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Abstract: Complex workflows that process sensor data are useful for industrial infrastructure manage-
ment and diagnosis. Although running such workflows in clouds promises reduces operational costs, there
are still numerous scheduling challenges to overcome. Such complex workflows are dynamic, exhibit pe-
riodic patterns, and combine diverse task groupings and requirements. In this work, we propose ANANKE,
a scheduling system addressing these challenges. Our approach extends the state-of-the-art in portfolio
scheduling for datacenters with a reinforcement-learning technique, and proposes various scheduling poli-
cies for managing complex workflows. Portfolio scheduling addresses the dynamic aspect of the workload.
Reinforcement learning, based in this work on Q-learning, allows our approach to adapt to the periodic pat-
terns of the workload, and to tune the other configuration parameters. The proposed policies are heuristics
that guide the provisioning process, and map workflow tasks to the provisioned cloud resources. Through
real-world experiments based on real and synthetic industrial workloads, we analyze and compare our pro-
totype implementation of ANANKE with a system without portfolio scheduling (baseline) and with a system
equipped with a standard portfolio scheduler. Overall, our experimental results give evidence that a learning-
based portfolio scheduler can perform better (5–20%) and cost less (20–35%) than the considered alterna-
tives.

Keywords: Portfolio Scheduling, Resource Management, Workflow Scheduling, Reinforcement Learning,
and Auto-Scaling.
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1
Introduction

Many companies are currently deploying or migrating parts of their IT services to cloud environments. To
take advantage of key features of cloud computing such as reduced operational costs and flexibility, the com-
panies should effectively manage their increasingly sophisticated workloads. For example, the management
of large industrial infrastructures of companies such as Shell is often involves the usage of complex work-
flows designed to analyze real-time sensor data [4]. Although the management of workflows and resources
has already been studied for decades [2, 13, 19, 33, 34], previous works have mostly focused on scientific work-
loads [3, 9, 15, 24] which differ from the industrial applications. Moreover, historically, approaches which are
proven to be beneficial for processing scientific workloads have rarely been proven to perform well, or have
been even adopted, in production environments [7, 18]. In contrast to previous body of work, in this paper
we focus on production industrial workloads comprised of complex workflows, and propose ANANKE, a sys-
tem for cloud resource management and dynamic scheduling (RM&S) of complex workflows that balances
performance and cost.

Compared to scientific workloads, production workloads are more often have detailed and complex re-
quirements. For example, production workloads may utilize different types of task groupings which can be
represented as bags-of-tasks or sub-workflows. Each group (or stage) could have a predefined deadline, and
could operate with certain performance requirements. Production workloads are often demonstrate notable
recurrent patterns as some tasks could run periodically, e.g., when new data is acquired from sensors. More-
over, both the workloads and the processing requirements evolve over time. Such requirements translate into
a rich set of Service Level Objectives (SLOs), which the RM&S system must meet while also trying to reduce
the operational costs.

To fulfill dynamic SLOs and achieve cost savings, the cloud customer could employ dynamic schedul-
ing techniques, such as portfolio scheduling. Derived from the economic field [14], a portfolio scheduler
is equipped with a set of policies, each designed for a specific scheduling problem. The polices are se-
lected dynamically, according to a user-defined rule and to a feedback machanism. By combining many
policies, the portfolio scheduler can become more flexible and adapt to dynamic workload better than its
constituent policies. Previous studies indicate that no single scheduler is able to address the needs of diverse
workloads [28, 31], and, in contrast, that a portfolio scheduler performs well without external (in particular,
manual) tuning [11, 12].

Although portfolio schedulers are promising for the context of complex workflows, previous approaches [26,
30] lack by design the ability to use historical knowledge in their selection. All these approaches prioritize the
diversity of selection, and thus do not bias it towards approaches that have delivered good results in the past.
This approach works well for workloads without periodic behavior, but may not deliver good results for in-
dustrial applications that focus on processing real-time sensor data. Thus, to take advantage of historical
information about the system and the workload, a research question arises in the context of complex indus-
trial workflows: How to integrate learning techniques into portfolio scheduling?.

To answer the research question, we propose in this work to integrate a reinforcement-learning technique,
Q-learning [32], into a cloud-aware portfolio scheduler. A Q-learning algorithm interacts with a system by
applying an action to it, and learns about the merit of the action from the system’s feedback (reward). We
explore the strengths and limitations of a Q-learning-based portfolio scheduler managing diverse industrial
workflows and cloud resources. Towards answering the research question, our main contribution is threefold:

5



6 1. Introduction

1. We design ANANKE, an RM&S architecture that integrates a reinforcement-learning technique, Q-learning,
into a portfolio scheduler (Section 3). This enables portfolio schedulers operating in cloud environ-
ments to use historical information, and thus service periodic workloads.

2. We design and build a prototype of ANANKE, a scheduling system with a learning-based portfolio sched-
uler as its core element (Section 4). The key conceptual contribution of this design is the selection and
design of scheduling policies equipped by the portfolio. The prototype is now part of the production
environment at Shell, and evolves from the existing Chronos system [4].

3. We evaluate our learning-based portfolio scheduler through real world experiments (Section 6). Using
the cloud-like experimental environment DAS-5 [5] and workloads derived from a real industrial work-
flow, we analyze ANANKE’s user-level and system-level performance, and elasticity (metrics defined in
Section 5). We also compare ANANKE with a baseline system and with a portfolio-scheduling-only ap-
proach.



2
System Model

In this section, we define the system model used in this work: workload, system architecture, and system in-
frastrucure. In practice, this model is already commonly used in real-time infrastructure monitoring systems,
such as the Chronos [4] system in the “Smart Connect” project at Shell.

2.1. Workload: Periodic Workflows with Deadlines
In our model, a workload is a set of jobs, where each job is structured as a workflow of several tasks with
precedence constraints among them. Each workflow is aimed for processing sensor data and has exactly
three chained tasks: first, the workflow selects the formula for calculations from a set predefined by engineers
and reads the related raw sensor data from the database. Second, it performs calculations by applying the
formula to the raw sensor data. Third, the workflow writes the results back to the database and sends the
completion signal. All the workflows in the model contain these three steps and differ only in the formula
used to calculate.

Workflows in our model are complex due to deadline constraints and periodical arrivals, not due to task
concurrency. Because such workflows are designed to process real-time raw sensor data, they have strict re-
quirements for the execution time. Each workflow should be completed before its assigned deadline. The
workflows which can not accomplish that are considered expired. Moreover, each workflow is executed peri-
odically, as sensors continuously sample new data and the system needs to update the database at runtime.
The chain nature of the workflow means that it does not have parallel parts, and thus requires only a single
processing resource (e.g., CPU core or thread) for its execution.

