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 a b s t r a c t

This work introduces a novel application of the Algebraic Dynamic Multilevel (ADM) method for 
simulating CO2 storage in deep saline aquifers. By integrating a fully implicit coupling strategy, 
fully compositional thermodynamics, and adaptive mesh refinement, the ADM framework effec-
tively models phenomena such as buoyancy-driven migration, convective dissolution, and phase 
partitioning under various subsurface conditions. The method starts with the construction of a 
hierarchy of multilevel grids and the generation of localized multiscale basis functions, which 
account for heterogeneities at each coarse level. During the simulation, the ADM method dynam-
ically refines areas with significant overall CO2 mass fraction gradients while coarsening smooth 
regions, thus optimizing computational resources without compromising the accuracy required to 
capture essential flow and transport characteristics. This dynamic grid adjustment is facilitated by 
algebraic prolongation and restriction operators, which map the fine-scale system onto a coarser 
grid suited to the evolving distribution of the CO2 plume. This feature allows the ADM to navigate 
various coarsening thresholds efficiently, striking a trade-off between computational economy and 
detailed simulation accuracy. Even at relatively higher thresholds, key trapping mechanisms are 
captured with sufficient detail for quantification. These capabilities make the ADM framework 
well suited for long-term CO2 sequestration in highly heterogeneous reservoirs, where large-scale 
models may otherwise become impractically expensive, offering a practical balance between the 
need for detailed simulations and manageable computational requirements. Overall, the ADM 
framework proves to be a robust tool for designing, monitoring, and analyzing large-scale CO2
storage operations, supporting reliable and cost-effective solutions in carbon management.

1.  Introduction

Carbon capture and storage (CCS) is a promising technology for mitigating greenhouse gas emissions by sequestering CO2 from 
fossil fuel sources [1,2]. In a typical CCS operation, the compressed supercritical CO2 is injected into suitable geological formations, 
such as depleted hydrocarbon reservoirs and deep saline aquifers [3,4]. Saline aquifers are particularly attractive for large-scale 

∗ Corresponding author.
 E-mail addresses: m.zhao-2@tudelft.nl (M. Zhao), m.i.gerritsma@tudelft.nl (M. Gerritsma), mohammed.alkobaisi@ku.ac.ae (M. Al Kobaisi), 
h.hajibeygi@tudelft.nl (H. Hajibeygi).

https://doi.org/10.1016/j.jcp.2025.114202
Received 19 March 2025; Received in revised form 19 June 2025; Accepted 26 June 2025

Journal of Computational Physics 539 (2025) 114202 

Available online 8 July 2025 
0021-9991/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/jcp
https://www.elsevier.com/locate/jcp
https://orcid.org/0000-0003-4726-5164

$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$_2$


$n_\text {ph}$


$n_c$


\begin {equation}\frac {\partial }{\partial t} \left (\phi \sum _{\alpha =1}^{n_\text {ph}} x_{c,\alpha } \rho _\alpha S_\alpha \right ) + \nabla \cdot \sum _{\alpha =1}^{n_\text {ph}} \left ( x_{c,\alpha } \rho _\alpha \mathbf {u}_\alpha + S_\alpha \rho _\alpha \mathbf {J}_{c,\alpha } \right ) - \sum _{\alpha =1}^{n_\text {ph}} x_{c,\alpha } q_\alpha = 0, \label {Xeqn1-1}\end {equation}


$t$


$\phi $


$\alpha \in \left \{ w,n \right \}$


$c$


$\rho _\alpha $


$S_\alpha $


$q_\alpha $


$\alpha $


$x_{c,\alpha }$


$c$


$\alpha $


$\mathbf {u}_\alpha $


\begin {equation}\mathbf {u}_\alpha = - \frac {\mathbf {k} k_{r,\alpha }}{\mu _\alpha }(\nabla P_\alpha + \rho _\alpha \mathbf {g}), \label {Xeqn2-2}\end {equation}


$\mathbf {k}$


$k_{r,\alpha } = k_{r,\alpha } (S_\alpha )$


$\mu _\alpha $


$\mathbf {g}$


$\mathbf {J}_{c,\alpha }$


\begin {equation}\mathbf {J}_c,_\alpha = - \phi D_{c,\alpha } \nabla x_c,_\alpha , \label {Xeqn3-3}\end {equation}


$D_{c,\alpha }$


$c$


$\alpha $


$P_\alpha $


$P_c$


\begin {equation}P_n - P_w = P_c (S_w), \label {Xeqn4-4}\end {equation}


\begin {equation}\sum _{\alpha =w,n} {S_\alpha = 1}, \ \text {and} \sum _{c=\text {CO$_2$,H$_2$O}} {x_{c,\alpha } = 1}. \label {Xeqn5-5}\end {equation}


\begin {equation}f_{c,\alpha }\left (p, x_{c,\alpha }\right ) - f_{c,\beta }\left (p, x_{c,\beta }\right ) = 0, \quad \forall \alpha \neq \beta \in \{1, \ldots , n_\text {ph}\},\;c \in \{\text {CO$_2$}, \text {H$_2$O}\}, \label {Xeqn6-6}\end {equation}


$f_{c,\alpha }$


$c$


$\alpha $


$K$


\begin {equation}K_c = \frac {x_{c,n}}{x_{c,w}}, \label {Xeqn7-7}\end {equation}


$x_{c,n}$


$x_{c,w}$


$c$


$K$


$K$


$V$


\begin {equation}\sum _{c=1}^{n_c} \frac {z_c (K_c - 1)}{1 + V(K_c - 1)} = 0, \label {Xeqn8-8}\end {equation}


$z_c$


$c$


\begin {equation}z_c = \frac {\displaystyle \sum \limits _{\alpha = 1}^{n_{\text {ph}}} x_{c,\alpha }\rho _\alpha S_\alpha } {\displaystyle \sum \limits _{\alpha = 1}^{n_{\text {ph}}} \rho _\alpha S_\alpha }, \label {Xeqn9-9}\end {equation}


$^\circ $


\begin {equation}\frac {1}{\rho _w (p_w,T,x_{\text {CO}_2,w})} = \frac {1 - x_{\text {CO}_2,w}}{\rho _w(p_w, T)} + \frac {x_{\text {CO}_2,w}}{\rho _{n,\phi }(T)}, \label {Xeqn10-10}\end {equation}


$T$


$M_{\text {CO}_2}$


$\rho _{n,\phi }$


$p_w$


$z_{\text {CO}_2}$


$p_w$


$z_{\text {CO}_2}$


$t + 1$


$r_c^{t+1}$


$c$


$\langle i \rangle $


\begin {equation}\begin {aligned} r^{t+1}_{c,\langle i \rangle } =\; & \frac {V_{\langle i \rangle } \phi _{\langle i \rangle }}{\Delta t} \sum _{\alpha =1}^{n_\text {ph}} \left ( x^{t+1}_{c,\alpha ,\langle i \rangle } \rho ^{t+1}_{\alpha ,\langle i \rangle } S^{t+1}_{\alpha ,\langle i \rangle } - x^{t}_{c,\alpha ,\langle i \rangle } \rho ^{t}_{\alpha ,\langle i \rangle } S^{t}_{\alpha ,\langle i \rangle } \right ) \\ & + \sum _{j=1}^{N_n} \sum _{\alpha =1}^{n_\text {ph}} \left . \left ( x_{c,\alpha } \rho _\alpha \mathbf {u}_\alpha + S_\alpha \rho _\alpha \mathbf {j}_{c,\alpha } \right )\right |^{t+1}_{\langle ij \rangle } \cdot \vec {\mathbf {n}} \\ & - \sum _{\alpha =1}^{n_\text {ph}} x^{t+1}_{c,\alpha ,\langle i \rangle } q^{t+1}_{\alpha ,\langle i \rangle } = 0, \end {aligned} \label {Xeqn11-11}\end {equation}


$t$


$t+1$


$N_n$


$i$


$\vec {\mathbf {n}}$


\begin {equation}r_c^{\nu +1} \approx r_c^{\nu } + \left .\frac {\partial r_c}{\partial p_w} \right |_{\nu } \delta p^{\nu +1}_w + \left .\frac {\partial r_c}{\partial z_{\text {CO}_2}} \right |_{\nu } \delta z^{\nu +1}_{\text {CO}_2}, \label {Xeqn12-12}\end {equation}


