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Deep Bayesian survival analysis of rail useful lifetime 
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A B S T R A C T   

Reliable estimation of rail useful lifetime can provide valuable information for predictive maintenance in railway 
systems. However, in most cases, lifetime data is incomplete because not all pieces of rail experience failure by 
the end of the study horizon, a problem known as censoring. Ignoring or otherwise mistreating the censored cases 
might lead to false conclusions. Survival approach is particularly designed to handle censored data for analysing 
the expected duration of time until one event occurs, which is rail failure in this paper. This paper proposes a 
deep Bayesian survival approach named BNN-Surv to properly handle censored data for rail useful lifetime 
modelling. The proposed BNN-Surv model applies the deep neural network in the survival approach to capture 
the non-linear relationship between covariates and rail useful lifetime. To consider and quantify uncertainty in 
the model, Monte Carlo dropout, regarded as the approximate Bayesian inference, is incorporated into the deep 
neural network to provide the confidence interval of the estimated lifetime. The proposed approach is imple-
mented on a four-year dataset including track geometry monitoring data, track characteristics data, various types 
of defect data, and maintenance and replacement (M&R) data collected from a section of railway tracks in 
Australia. Through extensive evaluation, including Concordance index (C-index) and root mean square error 
(RMSE) for evaluating model performance, as well as a proposed CW-index for evaluating uncertainty estima-
tions, the effectiveness of the proposed approach is confirmed. The results show that, compared with other 
commonly used models, the proposed approach can achieve the best concordance index (C-index) of 0.80, and 
the estimated rail useful lifetimes are closer to real lifetimes. In addition, the proposed approach can provide the 
confidence interval of the estimated lifetime, with a correct coverage of 81% of the actual lifetime when the 
confidence interval is 1.38, which is more useful than point estimates in decision-making and maintenance 
planning of railroad systems.   

1. Introduction 

All railway tracks would experience a certain degree of degradation 
over time. This degradation is particularly critical in Australia because 
numerous railway tracks carry heavy haul trains with axle loads up to 
40 t. After a certain period, fatigue and other failure mechanisms may 
cause rail failures and ultimately end the useful lifetime of the rail, 
resulting in high costs and intensive maintenance, and even derailment. 
Therefore, early estimating of the rail useful lifetime is important to plan 
maintenance, optimize costs, and proactively prevent rail failures. 

Previous research on rail degradation and rail useful lifetime esti-
mation can be grouped into two categories: 1) large region-based models 
for statistical degradation determination. 2) segment-based models for 
predicting the location and time that rail failures are likely to occur. 

Orringer [1] employed a stochastic process to develop a 

deterioration model that describes the probability of rail having defects 
at a particular period over a large region. Similar work was done by Zhao 
et al. [2], in which a combined probabilistic-based model was proposed 
to analyse the risk of derailment at a particular time. In addition, Jeong 
and Gordon [3] constructed a risk assessment model to forecast the 
occurrence of rail breaks between two consecutive inspections. A fuzzy 
logic model was developed by Vesković et al. [4] for predicting the 
frequency of rail break occurrence on some large sections of railway 
tracks. All previously mentioned models are large region-based models. 
However, rail degradation varies in degree at different locations. A 
model that estimates rail useful lifetime for large regions may lose 
generality and provide estimations with undesirable errors for rails at a 
specific location, which makes targeted predictive maintenance 
difficult. 

Recent research interests are towards building segment-based 
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models to predict where and when rail failures will occur. For example, 
Dick et al. [5] proposed a multivariate statistical model to predict lo-
cations where rail failures were most likely to occur in two years. 
Further, by utilizing machine learning techniques, Schafer and Barkan 
[6] proposed a neural network-based model to improve the performance 
for predicting the locations of potential rail failure based on the same 
dataset used by Dick et al. [5]. Recently, Zhang et al. [7] used a tree- 
based machine learning technique to estimate the risk of rail failures 
at a certain location. Ghofrani et al. [8] applied an ensemble-based 
machine learning model to analyse the risk of rail failures. As one can 
see, very few studies have explored the estimation of rail useful lifetime. 
The most related work was done by Bai et al. [9]. They built a predictive 
model based on Markov stochastic processes to estimate the rail useful 
lifetime. The lifetime data used in the modelling were derived from 
severely defective rails and broken rails events. However, in most of the 
rail segments, rail failures are not always observed. For example, some 
rail segments did not experience a failure before the end of the study 
horizon, but they could potentially fail at a future date. Such cases are 
known as right censored. Ignoring or otherwise mistreating the censored 
cases might lead to false conclusions [10]. 

Survival approach is particularly designed to handle censored data 
for analysing the length of time until one event of interest occurs, such as 
a patient’s death or mechanical system failure. In survival approach, the 
time to event is characterized by the survival model, which represents 
the probability that an individual is still alive at a certain time, or in this 
paper, a rail segment is still working safely. There are some popular 
survival models such as Cox proportional hazards (Cox) model, log- 
logistic model, and Weibull accelerated failure time (Weibull) model. 
All models attempt to represent the hazard rate (the probability of 
failure in a very small time interval) as a function of lifetime and 
observed data, which are also statistically called covariates. Ghofrani 
et al. [11] used a Weibull model to forecast the risk of service failures in 
railway tracks. Chi et al. [12] used Cox model, Weibull model, and log- 
logistic model to analyse the time to failure of the high-speed railway 
train wheelsets. Alemazkoor et al. [13] developed a mixed-survival 
model to estimate wheel wear rates. Extensive research has demon-
strated the potential of survival approach in lifetime estimation for 
vehicle components in railway systems. However, no previous studies 
have exploited the potential of survival approach for rail useful lifetime 
modelling. This lack of exploration is due to several reasons, all of which 
pose major challenges. 

In classical survival models, it is assumed that the hazard rate is 
linearly related to the covariates. However, in many applications, this 
assumption might be too simplistic. Therefore, a more complex family of 
survival models is necessary to properly capture nonlinear relationships 
in covariates. The fast developments in artificial intelligence have 
enabled researchers to utilize deep neural networks to build models that 
offer improved accuracy and flexibility in modelling the relationship 
between targeted tasks and covariates [14]. For example, Sresakoolchai 
and Kaewunruen [15], Sresakoolchai and Kaewunruen [16], and Sre-
sakoolchai et al. [17] used deep learning techniques to estimate the 
condition of critical components of railway structure and vehicle, 
achieving good prediction performance. In the case of survival 
approach, deep neural networks are also deployed lately. Katzman et al. 
[18] used neural networks to model the non-linear relationship between 
covariates and the risk of a clinical event in the framework of survival 
approach. Lee et al. [19] used neural networks to directly learn the 
distribution of patients’ survival times. Additionally, Giunchiglia et al. 
[20] proposed a parametric survival model that employed recurrent 
neural networks for medical practice. 

