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Summary

Ray-optics analysis of inhomogeneous optically
anisotropic media

When the optical behavior of light in a medium depends on the direction in which
light is traveling, the medium is called optically anisotropic. Light is an electromagnetic
wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We
do this with the assumption that the wavelength of light approaches zero. The field
in optics in which this approach is applied is called geometrical optics. Then the wave
character of light is not taken into account. In addition, we define a light wave as a
set of rays, each with a certain direction and polarization state. The polarization state
of a light ray defines the direction and the phase of the oscillating electric field of the
light. In general, the light path of a light ray in an anisotropic medium depends on
both the direction and the polarization state. The study of optical systems by means of
calculating ray paths of polarized light rays is called polarized ray tracing.

Optical anisotropy in the geometrical-optics approach is a classical problem, and most
of the theory has been known for more than a century. Since the 1970s optical anisotropy
is frequently discussed in the literature due to the rapid advances in liquid-crystal ap-
plications, such as the Liquid-Crystal Display (LCD). Liquid crystal is attractive for
high-tech applications since it has the material properties of a fluid and the optical prop-
erties of an anisotropic crystal. Moreover, the optical properties of liquid crystal can be
controlled with electric or magnetic fields.

In the past few years Philips Research has had several activities in the field of liquid
crystal. Novel liquid-crystal devices and applications have been investigated and devel-
oped into proof-of-principle demonstration models. In 2004 Philips Research introduced
an auto-stereoscopic display technique based on liquid-crystal technology. Other exam-
ples are liquid-crystal-based backlight architectures for LCDs, liquid-crystal lenses and
beam steering devices. Most of these liquid-crystal technologies are characterized by
inhomogeneous material properties. This means that the optical properties depend on
the position inside the liquid crystal. In view of the development of these technologies it
is desired to understand and predict the propagation of light in inhomogeneous optically
anisotropic media. This is the main goal of this thesis.

Optical anisotropy exists in two forms, namely uniaxial and biaxial anisotropy. Uni-
axially anisotropic media are characterized by one optical axis and biaxially anisotropic
media by two optical axes. The optical axis is a local direction of symmetry in the optical
properties. The literature frequently discusses uniaxial anisotropy in the geometrical-
optics approach at the boundary between two different media. However, the literature
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does not provide a straightforward procedure to calculate ray paths of light rays in the
bulk of inhomogeneous uniaxially anisotropic media. Moreover, the literature is nearly
silent about the propagation of light rays in inhomogeneous biaxially anisotropic media.
In this thesis we provide a general and rigorous overview of the classical theory on the
propagation of light through inhomogeneous anisotropic media, either uniaxial or biaxial.

The literature provides the fundamental principle for the ray-tracing process in in-
homogeneous media in geometrical optics, called the Hamiltonian principle. Building
further on the Hamiltonian principle, we introduce general ray-tracing equations for in-
homogeneous anisotropic media. These equations are new and define the state-of-the-art
in the field of polarized ray tracing.

We apply our ray-tracing equations to study the optical properties of a number of
liquid-crystal applications. For example, we study the residual lens action of a switchable
lens structure for application in auto-stereoscopic three-dimensional (3D) displays. Auto-
stereoscopic 3D displays enable a viewer to perceive depth in an image without any
additional appliances, such as 3D glasses. With the help of a liquid-crystal lens structure,
images can be switched between a normal (2D) mode and a 3D mode. With the help of
our ray-tracing procedure, we propose an improved anisotropic lens design to minimize
residual lens actions in the 2D mode, without compromising the performance of the 3D
mode.

The desired lens effect in 3D displays can also be achieved with so-called liquid-crystal
gradient-index (GRIN) lenses. The lens effect in these type of lenses is due to gradients
in the material properties rather than a physically curved lens surface. For the first time
in the literature, we simulate the angular-dependent optical properties of an advanced
GRIN lens structure for application in auto-stereoscopic 3D displays.

With our advanced ray-tracing method, we have also studied the optical properties
of liquid-crystal micro structures for application in for example side-lit LCD backlights.
With this exercise, we have shown that our ray-tracing method can be applied to assess
complex anisotropic optical configurations. Finally, we formulate a criterion for the ap-
plicability of geometrical optics to typical in-plane liquid-crystal configurations in terms
of the inhomogeneous material properties.

In general, we can conclude that we have worked out the electromagnetic theory of
inhomogeneous anisotropic media in the geometrical-optics approach. This has resulted
in an advanced ray-optics analysis procedure. This procedure has been applied to study
the optical properties of novel liquid-crystal applications. In contrast with other methods
addressing optical anisotropy, the advanced ray-tracing procedure provides solid physi-
cal insight into the subject, is able to handle large computational domains and can be
applied relatively easy to assess complex anisotropic electro-optical devices.

M. Sluijter Philips Research Eindhoven



Samenvatting

Stralen-optica analyse van inhomogeen optisch
anisotrope materialen

Een medium waarvan het optische gedrag afhangt van de richting waarlangs licht
zich voortplant wordt optisch anisotroop genoemd. Licht is een elektromagnetische golf
en in dit proefschrift wordt de elektromagnetische theorie over optisch anisotrope media
bestudeerd. Hierbij nemen we aan dat de golflengte van het licht verwaarloosbaar klein
is. Het vakgebied waarin deze benadering wordt toegepast wordt geometrische optica
genoemd. Hierbij wordt het golfkarakter van licht niet in rekening gebracht. Bovendien
beschouwen we een golf als een verzameling lichtstralen, elk met een individuele richting
en polarisatietoestand. De polarisatietoestand van licht definiëert de richting en de fase
van het trillende elektrische veld van het licht. In het algemeen hangt het lichtpad van een
lichtstraal in een anisotroop medium af van zowel de richting als de polarisatietoestand.
Het bestuderen van optische systemen door het berekenen van het pad van gepolariseerde
lichtstralen wordt ‘polarized ray tracing’ genoemd.

Optische anisotropie in de benadering van de geometrische optica is een klassiek
onderwerp en vindt zijn oorsprong meer dan honderd jaar geleden. Sinds de jaren zeventig
van de twintigste eeuw heeft het onderwerp aanzienlijk meer aandacht gekregen door
de snelle ontwikkelingen in toepassingen van vloeibaar kristal, zoals de Liquid-Crystal
Display (LCD). Vloeibaar kristal is met name geschikt voor toepassing in de high-tech
industrie, omdat het zowel de eigenschappen heeft van een vloeistof als van een optisch
anisotroop kristal. Bovendien kunnen de optische eigenschappen van vloeibaar kristal
worden gecontroleerd met behulp van elektrische en magnetische velden.

In de afgelopen jaren zijn er door Philips Research nieuwe toepassingen van vloeibaar
kristal gëıntroduceerd. Zo heeft Philips Research in 2004 een techniek gëıntroduceerd
voor toepassing in autostereoscopische beeldschermen die gebaseerd is op de speciale
eigenschappen van vloeibaar kristal. Andere voorbeelden zijn de toepassing van vloeibaar
kristal in backlights voor LCD’s, lenzen en ‘beam-steering’ toepassingen. In veel van
deze technologiën zijn de materiaaleigenschappen inhomogeen. Dat wil zeggen dat de
optische eigenschappen afhangen van de positie binnenin een materiaal. Daarom is het
noodzakelijk om de voortplanting van licht in inhomogeen optisch anisotrope media te
begrijpen en te voorspellen. Dit is het belangrijkste doel van het werk dat is beschreven
in dit proefschrift.

Optische anisotropie komt voor in twee vormen, namelijk uniaxiale en biaxiale anisotro-
pie. Uniaxiaal anisotrope materialen worden gekenmerkt door een enkele optische as en
biaxiaal anisotrope materialen door twee optische assen. De optische as is een lokale
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richting die een symmetrie in de optische eigenschappen aanduidt. Uniaxiale anisotropie
aan een grensvlak tussen twee verschillende media wordt in de literatuur uitvoerig be-
handeld binnen de benadering van de geometrische optica. De literatuur voorziet echter
niet in een procedure om het pad van lichtstralen uit te rekenen in inhomogeen uniaxiaal
anisotrope media. Bovendien worden biaxiaal inhomogeen anisotrope media nauwelijks
behandeld. In dit proefschrift geven we een algemeen overzicht van de klassieke theorie
over inhomogeen optisch anisotrope media, voor zowel uniaxiale als biaxiale media.

De literatuur behandeld het fundamentele principe om het pad van lichtstralen in de
geometrische optica uit te rekenen in inhomogeen anisotrope media. Dit principe noemen
we het Hamiltoniaanse principe. Met het Hamiltoniaanse principe als fundamentele
basis introduceren we algemene vergelijkingen voor het berekenen van lichtpaden van
lichtstralen in inhomogeen anisotrope media. Deze vergelijkingen zijn nieuw en definiëren
de state-of-the-art in polarized ray tracing.

Met de nieuwe vergelijkingen bestuderen we een aantal toepassingen met vloeibaar
kristal. In een voorbeeld simuleren we ongewenste lenseffecten in een schakelbare lensstruc-
tuur met vloeibaar kristal voor toepassing in autostereoscopische driedimensionale (3D)
displays. Deze 3D displays creëren diepte in een beeld zonder dat de kijker gebruik hoeft
te maken van extra hulpmiddelen, zoals een 3D bril. Door middel van een lensstruc-
tuur met vloeibaar kristal kunnen beelden worden geschakeld tussen een normale (2D)
mode en een 3D mode. Met behulp van onze methode, presenteren we een verbeterd
ontwerp voor de anisotrope lensstructuur waardoor ongewenste lenseffecten worden ge-
minimaliseerd in de 2D mode zonder de 3D mode negatief te bëınvloeden.

Het gewenste lens effect in 3D displays kan ook worden bewerkstelligd met vloeibaar
kristal in gradient-index (GRIN) lenzen. De lenswerking in dit type lenzen is gebaseerd
op de afhankelijkheid van positie in de materiaaleigenschappen van het vloeibare kristal
in plaats van de geometrische kromming van het oppervlak van een lens. Voor het
eerst in de literatuur simuleren we de hoekafhankelijke optische eigenschappen van een
geavanceerde GRIN lensstructuur voor toepassing in autostereoscopische 3D displays.

Met behulp van onze geavanceerde methode om lichtpaden van lichtstralen uit te
rekenen bestuderen we ook de optische eigenschappen van microstructuren met vloeibaar
kristal voor toepassing in bijvoorbeeld backlights voor LCD’s. Hiermee laten we zien dat
onze methode kan worden gebruikt om ingewikkelde optische structuren door te rekenen
en te analyseren. Tenslotte formuleren we een criterium voor de toepasbaarheid van
geometrische optica op typische tweedimensionale configuraties van vloeibaar kristal in
termen van de inhomogene materiaaleigenschappen.

In het algemeen kunnen we concluderen dat we de elektromagnetische theorie van
inhomogeen anisotrope media hebben uitgewerkt in de geometrische optica. Dit heeft
geresulteerd in een geavanceerde procedure om lichtpaden van lichtstralen uit te reke-
nen. Deze procedure is toegepast om de optische eigenschappen van nieuwe toepassingen
met vloeibaar kristal te onderzoeken. In tegenstelling tot andere methoden die optische
anisotropie behandelen geeft onze procedure grondig fundamenteel inzicht in het onder-
werp en kan het worden toegepast op rekendomeinen met grote afmetingen. Bovendien
kan de procedure relatief makkelijk worden toegepast om complexe anisotrope optische
configuraties door te rekenen en te analyseren.

M. Sluijter Philips Research Eindhoven
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Chapter 1

Introduction

1.1 Optical anisotropy

Anisotropy is defined as the property of being directionally dependent. Anisotropy is
the opposite of isotropy, which means invariance of direction. In physics, anisotropy
can be found in many fields of interest. The most common example of anisotropic
materials are crystals of solid elements or compounds in which atoms, ions or molecules
are arranged in regular lattices. The anisotropy of a crystal manifests itself in the elastic,
electric, magnetic and optical properties: measurements of an elastic modulus, dielectric
constant, magnetic susceptibility or index of refraction give different results depending
on the direction along which is measured. In this thesis, we confine our attention to
optical anisotropy.

1.1.1 Solid crystals

A well-known example of an optically anisotropic crystal is calcite. The basic molecular
unit of calcite is CaCO3 (calcium carbonate) which is arranged in a pyramidal structure
as is depicted in Fig. 1.1. The carbon and oxygen atoms form the base of the pyramid,
with carbon lying in the center of the triangle of oxygen atoms. The calcium atom is
positioned above the carbon atom, at the top of the pyramid. The direction of the line
that goes through the carbon and calcium atoms defines the axis of symmetry of the
molecule, and thus also the crystal. In a calcite crystal, this direction of symmetry is
called the optical axis (cf. [1], p. 307).

Let us consider a plane electromagnetic light wave entering the crystal from below.
The oscillating electric field of the incident plane wave is perpendicular to the optical
axis (see Fig. 1.1) and interacts with the electrons in the crystal. The interactions with
the electrons influence the speed of the propagating electromagnetic wave. However, the
change in speed when entering the crystal is independent of the direction in which the
electric field oscillates. Now let us consider an electromagnetic plane wave propagating
perpendicular to the optical axis (see Fig. 1.1). Then the interaction of the electrons
with the oscillating electric field component parallel to the optical axis (E||) is different
from the interaction with the electric field component perpendicular to the optical axis
(E⊥). In calcite, the speed of the electric field component E⊥ is reduced more than the
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Figure 1.1: Molecular unit of calcite (CaCO3). The atoms are arranged in a
pyramidal structure. The direction of symmetry is indicated by the
dashed line and is called the optical axis.

speed of the component E||. The ratio between the speed of light in vacuum c and the
speed of light in a medium v is defined the index of refraction n: n = c

v . For calcite, we
then find two indices of refraction: n⊥ = 1.658 and n|| = 1.486 (cf. [2], p. 4-141). These
values apply for light with a wavelength of 589.3 nm. The index n⊥ is called the ordinary
index of refraction and n|| is called the extraordinary index of refraction. The ordinary
and extraordinary index of refraction of an anisotropic medium are usually indicated by
no and ne, respectively.

Apparently, in a general crystal, the index of refraction depends on the direction of
propagation and the vibration direction of the electric field. The direction of vibration
of the total electric field can be described as the sum of two independent directions
of vibration. If the electric field components along these independent directions are
uncorrelated, light is said to be unpolarized. If the electric field is vibrating along one
particular direction, the light is linearly polarized. This means that the independently
vibrating electric field components are exactly in phase. On the other hand, if the electric
field components are not in phase, we say that the light is elliptically polarized.

The anisotropy of a crystal manifests itself in the property that an incident unpolar-
ized light beam is split into two light beams when refracted at the surface of a crystal.
Then the two refracted light beams inside the crystal have different directions of prop-
agation. In addition, these two light beams are linearly polarized. For special optically
anisotropic materials, the light beams are in general elliptically polarized. This special
topic receives more attention later in this chapter. The bifurcation of a light beam by
an anisotropic crystal is called double refraction (cf. [3], p. 340). Fig. 1.2 shows the
principle of double refraction and the effect observed from a calcite sample.
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Figure 1.2: Principle of double refraction is depicted in (a). An unpolarized
beam of light enters a crystal with the optical axis in the plane of
the drawing. The beam is refracted by the crystal and splits into two
linearly polarized light beams. The two refracted light beams that
emerge from the crystal are parallel. In (b), the effect of double
refraction by a calcite crystal is shown [4]. Clearly, the letters
‘Slu’ are imaged twice by the crystal.

In general, the optical properties of a crystal are determined by three independent
principal indices of refraction (cf. [5], p. 48 and 87). If all the principal indices are
different, there are two optical axes and then we speak of biaxial optical anisotropy. When
two of the principal indices are identical, there are two independent indices (ordinary and
extraordinary) and one optical axis. When this is the case, we speak of uniaxial optical
anisotropy. When all principal indices are identical, we speak of optical isotropy and
then there is no optical axis.

Cubic crystals such as diamond (C) or salt (NaCl) are optically isotropic. Crystals
with a tetragonal, rhombohedral or hexagonal lattice system are uniaxially anisotropic.
Examples of uniaxial crystals are calcite, sapphire (Al2O3) or ice. Crystals with a tri-
clinic, monoclinic or orthorhombic lattice system are biaxially anisotropic, such as mica
(cf. [6], p. 679).

1.1.2 Liquid crystals

Besides solid crystals, other materials like plastics and polymers can also be optically
anisotropic. Moreover, some anisotropic materials occur in the liquid phase. An anisotropic
material of which the properties are associated with both solids and liquids is liquid crys-
tal. The molecules of a liquid crystal behave like the molecules of a liquid, but at the
same time they maintain some degree of orientational and positional order, like in a solid
crystal. In other words, liquid crystal is a state of matter that is intermediate between
the crystalline solid and the amorphous liquid.

The most common type of molecule that forms liquid crystal is a rod-shaped molecule.
An example is the 5CB (4-n-pentyl-4’-cianobiphenyl) liquid crystal (cf. [5], p. 6). The
different phases of the 5CB liquid crystal are depicted in Fig. 1.3. Below 24.0◦C the phase
of 5CB is the crystalline solid. Then the crystal has both positional and orientational
order. Between 24.0◦C and 35.3◦C the sequence of phase changes on rising temperature
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Figure 1.3: The sequence of phase changes of 5CB on rising temperature. The
melting point is 24.0◦C and the clearing point is 35.3◦C.

Figure 1.4: Splay, twist and bend deformations of liquid crystal.

is from the smectic to the nematic phase. In the smectic phase, the liquid crystal has
a lower degree of positional order than in the crystalline solid. The nematic phase
has a long range orientational order, but no positional order. Then the nematic liquid
crystal may appear milky if the orientational order exists in many different domains.
The nematic liquid crystal is clear only when a long range order exists in the whole
medium. At 35.3◦C, the liquid crystal neither has positional nor orientational order and
becomes isotropic. This temperature is known as the clearing point. Next to rod-shaped
molecules there also exist for example disk-shaped molecules. These type of molecules
are in general uniaxially anisotropic. Liquid crystals can also be biaxially anisotropic, for
example boomerang-shaped molecules. Next to the smectic and nematic phases, liquid
crystals can also have chiral (also known as cholesteric) phases [7]. Chiral molecules lack
inversion symmetry and are optically active. However, chiral liquid crystals will not be
considered in this thesis.

The unit vector that points along the rod-shaped molecule axis (i.e. the optical axis)
is called the director. In a nematic liquid crystal the director varies with position and
we can distinguish between three types of deformation, namely splay, twist and bend
deformations. Fig. 1.4 shows the different types of deformations schematically. These
deformations can be induced by external factors, such as electric or magnetic fields [8]
and mechanical distortions. The free elastic energy density of a deformed nematic liquid
crystal in terms of the director d̂ is given by (cf. [9], p. 32)

U =
1
2
K11(∇ · d̂)2 +

1
2
K22(d̂ · ∇ × d̂)2 +

1
2
K33(d̂×∇× d̂)2, (1.1)
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where K11, K22 and K33 are elastic constants with which the associated splay, twist and
bend deformation energies scale. These constants describe how stiff the liquid crystal is
to deformations of the director. The unit of these constants is Newton and typical values
are about 10−11 Newton.

1.1.3 Liquid-crystal mixtures

A single liquid-crystal compound cannot fulfill all the specifications for applications. The
small temperature window for the nematic phase of for example 5CB (24.0◦C−35.3◦C)
is not adequate for most industrial applications operating between −20◦C and 80◦C.
This problem can be overcome by using mixtures of liquid-crystal compounds. The
melting point of a binary mixture of compounds is smaller than either of its constituent
compounds. The clearing point is usually the linear average of the composition. Both
the melting point and the clearing point of a mixture depend on the mixture ratio. In
conclusion, a mixture of two or more liquid-crystal compounds can offer a much larger
temperature range that exhibits the nematic phase.

In this thesis, we discuss applications of two industrial liquid-crystal mixtures, namely
the TL213 and BL009 mixture. In Table 1.1 the material properties of these mixtures
are listed. Next to the parameters discussed above, the static dielectric permittivity
4ε = ε|| − ε⊥ and the viscosity γ of the liquid-crystal mixtures are also indicated.
Finally, Table 1.1 gives the wavelength dependency of the indices no and ne for the
TL213 mixture. The human eye is most sensitive for wavelengths near 555 nm under
daylight circumstances. For reasons of simplicity, we will assume the values of the indices
for liquid crystal TL213 at 589.3 nm (yellow) for the remainder of this thesis.

Table 1.1: Liquid-crystal properties of BL009 and TL213 mixtures [10].
parameter BL009 TL213 TL213

melting point (◦C) < −20 < −20 wavelength (nm) no ne
clearing point (◦C) 108 87 508.5 1.5354 1.7906

no (589 nm) 1.5266 1.5271 546.1 1.5310 1.7772
ne (589 nm) 1.8181 1.7658 589.3 1.5271 1.7658
K11 (pN) 17.9 16.8 632.8 1.5233 1.7560
K22 (pN) 7.0 6.5
K33 (pN) 33.5 22.0

∆ε 15.5 5.7
γ (cSt) 83 49

Nematic liquid crystals have the material properties of a fluid and when properly
aligned it has the optical properties of an anisotropic crystal. In addition, the director can
be controlled by external electric or magnetic fields. Moreover, liquid-crystal mixtures
enables the control of the temperature range that exhibits the nematic phase. As a
result, nematic liquid crystal is a highly appropriate material for industrial electro-optical
applications.
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1.2 Nematic liquid-crystal applications

The discovery of liquid crystals is usually attributed to an Austrian botanist Friedrich
Reinitzer [11]. In 1888, he experimented with a substance and noted that it had two
melting points. At 145.5◦C it melted from a solid to a cloudy liquid and at 178.5◦C
it turned into a clear liquid. Reinitzer sent samples of this substance to Otto Lehman,
a professor of natural philosophy (physics) in Germany. Lehman studied Reinitzer’s
substance and noted its similarity with some of his own samples. As he became more
convinced that the opaque phase was a uniform phase of matter sharing properties of
both liquids and solid crystals, he began to call them liquid crystals.

Nowadays, liquid crystals are an important phase of matter both scientifically and
technologically. This situation is quite a recent development. Before 1960, work on
liquid crystals did not receive much attention, probably due to the fact that no one
saw an application for them. In the period 1945-1958 it was all quiet on the liquid
crystal front and the subject did not even appear in textbooks. However, in the 60s the
interest in liquid crystals awakened in the United States, Great Britain and the Soviet
Union and in the early 70s, the introduction of the liquid-crystal display (LCD) became
a fact. Nowadays, nematic liquid crystal is used in virtually all commercially available
displays. But displays are not the only application to nematic liquid crystals. Fig. 1.5
shows the result of a literature search [12]: the number of scientific publications related
to nematic liquid-crystal applications, except LCDs, is depicted as a function of time
in the period 1932-2009. Clearly, the interest in liquid crystals exploded during the
70s and 80s (stimulated by the arrival of the LCD) and the activity in this field is still
growing. Examples of liquid-crystal applications (other than display-related applications)
are thermometers, optical switches and waveguides [13]-[16], optical fiber couplers [17],
switchable lenses [18], spatial light modulators for beam steering [19] or tunable color
laser arrays [20]. More exotic applications of liquid crystals can be found in for example

Figure 1.5: Number of scientific publications related to nematic liquid-crystal
applications (except liquid-crystal displays) in the period 1932-2009
[12]. The search was performed in February 2009.
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eye-wear devices [21][22] or even cosmetics [23].

1.2.1 Liquid-crystal-based lenses for 3D displays

In what follows, we will explain why nematic liquid crystal is an important component
in the technology of switchable 2D/3D displays. The reason for this is that a significant
part of the scientific work described in this thesis is based on the application of liquid
crystal in 3D displays (Chapters 6 and 7).

With stereoscopic imaging techniques it is possible to provide distinct images to each
eye of a viewer, creating the binocular disparity depth cue. Binocular disparity is the
difference in images projected to the left and right eye of a viewer. In addition to other
depth cues (cf. [24], p. 2), binocular disparity enables us to perceive depth. One pair
of distinct images is called a stereo pair. One of many options to create stereo pairs
is the projection of multiple images towards multiple viewing angles, see Fig. 1.6-(a).
This concept is called auto-stereoscopic imaging for which no additional appliances are
necessary, such as polarized glasses (cf. [24], p. 108). Then each individual image cor-
responds to a different viewpoint of for example an object or scene and is called a view.
Next to the binocular disparity depth cue, the application of multiple views also induces
the motion parallax depth cue. Motion parallax means that objects close to a viewer
appear to move more than objects further away. Views can be generated by for example
a three-dimensional imaging display.

There are two important methods for auto-stereoscopic imaging, which differ in the
way the views are separated for presentation to each eye. These are lenticular sheet and
barrier strip techniques, using refraction and occlusion, respectively (cf. [24], p. 30).

A parallax barrier consists of an array of vertical slits in an otherwise opaque barrier.
Such a barrier can be placed a slight distance in front of for example a display. Then
the barrier ensures that the image intended for the left eye of a viewer is blocked for the
right eye and vice versa. The main disadvantage of the parallax barrier technique is that
the auto-stereoscopic image is often dim since so much light is blocked by the barrier.

A lenticular sheet consists of an array of cylindrical lenses. This lenticular sheet is
placed in front of, for example, a display as is shown in Fig. 1.6-(b). The light from
the (sub-)pixels of the display is then collimated by the lenticular and directed towards
different viewing angles. The contribution of all pixels of a display produce the individ-
ual views. Lenticular-based three-dimensional imaging techniques have one significant
advantage over barrier methods: image brightness is superior since the lenticular sheet
is based on refraction rather than occlusion.

In general, a multi-view 3D display suffers from a resolution loss, since the pixels of
a display are used to generate multiple images. The resolution loss of each view in a
multi-view 3D display is equal to a factor that is the total number of views. In 2004,
Philips Research has developed an innovative technique of creating auto-stereoscopic
three-dimensional (3D) images by combining a multi-view lenticular-based 3D display
technology with advanced computer graphics and image analysis techniques [25]. The
display technology involved makes use of a lenticular sheet that is able to switch between
a conventional 2D mode and an auto-stereoscopic 3D mode with the help of nematic
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Figure 1.6: Schematic principle of an auto-stereoscopic lenticular-based three-
dimensional imaging display. In (a), multiple images are projected
to multiple viewing directions. The neighboring images form stereo
pairs, thus enabling the binocular disparity and motion parallax
depth cues. The lenticular is placed in front of a display, as de-
picted in (b). The light from sub-pixels of the display is collimated
by the lenticular and directed towards different viewing directions.
The contribution of all pixels of a display produce the individual
views.

liquid-crystal material. In this way it is possible to have a high-brightness 3D display
capable to regain the full native 2D resolution of the underlying display [26][27].

The lenticular sheet is an array of negative lenses filled with liquid crystal. The
liquid crystal can be switched between two optical states with the help of an electric
field. As a result, the lens effect of the lenticular can be switched on and off. Another
option to enable the switchable lens effect is the use of a liquid-crystal gradient-index
lens structure. This technology does not require a lenticular sheet since the lens effect is
generated by the opposed gradients in the nematic liquid crystal itself. In this treatise,
we will investigate the issues involved for both the lenticular and the gradient-index
solutions in 3D displays.



9

1.2.2 Liquid-crystal-based light guide structure

Besides the application of nematic liquid crystal in 3D displays, other liquid-crystal
devices will be investigated as well (Chapter 8). One important example is a liquid-
crystal-based optical element that can actively control guiding and local extraction of
polarized light. A promising application of such a device can be found in for example
beam control devices for lighting applications or applications requiring local dimming and
highlighting [28]. Light that is extracted from the optical element is linearly polarized, a
feature that is desired for applications such as backlight architectures for liquid-crystal
displays. In contrast with direct-lit geometries, the optical element is suitable for side-
lit configurations. The principle of side-lit geometries is explained in Fig. 1.7. The
advantage of this technology is that it offers a reduction in power consumption, since it
is capable of local dimming and highlighting with a low number of light sources. Different
types of side-lit configurations that produce light with a specific polarization have been
investigated in the past. One approach consists of a system using birefringent material
applied on a micro-structured light guide [29]. However, the optical element discussed
here forms a basis for a novel approach to enable a side-lit geometry. This approach does
not require the manufacturing of microstructures. It enables a controlled guiding and
extraction of polarized light and a high resolution that is independent of the number of
light sources.

Figure 1.7: Principle of direct-lit and side-lit geometries. In (a) unpolarized
light enters the system at the bottom and polarized light comes out
from the top side. In (b) unpolarized light enters the system at
the side and polarized light emerges from the top side. The liquid-
crystal-based side-lit configuration we discuss enables a controlled
local extraction of polarized light and a high resolution that is in-
dependent of the number of light sources.

1.2.3 Recent discovery biaxial nematic phase

The liquid-crystal applications discussed involve uniaxially anisotropic nematic liquid
crystals. Firm evidence of the biaxial nematic phase in liquid crystals has only been
established recently in 2004 [30]-[32]. The discovery of this new type of nematic liquid
crystals has created considerable excitement, for it has opened up new areas of both
fundamental and applied research, see for example [33]. It is predicted that the applica-
tion of biaxial nematic liquid crystal in, for example, displays could result in decreased
response times to electric fields and improved performance and efficiency. The electro-
magnetic theory for inhomogeneous media discussed in this thesis includes both uniaxial
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and biaxial anisotropy and can therefore be considered as a valuable supplement to these
recent developments in the field of nematic liquid crystals.

1.3 Modeling optical anisotropy

Due to the rapid advances in liquid-crystal applications it is desired to understand and
model the propagation of light waves through anisotropic media. In the type of applica-
tions mentioned in the previous section, the material properties depend on the position
inside the medium. Then the material properties of a medium are said to be inhomo-
geneous. There are many methods available to model the optical properties of inhomo-
geneous optically anisotropic media. These methods provide the necessary assistance
in the design and characterization of liquid-crystal devices. In this section, we briefly
discuss various approaches to model the optics of optically anisotropic media. Moreover,
we explain which approach is most appropriate for our objective: to understand and sim-
ulate the optical properties of inhomogeneous optically anisotropic media in applications
mentioned in Subsections 1.2.1 and 1.2.2.

1.3.1 Overview of methods

The (extended) Jones and Berreman matrix-type methods are techniques used for pre-
dicting the transmission and reflection properties of liquid-crystal optics for displays (cf.
[5], p. 306). These methods are based on a stratified medium approximation, assum-
ing a one-dimensional variation of the liquid-crystal orientation [34]-[36]. However, the
matrix-type methods are not appropriate for applications with inhomogeneous material
properties in two or three dimensions and diffraction effects are not taken into account.

The Finite Difference Time Domain (FDTD) method is a numerical method providing
a solution to Maxwell equations considering both the spatial and temporal variations of
the electromagnetic field. The FDTD method was first introduced for isotropic media by
Yee [37]. Extensions of the method to anisotropic media have been developed later in the
90s [38][39]. The FDTD method is based on a discretization of Maxwell’s equations in
space and time by using central-difference expressions for the space and time derivatives.
The FDTD method correctly accounts for all types of reflections, diffraction and scat-
tering effects introduced by the media involved. Although the FDTD method is rigorous
and accurate, its application to large dimensions is limited by memory requirements.