$\nu $


$\nu +1$


$\delta p^{\nu +1}_w$


$\delta z^{\nu +1}_{\text {CO}_2}$


$\nu + 1$


\begin {equation}\underbrace { \begin {bmatrix} J^{\nu }_{\text {CO}_2,p_w} & J^{\nu }_{\text {CO}_2,z_{\text {CO}_2}} \\ J^{\nu }_{\text {H}_2\text {O},p_w} & J^{\nu }_{\text {H}_2\text {O},z_{\text {CO}_2}} \end {bmatrix} }_{\mathbf {J}^\nu } \underbrace { \begin {bmatrix} \delta p_w^{\nu +1} \\ \delta z_{\text {CO}_2}^{\nu +1} \end {bmatrix} }_{\delta \xi ^{\nu +1}} = - \underbrace { \begin {bmatrix} r^{\nu }_{\text {CO}_2} \\ r^{\nu }_{\text {H}_2\text {O}} \end {bmatrix}. }_{r^\nu } \label {Xeqn13-13}\end {equation}


$\mathbf {J}^\nu $


$\delta \xi ^{\nu +1}$


$r^\nu $


$10^{-5}$


$10^{-4}$


${It}_\text {max}$


$z_{\text {CO}_2}$


$t$


$t + 1$


$t$


$z_{\text {CO}_2}$


$\Omega _l^I$


$\Omega _l^J$


$l$


$i$


$j$


$\Omega _l^I$


$\Omega _l^J$


\begin {equation}\Delta z_{I,J} = \max _{\substack {i\in \Omega _l^I,\ j\in \Omega _l^J}} \bigl \lvert z_i - z_j\bigr \rvert , \label {Xeqn14-14}\end {equation}


$\Delta z_{I,J}$


$I$


$l$


$l-1$


$N_f = N_{fx} \times N_{fy} \times N_{fz}$


$n_l$


$l=0$


$l$


$l$


$N_l = N_{lx} \times N_{ly} \times N_{lz}$


$\gamma ^l$


\begin {equation}\gamma ^l = \bigl (\gamma ^l_x,\gamma ^l_y,\gamma ^l_z\bigr ) = \Bigg (\frac {N_{x}^{l-1}}{N_{x}^l},\frac {N_{y}^{l-1}}{N_{y}^l},\frac {N_{z}^{l-1}}{N_{z}^l}\Bigg ), \label {Xeqn15-15}\end {equation}


$l$


\begin {equation}\underbrace {\hat {\mathbf {R}}_l^{l-1} \cdots \hat {\mathbf {R}}_1^{0} \mathbf {J} \hat {\mathbf {P}}^1_{0} \cdots \hat {\mathbf {P}}^l_{l-1}}_{\mathbf {J}_{\text {ADM}}} \delta \xi _l^{\text {ADM}} = -\underbrace {\hat {\mathbf {R}}^{l-1}_l \cdots \hat {\mathbf {R}}^{0}_1 r_f}_{r_{\text {ADM}}}, \label {Xeqn16-16}\end {equation}


$\mathbf {J}$


$r_f$


$\delta \xi _l^{\text {ADM}}$


$l$


$\hat {\mathbf {R}}_l^{l-1}$


$l-1$


$l$


$\hat {\mathbf {P}}^l_{l-1}$


$\mathbf {R}$


$\mathbf {P}$


\begin {equation}\mathbf {R}_{l}^{l-1} = \begin {pmatrix} (R_{p})^{l-1}_l & \mathbf {0} \\ \mathbf {0} & (R_{z})_l^{l-1} \end {pmatrix}_{N_l \times N_{l-1}}, \label {Xeqn17-17}\end {equation}


\begin {equation}\mathbf {P}_{l-1}^{l} = \begin {pmatrix} (P_p)^{l}_{l-1} & \mathbf {0} \\ \mathbf {0} & (P_z)_{l-1}^{l} \end {pmatrix}_{N_{l-1} \times N_l}, \label {Xeqn18-18}\end {equation}


$p$


$z$


$(R_p)_{l}^{l-1} = (R_z)_{l}^{l-1}$


$(R_p)_{l}^{l-1}$


\begin {equation}(R_{p})_l^{l-1}(i, j) = \begin {cases} 1 & \text {if cell } j \text { is inside coarser cell } i, \\ 0 & \text {otherwise}. \end {cases} \label {Xeqn19-19}\end {equation}


$l$


$\delta \xi _f$


\begin {equation}\delta \xi _f \approx \delta \xi '_f = \hat {\mathbf {P}}^1_f \dots \hat {\mathbf {P}}_{l-1}^{l} \delta \xi _l^{\text {ADM}}. \label {Xeqn20-20}\end {equation}


$N_C$


$\Omega ^C_{i}$


$i \in \left \{1, \ldots , N_C \right \}$


$N_D$


$\Omega ^D_{j}$


$\Omega ^D_{j}$


\begin {equation}\left \{ \begin {aligned} -\nabla \cdot \left ( \lambda \cdot \nabla \Phi _j^k \right ) &= 0 \quad &&\text {on } \Omega ^D_{j}, \\ -\nabla _{\parallel } \cdot \left ( \lambda \cdot \nabla \Phi _j^k \right )_{\parallel } &= 0 \quad &&\text {on } \partial \Omega ^D_{j}, \\ \Phi _j^k(x_i) &= \delta _{ki} \quad &&\forall \, x_i \in \{1, \ldots , N_C\}. \end {aligned} \right . \label {Xeqn21-21}\end {equation}


$\lambda $


$\Phi _j^k$


$k$


$\Omega ^D_j$


$\delta _{ki}$


$\parallel $


$\partial \Omega ^D_j$


$x_{\text {CO}_2}$


$z_{\text {CO}_2}$


$t$


\begin {equation}\epsilon _x(t) = \frac {\|x_{\text {CO}_2}(t) - x_{\text {CO}_2,f}(t)\|_1}{N_f}, \label {eq1}\end {equation}


$x_{\text {CO}_2,f}$


$N_f$


$t$


\begin {equation}\epsilon _P(t) = \frac {\sqrt {\frac {1}{N_f} ||P_{w}(t) - P_{w,f}(t)||^2_2}}{P_{bc}}, \label {Xeqn23-23}\end {equation}


$P_{w,f}$


$P_{bc}$


\begin {align}&\epsilon _x = \text {mean} (\epsilon _x(t)), \label {Xeqn24-24}\\ &\epsilon _P = \text {mean} (\epsilon _P(t)). \label {Xeqn25-25}\end {align}


$x-z$


$100$


$\mathrm {m}$


$50$


$\mathrm {m}$


$10$


$\mathrm {m}$


$x_{\text {CO}_2} = 0.03$


$y_{\text {H}_2\text {O}} = 1.0 \times 10^{-4}$


$\times $


$2 \times 10^{-9}$


$^2$


$\gamma = 5 \times 5$


$\Delta z_{\text {CO}_2}$


\begin {align}F = h \phi \frac {\partial \overline {x}_{\text {CO}_2}}{\partial t}, \label {Xeqn26-26}\end {align}


$h$


$\overline {x}_{\text {CO}_2}$


$100 \times 50$


$t_{peel} = 350$


$1/t^2$


$\Delta z_{\text {CO}_2}$


$\Delta z$


$\Delta z =$


$\Delta z_{\text {CO}_2}$


$100$


$\mathrm {m}$


$\times $


$28$


$\mathrm {m}$


$\times $


$19$


$\mathrm {m}$


$\phi = 0.2$


$k$


$\times $


$^{-14}$


$^2$


$\times $


$^{7}$


$\times $


$^{-5}$


$\times $


$^{7}$


$1$


$\mathrm {m}$


$\times $


$\times $


$x$


$y$


$z$


$z_{\text {CO}_2}$


$\times $


$^{-6}$


$100$


$\mathrm {m}$


$\times $


$28$


$\mathrm {m}$


$\times $


$19$


$\mathrm {m}$


$199$


$\mathrm {m}$


$\times $


$55$


$\mathrm {m}$


$\times $


$19$


$\mathrm {m}$


$397$


$\mathrm {m}$


$\times $


$109$


$\mathrm {m}$


$\times $


$19$


$\mathrm {m}$


$\Delta x = \Delta y = \Delta z$


$1$


$\mathrm {m}$


$2.8$


$\mathrm {m}$


$1.2$


$\mathrm {m}$


$0.01$


$\mathrm {m}$


$\times $


$1.1\times 10^5$


$10^{-6}$


$1.7\times 10^{-7}$


$k_r$


\begin {equation}k_{r,\alpha } = \left ( \max \left ( \frac {S_\alpha - S_{\alpha ,\text {imm}}}{1 - S_{\alpha ,\text {imm}}},\, 0 \right ) \right )^2, \label {Xeqn27-27}\end {equation}


$S_{\alpha ,\text {imm}}$


$\alpha $


\begin {equation}P_c = P_{c,\text {max}} \cdot \text {erf} \left (\frac {P_\text {entry}\cdot (S_{w,n})^{-\frac {1}{2}}}{P_{c,\text {max}}}\cdot \frac {\sqrt {\pi }}{2}\right ), \label {Xeqn28-28}\end {equation}