The deep neural network-based survival models have gained undis-
puted success, especially the one developed by Katzman et al. [18], 
which has shown its strength in many applications with good perfor-
mance [21,22]. However, these deep neural network-based survival 
models provide only point estimates of the hazard rates and thus cannot 
properly convey uncertainty in the estimations. Overly confident 

estimations might lead to unreliable decisions and potentially severe 
consequences, particularly in safety–critical industries like railway 
transportation, which involves substantial risks to both economy and 
personal safety. As such, it is necessary to properly consider the un-
certainties in deep neural network-based survival models. Bayesian deep 
learning provides an appropriate way for measuring uncertainty 
[23,24]. In 2016, Gal and Ghahramani [25] proposed a practical 
Bayesian deep learning method named Monte Carlo dropout, which is a 
stochastic regularization technique. In this method, the uncertainty in 
deep neural networks can be estimated and confidence interval of esti-
mations can be provided [26,27]. This method has been successfully 
applied in various fields such as image segmentation [28], object 
detection [29,30], and active learning [31]. 

This paper proposes a deep Bayesian survival approach, named BNN- 
Surv, to properly handle censored data for rail useful lifetime modelling. 
To capture the non-linear relationship between covariates and rail useful 
lifetime, a multi-layer neural network is used to represent the hazard 
rate in survival model. To consider and quantify uncertainty, Monte 
Carlo dropout, regarded as the approximate Bayesian inference, is 
incorporated into the deep neural network-based survival model to 
provide the confidence interval of the hazard rate as well as estimated 
rail useful lifetime. The proposed approach is demonstrated on a section 
of railroads in Australia. Track geometry monitoring data, track char-
acteristics data, various types of defects data, and M&R data are used for 
model development. Through extensive evaluation, including C-index 
and RMSE for evaluating model performance, as well as a proposed CW- 
index for evaluating uncertainty estimations, the effectiveness of the 
proposed approach is confirmed. The key contributions of this study are 
summarized as follows:  

1) To the best of our knowledge, this is the first effort to use deep neural 
network combined with Monte Carlo dropout as a survival approach. 
It is verified that, compared to the classical survival approach, 
integrating deep neural network into the survival approach can 
achieve better performance and the estimated rail useful lifetimes 
are closer to the real values. In addition, incorporating Monte Carlo 
dropout can provide the confidence interval of the estimated rail 
useful lifetime.  

2) For the first time, the survival approach is used for rail useful lifetime 
modelling. This allows the censored data collected by the railroads 
can be properly considered in the model development.  

3) The proposed model in this study can serve as a valuable tool for rail 
useful lifetime modelling, which helps railroads to make informed 
decisions and optimize predictive maintenance. 

2. Methodology 

2.1. Problem statement 

Given a set of covariates x and rail useful lifetimes T and labels E, this 
study aims to model the length of time until rail failure occurs. Specif-
ically, the covariate is defined as a matrix of n× m, n being the number 
of observations and m being the number of covariates, such as repre-
sentations of track conditions and track characteristics. Rail useful 
lifetime T denotes the time interval that the rail maintains its normal 
condition until failure. Label E represents whether the rail useful lifetime 
is observed. If a failure has happened, the rail useful lifetime T is fully 
known, and the label is E = 1. If a failure has not happened, the rail 
useful lifetime T is partially observed, i.e., only known that the rail does 
not fail until the end of the study horizon. In such a case, the data is 
labelled as E = 0 and is called censored data. The standard regression 
methods consider the censored data as a type of missing data and usually 
discard them, which may introduce bias in the model. As such, to 
adequately handle censored data, the use of the survival approach is 
crucial. 
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2.2. Survival approach 

Survival approach [32] aims to model the distribution of rail useful 
lifetime T with censored data consideration, where T can be described 
by the probability density function f(t) and cumulative distribution 
function F(t). The probability that rail failure occurs before a certain 
time t, can be written as 

F(t) = P(T ≤ t) =
∫ t

0
f (τ)dτ (1) 

The opposite case, i.e., the probability that a rail failure does not 
occur at t is called survival probability S(t)

S(t) = P(T > t) = S(t) = 1 − F(t) (2) 

The survival probability in the survival approach is time-dependent 
and commonly described using the hazard rate h(t). The hazard rate h(t)
represents the probability that a rail failure will occur in a very small- 
time interval, provided that the failure has not occurred before that 
particular time interval. 

One of the most commonly used survival models is the Cox model 
[33], which offers a semi-parametric description of the hazard rate in 
continuous time. This model is based on the proportional hazards 
assumption, where the ratio of hazard rates between two observations is 
constant and only depends on the covariate values x, as can be seen from 
Eq. (3). 

h(t|xi ) = h0(t)exp(g(xi)), g(xi) =
(
βTxi

)
(3) 

In Eq. (3), the hazard rate is divided into two components h0(t) and 
g(x). The non-parametric baseline hazard, represented by h0(t), varies 
over time and is consistent across all observations. Meanwhile, the 
partial hazard, denoted by g(x), is time-invariant and varies with co-
variate values. The partial hazard is expressed as a linear function of the 
covariates, in which vector β represents the coefficients for the obser-
vation. The non-parametric baseline hazard is typically modelled with 
the Breslow estimator, according to Lin [34]. The parametric component 
g(x) is determined by maximizing the Cox partial likelihood L as follow: 

L =
∏

i:Ei=1

h0(ti)exp[g(xi) ]
∑

j∈R(ti)h0(ti)exp
[
g
(
xj
) ] =

∏

i:Ei=1

exp[g(xi) ]
∑

j∈R(ti)exp
[
g
(
xj
) ] (4)  

where ti, Ei, and xi are the respective lifetime, label indicator, and 
covariates for the i th sample. The risk set R(ti) is the set of samples that 
are still at risk of rail failure at time ti. As can be observed in Eq. (4), the 
partial likelihood considers probabilities only for those samples that 
have experienced rail failure (E = 1) and does not explicitly consider 
probabilities for those samples that are censored (E = 0). But the in-
formation that censored data contained is preserved in the partial like-
lihood, i.e., a sample that is censored after the i th lifetime is part of the 
risk set used to compute Li even though this sample is censored later. 
More description of censored data in survival approach can be found in 
Kleinbaum et al. [35]. 

