglg + molils cos 02 )
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