When an electromagnetic wave propagates along a waveguide for a large distance,
rigorous numerical simulation is difficult. A well established numerical technique in
the area of integrated optics is the Beam Propagation Method (BPM). This method is
applicable to a very broad range of optical wave propagation problems in wave guide
optics, such as optical fibers or switches, and a wide variety of algorithms has been
developed in the past decades. Similar to the FDTD method, the BPM allows variations
of the material properties on a scale similar to the wavelength of light. However, the BPM
does not include time and is in general formulated in the paraxial approach. In the past
decade the BPM has also been extended with algorithms for the analysis of anisotropic
media, see for example [40] and [41]. In the range of its applicability the BPM can be
used advantageously instead of the FDTD method, providing a definite enhancement
over any matrix-type method, without the computational drawbacks associated with the
FDTD method. However, the BPM ignores reflections and the most useful wide-angle
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BPM (beyond the paraxial approach) is restricted to propagation angles of few tens of
degrees.

The scattering of a plane wave by anisotropic periodic gratings can be studied with
for example the Fourier Modal Method (FMM). In the FMM the material structure and
the electromagnetic fields are expanded in terms of Fourier series. The extension of the
FMM to anisotropic media is a non-trivial matter [42][43]. Another method for solving
electromagnetic scattering problems is the Finite Element Method (FEM). The FEM is a
general numerical method for solving boundary value problems in mathematical physics.
In [44] the FEM is applied to anisotropic gratings and there it is concluded that the
method is highly appropriate for anisotropic and inhomogeneous media. However, the
computational domain is restricted to approximately 50 × 50 wavelengths because of
memory constraints.

In general the methods discussed above involve solving a large coupled system of
linear equations and require numerical computation techniques. These methods are able
to handle complex anisotropic configurations, but provide little physical insight into
the electromagnetic properties of light waves propagating in anisotropic media. At the
same time, we would like to understand the relation between the anisotropic material
properties, the direction of propagation and the electromagnetic field of a light wave.
There is one appropriate discipline which can provide us with answers to these type of
questions: geometrical optics.

1.3.2 Geometrical optics

In geometrical optics optical laws are obtained in the limit where the wavelength of the
light vanishes. In practice this means that the characteristic dimensions of an optical
system are assumed much larger than the wavelength. Geometrical optics is highly ap-
propriate for didactic purposes and provides us with a good ‘language’ to study the
optical properties of anisotropic media. Moreover, geometrical optics enables the model-
ing of inhomogeneous anisotropic media in three dimensions assuming that the material
properties change slowly over the distance over one wavelength. If the material prop-
erties change rapidly within the distance of one wavelength, the wave character of light
can no longer be ignored. Optical phenomena for which the wave character of light is
important, such as the diffraction of light by a grating, is beyond the scope of geometrical
optics. This restriction is not necessarily a problem for the type of applications that we
are interested in in this thesis. This we can explain as follows.

Consider an inhomogeneous anisotropic medium in which the director is rotated by
an angle of 90◦ over a distance Ld, see Fig. 1.8. Then the change in optical properties
over the distance Ld is maximum (for constant principal indices of refraction). As a rule
of thumb the distance Ld should be in the order of 20 wavelengths or higher to allow
geometrical optics. This statement is further discussed in Chapter 5 of this thesis. With
a wavelength of approximately 500 nm, the distance Ld should then be in the order of
10 µm. The typical dimensions of for example a liquid-crystal gradient-index lens are
10×150 µm or higher with modest director variations. The dimensions of a liquid-crystal
element in the light guide structure are typically 6× 12 µm. As a consequence, the ap-
plication of geometrical optics to the latter application is a subject of debate. However,
in Chapter 5 we will see that the application of geometrical optics to dimensions smaller
than 20 wavelengths can still be acceptable to form an idea of the main qualitative char-
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Figure 1.8: Rotation of the director by an angle of 90◦ over a distance Ld.
Then Ld is the distance over which a maximum change in optical
properties occurs (for constant principal indices of refraction). Ge-
ometrical optics can be applied if the change in optical properties
over the distance of a wavelength λ is small: λ

Ld
� 1.

acteristics of an optical system. In Chapter 8 we will see that the simulated qualitative
characteristics of the light guide structure match experimental results. In general we
conclude that for the liquid-crystal applications discussed in this thesis, we can apply
geometrical optics provided that we know the validity conditions to ensure a proper in-
terpretation of the results.

Optical anisotropy in the geometrical-optics approach is a classical problem, and most
of the theory has been known for more than a century. In particular, uniaxial anisotropy
is frequently discussed in the literature [45]-[74]. The basic equations for ray paths
of light rays in inhomogeneous media are discussed by Kline and Kay [75]. However,
the literature does not provide a straightforward procedure to calculate ray paths of
light rays in inhomogeneous uniaxially anisotropic media from which it is clear how the
anisotropic material properties can influence the propagation of light. Moreover, the
literature discusses geometrical optics at interfaces between biaxially anisotropic media
[76]-[82], but is silent about the propagation of light rays in inhomogeneous biaxially
anisotropic media. Clearly, the modeling of the optical properties of anisotropic media
in the geometrical-optics approach is not a trivial matter. In this thesis we provide a
general and rigorous overview of the classical theory on the propagation of light through
inhomogeneous anisotropic media.

1.3.3 Hermitian dielectric permittivity tensor

The general character of the theory presented in this thesis manifests itself by the defi-
nition of a complex Hermitian dielectric permittivity tensor. The dielectric permittivity
tensor ε defines the mathematical relation between the electric flux density vector D and
the electric field E by

D = ε0εE, (1.2)

where ε0 is the dielectric permittivity constant in vacuum. The (complex) elements of
the tensor ε define the optical properties of a medium and on the Cartesian basis {x̂, ŷ, ẑ}
the permittivity tensor is represented by a 3x3 matrix

ε =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 . (1.3)
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Because the dielectric permittivity tensor is assumed Hermitian, the elements on the
diagonal are real by definition. This means that a complex Hermitian tensor only includes
media without absorption. A discussion on optically anisotropic media with absorption
goes beyond the scope of this thesis.

In general, there exists a complex orthonormal basis {û, v̂, ŵ} on which the Hermitian
tensor is diagonal:

ε =

 εu 0 0
0 εv 0
0 0 εw

 . (1.4)

The complex orthonormal basis {û, v̂, ŵ} is called the principal basis. When the elements
on the diagonal of the tensor in Eq. 1.4 have different values, a medium is said to be
optically anisotropic. When two of the diagonal elements are equal, the medium is
uniaxially anisotropic and when all elements differ in value, the medium is biaxially
anisotropic. Here it is assumed that anisotropic media have optical axes, but there are
cases in which a complex Hermitian dielectric permittivity tensor does not give rise to
an optical axis. This will become more clear in Chapters 2-4.

Standard textbooks discussing optical anisotropy are usually restricted to a real sym-
metric dielectric permittivity tensor. Then there are always optical axes and light in
anisotropic media is always linearly polarized. However, a real symmetric permittiv-
ity tensor is a special case of a complex Hermitian permittivity tensor. Hence a com-
plex Hermitian dielectric permittivity tensor represents a more general class of optically
anisotropic media. Moreover, we will see that light in these type of media is in general
elliptically polarized. Hermitian permittivity tensors occur in for example optically ac-
tive media. These are media which actively rotate the plane of polarization of a beam of
light, such as quartz or chiral liquid crystals. Yeh et al. describe an anisotropic complex
Hermitian permittivity tensor with optical activity for which there is no optical axis (cf.
[5], p. 80). Optical activity also occurs in magneto-optical effects, such as media in
the presence of a static magnetic field. This type of optical activity is called Faraday
rotation ([5], p. 85). Landau et al. also describe optical activity in anisotropic media
and mention the absence of an optical axis (cf. [83], footnote on p. 350). Another
example in which Hermitian permittivity tensors occur are photoanisotropic media (cf.
[44], p. 55). Photoanisotropic media are sensitive to both intensity and polarization of
light. In general, we remark that in case of a complex Hermitian permittivity tensor, the
literature broadly discusses (anisotropic) media with optical activity, but is silent about
the classical electromagnetic theory of optically anisotropic media.

In this thesis, the classical theory on the propagation of light through inhomoge-
neous anisotropic media with a complex Hermitian dielectric permittivity tensor will be
thoroughly discussed in Chapters 2, 3 and 4. Here we assume that the macroscopic
(non-dispersive) constitutive relations in anisotropic materials are of the form given by
Eq. 1.2 and

B = µ0µH, (1.5)

where B and H are the magnetic flux density vector and the magnetic field, respectively,
and µ0 is the magnetic permeability constant in vacuum. We remark that in this thesis
we only consider nonmagnetic media. This means that the permeability tensor µ is
assumed the unit tensor:

µ = 1. (1.6)
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In contrast with Eqs. 1.2 and 1.5, the constitutive relations for optically active media
are of the form (cf. [57], p. 2385)

D = ε0εE + iGH, (1.7)
B = µ0µH− iGE, (1.8)

whereG is called the gyrotropic tensor or the optical activity tensor. Crystals with optical
activity are also called circularly birefringent (cf. [84], p. 432). For a general discussion
on the constitutive relations, we refer to [85], where various types of birefringence of
nonmagnetic crystals are classified in terms of their multipole origins. In this thesis, we
consider media for which the gyrotropic tensor is zero and the constitutive relations are
given by Eqs. 1.2 and 1.5: we consider nonmagnetic, linearly birefringent media with
Hermitian permittivity tensors (no absorption).

1.4 Thesis outline

The propagation of light waves in optically anisotropic media is described by the Maxwell
equations. From the Maxwell equations we can learn what optical anisotropy is and
understand the electromagnetic properties of light waves in anisotropic media. The
electromagnetic theory on optical anisotropy is classical and is known for more than a
century. In Chapter 2, however, we discuss the classical electromagnetic theory assuming
a position-dependent complex Hermitian dielectric permittivity tensor. In that sense,
the classical theory is formulated in a unique way. We discuss both uniaxial and biaxial
anisotropy, assuming anisotropic media for which there always exist optical axes.

In general we can define two main regions of interest in an anisotropic medium: 1) the
interface region between two anisotropic media and 2) the anisotropic bulk region. At the
interface between two different media, the optical wave field is determined by boundary
conditions. From the boundary conditions, we derive the optical properties of both
uniaxial and biaxial interfaces and discuss a general ray-tracing procedure for anisotropic
interfaces in Chapter 3. The theory discussed in Chapter 3 is equivalent to what can be
found in the literature, but has been formulated in such a way that it applies to complex
Hermitian permittivity tensors as well. In a number of didactic examples we apply the
theory to uniaxial and biaxial interfaces, assuming a real symmetric permittivity tensor.
In addition, we briefly discuss the role of optical anisotropy in photolithographic systems.
In general we can say that the content of Chapter 3 provides a good overview of the
classical electromagnetic theory for anisotropic interfaces assuming a complex Hermitian
permittivity tensor.

In Chapter 4, we introduce a general ray-tracing procedure for the bulk region of
inhomogeneous anisotropic media with a complex Hermitian permittivity tensor. These
equations are presented in complex notation and comprise the position-dependent mate-
rial properties explicitly. These material properties are the position-dependent director
and the position-dependent principal indices of refraction. The special cases of biaxial
anisotropy, uniaxial anisotropy and isotropy are also addressed. The ray-tracing equa-
tions discussed define the state-of-the-art in the field of polarized ray tracing of (non-
absorbing, optically inactive) inhomogeneous anisotropic media within the framework of
geometrical optics. The theory is applied to a number of intriguing examples in which
we consider the inhomogeneous director profile of a liquid crystal induced by the electric



15

field of one or more electric point charges. In this particular case, the permittivity tensor
is real symmetric.

An unanswered question in geometrical optics is how much change in optical proper-
ties per unit wavelength is allowed in inhomogeneous anisotropic media. In Chapter 5, we
present the results of an exercise in which we compare ray- and wave-optics simulations
of a periodic inhomogeneous two-dimensional director profile. Based on these results, we
propose a criterion for the applicability of geometrical optics to typical in-plane liquid-
crystal configurations. This criterion is a first approximation to the maximum change
in material properties per unit wavelength that is allowed in geometrical optics. To the
best of our knowledge, such an exercise has never been published before. In addition, we
discuss the implications of geometrical optics to the propagation of light rays and briefly
discuss the full Maxwell equations beyond the geometrical-optics approach.

In Chapters 6, 7 and 8 we apply the electromagnetic theory described above to simu-
late the optical properties of liquid-crystal devices. We remark that for the liquid-crystal
material used in these devices the permittivity tensor is real symmetric.

First we study residual lens effects of a liquid-crystal-based switchable lenticular for
application in auto-stereoscopic 3D displays in Chapter 6. There we propose an improved
lens design of which the working principle is supported by the results of our ray-tracing
simulations. This improved lens design is filed in a patent application of which the author
is co-inventor. This technology is mainly involved with homogeneous anisotropic material
properties.

The functionality of a switchable lenticular can also be achieved with inhomogeneous
anisotropic liquid-crystal gradient-index (GRIN) lenses. Although the optical properties
of GRIN-type lenses have been investigated before, a discussion on the angular-dependent
lens action of a GRIN lens for application in auto-stereoscopic 3D displays has not re-
ceived much attention until now. In Chapter 7, we investigate the angular-dependent
optical properties of an advanced GRIN lens structure. To this end, we will use two
methods: 1) our ray-tracing procedure and 2) a simple but effective method based on
the Huygens principle with a one-dimensional approach.

Finally, we investigate the applicability of our ray-tracing procedure to technically
complex liquid-crystal devices in Chapter 8. To this end, we consider two inhomogeneous
liquid-crystal-based optical micro structures. First we introduce simulations of a novel
electro-optical device having a liquid-crystal layer with an inhomogeneous director profile
called the Freédericksz alignment. When applied between two capacitive parallel mirrors,
our simulations show that this director profile enables a back reflection phenomenon.
Then the propagation direction of light can be controlled electronically and the device
behaves like an electro-optical switch. In a second example, we consider the liquid-
crystal-based light guide structure recently developed by Philips Research. We simulate
the optical properties and compare the results with experimental results. With these two
exercises, our aim is to show that our ray-tracing procedure implemented in a simulation
program enables us to assess the optical properties of complex inhomogeneous anisotropic
optical systems.
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Chapter 2

Geometrical optics of
anisotropic media

In this chapter, we work out the classical electromagnetic theory for media with optical
anisotropy in general. The classical theory discussed applies to non-magnetic, optically
inactive media with a complex Hermitian dielectric permittivity tensor. In addition,
we make one important assumption in this treatise: we apply geometrical optics, the
lowest-order approximation of the optical wave field. In geometrical optics, it is assumed
that λ0 → 0 with λ0 the wavelength of light in vacuum. This assumption implies that
optical laws may be obtained by a complete neglect of the finiteness of the wavelength
of light (cf. [6], p. 109). This definition of geometrical optics is widely accepted, but
can be formulated in another way. A similar definition of geometrical optics is the
assumption that the characteristic dimensions of an optical system are much larger than
the wavelength of light. In general, all definitions of geometrical optics have one thing
in common: the wave character of light is not taken into account.

2.1 Maxwell equations

The electromagnetic field associated with the propagation of light is described by the
Maxwell equations. These equations are the most fundamental equations in electrody-
namics. The macroscopic Maxwell equations (in SI units) read

∇×H− ∂D
∂t

= J, (2.1)

∇×E +
∂B
∂t

= 0, (2.2)

∇ ·D = ρ, (2.3)
∇ ·B = 0, (2.4)

where t represents time and all quantities depend on position r. The vectors E and H are
the electric field vector and the magnetic field vector, respectively. The vectors D and B
are the electric flux density vector and the magnetic induction vector, respectively. The
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quantities ρ and J are the electric charge density and the current density, respectively,
and may be considered as the sources of the fields E and H.

The vectors representing the electromagnetic field defined by Eqs. 2.1-2.4 are complex
vectors. This means that they have a direction, a magnitude and a phase. For the real
physical electromagnetic field, we need to take the real part of these complex vectors.
However, for the remainder of this thesis, we will work with complex electromagnetic
field vectors. The definition of the complex field vectors will receive more attention in
the next section.

The macroscopic Maxwell equations are completed with the non-dispersive macro-
scopic material equations (for media without optical activity)

D = ε0εE, (2.5)
B = µ0µH. (2.6)

As mentioned in the introduction, ε(r) and µ(r) represent the dielectric tensor and the
permeability tensor, respectively.

In this treatise, we make a number of assumptions. First, we do not take into account
magnetic media, that is to say µ = 1, where 1 is the unit tensor. This means that we
only allow electrical anisotropy. In addition, we only investigate non-conducting media
(J = 0) and media free of charge (ρ = 0). Then the macroscopic Maxwell equations can
be reduced to

∇×H− ε0ε
∂E
∂t

= 0, (2.7)

∇×E + µ0
∂H
∂t

= 0, (2.8)

∇ · εE = 0, (2.9)
∇ ·H = 0. (2.10)

In this thesis, we consider these fundamental equations to be the basis for the classical
electromagnetic theory of light in media with optical anisotropy. In the next section, we
discuss a general solution for the (complex) electric and magnetic field vectors E and H
that satisfies the Maxwell equations 2.7-2.10.

2.2 Quasi-plane waves

Without loss of generality, we are looking for solutions of the electromagnetic wave field
of the form given by

E(r, t) = Ẽ(r)ei(k0ψ(r)−ωt), (2.11)
H(r, t) = H̃(r)ei(k0ψ(r)−ωt), (2.12)

with Ẽ(r) and H̃(r) the complex amplitude vectors for the electric and magnetic fields
and ψ(r) the optical path length function, which is also called the eikonal function. In
addition, k0 is the wave number in vacuum and ω is the radial frequency. This type of
wave field is a time-harmonic quasi-plane wave (cf. [6], p. 111) and applies in particular to
regions far away from light sources. The quasi-plane wave was suggested by Sommerfeld
and Runge (cf. [86], p. 291) and is also referred to as the Sommerfeld-Runge Ansatz.
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The complex amplitude vector can be written as

Ẽ(r) = A(r)eiδ(r)Ê(r), (2.13)

where Ê(r) is a complex unit vector, i.e. |Êx(r)|2 + |Êy(r)|2 + |Êz(r)|2 = 1, the ampli-
tude A(r) is real and positive and the phase term δ(r) is real. In general, the complex
amplitude vector can change with position due to changes in the material properties of
a medium.

When we substitute the quasi-plane wave of Eqs. 2.11 and 2.12 into the macroscopic
Maxwell equations, we obtain (cf. [6], p. 111)

∇ψ × H̃ + cε0εẼ = − 1
ik0
∇× H̃, (2.14)

∇ψ × Ẽ− cµ0H̃ = − 1
ik0
∇× Ẽ, (2.15)

∇ψ · εẼ = − 1
ik0
∇ · εẼ, (2.16)

∇ψ · H̃ = − 1
ik0
∇ · H̃, (2.17)

where c is the speed of light in vacuum. In the next section, we discuss the Maxwell
equations as presented in Eqs. 2.14-2.17 when we apply geometrical optics.

2.3 Geometrical optics

In the geometrical-optics approach, we are interested in solutions of the wave field for
large values of k0 = 2π

λ0
. As long as the right-hand side terms in Eqs. 2.14-2.17 are

small with respect to one, they may be neglected. However, rapid changes in the optical
properties of the medium could lead to large values of the divergence of εẼ. Hence, we
demand that

|∇ · εẼ|
k0

� 1. (2.18)

This condition implies that the elements of the dielectric tensor (i.e. the material proper-
ties) and the wave amplitude should change very slowly over the distance of a wavelength.

Because the right-hand side terms in Eqs. 2.14-2.17 vanish, we can express the mag-
netic amplitude vector H̃ in terms of the electric amplitude vector Ẽ:

H̃ =
1
cµ0

∇ψ × Ẽ. (2.19)

Therefore, when we know the electric amplitude vector Ẽ, we also know the magnetic
amplitude vector H̃. Hence, for the remainder of this thesis, it is sufficient to discuss the
electric amplitude vector Ẽ.

In this thesis we consider only non-absorbing media. The implications of this assump-
tion are further discussed in the next section. In addition to this, we assume that the
wave field can not be scattered by, for example, impurities in the material properties or
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boundary surfaces. Together with condition 2.18, these conditions have important con-
sequences for the amplitude A and phase δ of the optical wave field: they are constant
and independent of position throughout the medium. These statements receive further
attention in Chapter 5.

Within the framework of geometrical optics, the amplitude and phase terms can
change at a surface of discontinuity in material properties, despite the fact that in that
case condition 2.18 is not valid. This can be the case at, for example, an interface between
two different media. To avoid the effect of scattering, a surface of discontinuity should
be described by a smooth surface.

In the remainder of this thesis we assume that a medium can be described by two
main regions of interest: the interface region and the bulk region. The interface region
is defined by the boundary surface between two different media represented by a surface
of discontinuity in the material properties. The bulk region is defined by the medium
itself with the boundary surface excluded. We assume that in the bulk region condition
2.18 is satisfied and that there are no discontinuities of any kind, except when mentioned
otherwise. According to the considerations discussed, the amplitude A and phase term
δ can change in the interface region but are constant and independent of position in the
bulk region. For this reason, it is only necessary to calculate the entire wave field in
the interface region. In the bulk region of an (an)isotropic medium, it is sufficient to
calculate the light path of a propagating quasi-plane wave.

In this chapter, we discuss the fundamental electromagnetic theory for optically
anisotropic media in the geometrical-optics approach. For this discussion it is not yet
necessary to make a distinction between the interface region and the bulk region. The
optical properties of anisotropic media in these specific regions will receive more attention
in Chapters 3 and 4.

2.4 The Hermitian dielectric permittivity tensor

The elements of the dielectric permittivity tensor represent the material properties of
a medium and depend on the position. In general, the position-dependent material
properties are defined on a fixed orthonormal basis {x̂, ŷ, ẑ} which represents our labo-
ratory system. In addition to this, we introduce a position-dependent orthonormal basis
{û(r), v̂(r), ŵ(r)}. This local orthonormal basis is defined in such a way that on this ba-
sis the local dielectric tensor ε(r) is diagonal. When the dielectric tensor is diagonal, the
presentation of the physical laws of optical anisotropy are significantly simplified, which
will become clear in the sections that follow. In fact, in this treatise we demand that the
dielectric tensor can be diagonalized and has an orthonormal basis of eigenvectors. In
what follows, we will explain these conditions in more detail.

In the most general case, the elements of the dielectric tensor are all complex. Then
locally, ε is not necessarily diagonalizable. On the other hand, if ε is diagonalizable,
in general there exists a biorthonormal basis of complex eigenvectors. Only when ε is
represented by a normal matrix, it can be diagonalized and also has an orthonormal basis
of (three) complex eigenvectors. A square matrix M is called normal if it commutes with
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its conjugate transpose M†:

[M,M†] = MM† −M†M = 0. (2.20)

The conjugate transpose of a matrix M is called the Hermitian matrix of M.
Based on the definitions discussed, we can conclude that if the dielectric tensor is

represented by a normal matrix, it can be diagonalized on the local complex orthonormal
basis {û(r), v̂(r), ŵ(r)}. In this thesis, this orthonormal basis is also called the principal
coordinate system. In the principal coordinate system, the dielectric tensor is given by

ε(r) =

 εu(r) 0 0
0 εv(r) 0
0 0 εw(r)

 , (2.21)

where the eigenvalues εu(r), εv(r), and εw(r) are defined the relative principal dielectric
values. In general, these eigenvalues are complex. This means that the dielectric tensor
includes media with absorption. However, as mentioned in the previous section, we will
only consider non-absorbing media. Therefore we need to make sure that the principal
dielectric values are real. This can only be the case if ε is represented by a Hermitian
matrix. By definition, a matrix M is Hermitian if it equals its conjugate transpose:

M = M†. (2.22)

In conclusion we can say that if the dielectric tensor is represented by a Hermitian ma-
trix, it can be diagonalized on the local complex orthonormal basis {û(r), v̂(r), ŵ(r)}
and the principal dielectric values are real.

On the complex orthonormal basis {û(r), v̂(r), ŵ(r)} complex vector calculus applies
and this is different from the vector calculus on a real basis. Since we will apply complex
vector calculus, we need to discuss the definition of the complex vector inner product.

On a real Cartesian basis {x̂, ŷ, ẑ}, a vector a in R3 is defined

a = axx̂ + ayŷ + az ẑ, (2.23)

with ax, ay and az real. The dot product between two real vectors a and b is then given
by

a · b = axbx + ayby + azbz. (2.24)

On the other hand, a vector a in C3 is defined

a = axx̂ + ayŷ + az ẑ, (2.25)

with ax, ay and az complex. In this case, the complex inner product between two complex
vectors a and b is defined

〈a,b〉 = axb
∗
x + ayb

∗
y + azb

∗
z, (2.26)

where ‘∗’ denotes complex conjugation.

The Hermitian dielectric tensor represents a more general class of optical properties
than a symmetric dielectric tensor of which the elements are real. In general, the theory
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of electromagnetic waves in anisotropic media is discussed by the literature assuming a
real symmetric tensor. In that sense, the theory that will follow in the next sections
goes beyond the scope of the literature. In what follows, we will work our way towards
a generic formulation of the theory on optically anisotropic non-absorbing (optically
inactive) media.

2.5 The optical indicatrix

From the Maxwell equations in the geometrical-optics approach, we will derive what
forms a basis for a solid understanding of optical anisotropy. In the following analysis
we allow the material properties of a medium to change with position, that is as long as
condition 2.18 is satisfied with the exception of a surface of discontinuity. Moreover, we
assume a complex Hermitian permittivity tensor for which there exist optical axes.

2.5.1 The biaxial optical indicatrix

In the geometrical-optics approach, the right-hand side terms of Eqs. 2.14-2.17 vanish.
As a result, we can confine attention to Eqs. 2.14 and 2.15, since the last two follow
from them on scalar multiplication with ∇ψ. By introducing the vector p = ∇ψ (wave
normal) and eliminating H̃ we obtain the ‘eikonal equation’ for media with electrical
anisotropy

p× (p× Ẽ) + εẼ = 0. (2.27)

By definition, the wave normal p is equivalent to the wave vector k scaled by the wave
number in vacuum k0. Hence, |p| = n with n the index of refraction. The elements of
the dielectric tensor are determined by the material properties and the definition of our
coordinate system. In the previous section, we have assumed that ε(r) is represented by
a Hermitian matrix. Then on the local complex orthonormal basis {û(r), v̂(r), ŵ(r)} the
dielectric tensor is given by Eq. 2.21. The u-, v- and w-axes are the local principal axes
of the medium and define the principal coordinate system. From now on, for convenience,
we will assume that the principal dielectric values satisfy

εu < εv < εw. (2.28)

The principal indices of refraction nu, nv and nw are defined by

ni =
√
εi, i = u, v, w. (2.29)

A medium is called biaxially anisotropic when the principal indices of refraction are all
different.

We can write Eq. 2.27 as a matrix equation,

M(p)Ẽ = 0, (2.30)

with M the corresponding 3 × 3 matrix. The solutions Ẽ define the null space of the
matrix M according to

Null(M) =
{
Ẽ ∈ C3|MẼ = 0

}
. (2.31)
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Eq. 2.30 has only non-trivial solutions for the eigenmodes Ẽ if the determinant of the
matrix M vanishes. This demand leads to a quadratic equation H(|pu|2, |pv|2, |pw|2) = 0
and its solutions are represented by two three-dimensional surfaces in p-space. This
surface is called the biaxial optical indicatrix (cf. [87], p. 20) and, in the principal
coordinate system, is given by (see also [88], p. 383)

H =
(
εu|pu|2 + εv|pv|2 + εw|pw|2

)(
|pu|2 + |pv|2 + |pw|2

)
−εu|pu|2(εv + εw)− εv|pv|2(εu + εw)− εw|pw|2(εu + εv)
+εuεvεw = 0. (2.32)

Given Eq. 2.32, it is convenient to write the wave normal p in terms of its magnitude
and direction:

p = |p|p̂, (2.33)

where p̂ is a unit vector and |p| = n. When we substitute Eq. 2.33 into Eq. 2.32, we
obtain

H =
(
εu|p̂u|2 + εv|p̂v|2 + εw|p̂w|2

)
|p|4

−
[
εu|p̂u|2(εv + εw) + εv|p̂v|2(εu + εw) + εw|p̂w|2(εu + εv)

]
|p|2

+εuεvεw = 0. (2.34)

Eq. 2.34 implies that, for any arbitrary direction of propagation p̂, there are two solutions
for |p|2. If we solve Eq. 2.34 for |p|2 = n2, we obtain

n2(p̂) =
−bn ±

√
b2n − 4ancn

2an
, (2.35)

where

an = εu|p̂u|2 + εv|p̂v|2 + εw|p̂w|2, (2.36)
bn = εu|p̂u|2(εv + εw) + εv|p̂v|2(εu + εw) + εw|p̂w|2(εu + εv), (2.37)
cn = εuεvεw. (2.38)

Hence, the index of refraction is a function of the direction of propagation. In conclusion
we can say that the optical indicatrix, given by Eq. 2.32, determines the anisotropy of
the wave normal p.

The three-dimensional surface represented by Eq. 2.32 consists of two concentric
shells: an inner and an outer shell. These two shells have four points in common of
which two are the opposite of the other two (cf. [75], p. 93). The two lines that go
through these points and the origin are called the optical axes. Note that these optical
axes can vary with position since the principal coordinate system depends on position.
In case p̂ is parallel to one of the optical axes, the two solutions for the refractive index
|p| are identical. Fig. 2.1 shows one octant of the optical indicatrix in the principal
coordinate system and the intersections of the optical indicatrix with the principal uv-,
uw- and vw-planes.
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Figure 2.1: Schematic presentation of the biaxial optical indicatrix. Fig. (a)
shows one octant of the biaxial optical indicatrix in the principal
coordinate system. Fig. (b), (c) and (d) show the intersections of
the optical indicatrix with the principal planes (vw-, uv- and uw-
plane, respectively). The two concentric shells touch each other in
their common points of intersection in the uw-plane. The lines
that go through these points and the origin are called the optical
axes. The optical axes are indicated by the dashed lines. The angle
between the optical axes and the w-axis is indicated by the angle ϑ.
In this case, we assumed nw > nv > nu.

At this point, we need to explain the way in which the optical indicatrix is presented
in Fig. 2.1. In principle, Eq. 2.32 is real and represents a three-dimensional surface
on the real orthonormal basis {û(r), v̂(r), ŵ(r)}. But we have assumed a Hermitian
dielectric tensor. Hence the basis {û(r), v̂(r), ŵ(r)} is complex and on this basis the
optical indicatrix might look very different from the indicatrix depicted in Fig. 2.1.
However, for the sake of clarity, we will present the optical indicatrix in its real form
despite the fact that we work on the complex basis {û(r), v̂(r), ŵ(r)}.