2.2. Processing Sensor Data in Practice: Three-Tier Architecture
In practice, infrastructure monitoring systems commonly use a tree-tier architecture to process sensor data.
The three-tier architecture, which we depict in Figure 2.1, consists of a master node (label 1 in the figure),
client nodes (2), and a database (3). Raw sensor data is collected form the monitored facilities and stored in
the database. Engineers add to the system a set of workflows for processing sensor data. These workflows
are placed in the job bucket, which is maintained by the workload manager (b) withing the master node. The
client manager (c) controls the set of client nodes and monitors their statuses. At the heart of the architec-
ture, the scheduler (a) is responsible for making allocation and provisioning decisions. The scheduler selects
appropriate workflows from the workload manager and, through the client manager, allocates them to the
client nodes.

The client nodes are responsible for running workflows. Every client node reads raw data from the database,
performs certain calculations specified in the assigned workflow task, and writes the results back to the
database. This model, however, can also be applied for processing other workflow types (e.g., fork-join) with
tasks running in parallel. It will require an addition of a separate workflow partitioner which will convert par-
allel parts into a set of independent chain workflows before their addition to the job bucket. To display the
states of the monitored infrastructure and the diagnostics results back to the users the framework has a web
interface.

7



8 2. System Model

Figure 2.1: Three-tier architecture for processing workflows.

2.3. Infrastructure: Cloud-Computing Resources
We model the infrastructure as an infrastructure-as-a-service (IaaS) cloud environment, either public or pri-
vate. (The Chronos system is currently deployed in a private cloud.) In this work, we assume that all resources
are homogeneous, and do not consider hybrid private-public cloud scenarios. In contrast with typical cloud
resource models which usually operate on a per-VM basis, our model uses the computing thread as the small-
est working unit. Per-thread management enables fine-grained control over resources, allowing the system
to perform coarse-grained vertical and fine-grained horizontal scaling. In our model, vertical scaling changes
the number of active threads within a node, whereas horizontal scaling changes the number of active nodes.

Compared to popular public clouds, our resource model has certain differences. The resources for our
experiments are only on-demand instances, and not spot or reserved instances. In public clouds such as
Amazon AWS [1], instances take some time to fully boot up [17]. However, to have a better control over the
emulated environment, we use in practice preallocated nodes (zero-time booting) and do not consider node
booting times in our model. Because cloud-based cost models can be diverse and likely to change over time,
as indicated by the current on-demand/spot/reserved models of Amazon, and the new pricing of lambda
(serverless) computation of Amazon and Google, similarly to our older work [31] we use in our model the
total running time of all the active instances to represent the actual resource cost and not the charged cost.



3
ANANKE Requirements and Design

In this section, we present the design of our ANANKE system. First, we define the architectural requirements
and specify the design goals. Then, we explain all the components of the system and discuss the design of our
Q-learning-based portfolio scheduler. We further show how to integrate the scheduler into the architecture
introduced in Section 2.2.

3.1. Architectural Requirements and Design Goals
The major architectural requirements (design goals) for ANANKE are:

1. The designed system must match the model proposed in Section 2. This allows the new system to be
backwards compatible with the system currently in operation, and enables adoption in practice.

2. The system must implement elastic functionality, e.g., it must be able to automatically adjust the amount
of allocated resources based on demand changes.

3. The system should use portfolio scheduling, which shows promise in managing mixed complex work-
loads [11].

4. The system should integrate Q-learning into the portfolio scheduler, to be able to benefit from the
historical information about the recurrent variability of the processed workloads.

The last two design goals are expected to improve application performance and increase resource utilization,
and constitute the main conceptual contribution of this work.

3.2. Architecture Overview
ANANKE extends the current Chronos system with the components and concepts needed to achieve the de-
sign goals 2–4. Matching the model from Section 2 (goal 1), ANANKE has a three-tier architecture, and consists
of a master node, client nodes, and a database. We further present the design of the ANANKE master and client
nodes, focusing on the new aspects.

3.2.1. Master Node
The master node of ANANKE consists of three major components: a scheduler, a workload manager, and
a client manager. Figure 2.1 depicts these components, and their communication pathways. Addressing
design goals 3 and 4, the scheduler (component (a) in Figure 2.1) is a Q-learning-based portfolio scheduler
equipped with a set of policies: a Q-learning policy and also other, simpler, threshold-based heuristic policies.
As detailed in Section 3.3, the scheduler hides the complexity of selecting the right policy, by autonomously
managing its set of policies and by taking decisions periodically. The workload manager (b) maintains the
bucket of workflows, collects the information about the workflow performance, and updates the status of
every workflow. The workload manager uses the response and waiting time of a workflow, and the fraction
of completed/expired workflows, as key performance indicators. The client manager (c) is designed to com-
municate with all client nodes, collecting continuously per-client resource utilization metrics, and sending
to clients when needed commands (actions) and tasks ready to be allocated.

9



10 3. ANANKE Requirements and Design

Figure 3.1: Components of the client node.

3.2.2. Client Nodes
The actual calculations are performed on client nodes. Figure 3.1 depicts the three components of the client
node: a thread pool, a thread manager, and a task manager. The thread pool (component (a) in Figure 3.1)
maintains a set of threads (smallest working units, see Section 2.3). Each thread continuously fetches work-
flows from the task manager and calls an external calculation engine from the engine pool. The thread logic
is completely determined by the workflow tasks and is defined by developers. Each client node can execute
multiple threads in parallel. At each moment, a thread executes only a single workflow. We use the number
of active threads as the key metric to represent resource utilization. The thread manager (b) receives provi-
sioning commands from the master node, and adds and removes threads from the pool. It also reports the
resource utilization (the CPU load, and the ratio of busy to total number of threads) back to the master node,
and continuously terminates idle threads. The workflow manager (c) maintains a bucket of workflows allo-
cated to the client node. The workflow manager tracks workflow states and monitors the performance. It also
computes the performance metrics and reports them back to the master node. We define two metrics for our
scheduler: the number of workflow stored in the bucket normalized by the size of the bucket and the average
completion time for the last five executed workflows.

3.3. The Q-Learning-Based Portfolio Scheduler
Addressing design goals 3 and 4, in this section we design a Q-learning-based portfolio scheduler for complex
industrial workflows in cloud (elastic) environments.