2.3. Deep neural network-based survival approach 

However, the relationship between covariates and partial hazard is 
restricted to linear in Cox models, which is often not the case in many 
practical scenarios [18,36]. Therefore, a more complex family of sur-
vival models is necessary to properly capture nonlinearity in the data, 
offering greater flexibility in modelling the relationship between cova-
riates and partial hazard. Deep neural network is a highly popular 
modelling technique and has been frequently utilized in literature owing 
to its capability of fitting highly complex, nonlinear functions. In the 
case of survival approach, deep neural network is also deployed lately. 

Among them, the model proposed by [18] is one of the most popular 
deep neural network-based survival models, showing outstanding per-
formance in many applications [21,22]. In Katzman et al. [18], the 

partial hazard is estimated through a multi-layer perceptron (MLP), 
which comprises two fully connected layers. The parameterization of the 
partial hazard g(x) is rather straightforward by using the neural network 
fnet(⋅) to replace linear function βTx as 

g(xi) = fnet(w, xi) (5)  

where w denotes the weights of the neural network. To train this neural 
network, the loss function is set to be the average negative log partial 
likelihood, where the partial likelihood is similar to that is used in the 
Cox model. 

logL = log

(
∏n

i=1

exp[βXi(ti) ]
∑

j∈R(ti)exp
[
βXj(ti)

]

)

=
∑

i:Ei=1

(

βXi(ti) − log
∑

j∈R(Ti)

exp
[
βXj
(
tj
) ]
)

(6)  

Lloss = −
1

nE=1

∑

i:Ei=1

(

βXi(ti) − log
∑

j∈R(Ti)

exp
[
βXj
(
tj
) ]
)

(7) 

Note that the deep neural network employed in survival approach 
can vary in the number of hidden layers and units, depending on the 
specific problem. The type of network can also be customized depending 
on the structure of covariates. For example, Lee et al. [37] used recurrent 
neural networks to deal with longitudinal data and Li et al. [36] used 
attention-based neural networks to process time series for survival 
analysis. As the structure of covariates in this study is relatively basic 
and contains neither images nor time series, multiple fully connected 
layers are therefore used as the deep neural network backbone. 

2.4. Monte Carlo dropout as a Bayesian approximation 

Although the deep neural network-based survival model is capable of 
modelling the useful lifetime, it does not offer a confidence interval for 
each estimation. This implies that the uncertainty in the deep neural 
network-based survival model cannot be considered. A useful way to 
represent uncertainty is through Bayesian methods, which involve 
placing a prior distribution over model parameters and marginalizing 
them given new observations to obtain an updated distribution [38,39]. 
In this case, approximate inference methods such as Markov Chain 
Monte Carlo (MCMC) and variational inference are required. But 
inferring the posterior distribution in the context of deep neural net-
works poses a great challenge due to the large number of model pa-
rameters involved. Even MCMC method can be impractical because of 
slow convergence and immense computational costs. To address this 
issue, Monte Carlo (MC) dropout is introduced [25], which is one of the 
most popular approximate Bayesian inference methods in practice due 
to its simplicity and no loss of accuracy. 

For a set of training samples with covariates x = {x1, .., xn}, corre-
sponding outputs y = {y1, .., yn

}
, and the weights of an L-layer neural 

networks w = {w1, .., wnode}
L
i=1, the aim of Bayesian inference is to 

determine the posterior distribution p(w|x, y ). Hence, the prediction of 
an output y* for an unknown sample with covariate x* can be made 
through the posterior distribution over the space of weights given the 
training samples: 

p(y*|x*, x, y ) =
∫

p(y*|x*,w )p(w|x, y )dw (8) 

As the true posterior distribution is intractable in most cases, varia-
tional inference (VI) is often applied to deal with this issue. The idea of 
VI is to approximate the true posterior distribution with the variational 
distribution qθ(w) with parameters θ. This can be achieved by mini-
mizing the Kullback-Leibler (KL) divergence KL(qθ(w)‖p(w|x, y ) ), 
which is a measure of the similarity between the two distributions. The 
minimization objective for VI can be written as: 

C. Zeng et al.                                                                                                                                                                                                                                    
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LVI = −

∫

qθ(w)logp(y|x,w )dw+KL(qθ(w)‖p(w) ) (9)  

where the integral term denotes the negative partial log-likelihood 
function with respect to the expectation of the posterior distribution. 
The KL term serves to alleviate overfitting. 

The minimization objective for a neural network with dropout 
applied Ldropout can be expressed as 

Ldropout =
1
N
∑N

i=1
l(yi, ŷi)+ λ

∑L

i=1
‖wi ‖

2
2 (10)  

where ŷ denotes the output of the neural network and l(⋅, ⋅) denotes the 
loss function. 

According to the derivation in Gal and Ghahramani [25], the integral 
term in Eq. (9) can be approximated through Monte Carlo integration 
with respect to w because the Monte Carlo sampling process of param-
eters w from Bernoulli distribution is identical to performing dropout on 
the neural network layers. Meanwhile, the KL term in Eq. (9) corre-
sponds to an L2 regularization term by some weight decay in dropout 
networks. Thus, Eq. (9) and Eq. (10) can be rewritten as: 

∂
∂θ

L⌢dropout(θ) =
1
N

∂
∂θ

L⌢VI(θ) (11) 

Eq. (11) shows that optimizing the neural network with dropout 
operations is equivalent to performing approximate inference within a 
probabilistic framework for the model. 

By replacing the posterior p(w|x, y ) with its variational approxima-
tion qθ(w), the prediction of output y* for an unknown sample with 
covariate x* can be further calculated as 

p(y*|x*, x, y ) =
∫

p(y*|x*,w )qθ(w)dw ≈
1
M
∑M

m=1
p(y*|x*, ŵm ) (12) 

Owing to the mathematical proofs in Gal and Ghahramani [25], the 
predictive distribution of output can be approximated by collecting the 

results of M times stochastic forward passes through the model during 
the test process. As a result, the uncertainty within the model can be 
estimated. 