Recall that we have assumed that εw > εv > εu. Then the optical axes lie in the
uw-plane. The angle ϑ between the w-axis and the optical axis is the same for both
optical axes (see Fig. 2.1-(d)). This angle is determined by the material properties and
satisfies (cf. [89], p. 3127, Eq. 115)

tan(ϑ) =

√
εw(εv − εu)
εu(εw − εv)

. (2.39)

For propagation along an optical axis, we have |p| =
√
εv and the four corresponding
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directions of propagation are given by

p̂ = ±

√
εw(εv − εu)
εv(εw − εu)

û + 0v̂±

√
εu(εw − εv)
εv(εw − εu)

ŵ, (2.40)

with all quantities depending on position r and assuming that {û(r), v̂(r), ŵ(r)} is real.
For this particular direction of propagation, the surfaces of the biaxial optical indicatrix
have a singularity. This singularity is associated with unusual optical behavior, often
referred to as conical refraction. This special topic is further discussed in Chapter 3.

Up to this point, we have assumed that there exists a real vector poa on the fixed
real Cartesian basis {x̂, ŷ, ẑ} (our laboratory system) along which the two solutions for
|poa| =

√
εv are identical. Then, by definition, there is an optical axis in the direction

of poa. However, if this vector poa with |poa| = √
εv is complex on {x̂, ŷ, ẑ}, there is no

optical axis. An example of such a case is discussed in Appendix A. For the remainder
of this thesis, we assume that there always exist optical axes in anisotropic media.

2.5.2 The uniaxial optical indicatrix

In general it is possible that two of the relative principal dielectric values are equal. In
this thesis, we will consider the case when εu = εv = ε1 and εw = ε2. Then Eq. 2.32
reduces to

H =
[(
|pu|2 + |pv|2

)
ε1 + |pw|2ε2 − ε1ε2

](
|p|2 − ε1

)
= 0. (2.41)

Apparently, the optical indicatrix consists of a sphere with radius
√
ε1 and an ellipsoid

with semi-axes
√
ε1 and

√
ε2. The corresponding principal indices of refraction are defined

the ordinary index of refraction no =
√
ε1 and extraordinary index of refraction ne =

√
ε2.

The optical indicatrix gives rise to two types of light waves: the ordinary and the
extraordinary wave. When the wave normal p satisfies

Ho = |p|2 − n2
o = 0, (2.42)

the wave normal corresponds to an ordinary wave. On the other hand, when the wave
normal satisfies

He = (|pu|2 + |pv|2)n2
o + |pw|2n2

e − n2
on

2
e = 0, (2.43)

the wave normal corresponds to an extraordinary wave.
In contrast with the biaxial optical indicatrix the sphere and ellipsoid surfaces only

have two points in common, namely for p = ±noŵ. Hence, there is only one optical
axis: the ŵ-axis. This type of anisotropy is therefore called uniaxial anisotropy and Eq.
2.41 represents the uniaxial optical indicatrix. Fig. 2.2 shows one octant of the optical
indicatrix. Note that in the principal coordinate system, the optical axis is always in the
w-direction, since we assumed that nu = nv = no and nw = ne. In the definition that we
apply, ne > no and in general this is called positive birefringence. In the case of positive
birefringence, the ellipsoid surface is oblate. Negative birefringence, i.e. no > ne, corre-
sponds to a prolate ellipsoid. In contrast with the biaxial optical indicatrix, the uniaxial
optical indicatrix has no singularities.
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Figure 2.2: Schematic presentation of the uniaxial optical indicatrix. The fig-
ure shows one octant of the optical indicatrix in the principal coor-
dinate system. The two surfaces, sphere and ellipsoid, touch each
other in their common points of intersection with the w-axis. Here,
we assumed positive birefringence, i.e. ne > no.

In case the relative principal dielectric values are all equal, Eq. 2.32 can be reduced
to

H = |p|2 − n2 = 0, (2.44)

with n the index of refraction of the medium. Eq. 2.44 represents the optical indicatrix
for isotropic media. In contrast with anisotropic media, the optical properties of isotropic
media are not directionally dependent. This is because a sphere as the one represented
by Eq. 2.44 is fully rotationally symmetric. The same type of rules apply to ordinary
light waves in uniaxially anisotropic media, see Eq. 2.42. Although propagating in an
anisotropic medium, ordinary light waves have a phase velocity that is independent from
the direction of propagation.

2.6 Analysis of the polarization vectors

According to the theory presented in the previous section, the anisotropy of the wave
normal p in an anisotropic medium is determined by the optical indicatrix or, in other
words, by the optical axes and the indices of refraction of the medium. Both biaxially and
uniaxially anisotropic media can produce two different light waves for one direction of
propagation only. However, it is possible that only one of these two modes is present. This
is due to the fact that light is a transverse electromagnetic wave and has a polarization
state. In this section, we derive how the polarization state of light is related to the
anisotropy of the wave normal.
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2.6.1 Biaxial anisotropy

As discussed in Section 2.2, the complex amplitude vector can be written as Ẽ =
A(r)eiδ(r)Ê(r) with Ê(r) a complex unit vector. The unit vector Ê(r) is called the
electric polarization vector. In anisotropic media, the electric (and magnetic) polariza-
tion vectors depend on the direction of propagation and the orientation of the optical
indicatrix with respect to a reference coordinate system. In this section, we derive concise
expressions for the electric and magnetic polarization vectors.

On the local principal basis {û(r), v̂(r), ŵ(r)}, ε(r) is diagonal. Then, using the
vector identity A× (B×C) = B(C ·A)−C(A ·B), Eq. 2.27 can be written

|p|2Ẽu − εuẼu = 〈Ẽ,p〉pu, (2.45)
|p|2Ẽv − εvẼv = 〈Ẽ,p〉pv, (2.46)
|p|2Ẽw − εwẼw = 〈Ẽ,p〉pw. (2.47)

Hence, in the principal coordinate system, the vector components of Ê can be written as

Êi = C
〈Ẽ · p〉pi
|p|2 − εi

, i = u, v, w, (2.48)

where C is a complex normalization constant and |p|2 6= εi. Eq. 2.48 is proportional
to a complex vector. Therefore, in general, Eq. 2.48 corresponds to an elliptic polar-
ization state. If the dielectric tensor is a real symmetric tensor, the orthonormal basis
{û(r), v̂(r), ŵ(r)} is real. Then Eq. 2.48 represents a vector that is proportional to a
real vector and corresponds to a linear polarization state.

In conclusion we can say that light waves inside anisotropic media are elliptically po-
larized, provided that the dielectric tensor is represented by a complex Hermitian matrix.
In the special case the dielectric tensor is real and symmetric, light waves in anisotropic
media are linearly polarized.

Now consider the case for which |p|2 = εu, |p|2 6= εv and |p|2 6= εw. Then, from Eq.
2.45, we deduce that either 〈Ẽ,p〉 = 0 or pu = 0. In case 〈Ẽ · p〉 = 0, Eqs. 2.46 and 2.47
tell us that Ẽv = 0, Ẽw = 0 and the value of Ẽu is arbitrary. Hence we conclude that
Ê = ±eiφû, with φ an arbitrary phase term. In case pu = 0, the wave normal p lies in
the vw-plane (see also Fig. 2.1-(b)). Eqs. 2.46 and 2.47 do not depend on Ẽu and are a
homogeneous system for Ẽv and Ẽw. The determinant of this homogeneous system can
be shown to be nonzero, hence Ẽv = Ẽw = 0 and the value for Ẽu is arbitrary. We can
conclude that, if |p|2 = εu, |p|2 6= εv and |p|2 6= εw then the polarization vector is given
by:

Ê = ±eiφû. (2.49)

Similarly, if |p|2 = εv, |p|2 6= εu and |p|2 6= εw we obtain Ê = ±eiφv̂ and if |p|2 = εw,
|p|2 6= εu and |p|2 6= εv we have Ê = ±eiφŵ. For convenience, the phase term φ can be
set to zero.

The magnetic polarization vector is defined (see also Eq. 2.19)

H = ± 1
cµ0

p× Ê. (2.50)
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Hence, the magnetic polarization vectors defined in this way are by definition not unit
vectors. Note that the equations for the polarization vectors only apply in the principal
coordinate system.

At this point, we have derived concise expressions for the electric and magnetic po-
larization vectors. In what follows, we will investigate the orientation of the polarization
vectors with respect to the position-dependent optical indicatrix.

Let us consider the optical indicatrix H(r,p) in a fixed point r of space. Let the basis
{û(r), v̂(r), ŵ(r)} be the orthonormal principal basis on which ε(r) is diagonal at the
given point r. Since this basis is orthonormal, the gradient of p 7→ H(r,p) is given by

∇pH(r,p) =
∂H(r,p)
∂pu

û(r) +
∂H(r,p)
∂pv

v̂(r)

+
∂H(r,p)
∂pw

ŵ(r). (2.51)

We shall now show that the vector ∇pH(r,p) is perpendicular to both Ê(r) and H(r)
(at the same point r).

First, we will investigate the complex inner product 〈Ê,∇pH〉. When we expand this
inner product with the help of Eqs. 2.32 and 2.48, we obtain

〈Ê,∇pH〉 =
C〈Ẽ,p〉f(pu, pv, pw)

(|p|2 − εu)(|p|2 − εv)(|p|2 − εw)
H, (2.52)

with f(pu, pv, pw) a polynomial of degree four, given by

f(pu, pv, pw) = 2|p|4 − p2
u(εv + εw)

−p2
v(εu + εw)− p2

w(εu + εv). (2.53)

By definition, H = 0 and as a result, the complex inner product of Eq. 2.52 vanishes,
provided that |p|2 6= εi. It can be shown that in case |p|2 = εi, the complex inner
product between ∇pH and Ê also vanishes.

Next, we will show that 〈H,∇pH〉 = 0. Given Eq. 2.19, the complex inner product
between H and ∇pH satisfies

〈H,∇pH〉 ∝ 〈(p× Ê),∇pH〉. (2.54)

Then, with the help of Eqs. 2.32 and 2.48, we obtain

〈(p× Ê),∇pH〉 ∝ 2pupvpw(εw − εv) + 2pvpwpu(εu − εw)
+2pwpupv(εv − εu) = 0. (2.55)

In addition, since H is real, we have

〈H,∇pH〉 = Hu

(
∂H
∂pu

)∗

+Hv

(
∂H
∂pv

)∗

+Hw

(
∂H
∂pw

)∗

= Hu
∂H
∂pu

+Hv
∂H
∂pv

+Hw
∂H
∂pw

=
∂H
∂pu

(H∗
u)

∗ +
∂H
∂pv

(H∗
v )

∗ +
∂H
∂pw

(H∗
w)∗

= 〈∇pH,H∗〉. (2.56)
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Figure 2.3: Octant of the biaxial optical indicatrix as in Fig. 2.1-(a), but now
with the electric polarization vectors indicated in the principal uv-
, uw- and vw-planes by the arrows. In general, the polarization
state is elliptical. Both the electric and magnetic polarization vec-
tors are tangent with respect to the biaxial optical indicatrix. As
a consequence, for each arbitrary direction of propagation p, the
Poynting vector is in the direction of ∇pH, perpendicular to the
optical indicatrix.

Hence, we can conclude that 〈H,∇pH〉 = 〈∇pH,H∗〉 = 0.
Fig. 2.3 shows the biaxial optical indicatrix again (in its real form), but now with the

electric polarization vectors indicated in the principal uv-, uw- and vw-planes (see also
[5], p. 91). In general, the polarization vectors are elliptically polarized. In addition,
we conclude that both the electric and magnetic polarization vectors are tangent to the
biaxial optical indicatrix. The properties of the polarization vectors are general, since
they are independent of the choice of the coordinate system. As a consequence, the
time-averaged Poynting vector, given by

〈S〉 =
1
2
Re(E×H?), (2.57)

is perpendicular to the optical indicatrix. Then, the vector 〈S〉 is proportional to the
vector ∇pH:

〈S〉 ∝ ∇pH. (2.58)

Moreover, it can be shown that

〈p, 〈S〉〉 = Cs

[
|p|2|E|2 − |〈p,E〉|2

]
≥ 0, (2.59)

with Cs a positive constant, and

〈p,∇pH〉 ≥ 0. (2.60)
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Therefore, 〈S〉 and ∇pH are always parallel and never anti-parallel.

We can conclude that the electric and magnetic polarization vectors for biaxial
anisotropy are always tangent to the optical indicatrix. Moreover, the time-averaged
Poynting vector is always perpendicular with respect to the optical indicatrix and is pro-
portional to the vector ∇pH. In the next subsection, we discuss the polarization vectors
for uniaxial anisotropy.

2.6.2 Uniaxial anisotropy

In case a medium is uniaxially anisotropic, we can derive the polarization vectors for or-
dinary waves and extraordinary waves. The polarization vector for biaxially anisotropic
media is given by Eq. 2.48. However, this equation only applies on the local basis
{û(r), v̂(r), ŵ(r)} where ε(r) is diagonal. In what follows, we derive expressions for the
ordinary and extraordinary polarization vectors that apply in any arbitrary coordinate
system.

We consider Eqs. 2.45-2.47. For ordinary waves |po|2 = n2
o, see Eq. 2.42, where

po represents the ordinary wave normal. Then, 〈Ẽ,po〉 = 0 or pu = pv = 0. In case
〈Ẽ,po〉 = 0, we conclude that the values for Ẽu and Ẽv satisfy 〈Ẽ,po〉 = 0 while Ẽw = 0.
Hence, Ẽ ∝ p∗ovû− p∗ouv̂. If 〈Ẽ,po〉 6= 0 and pou = pov = 0, Ẽu and Ẽv are arbitrary. As
a consequence, po = ±noŵ and Eq. 2.47 reduces to

(|po|2 − n2
e)Ẽw = n2

oẼw. (2.61)

Eq. 2.61 only holds if Ẽw = 0. Hence the inner product 〈Ẽ,po〉 vanishes. Altogether,
we conclude that 〈Ẽo,po〉 = 0 and 〈Ẽo, ŵ〉 = 0. As a result, the ordinary polarization
vector can be written as a vector cross product:

Êo = ± po × ŵ
|po × ŵ|

. (2.62)

In case po = ±noŵ, Eq. 2.62 does not apply. Then, Êo can be chosen arbitrarily
perpendicular to po. The magnetic polarization vector for ordinary waves is given by

Ho = ± 1
cµ0

po × Êo. (2.63)

The applicability of Eqs. 2.62 and 2.63 is not restricted to the principal coordinate sys-
tem and applies in any arbitrary coordinate system.

The electric polarization vector for extraordinary waves is given by Eq. 2.48 provided
that no < |pe| < ne, with pe the extraordinary wave normal. If |pe| = no, then Ẽew = 0
and Ẽeu and Ẽev are arbitrary. If |pe| = ne, we have pew = 0 and Ẽew is arbitrary. Then
Eqs. 2.45 and 2.46 do not depend on Ẽew and are a homogeneous system for Ẽeu and
Ẽev. The determinant of this homogeneous system can be shown to be nonzero, hence
Ẽeu = Ẽev = 0. Therefore, we conclude that Êe = ±eiφŵ if |pe| = ne.

In case the dielectric tensor is a real symmetric tensor, we can derive a more elegant
expression for the extraordinary polarization vector. This expression is given by

Êe = ± (pe × ŵ)×∇pHe

|(pe × ŵ)×∇pHe|
, (2.64)
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where ŵ represents the optical axis. Eq. 2.64 applies in any arbitrary coordinate system.
The corresponding magnetic polarization vector is of course given by

He = ± 1
cµ0

pe × Êe. (2.65)

Apparently, the electric polarization vector Êe is perpendicular to both pe × ŵ and
∇pHe, provided that the dielectric tensor is real and symmetric. In what follows, we will
prove this.

For extraordinary waves, the inner product 〈Êe,pe〉 does not necessarily vanish. In
this case, we can derive from Eq. 2.48 that the complex inner product between the
vectors pe × ŵ and Êe satisfies

〈(pe × ŵ), Êe〉 ∝
Im(p∗eupev)
|pe|2 − n2

o

, (2.66)

with |pe|2 − n2
o 6= 0. Hence, if peu = 0, pev = 0 or peu = pev, the inner product

〈(pe × ŵ), Êe〉 vanishes. If the dielectric tensor is real and symmetric and therefore pe
is real, the inner product vanishes by definition.

Next, we show that 〈Êe,∇pHe〉 = 0. When we expand the inner product with the
help of Eqs. 2.43 and 2.48, we obtain

〈Êe,∇pHe〉 =
C〈Ẽe,pe〉|pe|2

(|pe|2 − n2
o)(|pe|2 − n2

e)
He, (2.67)

with He defined on the local principal basis {û(r), v̂(r), ŵ(r)}. For extraordinary waves,
He = 0. As a result, the complex inner product of Eq. 2.67 vanishes. If |pe| = no or
|pe| = ne, we apply l’Hôpital’s rule to Eq. 2.67 and still find that 〈Êe,∇pHe〉 vanishes.
Note that this result applies for a Hermitian dielectric tensor.

In the special case that the dielectric tensor is real and symmetric, we conclude that
Êe is perpendicular to both pe × ŵ and ∇pHe and therefore Eq. 2.64 is proved. In
addition, we conclude that the orthogonality of the vectors ∇pHe and Êe always applies
for a Hermitian dielectric tensor.

The uniaxial optical indicatrix is depicted again in Fig. 2.4, but now with the elec-
tric polarization vectors of the ordinary and the extraordinary modes indicated. Since
∇pHo ∝ po, we have 〈Êo,∇pHo〉 = 0 and 〈Ho,∇pHo〉 = 〈∇pHo,H∗

o〉 = 0 (see Eqs. 2.55
and 2.56). In addition, 〈Êe,∇pHe〉 = 0 (see Eq. 2.67) and 〈He,∇pHe〉 = 〈∇pHe,H∗

e〉 =
0. These properties lead to the same conclusions as mentioned for biaxial anisotropy:
the time-averaged Poynting vector is perpendicular to the uniaxial optical indicatrix and
proportional to the vector ∇pH (see Eq. 2.58).

We conclude that, similar to the case of biaxial anisotropy, the electric and magnetic
polarization vectors are tangent with respect to the optical indicatrix and the Poynting
vector is proportional to the vector ∇pH. In addition, the ordinary and extraordinary
polarization vectors can be calculated with the concise vector equations given by Eqs.
2.62-2.65. Here it should be noted that Eq. 2.64 only applies in the special case that the
dielectric tensor is real and symmetric. If the dielectric tensor is Hermitian, Eq. 2.48
applies. In contrast with the vector equations for the biaxial polarization vectors, these
vector equations are not restricted to the principal coordinate system.
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Figure 2.4: Octant of the optical indicatrix in the principal coordinate system,
but now with the polarization vectors indicated. The electric polar-
ization vectors of the ordinary waves are indicated by the arrows on
the sphere surface. The electric polarization vectors of the extraor-
dinary waves are indicated by the arrows on the ellipsoid surface.
The polarization vectors of both the ordinary and extraordinary
waves are tangent to the optical indicatrix.

2.7 Conclusions

In this chapter, we have derived the electromagnetic theory for inhomogeneous media
with optical anisotropy in the (classical) geometrical-optics approach. One of the conse-
quences of geometrical optics is that the material properties of media are only allowed to
change slowly with respect to the wavelength of light. If the material properties would
change rapidly with respect to the wavelength, the wave character of light cannot be
neglected. In that case, we leave the domain of validity of geometrical optics, which is
beyond the scope of this thesis.

Within the framework of geometrical optics, we assume that the optical properties
of (an)isotropic media can be described by two main regions of interest: the interface
region and the bulk region. In the bulk region we assume that condition 2.18 is satisfied.
However, at an interface between two different media the material properties are discon-
tinuous and then condition 2.18 is not satisfied. This special case will be addressed in
the next chapter.

We have considered inhomogeneous anisotropic media which are defined by a complex
Hermitian dielectric permittivity tensor. This Hermitian permittivity tensor represents
a more general class of anisotropic media than a real symmetric permittivity tensor
does. In that sense, the theory presented so far exceeds the scope of the literature on
optical anisotropy. Anisotropic media with complex Hermitian permittivity tensors do
not necessarily have optical axes. The mathematical equations presented in this chapter
apply to anisotropic media in general, and thus also to anisotropic media without optical
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axes. However, we have explained the theory in the context of anisotropic media with
optical axes, since this form of anisotropy is most relevant for the work presented in this
thesis.

In general, we can make a distinction between two types of optical anisotropy: biaxial
and uniaxial anisotropy. Biaxial anisotropy is a general form of anisotropy and in the
limit where two of the three eigenvalues of the dielectric tensor coincide we have uniaxial
anisotropy. Further simplification of the material properties leads to optical isotropy.
For both forms of anisotropy, we have derived the optical indicatrix, a twofold surface
that determines the anisotropy of the wave normal. In addition, we have investigated the
correspondence between the polarization state and the anisotropy of the wave normal.
One important conclusion is that light waves inside anisotropic media are in general
elliptically polarized, provided that the dielectric tensor is complex Hermitian. In the
special case the dielectric tensor is real and symmetric, light waves are always linearly
polarized. Furthermore, we have derived general and concise vector equations for the
polarization vectors in terms of the material properties and the wave normal for both
biaxial and uniaxial anisotropy. These vector equations are essential for the calculation
of the optical wave field in anisotropic media, in particular in the interface region.
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Chapter 3

Ray-optics analysis of
homogeneous anisotropic
media

In the geometrical-optics approach, the material properties of media are allowed to change
slowly over the distance of one wavelength. However, in this chapter, we assume that
the material properties of a medium are independent of position. This type of medium
is called a homogeneous medium. In the bulk region of a homogeneous medium, light
waves propagate along straight lines. Moreover, in the approximations that we use, the
wave amplitude and phase are constant. Only at an interface between two different
media, the amplitude, phase and direction of propagation of a light wave can change.
Because of this, the optical properties of homogeneous media are mainly determined by
the interface region. Although condition 2.18 is not satisfied at a surface of discontinuity,
we will derive the classical theory of light waves at interfaces between different anisotropic
media within the framework of geometrical optics. We will assume a complex Hermitian
permittivity tensor for which there exist optical axes. In a number of didactic examples,
we apply this theory to isotropic, uniaxial and biaxial interfaces. In a final example, we
investigate the effect of optical anisotropy in photolithographic systems.

3.1 Definition of a light ray

The light paths of light waves in isotropic media are defined by the integral curve of the
wave normal p:

dr
dτ

= p(r(τ)), (3.1)

where τ is a parameter that can be considered as time. In other words, the light path
of a light wave can be considered as the trajectory of a vector that is orthogonal to the
wave front ψ = constant (cf. [6], p. 114). The light path defined by Eq. 3.1 is called a
light ray. In the same way, we can define a ray as the integral curve of the time-averaged
Poynting vector 〈S〉, since p and 〈S〉 have the same direction in isotropic media. However,
in anisotropic media, p and 〈S〉 do not have the same direction since the electric field

35
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vector E and the electric flux density vector D are not parallel. Then a light ray can be
defined as the integral curve of either the wave normal or the time-averaged Poynting
vector. For the type of applications we are interested in, we are mainly concerned with
the energy flux, represented by the Poynting vector. Therefore, for the remainder of this
thesis, we define a light ray as the integral curve of the time-averaged Poynting vector:

dr
dτ

= 〈S(r(τ))〉. (3.2)

Moreover, in anisotropic media, a light ray has a polarization state that satisfies the
equations presented in Chapter 2.

The study of optical systems by means of calculating ray paths of polarized light
rays is called polarized ray tracing. In homogeneous media, ray paths of light rays are
straight lines. However, the direction of propagation of a light ray can change at a surface
of discontinuity. With the help of the theory discussed in Chapter 2, we will derive the
optical wave field in the interface region of anisotropic media in the next section.

3.2 Optical wave field at anisotropic interfaces

Consider a boundary that forms the interface between two different transparent anisotropic
media. In general, a boundary can be curved but locally, a boundary can be considered
plane. In Fig. 3.1 we consider a light ray incident to a plane boundary. The local
normal vector to the boundary is defined by the unit vector n̂. The incident light ray
is partially reflected and partially transmitted by the anisotropic interface. Both the
reflected and transmitted rays are twofold, since the optical indicatrix for anisotropic
media gives rise to two independent solutions. In what follows, we will derive the wave
normals that correspond to the reflected and transmitted rays for biaxial anisotropy and
uniaxial anisotropy. In addition, we derive equations for the corresponding amplitude A
and phase δ (see Eq. 2.13) of the reflected and transmitted rays.

3.2.1 Wave normals at anisotropic interfaces

In practice, one usually begins the process of ray tracing in an isotropic medium. Let
us consider a normalized incident Poynting vector 〈Ŝinc〉 of a ray incident to a boundary
that forms the interface between an isotropic medium and an anisotropic medium. In
the isotropic medium, the incident wave normal is given by

pinc = n〈Ŝinc〉, (3.3)

where n is the index of refraction of the isotropic medium. In anisotropic media, the
incident wave normal at an interface is determined by the ray-tracing process in the bulk
region. Hence, it is always possible to define an incident wave normal pinc which satisfies
H(r,p) = 0.

For a proper determination of the reflected and refracted wave normals at an interface
we apply boundary conditions. The boundary conditions for the optical wave field at
an interface demand that the spatial (and time) variation of the incident, reflected and
refracted wave field is the same at a surface of discontinuity in the material properties
(cf. [6], p. 36). From these boundary conditions, we obtain the law of refraction and
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Figure 3.1: Transmission and reflection at an interface between two anisotropic
media. The local normal vector to the boundary is defined by the
unit vector n̂. The transmitted rays are indicated by T1 and T2 and
the reflected rays are indicated by R1 and R2.

reflection: Snell’s law. An alternative way to derive Snell’s law is discussed in Born &
Wolf (cf. [6], p. 124). In vector notation, Snell’s law reads

pinc × n̂ = p× n̂, (3.4)

where p is the corresponding refracted or reflected wave normal. Snell’s law demands that
the tangential components of the wave normal (ptn) are continuous across the interface.
The component in the direction of n̂ is in general discontinuous. With a definition of
the incident wave normal pinc, the tangential wave normal ptn can be calculated by
subtracting the normal component from the incident wave normal:

ptn = pinc − (pinc · n̂)n̂. (3.5)

In what follows, we will derive a general procedure for the calculation of the reflected
and refracted wave normals in anisotropic media.

The refracted wave normals are determined by substitution of the vector

p = ptn + ξn̂, ξ ≥ 0, (3.6)

in the equation H(r,p) = 0 and solve for ξ. Since the optical indicatrix consists of two
shells, there are two solutions for ξ and therefore two solutions for p. In the special
case that ξ is complex, the light is totally reflected. This special case will be addressed
later in this chapter. For the moment, we will assume ξ to be real. In Eqs. 2.32
and 2.41 the optical indicatrix is defined in the principal coordinate system {û, v̂, ŵ}.
However, in general, the principal coordinate system does not necessarily coincide with
the coordinate system on which the local normal vector n̂ and the tangential wave normal
ptn are defined. Therefore, these vectors should be transformed to a coordinate system
in which Eqs. 2.32 and 2.41 do apply. Consider a matrix T which represents a linear
orthogonal transformation that transforms a vector on the orthonormal basis {x̂, ŷ, ẑ}
to the orthonormal basis {û, v̂, ŵ}, the principal coordinate system. Then, the ‘new’
vectors are given by n̂p = T n̂ and pptn = T ptn, where the index p denotes the principal
coordinate system. Hence, on the basis {û, v̂, ŵ}, Eq. 3.6 can be written

pp = T p = T (ptn + ξn̂) = T ptn + T ξn̂ = pptn + ξn̂p. (3.7)
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With the vectors in the principal coordinate system, we can determine the refracted
wave normals if we substitute the wave normal defined by Eq. 3.7 into H(r,p) = 0.
Then we obtain a polynomial of ξ of degree four and we can find numerical solutions
by any of the standard methods described in Numerical Recipes (cf. [90], Chapter 9, p.
355). Alternatively, an analytical procedure for solving a polynomial of fourth degree is
described in Griffiths (cf. [91], p. 32). When the solutions for ξ are obtained, the vectors
n̂p, pptn and pp can be transformed back to the coordinate system {x̂, ŷ, ẑ}. To this end,
we apply the inverse of the matrix T , denoted by T −1.

For reflected rays at an anisotropic interface, Eq. 3.6 changes into p = ptn−ξn̂, with
ξ ≥ 0. Of course now the indicatrix in the incident medium should be used. We conclude
that for any arbitrary type of medium (isotropic, uniaxial or biaxial), the reflected and
refracted wave normals can be calculated according to the procedure discussed in this
subsection.

3.2.2 Wave normals at uniaxial interfaces

Uniaxially anisotropic interfaces involve equations that are polynomials of degree two
(see Eqs. 2.42 and 2.43). As a consequence, for uniaxial interfaces, we can solve the
reflected and refracted wave normals in a simple analytical way. In this subsection, we
will do this for both ordinary and extraordinary wave normals.

We consider a normalized incident Poynting vector 〈Ŝinc〉 of an extraordinary ray
incident to an interface between two uniaxially anisotropic media. This unit vector defines
the direction of the energy transfer of the incident ray. The corresponding incident wave
normal pinc can be obtained from the ray-tracing process in the bulk region, which will
be discussed in the next chapter. On the other hand, once 〈Ŝinc〉 is defined, we can
also derive an analytical expression for pinc in terms of the vector components of 〈Ŝinc〉.
According to Eq. 2.58, 〈Ŝinc〉 is proportional to ∇pH. Then for an extraordinary ray,
the normalized incident Poynting vector can be written as

〈Ŝinc〉 =
∇pHe

|∇pHe|
. (3.8)

On the basis {û, v̂, ŵ}, He satisfies Eq. 2.43. With Eq. 2.43 and Eq. 3.8 we have
four equations with three unknowns, namely |pinc,u|, |pinc,v| and |pinc,w|. This set of
equations can be solved analytically. As a result, we know |pinc|. If the basis {û, v̂, ŵ}
is complex, we have pinc = |pinc|p̂inc, but p̂inc is still unknown. If the basis {û, v̂, ŵ} is
real, we have

pinc = |pinc,u|û + |pinc,v|v̂ + |pinc,w|ŵ. (3.9)

In conclusion, we can derive an expression for pinc in terms of the vector components
of 〈Ŝ

p

inc〉 provided that the basis {û, v̂, ŵ} is real, and therefore the dielectric tensor is
real and symmetric. Then, in the principle coordinate system, the incident extraordinary
wave normal satisfies

pinc =
n2
e〈Ŝinc,u〉û + n2

e〈Ŝinc,v〉v̂ + n2
o〈Ŝinc,w〉ŵ√

n2
e + (n2

o − n2
e)〈Ŝinc,w〉2

. (3.10)
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For ordinary rays in uniaxially anisotropic media, ne = no and then Eq. 3.10 reduces
to pinc = no〈Ŝinc〉. In isotropic media, ne = no = n and Eq. 3.10 reduces to Eq. 3.3.
Hence, for arbitrary values of no and ne, we can apply Eq. 3.10 to both isotropic and
uniaxially anisotropic media in the real principal coordinate system.

Subsequently, we can apply Snell’s law and calculate the tangential wave normal ptn
with Eq. 3.5.