3.3.1. Adding a Portfolio Scheduler to the Architecture
Our design of the scheduler component of the master node is based on a portfolio scheduler. Figure 3.2 de-
picts the main components of this design: similarly to previous work [12], the portfolio scheduler consists
of a policy Simulator, an Evaluation component, and a Decision Maker. The portfolio scheduler is equipped
with a set (portfolio) of policies; we describe our design of the portfolio in Section 4.1. Periodically, the port-
folio scheduler considers its constituent policies in simulation, and selects from them the most promising
policy. The selection is done by the Decision Maker, which uses the utility estimated by the Evaluation com-
ponent to rank descendingly the policies, then selects the best-ranked policy. This mechanism is versatile:



3.3. The Q-Learning-Based Portfolio Scheduler 11

Figure 3.2: Architecture of a Q-learning-based portfolio scheduler, part of the master node. Data generated by each simulation is used
as training data, to train the decision table.

different Utility functions have been used to focus on performance [12, 26], risk [30], and multi-criteria opti-
mization [11, 30].

3.3.2. Designing a Q-Learning-Based Approach
Inspired by the work proposed by Padala et al. [25], we design non-trivially a provisioning policy based on
Q-learning. We define the state st at moment t as a tuple of the current resource configuration, resource
utilization, and the workflow performance: st = (ut , vt , yt ), where ut is the resource configuration (the total
number of threads), vt is the resource utilization, and yt is the application performance. We further define
the action the scheduler can take as at = (m, a), where m specifies the number of threads to be scaled and
a ∈ {up,down,none} is the action that grows, shrinks, and does nothing to change the set of provisioned
resources, respectively. The reward function for the Q-learning policy is defined by user, and used by the
Q-learning algorithm to calculate the reward (the value) for the current state-action pair. In ANANKE, we de-
sign the reward function to balance workflow performance and resource usage based on previous study [25].
Specifically, for every moment of time t we define the reward function as:

r (t ) = f (st , at )× g (st , at ), (3.1)

where f (st , at ) calculates the score due to workflow performance and g (st , at ) represents the score due to
resource utilization. Higher scores indicating better user-experienced performance and resource utilization
which are preferred. We define the concave functions f (st , at ) and g (st , at ) as:

f (st , at ) = sg n(1−pt )×e|1−pt |, (3.2)

g (st , at ) = e1−max(vt ,yt ), (3.3)

where pt is the normalized application performance according to the SLO, ut is the number of threads, vt

is the ratio of busy to total number of threads (so, normalized by ut ), and yt is the average CPU load across
clients.

When calculate the score for workflow performance, we use pt (average value of workflow’s response time
normalized by deadline in this work) as the main metric. According to the formula f (st , at ), smaller value of
pt leads to a higher score. A lower response time indicates that our system performs well in allocating work-
flows. To calculate the score for resource utilization, we decide to use vt and yt . Formula g (st , at ) shows
that lower value of vt and yt can lead to a higher score. In a word, we would like to observer that our system
can use less resource to process the workflows. By combining the workflow performance and resource uti-
lization, the reword function can balance the trade off between user-experienced performance and resource
utilization.



12 3. ANANKE Requirements and Design

3.3.3. Integrating Q-Learning into the Portfolio Scheduler
All learning techniques use a learning and training process. Because ANANKE is a real-time system, online
training is more suitable for our case than offline training. In our design, to train the Q-learning policy within
a portfolio scheduler, the master node uses the simulation-based approach depicted in Figure 3.2. Compared
to a standard portfolio scheduler, our design supports online training through a mechanism that feeds-back
simulation data into a decision (learning) table. The Q-learning policy uses the updated decision table in
its own decisions. However, using only the feed-back generated by applying the decisions of the Q-learning
policy itself ignores that other policies take decisions. To avoid this problem, our Q-learning-based portfolio
scheduler train its decision table with information from all policies, and from both real (applied decisions and
real effects) and simulated (estimated decisions and effects) environments. Therefore, this method allows to
generate and use more training data in a shorter time, albeit at the possible cost of accuracy (for simulated
effects).



Table 4.1: Provisioning policies in our portfolio scheduler.

Name Operational Principle

AQTP Lease threads for the first n waiting workflows, if their waiting time exceeds a pre-set
threshold t.

ODA Lease n threads for waiting workflows in the bucket, until the resource maximum is
reached, with n = nw −ni , where nw is the number of waiting tasks and ni is the num-
ber of idle threads.

ODB Lease n threads for waiting workflows in the bucket until the resource maximum is
reached, with n = nw −nt , where nw is the number of waiting tasks and nt is the total
number of threads.

Q-Learning Make a provisioning decision according to the current status of the system, by retrieving
an action from the decision table.

4
The Implementation of the ANANKE

Prototype

Two ANANKE components require careful configuration and implementation, the Q-learning-based portfolio
scheduler and the Q-learning policy, respectively. We explain in this section the selection of the portfolio
policies, which we see as a conceptual contribution. We also detail the process for constructing the decision
table for the Q-learning policy, which we see as an important technical contribution.

4.1. The Configuration of Policy Combinations
ANANKE is designed for both workflow allocation and resource provisioning. However, it is difficult to define
the allocation and provisioning behavior in a single policy. For this reason, ANANKE maintains a policy pool
(a portfolio) consisting of combinations of allocation and provisioning policies. An allocation policy contains
a workflow-selection policy, which selects the workflow to schedule next, and a client-selection policy, which
maps the selected workflows to client-nodes. The provisioning policy decides on adding and/or removing of
the resources. A composite-policy is a combination of allocation and provisioning policies, that is a triplet
comprised of a provisioning, a workflow-selection, and a client-selection policies. At runtime, the portfolio
scheduler selects from the pool a single combination of policies, as the active composite-policy. We design
a portfolio comprised of all the unique composite-policies (triplets) resulting from the policies described as
following:

4.1.1. Provisioning Policies
Provisioning policies can vary significantly in how aggressively they change the amount of resources. We
select four significantly different provisioning policies, adapt them to use threads as smallest processing unit,
and summarize their operation in Table 4.1. ODA [11] is the most aggressive in the set, as it always ensures

13



14 4. The Implementation of the ANANKE Prototype

Table 4.2: Workflow-selection policies in our portfolio scheduler.

Name Operational Principle

LCFS Last-Come, First-Served.

SWF Workflow with the Shortest Waiting
time First.

CDF Workflow which is Closest to its Dead-
line First.

SEF Workflow with the Shortest Execution
time First.

Table 4.3: Client-selection policies in our portfolio scheduler.

Name Operational Principle

LWTF A client with the Lowest workflow
Waiting Time First.

LUF A client with the Lowest CPU Utiliza-
tion First.

HITF A client with the Highest number of
Idle Threads First.

SWWF A client with the Smallest number of
Waiting Workflows First.

that the system has enough idle resources for waiting workflows. ODB [11] is less aggressive, as it just ensures
that the system has enough resources, whether busy or idle. AQTP [23] is the least aggressive policy in the
set, because it only considers the needs of a subset of the waiting workflows. Last, our Q-learning policy
provides a trade-off between the other policies, by learning from the decisions made by them.

