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Abstract
A generic framework for the computation of derivative information required for gradient-based optimization using
sequentially coupled subsurface simulation models is presented. The proposed approach allows for the computation of any
derivative information with no modification of the mathematical framework. It only requires the forward model Jacobians
and the objective function to be appropriately defined. The flexibility of the framework is demonstrated by its application in
different reservoir management studies. The performance of the gradient computation strategy is demonstrated in a synthetic
water-flooding model, where the forward model is constructed based on a sequentially coupled flow-transport system. The
methodology is illustrated for a synthetic model, with different types of applications of data assimilation and life-cycle
optimization. Results are compared with the classical fully coupled (FIM) forward simulation. Based on the presented
numerical examples, it is demonstrated how, without any modifications of the basic framework, the solution of gradient-
based optimization models can be obtained for any given set of coupled equations. The sequential derivative computation
methods deliver similar results compared to FIM methods, while being computationally more efficient.

Keywords Sequential coupling · Gradient-based optimization · Data assimilation · Life-cycle optimization · Adjoint
method · Direct method

1 Introduction

The exploitation of subsurface resources frequently involves
complex physics and geology. Thermal, geomechanical, and
chemical processes are just a few phenomena that some-
times must be accounted for, while the domain is often
governed by parameters that typically change several orders
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of magnitude over a wide range of spatial scales. Numer-
ical simulation of such complex processes can be done
with fully implicit methods (FIMs) and sequentially cou-
pled approaches. Even though FIMs provide the most stable
simulation platform [2], many efforts have successfully lead
to stable and efficient sequential simulations (e.g., [21]).
Sequential simulation is often specially attractive for cou-
pled processes of different physical natures, which often
operate on different time scales or have different spatial sup-
port (e.g., local versus global effects). It is worth to be men-
tioned that multiscale methods [12, 14, 18, 26] and model
reduction techniques [3, 7] have been mainly developed for
globally acting processes, and thus function optimally when
they are used in sequential frameworks. Note that such a
framework would also benefit some preconditioning meth-
ods that use sequential strategies (operator splitting) for the
solution of linear system of equations. This holds for FIMs
simulations using constrained pressure restriction (CPR)
preconditioning [6, 13, 35], where a pressure-like system is
being extracted from the FIM Jacobian in order to enhance
the convergence.

Ultimately, numerical simulation will support reservoir
management studies which are often based on optimization
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techniques. It has been shown that gradient-based optimiza-
tion techniques are the most efficient ones when applied,
for instance, to life-cycle optimization [15, 31] and history
matching [4, 22, 28] studies. Moreover, it is well known that
the most efficient/accurate gradient computation technique
is the adjoint method [15]. Even though a large body of the
literature has been dedicated to this topic, most of it dis-
cusses the adjoint model for FIMs systems. In this case, the
adjoint model is obtained by transposing the forward model
system of equations [22, 31]. Also, even though the mathe-
matical framework presented by [30] and [19] does not limit
the derivation of the adjoint equations to any particular solu-
tion strategy, no explicit discussion on how it can be applied
to sequentially coupled system of equations was presented.
A multiscale adjoint method applied to life-cycle optimiza-
tion is presented by [20], in which a sequential solution of
flow and transport is employed, such that, consequentially,
the adjoint model also follows a sequential solution strat-
egy. However, in that work, the discussion is focused on
the promising computational savings provided by multiscale
simulation and not so much detail is given as to what extent
the gradient computation itself can impose challenges.

The present work presents a general gradient compu-
tation formulation for sequentially coupled models. An
implicit differentiation strategy [19, 30] is extended to cou-
pled systems of equations. The algorithms for the derivative
computation of simulator responses neither depend on the
objective function type, nature of the parameters, nor on any
specific model coupling. Instead, it is shown how deriva-
tive information can be computed based on any coupling
strategy. Using a chain-rule formalism, we firstly intro-
duce a generic framework capable of computing the specific
derivative information required by any given optimization
algorithm. Next, it is shown how such computation is done
for sequentially coupled flow and transport. Thereafter,
numerical examples including both data assimilation and
life-cycle optimization are presented.

2Mathematical framework
for the computation of gradient information
of coupled system of equations

We consider a system of discrete-in-time non-linear model
equations in implicit (residual) form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gn
x1

(
xn−1
1 , . . . , xn−1

Nc
, xn

1, . . . , x
n
Nc

, θ
)

= 0
...

gn
xNc

(
xn−1
1 , . . . , xn−1

Nc
, xn

1, . . . , x
n
Nc

, θ
)

= 0,

(1)

where xn
c ∈ RNn

xc , c ∈ {1, . . . , Nc}, is the set of primary
variables associated with the model equations gn

xc
, and Nc

the total number of coupled equations. The superscript n

denotes the time-step index and θ ∈ RNθ is the vector
of parameters with respect to which we aim to compute
derivative information. There are Nn

X = ∑Nc

c=1 Nx
n
c primary

variables at time-step n and Nθ parameters. Note that the
initial conditions are assumed to be
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g0x1

(
x01, . . . , x

0
Nc

, θ
)

= 0
...

g0xNc

(
x01, . . . , x

0
Nc

, θ
)

= 0.

(2)

The functions defining the set of observable responses for a
time-step are described as

yn = hn
(
xn−1
1 , . . . , xn−1

Nc
, xn

1, . . . , x
n
Nc

, θ
)

, (3)

where hn represents the output equations [17]. There are Nn
Y

observations in time-step n.
Let

gn
(
xn, xn−1, θ

)
=

⎛

⎜
⎝

gn
x1
...

gn
xNc

⎞

⎟
⎠ , (4)

be the set of model equations, where gn : RNn−1
X ×Nn

X×Nθ →
RNn

X ,

xn =
⎛

⎜
⎝

xn
1
...

xn
Nc

⎞

⎟
⎠ , (5)

be the state vector, where xn ∈ RNn
X , and Eq. 3 be redefined

as

yn = hn
(
xn−1, xn, θ

)
, (6)

where hn : RNn−1
X ×Nn

X×Nθ → RNn
Y .