2.5. The proposed deep Bayesian survival model 

Combining the aforementioned survival approach, deep neural 
network, and Monte Carlo dropout, a deep Bayesian survival model, 
named BNN-Surv is designed for rail useful lifetime modelling as 
depicted in Fig. 1. The structure of the model follows a configurable 
feed-forward deep neural network structure: the input to the network is 
the covariates x, consisting of monitoring data, track characteristics 
data, defects data, and M&R data, which are explained in section 3. The 
network propagates the inputs through a number of hidden layers with 
weights w. To fully learn the nonlinear relationships in covariates, 
multiple fully connected layers are constructed. The final layer is a 
single node that performs a linear function of the learned hidden rep-
resentations. The output of the last layer is the estimated partial hazard 
g(x). The architecture facilitates the network in learning potentially non- 
linear relationships between covariates and partial hazards. Further-
more, every fully connected layer is succeeded by an MC dropout layer, 
which serves as an approximation of the variational Bayesian inference 
to provide uncertainty estimation. 

The pseudocode for training and testing the BNN-Surv is illustrated 
in Algorithm 1. Unlike using standard dropout, the specific operation of 
MC dropout is to randomly drop some neuron weights during the 
training and testing process. This can be seen as adding some Bernoulli 
noises to the original neural network. Because some neurons are 
randomly dropped during the testing process, different estimation re-
sults can be obtained for the same test data each time. After M estima-
tions, the mean μ and standard deviation σ can be calculated for all the 
estimation results, and the final confidence interval can then be esti-
mated. By doing this, approximate Bayesian inference is involved in the 

Fig. 1. The architecture of the proposed BNN-Surv model.  
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neural network.  

Algorithm 1. Training and testing phases of BNN-Surv. 

1: Input n samples as the training set, x is input covariates. 
2: Initialize weights w in network fnet . 
3: Output ŷ is the partial hazard. 
4: Training phase: 

5: For each epoch do 
6: Turn on dropout 
7: Performing stochastic calculations and 

ŷ = fnet(w,xi)

8: Update weights w in the neural network fnet(⋅)
9: Restore the dropped neurons 

10: Compute the loss Lloss = −
1

nE=1

∑

i:Ei=1

⎛

⎝βXi(ti) − log
∑

j∈R(Ti)

exp
[
βXj
(
tj
) ]

⎞

⎠

11: Determine whether to stop the training process when the loss does not decrease. 
12: End for 
13: Testing phase: 
14: For i = 1, ...,M do 
15: Turn on dropout 
16: Performing stochastic calculations and 

ŷi = fnet
(
wdroppedi, xtesti

)

17: Restore the dropped neurons 
18: End for 

19: μ =
1
M
∑M

i=1
ŷi 

20: σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
M
∑M

i=1

(
ŷi − μ

)
√

21: Setting n times the standard deviation σ 
22: Upper bound of the confidence interval for hazard function: 

h(t)upper
= h0(t)exp(μ + n⋅σ)

Lower bound of the confidence interval for hazard function: 
h(t)lower

= h0(t)exp(μ − n⋅σ)

3. Deep Bayesian survival analysis for rail useful lifetime 
modelling 

3.1. Data structure 

The dataset available for the current study consists of track geometry 
monitoring data, track characteristics data, various types of defects data, 
as well as M&R data. The dataset is collected from a 150 km section of 
railway tracks in Australia during the period from 2016 to 2021. 

3.1.1. Track geometry monitoring data 
Track geometry monitoring data is collected from the special track 

geometry car at 1 m interval with corresponding locations. The track 
geometry data is collected in an almost constant time interval, every four 
months. Each time at every 1 m, there are more than 100 measurements, 
such as curvature, twist, wear, and so on. Using all measurements would 
result in a high dimensionality of covariates and might decrease the 
computational efficiency. Besides, some measurements are correlated 

with each other and might provide redundant information. Therefore, 
feature selection is performed based on the expert’s knowledge and 
previous studies [40,41]. Table 1 shows the list and description of some 
selected track geometry monitoring data. 

In addition to the direct use of these monitoring data, some new 
numerical measurements can be extracted from geometry monitoring 
data to better represent the condition of the tracks. TQI is one of these 
and has been widely used to comprehensively quantify the quality of the 
track condition [42]. There are different types of TQI depending on local 
standards. Since the study is based on the Australian railroads, the TQI 
calculation method recommended by the experts’ knowledge of 
Australian Rail Track Corporation is used in this paper [43]. 

TQI = 0.5 ×
(
σtopleft + σtopright + σlineleft + σlineright

)
+ σtwist + σxGauge (13)  

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nl − 1

∑Nl

j=1

(
gij − gi

)2

√
√
√
√ (14)  

gi =
1
Ni

∑Ni

j=1
gij (15)  

where σi is the standard deviation of a single geometry measurement 
(unit: mm). gij is the value of the geometry measurement i at location j on 
the railway tracks. Ni is the number of measurements i in the section of 
track. 

3.1.2. Track characteristics data 
Given that the studied railway network consists of heavy haul lines, it 

is essential to take into account the impact of tonnage on the rails. To 
facilitate modelling, information on the annual tonnage, which refers to 
the total weight of trains and freight passing each track section, is 
collected and analysed. 

The insulated joint data needs to be considered when modelling the 
rail useful lifetime because the nearby rails usually experience failure 
more frequently according to the experience of patrol inspection staffs 
and maintenance engineers. In this study, the count of insulated joints is 
used. 

3.1.3. Defects data 
According to the literature [42], the existing defects on tracks might 

have effects on rail failures. So, it is natural to collect defect data for rail 
useful lifetime modelling. The defects data is acquired through patrol 
inspection, ultrasonic inspection, ground penetrating radar, and circuit 
signals with the date and location of occurrence, and defect type 
recorded. There are many types of defects recorded, such as transverse 
weld defects, formation failures, squats, and so on. Based on where the 
defects occur, the defects data is classified into three categories, which 
are rail defects, geometry defects, and formation defects. The details of 
the classification are shown in Table 2. 

Table 1 
The description of some selected track geometry monitoring data.  

Geometry monitoring 
data 

Description 

Top offset at left rail 
(top_L) 

5 m top chord with a 2 m/3m mid-point offset 

Line offset at left rail 
(line_L) 

10 m alignment chord with a centre mid-point offset. 

Twist 2 m Measures the change in superelevation over a 2 m interval 
by calculating the difference between the current xsuper 
and xsuper delayed by 2 m. 

Gauge The measured distance between the rail gauge points, 
expressed as a variation from the standard gauge. 