For ordinary rays, the wave normal is determined by the intersection of the vector
po = ptn+ξn̂ with the surface Ho = 0. Since Ho = 0 represents a sphere with radius no,
ξ must satisfy the condition |ptn|2 + ξ2 = n2

o. Therefore, we conclude that the refracted
or reflected ordinary wave normal reads

po = ptn ±
√
n2
o − |ptn|2n̂. (3.11)

In the definition that we use, the plus sign applies to transmitted rays and the minus
sign applies to reflected rays. In isotropic media, we can apply Eq. 3.11 if the index o is
removed.

Similarly, the extraordinary wave normal is given by

pe = ptn + ξn̂. (3.12)

The constant ξ is determined by the condition that the endpoint of the wave normal pe
lies on the ellipsoid surface He = 0. Therefore, on the complex basis {û, v̂, ŵ}, ξ is now
given by

ξ =
−Bξ ±

√
B2
ξ − 4AξCξ

2Aξ
, (3.13)

Aξ =
|n̂w|2

n2
o

+
|n̂u|2 + |n̂v|2

n2
e

, (3.14)

Bξ =
2Re(ptn,wn̂w)

n2
o

+
2Re(ptn,un̂u) + 2Re(ptn,vn̂v)

n2
e

, (3.15)

Cξ =
|ptn,w|2

n2
o

+
|ptn,u|2 + |ptn,v|2

n2
e

− 1. (3.16)

The plus sign in Eq. 3.13 applies to refracted rays and the minus sign applies to reflected
rays. If ne = no = n, Aξ = 1

n2 , Bξ = 2
n2 (〈ptn, n̂〉 + 〈n̂,ptn〉) = 0 and Cξ = |ptn|

2

n2 − 1.
Then, ξ = ±

√
n2 − |ptn|2 which applies to rays in isotropic media.

Fig. 3.2 shows a schematic procedure of the process discussed. In this particular ex-
ample, the incident medium is isotropic and the second medium is uniaxially anisotropic
with a tilted optical axis. The figure shows the intersections of the optical indicatrix of
both media with the plane of incidence. For the isotropic medium, the intersection of the
optical indicatrix is a circle with radius n. For the anisotropic medium, the intersection
consists of a circle with radius no and a tilted ellipse with semi-axes no and ne. The
optical axis is denoted by the unit vector ŵ and lies in the plane of incidence. The
incident medium shows the incident wave normal pinc and the corresponding tangential
wave normal ptn. In the incident medium, there is one reflected wave normal denoted by
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Figure 3.2: Refraction and reflection at an isotropic-anisotropic interface with
local normal vector n̂. The anisotropic medium has a tilted opti-
cal axis, denoted by ŵ. The figure shows the intersections of the
optical indicatrix of both media with the plane of incidence. For
an incident normalized Poynting vector 〈Ŝinc〉, the corresponding
incident wave normal pinc and tangential wave normal ptn are de-
picted. The reflected and refracted wave normals that match the
vector ptn are indicated by pr, po and pe. In addition, the cor-
responding reflected and refracted normalized Poynting vectors are
denoted by 〈Ŝr〉, 〈Ŝo〉 and 〈Ŝe〉.

pr. In the anisotropic medium, we can find four wave normals that match the vector ptn.
Only two of them represent the refracted wave normals. In order to make sure we find
the right wave normals, we must apply the plus sign in Eqs. 3.11 and 3.13. The ordinary
and extraordinary refracted wave normals are denoted by po and pe, respectively. The
corresponding reflected and refracted normalized Poynting vectors are defined by Eq. 3.8.
These unit vectors are perpendicular with respect to the circle and ellipse intersections.
In Fig. 3.2, the normalized Poynting vectors for the incident, reflected and transmitted
rays are indicated by 〈Ŝinc〉, 〈Ŝr〉, 〈Ŝo〉 and 〈Ŝe〉, respectively.

We have derived concise vector equations in order to calculate the incident, reflected
and refracted wave normals of both ordinary and extraordinary rays at an uniaxially
anisotropic interface. These equations apply to arbitrary values of the indices no and
ne. However, Eqs. 3.10 and 3.13-3.16 only apply in the principal coordinate system. For
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these equations it is necessary to define the vectors 〈Ŝinc〉, n̂ and ptn on the principal
basis {û, v̂, ŵ}. Moreover, Eq. 3.10 only applies if the basis {û, v̂, ŵ} is real. In addition,
it can be concluded that all wave normals, together with the local normal vector n̂, are
in the same plane: the plane of incidence. The optical axis does not necessarily lie in
the plane of incidence: the optical indicatrix can have any arbitrary orientation in three-
dimensional space. As a consequence, the Poynting vector does not necessarily lie in the
plane of incidence.

3.2.3 Total reflection

In general, it is possible that Eq. 3.6 does not yield a real solution for the refracted
wave normal. This can be the case if, for example, |ptn| exceeds the ordinary index of
refraction of the upper medium in Fig. 3.2. Then Eq. 3.11 yields

po = ptn + ipI n̂, (3.17)

with
pI =

√
|ptn|2 − n2

o. (3.18)

The physical meaning of a complex wave normal can be explained as follows. Let us
consider a plane wave given by

E(r, t) = Ẽ(r)ei(k0p·r−ωt).

When we substitute Eq. 3.17 into Eq. 3.2.3, we obtain

E(r, t) =
[
Ẽ(r)e−k0pI n̂·r

]
ei(k0ptn·r−ωt).

This equation represents a plane wave propagating along the interface (orthogonal to the
local normal vector n̂) in the plane of incidence. Moreover, the amplitude of this plane
wave decreases exponentially with the normal distance from the interface (in the direction
of n̂). The effective depth of penetration in the medium is of the order of c

ωn = λ
2π , with

λ the wavelength of light in the corresponding medium. As a result, the effective depth
of penetration is in the order of the wavelength. The type of wave represented by Eq.
3.2.3 is called an evanescent wave.

When a refracted wave normal is of the form given by Eq. 3.17, the time average
of the flow of energy across the interface vanishes. However, the preceding analysis is
based on the assumption that the interface region and the wave front are of infinite
extent (cf. [6], p. 47). For the moment, in the approximation that we use, which is the
geometrical-optics approach, it is sufficient to assume that no energy will penetrate the
second medium.

3.2.4 Fresnel coefficients

With the procedure derived in the previous subsection, we are able to calculate refracted
and reflected wave normals at an anisotropic interface. The corresponding polarization
vectors can be calculated with the equations derived in Section 2.6. The amplitude A
and the phase term δ of the complex amplitude of a quasi-plane wave (see Eq. 2.13) can
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also be calculated in the interface region. For the remainder of this thesis, we define the
electric or magnetic complex amplitude as the complex number a. Hence, a satisfies

a = A(r)eiδ(r).

As a consequence, the electric and magnetic complex amplitude vectors can be written
as

Ẽ = aÊ, (3.19)
H̃ = aH, (3.20)

where H = 1
cµ0

p × Ê. In order to calculate the complex amplitudes on both sides of
an anisotropic interface, we apply boundary conditions. The boundary conditions for
an electromagnetic field demand that across a boundary, the tangential components of
the complex amplitude vectors Ẽ and H̃ should be continuous (cf. [92], p. 18). This
means that the vector components of Ẽ and H̃ that are orthogonal to the local normal
vector n̂ are identical on both sides of an interface. In order to calculate these vector
components, we define two unit vectors t̂s and t̂p in such a way that they define a local
orthonormal basis {t̂s, t̂p, n̂}. Moreover, the unit vector t̂s is defined orthogonal to the
plane of incidence (s

¯
enkrecht) and t̂p is defined in the plane of incidence (p

¯
arallel). In

terms of an incident wave normal pinc and a normal vector n̂, the local unit vectors can
be written as (cf. [56], p. 2375)

t̂s =
pinc × n̂
|pinc × n̂|

, (3.21)

t̂p = n̂× t̂s. (3.22)

For a general approach, we consider the case for a boundary that forms an interface
between two anisotropic media. Then the optical wave field at the interface consists of
two reflected and two transmitted rays. In Fig. 3.1, these rays are denoted by the indices
1 and 2.

Application of the boundary conditions yields four linear equations given by (cf. [57],
p. 2391)

t̂s · (Ẽt1 + Ẽt2) = t̂s · (Ẽinc + Ẽr1 + Ẽr2), (3.23)
t̂p · (Ẽt1 + Ẽt2) = t̂p · (Ẽinc + Ẽr1 + Ẽr2), (3.24)

t̂s · (H̃t1 + H̃t2) = t̂s · (H̃inc + H̃r1 + H̃r2), (3.25)
t̂p · (H̃t1 + H̃t2) = t̂p · (H̃inc + H̃r1 + H̃r2), (3.26)

where the indices r and t denote the reflected and transmitted electromagnetic fields,
respectively. Without loss of generality, we can define the incident electric and magnetic
complex vectors Ẽinc and H̃inc in such a way that ainc is real and normalized. This
means that δinc = 0 and Ainc = 1 so that ainc satisfies

ainc = 1. (3.27)

When we substitute Eqs. 3.19, 3.20 and 3.27 into the boundary conditions and rearrange
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terms, we can rewrite the boundary conditions as a matrix equation according to
t̂s · Êt1 t̂s · Êt2 −t̂s · Êr1 −t̂s · Êr2
t̂p · Êt1 t̂p · Êt2 −t̂p · Êr1 −t̂p · Êr2
t̂s ·Ht1 t̂s ·Ht2 −t̂s ·Hr1 −t̂s ·Hr2

t̂p ·Ht1 t̂p ·Ht2 −t̂p ·Hr1 −t̂p ·Hr2




at1
at2
ar1
ar2



=


t̂s · Êinc
t̂p · Êinc
t̂s ·Hinc

t̂p ·Hinc

 . (3.28)

The only unknowns in this matrix equation are the complex amplitudes at1, at2, ar1 and
ar2. These complex amplitudes are also known as the Fresnel coefficients. The matrix
equation can be solved analytically or by any of the standard methods as e.g. described
in Numerical Recipes (cf. [90], p. 22).

In this thesis, we apply the following notation. In uniaxially anisotropic media, the
indices 1 and 2 are substituted by the indices o and e for the ordinary and extraordinary
rays, respectively. In isotropic media, the electric and magnetic field vectors have an
s-component and a p-component on the basis {t̂s, t̂p, n̂}. Then, the indices 1 and 2 are
replaced by the indices s and p.

Consider for example an interface between an isotropic medium and an uniaxially
anisotropic medium. For this type of interface, ar1 and ar2 are replaced by ars and arp,
respectively. In addition, Êr1, Êr2, Hr1 and Hr2 are replaced by Êrs, Êrp, Hrs and Hrp,
respectively. Moreover, the electric polarization vector for the s-component is given by

Êrs = t̂s, (3.29)

and the electric polarization vector of the p-component satisfies

Êrp =
Êrs × pr
|Êrs × pr|

. (3.30)

The polarization vectors for the transmitted ordinary and extraordinary rays are given
by Eqs. 2.62 and 2.64, respectively.

For an anisotropic-isotropic interface, Eq. 3.29 and Eq. 3.30 apply as well, provided
that the index r is replaced by the index t, resulting in the set of Fresnel coefficients ats,
atp, aro and are. For isotropic-isotropic interfaces, Eq. 3.29 and Eq. 3.30 apply for both
the index r and the index t, yielding ats, atp, ars and arp.

As a result, the electromagnetic field of, for example, a reflected quasi-plane wave in
an isotropic medium is given by

E(r, t) = (arsÊrs + arpÊrp)ei(k0ψr−ωt), (3.31)

H(r, t) =
1
cµ0

(arsHrs + arpHrp)ei(k0ψr−ωt), (3.32)
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while the electromagnetic field of a transmitted extraordinary quasi-plane wave is given
by

E(r, t) = ateÊteei(k0ψte−ωt), (3.33)

H(r, t) =
1
cµ0

ateHtee
i(k0ψte−ωt). (3.34)

The Fresnel coefficients are complex numbers from which we can determine the phase shift
of the refracted and reflected rays. Moreover, we can determine the polarization state of
the rays from the complex amplitude vectors. In anisotropic media, the polarization state
of light rays is in general elliptical. Only when the dielectric tensor is real and symmetric,
the polarization state of light rays is linear. In isotropic media, the polarization state is,
in general, elliptical.

3.2.5 Intensity transmittance and reflectance factors

From the electromagnetic field at an interface, we can calculate the time-averaged Poynt-
ing vector with Eq. 2.57. In addition, for an arbitrary type of interface, we can apply
the law of conservation of energy flow in the direction of the local normal vector n̂. For
an anisotropic-anisotropic interface, this yields

n̂ · 〈Sinc〉 = n̂ · 〈St1〉+ n̂ · 〈St2〉
− n̂ · 〈Sr1〉 − n̂ · 〈Sr2〉. (3.35)

The minus sign appears since, for reflected rays, n̂ · 〈Sr〉 ≤ 0. By dividing both sides of
Eq. 3.35 by n̂ · 〈Sinc〉, we obtain

1 =
n̂ · 〈St1〉
n̂ · 〈Sinc〉

+
n̂ · 〈St2〉
n̂ · 〈Sinc〉

− n̂ · 〈Sr1〉
n̂ · 〈Sinc〉

− n̂ · 〈Sr2〉
n̂ · 〈Sinc〉

. (3.36)

The electromagnetic field at an anisotropic interface has to satisfy Eq. 3.36. Each term
on the left side of Eq. 3.36 represents either an intensity transmittance factor T or an
intensity reflectance factor R. Consequently, Eq. 3.36 can be written as

1 = T1 + T2 +R1 +R2, (3.37)

with

T1 =
∣∣∣∣ n̂ · 〈St1〉
n̂ · 〈Sinc〉

∣∣∣∣, T2 =
∣∣∣∣ n̂ · 〈St2〉
n̂ · 〈Sinc〉

∣∣∣∣, (3.38)

R1 =
∣∣∣∣ n̂ · 〈Sr1〉
n̂ · 〈Sinc〉

∣∣∣∣, R2 =
∣∣∣∣ n̂ · 〈Sr2〉
n̂ · 〈Sinc〉

∣∣∣∣. (3.39)

As usual, the indices 1 and 2 are replaced by o and e for uniaxially anisotropic media.
For isotropic media, we obtain Rs, Rp, Ts and Tp.
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In general, we can conclude that we are able to calculate the amplitude and phase
terms (A and δ) of the optical wave field at an (an)isotropic interface through the calcu-
lation of the Fresnel coefficients. From the optical wave field, we can also calculate the
intensity transmittance and reflectance factors at an interface. In the next section, we
discuss how the classical theory discussed can be implemented into a computer program.

3.3 General ray-tracing procedure for anisotropic in-
terfaces

The classical theory discussed enables the calculation of the optical wave field at an ar-
bitrary interface between two anisotropic media. To calculate the optical properties of
anisotropic interfaces numerically, we apply the classical theory into a numerical simu-
lation program. This section describes the relevant subsequent steps that are necessary
for a proper determination of the optical wave field at anisotropic interfaces.

First, we need to define the optical properties of the two media forming an anisotropic
interface: the principal indices of refraction ni,fu , ni,fv and ni,fw , the optical axes and the
normal vector n̂ to the plane boundary. The indices i and f denote the incident and
the final medium, respectively. With the definition of the principal indices of refraction
it is possible to determine the type of interface. For example, when niu = niv 6= niw and
nfu 6= nfv 6= nfw, the incident medium is uniaxially anisotropic and the final medium is
biaxially anisotropic. In addition, we know that an incident light ray, defined by an
incident wave normal pinc in the incident medium, gives rise to in general two reflected
rays and two refracted rays.

Next, we calculate the wave normals that correspond to the reflected and refracted
rays. These are calculated with the help of the procedure described in Subsections 3.2.1
and 3.2.2. In this procedure, vectors are transformed from the Cartesian basis {x̂, ŷ, ẑ}
to the principal basis {û, v̂, ŵ} on which ε is diagonal. The corresponding transformation
matrix T is an orthogonal matrix which preserves the length of a vector. In the special
case that the dielectric tensor is real and symmetric, the matrix T is given by a real
orthogonal rotation matrix. Then the definition of the rotation matrix T depends on
the orientation of the basis {û, v̂, ŵ} with respect to the basis {x̂, ŷ, ẑ}. In general,
if we know the optical axes of both the incident and the final medium, we also know
the bases {û, v̂, ŵ}i,f and therefore the corresponding rotation matrices T i,f . Since
the determination of the matrix T is a rather straightforward process, in particular
when using technical computing software such as MatLab [93], we will not discuss this
procedure further.

Finally, we calculate the Fresnel coefficients. Then we need to define the amplitude
ainc of an incident ray. Without loss of generality, we can define ainc = 1 (see Eq. 3.27).
In addition, we define the polarization vector Êinc of the incident ray. Note that in
general Êinc can be complex. Furthermore, we need to calculate the polarization vectors
using the appropriate vector equations presented in Section 2.6. From the polarization
vectors, we obtain the polarization state of the individual rays. In order to calculate
the polarization vectors, we use the reflected and refracted wave normals obtained in the
procedure discussed above. Then we apply the matrix equation defined by Eq. 3.28 from
which the Fresnel coefficients are calculated numerically. From the Fresnel coefficients we
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obtain the phase δ, the relative amplitude A (recall that ainc = 1) and the transmittance
and reflectance factors of the individual rays. In addition, the sum of the transmittance
and reflectance factors should exactly add up to one (see Eq. 3.37). This condition is a
good indicator for errors in the numerical simulation program.

At this point, we have obtained the optical wave field at an anisotropic interface
of interest. From the results, we can proceed with the ray-tracing process in the bulk
region. A procedure for the calculation of ray paths of light rays in the bulk region of
inhomogeneous anisotropic media will be discussed in Chapter 4.

In what follows, we will calculate and analyze the optical properties of a number of
(an)isotropic interfaces with the help of the classical theory and the numerical simulation
program discussed above.

3.4 Modeling of anisotropic interfaces

In this section, we apply our computer program in order to calculate the optical prop-
erties of uniaxially anisotropic and biaxially anisotropic interfaces and investigate some
interesting features. To this end, we aim to demonstrate the applicability of the classical
theory derived in the preceding analysis. For the remainder of this chapter, we assume
a real symmetric dielectric tensor.

3.4.1 Brewster angle of an air-calcite interface

In this example, we apply the classical theory to a plane interface between an isotropic
and an uniaxially anisotropic medium. We define the isotropic medium to be air and
the second anisotropic medium to be calcite. We analyze calcite with an ordinary index
of refraction no = 1.655 and an extraordinary index of refraction ne = 1.485 (negative
birefringence). These values for the refractive indices are valid for light with a wavelength
of 633 nm (cf. [66], p. 2766). The optical axis ŵ of the calcite is at an angle of 45◦

with the plane of incidence. The incident light has a linear polarization in the plane of
incidence (p-polarization). As a function of the angle of incidence θinc, we calculate the
transmittance factor To for the ordinary wave. Similarly, we calculate Te, Rs and Rp.
The results are depicted in Fig. 3.3. The sum of To, Te, Rs and Rp is indicated by Tt
and should result in 1 for any value of θinc (see Eq. 3.37).

It appears that the tilted optical axis generates both extraordinary and ordinary rays.
In addition, the reflected light is mainly p-polarized (Rs is very small but not zero). The
Brewster angle θB is defined as the incident angle where Rp vanishes. From Fig. 3.3,
we can read a Brewster angle of 59.76◦. In Lekner [66], the Brewster angle is calculated
analytically. There, the reflection amplitudes result in a quartic equation of which one
of the physical roots determines the Brewster angle. Lekner predicts a Brewster angle of
59.75◦ (cf. [66], Table 1, p. 2766).

Lekner also calculates the Brewster angle as a function of the angle Γ which the
optical axis makes with the local normal vector n̂ [55]. In this case, the optical axis is
defined in the plane of incidence. Fig. 3.4 shows the Brewster angle as a function of the
square of the cosine of the angle Γ, denoted by γ2. We can conclude that Lekner’s results
are well reproduced (cf. [55], Fig. 1, p. 2061).
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Figure 3.3: Transmittance and reflectance factors as a function of the angle of
incidence θinc for an air-calcite interface. The optical axis is at
45◦ with the plane of incidence. To and Te are the ordinary and
extraordinary transmittance factors, respectively. Rs and Rp are
the reflectance factors for s- and p-polarized light, respectively. Tt
is the sum of these factors and should result in 1 for any value of
θinc. The Brewster angle θB is the angle where Rp vanishes and
reads 59.76◦.

Figure 3.4: Brewster angle θB for an air-calcite interface as a function of γ2.
The optical axis is in the plane of incidence. The parameter γ is
the cosine of the angle Γ between the optical axis ŵ and the local
normal vector n̂.
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3.4.2 Double total internal reflection

An interesting feature of an interface between an (an)isotropic and an anisotropic medium
is that it can have two critical angles for total internal reflection. The possible existence
of two critical angles is related to the duplicate character of the optical indicatrix.

We will investigate the optical properties of an interface between glass and crystalline
chiolite (Na5Al3F14). The ordinary and extraordinary index of refraction of uniaxial
chiolite in a tetragonal crystal system are no = 1.349 and ne = 1.342 at a wavelength
of 589.3 nm (cf. [2], 4-141). Since no > ne, the crystal has a negative birefringence.
We define the optical axis of the chiolite crystal at an angle of 45◦ with the plane of
incidence. Moreover, the incident light in the glass medium (n = 1.5) is p-polarized in
the plane of incidence.

Fig. 3.5 shows the intensity transmittance and reflectance factors as a function of the
angle of incidence θinc. From the figure we can obtain the Brewster angle and two critical
angles for total internal reflection. The Brewster angle reads θB = 42.21◦. The critical
angle for the extraordinary polarization is θce = 63.54◦ whereas the ordinary polarization
has a critical angle θco = 64.08◦. Although the incident light is p-polarized, part of the
light that is reflected by the chiolite crystal is s-polarized. This is due to the fact that
the optical axis is at an angle with the plane of incidence. However, Rs is nonzero only
in the neighborhood of the critical angles for total internal reflection.

Figure 3.5: Intensity transmittance and reflectance factors as a function of the
angle of incidence θinc for a glass-chiolite interface. The curves
for the ordinary and extraordinary transmittance factors To and Te
have different critical angles for total internal reflection. Although
the incident light is p-polarized, the reflected light near the critical
angles of reflection is s-polarized (Rs 6= 0). This is due to the fact
that the optical axis is at an angle with the plane of incidence other
than 90◦.
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The number of critical angles that an anisotropic medium can have depends on the
refractive indices and the direction of the optical axis at the interface. In general, an
anisotropic medium can have two (but not more than two) critical angles for total internal
reflection.

3.4.3 Amphoteric refraction

When an incident light ray has a direction of propagation that is perpendicular to a
plane interface between isotropic media, the direction of the flow of energy will not
change after transmission. For anisotropic interfaces, this is not necessarily the case.
Then the direction of the Poynting vector after transmission depends on the direction of
the local optical axis at the interface.

In general, when the tangential wave normal ptn = 0, the transmitted wave normal
satisfies (see Eq. 3.6)

p ∝ n̂. (3.40)

The direction of the corresponding Poynting vector depends on Eq. 3.40, but is not
necessarily in the direction of n̂. This is because the Poynting vector of transmitted
waves is perpendicular to the optical indicatrix, see Eq. 2.58. The orientation of the
optical indicatrix depends on the direction of the local optical axis, i.e. on the definition
of the local principal basis {û, v̂, ŵ}. As a consequence, the energy flow, although at
normal incidence, can be deflected at an anisotropic interface.

Fig. 3.6 shows three different cases of refraction at an anisotropic interface. In Fig.
3.6-(a), the incident and refracted Poynting vector are on the same side of the local normal
vector n̂. This situation also applies to isotropic media and is called positive refraction.
Fig. 3.6-(b) shows the situation where the incident and refracted Poynting vectors are
on different sides of the local normal vector. This type of refraction is called negative
refraction. Then the situation in Fig. 3.6-(c) is neither positive nor negative refraction.
In general, when the type of refraction depends on the direction of propagation of the
incident Poynting vector, we speak of amphoteric refraction [81].

We will investigate an example in which we show the type of amphoteric refraction
illustrated in Fig. 3.6-(c).

Figure 3.6: Amphoteric refraction at an anisotropic interface. In (a), the in-
cident and refracted Poynting vectors are on the same side of the
local normal vector n̂. This type of refraction is called positive re-
fraction. Negative refraction is illustrated in (b). In (c), 〈S〉 and
n̂ are parallel which corresponds neither to positive nor to negative
refraction.
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Figure 3.7: Amphoteric refraction at an uniaxially anisotropic cylinder with
no = 1.5 and ne = 1.7. The angle between the vertical direction
and the optical axis (indicated by the stripe inside the cylinder) is
denoted by αd. The cylinder is rotated over 180◦ with a step size
of 22.5◦.

Figure 3.8: Angle of deflection αout as a function of the rotation angle αd.
The deflection angle lies approximately between −9◦ and 9◦. The
situations that correspond to the illustrations in Fig. 3.7 are in-
dicated in the graph. When αd varies from 0◦ to 180◦, the angle
αout has completed exactly one period. Apparently, the frequency
of the swinging light ray (periods per second) is twice the frequency
of the rotating cylinder (revolutions per second).
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We consider a homogeneous uniaxially anisotropic cylindrical rod with an optical
axis perpendicular to the axis of symmetry. The cylinder is surrounded by air and has
refractive indices no = 1.5 and ne = 1.7. We define an incident light ray with direction
of propagation parallel to the local normal vector n̂ of the cylinder. In addition, the
incident ray is p-polarized orthogonal to the axis of symmetry. A cross section of the
cylinder in the plane of incidence is depicted in Fig. 3.7-(a). The direction of the optical
axis is indicated by the black stripe depicted inside the cylinder. The orientation of the
optical axis with the vertical direction is denoted by the angle αd.

In Fig. 3.7-(a), αd = 0◦ and the incident light ray is not deflected by the cylinder.
In the remaining figures (b)-(i), the cylinder is rotated over 180◦ with a step size of
22.5◦. From the illustrations we can conclude that amphoteric refraction occurs and the
deflection of the light ray can be described by a periodic function of time. The angle
under which the light ray is deflected after passing through the anisotropic cylinder is
denoted by αout. In Fig. 3.8 we have calculated the angle αout as a function of the angle
αd. From the figure we conclude that one full revolution of the cylinder corresponds
to two periods of the swinging light ray. Hence the frequency of the swinging light
ray (periods per second) is twice the frequency of the rotating cylinder (revolutions per
second).

If the incident light ray is s-polarized, the refracted ray is ordinary. Then the optical
properties of the cylinder are equivalent to an isotropic medium with index no. Hence,
s-polarized light is not deflected by the rotating anisotropic cylinder: αout(αd) = 0◦.

3.4.4 Conical refraction

We consider a linearly polarized beam of light which is refracted at a homogeneous biax-
ially anisotropic interface in the direction of one of the optical axes. Then the Poynting
vector of a transmitted light ray, which is perpendicular to the optical indicatrix, is de-
termined by the corresponding polarization vector of the light ray (see Fig. 2.3). At the
position where the two sheets of the biaxial optical indicatrix touch each other (see Fig.
2.1-(d)), there exists an infinite number of possible polarization vectors. Each of these
possible polarization vectors at the common point of intersection has a corresponding
Poynting vector. Although the Poynting vectors of these eigenmodes are all different in
direction, there is a common wave normal, which, on the principal orthonormal basis
{û, v̂, ŵ}, is given by (see also Eq. 2.40)

p = ±

√
εw(εv − εu)
εw − εu

û + 0v̂±

√
εu(εw − εv)
εw − εu

ŵ. (3.41)

Now let’s consider an unpolarized beam of light which is refracted along the optical axis
(with a wave normal given by Eq. 3.41) at the interface of a homogeneous biaxially
anisotropic medium with principal indices nu = 1.3, nv = 1.5 and nw = 1.7. Due to the
optical properties described above, the incident beam of light is transformed to a hollow
cone of light, see Fig. 3.9-(a). This is a phenomenon known as internal conical refraction
(cf. [6], p. 688). Similarly, there is also a set of wave normals which have a common
Poynting vector. In this case, an unpolarized incident beam of light, when refracted
along the optical axis, is also transformed to a hollow cone by a biaxially anisotropic
medium, see Fig. 3.9-(b). This phenomenon is known as external conical refraction.



52

Figure 3.9: When an unpolarized beam of light is refracted along the optical axis
of a biaxially anisotropic medium, the light beam is transformed to
a hollow cone of light, see Fig. (a). This phenomenon is known
as internal conical refraction. The refracted light rays of the beam
inside the biaxial medium have a common wave normal. In case
the refracted light rays of the beam have a common Poynting vector,
we observe external conical refraction, see Fig. (b).

Figure 3.10: An unpolarized beam of light incident to a biaxial medium where
one of the optical axes (indicated by O1 and O2) is aligned with the
vertical z-axis, see Fig. (a). Internal conical refraction occurs and
the incident beam is transformed to a cone of light with semiangle
ν. At z = 100 the light distribution is calculated, see Fig. (b).
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In the geometrical-optics approach, we can calculate the light distribution due to
conical refraction with the procedure presented in Section 3.2. In what follows, we will
simulate an example of internal conical refraction. Fig. 3.10-(a) shows an unpolarized
incident beam of light with a solid angle dΩ, propagating in the direction of the vertical
z-axis. The light is refracted at the interface of a homogeneous biaxial medium. One
of the optical axes of the biaxial medium is aligned with the z-axis. Due to the biaxial
anisotropic properties, the incident light beam is transformed to a cone of light with
semiangle ν, as depicted in Fig. 3.10-(b).

The incident light beam is defined by all light rays confined in the solid angle dΩ.
We define the initial position of the incident light beam at (x, y, z) = (0, 0, 0). There,
the incident light rays, which are randomly polarized, are refracted and split into two
eigenmodes: the rays are bifurcated. We calculate the ray paths of these eigenmodes
inside the homogeneous biaxial medium and the corresponding transmittance factors.
At z = 100, we define a matrix in x and y which is used to bin the x- and y-coordinates
of ray paths. The number of rays collected by each matrix element is a measure for the
intensity. In this way, the intensity distribution at z = 100 is calculated. Fig. 3.11 shows
the results for different solid angles. The number of rays that is traced for each image is
30000. In Fig. 3.11-(a), the incident beam of light has a solid angle of 1 ·10−3 sr whereas
in Fig. 3.11-(b) and 3.11-(c), the solid angles are 4 · 10−3 sr and 9 · 10−3 sr, respectively.
The disc-like appearance of the light distributions changes with the solid angle: the disc
edge increases with increasing dΩ. In addition, the intensity decreases with increasing
dΩ since the incident light is spread over a bigger area. The semiangle ν of the light cone
can be expressed in terms of the principal indices of refraction of the biaxial medium,
yielding (cf. [95], p. 291, Eq. 2.5)

ν =

√
(nw − nv)(nv − nu)

nv
, (3.42)

with the angle ν in radians. For the principal indices defined above, Eq. 3.42 yields
ν = 7.63◦. In Fig. 3.11-(a), the semiangle ν is approximately 7.62◦, which is in good
agreement with Eq. 3.42.