A “super-vector” notation [19, 30] is used to capture
the evolution in time. All instances of gn as defined in
Eq. 4 for all time-steps, can be collated in a function g :
RNX×Nθ → RNX , where NX =

N∑

n=0
Nn

X is the total number

of primary variables for all time-steps, such that the system
of non-linear equations is represented as

g (x (θ) , θ) = 0. (7)

Note that we use bold italic font to indicate super vectors
and just bold to indicate ordinary vectors.

Equation 7 indicates the dependency of the forward
model equations on both the primary variables and the
model parameters, even though the model equations are
only solved for x and the dependency on θ has to be taken
into account for the implicit differentiation strategy that will
be employed later on.

Similarly, all instances of yn as defined in Eq. 6 for all
time-steps can be collated in a function h : RNX×Nθ →
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RNY , where NY =
N∑

n=0
Nn

Y represents the total number of

responses for all time-steps, so that

y = h (x (θ) , θ) . (8)

Following the same implicit differentiation strategy as in
[25, 30], the sensitivity matrix G (i.e., sensitivity of the
responses with respect to the parameters) can be computed
by deriving Eq. 8 with respect to θ, i.e.,

G = dh

dθ
= ∂h

∂x

dx

dθ
+ ∂h

∂θ
. (9)

In order to find a relationship that defines
dx

dθ
, Eq. 7 is

differentiated with respect to θ

∂g

∂x

dx

dθ
+ ∂g

∂θ
= 0, (10)

so that

dx

dθ
= −

(
∂g

∂x

)−1
∂g

∂θ
. (11)

Substituting Eq. 11 in Eq. 9 gives

G = −∂h

∂x

(
∂g

∂x

)−1
∂g

∂θ
+ ∂h

∂θ
. (12)

In order to keep the framework general (in terms of
which type of derivative information can be computed), the
sensitivity matrix is pre- and post-multiplied by arbitrary
matrices V (of size Nθ × p) andW (of size m × NY )

WGV = −W
∂h

∂x

(
∂g

∂x

)−1
∂g

∂θ
V + W

∂h

∂θ
V. (13)

The key aspect that defines the computational performance
of the gradient computation is the order of the operations

involving

(
∂g

∂x

)−1

. Based on that, both the direct [1] and

adjoint [4] analytical methods to compute the necessary
derivative information can be defined.

IfW is factored out in Eq. 13, it can be re-written as

GV = ∂h

∂x
Z + ∂h

∂θ
V, (14)

where

Z = −
(

∂g

∂x

)−1
∂g

∂θ
V, (15)

is solved from
(

∂g

∂x

)

Z = −∂g

∂θ
V. (16)

The linear system described in Eq. 16 can be re-written in a
block-wise form for each time-step n:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂g0

∂x0
∂g1

∂x0
∂g1

∂x1
. . .

. . .
∂gN

∂xN−1

∂gN

∂xN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

Z0

Z1

...
ZN

⎞

⎟
⎟
⎟
⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂g0

∂θ
V

∂g1

∂θ
V

...
∂gN

∂θ
V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(17)

where, from Eqs. 4 and 5 one can write

∂gn

∂xn
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂gn
x1

∂xn
1

. . .
∂gn

x1

∂xn
Nc

...
. . .

...
∂gn

xNc

∂xn
1

. . .
∂gn

xNc

∂xn
Nc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (18)

and

∂gn

∂xn−1
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂gn
x1

∂xn−1
1

. . .
∂gn

x1

∂xn−1
Nc

...
. . .

...
∂gn

xNc

∂xn−1
1

. . .
∂gn

xNc

∂xn−1
Nc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (19)

HereN is the total number of time-steps and the partitioning
lines indicate which matrix and vector terms belong to each
time-step. Also, from Eqs. 6 and 5

∂hn

∂xn
=

(
∂hn

∂xn
1

. . .
∂hn

∂xn
Nc

)

, (20)

and

∂hn

∂xn−1
=

(
∂hn

∂xn−1
1

. . .
∂hn

∂xn−1
Nc

)

. (21)

This solution strategy is known in the literature as the
Forward Method [30], Gradient Simulator [1], or Direct
Method [28]. Note that auxiliary matrix Z has dimensions
of NX ×p and, therefore, it requires N ×p linear systems to
be solved. Hence, the cost of computing GV is proportional
to the number of columns in V, i.e., p.

Now, if V is factored out in Eq. 13, the equation can be
re-written as

WG = Z
∂g

∂θ
+ W

∂h

∂θ
, (22)

where

Z = −W
∂h

∂x

(
∂g

∂x

)−1

(23)
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is solved from

Z
(

∂g

∂x

)

= −W
∂h

∂x
. (24)

The linear system described in Eq. 24 can be re-written in a
block-wise form for each time-step n as

(
Z0 Z1 . . . ZN

) ×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂g0

∂x0
∂g1

∂x0
∂g1

∂x1
. . .

. . .
∂gN

∂xN−1

∂gN

∂xN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= − (
W0 W1 . . . WN

)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂h0

∂x0
∂h1

∂x0
∂h1

∂x1
. . .

. . .
∂hN

∂xN−1

∂hN

∂xN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(25)

One should note that Eq. 25 is solved backward in time.
Now, by taking the transpose of Eq. 25, the linear system
of equations that must be solved for each time-step for the
adjoint method reads

(
Zn

)T =
(

∂gn

∂xn

)−T

×
(

−
(

Wn ∂hn

∂xn

)T

−
(

Wn+1 ∂hn+1

∂xn

)T

−
(

∂gn+1

∂xn

)T(
Zn+1

)T
)

. (26)

This solution strategy is known in the literature as the
Adjoint (or Backward) Method (Chavent, 1975). Note that
now Z has dimensions of NX × m, hence it requires N × m

linear systems to be solved. As such, the cost of computing
WG is proportional to the number of rows inW, i.e., m.