Rail head loss The percentage reduction in the cross-sectional area of the 
rail head compared to the selected template 

Rail horizontal wear The sum of horizontal wear at the (inner) gauge point and 
horizontal wear at the outer (field face) gauge point. 

Rail vertical wear Vertical wear at a point 16 mm in from the gauge point.  

Table 2 
The classification of track geometry data.  

Defect type Description 

Rail defects Weld defect  
Surface damage  
Squat and shelling  
Rail head split  
Rail head transverse crack 

Geometry defects Twist fault  
Top fault  
Gauge exceeds 

Formation defects Mud pumping  
Formation failure  
Ballast fouled  
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3.1.4. Maintenance and replacement data 
Maintenance and replacement (M&R) activities would change the 

condition of the tracks and directly affect the rail useful lifetime. Thus, 
M&R data needs to be considered in modelling. However, there are 
different types of M&R activities, and they have different degrees of 
influence on the condition of tracks. For example, taking rail joint 
replacement and re-railing can be regarded as resetting the rail to brand- 
new condition, whereas, tamping and grinding are only partial and 
temporary repairs of the rail surface and formation. Thus, the M&R 
activities need to be classified based on the degrees of M&R and the 
components being maintained. In this study, according to the rail 
maintenance engineers’ knowledge, the M&R activities are classified 
into four categories including renewal M&R, surface M&R, geometry 
M&R, and formation M&R. The details of classification are shown in 
Table 3. 

3.2. Survival data processing 

Unlike classical classification and regression approaches, survival 
analysis requires a dataset including the following three pieces of in-
formation: 1) observed covariates x, 2) useful lifetime T, and 3) label E 
whether the lifetime is fully observed or partially observed. Therefore, a 
unique survival dataset needs to be constructed for model development. 
The detailed processing procedures are as follows:  

1) Segment division: as this study attempts to perform a segment-based 
useful lifetime modelling rather than in a large region, the continu-
ously studied track sections are divided into adjacent segments. 
According to the recommendation from Bai et al. [9], the length of 
segment is set to 1 km.  

2) Useful lifetime: the real rail useful lifetime is the time interval from 
rail starting time to the failure time. Fig. 2 shows the timeline of a 
typical track segment. Since the actual time that the rail put into use 
was not accurately recorded, in this study, the first starting time is 
counted from the first time that the rail experiences a rail replace-
ment (one of the maintenance activities). If rail failures occur ni 
times in segment i, lifetime should be calculated as many as ni +1 
times for that segment. The (1, 2,…, ni)

th lifetime is the time interval 
from the time of rail replacement to the next rail failure that occurs. 
The (ni + 1) th lifetime is not known, which is censoring. As one can 
see, the real rail useful lifetime is determined based on the replace-
ment and rail failure records. The location and date of each actual 
replacement and rail failure event were provided by the Australia 
Railway Track Corporation.  

3) Event indicator: when the lifetime is associated with a rail failure, the 
event indicator is set to 1. If no rail failure is observed until the end of 
the study horizon, the event indicator is set to 0.  

4) Mapping covariates: all the aforementioned datasets explained in 
section 3.1 are mapped to the corresponding segment and lifetime. 
The covariates that are used in this study are summarized in Table 4. 

Based on historical records, 526 samples are created, 194 of which 

have exact lifetimes, whereas the rest samples are censored. Each sample 
represents a 1 km segment of track, with actual lifetime, label, and 
covariates, where covariates include geometry monitoring data, track 
characteristics, defects data, and M&R data. Fig. 3 shows the distribu-
tion of some of the covariates and their relationships with one another. 
The histograms on the diagonal illustrate the distribution for each co-
variate, while the scatter plots on the upper and lower triangles show the 
relationships between two covariates. It can be seen from the scatter 
plots that there is no significant correlation between most of the 
covariates. 

4. Implementation and results 

In this section, the proposed BNN-Surv is applied to a real-life case 
from the railway tracks in Australia to validate its effectiveness. Typical 
results obtained from the proposed survival approach are first analysed 
and explained. Then, the proposed survival approach is evaluated 
through two metrics, i.e., concordance index (C-index) and root mean 
square error (RMSE), and compared with three commonly used survival 
models, i.e., Cox, Weibull model, random survival forest models. The 
uncertainty estimation capability of the proposed approach is also dis-
cussed through a proposed metric that balances coverage probability 
and interval width. 

4.1. Performance metrics 

To evaluate the estimation performance of the survival model, two 
metrics are applied including concordance index and root mean square 
error. 

4.1.1. Concordance index (C-index) 
The concordance index (C-index), as proposed by Harrell [32], is a 

widely used metric for assessing the quality and efficiency of a survival 
model. It is a ranking-related score that assesses how close the ranking 
order of estimated lifetimes is to the ranking order of real lifetimes. The 
C-index is founded upon the assumption that segment with longer life-
time should be assigned a greater estimated lifetime than segment with 
shorter lifetime. The score ranges from 0 to 1, with a larger score indi-
cating the better performance of the model. C-index is calculated as 

C − index =
1
n

∑

i:Ei=1

∑

j:Lreal
i <Lreal

j

1L(xi)<L(xj) (16)  

where L(x) denotes the estimated useful lifetime and Lreal denotes the 
real observed lifetime. Eq. (16) counts the times a model estimates 
L(xi) < L

(
xj
)

when observed Lreal
i < Lreal

j holds true over the total number 
of comparable cases, which is represented by n. 

4.1.2. Root mean square error (RMSE) 
Another commonly used metric to evaluate the survival model is root 

mean square error (RMSE), which indicates the discrepancy between the 
estimated and real values. 

RMSE =
1
n

∑N

i=1
RMSEi =

1
n

∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
Li − Lreal

i

]2
√

(17)  

where Li denotes the estimated useful lifetime and Lreal
i denotes the real 

useful lifetime. RMSE reflects the deviation degree of the estimated and 
the real useful lifetime. So, the lower the RMSE, the better the 
modelling. 

4.2. Model structural selection 

Before performing the evaluation, it is necessary to determine the 
network structural parameters that produce the best results. In this 

Table 3 
The classification of M&R activities.  