Conical refraction only occurs when the incident light beam is accurately aligned with
the optical axis of the biaxial medium. If the light beam is not aligned with the optical
axis, we simply obtain two independent refracted eigenmodes for each individual light
ray. Effectively, the incident light beam is split up into two beams, a phenomenon which
is called double refraction. Fig. 3.12 shows three simulations of the light distribution
at z = 100 for different angles of the optical axis in the xz-plane. The solid angle of
the incident beam is dΩ = 1 · 10−3 sr. In Fig. 3.12-(a), the optical axis is at 2.7◦ with
the vertical z-axis. In this case we observe double refraction and the two resulting light
beams are centered in the xz-plane. Fig. 3.12-(b) shows the result for the optical axis at
1.0◦ with the z-axis. Here, part of the light fulfills the conditions for conical refraction
and we can already observe the formation of a hollow cone of light. Finally, in Fig.
3.12-(c), the optical axis is aligned with the z-axis and this image is equivalent to the
situation in Fig. 3.11-(a). The simulated transition from double refraction to conical
refraction depicted in Fig. 3.12 is in good agreement with observations as published in
[94], p. 1631, Fig. 2.

In general, conical refraction contains both ray-optics and wave-optics effects [95]-
[97]. Therefore, conical refraction is often termed conical diffraction. A full discussion
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Figure 3.11: Light intensity distribution I at z = 100 for different values of
the solid angle dΩ. For Fig. (a)-(c), the solid angles are 1 · 10−3

sr, 4 · 10−3 sr and 9 · 10−3 sr, respectively. The unpolarized beam
of light enters the biaxial medium at the origin. Apparently, the
disc edge increases with increasing solid angle. In addition, the
intensity decreases with increasing solid angle.

Figure 3.12: Light intensity distribution I at z = 100 for different orientations
of the optical axis. In Fig. (a)-(c), the angle between the optical
axis and the vertical z-axis in the xz-plane is 2.7◦, 1.0◦ and 0.0◦,
respectively. Fig. (a) shows double refraction, whereas Fig. (c)
shows internal conical refraction. Fig. (b) is an intermediate state
and shows how the two light beams are transformed to a hollow
cone of light.
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would then also include optical properties due to the wave character of light, such as the
Pogendorf rings [95]. However, this is beyond the scope of this treatise. For the moment,
we conclude that conical refraction is an optical phenomenon due to a singularity in the
surface of the biaxial optical indicatrix. More importantly, the optical effect of conical
refraction can be simulated in the geometrical-optics approach with the theory presented
in this chapter.

In a final example, we have investigated to what extend optical anisotropy can affect
the resolving power of a last lens element in a photolithographic system (see Appendix B).
From the calculations of a test case, we conclude that the resolving power in the perfect
image point of a plano-convex lens with an a-spherical lens surface is highly sensitive to
the effect of optical anisotropy. Therefore, we can conclude that high-index material last
lens elements with birefringent properties are not suitable for immersion lithography as
a resolution enhancement technique, unless the birefringence of the last lens element is
compensated for.

3.5 Conclusions

With the help of the boundary conditions for an electromagnetic wave field at a surface
of discontinuity, we have derived the classical theory for the optical wave field in the
interface region of in general anisotropic media. The classical theory discussed is valid
within the framework of geometrical optics. In addition, the equations are presented in
complex notation, assuming a complex Hermitian permittivity tensor with optical axes.
In geometrical optics, the optical wave field is constant in the bulk region of homogeneous
media: the phase, amplitude, polarization state and direction of propagation do not
change inside homogeneous media. Altogether, we can conclude that we are able to
calculate the optical properties of homogeneous uniaxially and biaxially anisotropic media
in the geometrical-optics approach.

In a number of didactical examples, we have demonstrated the applicability of the
theory discussed. We have shown how the anisotropic properties at an interface determine
the Brewster angle, the angles for total internal reflection and the transmissive and
reflective properties. From the Fresnel coefficients at the interface, we are also able to
calculate the phase shift and the polarization state of light rays. Moreover, we have
discussed amphoteric refraction at a rotating uniaxially anisotropic cylinder and conical
refraction at a biaxially anisotropic interface.

In the next chapter, we will discuss ray-optics analysis of inhomogeneous anisotropic
media. We remark that the theory presented in this chapter also applies to anisotropic
interfaces between inhomogeneous media, since locally the material properties at an
interface are constant and independent of position.
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Chapter 4

Ray-optics analysis of
inhomogeneous anisotropic
media

In general, the optical properties of an anisotropic medium depend on the position in-
side the medium. This means that the optical axis and the indices of refraction vary
with position. These type of media are called inhomogeneous anisotropic media. Due to
the position-dependent optical properties, ray paths inside inhomogeneous media are not
necessarily straight lines, but can be curved. In this chapter, we derive novel ray-tracing
equations to calculate the curved ray paths of light rays in the bulk region of inhomo-
geneous anisotropic media [102][103]. The optical properties in the interface region of
inhomogeneous media can be calculated with the classical theory for the optical wave
field at interfaces derived in Chapter 3. Recall that in the geometrical-optics approach,
the optical properties in the bulk region should change slowly over the distance of a
wavelength. If the properties change rapidly over the distance of a wavelength, we need
to take into account the wave character of light. A further discussion on this topic can
be found in Chapter 5.

4.1 Hamiltonian principle for inhomogeneous media

In this section we discuss a set of equations for the position r and the wave normal p
of a ray in terms of the position-dependent optical indicatrix H(r,p). This approach
is based on the so-called Hamiltonian principle introduced by Kline & Kay (cf. [75], p.
110-117). The Hamiltonian principle is the fundamental basis for the ray-tracing process
in inhomogeneous media.

A light ray can be denoted by the parametric equations x = x(τ), y = y(τ) and
z = z(τ), where the parameter τ can be considered as time. These parametric equations
are defined on a fixed position-independent orthonormal basis {x̂, ŷ, ẑ} in which the x-,
y- and z-coordinates of a ray can vary with position. Recall that, since we are primarily
interested in the energy transfer of a light ray, we have defined a ray to be an integral
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curve of the Poynting vector, given by Eq. 3.2. According to Eq. 2.58, the direction of
the Poynting vector 〈S〉 is parallel to the direction of ∇pH(r,p). Hence, we can write a
set of equations for the ray path given by

di

dτ
= σ

∂H
∂pi

, i = x, y, z, (4.1)

where the factor σ is an arbitrary function of τ and only depends on the choice for the
parameter τ . As we move along the ray, the wave normal p also changes. Hence, the
wave normal is also a function of τ . Likewise, we can derive a set of equations for the
wave normal.

When we differentiate the optical indicatrix H(r,p) with respect to x, we obtain

∂H
∂x

+
∂H
∂px

∂px
∂x

+
∂H
∂py

∂py
∂x

+
∂H
∂pz

∂pz
∂x

= 0. (4.2)

When we use Eq. 4.1 in Eq. 4.2 we find

σ
∂H
∂x

+
∂px
∂x

∂x

∂τ
+
∂py
∂x

∂y

∂τ
+
∂pz
∂x

∂z

∂τ
= 0. (4.3)

Recall that p(r) = ∇ψ(r), with ψ(r) the optical path length function. Assuming that
the scalar ψ(r) is a twice continuously differentiable function of position, the derivatives
of py and pz satisfy

∂py
∂x

=
∂2ψ

∂y∂x
=

∂2ψ

∂x∂y
=
∂px
∂y

, (4.4)

∂pz
∂x

=
∂2ψ

∂z∂x
=

∂2ψ

∂x∂z
=
∂px
∂z

. (4.5)

Hence, from Eq. 4.3 it follows that

dpx
dτ

= −σ∂H
∂x

. (4.6)

We can derive similar equations for the y- and z-components of the wave normal p. As
a result, the equations for the wave normal components are given by

dpi
dτ

= −σ∂H
∂i

, i = x, y, z, (4.7)

where σ is the same parameter as in Eq. 4.1.
The next step is crucial, since we apply a classical-mechanical interpretation to the

light rays: A mathematical light ray is considered the trajectory of a particle with coordi-
nates r = (x, y, z) and generalized momentum p = (px, py, pz), which satisfy Eqs. 4.1 and
4.7, respectively (cf. [75], p. 115). Moreover, this particle has the energy H = 0. With
this mechanical interpretation of a light ray, H(r,p) represents a Hamiltonian system
with canonical equations given by

dr
dτ

= σ∇pH(r,p), (4.8)

dp
dτ

= −σ∇rH(r,p), (4.9)
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where the ray position r(τ) and momentum p(τ) are functions of the parameter τ . Eqs.
4.8 and 4.9 are also called the Hamilton equations. Eq. 4.8 describes the ray path of
the Poynting vector. For each position r(τ), there is a corresponding momentum p(τ),
determined by Eq. 4.9.

The Hamilton equations form a set of six coupled first-order differential equations
with six unknowns: the vector components of the position r(τ) and the momentum p(τ).
The inhomogeneous material properties are indirectly accounted for by the position-
dependent optical indicatrix H(r,p).

4.2 General ray-tracing equations for inhomogeneous
anisotropic media

Although the Hamiltonian principle is the fundamental basis for the ray-tracing process
in inhomogeneous media, it does not immediately provide a set of ray equations in which
the position-dependent material properties are explicitly included. In that sense, the
Hamilton equations discussed in Section 4.1 are incomplete. Building further on the
Hamiltonian principle in this section, we introduce general ray-tracing equations that
explicitly depend on the position-dependent material properties of anisotropic media.
We assume a complex Hermitian permittivity tensor with optical axes and the ray-
tracing equations are presented in complex notation. To the best of our knowledge,
these equations are new and cannot be found in the literature.

4.2.1 The position-dependent optical indicatrix

In general, the inhomogeneous properties of an anisotropic medium can be ascribed to
two effects: the position dependency of the principal dielectric values εu, εv and εw and
the position dependency of the direction of the optical axes. For the moment, we assume
that both effects are relevant. Since these properties are position dependent, so is the
optical indicatrix. In Chapter 2, we have derived the optical indicatrix on the local prin-
cipal basis {û(r), v̂(r), ŵ(r)}. In what follows, we derive the position-dependent optical
indicatrix with respect to a fixed position-independent orthonormal basis {x̂, ŷ, ẑ} in
which the optical properties can vary with position. In addition, we assume a Hermitian
dielectric permittivity tensor.

From the macroscopic material equation we can derive the dielectric tensor as a
function of the optical properties. The macroscopic material equation reads

D = ε0εu〈E, û〉û + ε0εv〈E, v̂〉v̂ + ε0εw〈E, ŵ〉ŵ, (4.10)

where D is the electric flux density vector. This material equation can be written as
D = ε0εE, with ε the dielectric tensor in terms of the vector components of the local
unit vectors û, v̂ and ŵ and the principal indices εu, εv and εw.

Since we want to calculate ray paths of light rays in an inhomogeneous anisotropic
bulk material, we now choose a fixed, position-independent orthonormal basis {x̂, ŷ, ẑ}.
The elements of the tensor ε on the fixed basis {x̂, ŷ, ẑ} can be written as εxx, εxy, εxz
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etc. Eq. 2.30 can then be written in terms of these tensor elements according to the
matrix equation εxx + |px|2 − |p|2 εxy + pxp

∗
y εxz + pxp

∗
z

εyx + pyp
∗
x εyy + |py|2 − |p|2 εyz + pyp

∗
z

εzx + pzp
∗
x εzy + pzp

∗
y εzz + |pz|2 − |p|2

 Ẽ = 0. (4.11)

Like Eq. 2.30, this equation only has nontrivial solutions if the determinant of the matrix
vanishes. It follows from Eq. 2.32 that the determinant vanishes if

H(r,p) =
(
εu|〈p, û〉|2 + εv|〈p, v̂〉|2 + εw|〈p, ŵ〉|2

)
|p|2

+ εuεv

[
|〈û, (p× v̂)〉|2 − |p|2

]
+ εuεw

[
|〈û, (p× ŵ)〉|2 − |p|2

]
+ εvεw

[
|〈v̂, (p× ŵ)〉|2 − |p|2

]
+ εuεvεw = 0, (4.12)

where the unit vectors û, v̂ and ŵ are complex and all quantities depend on position r.
Eq. 4.12 is the biaxial position-dependent optical indicatrix. If we substitute û = (1, 0, 0),
v̂ = (0, 1, 0) and ŵ = (0, 0, 1), we obtain the biaxial optical indicatrix in the principal
coordinate system as defined in Eq. 2.32.

If we set εu = εv = ε1 and εw = ε2, we obtain the optical indicatrix in the principal
coordinate system for uniaxial anisotropy (see also Eq. 2.41):

H(r,p) =
(
ε1|p|2 +4ε|〈p, ŵ〉|2 − ε1ε2

)(
|p|2 − ε1

)
= 0, (4.13)

with 4ε = ε2 − ε1 and all quantities depending on position r. Eq. 4.13 can be written
as H = HeHo = 0, where He corresponds to extraordinary waves and Ho corresponds to
ordinary waves.

4.2.2 Position-dependent optical axis

Inside an inhomogeneous anisotropic medium, the directions of the optical axis depends
on the position. We call the position-dependent optical axis the director.

In case of an uniaxially anisotropic medium, we can derive an expression for the
director. When p =

√
ε1ŵ, we have Ho = He = 0 and then the wave normal is parallel

to the optical axis. Let d̂ be a unit vector parallel to the optical axis. Then the director
for uniaxially anisotropic media is given by

d̂ = ŵ, (4.14)

with ŵ complex.
Inside an inhomogeneous biaxially anisotropic medium, there are two position-dependent

directors d̂1 and d̂2. Recall that we have assumed that εw > εv > εu. Then if p is parallel
to one of the two directors we have (see Eq. 2.40)

|pu| =

√
εw(εv − εu)
(εw − εu)

, |pv| = 0, |pw| =

√
εu(εw − εv)
(εw − εu)

, (4.15)
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Figure 4.1: Locally, a biaxially anisotropic medium is characterized by two
position-dependent optical axes, indicated by d̂1 and d̂2. The cor-
responding principal coordinate system is defined by the local unit
vectors û, v̂ and ŵ, which can be expressed in terms of the local
optical axes d̂1 and d̂2.

and |p| =
√
εv. Hence we can write p = |p|p̂ =

√
εvp̂. On the complex basis

{û(r), v̂(r), ŵ(r)}, we then know |p̂u|, |p̂v| and |p̂w|, but the phases of the vector com-
ponents of p̂ are unknown. In general, these phases follow directly from the linear trans-
formation of p̂ from the fixed basis {x̂, ŷ, ẑ} to the principle basis {û(r), v̂(r), ŵ(r)}.

If the basis {û(r), v̂(r), ŵ(r)} is real, we have p = |pu|û + |pv|v̂ + |pw|ŵ. Then the
directors in the upper half space satisfy (see Eq. 2.40)

d̂1 =

√
εw(εv − εu)
εv(εw − εu)

û + 0v̂ +

√
εu(εw − εv)
εv(εw − εu)

ŵ, (4.16)

d̂2 = −

√
εw(εv − εu)
εv(εw − εu)

û + 0v̂ +

√
εu(εw − εv)
εv(εw − εu)

ŵ. (4.17)

Fig. 4.1 shows two local directors and the local Cartesian principle coordinate system,
defined by the real unit vectors û, v̂ and ŵ. These unit vectors can be expressed in terms
of the directors d̂1 and d̂2, according to

û =
d̂1 − d̂2

|d̂1 − d̂2|
, (4.18)

v̂ =
d̂2 × d̂1

|d̂2 × d̂1|
, (4.19)

ŵ =
d̂1 + d̂2

|d̂1 + d̂2|
. (4.20)

In conclusion, if we know the local directors d̂1 and d̂2, we also know the real local
principal basis {û, v̂, ŵ} and vice versa. If the basis {û, v̂, ŵ} is complex, then Eqs.
4.16 and 4.17 do not apply. Then the phases of d̂1 and d̂2 on the basis {û, v̂, ŵ} can
be derived from the demand that p along the directions of d̂1 and d̂2 is real on the
fixed basis {x̂, ŷ, ẑ}. However, in general, it is possible that for a complex Hermitian
permittivity tensor this demand cannot be satisfied (see Appendix A). Then there is a
complex vector p on the fixed basis {x̂, ŷ, ẑ} along which |p| satisfies Eq. 4.15. In that
case there is no optical axis and the two sheets of the optical indicatrix are separated for
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all directions of propagation. However, as mentioned in Chapter 2, we assume that the
Hermitian permittivity tensor always gives rise to one or two optical axes.

The position-dependent biaxial optical indicatrix of Eq. 4.12 and the uniaxial optical
indicatrix of Eq. 4.13 together with the position-dependent directors play a crucial role
in the formulation of a ray-tracing process for inhomogeneous anisotropic media.

4.2.3 General ray-tracing equations for anisotropic media

The Hamiltonian principle and the formulas for the position-dependent optical indicatrix
are the main ingredients for a general ray-tracing method for inhomogeneous anisotropic
media defined by a Hermitian dielectric tensor. In what follows, we introduce general
ray-tracing equations that depend explicitly on the position-dependent principal dielec-
tric values, the director d̂(r) and the principle unit vectors û(r), v̂(r) and ŵ(r).

From the position-dependent biaxial optical indicatrix given by Eq. 4.12 we calculate
the gradients with respect to position∇rH(r,p) and momentum∇pH(r,p). On the fixed
orthonormal basis {x̂, ŷ, ẑ}, the partial derivatives ofH(r,p) with respect to position read

∂H
∂i

= Re
{

2|p|2
(
εu〈p, û〉∗〈p,

∂û
∂i
〉+ εv〈p, v̂〉∗〈p,

∂v̂
∂i
〉+ εw〈p, ŵ〉∗〈p,

∂ŵ
∂i
〉
)

+ 2εuεv

[
〈∂û
∂i
, (p× v̂)〉+ 〈û, (p× ∂v̂

∂i
)〉

]
〈û, (p× v̂)〉∗

+ 2εuεw

[
〈∂û
∂i
, (p× ŵ)〉+ 〈û, (p× ∂ŵ

∂i
)〉

]
〈û, (p× ŵ)〉∗

+ 2εvεw

[
〈∂v̂
∂i
, (p× ŵ)〉+ 〈v̂, (p× ∂ŵ

∂i
)〉

]
〈v̂, (p× ŵ)〉∗

}
+ h

(
∂εu
∂i

,
∂εv
∂i

,
∂εw
∂i

)
, i = x, y, z, (4.21)

where h is a function of the partial derivatives of the principle dielectric values with
respect to position, given by

h = |p|2
(
∂εu
∂i
|〈p, û〉|2 +

∂εv
∂i
|〈p, v̂〉|2 +

∂εw
∂i
|〈p, ŵ〉|2

)
+ |〈û, (p× v̂)〉|2 ∂

∂i
(εuεv)

+ |〈û, (p× ŵ)〉|2 ∂
∂i

(εuεw)

+ |〈v̂, (p× ŵ)〉|2 ∂
∂i

(εvεw)

+
∂

∂i
(εuεvεw), i = x, y, z. (4.22)

The partial derivatives of H(r,p) with respect to the wave normal components yield

∂H
∂pi

= Re
{

2|p|2
(
εu〈p, û〉ûi + εv〈p, v̂〉v̂i + εw〈p, ŵ〉ŵi

)
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+ 2pi

(
εu|〈p, û〉|2 + εv|〈p, v̂〉|2 + εw|〈p, ŵ〉|2 − εuεv − εuεw − εvεw

)
− 2εuεv

(
û∗ × v̂

)
i

〈û, (p× v̂)〉

− 2εuεw

(
û∗ × ŵ

)
i

〈û, (p× ŵ)〉

− 2εvεw

(
v̂∗ × ŵ

)
i

〈v̂, (p× ŵ)〉
}
, i = x, y, z. (4.23)

Eqs. 4.21-4.23 contain the principal dielectric values, û(r), v̂(r), ŵ(r) and their par-
tial derivatives with respect to position. When we substitute these equations into the
Hamilton equations (Eqs. 4.8 and 4.9) we obtain equations for the position r and wave
normal p on the fixed basis, in which the position dependency of the biaxially anisotropic
material properties is included explicitly.

In the case of uniaxial anisotropy, the gradient of H(r,p) can in general be written
as

∇H = ∇
(
HeHo

)
= He∇Ho +Ho∇He. (4.24)

For extraordinary rays, He = 0 and then Eq. 4.24 reduces to

∇H = Ho∇He. (4.25)

When we substitute Eq. 4.25 into the Hamilton equations, the factor Ho can be incor-
porated in the parameter σ. Then the Hamilton equations read

dr
dτ

= σ∇pHe(r,pe), (4.26)

dpe
dτ

= −σ∇rHe(r,pe). (4.27)

With the help of Eqs. 4.13 and 4.14, the gradients of the extraordinary Hamiltonian
He(r,pe) with respect to position and momentum can be calculated. On the fixed
orthonormal basis {x̂, ŷ, ẑ}, these are given by

∂He

∂i
= Re

{
2(ε2 − ε1)〈pe, d̂〉∗〈pe,

∂d̂
∂i
〉

}
+

(
|〈pe, d̂〉|2 − ε1

)
∂ε2
∂i

+
(
|pe|2 − |〈pe, d̂〉|2 − ε2

)
∂ε1
∂i

, (4.28)

∂He

∂pei
= Re

{
2ε1pei + 2(ε2 − ε1)〈pe, d̂〉d̂i

}
, i = x, y, z. (4.29)

For ordinary rays Ho = 0 and then the Hamilton equations can be written as

dr
dτ

= σ∇pHo(r,po), (4.30)

dpo
dτ

= −σ∇rHo(r,po), (4.31)
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where the factor He is incorporated into the parameter σ. In this case, the gradients
∇rHo(r,po) and ∇pHo(r,po) are

∂Ho

∂i
= −∂ε1

∂i
, (4.32)

∂Ho

∂poi
= Re

{
2poi

}
, i = x, y, z. (4.33)

As a result, the Hamilton equations for ordinary rays are given by

dr
dτ

= Re
{

2σpo

}
, (4.34)

dpo
dτ

= σ∇rε1. (4.35)

If we redefine τ such that σ = 1
2 , we obtain Eq. 3.1: the ordinary ray path is defined

as the integral curve of the wave normal po. This is because the wave normal and the
corresponding time-averaged Poynting vector are always parallel for ordinary rays. The
same conclusion applies to rays in isotropic media. Then ε1 and po are replaced with ε
and p, respectively.

We can conclude that we have derived general ray-tracing equations in which the po-
sition dependency of the optical properties of anisotropic material properties is included
explicitly. These ray-tracing equations apply for a Hermitian dielectric tensor and enable
the calculation of the in general curved ray paths of light rays in the bulk region of in-
homogeneous anisotropic media. Moreover, we have derived equations for both biaxially
and uniaxially anisotropic media. In the next section, we apply the ray-tracing equations
to a mathematical example.

4.2.4 Example: Hamilton equations applied to a normalized vec-
tor field

If we redefine τ such that σ = 1, we find

dr(τ)
dτ

= ∇pH(d̂), (4.36)

dp(τ)
dτ

= −∇rH(d̂), (4.37)

with ∇pH and ∇rH as discussed previously. This set of six coupled first-order differ-
ential equations can be solved with for example the first-order Runge-Kutta method,
also known as the Euler method (cf. [90], p. 704). If we start at an interface between
two (an)isotropic media at ‘time’ τ = τ0, the initial conditions for the set of first-order
differential equations are given by

r(τ0) = (x0, y0, z0), (4.38)
p(τ0) = p0. (4.39)

By taking steps 4τ in the time τ , the Runge-Kutta method can solve for the ray path
r(τ0 + K4τ) and the corresponding wave normal p(τ0 + K4τ), with K ∈ N (see Ap-
pendix C). In this way, we can obtain the ray paths of in general curved rays in the bulk
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Figure 4.2: The position-dependent director d = ∇F in the plane y = 0. Note
that the director is not normalized. The two-dimensional scalar
function F is defined F (x, y, z) = xe−x

2−z2 , where − 1
2

√
2 < x <

1
2

√
2, y = 0 and z ≥ 0.

material of inhomogeneous anisotropic media.

In this example, we consider an inhomogeneous uniaxially anisotropic medium with
ε1 = n2

o constant, ε2 = n2
e constant and the dielectric tensor real and symmetric, as in a

nematic liquid crystal. Then the Hamilton equations for extraordinary rays are given by

di

dτ
= 2n2

opei + 2(n2
e − n2

o)(pe · d̂)d̂i, (4.40)

dpei
dτ

= −2(n2
e − n2

o)(pe · d̂)
(
pe ·

∂d̂
∂i

)
, i = x, y, z. (4.41)

For ordinary rays the Hamilton equations reduce to

dr
dτ

= po, (4.42)

dpo
dτ

= 0. (4.43)

Apparently, the ordinary wave normal po(τ) is constant and the ray path r(τ) is a straight
line. In contrast with ordinary rays, the ray paths of extraordinary rays are curved in
general.

As a specific example, we consider a position-dependent director d̂(r) which is propor-
tional to a gradient vector field ∇F (x, y, z) where the scalar function F (x, y, z) satisfies

F (x, y, z) = xe−x
2−z2 , −1

2

√
2 < x <

1
2

√
2, y = 0, z ≥ 0. (4.44)

Fig. 4.2 shows the vector field ∇F (x, y, z) in the domain defined in Eq. 4.44. However,
in the Hamilton equations the director is normalized. Therefore the director d(x, y, z) =
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Figure 4.3: Ray paths of five extraordinary rays incident orthogonal to the
plane z = 0, where d̂ = (1, 0, 0) and p(τ0) = (0, 0, ne). The
ray paths are calculated with the second-order Runge-Kutta method
with step size 4τ = 10−4 and the number of steps K = 2000.

∇F (x, y, z) is given by

d̂ =
∇F (x, y, z)
|∇F (x, y, z)|

. (4.45)

For the chosen function F this implies:

d̂(x, y, z) =

(
1− 2x2, 0,−2xz

)
√(

1− 2x2

)2

+
(

2xz
)2

. (4.46)

With the director defined in Eq. 4.46, the partial derivatives of the director vector
components with respect to y vanish. Only four terms are nonzero and these are given
by

∂d̂x
∂x

=
−4xz2(1 + 2x2)

|d| 32
, (4.47)

∂d̂z
∂x

=
2z(4x4 − 1)

|d| 32
, (4.48)

∂d̂x
∂z

=
−4zx2(1− 2x2)

|d| 32
, (4.49)

∂d̂z
∂z

=
−2x(1− 2x2)2

|d| 32
. (4.50)

With these definitions the only unknowns in the Hamilton equations are the position
r(τ) and the wave normal p(τ) of a ray.
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Figure 4.4: Ray paths for four different values of 4τ : from left to right the
ray paths correspond to 4τ = 10−1, 4τ = 10−2, 4τ = 10−3 and
4τ = 10−4. In this particular example, a step size 4τ = 10−3 is
sufficient for an accurate calculation of the ray paths.

For the director defined in Eq. 4.46, we calculate the ray paths of five extraordinary
rays incident orthogonal to the plane z = 0. In this plane the director satisfies d̂(x, y, z) =
(1, 0, 0). Then the initial conditions for the position and momentum are

r(τ0) = (x0, 0, 0), (4.51)
p(τ0) = (0, 0, ne). (4.52)

For x0, we choose five different values: −0.6, −0.4, 0.0, 0.4 and 0.6. Furthermore,
we investigate an anisotropic medium with no = 1.0 and ne = 1.5. We calculate the
extraordinary ray paths numerically by using the second-order Runge-Kutta method
(see Appendix C): the step size 4τ = 10−4 and the number of steps is K = 2000. The
results are depicted in Fig. 4.3. The ray at x = 0 propagates along the z-axis, while the
other rays are curved in the plane y = 0. It is clear that the symmetry of the ray paths
is due to the symmetry of the director d̂(x, y, z) with respect to the z-axis: the position
where a ray crosses the z-axis depends on |x0|. Here we point out that the director profile
induces a kind of lens effect. The lens effect generated by inhomogeneous liquid-crystal
configurations will be discussed in Chapter 7.

In Fig. 4.4 we have calculated four extraordinary rays for x0 = −0.4. Each ray
corresponds to a different value for 4τ . The ray that consists of two straight lines
corresponds to 4τ = 10−1 (ray path on the left). Obviously, this step size is too large
for an accurate calculation of the ray path. When 4τ = 10−2, the accuracy of the
ray path has improved significantly (middle curve). A step size of 4τ = 10−3 results
in another improvement (curve on the right). However, the ray paths calculated with
step size 4τ = 10−3 and 4τ = 10−4 are essentially equal and cannot be distinguished
from each other in Fig. 4.4. As a result, a step size of 4τ = 10−3 is sufficient for an
accurate calculation of the ray paths in this particular example. In general, we conclude
that for an accurate calculation of the ray paths the step size 4τ should be optimized
accordingly.

With the mathematical example discussed we have shown that with a proper defi-
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nition of the anisotropic properties we are able to calculate the (in general curved) ray
paths of light rays in the bulk region of inhomogeneous anisotropic media.

Finally, we have investigated the ray-tracing equations for inhomogeneous anisotropic
media when applied to an interface (see Appendix D). The interface is represented by a
surface of discontinuity in the material properties. In theory, we can conclude that the
Hamilton equations are not in contradiction with the rules of geometrical optics when
applied to a surface of discontinuity in the bulk region of (in)homogeneous anisotropic
media. However, the Hamilton equations alone cannot provide the wave normal p that
satisfies H = 0 on both sides of a discontinuity surface. To find the wave normals on
either side of a discontinuity surface, we need the theory discussed in Chapter 3. Hence
the Hamilton equations alone are not sufficient for the ray tracing of a light ray across a
surface of discontinuity. These conclusions support the condition (mentioned in Section
2.3) that in the bulk region we only consider anisotropic media for which there are no
discontinuities and condition 2.18 is satisfied.

In the next section, we investigate the optical properties of a nematic liquid-crystal
configuration in both the interface region and the bulk region.

4.3 Simulations of a nematic liquid-crystal configura-
tion

At this point we are able to calculate the optical properties of in general inhomoge-
neous anisotropic media in the geometrical-optics approach. Once we have defined the
anisotropic material properties, we are able to calculate the optical properties in both
the interface region and the bulk region. In this section we will show this for a number of
three-dimensional liquid-crystal configurations [104]. Although we investigate rather aca-
demic liquid crystal configurations, this exercise has the purpose to show the potential of
the general ray-tracing procedure that we now have at our disposal. In what follows, we
will investigate both an uniaxially anisotropic and a biaxially anisotropic liquid crystal
with a real symmetric dielectric tensor.

4.3.1 Point charge in an uniaxial liquid crystal

We consider a fixed Cartesian orthonormal basis {x̂, ŷ, ẑ} in which the plane z = 0 is
defined as a grounded conducting plate with electric potential Φ = 0. Let there be a
point charge in (0, 0, Z0), for some Z0 > 0, with negative charge −q (see Fig. 4.5). With
the help of the method of images (cf. [92], p. 57), we can write the electric potential due
to the charge −q for z ≥ 0 as

Φ(x, y, z) =
q

4πε0
1√

x2 + y2 + (z + Z0)2

− q

4πε0
1√

x2 + y2 + (z − Z0)2
. (4.53)

The corresponding static electric field is then given by E(x, y, z) = −∇Φ(x, y, z). We
define the space z ≥ 0 to be filled with an uniaxially anisotropic medium with the material
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Figure 4.5: Point charge −q at a distance Z0 above the origin. The plane
z = 0 is defined a grounded conducting plate. As a result, there is
an electric field in the half-space z ≥ 0.