Although the derivation as presented so far is general, in
order to properly formulate the actual method to analytically
compute the derivative information, the structure of the
partial derivative matrices involved in the computations
must be taken into account. This is only possible if the
specific coupling strategy and the proper dependencies
of the model equations and primary variables are taken
into account. Therefore, in the rest for the paper we
focus our studies on sequentially coupled multiphase flow
simulations.

2.1 Remarks about the framework

The appropriate selection of the arbitrary matrices W and
V allows one single framework to compute any derivative

information and avoids the expensive computation ofG. For
instace, in case of quasi-Newton methods [27], the gradient
of the objective function O = O (y (θ)) is directly required.
Via the chain-rule, one can write

∇θO =
(

dO

dθ

)T

=
(

dO

dh
dh
dθ

)T

= GT ∇hO. (27)

The operation (WG)T = GT WT gives the product of
GT with the (column) vector WT = ∇hO. Hence, the
adjoint method can be efficiently employed to compute the
objective function gradient with respect to the parameters,
as described in Eq. 27.

Now, in case of conjugate gradient methods [27],
products of G and GT with arbitrary vectors are required.
The product GV, with n = 1 can be efficiently computed
by the direct method while, the productGT WT , with m = 1
can be efficiently computed using the adjoint method.

Another factor that maintains the flexibility of the
framework is the formal partitioning of g and x according
to the coupling of the equations. The computation of the
auxiliary matrix Z in Eqs. 15 and 26 will follow the
partition of the g. Once Z is fully determined, the sensitivity
matrix products (14) and (22) remain unchanged. Hence, the
framework requires the Jacobians of g w.r.t. x and θ to be
determined from the coupled forward model equations.

We highlight that linear system solutions involving
∂g

∂x
are required on both direct and adjoint methods (see Eqs. 16
and 24) in order to determine the auxiliary matrix Z. More
specifically, the unique derivative information computation

requires
∂gn

∂xn
to be full-rank. This is true in most of the

cases given that this is the same partial derivative matrix
required by the forward simulation. For instance, this matrix
represents the Jacobian used by Newton-Raphson non-
linear solvers, typically employed in the forward simulation.

The importance of the implementation separation
between the forward model and the adjoint model was pre-
viously highlighted by [31], who also presented a discussion
about memory requirements related to the storage of the par-
tial derivatives (or states required to re-evaluate them during
the backward runs). In that work, the computational aspects
were discussed in the context of an optimal control prob-
lem using FIM. Note that, as shown in the previous section,
the framework presented in our paper is readily applicable
to different coupling strategies or derivative computation
problems.

Also, both the direct and adjoint methods are treated in
the same framework. The direct method is usually directly
associated with the forward simulation. All the derivative
information related computation is usually presented as part
of the forward time-stepping process. Here, it is shown that
it can also be achieved in complete separation from the
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forward simulation. The requirement is the same as for the
adjoint method: the required Jacobians must be stored/re-
evaluated for the derivative information required at a later
stage. However, on the one hand, the separation from
the forward simulation reduces the code intrusion; on the
other hand, this strategy requires the storage of the partial
derivative matrices also for the direct method. Even though
it has implications from a memory usage perspective, the
computational efficiency of the direct method remains
the same considering an efficient strategy to dump/load
the partial derivative matrices from the hard-disk or their
reconstruction from the primary variables states (similar
concerns are associated with the adjoint method).

3 Applications of the framework: life-cycle
optimization and assisted history matching
of sequentially coupled flow and transport
forwardmodel

3.1 Algebraic description of forwardmodel
equations

The computation of derivative information for sequentially
coupled systems is illustrated in the context of flow and
transport in heterogeneous porous media. More specifically,
two-phase, immiscible, incompressible flow is considered,
with no gravity and capillary effects. The total mass balance
(flow) equation is given by

−∇ · (λK · ∇p) = ∇ · (u) = q, (28)

where u is the total velocity, K the absolute permeability
tensor and p is the pressure [2]. The total mobility is given
by λ = λo + λw, with the subscripts o and w standing for,
respectively, oil and water, and the total source term is given
by q = qo + qw.

The transport equation for a given phase α can be written
as

φ
∂Sα

∂t
+ ∇ · (fαu) = qα, (29)

where Sα and fα are, respectively, the saturation and
fractional flow of phase α. The system is closed via the
saturation constraint
∑

α=o,w
Sα = 1. (30)

The discrete form of Eq. 28 reads

gn
p = An−1pn − qn−1 = 0, (31)

where pn ∈ RNb and qn−1 ∈ RNb are vectors of
pressure and source terms, respectively, Nb is the number
of grid blocks, and An−1 ∈ RNb×Nb is the system
matrix. Interfacial rock properties are computed by means
of harmonic averages for the absolute permeabilities,

whereas an upwind scheme is employed for interfacial fluid
properties (i.e., mobilities). The dependency of the fluid
mobilities on the saturation is treated lagged in time because
of the sequential solution strategy.

The discrete form of Eq. 29 reads

gn
s = V

(
sn − sn−1

)
+ Ftun − qt

α = 0, (32)

where s ∈ RNb , Ft ∈ RNb×NI , and un ∈ RNI are,
respectively, the saturation vector, the upwind fractional
flow matrix and the vector containing the normal to grid
interfaces velocity components, with NI being the number
of grid interfaces,

V = I
Vφ

�t
, (33)

where V ∈ RNb×Nb , and un is computed from

gn
u = un − Λn−1pn = 0, (34)

where Λn−1 ∈ RNI ×Nb is the transmissibility matrix.
Furthermore, we highlight that, in our implementation, α

is considered to be water, and hence, water saturation is
a primary variable. Therefore, all references to saturation
found from here on are w.r.t. water saturation. Additionally,
�t is the time-step size, Vφ ∈ RNb is the vector containing
the grid block pore-volumes, and I is the identity matrix.