M&R category Description 

Renewal M&R Rail joint replacement  
Rail defect removal  
Renewal  
Rerailing 

Surface M&R Grinding 
Geometry M&R Track reconditioning  

Undercutting 
Formation M&R Tamping  

Ballast cleaning  
Drainage works  
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study, grid search tuning is used to optimize the network structural 
parameters of the model. The network structural parameters include 
number of hidden layers, number of nodes in hidden layers, and learning 
rate. The tunning experiments are conducted on the dataset via 5-fold 
cross-validation. The mean of C-index and standard deviation (Std) of 
the five runs are used to measure the model’s performance. 

4.2.1. Number of hidden layers 
The number of hidden layers plays a vital role in the performance of 

neural networks. However, increasing the number of hidden layers 
might not always guarantee performance improvement, which depends 
on the complexity of the problems that are being solved [44]. According 
to the previous studies [8,40,41,45], the values for the number of hidden 
layers for tunning are selected between 1 and 5 with the ReLU as acti-
vation function. Fig. 4 (a) shows the results of different numbers of 
hidden layers, where the left vertical axis indicates the mean of C-index 
and the right vertical axis indicates the Std of five runs. It can be seen 
from Fig. 4 (a) that as the number of hidden layers increases, C-index 
gradually increases whereas Std decreases, and there is an inflection 
point when the number of hidden layers is 3. After the inflection point, 
as the number of hidden layers increases, C-index gradually decreases 
whereas Std increases. It can be concluded that the number of hidden 
layers set to 3 gives optimal results. 

4.2.2. Number of nodes in hidden layers 
The values for the number of nodes for tunning are selected as 8, 16, 

32, 64, 128, and 256 with other parameters fixed. The reason for using a 

power of 2 as the number of nodes is that the complexity of efficient 
algorithms is usually measured on the order of log base 2 [46]. Fig. 4 (b) 
shows the results of different numbers of nodes in hidden layers. It can 
be seen from Fig. 4 (b) that as the number of nodes increases, C-index 
gradually increases whereas Std decreases and there is an inflection 
point when the number of nodes is 32. After reaching the inflection 
point, there is a decrease in the C-index. When the number of nodes 
reaches 128, the C-index begins to rise again. But it can be seen from 
Fig. 4 (b) that the increase in the number of nodes does not get a sig-
nificant performance improvement. Thus, considering the computa-
tional efficiency, the number of nodes in hidden layers is set to 32. 

4.2.3. Learning rate 
The value for learning rate can affect the updating speed of param-

eters during neural network training. In this paper, the values of 
learning rate for tunning are selected as 0.0001, 0.001, 0.01, and 0.1, 
which are commonly used in neural networks [45]. Fig. 4 (c) shows the 
results of different learning rates. It can be seen from Fig. 4 (c) that as the 
learning rate increases, C-index gradually increases whereas Std de-
creases, and there is an inflection point when the learning rate is 0.001. 
After the inflection point, as the learning rate increases, C-index grad-
ually decreases whereas Std increases. Thus, it can be concluded that 
0.001 is the optimal learning rate. 

The network structure determined above has incorporated the MC 
dropout layer, which can provide confidence interval for the model 
output when the dropout is activated during test process. To evaluate the 
effect of MC dropout on model performance, a competing model is 
constructed, i.e., ‘proposed model without MC dropout’. The effect of 
the MC dropout on the model performance is measured with the C-index. 
The comparative results show that the proposed model without MC 
dropout acquires the C-index of 0.769, while the proposed model with 
MC dropout can achieve the C-index of 0.802 under the same circum-
stance. This indicates that adding MC dropout not only can provide 
uncertainty estimation but also improve performance. 

In general, the model is trained via stochastic gradient descent along 
with Adam optimizer and Eq. (7) as the loss function. The BNN-Surv 
model is both smooth and differentiable, thereby allowing for the 
model’s parameters to be learned through standard backpropagation. 

4.3. Model implementation 

To train and evaluate the BNN-Surv model in this study, the dataset is 
randomly divided into two sets: the training set, which comprises 80% of 
the data, and the testing set, which comprises the remaining 20%. Once 
the BNN-Surv model has been trained, each test is repeated 500 times 
with the MC dropout on. In this way, the distribution of partial hazard 
g(x) for each sample in the testing set can be estimated as shown in 
Fig. 5, where each colour represents a different sample. 

According to Eq. (3), the survival curve (graphic representation of 
the survival probability S(t)) with confidence interval can be derived for 
each sample. Fig. 6 shows the typical survival curves for two different 
samples. The x-axis is the lifetime in day. The y-axis is the survival 
probability, in which 1.0 means 100% survival at a certain time and 0.0 

Fig. 2. Timeline of a typical track segment.  

Table 4 
Details on the description of the survival covariates.  

No. Covariates Description 

1 Rail head loss The latest rail head loss before the end of lifetime. 
2 Rail horizontal 

wear 
The latest rail horizontal wear before the end of 
lifetime. 

3 Rail vertical wear The latest rail vertical wear before the end of lifetime. 
4 Curvature The latest curvature before the end of lifetime. 
5 TQI The latest TQI before the end of lifetime. 
6 Tonnage The annual tonnage on the segment 
7 Insulated joint Number of insulated joints exist in the segment 
8 Rail break Number of rail breaks occurred before the start of 

lifetime. 
9 Rail defects Number of rail defects reported before the end of 

lifetime. 
10 Geometry defects Number of geometry defects reported before the end of 

lifetime. 
11 Formation defects Number of formation defects reported before the end of 

lifetime. 
12 Renewal M&R Number of renewal M&R reported before the start of 

lifetime. 
13 Surface M&R Number of surface M&R reported before the end of 

lifetime. 
14 Geometry M&R Number of geometry M&R reported before the end of 

lifetime. 
15 Formation M&R Number of formation M&R reported before the end of 

lifetime.  
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means 0% survival at a certain time. From Fig. 6, one can estimate the 
probability that the rail still works safely at any certain time. 

As can be seen in Fig. 6, the outputs of survival model are the time- 
dependent survival probabilities that are computed through the time- 

dependent hazard rates, rather than the exact lifetime values. Estima-
tion of rail useful lifetime helps railroads to take timely maintenance to 
avoid catastrophic failure. Given the outputs of survival model, the 
useful lifetime can be estimated as 

Fig. 3. Statistical distributions of some of the covariates and their relationships with one another. No. 1 is rail head loss; No. 2 is rail horizontal wear; No. 3 is rail 
vertical wear; No. 5 is TQI; No. 6 is tonnage; No. 9 is rail defects; No. 15 is formation M&R. 