4.1.2. Allocation: Workflow-Selection Policies
Which workflow to select next for execution is a typical question in multi-workflow scheduling systems. We
select four workflow-selection policies for our portfolio, and summarize their operation in Table 4.2. Besides
the typical LCFS policy, the other policies we use waiting time, time-to-deadline, or execution time as criteria
to select workflows from the waiting bucket. In particular, time-to-deadline is often used in real-time systems.

4.1.3. Allocation: Client-Selection Policies
To map workflows to available resources, we select four client-selection policies for our portfolio and sum-
marize their operation in Table 4.3. LUF and HITF use two different system-oriented metrics (the CPU usage
and the number of idle threads) to find the “most idle” client node. In contrast, LWTF and SWWF sort the client
nodes according to user-oriented metrics. LWTF allocates workflows to the client nodes that can start process-
ing the workflows the earliest. SWWF allocates workflows to the client nodes which have the least workflows in
their buckets.

4.2. Operational flow for the selecting the combination of policies
During the execution of a workload, the appropriate triplets of policies are chosen by the scheduler automat-
ically and output the selected one for next step (the actual provisioning and allocation). In a single decision-
making iteration, the portfolio scheduler selects the combination of policies by applying the following steps
in sequence. First, the scheduler prepares the virtual environments for simulation. It uses the current sys-
tem state to build the virtual environments. Note, that the scheduler runs simulations for each triplet of the
policies in an isolated virtual environment. In this work, 48 same virtual environments are created at the
beginning of the simulation. Then the scheduler clones the current workload and loads the triplet of poli-
cies into each virtual environment. As shown in Figure 4.1, the first three steps are the preparation for the
simulation. During the simulation, the equipped policies tuple are periodically applied until the workload is
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Figure 4.1: The operational flow for simulation, evaluation and policies selecting.

consumed in each virtual environment. Metrics are also measured and recorded which are used to evaluate
different triplets in the evaluation step. In the evaluation, a score is calculated for each triplet based on the
recorded metrics. A user-defined utility function (explained in section 4.3) is used for the calculation. The
decision maker, therefore, ranks the triplets discerningly according the scores calculated by the evaluation
component. The best-ranked triplet is selected. The selected triplet is used for actual resource provisioning
and workflows allocation. Figure 4.2 shows how the active triplet changes during the experiment.
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Figure 4.2: The figure gives an example of how the active triplet switches during the experiment.

4.3. Utility function as selection criteria
Users can customize utility functions used as selection criteria by the portfolio scheduler. The utility function
is a formula which considers both user-oriented metrics and system-oriented metrics. In this project, our
system operates in a private cloud environment. One of our goals is to consume the resources in the most
efficient way. Thus we focus on task throughput and CPU utilization which are combined in the following
formula:

S = k × (
P

Pmax
)α× (

1

1+Wav g
)α× (

C

Cmax
)β (4.1)

k, α, and β are scaling factors. P is the workflow throughput. Wav g is the average workflow waiting time. C is
the CPU usage. α and β are used to balance these three metrics. Table 4.4 gives the definitions of each nota-
tion used in the utility function. The throughput is a standard metric which presents the capability of process-
ing tasks. Although a higher throughput is usually desired, it may result in higher resource costs. Therefore,
we also consider the CPU cost when evaluating each pair of policies. Since we have the requirement to finish
each workflow before its deadline, we need to additionally consider the waiting time of a workflow to have
control over the response time.

4.4. Implementation of the Decision Table
The key question when implementing the Q-learning policy is how to match actions and states. For this, we
use a decision table storing in its cells state-action weights, which are dynamically updated by the Q-learning
policy. Figure 4.3 depicts an example of this table, with the states and actions defined as described in Sec-
tion 3.3.2. The size of the decision table is determined by the size of the action-state space (e.g., if the system
has 10 actions and 10 possible states, the size of the decision table is 10×10). To limit the size of the table
(otherwise, the training may take infinite time), the values of ut , vt , yt are normalized between 0 to 1 and
discretized (e.g., 10 possible steps), and m is given a maximum value that limits the number of columns in
the table. Before the training process starts, all the state-action weights are initialized by zero. When making
a decision at time t , our policy finds the row which represents the current state st and then, within the cell
values of that row, applies the provisioning action at with the highest weight. The next moment, t + 1, the
scheduler updates the weight q of that cell to a new weight q ′:
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Table 4.4: Explanation for the symbols used in utility function.

Symbol Description

k
k is the scaling factor for the total score whose value should in [1,10n].

(n is the amount of metrics considered in the objective function)

α α is used to emphasize the urgency of the tasks. (α is user defined)

β β is applied to stress the efficiency of resource usage. (β is user defined)

P Task throughput in one single simulation.

Pmax Estimated maximum value of task throughput in one single simulation.

Wav g Estimated average of task waiting time.

C Integration of CPU usage during one single simulation.

Cmax Estimated maximum value of integration of CPU usage during one single simulation.

(0, none) (1, up) (3, down) (m, down)

(0, 0, 0)

(0.1, 0.1, 0.1)

(ut, vt, yt)

Figure 4.3: The decision table for the Q-learning policy. Columns represent actions and rows represent states of the environment.

q ′(st , at ) = q(st , at )+α(rt+1 +βh −q(st , at )), (4.2)

h = max
a

q(st+1, a), (4.3)

where α and β are the learning rate and the discount factor, respectively, rt+1 is the reward caused by state-
change, and h is the estimate of the optimal weight.





Table 5.1: The parametrization of synthetic workflows.

Synthetic workflow Execution time range (s) CPU usage (%)
Workflow 1 [5, 15] 20
Workflow 2 [5, 10] 20
Workflow 3 [5, 10] 15
Workflow 4 [5, 15] 5
Workflow 5 [10, 15] 15
Workflow 6 [10, 15] 5

5
Experiment Setup

In this section, we present our real-world experimental setup: in turn, the workloads, the resource configura-
tion, and the baselines used to compare with ANANKE.

5.1. Workload Settings
To measure and analyze the performance of the Q-learning-based portfolio scheduler in different condi-
tions, we generate synthetic workloads that emulate the statistical features of real workloads. (We cannot
use the real workloads from the Chronos production environment, due to the confidentiality agreements.)
Each workload is comprised of a set of workflows and an arrival process (pattern).

Individual workflows: After analyzing the original Chronos workloads, we create six different types of
synthetic workflows and parametrize them similarly to the real-world cases. As summarized by Table 5.1,
each workflow differs in execution time and CPU usage, rated on a baseline client node.