Figure 4.6: The director profile (i.e. the normalized electric field due to the
point charge −q) in the yz-plane for Z0 = 50, x ∈ [−50, 50] and
z ∈ [0, 100]. The profile has azimuthal symmetry.

properties of a liquid crystal. In addition, we will assume that the electric field strength
is so high, that all directors follow the field direction. In other words, the electric energy
is considered to be much higher than the elastic energy between the directors. Hence,
the director profile due to the electric field of the point charge −q is:

d̂(x, y, z) =
E(x, y, z)∣∣E(x, y, z)

∣∣ , z ≥ 0. (4.54)

Fig. 4.6 shows the director profile in the yz-plane for Z0 = 50, x ∈ [−50, 50] and
z ∈ [0, 100]. The uniaxial liquid crystal in the upper half space z ≥ 0 has an ordinary
index of refraction no = 1.5 and an extraordinary index of refraction ne = 1.7. These
indices are constant and independent of position. The lower half space z < 0 is defined
to be glass with an index of refraction nglass = 1.5.

We define rays of light propagating in the z-direction incident on the (transparent)
conducting plate. These rays are refracted at the conducting plate at z = 0, where
d̂ = (0, 0, 1). Propagating along the z-direction, the refracted rays would be ordinary
rays with an intensity transmittance factor To = 1. Then, according to the Hamilton
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Figure 4.7: Ray paths of several extraordinary rays at normal incidence to the
plane z = 0, where the yz-plane is the plane of incidence. Note
the ‘curtain-like’ behavior, allowing no light in the region above the
point charge.

equations for position-independent refractive indices, the rays in the bulk region would
not be curved (see Eq. 4.42). To overcome this effect, we perturb the incident angle of
the rays by 10−6 degrees in the yz-plane. Then the incident wave normal in the glass
medium has a y- and a z-component. As a result, the plane of incidence is parallel to
the yz-plane. In addition, we define a linear polarization parallel to the yz-plane. Then,
by definition, the refracted rays are extraordinary rays with Te = 1. In addition, the
refractive indices are constant and as a result, we can apply the Hamilton equations
given by Eqs. 4.40 and 4.41. By taking small steps in the ‘time’ τ , the position r(τ)
and momentum pe(τ) are calculated using the first-order Runge-Kutta method. Fig.
4.7 shows several ray paths of extraordinary rays in the bulk region of the liquid crystal
configuration. Apparently, light rays are absent in the region above the point charge −q
and the ray paths seems to form a ‘curtain-like’ appearance.

An explanation for this phenomenon can be found in the fact that light bends towards
regions of high refractive index. We will show this by examining the effective index of
refraction neff of the liquid crystal in the yz-plane for light rays propagating in the
vertical z-direction. In other words, we calculate the length of the extraordinary wave
normal |pe| = neff at position r = (0, y, z) for light rays with p̂e = (0, 0, 1). Since the
director d̂ depends on the position in the yz-plane, so does |pe|. Fig. 4.8 shows the value
of |pe| as a function of position for y ∈ [−50, 50] and z ∈ [0, 100]. We can clearly see that
|pe| has a maximum in the region of the location of the point charge. As a result, a light
ray entering the liquid crystal at z = 0 will bend towards the region where the point
charge is located. When the light ray approaches approximately z = 50, it will bend
away from the region directly above the point charge since |pe| increases with increasing
distance from the vertical z-axis. This behavior is in agreement with the simulated ray
paths depicted in Fig. 4.7.

At z = 100, we define a matrix in x and y that is used to collect the x- and y-
coordinates of the extraordinary ray paths. The number of rays collected by each interval
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Figure 4.8: The value of neff = |pe| for y ∈ [−50, 50] and z ∈ [0, 100]. In the
region of the location of the point charge at (y, z) = (0, 50), |pe| has
a maximum whereas |pe| has a minimum along the y- and z-axes.

Figure 4.9: Intensity distribution I at z = 100 for x ∈ [−50, 50] and y ∈
[−50, 50]. The square (white) indicates the boundary in which the
initial positions of the incident rays lie. This boundary is moved
along the line x = y.
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is a measure to determine the intensity. Then the spatial intensity distribution I at
z = 100 should give us an idea of the optical behavior. In order to obtain the spatial
intensity distribution, we calculate the ray paths of 30, 000 extraordinary rays. The initial
positions of these rays (x0, y0, z0) randomly lie inside a square defined by x0 ∈ [−10, 10]
and y0 ∈ [−10, 10].

Fig. 4.9-(a) shows the calculated intensity distribution I at z = 100. The white
square indicates the boundary in which the initial positions (at z = 0) of the incident
rays lie. Apparently, the square light source at z = 0 is transformed into a circular-like
light distribution at z = 100. This is the case when the center of the square is exactly
below the point charge. In the figures (b)-(f) this square is moved along the line x = y.
From these figures it is clear that the intensity distribution changes with the position of
the square. In Fig. 4.9-(f), the distortion of the square light source is only small, since
the square is far away from the point charge.

4.3.2 Point charge in a biaxial liquid crystal

In the following exercise, we consider the same optical configuration except that now
the half space z ≥ 0 is filled with a nematic biaxially anisotropic liquid crystal. We
will assume that the principal w-axis (see also Fig. 4.1) is parallel to the direction of
the static electric field. Hence, on the fixed orthonormal basis {x̂, ŷ, ẑ}, the unit vector
ŵ(x, y, z) satisfies

ŵ(x, y, z) =
E(x, y, z)∣∣E(x, y, z)

∣∣ , z ≥ 0, (4.55)

where E(x, y, z) is the electric field due to the negative point charge −q. Fig. 4.10 shows
ŵ(x, y, z) in the yz-plane for Z0 = 50, y ∈ [−50, 50] and z ∈ [0, 100]. In addition to this,
we assume that the principal u-axis is in the direction of the vector ŵ× ẑ. The principal
v-axis is then in the direction of ŵ × (ŵ × ẑ). The principal unit vectors û and v̂ are
also indicated in Fig. 4.10. In the special case that x and y are both zero ŵ = ±ẑ and
hence the orthonormal unit vectors û and v̂ can have any arbitrary orientation in a plane
parallel to the plane z = 0.

The biaxial medium in the upper half space z ≥ 0 is defined with constant position-
independent principal indices of refraction nu = 1.3, nv = 1.5 and nw = 1.7. Since εu,
εv and εw are independent of position, h = 0 (see Eq. 4.22). The lower half space z < 0
is assumed to be glass with an index of refraction nglass = 1.5.

We will use the theory discussed in Chapter 3 to calculate the directions of propaga-
tion and the intensity transmittance factors of the rays propagating from the glass into
the biaxial liquid crystal. In general, there will be two refracted rays for each incident ray.
Then we will use the Hamilton equations 4.21 and 4.23 (h = 0) to calculate the ray paths
of the refracted rays in the bulk material. The initial positions of the rays (x0, y0, z0)
randomly lie inside a square defined by x0 ∈ [−10, 10] and y0 ∈ [−10, 10]. These rays
are refracted at the (transparent) conducting plate at z = 0, where ŵ = (0, 0, 1). The
incident rays are linearly polarized parallel to the yz-plane and have an angle of inci-
dence of 10◦ with the z-axis in a plane parallel to the yz-plane. By taking small steps in
the ‘time’ τ , the position r(τ) and momentum p(τ) are calculated using the first-order
Runge-Kutta method.
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Figure 4.10: The principal unit vector ŵ (i.e. the normalized electric field due
to the point charge −q) in the yz-plane for Z0 = 50, x ∈ [−50, 50]
and z ∈ [0, 100]. The corresponding principal unit vectors û and v̂
are also indicated.

Figure 4.11: Ray paths of two refracted rays incident at the position
(x0, y0, z0) = (5,−9, 0). Fig. (a) and (b) show the image pro-
jections in the xz- and yz-plane, respectively. Likewise, Fig. (c)
shows the top view of the two ray paths and Fig. (d) shows the ray
paths in three-dimensional space. Apparently, both ray paths are
curved and they are drawn away from the region above the point
charge.
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Figure 4.12: Intensity distribution I at z = 100 for x ∈ [−50, 50] and y ∈
[−50, 50]. Fig. (a)-(c) show the light distribution for the uniaxial
liquid crystal (no = 1.5 and ne = 1.7). Fig. (d)-(f) show the light
distribution for a biaxial liquid crystal (nu = 1.3, nv = 1.5 and
nw = 1.7). The square (white) indicates the boundary in which the
initial positions of the incident rays lie. The square is moved along
the line x = y.

Fig. 4.11 shows the ray paths of two refracted rays corresponding to a ray incident at
the position (x0, y0, z0) = (5,−9, 0). Fig. 4.11-(a) and (b) show the image projections in
the xz- and yz-plane, respectively. Fig. 4.11-(c) shows the top view of the two ray paths.
Finally, Fig. 4.11-(d) shows an oblique projection of the two ray paths. Apparently,
both ray paths are curved and they seem to be repelled from the region above the point
charge. The ray paths correspond to intensity transmittance factors T1 = 0.2210 and
T2 = 0.7777. The reflected ray in the glass (z < 0) has an intensity reflectance factor
R = 0.0013. As expected, the sum of T1, T2 and R exactly adds up to 1.0000.

In Fig. 4.12 (a)-(c), we show the spatial intensity distribution I at z = 100 for the
uniaxial liquid crystal with no = 1.5 and ne = 1.7 (similar to the results presented in
Fig. 4.9, but now with an angle of incidence of 10◦). In Fig. 4.12 (d)-(f), the results
are depicted for the biaxial liquid crystal. The number of rays that is traced for each
individual image is 25000. The white square (at z = 0) indicates the boundary in which
the initial positions of the incident rays lie. In Fig. 4.12-(a) and 4.12-(d), the center of
the white square is exactly below the point charge. Fig. 4.12-(a) shows how the square
light source at z = 0 is transformed to a ring-shaped light distribution. Clearly, we
observe a different intensity distribution in Fig. 4.12-(d). In contrast with Fig. 4.12-(a),
the biaxial anisotropic properties of the liquid crystal are responsible for a twofold light
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distribution. Moreover, the total light distribution shows three compact regions of high
intensity, located above two corners of the white square and the (positive) y-axis.

In Fig. 4.12 (b)-(c) and 4.12 (e)-(f) the white square is moved from its initial position
along the line x = y. It is clear that the intensity distribution changes with the position
of the square. In the limit where the square is far away from the point charge, the image
of the square light source at z = 100 is again a square.

4.3.3 Multiple point charges in an uniaxial liquid crystal

Up to this point, we have simulated the optical properties due to a single point charge
inside a liquid crystal. In what follows, we will investigate the optical properties of the
same optical system as in Subsection 4.3.1, but now with a configuration of nine point
charges. The positions of the nine point charges are defined in a plane parallel to the
xy-plane at z = 50, see Fig. 4.13. The distance between the individual point charges
is indicated by u. In addition, the middle point charge is positioned exactly above the
origin in (x, y, z) = (0, 0, 50). In Fig. 4.13-(a), all the point charges are positively charged
whereas in Fig. 4.13-(b), one point charge (upper right corner) is negatively charged.

We can use the method of images to calculate the electric potential Φ(x, y, z) for z ≥ 0
due to multiple point charges. Then the electric potential due to nine point charges is
given by

Φ(x, y, z) = Φ1(x, y, z) + ...+ Φ9(x, y, z), (4.56)

where

Φi(x, y, z) =
qi

4πε0
1√

(x−Xi)2 + (y − Yi)2 + (z + Zi)2

− qi
4πε0

1√
(x−Xi)2 + (y − Yi)2 + (z − Zi)2

, (4.57)

with i = 1, ..., 9 and the constants Xi, Yi and Zi the coordinates of the individual point
charges. The corresponding electric field is then given by E(x, y, z) = −∇Φ(x, y, z) and
the resulting director profile d̂ is given by Eq. 4.54.

Figure 4.13: Positions of nine point charges in the plane z = 50. The distance
between the individual point charges is indicated by u and the mid-
dle point charge is exactly above the origin at (x, y, z) = (0, 0, 50).
In figure (a), all the point charges are positively charged whereas
in figure (b), one point charge is negatively charged.
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Figure 4.14: Intensity distribution I for the configuration of Fig. 4.13-(a) at
z = 100 for x ∈ [−50, 50] and y ∈ [−50, 50] and u = 20

3 . The
square light source at z = 0 (indicated by the white square) is
transformed to a configuration of light spots that lie on the grid
points of a regular square grid.

Figure 4.15: Intensity distribution I for the configuration of Fig. 4.13-(b) at
z = 100 for x ∈ [−50, 50] and y ∈ [−50, 50] and u = 20

3 . Although
we define a different charge distribution of the point charges, we
apply the same optical system used in Fig. 4.14. In this case,
the intensity distribution I at z = 100 shows both light spots and
blurring effects.
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We apply the Hamilton equations to calculate the ray paths of extraordinary rays in
a liquid crystal with indices of refraction no = 1.5 and ne = 1.7. The initial positions of
the rays (x0, y0, z0), propagating in the positive z-direction, randomly lie inside a square
defined by x0 ∈ [−10, 10] and y0 ∈ [−10, 10]. The rays are refracted at the liquid crystal
interface at z = 0 and modulated by the liquid crystal in the half space z > 0. At
z = 100, we calculate the spatial intensity distribution I.

Fig. 4.14 shows the intensity distribution I at z = 100 for the configuration depicted
in Fig. 4.13-(a). In this case, u = 20

3 . The number of rays that is traced is 150000.
The white square indicates the boundary in which the initial positions (at z = 0) of the
incident rays lie. The center of the square is exactly at the origin. As can be seen from
Fig. 4.7, the light rays are repelled in the neighborhood of a point charge. Hence, we
can expect that light rays will converge in regions between multiple point charges with
the same charge sign. Indeed in Fig. 4.14, we clearly see that the square light source at
z = 0 is transformed into multiple light spots at z = 100. Moreover, this collection of
light spots lies on the grid points of a regular square grid, similar (but not identical) to
the configuration of point charges.

Fig. 4.15 shows the intensity distribution I at z = 100 for the configuration depicted
in Fig. 4.13-(b). This configuration of point charges corresponds to the same optical
system, but with a different charge sign distribution. Similar to the intensity distribution
I in Fig. 4.14, the eight positive point charges converge the light rays to light spots at
z = 100. On the other hand, the negatively charged point charge on the right side is
responsible for a different optical response. Clearly, the combination of positive and
negative point charges is responsible for a diverging effect. As a result, the square light
source at z = 0 is transformed to a spatial light distribution which shows both light spots
and blurring effects.

From these results we can conclude that point charges positioned on the grid points
of a regular square grid in a liquid crystal can control the optical response of the optical
system by controlling the distribution of positive and negative charges. Although the use
of point charges is a rather artificial approach, it brings the idea of switchable gradient-
index devices with multiple optical states to mind. In conventional applications, liquid
crystal gradient-index devices are designed with a pattern of line electrodes that are able
to switch a liquid crystal profile between two different optical states. In our simulations,
we have investigated a configuration of multiple charges that introduces the possibility
to increase the number of liquid crystal configurations with just one optical system.

In this section, we have investigated the optical properties of inhomogeneous liquid-
crystal configurations for both uniaxial and biaxial anisotropy. Altogether, we have
shown that the general ray-tracing method for inhomogeneous anisotropic media can
be applied to assess the optical properties of arbitrary optical configurations in three
dimensions.

4.4 Conclusions

In this chapter we have derived expressions for the position-dependent optical indicatrix
for both uniaxial and biaxial anisotropy. With the help of these equations and the
Hamiltonian principle, we have introduced novel ray-tracing equations for the, in general
curved, ray paths in inhomogeneous anisotropic media. These equations comprise the
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position-dependent material properties explicitly: the position-dependent director and
the principal indices of refraction. For the remainder of this thesis, we will be mainly
concerned with the position-dependency of the director. Furthermore, the ray-tracing
equations are given in complex notation and in general, these equations apply for media
with a complex Hermitian dielectric tensor. In that sense, they define the state-of-the-art
in the field of polarized ray tracing of (non-absorbing, optically inactive) inhomogeneous
anisotropic media within the framework of geometrical optics. In Chapters 6, 7 and 8
we will study applications of liquid crystal defined by a real Hermitian dielectric tensor.

The ray-tracing equations introduced in this chapter are applied to an uniaxial and
a biaxial liquid-crystal configuration with an inhomogeneous director profile. In this
exercise we have shown the potential of the general ray-tracing procedure that we now
have at our disposal. In general, we can conclude that the general ray-tracing equations
for inhomogeneous anisotropic media can be applied to assess the optical properties of
arbitrary optical configurations in three dimensions.



Chapter 5

On the applicability of
geometrical optics to in-plane
liquid-crystal configurations

Within the framework of geometrical optics, the material properties are allowed to change
with position provided that condition 2.18 is satisfied. This condition implies that 1) the
properties of the medium should change continuously with position and 2) the change in
the material properties is sufficiently small over the distance of a wavelength.

In Chapter 4 and Appendix D, we have shown that the Hamilton equations can be
applied in a bulk region where the material properties vary continuously with position,
but fail at a surface of discontinuity. Therefore, we only consider bulk regions without
any discontinuities in the material properties. The material properties in the interface
region are discontinuous and then we can apply the classical theory discussed in Chapter
3.

One important question that has not received much attention so far is how much
change in the material properties per unit wavelength is allowed in the geometrical op-
tics. Kline & Kay, for example, remark that the derivation of geometrical optics from
the Sommerfeld-Runge Ansatz (see Eqs. 2.11 and 2.12) offers little insight into the rela-
tionship between wave optics and geometrical optics which might be used to make some
gradual transition from the one to the other (cf. [75], p. 13). In this chapter, we for-
mulate a criterion for the applicability of geometrical optics to typical inhomogeneous
in-plane liquid-crystal configurations. We do this because the optical properties of many
liquid-crystal applications are determined by a characteristic in-plane director profile. To
this end, we present advanced ray- and wave-optics simulations of the propagation of an
incident plane wave to a two-dimensional director profile with special optical properties.

5.1 Beyond geometrical optics

Up to this point, we have discussed the propagation of light rays in anisotropic media
within the framework of geometrical optics. In the geometrical-optics approach, light
rays propagate independently and do not exchange energy with the (non-absorbing)

79
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medium in which they are propagating. These properties are called mode independency
and adiabatic propagation (see also [105]), respectively, and are further discussed in
Appendix E. The adiabatic propagation of light rays applies to media in which the
material properties change continuously with position. This means that there is no
reason whatsoever for a light ray to split into two or more light rays. On the other
hand, at a surface of discontinuity, the total energy of a light ray is conserved, but is
in general divided over two reflected and two refracted light rays (see Chapter 3). The
mode independency and adiabatic propagation of light rays only apply in geometrical
optics. In case geometrical optics is no longer valid, the wave character of light needs to
be taken into account.

The classical theory of geometrical optics is based on the Maxwell equations in the
limit where the wave number in vacuum k0 becomes very large. For smaller values
of k0 the wave character of light has to be taken into account and the full Maxwell
equations must be considered. Then a widely used approach consists of expanding the
wave amplitude in terms of 1

ik0
, called a Debye expansion (cf. [105], p. 7). When we

substitute this expansion into the Maxwell equations and collect the coefficients of terms
of equal power in 1

ik0
, we obtain a set of first-order partial differential equations which

are called the transport equations (see Appendix F). In the geometrical-optics approach,
the optical wave field satisfies the zeroth-order transport equation. Therefore we say
that in geometrical optics we only consider the lowest-order approximation of the optical
wave field. The higher-order transport equations define the higher-order corrections to
the zeroth-order wave field. These corrections can be applied beyond the validity region
of geometrical optics.

The transport equations of higher order are difficult to solve and they do not provide
additional physical insight into the modeling of anisotropic media. In that sense, the use
of the transport equations does not form an attractive route to investigate the applica-
bility of geometrical optics to inhomogeneous anisotropic media. Other criteria for the
applicability of geometrical optics, such as Fresnel zones discussed by Kravtsov & Orlov
(cf. [105], p. 80), are also difficult to apply in practice. In what follows, we apply a
different approach to investigate the applicability of geometrical optics. We will consider
a typical director profile of an in-plane liquid-crystal configuration, since they occur in
many liquid-crystal applications.

5.2 Ray- and wave-optics simulations of a periodic di-
rector profile

A criterion for the application of geometrical optics in inhomogeneous media can be de-
duced from the following consideration. Consider an inhomogeneous anisotropic medium
in which the director is rotated gradually by an angle of 90◦ over a distance Ld, see Fig.
1.8 in Subsection 1.3.2. Then Ld is the distance over which a maximum change in optical
properties occurs (for fixed principal indices of refraction).

We define the dimensionless wavelength by λ
Ld

, where λ is the wavelength of light.
In the limit where λ

Ld
→ 0, a medium has material properties that are independent

of position: the medium is homogeneous. The limit where λ
Ld

→ ∞ corresponds to a
discontinuity in the material properties, i.e. at the interface between two different media.
Then the boundary conditions for the electromagnetic field apply (see e.g. [57], p. 2390).
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For sufficient small λ
Ld

, the predictions of geometrical optics and wave optics agree. The
main question is then up to what value of λ

Ld
approximately we are allowed to apply

geometrical optics.
To answer this question, we study the effect of a director profile on the propagation

of an incident plane wave.

5.2.1 Ray-tracing simulations

The periodic director profile lies in the xz-plane and represents an inhomogeneous uni-
axially anisotropic medium (with a real symmetric permittivity tensor) and is given by

d̂(x, z) = cos θ(x, z)x̂ + sin θ(x, z)ẑ, (5.1)

with the angle θ(x, z) defined by

θ(x, z) =
π

4

[
1− cos

(
2πx
T

)]
sin

(
πz

D

)
, (5.2)

where D is the thickness and T is the period of the director profile. Three periods of the
director profile d̂(x, z) are depicted in Fig. 5.1 for T = 20 and D = 20. We choose this
fictitious director profile, because it has the properties we are looking for: the director is
gradually rotated by 90◦ over a distance D

2 in the z-direction halfway each period (e.g.
at x = 30). In addition to this, the director is rotated by 90◦ twice each period in the
x-direction at z = D

2 . In this case, the gradual rotation of d̂ is defined by goniometric
functions. The rotation can also be defined by e.g. linear functions, as long as they
describe a gradual rotation over Ld. Finally, we see that the director is in the x-direction
for z = 0, z = D and x = kT , with k ∈ N. The ordinary and extraordinary indices of
refraction are taken no = 1.5 and ne = 1.7, respectively. The surrounding medium (z < 0
and z > D) is isotropic with n = 1.0. We remark that this optical system is somewhat
similar to that of an in-plane-switching liquid-crystal cell [106].

We will use the advanced ray-tracing procedure discussed in Chapters 3 and 4 to
simulate how an incident plane wave propagating in the z-direction and polarized in the
xz-plane is affected by the periodic director profile. The polarization of the incident
plane wave is in the x-direction. Fig. 5.2 shows the curved ray paths of extraordinary
light rays inside one period of the director profile. From the results we can conclude that
the rays are diverging away from the center of the period T .

An explanation for this behavior can be found in the fact that light bends towards
regions of high refractive index (see also Section 4.3.1). We can show this by examining
an effective index of refraction neff at each position (x,z) of extraordinary light rays with
propagation direction p̂e(x, z) = ẑ. Then we have

neff =

√
n2
on

2
e

n2
o sin2(π2 − θ) + n2

e cos2(π2 − θ)
, (5.3)

with θ given by Eq. 5.2 and |pe| = neff. Since the director d̂ depends on the position in
the (xz)-plane, so does neff, as can be seen in Fig. 5.3. We can clearly see that neff has
a maximum in the periphery of one period of the director profile, since there neff = ne.
In the center we have neff = no. As a result, a light ray entering the director profile at
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Figure 5.1: Inhomogeneous periodic director profile with T = 20 and D = 20.
The director profile represents an uniaxially anisotropic medium
with no = 1.5 and ne = 1.7.

Figure 5.2: Periodic director profile for x ∈ [T, 2T ] with the ray paths of ex-
traordinary rays indicated by the curved lines. The light rays are
at normal incidence with the plane z = 0.
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Figure 5.3: The value of neff = |pe| for x ∈ [20, 40] and z ∈ [0, 20]. In the
periphery of the square region |pe| is approximately 1.7 whereas
in the center |pe| approaches 1.5. The curved ray paths of the
extraordinary light rays are also depicted.

Figure 5.4: The spatial (scaled) intensity distribution I at z = D for the peri-
odic director profile. Clearly, the intensity distribution is periodic
with period T = 20.
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for example x = 32 penetrates the region of low refractive index in the center and then
bends towards the nearby region of high refractive index at the right. The ray paths are
seeking the fastest way towards the periphery and thus show a diverging effect.

At z = D the extraordinary intensity transmittance factor Te of the rays is calculated
(taking into account single reflections):

Te =
Stz
Sincz

, (5.4)

with Stz the z-component of the transmitted Poynting vector and Sincz the z-component
of the incident Poynting vector (see also Eq. 3.38). At z = D the rays (a total number of
1.44 · 106, each having a weight factor Te) are collected in intervals of length 4x = 0.05.
Then the total number of rays collected by an interval is a measure for the intensity.
Hence we obtain a (scaled) spatial intensity distribution I which is periodic with period
T . The result is depicted in Fig. 5.4. Clearly we observe peak intensities near the edges
of the period T and a low intensity in the middle.

5.2.2 FEM simulations

In what follows, we present results of wave-optics simulations according to an advanced
rigorous in-house numerical simulation program based on the Finite Element Method
developed jointly by Philips Research and Delft University of Technology [107]. This
method enables in particular the numerical simulation of the electromagnetic field inside
an inhomogeneous anisotropic medium. The computational domain is restricted because
of memory constraints: the results are presented for dimensions up to 60×60 wavelengths.

In the FEM simulations, the wavelength λ of the incident plane wave in the surround-
ing medium (where n = 1) is 500 nm. The ratio of the period T and the thickness D is
fixed: T

D = 1. The values of T and D are chosen in terms of the wavelength λ. The elec-
tromagnetic field of the propagating plane wave is calculated at z = D after refraction at
the interface between the director profile and the surrounding medium. There the ratio
between the z-component of the transmitted and incident Poynting vector is calculated
as a function of position x and the resulting spatial intensity distribution reads

IFEM (x) =
Stz
Sincz

. (5.5)

The FEM simulations are performed for different values of the period T . First, we take
T = D = 10λ and with λ = 500 nm, this corresponds to a computational domain of 5×5
µm. The spatial intensity distribution is depicted in Fig. 5.5 together with the scaled
spatial intensity distribution obtained from the ray-tracing simulations. The results for
T = 20λ, T = 40λ and T = 60λ are depicted in Fig. 5.6, 5.7 and 5.8, respectively.

From the results in general we can conclude that qualitatively, there is a match
between the FEM simulations and the ray-tracing simulations. Quantitatively, there is
a good match for T = 40λ and T = 60λ (see Figs. 5.7 and 5.8). However, the match is
not perfect. This is because the FEM calculates the electromagnetic field whereas the
ray-tracing simulations are based on counting rays. Hence the FEM simulations include
diffraction effects. In this case, diffraction effects are likely to occur, especially in the
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Figure 5.5: Spatial intensity distribution according to the FEM simulations for
T = 10λ. This corresponds to a computational domain of 5 × 5
µm. The (scaled) spatial intensity distribution according to the
ray-tracing simulations (see Fig. 5.4) is also depicted (GOA).

Figure 5.6: Spatial intensity distribution according to the FEM simulations for
T = 20λ. Then a period of the director profile corresponds to a
computational domain of 10× 10 µm.
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Figure 5.7: Spatial intensity distribution according to the FEM simulations for
T = 40λ. Now the computational domain of the FEM is 20 × 20
µm.

Figure 5.8: Spatial intensity distribution according to the FEM simulations for
T = 60λ. The computational domain of the FEM has reached a
maximum of 30× 30 µm due to memory constraints.
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Table 5.1: Values for the period T , distance Ld and ratio λ
Ld

used in the sim-
ulations.

T (λ) Ld (λ) Ld (µm) λ
Ld

10 5 2.5 0.200
20 10 5.0 0.100
40 20 10.0 0.050
60 30 15.0 0.033

region where ray paths intersect one another. This can be seen in the right upper corner
in Fig. 5.2, where the FEM simulations show an intensity distribution that resembles a
diffraction pattern. This explains the incongruence between the FEM simulations and
ray-optics simulations in this particular region.

We can see that the agreement between the FEM simulations and the ray-tracing
simulations improves when T (and therefore D) increases. This observation is in line
with what one would expect, since the ratio λ

Ld
decreases with increasing T . For the

director profile discussed in this section, the distance Ld = D
2 = T

2 (see Fig. 1.8 and Fig.
5.1). The values for the period T and the corresponding ratio λ

Ld
used in the simulations

are listed in Table 5.1.
Based on the results, we formulate the following criterion. If Ld > 20λ or λ

Ld
< 0.05,

ray- and wave-optics are in good agreement, both qualitatively and quantitatively. If
Ld < 20λ, the correlation between ray- and wave-optics worsens. However, a qualitative
agreement between ray- and wave-optics might still be established for values of Ld below
20 wavelengths. This criterion applies when Ld corresponds to a director rotation of 90◦,
and thus a maximum change in material properties. If Ld corresponds to a rotation of
less than 90◦, larger values for λ

Ld
are allowed.

5.3 Conclusions

In this chapter, we have studied the applicability of geometrical optics to typical in-plane
liquid-crystal configurations. In particular, we have investigated how much change per
unit wavelength in a two-dimensional director profile is approximately allowed within
the geometrical-optics approach. To this end, we consider the ratio λ

Ld
, where Ld is the

distance over which the director is rotated by 90◦. Then Ld is the distance over which
a maximum change in optical properties occurs for fixed principal indices of refraction.
The formulated criterion is based upon the results of ray- and wave-optics simulations of
an uniaxially anisotropic medium with a periodic director profile with special properties.
The approach described in this chapter can also be applied to biaxially anisotropic me-
dia, since they can have similar director variations and birefringence. From the results
we conclude that if λ

Ld
< 0.05, it is fair to say that ray- and wave-optics are in good

agreement, both qualitatively and quantitatively. If Ld is smaller than 20 wavelengths,
the agreement between ray- and wave-optics worsens. However, a qualitative agreement
between ray- and wave-optics might still be established for values of Ld below 20 wave-
lengths. In Chapter 8, we present simulations of the liquid-crystal-based light guide
structure (see Subsection 1.2.2) that support this statement.
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Chapter 6

Switchable lenticulars for 3D
displays

In the previous chapters we have discussed the classical electromagnetic theory and the
ray-tracing procedures to model optically anisotropic media. In the chapters that will
follow we apply the ray-tracing procedures to simulate the optical properties of novel
liquid-crystal applications. In this chapter, we discuss liquid-crystal-based lenticulars for
application in 3D displays.