(a) Number of hidden layers (b) Number of nodes in hidden 
layers

(c) Learning rate

Fig. 4. C-index and Std of different (a) Number of hidden layers, (b) Number of nodes in hidden layers, and (c) Learning rate.  
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Li = argmin
t

{Si(t) 〈Sthreshold} (18)  

where Si(t) denotes the estimated survival probabilities over time t. 
Sthreshold is a threshold survival probability defining a risky operating 
situation. Typically, median or mean lifetime is used to represent the 
potential lifetime of components based on the assumption that compo-
nents tend to fail when the survival probabilities are less than 0.5 [22]. 
Thus, in this study, the Sthreshold is set to be 0.5. For the two samples in 
Fig. 6, the survival probability of 0.5 corresponds to 445 days and 365 
days, which are the estimated useful lifetimes. The real useful lifetimes 
of these two samples are with 476 days and 338 days, represented by 
vertical dash lines. It can be seen from Fig. 6 that the estimated lifetimes 
are very close to the real lifetimes. 

4.4. Model evaluation 

The C-index results for 500 times with the MC dropout activated are 
displayed in Fig. 7. It is observed that the C-index of the BNN-Surv model 
is roughly around 0.8 by a variance of 0.02. According to Steck et al. 
[47], a C-index value ranging from 0.6 to 0.7 typically indicates a well- 
fitted model, whereas a value closer to 0.5 indicates that the model does 
not predict the target value better than random chance. The C-index 

Fig. 5. The distribution of survival model’s outputs (partial hazard g(x)) for the testing set. Each colour represents a different sample.  

Fig. 6. The survival curves of two different samples.  

Fig. 7. The distribution of C-index results for 500 times with the MC 
dropout on. 
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results obtained by BNN-Surv indicate the proposed model has an 
excellent ability in ranking a sample’s useful lifetime. 

To demonstrate the superiority of the proposed BNN-Surv, three 
commonly used survival models in the field of transportation systems 
are applied for comparisons. Two of them are classical survival models 
including Cox and Weibull models, while the other one is a machine 
learning-based survival model, i.e., random survival forest model (RF- 
Surv) [48]. In addition, to verify the advantages of considering censored 
data in rail useful lifetime modelling, two data conditions are con-
structed to compare the performance considering censored data and not 
considering censored data. In this way, 8 survival models are created by 
combing two data conditions and four survival approaches. As the BNN- 
Surv approach generates the distribution of C-index results, the mean 
value of C-index results is used for comparison with other models. 

Table 5 compares the performances of the different models, with the 
highest C-index highlighted in bold. From Table 5, it can be observed 
that the BNN-Surv model proposed in this study outperforms the other 
three survival models regarding two data conditions, which achieves the 
highest C-index of 0.8. The results demonstrate the BNN-Surv model’s 
superior performance in modelling rail useful lifetime, possibly owing to 
significant non-linearities in the covariates, which can be better 
captured by a neural network as opposed to a linear model. Moreover, as 
the results are shown in Table 5, the Cox, Weibull, RF-Surv, and BNN- 
Surv models without considering censored data achieve the C-index of 
0.64, 0.67, 0.65, and 0.69 respectively. When censored data is consid-
ered in the modelling, the C-index of Cox model is improved to 0.71, 
Weibull model is improved to 0.74, RF-Surv model is improved to 0.78, 
and BNN-Surv is improved to 0.80, showing noticeable improvement. 
This indicates that ignoring or otherwise mistreating the censored data 
might lead to undesirable results. 

In general, the proposed BNN-Surv achieves a C-index of 0.8, indi-
cating that the estimated useful lifetime ranking of most samples is 
consistent with the real one. The correct ordering of useful lifetime is of 
great importance for practical predictive maintenance. Based on the 
ranking results, asset managers can develop more economical and tar-
geted maintenance plans. 

To get an intuition of how accurate the useful lifetime estimation is 
by the proposed survival model, RMSE is used to measure the degree of 
error between the estimated lifetimes and the real values. The distri-
bution of RMSE results is shown in Fig. 8. It can be seen from Fig. 8 that 
the mean value of the distribution is about 189 days, while the standard 
deviation of the distribution is 22 days. 

In addition, the estimated lifetimes obtained by BNN-Surv are used to 
compare with the other three commonly used survival models, Cox, 
Weibull, and RF-Surv models. As the BNN-Surv approach generates the 
distribution of results, the average results of 500 times are used for 
comparison. Also, the samples only to be uncensored are chosen for 
comparison because they have real lifetimes. 

Comparison results are shown in Fig. 9. The subplot shows the 
RMSEs for the four models. It can be seen from the subplots in Fig. 9 that 
BNN-Surv achieves the lowest RMSE of 189, which can demonstrate the 
proposed model’s effectiveness. Compared to the other three models, the 
estimated lifetimes obtained by BNN-Surv are closer to real values. 
However, the RMSEs achieved by the four models are not very desirable, 
and for some samples, there is a significant difference between the 
estimated and real lifetimes. For example, for sample #8, the real life-
time is 1200 days, while the estimated lifetimes by all three models are 
below 300 days, which results in a difference larger than 900 days 

(almost 3 years). One possible reason is that the collected replacement 
data of some segments are inadequate and do not reflect the track 
condition well, thus causing a large bias in estimating the lifetimes of 
these samples. In this case, future efforts will focus on collecting the real- 
time monitoring data and integrating it into the model, which is ex-
pected to better reflect the rail condition and further improve the 
performance. 

Previous study [9] proposed a predictive model based on Markov 
stochastic process to estimate the rail useful lifetime. In their paper, the 
difference between the estimated rail useful lifetime and real lifetime is 
used as the performance metric. The average difference achieved by Bai 
et al. [9] was 180 days. Whereas the proposed approach (BNN-Surv) in 
this paper achieves an average difference of 151 days. This shows that 
the proposed approach in this study performs better. 