$S_{w,n}$


$P_\text {entry}$


$P_{c,\text {max}}$


$2500$


$\mathrm {Pa}$


$\gamma = 3 \times 3$


$\Delta z_{\text {CO}_2}$


$\Delta z_{\text {CO}_2}$


$\Delta z_{\text {CO}_2}$


$\Delta z_{\text {CO}_2} = 1\text {e}{-4}$


$8.4$


$\mathrm {km}$


$1.2$


$\mathrm {km}$


$1$


$\mathrm {m}$


$847 \times 127$


$0.035$


$\mathrm {kg}/\mathrm {s}$


$k_z = 0.1k_h$


\begin {align}P_\text {entry} = \sqrt {\frac {\phi }{k_x}} \cdot 6.12 \times 10 ^ {-3} \text {N/m}. \label {Xeqn29-29}\end {align}


$6.12 \times 10 ^ {-3}$


$\Delta z_{\text {CO}_2} \in \{0.1,\ 0.05,\ 0.01,\ 0.001\}$


$\gamma = 3 \times 3$


$\Delta z = 0.1$


$\Delta z = 0.001$


$\Delta z$


$\Delta z$


$\Delta z$


$\Delta z=0.001$
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CO2 storage because of their extensive pore space and broad geographic distribution, providing a reliable and secure long-term CO2
sequestration option [5–7]. Once injected, supercritical CO2 is immiscible with the resident brine. As CO2 dissolves in the brine, it 
increases the density of brine, thus reducing the risk of CO2 migration upwards [8].

Accurately simulating the behavior of CO2 under various forces in different subsurface structures is important for effective CCS 
strategy optimization [9] and risk assessment [10]. However, the interplay between strongly heterogeneous properties of rock (e.g. 
permeability) and the complex and coupled multiphase, multicomponent dynamics of CO2 and brine complicate the prediction of 
the CO2 plume migration [11–13]. Currently, numerical simulation is the primary tool for modeling the CO2 migration by solving 
the high-fidelity discretizations of mass and energy conservation equations governing the dynamics of multiphase, multicomponent 
flows [14,15]. Such simulations typically account for buoyancy-driven flow, dissolution, diffusion, and capillary effects to provide 
insights into the key trapping mechanisms that influence CO2 distribution in the formation.

Several classical numerical methods have been employed for these tasks, including the finite volume method (FVM), the finite 
element method (FEM), and the lattice Boltzmann Method (LBM). FVM is widely adopted for flow and transport problems [16], FEM 
is commonly used for structural analyses [17], and LBM is particularly effective for microscale fluid dynamics [18]. In the context 
of CO2 storage, FVM is frequently employed due to its efficiency and ability to handle conservation laws in large-scale reservoir 
models [19,20]. Additional developments include parameterization of reactive-compositional flows [21], fully implicit methods for 
two-phase reactive flows [22], and advanced thermodynamic models that account for temperature and capillary transition effects 
[23]. High-resolution simulations also enable the monitoring of CO2 migration after injection [24].

Despite these advances, the high-resolution grids required to accurately capture flow physics and geological heterogeneity often 
exceed the capabilities of classical numerical approaches [25]. Grids at the Darcy scale (on the order of centimeters) can generate 
extremely large linear systems, leading to the conventional methods becoming impractical for field-scale applications. Consequently, 
there is a demand for advanced numerical techniques that can preserve fine-scale details while ensuring computational efficiency.

One class of solutions involves multiscale methods, such as the multiscale finite element (MsFE) [26,27] and multiscale finite vol-
ume (MsFV) approaches [28,29]. These methods construct coarse-scale pressure systems while preserve critical fine-scale information 
through locally computed basis functions. Algebraic restriction and prolongation operators then map the coarse-scale solution back 
to the original high-resolution grid, allowing an approximate solution that captures essential flow details without globally refining 
the entire domain [11]. The MsFV method has been particularly effective for sequential simulations of flow and transport, where 
the coarse-scale pressure solution is used to reconstruct fine-scale conservative velocities, followed by transport calculations [30,31]. 
For fully implicit (FIM) formulations, where flow and transport equations are solved simultaneously, such reconstruction introduces 
additional complexity. Building on these concepts, the Algebraic Dynamic Multilevel (ADM) method was introduced to handle FIM 
systems on dynamically updated multilevel grids [32,33]. ADM addresses the multiscale multilevel coexistence of pressure (elliptic 
or parabolic) and transport (hyperbolic) unknowns by adaptively refining or coarsening the mesh at each time step based on a front-
tracking criterion, thus focusing fine-scale resolution only where significant gradients and physical interactions occur. It benefits from 
the consistent basis function structure of MsFE and MsFV while avoiding the reconstruction of conservative fields, as the transport 
equations are solved on the adaptive grid. Mass conservation is enforced at every level by carefully designed finite-volume restriction 
operators, while pressure and transport variables are interpolated using multiscale and constant basis functions, respectively. This 
strategy reduces computational costs significantly, and maintains a high level of accuracy even in highly heterogeneous media. In 
previous work, ADM was developed for two-phase immiscible displacement and black-oil models in heterogeneous reservoirs [34,35].

In the context of CCS, ADM offers potential for modeling CO2 storage because its dynamic refining strategy effectively addresses 
localized heterogeneities that can strongly influence plume migration and trapping mechanisms. Recognizing these advantages, we 
extend ADM in this work to capture the complexities of multiphase, multicomponent flow by incorporating gravitational and capillary 
forces, as well as phase partitioning. We employ an overall-composition formulation in which primary unknowns are mapped from the 
fine-scale grid to a dynamically refined grid. The grid resolution is determined by the differences in component mass fractions between 
neighboring cells, ensuring that regions with large gradients receive finer discretization. This dynamic and scalable framework is 
particularly suitable for long-term CO2 storage, where flow dynamics evolve over time. In this paper, we apply ADM to simulate 
CO2 storage in deep saline aquifers, and demonstrate improved simulation performance relative to fully refined grids, including for 
challenging scenarios such as the SPE11 benchmark [36].

The remaining sections of the paper are organized as follows. The fine-scale formulations and solution strategy for CO2 storage 
in saline aquifers are described in Section 2. The ADM method as a simulation strategy for CO2 storage is described in Section 3. 
Numerical results for the test case and benchmark studies are presented in Section 4. Section 5 concludes with the observations as 
well as the outlook for future studies.

2.  Fine-scale model and solution strategy

2.1.  Governing equations

In the context of CO2 sequestration in saline aquifers, the mass conservation equation governing the 𝑛ph phases and 𝑛𝑐 components 
is formulated as [37]:

𝜕
𝜕𝑡

(

𝜙
𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼𝑆𝛼

)

+ ∇ ⋅

𝑛ph
∑

𝛼=1

(

𝑥𝑐,𝛼𝜌𝛼𝐮𝛼 + 𝑆𝛼𝜌𝛼𝐉𝑐,𝛼
)

−
𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝑞𝛼 = 0, (1)
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where 𝑡 is the time variable, and 𝜙 is the porosity of the medium. The subscript 𝛼 ∈ {𝑤, 𝑛} denotes the wetting (brine-rich) and 
non-wetting (CO2-rich) phases. The index 𝑐 represents the components (CO2 and H2O). The parameters 𝜌𝛼 , 𝑆𝛼 , and 𝑞𝛼 denote the 
density, saturation, and source or sink terms of phase 𝛼, respectively. 𝑥𝑐,𝛼 is the mass fraction of component 𝑐 in phase 𝛼. The phase 
velocity 𝐮𝛼 follows Darcy’s law:

𝐮𝛼 = −
𝐤𝑘𝑟,𝛼
𝜇𝛼

(∇𝑃𝛼 + 𝜌𝛼𝐠), (2)

where 𝐤 is the rock permeability. 𝑘𝑟,𝛼 = 𝑘𝑟,𝛼(𝑆𝛼) and 𝜇𝛼 are the phase relative permeability and viscosity, respectively. 𝐠 is the 
gravitational acceleration vector. Additionally, the diffusion flux 𝐉𝑐,𝛼 is described by Fick’s law, accounting for molecular diffusion 
driven by gradients of the component mass fraction:

𝐉𝑐 ,𝛼 = −𝜙𝐷𝑐,𝛼∇𝑥𝑐 ,𝛼 , (3)

where 𝐷𝑐,𝛼 is the mutual diffusion coefficient of component 𝑐 in phase 𝛼. Moreover, the phase pressures 𝑃𝛼 are related to the capillary 
pressure 𝑃𝑐 which depends on the saturation:

𝑃𝑛 − 𝑃𝑤 = 𝑃𝑐 (𝑆𝑤), (4)

In addition, the model assumes that the pore space is fully occupied by the phases, with CO2 and H2O accounting for all component 
distributions. This is mathematically enforced by the conditions that the sum of phase saturations and component mass fractions in 
each phase equal one:

∑

𝛼=𝑤,𝑛
𝑆𝛼 = 1, and

∑

𝑐=CO2,H2O
𝑥𝑐,𝛼 = 1. (5)

2.2.  Fully compositional thermodynamics

In deep saline aquifers, injected CO2 interacts with resident brine, forming a multiphase system typically comprising an aqueous 
phase and a supercritical or gaseous CO2-rich phase. Accurate modeling of this system requires a thermodynamic description of phase 
equilibrium that accounts for pressure, temperature, and salinity. Thermodynamic equilibrium governs the partitioning of chemical 
species across coexisting phases and provides the foundation for compositional simulation and solubility modeling. For a binary 
CO2-H2O system, thermodynamic equilibrium is achieved when the fugacity of each component is equal in both phases:

𝑓𝑐,𝛼
(

𝑝, 𝑥𝑐,𝛼
)

− 𝑓𝑐,𝛽
(

𝑝, 𝑥𝑐,𝛽
)

= 0, ∀𝛼 ≠ 𝛽 ∈ {1,… , 𝑛ph}, 𝑐 ∈ {CO2,H2O}, (6)

where 𝑓𝑐,𝛼 is the fugacity of component 𝑐 in phase 𝛼. This condition is often reformulated in terms of equilibrium ratios, or 𝐾-values:

𝐾𝑐 =
𝑥𝑐,𝑛
𝑥𝑐,𝑤

, (7)

where 𝑥𝑐,𝑛 and 𝑥𝑐,𝑤 are the mass fractions of component 𝑐 in the vapor and aqueous phases, respectively. These 𝐾-values are func-
tions of pressure, temperature, and salinity, and provide the basis for equilibrium-based compositional modeling. Once 𝐾-values are 
evaluated, phase partitioning is determined by solving the Rachford-Rice equation for vapor fraction 𝑉  [38]:

𝑛𝑐
∑

𝑐=1

𝑧𝑐 (𝐾𝑐 − 1)
1 + 𝑉 (𝐾𝑐 − 1)

= 0, (8)

where 𝑧𝑐 is the overall mass fraction of component 𝑐, i.e.

𝑧𝑐 =

𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼𝑆𝛼

𝑛ph
∑

𝛼=1
𝜌𝛼𝑆𝛼

, (9)

To illustrate typical H2O-CO2 phase partitioning, Fig. 1 shows how their mutual solubility changes with pressure and temperature, 
based on model from [39]. At high pressures, where CO2 exists in a dense phase, its solubility exhibits minimal variation with changes 
in pressure. In contrast, at low pressures, CO2 tends to stay primarily in a vapor phase, which correlates with a higher mass fraction 
of H2O in the CO2-rich phase. Increasing pressure within this lower range induces a transition of CO2 from vapor to a denser phase, 
leading to a pronounced reduction in H2O solubility. Additionally, rising temperatures increase the solubility of H2O in the CO2-rich 
phase due to increased water volatility, while simultaneously decreasing CO2 solubility in H2O-rich phases.

Furthermore, the impact of mutual solubility on the density of brine is evaluated using:
1

𝜌𝑤(𝑝𝑤, 𝑇 , 𝑥CO2 ,𝑤)
=

1 − 𝑥CO2 ,𝑤

𝜌𝑤(𝑝𝑤, 𝑇 )
+

𝑥CO2 ,𝑤

𝜌𝑛,𝜙(𝑇 )
, (10)

where 𝑇  is the temperature in Celsius, and 𝑀CO2
 is the molar weight of CO2. 𝜌𝑛,𝜙 refers to the apparent density of CO2 dissolved in 

water [40]. The densities of the CO2-rich phase and the H2O-rich phase, spanning conditions from the surface to the reservoir, are 
illustrated in Fig. 2. The density of the gas phase is unaffected by changes in composition. However, changes in phase composition 
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Fig. 1. Mutual solubilities of H2O and CO2 from 20 to 100 ◦C and up to a pressure of 400bar, based on data from [39].

Fig. 2. Density variations in CO2-rich and H2O-rich phases under different conditions.

significantly impact the density of H2O, which in turn influences the migration path of the CO2 plume. As depicted in Fig. 2(b), the 
solid line represents the density curve at a CO2 mass fraction of 0.05 under corresponding pressures, with the shaded background 
indicating density variations from a CO2 mass fraction of 0 to 0.1. This variation in density due to CO2 solubility in water is a critical 
factor driving gravity-induced currents, leading to the formation of fingering patterns that significantly contribute to CO2 trapping 
through dissolution.

2.3.  Fine-scale overall-composition formulation

The nonlinear coupled system of equations introduced in the previous section is discretized spatially using a FVM and temporally 
with a fully implicit scheme. We employ an overall-composition approach in which the wetting-phase pressure (𝑝𝑤) and the overall 
mass fraction of CO2 (𝑧CO2

) serve as the primary variables. In this framework, each grid cell stores these variables and updates them 
at each time step, ensuring that both pressure and component distributions are captured consistently at the fine scale.

To implement the fully implicit scheme, all terms dependent on 𝑝𝑤 and 𝑧CO2
 are evaluated at the new time step 𝑡 + 1. Consequently, 

the residual 𝑟𝑡+1𝑐  for each component 𝑐 in cell ⟨𝑖⟩ at each time-step must be zero:

𝑟𝑡+1𝑐,⟨𝑖⟩ =
𝑉
⟨𝑖⟩𝜙⟨𝑖⟩

Δ𝑡

𝑛ph
∑

𝛼=1

(

𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝜌
𝑡+1
𝛼,⟨𝑖⟩𝑆

𝑡+1
𝛼,⟨𝑖⟩ − 𝑥𝑡𝑐,𝛼,⟨𝑖⟩𝜌

𝑡
𝛼,⟨𝑖⟩𝑆

𝑡
𝛼,⟨𝑖⟩

)

+
𝑁𝑛
∑

𝑗=1

𝑛ph
∑

𝛼=1

(

𝑥𝑐,𝛼𝜌𝛼𝐮𝛼 + 𝑆𝛼𝜌𝛼𝐣𝑐,𝛼
)

|

|

|

𝑡+1

⟨𝑖𝑗⟩
⋅ 𝐧⃗

−
𝑛ph
∑

𝛼=1
𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝑞

𝑡+1
𝛼,⟨𝑖⟩ = 0,

(11)

where 𝑡 and 𝑡 + 1 denote the previous and current time steps, respectively. 𝑁𝑛 is the number of neighboring cells of cell 𝑖 and 𝐧⃗ is 
the unit normal vector to its boundary. To solve these equations, the Newton-Raphson method is employed to linearize the system 
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iteratively, i.e.

𝑟𝜈+1𝑐 ≈ 𝑟𝜈𝑐 +
𝜕𝑟𝑐
𝜕𝑝𝑤

|

|

|

|𝜈
𝛿𝑝𝜈+1𝑤 +

𝜕𝑟𝑐
𝜕𝑧CO2

|

|

|

|

|𝜈
𝛿𝑧𝜈+1CO2

, (12)

where 𝜈 and 𝜈 + 1 indicate the iteration steps. 𝛿𝑝𝜈+1𝑤  and 𝛿𝑧𝜈+1CO2
 are the updates of the unknowns at iteration 𝜈 + 1. This leads to a 

system of linearized equations that can be expressed in a matrix form:
⎡

⎢

⎢

⎣

𝐽 𝜈
CO2 ,𝑝𝑤

𝐽 𝜈
CO2 ,𝑧CO2

𝐽 𝜈
H2O,𝑝𝑤

𝐽 𝜈
H2O,𝑧CO2

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉𝜈

[

𝛿𝑝𝜈+1𝑤
𝛿𝑧𝜈+1CO2

]

⏟⏞⏞⏟⏞⏞⏟
𝛿𝜉𝜈+1

= −

[

𝑟𝜈CO2
𝑟𝜈H2O

]

.