The de-coupling of Eqs. 31 and 32 allows the system to
be solved sequentially, with no dependency of Eq. 31 on
sn. If t = n − 1, the fractional flow and source terms are
evaluated at the previous time-step. This is the so-called
implicit-pressure explicit-saturation (IMPES) discretization
in time [2]. However, to avoid time-step size limitations
[5], the so-called sequential implicit strategy (IMPSAT) can
be defined by making t = n. Although (32) now has a
non-linear dependency on sn, this scheme allows for larger
time-steps.

3.2 Gradient computation

From the discrete forward simulation (31), (32), and (34),
Eq. 1 can be specialized as
⎧
⎨

⎩

gn
p

(
pn, sn−1, θ

) = 0
gn
u

(
pn, un, sn−1, θ

) = 0
gn
s

(
pn, un, sn−1, sn, θ

) = 0,
(35)

where gn
p, gn

u and gn
s are, respectively, the vector-

valued equations describing flow (pressure) and transport
(saturation) at time-step n. The equations that determine the
initial conditions are assumed to be
⎧
⎨

⎩

g0p
(
p0, θ

) = 0
g0u

(
p0, u0, θ

) = 0
g0s

(
p0, u0, s0, θ

) = 0.
(36)
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From Eq. 35, let

gn =
⎛

⎝
gn
p

gn
u

gn
s

⎞

⎠ . (37)

Also, based on the corresponding primary variables
associated to Eqs. 35 and 5 can be redefined as

xn =
⎛

⎝
pn

un

sn

⎞

⎠ . (38)

The functions defining the set of observable outputs at
time-step n will be assumed to be functions of both pn and
st , i.e.,

yn = hn
(
pn, st , θ

)
, (39)

which, in the case of IMPES reads

yn = hn
(
pn, sn−1, θ

)
, (40)

and for IMPSAT reads

yn = hn
(
pn, sn, θ

)
. (41)

From Eqs. 38 and 39 can be re-written as

yn = hn
(
xn−1, xn, θ

)
. (42)

Based on Eqs. 35, 38, 18 and 19 can be redefined,
now taking into account the appropriate dependencies of
equations and variables for the flow-transport coupling, as

∂gn

∂xn
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂gn
p

∂pn
0 0

∂gn
u

∂pn

∂gn
u

∂un
0

∂gn
s

∂pn

∂gn
s

∂un

∂gn
s

∂sn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

An−1 0 0
−Λn−1 I 0

−∂qn
α

∂pn
Ft ∂gn

s

∂sn

⎞

⎟
⎟
⎠ , (43)

and

∂gn

∂xn−1
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0
∂gn

p

∂sn−1

0 0
∂gn

u

∂sn−1

0 0
∂gn

s

∂sn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (44)

Furthermore, based on Eqs. 38 and 42, it follows that

∂hn

∂xn
=

(
∂hn

∂pn
0

∂hn

∂sn

)

, (45)

and

∂hn

∂xn−1
=

(

0 0
∂hn

∂sn−1

)

. (46)

Note that
∂hn

∂sn
= 0 in Eq. 45 if a sequential explicit

method is used. On the other hand,
∂hn

∂sn−1
= 0 in Eq. 46 if

a sequential implicit method is used.

Also, one should note that
∂gn

s

∂sn
in Eq. 43 becomes

diagonal if IMPES is used and non-diagonal if IMPSAT is

used. On the other hand,
∂gn

s

∂sn−1
becomes diagonal in Eq. 44

if IMPSAT is used and non-diagonal if IMPES is used.

3.2.1 The direct method

If Eqs. 43, 44, 45, and 46 are used in Eq. 17, the algorithm to
compute the required gradient information using the direct
method can be defined for the flow-transport coupling. The
linear systems that must be solved for the flow equation in
the direct method, for every time-step n, are given by

Zn
p =

(
∂gn

p

∂pn

)−1 (
∂gn

p

∂θ
V − ∂gn

p

∂sn−1
Zn−1

s

)

, (47)

for the pressure equation,

Zn
u =

(
∂gn

u

∂un

)−1 (
∂gn

u

∂θ
V − ∂gn

u

∂pn
Zn

p − ∂gn
u

∂sn−1
Zn−1

s

)

(48)

for the velocity equation, and

Zn
s =

(
∂gn

s

∂sn

)−1 (
∂gn

s

∂θ
V− ∂gn

s

∂pn
Zn

p− ∂gn
s

∂un
Zn

u− ∂gn
s

∂sn−1
Zn−1

s

)

(49)

for the transport equation.
From Eqs. 47 and 49, Eq. 14 can be redefined based on

the partitioning

Zn =
⎛

⎝
Zn

p

Zn
u

Zn
s

⎞

⎠ , (50)

so that the computation of the product GV at time-step n is
given by

(GV)n = GnV = ∂hn

∂θ
V− ∂hn

∂pn
Zn

p − ∂hn

∂sn
Zn

s − ∂hn

∂sn−1
Zn−1

s .

(51)

Now, the direct method algorithm can be defined and is
depicted in Algorithm 1.

3.2.2 The adjoint method

By transposingEqs. 43, 44, 45 and 46 and replacing them in
Eq. 26, the linear system that must be solved for the flow
equation, for every time-step n, now reads

(
Zn

p

)T =
(

∂gn
p

∂pn

)−T

×
(

−
(

∂gn
u

∂pn

)T (
Zn

u

)T

−
(

∂gn
s

∂pn

)T (
Zn

s

)T −
(

Wn ∂hn

∂pn

)T
)

(52)
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Algorithm 1: Right multiplying the sensitivity matrix
by an arbitrary matrix via the direct method.
Input : Partial derivative matrices of gp, gu and gs

w.r.t. x and θ, V
Output: GV

1 foreach n = 0, 1, 2, . . . , N do
2 foreach j = 1, 2, . . . , p do
3 Solve for the j −th column of Zn

p using Eq. 47.
4 Solve for the j − th column of Zn

u using Eq. 48.
5 Solve for the j − th column of Zn

s using Eq. 49.