Complete workloads: We create four synthetic workloads with periodic or uniform arrival patterns, match-
ing the behavior observed in real-world workloads (i.e., in production Chronos workloads). Each synthetic
workload combines the six different types of synthetic workflows, using an uniformly random distribution to
select the type for each arrival. Figure 5.1 shows the recurrent patterns of workflow arrival in the synthetic
workloads. For the workloads with periodic (dynamic) arrival patterns, ED.5x and EI2x, the workload con-
sists of a sequential batch submission with 10 batches/minute, where, respectively, the number of workflows
in a batch exponentially decreases by 0.5 and increases by 2 in geometric progression. For the workloads
with uniform (static) arrival patterns, PA3 and PA6, the arrival rate is of one workflow every 3 and 6 seconds,
respectively.

5.2. Environment Configuration
Real-world infrastructure: We conduct real-world experiments with ANANKE on the DAS-5 multi-cluster sys-
tem, configured as a cloud environment using the existing DAS-5 capabilities [5]. For our experiments, we use
1 cluster of the 6 available in DAS-5, and up to 50 homogeneous nodes of the 68 available nodes in this clus-
ter. Each node has Intel E5-2630v3 2.4GHz CPUs and 64 GB of RAM; nodes are interconnected with 1 Gbit/s
Ethernet links (conservatively, we do not use the existing high-speed FDR InfiniBand links).
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Figure 5.1: Four different patterns: ED.5x and EI2x are dynamic workloads, PA6 and PA3 are static workloads. (The horizontal axis only
shows a 190 s-cut from every complete workload.)

Cloud-deployment models: We conduct experiments using 3 cloud-deployment models, each of which
uses one master node, but different amounts and management of client nodes. The private cloud mode uses
3 statically allocated client nodes. This mode emulates the current production environment of the Chronos
system and represents standard practice in the industry. The public cloud mode allows changing the number
of client nodes during the experiment, from 1 to 5. Using this configuration, we evaluate the elasticity of our
scheduler. The scalability mode allows changing the number of client nodes in a wider range, from 5 to 50,
allowing us to conduct experiments for the what-if scenario in which the system load would increase by an
order of magnitude.

Configuration of Ananke components: The master node and client nodes are deployed in DAS-5. We
benchmark the client nodes, and determine that each client node can maintain up to 70 threads. Correspond-
ingly, we set the maximal bucket size on a client node to 140, which means the client node can accumulate
(queue) load for twice its rated capacity.

5.3. Metrics to Compare ANANKE and Its Alternatives
To analyze ANANKE and its alternatives, we use a variety of operational metrics focusing on application per-
formance, on resource utilization, and on elasticity.

5.3.1. Application Performance
To quantify application performance, which is a user-oriented performance view, we use throughput, the
workflow waiting time, and the expiration rate. We define throughput as the average number of completed
workflows per second. The waiting time of a workflow is the time between its arrival and the start of its first
task and the runtime is the time between the start of its first task and the completion of its last. We look at
slowdown in workflow response time, which for a workflow is the fraction between the runtime, and the sum
between the runtime and the wait time of the workflow. The expiration rate metric is the fraction of failed
workflows, that is, workflows that did not complete before their deadlines, from the total number of eligible
workflows during the entire experiment.

5.3.2. Resource Utilization
We use as metric the number of active (used) threads. Because each client node can run up to 70 threads, a
lower amount of threads (busy and idle) in the system leads to piece-wise linearly lower operational costs.

5.3.3. Elasticity
To evaluate elasticity, we adopt the metrics and comparison approaches introduced in 2017 by the SPEC
Cloud Group [16].

Supply and demand curves: The core elasticity metrics are based on the analysis of discrete supply and
demand curves. In this project, we define supply as the current number of threads in the system. We define
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the demand as the current number of running and waiting workflows, and when computing demand we only
consider those workflows near their deadlines [20].

Elasticity metrics: We adopt the suite of metrics proposed by the SPEC Cloud Group [16], each of which
characterizes a different facet of the mismatch between supply and demand of resources. We use three classes
of system-oriented elasticity metrics, related to accuracy, duration of incorrect provisioning, and instability
caused by elasticity decisions. The SPEC Cloud Group defines two accuracy metrics: the under-provisioning
accuracy, defined as the average fraction by which the demand exceeds the supply; and over-provisioning ac-
curacy, defined as the average fraction by which the supply exceeds the demand. The Wrong-provisioning
Timeshare represents the fraction of time of periods with inaccurate provisioning, either under- or over-
provisioning, from the total duration of the observation. The Instability represents situations when the supply
and demand curves do not change with the same speed, and is defined as the fraction of time the supply and
demand curves move in opposite directions or move towards each other.

Comparing multiple auto-scalers: To perform a comprehensive comparison including all system- and
user-oriented metrics, we use the two numerical approaches proposed for use by the SPEC Cloud Group [16]:
Pairwise Comparison [10] and the Fractional Difference Comparison [16]. In the pairwise comparison, for
each auto-scaler we compare the value of each metric with the value of the same metric of all the other auto-
scalers. The auto-scaler which has better performance for a particular comparison gains 1 point. If two
auto-scalers perform equally well for the same metric, both earn a half-point. Finally, auto-scalers are ranked
by the sum of points they have accumulated through pairwise comparisons. For the fractional difference
comparison, from all the obtained results we construct an ideal system, that for each metric is ascribed the
the best performance observed among the compared systems. (The ideal system expresses a pragmatic ideal
that may be closer to what is achievable in practice than computation based on theoretical peaks, and likely
does not exist in practice.) Then, we compare each auto-scaler with the ideal case, and accumulate for each
metric the fractional difference between; the lower the difference, the closer the real auto-scaler is to the ideal.
Last, we rank auto-scalers inversely, such that the lowest accumulated value indicates the best auto-scaler.

5.4. Auto-scalers Considered for Comparative Evaluation
We compare experimentally ANANKE with the following alternatives:

5.4.1. Existing Baseline
As baseline for ANANKE, we experiment with the current Chronos system, which is production-ready, does
not meet design goals 3–4, and operates in a private cloud.

5.4.2. Elasticity Baselines
Elasticity can be achieved by both vertical scaling, that is, adding or removing threads on existing client nodes,
and horizontal scaling, that is, adding or removing client nodes. Unlike ANANKE, which is elastic both hor-
izontally and vertically, Chronos is only horizontally elastic. To better assess ANANKE’s elasticity, we imple-
ment it and also a set of baselines with diverse elasticity capabilities:

1. ANK-VH (full ANANKE): Vertical and horizontal auto-scaling by the Q-learning-based portfolio sched-
uler.

2. ANK-V (partial ANANKE): Only vertical auto-scaling by the Q-learning-based portfolio scheduler.

3. PS(-VR) (standard portfolio scheduling [11]): Vertical auto-scaling by the standard portfolio sched-
uler, and (PS) no autoscaling or (PS-VR) horizontal auto-scaling by the React policy [8]. React is a top-
performing auto-scaler for horizontal elasticity and workflows [16].