⏟⏞⏟⏞⏟
𝑟𝜈

(13)

Here, 𝐉𝜈 is the Jacobian (derivatives) matrix, 𝛿𝜉𝜈+1 is the vector of unknown increments, and 𝑟𝜈 is the residual vector. Because the 
overall-composition approach tracks the overall mass fraction of CO2, phase partitioning is determined by thermodynamic equilibrium 
constraints. If a cell is predicted to be single-phase, certain elements in the Jacobian vanish, simplifying the local flow equations. 
Conversely, if two phases coexist, the negative flash calculation accurately allocates the CO2 between the wetting and non-wetting 
phases. In this way, the Jacobian automatically accommodates changes in phase presence. Then, the linear system is solved iteratively 
until the convergence criteria (small changes in pressure and overall mass fraction, or sufficiently low residual norms) are met. In this 
work, a residual tolerance of 10−5 and a solution update tolerance of 10−4 are used. Furthermore, the initial and maximum time-step 
sizes are specified by the user. During the FIM simulation, if the number of Newton iterations exceeds 𝐼𝑡max, the time-step size is 
halved and the system solved again. A maximum of 10 time-step chops is allowed.

3. ADM method for CO2 storage

The ADM enhances computational efficiency in CO2 storage simulations by dynamically adjusting grid resolutions in response 
to evolving flow characteristics, such as the sharp CO2 fronts and well boundaries. This strategy allows for manageable simulations 
while preserving the fine-scale details accurately.

3.1.  Adaptive selection of multilevel grids

A key feature of ADM is its ability to refine or coarsen the grid at each time step according to a predefined front-tracking criterion. 
Rather than starting with a single static mesh, ADM focuses computational resources on cells that exhibit steep gradients in the 
primary unknown 𝑧CO2

. Specifically, at each time step 𝑡, the grid for the next time step 𝑡 + 1 is selected based on the solution at time 
step 𝑡. The strategy compares the maximum difference in 𝑧CO2

 between two neighboring coarse blocks Ω𝐼
𝑙  and Ω𝐽

𝑙  at coarse level 𝑙. 
Let 𝑖 and 𝑗 index the fine-scale cells belonging to the coarse blocks Ω𝐼

𝑙  and Ω𝐽
𝑙 , respectively. The maximum difference is calculated 

as:

Δ𝑧𝐼,𝐽 = max
𝑖∈Ω𝐼

𝑙 , 𝑗∈Ω
𝐽
𝑙

|

|

|

𝑧𝑖 − 𝑧𝑗
|

|

|

, (14)

If Δ𝑧𝐼,𝐽  for any neighboring coarse blocks exceeds a specified tolerance, the block 𝐼 is refined from coarse level 𝑙 to (𝑙 − 1). Cells 
surrounding injection wells also remain at the finest resolution to ensure accurate calculations where fluxes are greatest.

For a three-dimensional aquifer, the initial physical domain is often discretized into 𝑁𝑓 = 𝑁𝑓𝑥 ×𝑁𝑓𝑦 ×𝑁𝑓𝑧 cells, sufficiently 
refined to capture key CO2-brine interactions. Although this fully resolved grid can represent the dynamics in detail, running a fully 
implicit solver across all cells would be impractical for large-scale reservoirs. To address this, ADM constructs a hierarchical series 
of up to 𝑛𝑙 coarser grids, with 𝑙 = 0 denoting the finest mesh and higher 𝑙 corresponding to progressively coarser resolutions. At grid 
level 𝑙, there are 𝑁𝑙 = 𝑁𝑙𝑥 ×𝑁𝑙𝑦 ×𝑁𝑙𝑧 control volumes, and the coarsening ratio 𝛾 𝑙 is defined as:

𝛾 𝑙 =
(

𝛾 𝑙𝑥, 𝛾
𝑙
𝑦, 𝛾

𝑙
𝑧
)

=

(

𝑁 𝑙−1
𝑥

𝑁 𝑙
𝑥

,
𝑁 𝑙−1

𝑦

𝑁 𝑙
𝑦

,
𝑁 𝑙−1

𝑧

𝑁 𝑙
𝑧

)

, (15)

Intermediate levels can also be generated to form a nested hierarchy from the finest to the coarsest grids. To maintain smooth 
transitions, the level difference between neighboring cells is limited to one, preventing sudden changes in resolution that might 
degrade solution quality.

3.2.  Solution strategy

In ADM, the fully-implicit system on the fine grid is transformed to a selected coarser level 𝑙 by restriction and prolongation 
operators:

𝐑̂𝑙−1
𝑙 ⋯ 𝐑̂0

1𝐉𝐏̂
1
0 ⋯ 𝐏̂𝑙

𝑙−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐉ADM

𝛿𝜉ADM𝑙 = − 𝐑̂𝑙−1
𝑙 ⋯ 𝐑̂0

1𝑟𝑓
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟ADM

, (16)
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where 𝐉 and 𝑟𝑓  are the Jacobian matrix and residual vector at the fine scale, respectively, and 𝛿𝜉ADM𝑙  is the solution at grid level 
𝑙. Restriction operators 𝐑̂𝑙−1

𝑙  map residuals of governing equations from level 𝑙 − 1 to level 𝑙, while the prolongation operators 𝐏̂𝑙
𝑙−1

interpolate the solution in the reverse direction. Both 𝐑 and 𝐏 are block-diagonal matrices:

𝐑𝑙−1
𝑙 =

(

(𝑅𝑝)𝑙−1𝑙 𝟎
𝟎 (𝑅𝑧)𝑙−1𝑙

)

𝑁𝑙×𝑁𝑙−1

, (17)

and

𝐏𝑙
𝑙−1 =

(

(𝑃𝑝)𝑙𝑙−1 𝟎
𝟎 (𝑃𝑧)𝑙𝑙−1

)

𝑁𝑙−1×𝑁𝑙

, (18)

Here, the subscript 𝑝 and 𝑧 denote the pressure and overall mass fraction sub-blocks, respectively. The same finite-volume restriction 
operator is typically applied to both variables to ensure the local mass balance, meaning (𝑅𝑝)𝑙−1𝑙 = (𝑅𝑧)𝑙−1𝑙 . Specifically, each entry of 
the restriction operator (𝑅𝑝)𝑙−1𝑙  is either 1 or 0:

(𝑅𝑝)𝑙−1𝑙 (𝑖, 𝑗) =

{

1 if cell 𝑗 is inside coarser cell 𝑖,
0 otherwise.

(19)

Once the grid hierarchy is established, sequential application of restriction and prolongation transforms the fine-scale FIM sys-
tem into an ADM system at level 𝑙. Solving this coarser system and then prolonging the solution back to the fine grid provides an 
approximation to the fully resolved solution. This process significantly reduces computational costs compared to solving the original 
fine-scale system in all cells. The final step involves recovering the fine-scale solution 𝛿𝜉𝑓  by iteratively applying all prolongation 
operators:

𝛿𝜉𝑓 ≈ 𝛿𝜉′𝑓 = 𝐏̂1
𝑓 … 𝐏̂𝑙

𝑙−1𝛿𝜉
ADM
𝑙 . (20)

3.3.  Basis functions

An important element of accurate ADM simulations is constructing basis functions for pressure and overall mass fraction that can 
capture fine-scale geological heterogeneity. In this work, constant interpolation is used as the prolongation operator for hyperbolic 
variables, while multiscale basis functions [41] are employed for pressure to account for variations in transmissibility. The multiscale 
finite volume approach consists of two sets of overlapping coarse grids, primal and dual coarse grids, superimposed on the fine grid, 
as illustrated in Fig. 3. The primal coarse grid comprises 𝑁𝐶 control volumes, denoted as Ω𝐶

𝑖  with 𝑖 ∈ {

1,… , 𝑁𝐶
}

, while the dual 
coarse grid consists of 𝑁𝐷 local domains Ω𝐷

𝑗 . Multiscale basis functions for pressure are generated by solving a localized numerical 
problem defined independently within each dual coarse domain Ω𝐷

𝑗 .
Specifically, to localize the flow computation, a reduced boundary condition is implemented for each dual coarse domain, leading 

to the following localized problem formulation:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∇ ⋅
(

𝜆 ⋅ ∇Φ𝑘
𝑗

)

= 0 on Ω𝐷
𝑗 ,

−∇∥ ⋅
(

𝜆 ⋅ ∇Φ𝑘
𝑗

)

∥
= 0 on 𝜕Ω𝐷

𝑗 ,

Φ𝑘
𝑗 (𝑥𝑖) = 𝛿𝑘𝑖 ∀ 𝑥𝑖 ∈ {1,… , 𝑁𝐶}.

(21)

Fig. 3. Illustration of primal (bold black) and dual (dashed blue) coarse grids. Fine cells associated with a primal coarse grid (control volume) are 
shown in green, while those belonging to a dual coarse grid are highlighted in light orange. Coarse nodes are marked in red. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Examples of multiscale and constant basis functions for pressure and overall mass fraction in a 2D heterogeneous reservoir.

Fig. 5. Schematic overview of the ADM process for CO2 storage in deep saline aquifers.