6 If there are responses at n, compute (GV)n using
Eq. 51

for the velocity equation

(
Zn

u

)T = −
(

∂gn
u

∂un

)−T (
∂gn

s

∂un

)T (
Zn

s

)T (53)

and for the transport equation

(
Zn

s

)T =
(

∂gn
s

∂sn

)−T
(

−
(

Wn ∂hn

∂sn

)T

−
(

Wn+1 ∂hn+1

∂sn

)T

−
(

∂gn+1
p

∂sn

)T (
Zn+1

p

)T −
(

∂gn+1
u

∂sn

)T (
Zn+1

u

)T

−
(

∂gn+1
s

∂sn

)T (
Zn+1

s

)T
)

. (54)

By blocking Eq. 22 in time we have

WG =
N∑

n=0

(

Zn
p

∂gn
p

∂θ
+ Zn

u

∂gn
u

∂θ
+ Zn

s

∂gn
s

∂θ
+ Wn ∂hn

∂θ

)

.

(55)

The adjoint algorithm for the sequential coupling is
described in Algorithm 2. The gradient computation does
not only involve a backward simulation, but the solution of
pressure and transport-related terms in the backward run is
reversed when compared to the order in which the equations
are solved in the forward simulation.

For the backward simulations, we precisely follow the
time-stepping strategy taken in the forward simulation. This
results in stable simulations, something that is related to
the fact we are using the transpose matrices of the ones
employed in the forward simulation. More studies related to
the stability of adjoint simulations can be found in [32, 34].

3.3 Gradient computation and optimization for data
assimilation

In data assimilation studies, one is interested to incorporate
responses (or observations) from the real system into the

Algorithm 2: Left multiplying the sensitivity matrix by
an arbitrary matrix via the adjoint method.
Input : Partial derivative matrices of gp, gu and gs

w.r.t. x and θ,W
Output:WG

1 foreach n = N, . . . , 2, 1, 0 do
2 foreach i = 1, 2, . . . , m do
3 Solve for the i − th column of

(
Zn

s

)T using
Eq. 54.

4 Solve for the i − th column of
(
Zn

u

)T using
Eq. 53.

5 Solve for the i − th column of
(
Zn

p

)T

using

Eq. 52.

6 Update (WG) using Eq. 55.

numerical model by updating the (uncertain) model parameters
so that the model’s response reproduces the system observa-
tions. From a mathematical point of view, this exercise can
be appoached as an optimization problem

minimize
θ

O (h (x, θ))

subject to g (x, θ) = 0,

θ ∈ [θmin, θmax] ,

(56)

where O is usually an objective function that represents
the misfit between observed data and model responses.
In data assimilation problems, θ represents the uncertain
parameters, which are usually bounded between the upper
and lower bounds θmin and θmax . A commonly used misfit
objective function [28], with a regularization term, is given
by

O (y, θ) =1

2

(
θ − θprior

)T C−1
θ

(
θ − θprior

)

+ 1

2
(h (x, θ) − dobs)

T C−1
D (h (x, θ) − dobs) ,

(57)

where Cθ is the parameter covariance matrix, θprior is
the vector containing a prior estimate of the uncertain
parameters, dobs the observed data one desires to match, and
CD the data covariance matrix. The gradient of Eq. 57 is
given by

∇θO = C−1
θ

(
θ − θprior

) +
(

dh

dθ

)T

C−1
D (h (x, θ) − dobs)

= C−1
θ

(
θ − θprior

) + GT m. (58)

Since calculating the gradient using the adjoint method
requires computational cost proportional to one extra simu-
lation, while the direct method requires cost proportional to
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Nθ extra simulations, the adjoint method is computationally
the most efficient one. Note that

m = C−1
D (h (x, θ) − dobs) , (59)

where m is an auxiliary vector, so the gradient of O can be
written as ∇θO = (mT G)T . Moreover, Algorithm 2, with
W = mT , calculates ∇θO with a cost proportional to one
extra simulation, instead of proportional to the number of
parameters as in the direct method. For this reason, in the
data assimilation studies shown here, the adjoint method is
used when evaluating Eq. 58.

3.4 Gradient computation and optimization for
life-cycle optimization

Life-cyle optimization aims to find the optimal set of
control input parameters that maximizes an economic
objective (e.g., the recovery factor or the net present value).
This problem can also be represented as an optimization
problem

maximize
θ

O (h (x, θ))

subject to g (x, θ) = 0,

c (x, θ) = 0,

d (x, θ) < 0,

θ ∈ [θmin, θmax] ,

(60)

where c and d represent, respectively, equality and inequality
operational contraints (e.g., maximum injection pressure).
Now, θ represent the control parameters (e.g., well bottom-
hole pressures or rates).

Here, let us assume the economical objective function
O = J to be the net present value, which is given in a
simplified way by [15]

J =
N∑

n=1

[(qo,n) · ro − (qwp,n) · rwp − (qwi,n) · rwi] · �tn

(1 + b)
tn
τt

.

(61)

In Eq. 61, qo,n represents the oil production rate in m3/day,
qwp,n is the water production rate in m3/day, qwi,n is the
water injection rate in m3/day, ro is the price of oil produced
in $/m3, rwp is the cost of produced water in $/m3, rwi is
the cost of injected water in $/m3, �tn is the difference
between consecutive time-steps in days, b is the discount
factor expressed as a fraction per year, tn is the cumulative
time in days corresponding to time-step n, and τt is the
reference time period for discounting, typically 1 year.