4. NoPS (Chronos): Only vertical auto-scaling, by a threshold-based scaling policy.

5. Static (common in the industry): No auto-scaling, using only a fixed amount of client nodes.

5.4.3. Decision Table Configuration Alternatives
The decision table should be well-trained for the Q-learning policy to make accurate decisions. Intuitively, the
bigger the size of the decision table the longer it takes to fill it with data. The large size of the table increases
the training duration. Moreover, the size of the policy pool also affects the training process. A small number
of policies makes the training process longer as it generates less training data during the simulation. Thus, it
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Table 5.2: The policy pool configurations.

# Policies Provisioning Policy Workflow Selection Client Selection

16 AQTP, ODA, ODB, QL LCFS LUF, HITF, LWTF, SWWF

12 AQTP, ODA, ODB, QL LCFS LUF, HITF, LWTF

9 AQTP, ODB, QL LCFS LUF, HITF, LWTF

8 AQTP, ODA, ODB, QL LCFS LUF, HITF

6 AQTP, ODB, QL LCFS LUF, HITF

4 AQTP, ODA, ODB, QL LCFS HITF

3 AQTP, ODB, QL LCFS HITF

is highly possible that a poorly trained policy can cause performance degradation. The size of decision table
and the size of the policy pool are the most important factors affecting the performance of a Q-learning-based
policy.

As mentioned in Section 2, the Q-learning policy uses a decision table to store and manage weights of
the action-state pairs. The size of the decision table is determined by the number of possible system states
and actions. Figure 4.3 shows an internal structure of the decision table maintained by the Q-learning-based
portfolio scheduler. Our experiments compare the following configurations: different number of considered
actions, a different number of considered system states, and different sizes of the policy pool. All the related
experiments are performed in the private cloud environment. To evaluate the performance in this setup we
use the workflow waiting time normalized by the execution time. In this work, we design

1. State having more information vs State having less information: The State function uses three met-
rics ut , vt , and yt . By definition, vt and yt have boundaries, and ut can take any positive integer value
or 0. To define a range for ut , we normalize it by the maximal number of threads nmax . The normal-
ized configuration guarantees that the decision table will converge after a finite number of iterations.
Further we call the configuration with normalized ut as the state with less information (LD) and the
opposite configuration as the state with more information (MD).

2. 10 as the maximum action value vs 2n as the maximum action value: More threads may be leased
or terminated when the resource increases. As mentioned in Section 3.3.2, the action is defined as
at =(m,up|down|none). It may take a large value of if the number of threads (nmax ) becomes large.
We designed two approaches to determine the value of m which avoid it to increase linearly with nmax .
The first approach is giving m a maximum value which is 10. It scales at most ten threads in a single
scaling operation. The second approach is using Equation 5.1 to restrict the value of m in the case that
large resource is needed to be scaled.

k =


k, for k < 10

10, for 10 ≤ k < 24

2i , for 2i ≤ k < 2i+1 (i ≥ 4)

(5.1)

3. Setting for policy size: The decision table is solely trained by the data generated during the simulation.
Since, as mentioned in Section 2, the simulation is based on policies, the more policies the scheduler
has, the more data is generated. At the beginning of this section, we also mentioned that the lack of
training data might lead to a poorly trained Q-learning policy. Based on these assumptions, we inves-
tigate the dependency between the size of the policy pool and the application performance. Table 5.2
demonstrates how the policy pool is constructed in this experiment. Note, that the usage of different
workflow selection policies may cause fluctuations in the workflow waiting time. Thus, to minimize
possible side effects, we only use LCFS for the workflow selection.



Figure 6.1: The expiration rate and the response time of expired workflows with different workloads. (Lower values are better.)

6
Experimental Results

In this section, we evaluate and validate the design choices we made for ANANKE (in Section 3). As mentioned
in Section 5, we use two dynamic and two static workloads. Overall, our main experimental findings are:

1. The Q-learning-based portfolio scheduler shows better elasticity results compared with the threshold-
based auto-scaler common in today’s practice (NoPS). Our horizontally and vertically elastic approach
(ANK-VH) can save from 24% to 36% resources with at most 1.4% throughput degradation.

2. Compared with the standard portfolio scheduler, which may be adopted easily by the industry, under
static workloads the Q-learning-based portfolio scheduler has better user-oriented metrics.

3. Compared with the experimental PS-VR, the Q-learning-based portfolio scheduler reduces the perfor-
mance degradation due to elasticity, and for our largest experiments it outperforms PS-VR, but for small
experiments it shows worse overall elasticity performance when not tuned.

4. The Q-learning-based scheduler can be tuned to achieve a wide range of performance and elasticity
goals.

6.1. Scheduler Impact on Workflow Performance
We conduct experiments for this part using the private cloud mode, and report here only the expiration rate
and the workflow waiting time as the main metrics indicating application performance.

Figure 6.1 depicts the results measured for ANANKE (ANK-V), for the system using a standard portfolio
scheduler (PS), and for the system without a portfolio scheduler (NoPS). Both the Q-learning-based portfo-
lio scheduler (ANK-V) and the standard portfolio scheduler (PS) have very low expiration rates, much better
than the system without a portfolio scheduler. The portfolio scheduler leads to a few expired tasks, with the
ED.5x workload, but even then the average response time of the expired workflows is closer to the deadline
(indicated in the figure). Accordingly, both the Q-learning-based portfolio scheduler and the standard port-
folio scheduler can fulfill the deadline-constrained SLOs. Overall, we cannot observe a significant difference
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Figure 6.2: The normalized response time of the Q-learning-based portfolio scheduler (ANK-V) and of the standard portfolio scheduler
(PS). Workload: (top pair of plots) dynamic (ED.5x),(middle part of plots) dynamic (EI2x), and (bottom pair of plots) static (PA3).
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Figure 6.3: The supply and demand curves for five different auto-scalers, under (left) dynamic and (right) static workloads. The “Available
threads” horizontal line indicates the resource limit of 350 threads. The best performance for each workload is highlighted with a red
box.

between the Q-learning-based portfolio scheduler and the standard portfolio scheduler in the expiration rate
and in the response time degradation.

Figure 6.2 depicts a deeper analysis of the performance of the Q-learning-based portfolio scheduler. For
this, we compare the normalized workflow waiting times achieved by our scheduler and PS. We normalize
the workflow waiting time by the workflow execution time and calculate its cumulative average value; lower
values indicate a better user-experienced performance. Figure 6.2 shows the performance of our schedulers
and of PS, for static (PA3) and dynamic (ED.5x and EI2x) workloads, and correlated sub-plots depicting the
arrival of workflows in the system. The Q-learning-based portfolio scheduler reduces the normalized waiting
time by 5–20% compared with the standard portfolio scheduler, with a static workload. However, a similar
performance improvement does not appear with the dynamic workload—the standard portfolio scheduler
even performs slightly better, reducing the normalized waiting time by 0–8.3%. We explain this as follows. Be-
cause static workloads exhibit strong recurring patterns, the Q-learning-based portfolio scheduler can make
more precise scheduling decisions based on the information about previous workloads and system statuses.
The results indicate that the learning technique can help the portfolio scheduler make better decisions, for
workloads with strong recurring patterns.