Here, 𝜆 is the mobility, Φ𝑘
𝑗  denotes the basis function associated with coarse node 𝑘 in dual coarse block Ω𝐷

𝑗 , and 𝛿𝑘𝑖 is the Kronecker 
delta. The subscript ∥ indicates the only the component parallel to the boundary 𝜕Ω𝐷

𝑗  is considered. As shown in Fig. 4, a multiscale 
pressure basis function is generated by solving localized pressure equations within each coarse block, thereby incorporating the 
influence of fine-scale transmissibility contrasts.

Fig. 5 provides a schematic overview of how the ADM method is applied to CO2 storage. Starting from a fully resolved fine grid, 
the solver identifies regions of steep solution gradient at each time step using a front-tracking technique and a predefined threshold. 
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Cells with these high gradient subdomains remain at fine resolution, along with areas near wells to preserve accuracy. Elsewhere, 
the domain is discretized at progressively coarser levels, forming a hierarchy of nested grids. Restriction and prolongation operators 
transfer unknowns and residuals between these levels, enabling an efficient coarse-scale solve before interpolating the solution back 
to the fine grid. A Newton linearization scheme is employed to iteratively resolve nonlinearities. With this dynamic approach, ADM 
naturally adapts to evolving CO2 fronts, capturing the key plume dynamics while optimizing computational resources.

4.  Numerical results

This section presents a series of numerical results, including a benchmark study, to illustrate the performance of the proposed 
method. We begin by validating the ADM approach on a two-dimensional synthetic model, then proceed to more complex scenarios 
to assess the accuracy and efficiency of our framework.

To quantify accuracy for the hyperbolic variables (i.e., 𝑥CO2
 and 𝑧CO2

), the error metric at each time step 𝑡 is defined as:

𝜖𝑥(𝑡) =
‖𝑥CO2

(𝑡) − 𝑥CO2 ,𝑓 (𝑡)‖1
𝑁𝑓

, (22)

where 𝑥CO2 ,𝑓  is the fine-scale CO2 mass fraction distribution, and 𝑁𝑓  is the total number of fine cells at time step 𝑡. For pressure, we 
define:

𝜖𝑃 (𝑡) =

√

1
𝑁𝑓

||𝑃𝑤(𝑡) − 𝑃𝑤,𝑓 (𝑡)||22

𝑃𝑏𝑐
, (23)

where 𝑃𝑤,𝑓  denotes the fine-scale wetting-phase pressure solution and 𝑃𝑏𝑐 is a characteristic pressure scale (for instance, a boundary 
condition value). The average errors over the entire simulation periods are computed as:

𝜖𝑥 = mean(𝜖𝑥(𝑡)), (24)

𝜖𝑃 = mean(𝜖𝑃 (𝑡)). (25)

4.1.  Test case 1: Validation of ADM

To validate the ADM method, we analyze a 2D synthetic model in the 𝑥 − 𝑧 plane, which is specifically designed to study both 
convective mixing and dissolution trapping of CO2 [42]. The domain extends 100m horizontally and 50m vertically, incorporating a 
static capillary transition zone (CTZ) in the upper 10m. Within this CTZ, the model maintains a constant CO2 solubility at 𝑥CO2

= 0.03, 
facilitated by large pore volumes. The simulation employs fixed K-values governing the phase partitioning of CO2 and H2O. A small 
amount of water, quantified at 𝑦H2O = 1.0 × 10−4, vaporizes into the CO2-rich phase, ensuring that the domain primarily consists of a 
single-phase brine region.

The domain is discretized into a grid of 500 by 250 cells, with each cell measuring 0.2 m × 0.2 m. A diffusion coefficient of 2 × 10−9

m2/s applies to both components in both phases. The permeability of rock is set at 100 mD, with a porosity of 0.15. Additional model 
parameters are consistent with those used in [8]. For model validation, simulations are conducted using both fine-scale and ADM 
strategies, with the ADM model incorporating two coarse levels, each with a coarsening factor of 𝛾 = 5 × 5. The coarsening criterion 
based on Δ𝑧CO2

 differences between neighboring cells is set at thresholds of {5e-3, 1e-3, 5e-4, 1e-4}. Both the fine-scale and ADM 
simulations use the same nonlinear solver tolerances, and the total simulation time is 2000 years. The initial time-step size is set to 
0.1 day, and the maximum time-step size is limited to 10 days throughout the simulation.

To quantify the convective mixing, the dissolution rates are calculated, defined as the mass rate of CO2 transitioning into the 
single-phase brine region: 

𝐹 = ℎ𝜙
𝜕𝑥CO2

𝜕𝑡
, (26)

where ℎ and 𝑥CO2
 are the thickness and the average CO2 concentration of the single-phase brine region, respectively. Fig. 6 illustrates 

the dissolution rate over 2000 years. Initially, there is an increase due to the formation of fingering plumes of dissolved CO2 which 
propagate and enhances mass transfer. Around 𝑡𝑝𝑒𝑒𝑙 = 350 years, the rate transitions toward a shut-down regime, decaying with 
approximately a 1∕𝑡2 slope due to the merging of the plumes at the aquifer bottom, reducing the driving force for further dissolution. 
The behavior of our simulation aligns well with the previous and analytical studies.

We also evaluate the sensitivity of ADM to various refinement criteria, Δ𝑧CO2
. Lower thresholds provide finer local resolution 

in regions with steep composition differences, enhancing the accuracy of convective flow capture. Notably, at the lowest threshold 
(Δ𝑧 = 1e-4), the ADM solution curve nearly overlaps with the fully resolved fine-scale reference. Conversely, higher thresholds save 
computational effort but may overlook some flow details.

Fig. 7 compares the CO2 mass fraction profiles after 350 years for the fine-scale solution and the four ADM configurations, while 
Fig. 8 presents the error curves over time (left) and the percentage of active grid cells (AGC) in the ADM simulations (right). It is worth 
noting that lower Δ𝑧CO2

 thresholds produce closer agreement with the fine-scale solution but require more active grid cells, reflecting 
a trade-off between computational efficiency and model accuracy. At a threshold of 1e-3, the ADM achieves good accuracy while 
conserving computational resources compared to the fully resolved grid. In this case, the AGC approaches 100% after approximately 
200 years, reflecting the fact that the simulation is configured to fully capture the onset and evolution of gravity-driven spreading 
and convective mixing processes.
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Fig. 6. Dissolution rate over 2000 years in a 100 × 50 m domain with a stagnant CTZ.

Fig. 7. CO2 mass fraction profiles at 350 years. Fine-scale reference is shown alongside ADM solutions at Δ𝑧 ={5e-3, 1e-3, 5e-4, 1e-4}. The overlaid 
grid lines show the first and second levels of coarsening.

4.2.  Test case 2: Scalability evaluation in 3D aquifers

This test case investigates the scalability and efficiency of the ADM method in three-dimensional homogeneous aquifers of varying 
sizes. First, we consider a 100m × 28m × 19m homogeneous reservoir with uniform porosity 𝜙 = 0.2 and absolute permeability 𝑘 = 
8.0 ×10−14 m2. Initial pressure is set at 2.5 × 107 Pa and the temperature is maintained at 65°C. The simulation setup includes an 
injection well at the lower-left corner with a rate of 4.0 × 10−5 pore volume per day and a production well at the upper-right corner, 
maintaining a bottom hole pressure of 2.5 × 107 Pa. The reservoir is discretized using a Cartesian mesh with cell dimensions of 1m
in each direction, resulting in a fine-scale grid of 100 × 28 × 19 cells. For the ADM simulation, two coarse levels are employed, each 
with a coarsening ratio of 3 in the 𝑥, 𝑦 and 𝑧 directions. A coarsening criterion of 0.01 is used, indicating that cells exceeding this 

Journal of Computational Physics 539 (2025) 114202 

9 



M. Zhao, M. Gerritsma, M. A. Kobaisi et al.

Fig. 8. CO2 mass fraction errors (left) and percentage of active grid cells (right) over time for different threshold settings, illustrating the precision-
efficiency balance.

Fig. 9. Comparative visualization of overall CO2 mass fraction profiles between ADM (top) and the fine-scale model (bottom) after 200 days.

threshold in 𝑧CO2
 gradient remain refined to capture significant changes accurately. The initial time-step size is set to 0.01 day, and 

the maximum time-step size is limited to 5 days.
The CO2 distribution predicted by ADM closely matches that of the fine-scale reference after 200 days, as illustrated in Fig. 9. 

The figure highlights the coarse-to-fine transition of grid cells in regions of significant overall CO2 mass fraction changes, while other 
areas are coarsened without compromising the accuracy of the simulation. Indeed, error calculations using Eq. 22 show a difference 
of only 1.5 × 10−6, demonstrating ADM’s effectiveness at reducing computational effort while preserving key flow characteristics.