The well rates are computed via the Peaceman [29] formu-
lation as

q (x, θ) = T λα (pb − pw) , (62)

where pb is the grid-block pressure, pw is the wellbore pres-
sure, T is a connectivity index, and λα is the mobility of phase
α.

Equation 61 can be re-written in vectorial form as

J = rT
o qo − rT

wpqwp − rT
wiqwi, (63)

where qo ∈ RN , qwp ∈ RN , qwi ∈ RN , and

ro =
[

ro�t1

(1 + b)
t1
τt

· · · ro�tN

(1 + b)
tN
τt

]T

,

rwp =
[

rwp�t1

(1 + b)
t1
τt

· · · rwp�tN

(1 + b)
tN
τt

]T

,

rwi =
[

rwi�t1

(1 + b)
t1
τt

· · · rwi�tN

(1 + b)
tN
τt

]T

.

Furthermore, Eq. 63 can be re-written as

J = rT h, (64)

where

h = [
qT

o −qT
wp −qT

wi

]T
, r = [

rT
o rT

wp rT
wi

]T
.

This allows us to write the gradient of Eq. 64 as

∇θJ = rT dh

dθ
= rT G. (65)

Equation 64 allows the adjoint method to be employed in
the computation of ∇θJ by making W = rT . Just like
in the data assimilation case, ∇θJ is efficiently computed
with cost proportional to one backward simulation using the
adjoint method.

3.5 Algorithm complexity analysis

As already mentioned, sequential methods can lead to
efficient simulation strategies. Because the direct and
adjoint derivative computation methods are tightly related to
the numerical method employed in the forward simulation,
a computational efficiency gain is also observed in these
derivative computation methods.

The computational efficiency of the methods is assessed
via an asymptotic analysis. In the analysis, only the
most computationally intensive operations involved in the
algorithms are considered. Hence, because the cost of
solving linear system of equations overwhelms the cost of
the matrix-vector products, only the former is considered
over the latter. The cost associated to the solution of a linear
system is considered to be O

(
αNβ

)
, where α and β are

constants dependent of the linear solvers employed, and N

is the size of the system.
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Let us consider the computational cost associated to solve
the derivative information for each time-step perfomed in
the forward simulation for the different methods (FIM,
IMPSAT, and IMPES). In the FIM case, for each column
of V for the direct method, or each row of W for the
adjoint method, a linear system of size 2 × Nb must be
solved, leading to a complexity OFIM(α(2 × Nb)

β). In
the IMPSAT case, a linear system must be solved for
the flow and tranport equations, leading to a complexity
OIMPSAT (αNb

β + αNb
β). Now, in the IMPES case,

the saturation can be obtained via an negligible matrix-
vector multiplication, which requires the solution of only
one linear system of size Nb, leading to a complexity
of OIMPES(αNb

β). Figure 1 illustrates the cost ratios
OIMPSAT /OFIM and OIMPES/OFIM for different values
of β. It is considered that the linear solver employed in
the solution of the different coupling strategies’ systems are
equally efficient (i.e., same β).

It is possible to see that it is always more or equally
efficient to solve the resulting linear system(s) of equations
in a sequential manner than using a FIM. Another aspect
that is not captured in our analysis is that once we have the
system de-coupling, it is possible to employ more efficient
solution strategies based on the underlying physics and on
the resulting system of equations’ properties.

However, the cost per time-step associated to the
sequential gradient computation methods are smaller or
equal to the FIM gradient computation method. Due to
numerical instabilities, sequential methods (mainly IMPES)
usually require more time-steps than FIM methods due to
the limitations imposed by the CFL condition. Therefore,
there is a trade-off between number of time-steps and
time-step cost,

(
OSeq

OFIM

)

T otal

= NT S
Seq

NT S
FIM

OSeq

OFIM

,

Fig. 1 Computational complexity ratio between IMPES and FIM (red)
and IMPSAT and FIM (blue) for different values of β for one time-step

where NT S
Seq is the total number of time-steps taken in the

sequential (either IMPES of IMPSAT) simulation, NT S
FIM is

the total number of time-steps taken in the FIM simulation,
and OSeq is the cost associated to the sequential simulation
(either IMPES or IMPSAT).

Furthermore, both superior efficiency and stability could
be achieved if an adaptive implicit sequential coupling
[10, 33] is employed. The framework here presented
could be directly employed by properly accounting for
the explicit/implicit cells in the computation of the
partial derivative matrices. The implementation of an AIM
derivative computation method in a fully featured simulator
has been used in the literature [30].

Also, we highlight that, although not captured in the
above computational asymptotic analysis, it is important
to note that the more time-steps are taken by the forward
simulation, the more extra information (partial derivative
matrices) must be computed and assembled, as well as
stored/re-evaluated at each time-step to be later used in the
backward simulation.

4 Numerical experiments

A synthetic model is considered as proof of concept (see
Fig. 2). It is a 2D inverted five-spot model, consisting
of a 21 × 21 equidistant Cartesian mesh with grid block
dimensions of 33.3 × 33.3 × 2 m. The reservoir porosity is
constant and equal to 0.3. The fluid properties are described
in Table 1.

The uncertainty around the absolute permeability dis-
tribution is represented by an ensemble of different per-
meability realizations. The ensemble is generated via the
decomposition of a reference permeability “image” using
principal component analysis parametrization [16]. Figure 3
illustrates four different permeability realizations from the
ensemble of 1,000 members.