In 2004, Philips Research has developed an innovative technique of creating auto-
stereoscopic three-dimensional (3D) images by combining a multi-view lenticular-based
3D display technology with advanced computer graphics and image analysis techniques
[25]-[27]. The display technology involved makes use of a liquid-crystal-based lenticular
sheet that is able to switch between a conventional 2D mode and an auto-stereoscopic
3D mode. The lenticular sheet is an array of cylindrical lenses filled with liquid crystal.
The liquid crystal can be switched between two optical states with the help of an electric
field. As a result, the lens effect of the lenticular can be switched on and off. In this
chapter, after a short introduction to lenticular-based 3D displays, we focus our attention
to this part of the 3D display technology.

6.1 Multi-view auto-stereoscopic lenticular-based 3D
displays

The design of a lenticular-based 3D display involves a number of important issues related
to the display, such as resolution loss and pixel layout, and in particular to the optical
design of the lenticular. In this section, we briefly discuss these issues and explain the
working principle of a multi-view lenticular-based 3D display. In the discussion that
follows we will consider the technical specifications of a nine-views 20 inch lenticular-
based 3D display. Fig. 6.1 shows a picture of the 3D display involved. The display that
is used is a liquid crystal display (LCD).
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6.1.1 Resolution of a 3D display

In general, a multi-view 3D display suffers from a resolution loss, since the available
(sub-)pixels of a display are used to generate multiple images. The resolution loss of
each view in a multi-view 3D display is equal to a factor that is the total number of
views.

Fig. 6.2 shows the schematic (sub-)pixel layout of a nine-views 3D display. The sub-
pixel width and height are 0.085 mm and 0.255 mm, respectively. Hence the ratio between
sub-pixel width and height is 1

3 . The numbers depicted in each sub-pixel correspond
to one of the nine views. In addition, the diagonal lines indicate the position of the
cylindrical lenses of the lenticular. These lenses are slanted with respect to the display
by an angle arctan( 1

6 ). With this particular design, we can explain the construction of
the individual views. For example, let us consider the sub-pixels with number five. These
sub-pixels are all positioned equally with respect to the central axis of a cylindrical lens.
This means that light from all sub-pixels with number five are collimated by the lenticular
towards the same viewing direction. The same reasoning applies to the remaining sub-
pixels. The result is an angular distribution of views imaged towards the viewer.

From the pixel layout depicted in Fig. 6.2 we can deduce that the total resolution
loss is distributed equally in the horizontal and vertical direction. For example, we can
show that the number of pixels that correspond to view one are equivalent in both the
horizontal and vertical direction. As a result, the resolution loss factor observed by a
viewer for the nine-views 3D display is only three, since the views are observed in the
horizontal direction only (see also Fig. 1.6-(a)). In general, we can say that a multi-view
3D display with K views, has a total resolution loss factor of K. The resolution loss
factor in the horizontal direction is

√
K, provided that the (sub-)pixel layout and the

slant angle of the lenticular is adapted accordingly.

6.1.2 Uniformity and 3D performance

The use of a lenticular can introduce some imperfections in the performance of a multi-
view 3D display. These imperfections can be described by two parameters: modulation
depth and cross talk.

Modulation depth is defined a measure for the uniformity in the angular intensity dis-
tribution of a 3D display. One important reason that the angular intensity distribution
can show a modulation (within a single view) is due to the presence of a black matrix
in the pixel structure of a liquid crystal display. The black matrix is defined the area
of the pixel structure in total that does not emit light. For the nine-views 3D display
discussed, the black matrix of the pixel structure is 43% of the sub-pixel width in the
horizontal direction and 31% of the sub-pixel height in the vertical direction. In a 3D
display, the light from the pixel structure together with the black matrix is collimated by
the lenticular towards a viewer. Hence, the collimated light originating from a 3D display
is non-uniform and contains regions of higher and lower intensity. A viewer looking at
the display will see each cylindrical lens from a slightly different angle and hence will see
the black matrix only at certain positions on the screen. Effectively, a viewer perceives
this effect as dark bands, as depicted in Fig. 6.3. This disturbing artifact is enhanced
by the fact that the dark bands are moving across the screen when a viewer moves from
side to side in front of a 3D display.
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Figure 6.1: Prototype (20 inch) of a nine-views lenticular-based auto-
stereoscopic 3D display.

Figure 6.2: Schematic sub-pixel layout of a nine-views lenticular-based 3D dis-
play. The diagonal lines indicate the position of the cylindrical
lenses of the lenticular. The numbers depicted in the sub-pixels
correspond to one of the nine views.
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Figure 6.3: When viewing a 3D display, a viewer can see dark bands.

Figure 6.4: Angular intensity distribution I for nine individual views. For the
viewing angle indicated by the dashed line, three different views
can be perceived by a viewer. A measure for the overlap between
two neighboring views is defined cross talk. The modulation depth
is a measure for the non-uniformity of the total angular intensity
distribution.
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The 3D performance of a 3D display can be expressed in terms of a parameter called
cross talk. Cross talk is a measure for the overlap between two neighboring views. Fig. 6.4
shows the angular intensity distribution of nine individual views. For one specific viewing
angle, it is possible that a viewer can observe three views simultaneously. Moreover, one
view is more visible than the others, since the intensities of the views for this viewing
angle are all different. When the cross talk is too high, a viewer cannot perceive a
three-dimensional image, since then multiple views can be seen by a single eye.

The cross talk of a multi-view 3D display also contributes to the non-uniformity in the
angular intensity distribution. This can be seen in Fig. 6.4, where the modulation in the
total angular intensity distribution can be described by two independent contributions:
a small and large contribution. In this particular case, the large modulation is due to
the cross talk between the views. This statement is verified by the fact that the intensity
distribution has a maximum in between two neighboring views.

In general, for a good 3D performance, the cross talk of a 3D display should be min-
imized provided that the modulation depth is not too high.

The cross talk and modulation depth for a multi-view 3D display can be calculated
with a ray-tracing program previously developed by Philips Research (cf. [108], p. 27).
For example, we can calculate the cross talk and modulation depth for the optical system
of the nine-views 3D display. Recall that the lenticular is slanted with respect to the pixel
columns, as depicted in Fig. 6.2. Then a 3D display can either be investigated in a plane
perpendicular to the pixel columns or perpendicular with respect to the orientation of the
cylindrical lenses. Both approaches can be applied since effectively the optical properties
merely depend on the relative orientation between pixel column and lenticular. In what
follows, we will investigate the cross talk and modulation depth of the nine-views 3D
display in the plane perpendicular to the orientation of the lenses.

According to Fig. 6.2, the width of a cylindrical lens in the horizontal direction is
4 1

2 sub-pixels corresponding to a width of 4 1
2 · 0.085 = 0.383 mm. Then the period of

the lenticular is 0.383 · cos[arctan( 1
6 )] = 0.377 mm. A cross section of the geometry

of a nine-views lenticular-based 3D display is depicted in Fig. 6.5. For reasons that
will become clear later in this chapter, the lenticular consists of a (polymer) lens plate
that is filled with liquid crystal. The liquid crystal is homogeneously aligned in the
direction parallel to the orientation of the cylindrical lenses. The refractive index of the
lens plate is 1.550. The liquid crystal material is a TL213-type liquid crystal and has
refractive indices no = 1.527 and ne = 1.766. The light originating from the LCD is
linearly polarized perpendicular to the plane of the drawing. Hence the effective index of
refraction of the liquid crystal material is 1.766 which gives rise to a positive lens effect.
The index of refraction of the glass material is 1.500.

Fig. 6.6 shows the cross talk and modulation depth as a function of the radius of
curvature Rcl of the cylindrical lenses. The modulation depth is defined

M =
SD(Itot)
Itot

, (6.1)

with SD(Itot) the average Standard Deviation in the total angular intensity distribution
and Itot the average total angular intensity distribution. In addition, the cross talk is
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Figure 6.5: Cross section of the geometry of a nine-views lenticular-based 3D
display. For reasons that will become clear later, the lens plate is
filled with liquid crystal.

Figure 6.6: Cross talk and modulation depth as a function of the radius of cur-
vature Rcl of the cylindrical lenses. In (a), the cross talk between
two adjacent views is calculated. In (b) and (c), the cross talk be-
tween two next neighboring views and two next next neighboring
views are calculated, respectively. Figure (d) shows the modulation
depth. Apparently, the modulation depth is high in a region where
the cross talk is low.
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defined

O =
∫
F ×G∫
F ×

∫
G
, (6.2)

where F and G represent the angular intensity distribution of two individual views. Fig.
6.6-(a) shows the cross talk of two neighboring views, whereas Fig. 6.6-(b) shows the
cross talk of two next neighboring views, for example, between view number 1 and 3.
Fig. 6.6-(c) shows the cross talk between two next next neighboring views. The cross
talk of two next neighboring views is much smaller than the cross talk between two
adjacent views, as expected. According to Fig. 6.6-(d), the modulation depth is large
in the region where the cross talk is low. In general, we are looking for a radius of
curvature for which the balance between modulation depth and cross talk is acceptable.
For example, Rcl = 0.422 mm results in a cross talk of 38.6% and a modulation depth
of 1.3% and Rcl = 0.519 mm results in a cross talk of 37.3% and a modulation depth
of 0.8%. When the non-uniformity is approximately below 1%, the dark bands on a
3D display are hardly noticeable for a viewer. These are typical values for the radius
Rcl, the cross talk and modulation depth when considering the design of a nine-views
lenticular-based 3D display.

By adjusting the radius of curvature of the cylindrical lenses, the focal strength is
adjusted as well. For the values of Rcl discussed above, the lenses are slightly out of focus
with the pixel plane. Then the angular intensity distribution of the collimated individual
pixels is broadened, resulting in a reduced modulation depth in the total angular inten-
sity distribution.

The uniformity of a multi-view lenticular-based 3D display can be further improved
by using fractional views [109]. The pixel layout in Fig. 6.2 is designed in such a way
that the sub-pixels corresponding to nine views are positioned below one cylindrical lens.
A 3D display with fractional views has a pixel layout where the sub-pixels correspond-
ing to the views are distributed over multiple lenses. With this layout, the individual
contributions of the lenses to the non-uniformity of the display are averaged to a heavily
reduced modulation depth.

We can conclude that the cross talk and modulation depth of a multi-view lenticular-
based 3D display can be optimized to obtain a good 3D performance and a highly uniform
intensity distribution. Two important ways to optimize the performance of a 3D display
are the fine tuning of the radius of curvature of the cylindrical lenses in a lenticular and
the use of fractional views.

6.2 Switchable 2D/3D displays based on liquid-crystal
lenses

A display imaging a normal two-dimensional image with a lenticular placed in front of
the display introduces a problem in the image quality. The lens effect created by the
lenticular makes text difficult to read and fine textures will not be displayed correctly.
This can be clearly seen in Fig. 6.7. The picture on the left shows the image of a liquid
crystal display without lenticular and the picture on the right shows the same image with
lenticular. As a result, a 3D display is not suitable for conventional monitor applications.
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Figure 6.7: The left picture shows the image of a liquid crystal display (LCD)
without lenticular and the picture on the right shows the same im-
age with a lenticular placed in front of the LCD. Clearly, the image
quality on the right is not acceptable for conventional monitor ap-
plications.

However, if the lens effect of the lenticular could somehow be switched on and off, a 3D
display could be used for both 2D and 3D applications.

An elegant solution is the construction of a lenticular filled with liquid crystal that
can be switched electronically between two optical modes: a 2D mode without lens effect
(approximately) and a 3D mode with a lens effect. In 2004, Philips Research succeeded in
manufacturing a switchable 2D/3D display based on LCDs equipped with liquid-crystal
lenses [25][26].

Fig. 6.8 shows the cross section of a lenticular that contains liquid crystal. The
lenticular consists of two glass plates that are equipped with a transparent conducting
ITO (Indium Tin Oxide) layer. In between is a polymer lens plate that contains a negative
lens structure, manufactured by means of replication techniques. The remaining space is
filled with liquid crystal. On the lens plate and the lower glass plate a layer of poly-imide
(PI) is applied. Rubbing of the PI surface is an effective way of achieving a preferred
orientation of the PI molecules. The liquid-crystal molecules align themselves along the
rubbing direction of the PI layer, occupying the lowest energy state.

Fig. 6.8-(a) shows the 3D mode of the switchable lenticular. No voltage is applied to
the ITO electrodes. The rubbing direction of the lens plate and the lower glass plate are
in the x-direction. As a result, the liquid crystal is aligned in the x-direction. Moreover,
the linear polarization of the light coming from the LCD is also in the x-direction. As a
result, the lens, although being optically birefringent, can be interpreted as an isotropic
lens with index of refraction ne. When ne > nlp, with nlp the refractive index of the lens
plate, the lenticular has a positive lens effect in the 3D mode.

Fig. 6.8-(b) shows the 2D mode of the switchable lenticular. A voltage is applied to
the ITO electrodes creating an electric field in the z-direction. The director will align
along the electric field lines, occupying the lowest possible energy state. If the applied
voltage is high enough (100 V), it is a good approximation to assume a homogeneous
vertical alignment [27]. As mentioned above, the light originating from the LCD is lin-
early polarized in the x-direction. Then the lenticular can be interpreted as an isotropic
lens with index of refraction no. In the ideal case there is an index match between the
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Figure 6.8: Two optical modes of a switchable lenticular. The light originating
from the underlying display is linearly polarized in the x-direction.
In (a), no voltage is applied to the ITO electrodes. This optical
state of the switchable lenticular is called the 3D mode. In the 3D
mode, the lenticular has a (positive) lens effect. In (b), a voltage
is applied to the ITO electrodes. Then the lenticular is in the 2D
mode. When the ordinary refractive index of the liquid crystal and
the refractive index of the lens plate match, the 2D mode has no
lens effect.

lens and the lens plate: no = nlp. Then the light will not be refracted. Consequently,
there is no lens effect.

With the possibility to switch a lenticular between a 2D mode and a 3D mode, a 3D
display is capable to regain the full native 2D resolution of the underlying display. How-
ever, there are some issues concerning the image quality in the 2D mode of a switchable
2D/3D display. These issues will be discussed in the next section.

6.3 Residual lens effects in the 2D mode

When viewing a switchable 2D/3D display in the 2D mode at normal incidence, the
image quality is acceptable for conventional monitor applications. However, at oblique
viewing angles, there appears to be a residual lens effect. Apparently, the lens effect of
the lenticular in the 2D mode depends on the viewing angle. For a certain viewing angle,
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Figure 6.9: The left picture shows an image of a nine-views 20 inch lenticular-
based switchable 2D/3D display in the 2D mode. The picture at
the right shows the same image when viewing the display under an
angle. Apparently, the image quality decreases due to residual lens
effects.

the focal point of the lenticular is exactly at the pixel structure of the underlying LCD.
As a result, the black matrix is imaged at infinity, generating a large modulation depth
at the viewing area. Fig. 6.9 shows the effect of residual lens effects when viewing the
display at an oblique angle. In the 2D mode, it are these residual lens effects that we
would like to get rid of.

The residual lens effects discussed are due to the anisotropic properties of the lentic-
ular. In what follows, we will explain how the anisotropic properties of the 2D mode of
a switchable lenticular can give rise to a residual lens effect.

In general, the polarization direction of the light coming from the underlying LCD
is not parallel to the orientation of the lenticular. This is because the direction of the
lenticular is adapted to the pixel layout (see Fig. 6.2) and not to the polarization direction
of the LCD. Then the light propagating through the liquid crystal contains both ordinary
and extraordinary polarization components. To overcome this problem, the following
solution is applied to the lenticular.

The rubbing direction of the PI on the lower glass plate of the lenticular is matched
with the polarization direction of the light coming from the LCD. At the same time, the
rubbing direction of the lens plate is parallel to the long axis of the cylindrical lenses.
As a result, in the 3D mode, the liquid crystal is twisted inside the lenticular. The linear
polarization direction of the incident light is rotated along with the twist of the liquid-
crystal molecules. This effect is called strong guiding or waveguiding (cf. [5], p. 122) and
is not to be confused with optical activity. At any local position inside the liquid crystal,
the polarization direction is parallel to the director. Consequently, the effective index of
refraction of the lenticular in the 3D mode is the extraordinary index of refraction ne.
Then the lenticular has the same (positive) lens effect as defined in Fig. 6.8-(a).

For the 2D mode of the lenticular, the optical properties are now different from the
situation in Fig. 6.8-(b). The director is still in the z-direction, but the polarization
direction is now at an angle with the yz-plane other than 90◦ and not in the x-direction.
Hence the light at oblique angles inside the liquid crystal of the lenticular in the 2D
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mode has both ordinary and extraordinary components. The effective index of refraction
for extraordinary light depends on the direction of propagation and therefore the focal
strength of the lenticular will depend on the viewing angle. As a result, the lenticular in
the 2D mode has residual lens effects for light with extraordinary anisotropic properties.

Moreover, the refractive index of the lens plate is in general not equal to the ordinary
index of refraction of the liquid crystal: no 6= nlp. Hence, due to an index mismatch,
there can also be a residual lens effect for light with ordinary polarization components.

In general, we conclude that in the 2D mode of a switchable lenticular the light
has both ordinary and extraordinary polarization components. For these polarization
components, there can be residual lens effects. Moreover, these residual lens effects
depend on the viewing angle. In what follows, we will investigate the optical properties
of the switchable lenticular in the 2D mode with the help of polarized ray tracing.

6.4 Polarized ray tracing of the 2D mode

In the 2D mode of a switchable lenticular, we assume that we are dealing with a homoge-
neous liquid-crystal alignment. Then for the anisotropic properties of the lenticular, we
can apply the polarized ray-tracing method discussed in Chapter 3. For the ray tracing
of the switchable lenses in the 2D mode, we have implemented the ray-tracing procedure
for homogeneous anisotropic media into the ray-tracing program developed by Philips
Research. The (optical) properties of the lenticular and the LCD are defined as discussed
in Sections 6.1 and 6.2.

In the ray-tracing process, we trace rays for which the initial position is randomly
defined, provided that the initial position is on one of the sub-pixels of the underlying
LCD. Fig. 6.10 shows five thousand dots that indicate the initial positions of rays for
five sub-pixels: one thousand dots per sub-pixel. Recall that the non-emitting part of
a sub-pixel is defined 43% in the horizontal direction and 31% in the vertical direction.
Hence the area without dots represents the black matrix of the LCD. The black lines
indicate the boundaries of one cylindrical lens. The width of this cylindrical lens is 0.377
mm, and the geometry of the entire optical system is defined as shown in Fig. 6.5. The
sub-pixels are slanted with respect to the orientation of the cylindrical lenses by an angle
of arctan( 1

6 ). To verify the correct pixel layout, we can consider Fig. 6.2 and compare the
sub-pixels numbered by 1, 3, 5, 7 and 9 and their position with respect to the lenticular
with the layout depicted in Fig. 6.10.

In what follows, we calculate the angular intensity distribution of the switchable dis-
play in the 2D mode due to one sub-pixel only, namely the middle sub-pixel depicted
in Fig. 6.10. This is because we like to investigate the qualitative properties of the
switchable lenticular in the 2D mode rather than the total intensity distribution result-
ing from all the sub-pixels of the LCD. In the ray-tracing process, we trace two million
rays originating from the central sub-pixel. All these rays are propagating in a plane
parallel to the plane x = 0. Subsequently, the rays are projected to the yz-plane. The
reason why we are allowed to do this is because the width of the image of the sub-pixel
is approximately as wide as the (light-emitting) sub-pixel height (69% of 0.255 mm) and
can be neglected when compared to a 20 inch 3D display. The ray-tracing process is
applied to rays with a polarization in the x-direction (ordinary rays) and rays with a
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Figure 6.10: Sub-pixel layout and dimensions of a nine-views lenticular-based
3D display. The dots indicate the initial positions of one thou-
sand rays per sub-pixel. The area without dots represents the black
matrix of the LCD. The black lines indicate the position of a cylin-
drical lens. The period of the lenticular is 0.377 mm.

polarization direction in the yz-plane (extraordinary rays).

Fig. 6.11 shows the angular intensity distribution of the 2D mode for both ordi-
nary and extraordinary rays [110]. The ordinary intensity distribution is represented by
the dashed curve whereas the extraordinary intensity distribution is represented by the
solid curve. For small viewing angles, the ordinary and extraordinary angular intensity
distribution are identical. This is because for small viewing angles, the direction of prop-
agation is approximately parallel to the liquid crystal director. Then the wave normal
for both ordinary and extraordinary rays satisfies |p| ≈ no.

For the ordinary light rays there is always a residual negative lens effect, regardless
of the viewing angle. This is because the index of refraction of the lens plate is 1.550 and
the ordinary index of refraction of the liquid crystal is 1.527. This residual lens effect
reveals itself through the peaks in the angular intensity distribution.

For extraordinary rays, the effective index of refraction depends on the viewing angle
and lies between no = 1.527 and ne = 1.766. Since no < nlp < ne, there is a negative
lens effect for small viewing angles and a positive lens effect for large viewing angles.
The transition from negative to positive lens effect occurs at approximately ±30◦. At
this viewing angle, the peaks transform to ‘grooves’ in the extraordinary intensity distri-
bution.

As mentioned before, there is a viewing angle for which the focal point of the lentic-
ular is exactly on the pixel structure of the LCD. Then the black matrix is imaged at
infinity, generating a large modulation depth in the angular intensity distribution. This
observation is confirmed by the extraordinary angular intensity distribution of Fig. 6.11.
The solid curve shows a large peak at approximately 60◦. Alongside this intensity peak,
there are intervals of zero intensity. The interval containing the zero and peak intensities
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Figure 6.11: Ordinary (dashed curve) and extraordinary (solid curve) angular
intensity distribution I for a nine-views switchable 3D display in
the 2D mode. The intensity distribution is the result of one light-
emitting sub-pixel only.

indicate the viewing angles for which the black matrix and the sub-pixels, respectively,
are imaged at infinity.

We can conclude that the ray-tracing results for the nine-views switchable 3D display
in the 2D mode confirm significant residual lens effects of the lenticular for large viewing
angles. The residual lens effects are due to an index mismatch between the lens plate and
the ordinary index of refraction of the liquid crystal and due to the anisotropic properties
of the switchable lenticular. The simulations show a large modulation depth at a viewing
angle of approximately 60◦. In the next section, we propose a solution to get rid of these
residual lens effects.

6.5 Anisotropic lens plates

The residual lens effects in the 2D mode of a switchable lenticular can decrease the im-
age quality of the underlying LCD. Therefore, it is desired to minimize the difference in
optical properties between the lens plate and the liquid crystal material. In the ideal
case, the optical properties of the lens plate are equivalent to the optical properties of
the liquid crystal in the 2D mode. However, when a different material is to be used for
the lens plate, the 3D performance of the 3D display should not be affected. In what
follows, we provide a solution to this problem and present ray-tracing simulations that
support the proposed solution.

Let us consider a lens plate with homogeneous anisotropic properties. The optical
axis of the lens plate is in the z-direction, see Fig. 6.12. The ordinary and extraordinary
index of refraction of the lens plate are defined nlpo = 1.527 and nlpe = 1.700, respectively.
Hence, there is an index match between the ordinary refractive index of the liquid crystal
and the lens plate: no = nlpo . Otherwise, the optical properties of the 3D display are the
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Figure 6.12: 2D mode of a switchable lenticular with an anisotropic lens plate.
The anisotropic properties of the lens plate are homogeneous and
the optical axis is parallel to the optical axis of the liquid crystal.
In the ideal case, the optical properties of the lens plate and liquid
crystal are the same and then there are no residual lens effects.

same as discussed previously.
When we apply the same ray-tracing procedure as discussed in Section 6.4, we obtain

the angular intensity distribution depicted in Fig. 6.13. For small viewing angles, there
is an index match for both ordinary and extraordinary light rays since no = nlpo . As a
result, the angular intensity distribution for ordinary and extraordinary light rays is the
same when viewing the 3D display at normal incidence.

The angular intensity distribution for ordinary light (dashed curve) shows neither
peaks nor grooves for all viewing angles: there are no residual lens effects for ordinary
light rays. On the other hand, the extraordinary intensity distribution (solid curve)
shows a positive lens effect for all viewing angles. This can be explained from the fact
that the effective index of refraction of the liquid crystal always exceeds the effective index
of refraction of the lens plate for all viewing angles since ne > nlpe . This statement is
confirmed by the fact that the extraordinary intensity distribution only contains grooves.
In addition, the solid curve shows a large modulation depth for large viewing angles. This
time, the black matrix is imaged at infinity for a viewing angle at approximately 70◦.
This is a larger viewing angle than the viewing angle of 60◦ for the 2D mode obtained in
Section 6.4. This is because for all viewing angles, the lens strength of the lenticular with
the anisotropic lens plate is weaker than the lens strength of the lenticular in Section
6.4. This can be explained by the fact that the difference between ne and nlpe is smaller
than the difference between ne and nlp (for large viewing angles). The results discussed
above are a direct consequence of the anisotropic properties of the lenticular.

When no = nlpo and ne = nlpe , there is a perfect index match between the liquid crystal
and the anisotropic lens plate. Then the extraordinary angular intensity distributions
will transform to the dashed curve, resulting in a smooth intensity distribution. In that
case, there are no residual lens effects for both ordinary and extraordinary light rays for
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Figure 6.13: Ordinary (dashed curve) and extraordinary (solid curve) angular
intensity distribution I for a nine-views switchable 3D display with
an anisotropic lens plate in the 2D mode. The refractive indices of
the lens plate are nlpo = 1.527 and nlpe = 1.700.

all viewing angles.

An important question is whether an anisotropic lens plate does affect the 3D per-
formance of the 3D display. In the 3D mode, the effective index of refraction of the
liquid crystal is ne. The light that propagates through the anisotropic lens plate, where
the optical axis is in the z-direction, is linearly polarized in the x-direction. Hence the
light in the anisotropic lens plate is ordinary and then the lens plate can be considered a
medium with refractive index nlpo . Since ne > nlpo , there is a positive lens effect, similar
to the situation depicted in Fig. 6.8-(a). In general, nlpo should be chosen carefully since
the lens strength does affect the modulation depth and cross talk in the 3D mode of a
3D display (and so does the radius of curvature Rcl).

We can conclude that the residual lens effects of a multi-view switchable 3D dis-
play in the 2D mode can be reduced substantially when the lens plate is replaced by an
anisotropic lens plate [111]. The optical properties of the anisotropic lens plate should
resemble the optical properties of the liquid crystal. In the ideal case, the optical proper-
ties of the anisotropic lens plate match the optical properties of the liquid crystal. At the
same time, the 3D performance of the 3D display is not necessarily affected provided that
the refractive indices and the radius of curvature Rcl of the cylindrical lenses are chosen
in such a way that the modulation depth and cross talk of the 3D mode are acceptable.

6.6 Conclusions

The use of a liquid-crystal-based switchable lenticular in an auto-stereoscopic 3D display
enables to switch between a 2D mode and a 3D mode. In the 2D mode, a 3D display
is capable to regain the full native 2D resolution of the underlying display. However,
there are some issues concerning the image quality in the 2D mode of a switchable
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2D/3D display. The light propagating in the 2D mode of a switchable lenticular has both
ordinary and extraordinary polarization components. For these polarization components,
there can be residual lens effects which depend on the viewing angle.

We have used our ray-tracing method for anisotropic media to simulate the optical
properties of a switchable lenticular of a nine-views switchable 2D/3D display in the 2D
mode. The ray-tracing results confirm significant residual lens effects of the lenticular
for large viewing angles. The residual lens effects are due to an index mismatch between
the lens plate and the ordinary index of refraction of the liquid crystal and due to the
anisotropic properties of the switchable lenticular.

In view of these insights, we have proposed a solution to get rid of the residual lens
effects. The improved lens design involved is filed in a patent application of which the
author is co-inventor [111]. The residual lens effects of a multi-view switchable 2D/3D
display in the 2D mode can be reduced substantially when the lens plate is optically
anisotropic. Ideally, the optical properties of the anisotropic lens plate match the optical
properties of the liquid crystal. In this case, the residual lens effects disappear completely.
At the same time, the 3D performance of the 3D display is not affected by the anisotropic
lens plate provided that the properties of the cylindrical lenses are chosen in such a way
that the modulation depth and cross talk of the 3D mode are acceptable.



Chapter 7

Gradient-index lenses for 3D
displays

In Chapter 6, we have discussed auto-stereoscopic multi-view switchable 2D/3D displays
based on liquid-crystal lenticulars. In a switchable lenticular, the geometry of the lens
plate is responsible for the lens effect in the 3D mode and the liquid crystal enables to
switch between a 2D mode and a 3D mode. In a good approximation, the liquid-crystal
material is homogeneously aligned in both the 2D and the 3D mode. It is also possible
to apply an inhomogeneous configuration in which the liquid-crystal material itself is
responsible for the desired lens effect in the 3D mode [112][113]. If this is the case, there
is no need for a lens plate in the first place.

When a special gradient is induced inside a liquid-crystal layer, it is possible to ob-
tain a lens effect. The type of lens associated with a gradient in the material properties
is called a gradient-index lens. The advantage of gradient-index lenses based on liq-
uid crystal can be found in size reduction and manufacturing costs when compared to
switchable lenticulars. However, the optical design of an anisotropic gradient-index lens
involves a much more complicated process. This is mainly because we are dealing with
inhomogeneous anisotropic liquid-crystal material properties.

In contrast with isotropic lenses, the lens effect of a liquid-crystal gradient-index lens
is difficult to model. Firstly, the inhomogeneous liquid-crystal profile of an electro-optical
configuration needs to be simulated using software programs like LCD Master [114] or
2dimMOS [115]. Secondly, the optical properties of the obtained liquid-crystal profile
need to be calculated. This means that the optical design of a liquid-crystal gradient-
index lens involves a process characterized by trial and error.

Pioneering studies on liquid-crystal gradient-index (GRIN) lenses were done in the
1970s by Sato [116] and Berreman [117]. GRIN lenses based on liquid crystal appear
in many forms and form a subject widely discussed in the literature [118]-[124]. There
are many methods available to calculate the optical properties of liquid-crystal GRIN
lenses. For example, in [123] a ray-tracing algorithm is introduced to trace ray paths in
inhomogeneous uniaxially anisotropic media and applied to a liquid-crystal lens. This
method is based on an eikonal equation which is solved using a so-called ray-bundle
method to estimate the spatial derivatives of the wave normal p(r). Although the method
appears to be accurate, the ray-tracing procedure involves a much more complicated
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process than the Hamiltonian principle. Another simple but effective method is the
so-called Huygens method based on the Huygens principle [106], although it does not
fully take into account the inhomogeneous properties of the liquid-crystal material. In
addition to the Huygens method, other methods (including diffraction effects) that enable
the modeling of liquid-crystal GRIN lenses have been discussed in the paper by Kraan
et al. [106]. To account for the fact that ray paths are curved inside inhomogeneous
media, Kraan uses a similar form of the Hamilton equations for inhomogeneous uniaxially
anisotropic media as discussed in Chapter 4. However, the gradient-index lens discussed
by Kraan is a different type of lens (beam-steering lens) than the one we are interested
in. Moreover, light at normal incidence was considered, while the angular-dependent
behavior of a gradient-index lens is important, in particular for auto-stereoscopic multi-
view 3D displays.