To further explore the influence of problem size on the ADM algorithm, three homogeneous reservoirs of different dimensions 
are considered: 100m × 28m × 19m, 199m × 55m × 19m and 397m × 109m × 19m. Each model is discretized with Δ𝑥 = Δ𝑦 = Δ𝑧 = 
1m, and the same permeability, porosity and well configuration are applied. The injection rates are adjusted relative to pore volume, 
with each simulation extending over 5000 days, including 600 days of injection followed by 4400 days of post-injection monitoring.

Fig. 10 compares the evolution of active grid cell percentages over the simulation period across varying problem sizes. The results 
show that ADM efficiency improves with larger domains, especially when injection impacts only a limited reservoir portion. This 
allows extensive grid coarsening, significantly reducing computational resources needed for long-duration and large-scale simulations. 
These results highlight ADM’s adeptness at dynamically refine critical areas and efficiently coarsen non-critical regions, demonstrating 
its improved effectiveness in large-scale operations.
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Fig. 10. Evolution of active grid cell percentages employed by ADM during simulation with the threshold value of 0.01.

Fig. 11. Illustration of the discretized two-dimensional geometry of the SPE 11A model, showcasing the arrangement of facies and injection wells 
locations.

4.3.  Test case 3: SPE 11A at laboratory conditions

Further validation of the ADM framework is conducted through its application to the SPE 11A benchmark model, designed to 
simulate CO2 storage under controlled laboratory conditions [36]. This model, which mimics the downscaled characteristics of North 
Sea storage formations, features a two-dimensional representation encompassing seven distinct facies. These include one seal, five 
permeable reservoir sands, and one impermeable layer, all inspired by extensive laboratory experiments and illustrated in Fig. 11. 
The properties of these unconsolidated sands are consistent with recent studies from [43], as summarized in Table 1.

The domain geometry measures 2.8m in length and 1.2m in height, with a uniform thickness of 0.01m. The domain is discretized 
into a grid of 280 × 127 cells, yielding a total of 35560 control volumes. The isothermal conditions are maintained at 20 °C, corre-
sponding to atmospheric pressure. The left, right, and bottom boundaries are treated as no-flow boundaries, while the top boundary 
is maintained at a constant pressure of 1.1 × 105 Pa and is in direct contact with pure water. The initial time-step size is set to 10−6
minute, and the maximum time-step size is limited to 10 min throughout the simulation. The simulation monitors CO2 flow and trans-
port over a total duration of 5 days. Initially, the medium is saturated with water, and CO2 is injected through two injection wells, 

Table 1 
Physical parameters and simulation setup for the SPE 11A numerical simulation.

𝐤 [D] 𝜙 [-] 𝑆𝑤𝑖 [-] 𝑃entry [Pa] 𝐷𝑤 [m2s−1] 𝐷𝑛 [m2s−1]

 Facies 1  44.53  0.44  0.32  1500  10−9  1.6×10−5
 Facies 2  506.63  0.43  0.14  300  10−9  1.6×10−5
 Facies 3  1013.25  0.44  0.12  100  10−9  1.6×10−5
 Facies 4  2026.50  0.45  0.12  25  10−9  1.6×10−5
 Facies 5  4953.00  0.43  0.12  10  10−9  1.6×10−5
 Facies 6  10132.50  0.46  0.10  1  10−9  1.6×10−5
 Facies 7  10−8  10−5  0  0  0  0
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as shown in Fig. 11. The first well operates continuously for the initial 5 h, injecting CO2 at a rate of 1.7 × 10−7 kg/s. Subsequently, 
the second well begins injection at 2.5 h, and continues until 5 h, maintaining the same injection rate and thereby overlapping with 
the first well for half the duration. This setup facilitates detailed observation of CO2 distribution and phase interactions within the 
porous medium.

Relative permeability and capillary pressure curves are modeled using the Brooks-Corey equations, adapted to each sand type 
according to their respective residual saturation values. Specifically, the relative permeability 𝑘𝑟 is given by:

𝑘𝑟,𝛼 =
(

max
(𝑆𝛼 − 𝑆𝛼,imm

1 − 𝑆𝛼,imm
, 0

))2
, (27)

where 𝑆𝛼,imm is the residual saturation of phase 𝛼, below which the phase becomes immobile. A residual saturation of 0.1 is specified 
for the non-wetting phase across all facies. The extended Brooks-Corey function for all saturations is:

𝑃𝑐 = 𝑃𝑐,max ⋅ erf
⎛

⎜

⎜

⎝

𝑃entry ⋅ (𝑆𝑤,𝑛)
− 1

2

𝑃𝑐,max
⋅

√

𝜋
2

⎞

⎟

⎟

⎠

, (28)

where 𝑆𝑤,𝑛 is the normalized wetting-phase saturation, 𝑃entry denotes the rock entry pressure, and 𝑃𝑐,max = 2500 Pa specifies the 
maximum capillary pressure. The thermophysical properties of pure CO2 and H2O phases are obtained from the NIST database [44].

To optimize computational resources, the ADM simulations are conducted with two coarse levels, and the coarsening ratio is 
𝛾 = 3 × 3. We explore four different thresholds {5e-3, 1e-3, 5e-4, 1e-4} for the coarsening criterion based on Δ𝑧CO2

. Over the full-
cycle period, including both injection and post-injection phase, the system captures CO2 plume evolution, dissolution, and convective 
transport.

Fig. 12 displays CO2 mass fraction profiles after five hours of injection, comparing the fine-scale baseline with various coarsening 
thresholds. The illustration highlights the rapid upward and lateral movement of CO2 driven by buoyancy forces and its interaction 
with the sealing layer. This visualization demonstrates the effectiveness of the ADM in capturing the early stages of CO2 plume 
development under dynamic storage conditions. Fig. 13, on the other hand, presents the CO2 distribution after five days, illustrating 
the post-injection phase, during which the CO2-saturated upper layer, denser than the underlying brine, begins to form descending 
fingers at the interface. These structures indicate the onset of gravitational instability, a critical factor for understanding long-term CO2
storage efficiency. Although the fine-scale simulation offers a comprehensive understanding of these dynamics, the ADM simulations 
achieve high accuracy throughout the injection period, with minor errors. During the post-injection phase, reducing the coarsening 
threshold from Δ𝑧CO2

 = 1e-3 to Δ𝑧CO2
 = 5e-4 results in only a slight increase in the active grid cells but enhances accuracy. The 

most refined ADM configuration, with Δ𝑧CO2
= 1e−4, achieves the lowest error and highest AGC, effectively replicating the fine-scale 

model’s complex dynamics and enabling precise visualization of individual finger migrations.
The capability of ADM to effectively track these complex features using fewer active grid cells is quantitatively analyzed in Fig. 14. 

Fig. 14(a) and (b) present the ADM error metrics for pressure and overall mass fraction, respectively, throughout the simulation 
duration. Fig. 14(c) details the percentage of active grid cells utilized by ADM and Fig. 14(d) summarizes the average errors and active 

Fig. 12. CO2 mass fraction profiles for SPE 11A model after 5 h injection, showing the finest and coarse grid levels.
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Fig. 13. CO2 mass fraction profiles for SPE 11A model after 5 days, illustrating detailed plume behavior across fine and coarse grid levels.

cell fractions across all thresholds. This analysis confirms that tighter thresholds, such as 1e-4, result in lower errors but require a 
higher number of active cells, highlighting a trade-off between precision and efficiency. Lastly, Fig. 15 depicts the fractions of injected 
CO2 that remain mobile and that dissolves into the brine over the simulation duration. During injection, most of the CO2 remains 
in the mobile phase. Afterward, dissolution and reactivation due to convective transport triggered by density gradients, reactivate a 
portion of the mobile gas. All ADM configurations closely match the fine-scale reference, indicating that resolving individual fingers 
in detail is not strictly necessary to accurately capture overall trapping dynamics.

4.4.  Test case 4: SPE 11B at reservoir conditions

Building on the methodologies validated in the laboratory-scale SPE 11A setup, the SPE 11B benchmark extends the simulations to 
mimic reservoir conditions characteristic of the Norwegian Continental Shelf. While retaining the basic geometric framework of SPE 
11A, SPE 11B scales up the model to field dimensions. Specifically, the horizontal dimensions are scaled by a factor of 1:3000 and the 
vertical dimensions by 1:1000, resulting in a large-scale model measuring 8.4 km in length and 1.2 km in height. Well placements are 
adjusted accordingly, as shown in Fig. 16. The model assumes a uniform thickness of 1m. To accurately reflect reservoir conditions, 
the facies properties are updated, with details provided in Table 2.