Fig. 2 The synthetic inverted five-spot model used in the numerical
experiments. One of the 1,000 permeability realizations is shown
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Table 1 Fluid properties for five-spot model

Property Value Unit

Oil dynamic viscosity (μo) 0.5 × 10−3 Pa s

Water dynamic viscosity (μw) 1.0 × 10−3 Pa s

End-point relative permeability, oil (krow) 0.9 –

End-point relative permeability, water (krw) 0.6 –

Corey exponent, oil (No) 2.0 –

Corey exponent, water (Nw) 2.0 –

Residual-oil saturation (Sor = 0.2) 0.2 –

Connate-water saturation (Swc) 0.0 –

4.1 Gradient accuracy

In order to quantify how much the gradients computed by the
presented sequential methods deviate from those computed
using a FIM method, we calculate the angle between the
gradient given by the FIM method and the gradients given
by the IMPES and IMPSAT sequential methods. The angle
between the gradient vectors can be computed as

α = cos−1
(
∇T

θ ÔFIM ∇θÔSeq

)
, (66)

where,

∇θÔFIM = ∇θOFIM

‖∇θOFIM‖2 (67)

and

∇θÔSeq = ∇θOSeq
∥
∥∇θOSeq

∥
∥
2

. (68)

Fig. 3 Four different permeability realizations from the ensemble of
1,000 members used in the data assimilation study

Also, ∇θOFS and ∇θOSeq denote the FIM and the
sequential (IMPES and FIM) analytical gradients, respec-
tively. As a minimum requirement, acceptable MS gradients
are obtained if α is much smaller than 90◦ [9].

The error metric has been computed for both the direct
(Algorithm 1) and adjoint (Algorithm 2) methods. The
metric is assessed for the gradient of the misfit objective
function (58) and the life-cycle optimization function (65),
which experiments setup are described, respectively, in
Sections 4.2.1 and 4.3 Table 2. Also, the metric is evaluated
considering the gradient computed at the initial parameter
values.

It can be observed that the angles for both direct and adjoint
methods are equally accurate. This is an expected result giving
that the difference between the two algorithms is the order in
which the operations are evaluated. Also, the angles indicate
that algorithms here presented provide gradients that are
consistent with the FIM derivative calculation method. That
is an indication that, when the gradient computed via the
sequential derivative computation algorithms are utilized by
a gradient-based algorithm, the optimization solution path
should not be too different from an optimization performed
utilizing gradients computed by a FIM derivative calculation
algorithm. This will be illustrated next, when the gradients
are employed in different optimization exercises.

4.2Water-flooding data assimilation

In the data assimilation studies shown here, we run the
minimization problem defined by Eq. 56 by setting the
objective function to be Eq. 57 and defining the vector of
parameters as the natural logarithm of the permeability in
each grid cell

θ = [
ln k1 ln k2 . . . ln kNb

]T
. (69)

The covariance matrix Cθ is computed from the ensemble
of realizations as

Cθ = 1

Ne − 1

(
Θ − μeT

) (
Θ − μeT

)T

(70)

Table 2 Angle (in degrees) between gradient vectors computed via the
FIM method and the IMPES and IMPSAT methods for the synthetic
inverted five-spot test case

∇θO ∇θ J

Direct Adjoint Direct Adjoint

αFIM−IMPES(o) 5.5845 5.5845 0.3427 0.3427

αFIM−IMPSAT (o) 5.2232 5.2232 0.5508 0.5508
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where Θ is the Nb × Ne matrix whose j -th column is given
by the member of the ensemble θj , j ∈ {1, ..., Ne},

μ = 1

Ne

Ne∑

j=1

θj (71)

is the ensemble mean, and e = [1, ..., 1]T is a vector of
ones of size Ne × 1. In Eq. 57, the prior is taken to be the
ensemble mean

θprior = μ. (72)

Additionally, CD is a diagonal matrix [28] given by

CD = σ 2I, (73)

where σ 2 is the variance of the data measurement error.
The optimization utilizes a limited-memory Broyden

Fletcher Goldfarb Shanno (LBFGS) implementation [27].
The LBFGS algorithm requires the objective function
gradient. The misfit objective function gradient given by
Eq. 58 can be computed via the adjoint method (Algorithm
2) with a cost proportional to one simulation backward in
time. The optimization stopping criterion is determined by
the minimum objective function (OF) value that is possible
to satisfy a given noise level [28]. Following the definition
of the model parameters in Eq. 69, next, we show how
the framework can be employed with no modifications by
defining different model responses.

4.2.1 Permeability estimation fromwell production data
assimilation

In this exercise, we make the responses to be the water rates
at the production wells at certain observation times

h (x, θ) =
[

qw
Prod1
obs

T
qw

Prod2
obs

T
qw

Prod3
obs

T
qw

Prod4
obs

T
]T

.

(74)

The observed data is generated using a twin experiment.
One realization of the permeability ensemble was randomly
chosen to be considered the “truth”. The water rates
resulting from the simulation of 10 years of the model, with
a 5% white noise level to represent the measurement error,
were considered to be the observed data. The water rates are
considered to be observed at every 6 months.

The water well rate matches for the FIM, IMPES, and
IMPSAT methods, as obtained from the optimizations, are
presented, respectively, in Figs. 4, 5, and 6. It can be noted
that the gradients computed from the three different forward
simulations are successfully employed in the optimization
algorithm, leading to matched responses that accurately
reproduce the observed data.

Fig. 4 Model responses, i.e., well rates, for the well data assimilation
exercise utilizing the FIM method. In the figures, the green line
represents the initial well rates, the blue circles the observed rates, and
the red lines the rates after matching

The matched permeability fields are shown in Fig. 7.
The resulting permeability fields are also in good agree-
ment with the reference “truth” model, in particular the
permeability orientation.

It can be noted from Fig. 8 that the optimizations for the
three different forward model coupling strategies follow a
similar iteration path. That was expected based on the angles

Fig. 5 Model responses, i.e., well rates, for the well data assimilation
exercise utilizing the IMPES method. In the figures, the green line
represents the initial well rates, the blue circles the observed rates, and
the red lines the rates after matching
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Fig. 6 Model responses, i.e., well rates, for the well data assimilation
exercise utilizing the FIM method. In the figures, the green line
represents the initial well rates, the blue circles the observed rates, and
the red lines the rates after matching

shown in Table 2. Since the IMPES and IMPSAT gradients
almost do not deviate from the FIM gradient, providing a
similar search path, similar minima are found.