4.5. Uncertainty estimation 

As aforementioned in section 4.4, accurate prediction of useful life-
time is extremely difficult, almost every sample has a difference between 
the estimated and real useful lifetime. By taking the uncertainty of 
model into account, the BNN-Surv can provide the confidence interval of 
the estimated lifetime, which is more appropriate than point estimation. 
It is obvious that enlarging the width of the confidence interval allows 
the estimation interval to cover more of the target lifetime, but it also 
accompanies by an increase in uncertainty. Therefore, it is necessary to 
find a metric to balance the coverage probability and the width of the 
confidence interval. Based on the evaluation metric used in Li et al. [49], 
a new metric is proposed in this study to evaluate the estimation per-
formance and find the optimal interval width, called CW-index: 

CW - index = sigmoid(C+W) (19)  

C =
1
N

∑N

i=1
ξi(I(xi), yi ) (20)  

ξi(I(xi), yi ) =

{
1yi ∈ I(xi)

0 otherwise
(21)  

W =
1
N
∑N

i=1
exp
(
Il(xi) − Iu(xi)

)
(22)  

where C denotes the coverage probability, calculating the number of 
target lifetimes covered by the estimation interval and W denotes the 
normalized averaged width. The number of samples to be estimated is 
denoted by N and the envelope of the estimation interval is denoted by 

Table 5 
C-index for considering censored data and not considering censored data based 
on Cox, Weibull, RF-Surv, and BNN-Surv models.  

Data condition Cox Weibull RF-Surv BNN-Surv 

Not considering censored data  0.64  0.67  0.65  0.69 
Considering censored data  0.71  0.74  0.78  0.80  

Fig. 8. The distribution of RMSE results for 500 times with the MC dropout on.  
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I(xi). The upper and lower bounds of the estimation interval are denoted 
by Iu(xi) and Il(xi), respectively. A sigmoid function is applied to the sum 
of C and W to ensure that the CW-index is a score within the range of 0 to 

1. Thus, the larger the CW-index, the better the uncertainty estimation 
performance. 

Fig. 10 shows the results of CW-index, coverage probability, and 
normalized averaged width at different confidence intervals. The 
coverage probability and CW-index are significantly affected by changes 
in the confidence interval. Specifically, the CW-index first increases and 
then decreases as the confidence interval increases. This pattern can be 
explained by the fact that the value of CW-index is predominantly 
governed by C when the confidence interval is small, and by W when the 
confidence interval is large. As can be seen in Fig. 10, the highest value 
of CW-index is achieved when the confidence interval falls between 1.2 
and 1.4. Thus, for the subsequent analysis, a confidence interval of 1.38 
is adopted, which equates to an estimation interval equal to the mean 
plus/minus 1.38 times the standard deviation. 

The estimation results by BNN-Surv are shown in Fig. 11. The 
shadow area denotes the estimated useful lifetimes with a confidence 
interval of 1.38 from MC dropout uncertainty estimation. Points within 
the lower and upper envelopes of the interval possess varying proba-
bilities of occurrence, where those closer to the mean of interval having 
higher probabilities and those farther away having lower probabilities. 
Furthermore, two subplots display the distribution of useful lifetime 
estimations for two samples (i.e., sample #3 and sample #30), where the 
star symbol denotes the real lifetime, for comparison with the proba-
bility distribution obtained from the BNN-Surv model. 

As can be seen from Fig. 11, the average lifetimes generated by the 
BNN-Surv model are very close to the real lifetimes. 81% of the real 

Fig. 9. Comparisons between the real lifetimes and estimated lifetimes obtained from the Cox, Weibull, RF-Surv, and BNN-Surv models.  

Fig. 10. The results of CW-index, coverage probability, and normalized aver-
aged width under different confidence intervals. 

Fig. 11. The estimation results of rail useful lifetime by using BNN-Surv based on the confidence interval of 1.38.  
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lifetimes are within the envelope of the estimation interval. On a closer 
examination of the subplots, it is found that the distribution of estimated 
lifetimes follows an approximately normal distribution. The real useful 
lifetimes of sample #3 and sample #30 are bounded by confidence in-
tervals. All of these results indicate that the BNN-Surv provides a more 
conservative and safer estimation compared to the point estimation. 
Even with some level of uncertainty, such conservative estimations are 
deemed acceptable in the railway transportation industry due to their 
significant implications for the economy and personal safety. 

5. Conclusion 

This paper proposes a deep Bayesian survival approach named BNN- 
Surv to properly handle censored data for rail useful lifetime modelling. 
The proposed BNN-Surv model uses a deep neural network as the hazard 
rate to capture the non-linear relationship between covariates and useful 
lifetime. To consider and quantify uncertainty in the model, Monte Carlo 
dropout, regarded as the approximate Bayesian inference, is incorpo-
rated into the deep neural network to provide the confidence interval of 
the estimated useful lifetime. The proposed approach is implemented on 
a four-year dataset including track geometry monitoring data, track 
characteristics data, various types of defects data, as well as M&R data 
collected from a section of railway tracks in Australia. 

Extensive comparative studies are conducted to show the effective-
ness of the proposed approach. The results obtained allow the following 
conclusions to be drawn:  

1) The results show that considering the censored data significantly 
outperforms the case of not considering the censored data regarding 
the C-index. This demonstrates the importance of using survival 
approach to handle censored data for rail useful lifetime modelling.  

2) By comparing with the commonly used survival models, i.e., Cox, 
Weibull, and RF-surv approaches, the proposed approach shows su-
perior performance. The proposed BNN-Surv can achieve a C-index 
of 0.80, while Cox, Weibull, and RF-Surv only reach 0.71, 0.74, and 
0.78 respectively. In terms of rail useful lifetime estimation, the 
estimated lifetimes obtained by BNN-Surv are also more approaching 
to the real lifetimes compared to Cox, Weibull, and RF-Surv. This 
superiority might indicate that there have significant non-linearities 
in the covariates that a neural network would benefit from.  

3) Through uncertainty estimation, the confidence interval of 1.38 by 
the BNN-Surv has an 81% correct coverage rate of the real lifetimes. 
The results demonstrate that BNN-Surv is safer and more trustworthy 
than the point estimation. In railway transportation, which is related 
to huge economic and personal safety, this trustworthy rail useful 
lifetime estimation is extremely important. 

By implementing the proposed approach, the rail useful lifetime of 
each segment can be estimated, which helps railroads to optimize pre-
dictive maintenance. For example, taking grinding planning or 
replacement of those segments have shorter estimated lifetimes. 
Although this paper has focused specifically on rail useful lifetime 
modelling, the proposed approach can also be adapted for modelling 
other products and mechanical components’ lifetimes. The proposed 
approach in this study is a kind of data-driven model that would benefit 
from larger and more diverse datasets. In future work, additional data-
sets such as daily dynamic response monitoring data and GIS informa-
tion are expected to collect, so that more complex relationships between 
data and rail useful lifetime with uncertainty can be modelled. 
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