While the official SPE 11B benchmark considers thermal effects, this study maintains a focus on mass conservation equations due 
to the scope of our research. The domain is discretized into a grid of 847 × 127. The temperature is uniformly maintained at 50 °C 
throughout the simulation. Initially the domain is fully saturated with water, and CO2 is injected through two injection wells. The 
first well operates at a constant injection rate of 0.035 kg∕s for 50 years. A second well begins injection at the same rate after 25 years, 
resulting in a 25-year period of overlapping operation. The initial time-step size is set to 1 minute, and the maximum time-step size 
is limited to 36.5 days throughout the simulation. These simulation setups are crucial for monitoring the long-term migration of the 
CO2 plume under these extended temporal and spatial scales.

To prevent unphysical pressure buildup, auxiliary porosity volumes are introduced along the lateral boundaries, facilitating pres-
sure stabilization across the field as detailed in referenced studies [36]. Moreover, permeability is assigned using an anisotropy ratio 
of 10:1 between horizontal and vertical directions (𝑘𝑧 = 0.1𝑘ℎ). Differences from SPE 11A include adjustments in capillary pressures, 
which are defined according to the Leverett J-scaling: 

𝑃entry =

√

𝜙
𝑘𝑥

⋅ 6.12 × 10−3N/m. (29)

where 6.12 × 10−3 N/m is derived from [45]. Additionally, shape exponents for relative permeability and capillary forces are adjusted 
to 1.5, with respective curves for each facies shown in Fig. 17. The thermodynamic parameters remain consistent with those defined in 
the SPE 11A model, ensuring physical consistency in the simulation’s physical modeling across different test cases. This comprehensive 
setup allows for an extensive analysis of CO2 behavior under reservoir conditions, providing valuable insights into its long-term 
migration patterns.
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Fig. 14. SPE 11A error analysis detailing ADM performance across various thresholds, with metrics for pressure, mass fraction errors, and active 
grid cell usage.

Fig. 15. Temporal dynamics of CO2 trapping in the SPE 11A model, illustrated as fractions of injected CO2 in dissolved and mobile states. The 
vertical dashed line indicates the transition moment at which injection stops.

Fig. 18 presents the comparative results at the end of the injection phase, utilizing both the ADM method and a fine-scale reference 
model. The simulations explore varying coarsening thresholds of Δ𝑧CO2

∈ {0.1, 0.05, 0.01, 0.001}, with a consistent coarsening ratio of 
𝛾 = 3 × 3. In all models, the CO2 plume rises vertically due to buoyancy, subsequently spreading laterally at sealing layers, illustrating 
the complex interactions of the plume with geological structures. The fine-scale model provides a baseline for assessing the impact 
of ADM’s varied coarse levels on simulation accuracy. During the initial injection phase, discrepancies between the ADM simulations 
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Fig. 16. Illustration of the SPE 11B model geometry, showing scaled dimensions and well placements in a field scenario.

Table 2 
Physical parameters and simulation setup for the SPE 11B numerical 
simulation.

𝑘ℎ [mD] 𝜙 [-] 𝑆𝑤𝑖 [-] 𝐷𝑤 [m2s−1] 𝐷𝑛 [m2s−1]

 Facies 1  0.10132  0.10  0.32  10−9  2×10−8
 Facies 2  101.324  0.20  0.14  10−9  2×10−8
 Facies 3  202.65  0.20  0.12  10−9  2×10−8
 Facies 4  506.625  0.20  0.12  10−9  2×10−8
 Facies 5  1013.25  0.25  0.12  10−9  2×10−8
 Facies 6  2026.5  0.35  0.10  10−9  2×10−8
 Facies 7  10−5  10−5  0  0  0

Fig. 17. Relative permeability and capillary pressure curves for different sand facies as a function of non-wetting saturation.

remain minimal, largely because the CO2 plume impacts only a small section of the domain, allowing for a coarser grid in the majority 
of the domain.

Fig. 19 displays the long-term CO2 distribution after 1000 years, highlighting the divergence in simulation accuracy across different 
coarsening thresholds. As the coarsening threshold decreases from Δ𝑧 = 0.1 to Δ𝑧 = 0.001, the ADM simulations progressively capture 
the plume dynamics with increased precision. The lower thresholds, particularly in Fig. 19(d) and (e), reveal more intricate fingering 
patterns of CO2 migration, aligning more closely with those observed in the fine-scale model.

Moreover, Fig. 20 presents a comprehensive error analysis for SPE 11B simulations across different ADM coarsening thresholds, 
illustrating how adjustments in Δ𝑧 impact the accuracy and computational efficiency of the model over a 1000-year simulation 
period. Fig. 20(b) depicts the overall mass fraction error, which reveals a distinct trend. Lower Δ𝑧 values correspond to lower errors, 
demonstrating improved mass fraction accuracy with finer grid resolutions. This improvement becomes more pronounced over time, 
underscoring the ADM method’s capability to capture detailed physics interactions within the CO2 plume more effectively as the 
grid resolution increases. Simultaneously, as Δ𝑧 decreases, the percentage of active grid cells increases, peaking significantly for the 
finest threshold (Δ𝑧 = 0.001), which reflects the method’s dynamic grid adaptation to the evolving simulation demands, particularly 
in capturing finer details of plume behavior. Fig. 20(d) integrates these metrics, correlating the average active grid cells, average 
pressure error, and average overall mass fraction error against the ADM tolerance thresholds, highlighting the trade-offs between 
computational cost and simulation accuracy.

Lastly, Fig. 21 shows that varying ADM coarsening thresholds has only a minor impact on the quantification of CO2 in both 
dissolved and mobile phases over the 1000-year simulation. This suggests that, even with broader coarsening thresholds, the ADM 
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Fig. 18. CO2 mass fraction profiles for SPE 11B model after 50 years injection. The overlaid grids represent the first and second levels of coarsening 
used in the ADM simulations.

Fig. 19. CO2 mass fraction profiles for SPE 11B model after 1000 years. The overlaid grids represent the first and second levels of coarsening used 
in the ADM simulations.

method still effectively captures the essential dynamics of CO2 trapping mechanisms in deep saline aquifers. The fractional amounts 
of injected CO2 in both dissolved and mobile phases follow similar trajectories across different thresholds, indicating robustness in 
the ADM’s ability to model long-term behavior regardless of the grid coarseness. Even with relatively larger thresholds, the method
provides a rapid and efficient quantification approach without significantly compromising the accuracy, making it suitable for exten-
sive parameter studies or scenarios with limited computational resources.

Overall, these findings confirm that the ADM approach validated against fine-scale models retains its ability to capture key CO2
transport phenomena, including dissolution-driven density changes and extended migration patterns.
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Fig. 20. Error analysis for the SPE 11B ADM simulations, showing variations in pressure and mass fraction errors alongside the percentage of active 
grid cells used across different coarsening thresholds.

Fig. 21. Temporal dynamics of CO2 trapping in the SPE 11B model, illustrated as fractions of injected CO2 in dissolved and mobile states. The 
vertical dashed line indicates the transition moment at which injection stops.

5.  Conclusions

This study comprehensively explored the dynamics of CO2 storage in deep saline aquifers, employing both laboratory and field-
scale models to validate the effectiveness of the Algebraic Dynamic Multilevel (ADM) method. This method, characterized by its 
fully implicit scheme, integration of fully compositional thermodynamics, and dynamic mesh refinement based on localized over-
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all CO2 mass fraction gradients, adeptly manages various reservoir scales, rock properties, and simulation time frames. The ADM 
method has consistently demonstrated the ability to accurately simulate the complex interactions and flow behaviors of multiphase, 
multicomponent CO2-brine systems, all while utilizing considerably fewer active grid cells than fully resolved grid approaches. By 
finely tuning the coarsening thresholds, the method strikes an optimal balance between computational efficiency and accuracy of the 
solution. Lower thresholds enable detailed capture of fine-scale fingering phenomena with increased computational demands due to 
enhanced grid resolution. Conversely, slightly higher thresholds manage to conserve computational resources without substantially 
sacrificing key flow and dissolution characteristics, as even a partial resolution of individual fingers and interfaces can be adequate 
to accurately replicate overall trapping dynamics. From a CCS perspective, the results demonstrate that ADM-based simulations can 
reliably forecast plume evolution, trapping dynamics, and dissolution processes without the excessive computational costs associated 
with uniformly fine grids. This capability is pivotal for devising effective CO2 injection strategies and for the long-term assessment of 
CO2 sequestration viability in geologically diverse and heterogeneous aquifer systems. The insights garnered from this study under-
score the potential of ADM to facilitate more efficient and scalable simulations, making it an invaluable tool in the ongoing efforts to 
enhance the predictability and effectiveness of CCS technologies.
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