6.2. Evaluation of Elasticity and Resource Utilization
To assess the elasticity, we conduct experiments in the public-cloud mode. As explained in Section 5, in an
ideal case the supply should follow the envelope of the demand. Figure 6.3 displays the supply and demand
curves for each auto-scaler under different workloads and highlights the one having the best performance
(where the supply and demand curves are close to each other) with a red box. The Q-learning-based portfolio
scheduler which uses only vertical scaling (ANK-V) performs better with the ED.5x workloads. The Q-learning-
based portfolio with both horizontal and vertical scaling (ANK-VH) beats all the others under the other three
workloads. PS-(VR) often under-provisions which means that it can cause serious performance degrada-
tion. NoPS and Static, on the contrary, significantly over-provision the resources and guarantee good user-
experienced performance at the cost of many idle resources. However, according to the requirements, good
performance for users with high resource costs is not our goal. Figure 6.3 gives an overview of elastic be-
havior of the considered auto-scales for various configurations. To perform a comprehensive comparison
including all system- and user-oriented metrics, we use two numerical methods. We rank the policies using
the pairwise comparison method and the fractional difference comparison method which are introduced in
Section 5.3.3.

The comprehensive comparison is based on the metrics described in 5.3.3 which include over- and under-
provisioning accuracy, over- and under-provisioning timeshare, two types of instability, the average job through-
put, the average number of used threads, and the slowdown in job response time. Table 6.1 shows the com-
parison results. The best auto-scaler for each workload is highlighted in bold. Considering all the combined
results generated by the described metric aggregation approaches, ANANKE outperforms all the other config-
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Table 6.1: The results of the pairwise and fractional comparisons. The winners are highlighted in bold. AS stands for auto-scaler.

AS Pairwise (points) Fractional (frac.)
ED.5x EI2x PA6 PA3 ED.5x EI2x PA6 PA3

PS-(VR) 11 13 13 13 3.00 2.88 3.65 3.58
ANK-VH 17 16 19 15 2.89 2.70 1.80 1.94
ANK-V 20 22 15 19 6.78 5.53 4.00 3.95
NoPS 19 16 17.5 17 6.02 5.82 4.08 3.92
Static 13 13 15.5 16 13.44 15.91 14.51 14.46

Figure 6.4: The average number of used threads during the experiment and the average throughput degradation. The baseline is the
static case without an auto-scaler.

urations in both static and dynamic workloads. From the results in Figure 6.2 and Table 6.1 we can conclude
that the reduction in the number of utilized resources often leads to the user-experienced performance degra-
dation. Since our SLO requires workflows to meet their deadlines, further we focus on the influence of the
number of used threads on the user-experienced performance. Because we can not observe significant differ-
ence in workflow waiting times between ANANKE and the standard portfolio scheduler, we measure changes
in the throughput to evaluate the user-experienced performance. For that we selected two metrics which are
the throughput degradation in workflows per second (compared with the Static case) and the number of
used threads.

Figure 6.4 shows the results. Although PS-(VR) uses 48–52% less resources, it also causes higher through-
put degradation (–1.96 workflows per second at most). ANK-VH has lower throughput degradation from –0.14
to –0.11 workflows per second which is 0.68–0.8% of the baseline throughput and saves from 42.8% to 48.2%
of resources. From the results shown in Figure 6.4, we can conclude that taking the performance degradation
and resource costs into account, the Q-learning-based portfolio scheduler (which uses both horizontal and
vertical auto-scaling) allows to achieve the best user-experienced performance with the lowest resource cost
among all the four auto-scalers with static and dynamic workloads.
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Figure 6.5: Normalized job response times for the state with more information (MD) and the state with less information (LD) configura-
tions. The arrow at the left upper corner indicates that the lower the better. The upper two cases use dynamic workloads, the bottom
two use static workloads.

6.3. Decision Table Configuration Impact on Workflow Performance
In this section, we discuss our findings about the trade-off between the configuration of the decision table
and the user-experienced performance.

We study this topic varying the number of actions, varying the number of system states, and varying the size
of the policy pool. All the related experiments are performed in a private cloud setting. We use job waiting
time normalized by the execution time to represent the user-experienced performance.

6.3.1. Different Configuration Setting in Determining State st
To compare the impacts of different configurations of system states (stored in the decision table) on user-
experienced performance, we use LD, and MD configuration setting mentioned in Section 5.4.3 and measure
the job waiting time and normalize it by job execution time. Figure 6.5 shows the normalized job waiting time
under different configuration settings. The Q-learning-based portfolio scheduler with the LD configuration
performs better than the one with the MD configuration under a dynamic workload. Compared to the sched-
uler with the MD configuration, the LD configuration reduces job waiting times by 15.9% under the ED.5x
workload. Under the EI2x workload, the LD configuration reduces job waiting times from 4.5% to 12%. How-
ever, for static workloads, the difference in the measured metrics is less obvious. Comparing the zoomed-in
areas (between 360s and 480s), we can notice that the waiting times converge to the same value faster under
a static workload. This observation indicates that the state configuration also influences the convergence
speed of the job waiting time. We explain this as following: Dynamic workloads can cause rapid changes in
system states. As a consequence, the size of the decision table with the MD configuration becomes larger as
it allows more possible state values. A larger decision table requires more time for its training and thus causes
more inaccurate scheduling decisions. So scheduler with LD configuration performs better under a dynamic
workload. However, the situation is different if the workload is static. The system is stabler, and the number
of possible states values is less than the case under dynamic workloads. No matter which state configuration
is used, the decision table can always be trained in a short period. Since there is no great difference between
LD and MD configuration in the training time, the user-experienced performances observed in LD and MD
cases are thus similar. We can conclude that smaller value space of system state leads to better performance
under dynamic workloads.