4.2.2 Seismic data assimilation

In this exercise, it is aimed to demonstrated how the frame-
work can seamlessly accommodate different types of model
responses. The observed data is now considered to be a spa-
tially distributed response. More specifically, we consider
the reservoir pressure distribution to be the observed data.
Such data can be obtained e.g., from a seismic survey. The
reservoir pressure can be attained from the seismic images if

Fig. 7 Permeability field update for the well data assimilation
exercise. Initial permeability field (a), permeability field from “Truth”
(b) and permeability field after match utilizing the FIM (c), the IMPES
(d), and the IMPSAT (e) methods

Fig. 8 Optimization performance for the well production data
assimilation exercises with gradients computed from FIM (blue),
IMPES (red), and IMPSAT (brown) forward simulations. The OF
Estimate line (black) indicates the minimum OF value that is possible
to satisfy the observed data noise level [28]

techniques like the ones presented in [24] and [23] are used.
In this case, the derivative computation framework can be
applied just like in the previous exercise by making

h (x, θ) = [
p1 p2 . . . pN

]T
. (75)

The observed pressure values are taken from the same
twin experiment used in the well data history matching
shown previously. Also, in the forward simulation, the flow
and transport equations are sequentially coupled using the
IMPES strategy.

We note that the framework is still applicable if
any other spatially distributed property is considered as
an observation, e.g., the more widely used impedances,
provided that the necessary Jacobians of h (e.g., via the
derivatives of the petro-elastic equations) are available [8,
11].

In this experiment, perfect observed data is considered, with
measurement error in the range of those usually employed
in synthetic studies (see e.g., [28]), is employed.

The pressure match is illustrated in Fig. 9, while the
resulting permeability field after the data assimilation is
presented in Fig. 10.

Here, the IMPES method is employed in the forward
simulation.

Once again, the data assimilation process results in a
matched model that recovers the twin experiment response.
Just like in the previous example, the resulting permeability
field is in good agreement with the reference.

4.3Water-flooding life-cycle optimization

In the life-cycle optimization studies shown here, we run
the maximization problem defined by Eq. 60 by setting the
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Fig. 9 Model responses, i.e.,pressure distribution, for the seismic data
assimilation exercise. Initial pressure distribution (a), response from
the “truth” (b), and pressure distribution after the match (c)

objective function as in Eq. 64 and defining the vector of
parameters to be the well bottom-hole pressures at some
given control times

θ =
[

p1
w1

· · · p1
wNw

· · · p
KC
w1 · · · p

KC
wNw

]T

(76)

where Nw is the total number of controlled wells and KC is
the total number of timesteps when a control change occurs.
The economical parameters for oil production are defined in
Table 3.

By allowing all well bottom-hole pressure values (5 in
total) to change every six control time steps of 720 days
gives a total number of control parameters equal to 30. The
values of the bottom-hole pressures are bounded for the
production wells between a minimum value of 28 MPa and
a maximum value of 30 MPa. The injection well pressures
are bounded between a minimum value of 30 MPa and
maximum value of 32 MPa. The initial starting strategy is
one wherein the injector well operates at a constant BHP
of 31 MPa and the production wells at a constant BHP of
29 MPa.

In this exercise, the optimization utilizes the steepest ascent
algorithm [27]. The line-search step length is reduced by
half if the newly proposed controls given by the gradient do not
lead to an increase of the objective function. This backtracking
is allowed to be repeated five times. The control parameters
are normalized with respect to the difference between the

Fig. 10 Permeability field update for the seismic data assimilation
exercise. Initial permeability field (a), permeability field from “Truth”
(b), and permeability field after match (c)

Table 3 Economic parameters associated with oil production

Value Unit

Oil price 252 $/m3

Cost of injected water 60 $/m3

Cost of produced water 30 $/m3

bounds, and a normalized gradient is considered in the
line-search direction computation.

Here, we run three different optimizations with different
forward model coupling strategies: FIM, IMPES, and IMPSAT.

The optimal control parameters found by the optimiza-
tion of the different coupling strategies can be found in
Fig. 11 and the optimization performance is illustrated in
Fig. 12.

It can be noted that, for the three couplings considered, the
framework provides consistent objective function gradients
that provide similar search directions. Similar optimized
NPVs are also achieved, with an NPV increase of approx-
imately 20%. Furthermore, except for small deviations in

Fig. 11 Optimal controls (bottom-hole pressures) resulting from the
optimization exercises with gradients computed from FIM (blue),
IMPES (red), and IMPSAT (brown) forward simulations
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Fig. 12 Optimization performance for the optimization exercises with
gradients computed from FIM (blue), IMPES (red), and IMPES
(brown) forward simulations

the injection well, the optimal control strategies are nearly
identical between the different optimization runs.

5 Concluding remarks

An efficient, general framework that addresses the deriva-
tive information computation of sequentially coupled sys-
tem of equations is presented. The flexibility of the frame-
work is illustrated in small data assimilation and life-cycle
optimization studies in which the forward model’s flow and
transport equations are sequentially coupled. In the appli-
cations, it is shown how different objective functions (i.e.
NPV and least-squares misfit), parameters (i.e. BHPs and
grid-block permeabilities), and responses (i.e. well rates
and grid-block pressures) can be accounted for in the com-
putation without any change in the framework. Numerical
results of a simple synthetic model demonstrates that the
framework can be successfully employed to optimization
studies. It is shown that the sequential derivative com-
putation methods deliver similar results compared to the
classical FIM methods. Furthermore, the computational
asymptotic analysis of the presented algorithms shows that
the sequential derivative computation methods are more
computationally efficient when compared to FIM methods.
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