6.3.2. Different Configuration Setting in Determining Action at
As the size of the state value space affects the user-experienced performance, in this section, we investigate
if varying the value space of action has a similar effect on workflow performance. The results are shown in
Figure 6.6. In Figure 6.6 we cannot observe any significant differences in normalized job waiting times. Taking
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Figure 6.6: The user-experienced performance for QA10 and QA2n configurations. The user-experienced performance is represented as
job waiting times normalized by job execution times. The arrow at the right upper corner indicates that the lower the better.

four workloads into account, the QA10 configuration reduces normalized job waiting times by 5.5%–9.7%.
The values of normalized waiting times with different action configurations are closer to each other for most
of the experiment time. No matter which type of workload is used, both action configurations have similar
user-experienced performance (normalized waiting time). Form Figure 6.6 we can conclude that there is no
strong correlation between the size of the action value space and the job waiting tim

6.3.3. Policy Pool Size Impact on Workflow Performance
The final hypothesis which we would like to check is the influence of the size of the policy pool on the user-
experienced performance. We use the policy pool configurations from Table 5.2 and perform experiments.
The smallest configuration uses three policies and the largest configuration uses 16 polices. Figure 6.7 shows
the dependency between the size of the policy pool and the normalized job response time. Under the ED.5x
and EI2x workloads, no strong correlation between the normalized job response time and the size of the
policy pool can be found. Under the PA6 and PA3 workloads, the normalized job response time is inversely
proportional to the number of policies. The bigger size of the policy pool leads to lower values of normalized
job response times. Though, a clear linear dependency is not found between the size of the policy pool and
the user-experienced performance. We can conclude that for static workloads the Q-learning-based portfolio
scheduler with bigger policy pool has smaller task waiting times. However, such a relation is not observed
under a dynamic workload.

6.4. Analysis at 10× Larger Scale
Last, we show the performance of the Q-learning-based portfolio scheduler when managing 10 times more
resources—up to 50 nodes in the scalability mode (see Section 5.2). Because these experiments are large,
we only use PS-(VR) as the baseline. Figure 6.8 shows the supply and demand curves of two auto-scalers.
Similarly to what we have observed from the evaluation of elasticity, PS-(VR) experiences problems: it fails
to adjust the available number of resources quickly, to match demand changes. ANK-VH shows better results:
compared with PS-(VR), the gap between the supply and demand curves for ANK-VH is (visibly) smaller.
Overall, Figure 6.8 indicates that the Q-learning based portfolio scheduler is able to deliver good elasticity
properties, by provisioning moslty the required number of resources, even at 10 times larger scale than the
current practice.
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Figure 6.7: The vertical axis is the job waiting time normalized by the job execution time and the horizontal axis represents the size of
the policy pool varying from 3 to 16.

Figure 6.8: Comparison when auto-scaling at large scale between: (left) a simple reactive mechanism, and (right) ANANKE.





7
Related Work

We survey in this section a large body of related work. Relative to it, our work provides the first comprehensive
study and real-world experimental evaluation of learning-based portfolio scheduling for managing tasks and
resources.

Work on applying reinforcement learning: Closest to our work, Tesauro et al. [29] present a hybrid ap-
proach combining reinforcement-learning and queuing models for resource allocation. Their RL policy trains
offline, while a queuing model policy controls the system. Different from the authors’ approach, our work
uses online training, by taking advantage of the dynamic portfolio scheduling. Padala et al. [25] use reinforce-
ment learning to learn the application’s behavior and to design a solution based on Q-learning to perform
vertical scaling problems on the VMs level. Compared with the authors’ work, we add portfolio scheduling,
scale finer-grained resources (threads in our work vs. VMs in theirs), and take both horizontal and vertical
scaling into account. Bu et al. [6] use reinforcement-learning to change the configuration of VMs and res-
ident applications, whereas we add portfolio scheduling and solve both resource allocation and workload
scheduling.

Work on portfolio scheduling: Although the general technique emerged in finance over 50 years ago [14],
portfolio scheduling has been adopted in cloud computing only in the past 5 years—introduced simultane-
ously, by Intel [26] and by authors of this work [12]. Our current work extends a standard portfolio scheduler
to support reinforcement learning and to the significantly different workload complex industrial workloads.
Closest to our work, and not using reinforcement learning, Kefeng et al. [11, 12] build a standard portfolio
scheduler equipped only with threshold-based policies and only focusing on scientific bags-of-tasks; and
van Beek et al. [30] focus on different optimization metrics (for risk management) and workloads (business-
critical, VM-based vs. job-based).

Work on general workflow-scheduling: This body of work includes thousands of different approaches
and domains. Closest to our work, several scaling policies [21, 22, 27] take deadline constraints as their main
SLO. Our work further considers complex workflows and, simultaneously, resource provisioning, and per-
forms real-word experiments for evaluation.

Work on auto-scaling in cloud-like settings: Marshall et al. [23] present many resource provisioning poli-
cies to match resource supply with demand. We embed some of their policies as part of the portfolio used by
ANANKE for auto-scaling, and in general extend their work through the Q-learning and portfolio scheduling
structure. Ilyushkin et al. [16] propose a detailed comparative study of a set of auto-scaling algorithms. We use
their system- and user-oriented evaluation metrics to assess the performance of our auto-scaling approach,
but consider different workloads and thus supply and demand curves.
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Conclusion and Future Work

Dynamic scheduling of complex industrial workflows is beneficial for companies when migrating to cloud
environments. Current state-of-the-art approaches which are based on portfolio scheduling do not take into
account periodic effects which are often observed in workflows. SLOs specific for complex industrial work-
flows are also rarely addressed. To fill this gap, in this work we have explored the integration of a learning
technique into a cloud-aware portfolio scheduler.

We designed ANANKE, an architecture for RM&S that uses cloud resources for its operation and Q-learning
as a learning technique. We further designed and selected various threshold-based heuristics as scheduling
policies for the portfolio scheduler. We implemented ANANKE as a prototype of the production environment
at Shell, and conducted real-world experiments. The experimental results allowed us to analyze the interde-
pendencies between the parametrization of Q-learning and portfolio scheduling, and discover how the size
of the decision table and the size of the scheduling-policy pool affects the performance. We also compared
ANANKE with its state-of-the-art and state-of-practice alternatives. In our experiments, we use a diverse set of
workloads derived from real industrial workflows, and various metrics to characterize the performance and
elasticity.

Our results show that the usage of the Q-learning policy in the portfolio scheduler allows to get better
performance results from a user’s perspective, improve the resource utilization, decrease operational costs in
commercial IaaS clouds, and achieve good elasticity results for relatively static workloads. For highly dynamic
workloads, the addition of Q-learning into a portfolio scheduler is less beneficial. In all our results, dynamic
portfolio scheduling outperforms traditional static scheduling.

In the future, we plan to extend our work with considering other reinforcement learning techniques, such
as error-driven learning and temporal difference learning. Our ongoing work is focusing on an extended set
of workloads and SLOs, and includes experiments on bigger scale, especially temporal, that are only tractable
through trace-based simulation.

Methodology, Code, and Data Availability
The authors of this article are considering the SC16 Reproducibility Initiative. They have experience with
releasing methodology, code, and data related to their research.
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