In this chapter, after a short introduction, we will focus our attention to two different
approaches to model liquid-crystal GRIN lenses: the Huygens principle and the Hamil-
tonian principle. We will discuss the differences and apply both principles to investigate
the angular-dependent optical properties of an advanced liquid-crystal GRIN lens.

7.1 Liquid-crystal-based gradient-index lens

A liquid-crystal-based gradient-index lens is an optical system that enables a lens effect
due to an imposed gradient in the director profile of a liquid-crystal layer. In what follows,
we discuss the optical design of a liquid-crystal GRIN lens for application in multi-view
auto-stereoscopic switchable 3D displays. In particular, we describe the optical design of
a liquid-crystal GRIN sample of which the optical properties have been investigated in
an experimental study at Philips Research by Herzog in 2008 [125].

7.1.1 Working principle

Fig. 7.1-(a) shows a schematic cross section of a liquid-crystal GRIN lens integrated in
a 3D display. The optical configuration consists of two parallel transparent substrates
with a liquid-crystal layer in between placed in front of a display. Recall that in a 3D
display the distance between the lenses and the pixel plane of the display should be
approximately the focal length of the lenses (see also Fig. 1.6-(b)). Both substrates
are provided with a poly-imide (PI) layer (see also Section 6.2) to obtain the preferred
alignment of the liquid-crystal material in the absence of an electric field: the y-direction.
One of the substrates is provided with a transparent (ITO) electrode structure. This
electrode structure consists of line electrodes with their long axis in the x-direction.
When a voltage is applied to the electrodes, there is an electric field inside the liquid-
crystal layer in the yz-plane. As a consequence, the liquid-crystal molecules align along
the (curved) electric field lines, occupying the lowest possible energy state. As a result,
there is a gradient in the liquid-crystal profile.

When a collimated beam of light (polarized in the yz-plane) enters the liquid-crystal
layer, light rays are deflected from their original direction of propagation. The light
rays are converging and we observe a positive lens effect. This is because we consider
liquid crystal with positive anisotropy, i.e. ne > no. To understand this, we consider
the effective index of refraction corresponding to a light ray propagating in the vertical
z-direction. The effective index of refraction is defined as the wave normal amplitude
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Figure 7.1: Schematic working principle of a liquid-crystal GRIN lens inte-
grated in a 3D display. Fig. (a) shows a liquid-crystal layer be-
tween two transparent substrates. The figure shows one unit cell,
which is repeated in the y-direction (see also Fig. 1.6). An ITO
electrode structure induces an electric field along which the liquid
crystal molecules align (indicated by the black stripes). In (b), we
show how the effective index of refraction typically varies with po-
sition between no and ne, with ne > no. The propagating wave
front of an incident plane wave (polarized in the yz-plane) is de-
picted in (c). The ray paths that correspond to these wave fronts
are depicted in (d). Ideally, the ray paths focus at a distance f in
the pixel plane of the display.
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|p| of a light ray inside the liquid crystal (see also Eq. 2.33). Fig. 7.1-(b) shows how
the effective index of refraction (neff = |p|) typically varies with the position y. Since
neff changes with position, an incident plane wave front is transformed to a curved wave
front, as can be seen in Fig. 7.1-(c). Since ne > no, the portion of the wave front in
the center of the lens is delayed with respect to portions of the wave front further away
from the center. As a result, the corresponding light rays are converging towards a focal
point, as depicted in Fig. 7.1-(d). In the ideal case, all light rays intersect at the focal
distance f in the pixel plane of the display and then the angle of refraction ϑout satisfies

tanϑout =
y

f
, (7.1)

where y = 0 is defined at the center of the lens. Note that if ϑout � 1, it is a linear
function of the position y. In multi-view 3D displays, the lenses are designed slightly out
of focus with the pixel plane. This is desired to obtain a uniform angular light intensity
distribution of the display, without compromising the 3D performance (see also [27], p.
3).

7.1.2 Experimental results of an advanced GRIN lens structure

At Philips Research, a number of attempts have been made to construct liquid-crystal
GRIN lens structures. These structures consist of an array of GRIN lenses that should
resemble the functionality of a switchable lenticular, discussed in Chapter 6. In what
follows, we will discuss experimental results obtained by Herzog [125] of the optical prop-
erties of an advanced GRIN lens structure.

A schematic cross section of the liquid-crystal GRIN lens structure is depicted in Fig.
7.2. This advanced optical design (patented in [126]) of the GRIN lens structure is based
on the results of previous studies on GRIN lenses (cf. [112], p. 852). One important
issue investigated in these studies is the optimization of the active liquid-crystal region
between two neighboring line electrodes that produces a desired lens effect. The problem
is that in the neighborhood of the electrodes the liquid crystal does not align properly
along the electric field lines. Hence the liquid crystal in these particular regions does not
contribute to the desired lens action. In [127], it is concluded that the active region of
a liquid-crystal GRIN lens is increased if 1) the distance between the electrodes and the
liquid-crystal layer is increased by adding an extra dielectric transparent layer and 2) a
grounded ITO electrode layer is added parallel to the electrode wire structure on top of
a second dielectric transparent layer (see Fig. 7.2). These features improve the electric
field distribution inside the liquid-crystal layer and thus the lens performance. In [128], it
is investigated how the performance of such a GRIN lens depends on various parameters.
There it is concluded that the relative dielectric permittivity of the two dielectric layers
should be in the range of common glass (3.0 ≤ εr ≤ 5.0). In addition, for a lens pitch of
166 µm, the thickness of the two dielectric layers should be in the order of 50 µm. The
width of the ITO electrodes is 10 µm.

With the advanced optical design discussed above, the active region of a GRIN lens
is approximately 60% of the lens pitch (100 µm) with a focal distance f of approximately
1.8 mm in glass. Then the optical properties are close to the desired performance for
application in an auto-stereoscopic 3D display.



109

Figure 7.2: Schematic cross section of the advanced design of a liquid-crystal
GRIN lens structure. The liquid crystal that is used is TL213, for
which no = 1.5271 and ne = 1.7659.

The angle of refraction ϑout (see Eq. 7.1) for light at normal incidence has been
measured in an experiment [125]. These measurements will be discussed to show the
working principle and provide a reference for the lens action for light at normal incidence.

In the experimental setup, a focussed laser beam scans the lens pitch of the liquid-
crystal GRIN structure (y-direction in Fig. 7.1). Then the position and intensity of the
refracted laser light is detected by a CCD camera. From these data the desired angle
of refraction ϑout is calculated. The spot size in the waist of the focussed laser beam
is (24 ± 5) µm while the pitch of the lens is 166 µm. This means that close to a line
electrode between two GRIN lenses the laser beam can be split into two beams with
different directions. Moreover, as discussed above, the liquid-crystal profile close to the
line electrodes does not contribute to the desired lens effect. Then the light spot on the
CCD camera is too wide to accurately determine the corresponding position. Because of
these effects, the measurements near the line electrodes produce inaccurate results.

Fig. 7.3 shows the measured angle of refraction ϑout as a function of position for
an angle of incidence ϑin = 0◦. In the experiment a voltage of approximately 100 V
(AC) is applied to the electrodes. From the figure we can see that in the region where
|y| ≤ 45 µm, ϑout is approximately a linear function of y. This result is in agreement
with Eq. 7.1, since ϑout � 1 radians. The linearity is indicated by the dashed line for
which ϑout = −0.85 mrad/µm. In the region where |y| > 45 µm, ϑout is inaccurate
because close to the electrodes light is scattered in various directions. For simplicity, the
angle ϑout will be approximated by an average: ϑout = ±38.25 mrad. Fig. 7.4 shows the
experimental results for different angles of incidence ϑin. Here the difference ϑout − ϑin
(in air) is plotted against the position y for ϑin = 0◦, ..., 40◦ with a step size of 10◦. From
the results we can conclude that the linearity of ϑout decreases with increasing ϑin.

In the following sections, we will investigate the angular dependence of the lens effect
of the liquid-crystal GRIN structure discussed. We will do this with the help of our
Hamiltonian method and the Huygens method. First, we will briefly discuss the Huygens
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Figure 7.3: Measured angle of refraction ϑout (in air) as a function of the po-
sition y (solid curve) [125] for the GRIN lens defined in Fig. 7.2.
In the region where |y| ≤ 45 µm, ϑout is approximately a linear
function of y: ϑout = −0.85 mrad/µm (dashed line). In the region
where |y| > 45 µm, the measurement is inaccurate.

Figure 7.4: Measured angle of refraction ϑout as a function of the position y
[125] for different angles of incidence ϑin (0◦ − 40◦).
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method.

7.2 Huygens method

The Huygens principle applied to an anisotropic liquid-crystal layer is derived in the
paper of Kraan [106]. In this section, we will discuss the basic principle of the Huygens
method and refer to the paper of Kraan for further details.

In the Huygens method the propagation of light rays in the lateral y-direction is
assumed negligible inside the liquid-crystal layer. This means that effectively, the thick-
ness of the liquid-crystal layer is assumed to approach zero. This is a fair approximation,
since the ratio between the thickness and lens pitch of the liquid-crystal layer is ( 12

166 =)
0.072. The method attributes an effective index of refraction to each position y of the
liquid-crystal layer. This is achieved by averaging the effective index of refraction over
the vertical z-direction for each position y. As a result, the Huygens method does not
take into account the inhomogeneous material properties in the vertical z-direction. In
principle, the Huygens method discussed is an extension of Snell’s law for application to
liquid-crystal GRIN lenses.

For each position r inside the liquid crystal there is a director d̂. We assume that

Figure 7.5: Evolution of the Huygens spheres in a liquid-crystal layer. The
Huygens spheres evolve differently at the positions y and y + dy
since at these positions the averaged effective index of refraction
n̄eff(y) varies over the distance dy. The figure shows an incident
plane wave with an angle of incidence ϑin and the corresponding
emerging plane wave with an angle of refraction ϑout. Here it is
assumed that n̄eff(y) < n̄eff(y + dy). The liquid-crystal layer has a
thickness h and the index of refraction of the two glass substrates
is indicated by nglass.



112

the director, the direction of propagation and the polarization of the light are all par-
allel to the yz-plane. Hence light rays inside the liquid crystal are extraordinary. For
extraordinary rays, we have (see Eq. 4.13)

He(r,p) = n2
o|p|2 + (n2

e − n2
o)(p, d̂)2 − n2

en
2
o = 0. (7.2)

With p = |p|p̂ = neffp̂, Eq. 7.2 gives the effective index of refraction

neff(r,p) =

√√√√√ n2
on

2
e

n2
o

[
1− (p̂, d̂)2

]
+ n2

e(p̂, d̂)2
. (7.3)

Note that p̂ denotes the direction of propagation inside the liquid-crystal layer. For a
fixed position y and direction of propagation p̂, we can average the effective index of
refraction over the vertical direction z. Then the average effective index of refraction is
given by

n̄eff(y) =
1
h

∫ h

0

neff(r)dz, (7.4)

where h is the thickness of the liquid-crystal layer.
Fig. 7.5 shows the geometry of a liquid-crystal GRIN lens with the relevant parame-

ters indicated. We consider an incident plane wave with an angle of incidence ϑin. The
figure shows the Huygens spheres at position y and y + dy. The Huygens spheres evolve
differently at these two positions since the effective index of refraction varies over the
distance dy. The emerging plane wave has an angle of refraction ϑout. A temporal anal-
ysis of the evolution of the Huygens spheres leads to a relation between the angles ϑin
and ϑout (cf. [106], p. 3469, Eq. 8):

nglass sinϑout = nglass sinϑin + h
dn̄eff(y)
dy

, (7.5)

where nglass is the index of refraction of the top and bottom glass substrates. The sec-
ond term in Eq. 7.5 is an additional term to Snell’s law in the presence of a gradient
in the index of refraction in the y-direction. In addition, we remark that n̄eff(y) is a
function of ϑin. This is because the direction of propagation p̂ inside the liquid crystal
is a function of the angle of incidence ϑin. With the help of the theory at anisotropic in-
terfaces discussed in Chapter 3, we calculate p̂ inside the liquid crystal and solve Eq. 7.5.

In the following sections, we will use the Huygens method to investigate the angular-
dependent properties of the GRIN lens structure presented in Fig. 7.2.

7.3 Ray-tracing simulations based on experimental re-
sults

In this section, we first calculate the liquid-crystal director profile from the measurement
presented in Fig. 7.3. We will do this with the help of the (reverse) Huygens method
discussed in the previous section. Then the resulting director profile is inhomogeneous in
the lateral y-direction, but not in the vertical z-direction. Secondly, using the calculated
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director profile, we will investigate the angular-dependent optical properties of the GRIN
lens structure. We will do this with the help of the Huygens method and the Hamiltonian
method. At first sight it may seem strange to use the Hamiltonian method with a profile
obtained with the Huygens method. However, the Hamiltonian method allows light rays
to be curved inside the liquid-crystal layer whereas the Huygens method does not take
into account this effect.

7.3.1 Averaged director profile

With the help of the Huygens method and the experimental result depicted in Fig. 7.3,
we will calculate the liquid-crystal director profile of the GRIN lens structure.

First, we calculate n̄eff(y) using Eq. 7.5 and ϑout(y). Note that ϑout(y) in Fig. 7.3
applies in air. Then, with the help of Snell’s law, Eq. 7.5 is rewritten for light at normal
incidence (ϑin = 0) in air (nair = 1):

sinϑout(y)
h

=
dn̄eff(y)
dy

. (7.6)

The averaged effective index of refraction n̄eff(y) can be obtained by integrating Eq. 7.6
on both sides. Then, for ϑin = 0◦, we have

n̄eff(y) =
1
h

∫ y

0

sinϑout(y)dy + ne, (7.7)

since at the position y = 0 we have n̄eff(0) = ne (see Fig. 7.1-(b)). Fig. 7.6 shows n̄eff(y)
in case ϑout(y) is given by the dashed line in Fig. 7.3: ϑout(y) = −0.85 mrad/µm for
|y| ≤ 45 µm and ϑout(y) = ±38.25 mrad for |y| > 45 µm. In addition, we consider a
liquid crystal with indices no = 1.5271 and ne = 1.7659.

Secondly, we calculate the averaged director d̂(y) using Eq. 7.3. Since we consider
light at normal incidence, p̂ is in the vertical z-direction (both in air and in the liquid-
crystal layer). Then the inner product between p̂ and d̂(y) satisfies

(p̂, d̂) = (ẑ, d̂) = cosα, (7.8)

with α the angle between the vertical direction ẑ and the director d̂. Hence for a certain
value of n̄eff we calculate the corresponding value for α satisfying Eq. 7.3. The calculation
is performed numerically with the Newton-Raphson method (cf. [90], p. 355). The re-
sult is depicted in Fig. 7.7. Then the averaged director is given by d̂(y) = (0, sinα, cosα).

With the help of the calculated averaged director profile we will investigate the
angular-dependent optical properties of the liquid-crystal GRIN lens structure. In what
follows, we will present the results obtained from the Huygens method and the Hamilto-
nian method.

7.3.2 Huygens method

With the help of the director profile d̂(y) (see Fig. 7.7) and the Huygens method we
calculate the angle ϑout(y) in air for an incident plane wave at different angles of incidence
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Figure 7.6: n̄eff as a function of y calculated from the experimentally obtained
result depicted in Fig. 7.3. At the position y = 0, the value for
n̄eff is the extraordinary index of refraction ne = 1.7659.

Figure 7.7: The angle α (in degrees) between the director d̂ and the vertical
z-direction (i.e. the direction of propagation p̂) as a function of
the position y. Then the director is given by d̂ = (0, sinα, cosα).
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Figure 7.8: Ray-tracing results of the Huygens method for ϑout(y) − ϑin for
ϑin = 0◦, ..., 60◦ with steps of 10◦. Clearly, the linearity of ϑout
decreases with increasing ϑin. The angle ϑout for ϑin = 0◦ perfectly
matches the dashed line depicted in Fig. 7.3. This is because the
averaged director d̂(y) used in the calculations is derived from the
Huygens method itself.

ϑin. Note that the position y indicates the position where the light enters the liquid-
crystal layer between two line electrodes. Fig. 7.8 shows the result for ϑin = 0◦, ..., 60◦

with steps of 10◦. As expected, the simulated and experimental ϑout(y) (see Fig. 7.3)
match perfectly for ϑin = 0◦. This is because the averaged director d̂(y) used in the
simulations is derived from the Huygens method itself. With ϑin increasing, the linearity
of the angle ϑout with the lateral position y gets weaker. As a result, the incident light is
not focussed properly for high values of ϑin. In other words, the light emerging from the
pixel plane of a 3D display is not perfectly collimated as depicted in Fig. 7.1-(d). The
imperfections discussed are not a problem for the performance of a 3D display. Recall
that in Subsection 6.1.2, we concluded that a lenticular slightly out of focus with the pixel
plane results in a reduced modulation depth in the total angular intensity distribution of
a 3D display. However, the pixel plane should not be too much out of focus, since then
the 3D performance will decrease. In Fig. 7.8 the lens effect appears to be acceptable
for viewing angles less than 30◦. This will be discussed further later in this chapter.

7.4 Ray-tracing simulations based on a simulated di-
rector profile

In the following exercise, we simulate the director profile to calculate the angular-
dependent optical properties of the GRIN lens structure depicted in Fig. 7.2. The
resulting numerical director profile is inhomogeneous in both the y- and z-direction.
In this section, we investigate the angular-dependent behavior of the liquid-crystal lens
structure in three different cases: 1) the Hamiltonian method applied to the simulated
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director profile d̂(y, z), 2) the Hamiltonian method applied to the averaged simulated
director profile d̂(y) and 3) the Huygens method applied to the averaged director profile.

7.4.1 Simulated director profile

With the definition of the optical configuration depicted in Fig. 7.2, we simulate the
director profile of the liquid-crystal layer between two line electrodes. The director
profile is calculated numerically with the optical analysis software program LCD Master
[114]. It was found that in the simulations a voltage of 200 V is needed to produce the
same lens action as obtained in the experiment at 100 V. The explanation for this is
subject to debate. However, the main result here is that we now have a director profile
for the specific optical configuration of Fig. 7.2 that produces a lens action verified by
experimental results. The properties of the liquid crystal (TL213 mixture) that we use
in the simulations are listed in Table 1.1. There the values of the elastic constants K11,
K33, the static dielectric permittivity 4ε = ε|| − ε⊥ and the viscosity γ of the liquid
crystal are indicated. These material properties are important input parameters for the
LCD Master program.

The resulting numerical director profile is depicted in Fig. 7.9. Clearly, the director
profile is inhomogeneous in both the y- and z-direction. Note that the director is forced
to align in the y-direction along the interfaces at z = 0 µm and z = 12 µm.

When we average the director profile over the thickness h of the liquid-crystal layer,
we obtain the profile depicted in Fig. 7.10. Note that the profile is inhomogeneous in the

Figure 7.9: Simulated director profile d̂(y, z) of the liquid-crystal layer defined
by the optical configuration depicted in Fig. 7.2. The result is
obtained using the simulation program LCD Master [114]. The
director profile is inhomogeneous in both the y- and z-direction
and can be used for the Hamiltonian method.
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Figure 7.10: The resulting director profile d̂(y) when averaged over the vertical
z-direction. This director profile can be used for both the Hamilto-
nian method and the Huygens method.

y-direction but not in the z-direction. Moreover, the director is no longer aligned along
the interfaces.

7.4.2 Huygens method

In this subsection, we apply the Huygens method to the numerical director profile d̂(y)
depicted in Fig. 7.10. First, we calculate the refracted wave normal in the liquid-crystal
layer with the help of the classical theory on anisotropic interfaces discussed in Chapter
3. Then we use Eqs. 7.3 and 7.4 to calculate n̄eff(y) and apply Eq. 7.5. Fig. 7.11 shows
the result for ϑout(y) for ϑin = 0◦, ..., 50◦, with steps of 10◦. The figure also shows the
experimental result for ϑin = 0◦ (dashed line). From the figure we conclude that for
ϑin = 0◦ in the region of y = 0 µm the slope (angular change per unit length) of ϑout(y)
is slightly smaller than the slope of the experimentally obtained result. In other words,
the Huygens method predicts a lens effect that is slightly weaker than the lens effect
obtained from the experimental characterization.

Finally, Fig. 7.12 shows the averaged effective index of refraction for various values
of ϑin. Clearly, the maximum of the parabolic curve is shifted to the left for increasing
angle of incidence. In fact, the position y in Fig. 7.12 for which n̄eff = ne is equivalent
to the position y in Fig. 7.11 for which ϑout − ϑin = 0.

7.4.3 Hamiltonian method applied to averaged director profile

Next, we apply the Hamiltonian method to the averaged director profile d̂(y) depicted
in Fig. 7.10. After we have calculated the refracted wave normal at the liquid-crystal
interface at z = 0 µm we use the Hamiltonian method to calculate the curved ray path
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Figure 7.11: Ray-tracing results of the Huygens method for ϑin = 0◦, ..., 50◦,
with steps of 10◦. The experimental result for ϑin = 0◦ is also
depicted (dashed line).

Figure 7.12: The averaged effective index of refraction n̄eff as a function of y
for ϑin = 0◦, 20◦ and 40◦.
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inside the liquid-crystal layer. At z = 12 µm we calculate the refracted wave normal and
the angle ϑout. The ray-tracing results are depicted in Fig. 7.13 (solid curves) together
with the results of Fig. 7.11 (dashed curves). Similar to the conclusion for the Huygens
method, the lens effect according to the Hamiltonian method for ϑin = 0◦ is slightly
weaker than the lens effect observed in the experimental characterization. In addition,
the Huygens method and the Hamiltonian method produce similar results. However, we
can see that the difference between the Hamiltonian method and the Huygens method
increases if ϑin increases. The reason for this can be explained as follows.

When we apply the Hamiltonian method the ray paths of light rays are curved inside
the liquid-crystal layer. Then the deflection of light rays from their original direction of
propagation (at z = 0 µm) increases with the optical path length inside the liquid-crystal
layer and thus with the angle ϑin. This can be seen when we compare the curves in Fig.
7.13 for ϑin = 50◦. These curves have a minimum at approximately y = 40 µm. The
minimum for the Hamiltonian method is −0.06 radians whereas the minimum for the
Huygens method has a value above −0.06 radians. Moreover, the slope of the curve
obtained from the Hamiltonian method exceeds the slope of the curve obtained from the
Huygens method. Then we conclude that the Hamiltonian method predicts a stronger
lens action than the Huygens method.

For an angle of incidence ϑin smaller than approximately 40◦, we conclude that the
results of both the Huygens and the Hamiltonian method are equivalent. In addition to
this, we conclude that the Hamiltonian method predicts a stronger lens effect than the
Huygens method for angles of incidence approximately above 40◦.

Figure 7.13: Ray-tracing results of the Hamiltonian method applied to the aver-
aged director profile depicted in Fig. 7.10 (ϑin = 0◦, ..., 50◦ with
steps of 10◦). The results are presented together with the results of
Fig. 7.11. The experimental result for ϑin = 0◦ is also depicted.
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7.4.4 Hamiltonian method

Finally, we apply the Hamiltonian method to the simulated director profile d̂(y, z) de-
picted in Fig. 7.9. This time, for ϑin = 0◦, there is a good match between the experi-
mental lens effect and the lens effect according to the ray-tracing results, as can be seen
in Fig. 7.14. For approximately ϑin ≥ 10◦, the lens effects depicted in Fig. 7.14 (solid
curves) are significantly stronger than the lens effects obtained from the averaged direc-
tor profile (dashed curves). This is due to the fact that the numerical director profile in
Fig. 7.9 is inhomogeneous in both the y- and z-direction. This means that locally, the
gradients in the index profile of the liquid crystal are higher and ray paths of light rays
are converged more strongly.

Fig. 7.15 and Fig. 7.16 show ϑout(y) according to the experimental characterization,
the Huygens method and the Hamiltonian method for ϑin = 20◦ and for ϑin = 40◦, re-
spectively. From the results we can conclude that both the Huygens and the Hamiltonian
method are in good agreement with the experimental results in the region where |y| ≤ 45
µm (active region of the GRIN lens). However, the discrepancies between model and
experiment increase with the distance from the center (y = 0 µm). The discrepancies
between model and experiment also increase with increasing ϑin. This is because for
high values of ϑin, light rays entering the active region of the liquid-crystal GRIN lens
(|y| ≤ 45 µm) can penetrate the region close to the line electrodes (|y| > 45 µm). These
observations can be explained in view of two effects. On the one hand, the properties

Figure 7.14: Ray-tracing results of the Hamiltonian method applied to the direc-
tor profile d̂(y, z) depicted in Fig. 7.9 for ϑin = 0◦, ..., 50◦, with
steps of 10◦. The results are presented together with the results of
Fig. 7.11. The experimental result for ϑin = 0◦ is also depicted.
Clearly, the Hamiltonian method predicts a stronger lens effect than
the Huygens method does.
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Figure 7.15: Ray-tracing results of the Hamiltonian method and the Huygens
method compared with the experimental result for ϑin = 20◦.

Figure 7.16: Ray-tracing results of the Hamiltonian method and the Huygens
method compared with the experimental result for ϑin = 40◦.
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Figure 7.17: Ray paths of light rays in the glass cover plate for incident plane
waves with ϑin = 0◦, ..., 50◦ with steps of 10◦. The light rays for
ϑin = 0◦ are focussed in the pixel plane at approximately z = 1800
µm. The lens action for oblique angles of incidence decreases with
ϑin.

of the liquid crystal in the region of the line electrodes are not well defined, since the
liquid crystal does not align properly along the electric field lines. On the other hand,
the simulated director profile is prone to errors close to the line electrodes, since there
the electric field changes rapidly per unit length.

From these conclusions, we cannot immediately deduce how the lens performance
affects the 3D performance. Therefore, we have simulated the optical performance of
the GRIN lens structure near the pixel plane of the underlying display. Fig. 7.17 shows
the ray paths of light rays for ϑin = 0◦, ..., 50◦ with steps of 10◦. The light rays for
ϑin = 0◦ are deflected by the GRIN lens structure and are focussed in the pixel plane
at approximately z = 1800 µm. Clearly, the lens action of the GRIN structure decreases
with the angle of incidence: for angles of approximately 30◦ and higher, the lens action
has become significantly weaker. At 30◦, the light spot at the pixel plane is 100 µm
while the width of a sub-pixel is typically 85 µm. Then the light spot at the pixel plane
partially covers two neighboring pixels of the LCD. As a result, for viewing angles larger
than approximately 30◦ two neighboring views (see Figs. 6.2 and 6.4) have too much
overlap compromising the 3D performance.
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7.5 Conclusions

We have investigated the angular-dependent optical behavior of an advanced liquid-
crystal GRIN lens structure. This GRIN lens structure is designed for application in
switchable auto-stereoscopic 3D displays and is equivalent to the functionality of a switch-
able lenticular.

To model the angular-dependent optical properties of the liquid-crystal GRIN lens
structure, we have used the Huygens method and the Hamiltonian method. The Huygens
method is based on a one-dimensional approach: it only accounts for the inhomogeneous
material properties in the lateral direction. This is a fair approximation since the ratio
between the thickness and the lens pitch is much smaller than one (0.07). In contrast with
the Huygens method, the Hamiltonian method takes into account the full inhomogeneous
material properties of the liquid crystal.

The director profile of the advanced liquid-crystal GRIN lens structure has been
calculated in two different ways. First, an averaged director profile has been calculated
from experimental results. This has been done by applying the Huygens method in
reverse. Then the resulting director profile only varies in the lateral direction of the GRIN
lens. Secondly, a numerical director profile has been simulated using LCD Master. This
numerical director profile is inhomogeneous in two dimensions. The resulting director
profiles have been used for the Huygens method and the Hamiltonian method.

Based on the ray-tracing simulations, we conclude that the lens action of the ad-
vanced GRIN lens structure decreases with increasing angle of incidence. Moreover, the
difference between the Hamiltonian method and the Huygens method increases with in-
creasing angle of incidence. This is due to the fact that in contrast with the Huygens
method, the Hamiltonian method incorporates the fact that ray paths of light rays are
curved.

The regions near the line electrodes have relatively high gradients in the liquid-crystal
profile. In theory, these regions are appropriate to visualize the difference between the
Huygens method and the Hamiltonian method. However, in these specific regions, the
liquid crystal inside the GRIN lens structure does not align properly along the electric
field lines. As a result, the liquid crystal does not contribute to the desired lens action
above the line electrodes. In addition, the simulated numerical director profile is prone to
errors in the region of the line electrodes. Therefore both the theoretical and experimental
results are inaccurate in these regions.

From the ray-tracing results we conclude that for small viewing angles in a 3D display,
the light from the pixel plane is well collimated by the GRIN lens structure. For large
viewing angles of approximately 30◦ and higher, the lens action of the GRIN lens is
significantly weaker. At 30◦, the light spot at the pixel plane is 100 µm while the width
of a sub-pixel is 85 µm. Then the 3D performance of the 3D display is compromised.
This is an important reason why the application of liquid-crystal GRIN lenses in 3D
displays for high viewing angles is still in need of further research. The general approach
and advanced ray-optics analysis procedures presented in this paper form a useful tool
in the search for improvements and enable a better understanding of the liquid-crystal
technology discussed.
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Chapter 8

Ray-tracing simulations and
applications of liquid-crystal
beam control devices

The Hamilton equations and the ray-tracing procedure discussed in Chapters 3 and 4
enables the calculation of the optical properties of arbitrary inhomogeneous anisotropic
optical systems within the geometrical-optics approach. The ray-tracing formulas dis-
cussed can be applied once the properties of a medium are defined. In addition, the
ray-tracing procedure is easy to implement in a ray-tracing simulation program. In this
chapter, we will show that the Hamiltonian ray-tracing procedure implemented in a sim-
ulation program facilitates the modeling of complex inhomogeneous anisotropic optical
systems. We focus our attention to inhomogeneous liquid-crystal configurations and
discuss two intriguing examples.

First we will introduce simulations of a novel liquid-crystal-based electro-optical de-
vice that enables a switching effect due to a back reflection phenomenon [129]. In the
simulations, we exploit the optical properties of a liquid-crystal configuration with a spe-
cial director profile. We will show that a two-dimensional gradient in a liquid-crystal layer
applied between two parallel mirrors enables a back reflection phenomenon in which the
direction of propagation of extraordinary light rays is reversed. Possible applications of
the liquid-crystal device can be found in, but are not restricted to, optical communication
systems and lighting applications.

In a second example, we investigate the optical properties of the liquid-crystal-based
optical element discussed in Subsection 1.2 [130]. This optical system enables the active
control of guiding and local extraction of polarized light.

8.1 Ray-tracing simulations of a liquid-crystal-based
electro-optical switch

In this section we present ray-tracing simulations of a novel electro-optical device that
enables a back reflection phenomenon. The back reflection phenomenon occurs when light
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is propagating in a special liquid-crystal configuration. This liquid-crystal configuration
is a Freéderickz alignment. As an introduction, we discuss the Freéderickz alignment
and its mathematical formulation. Then we apply the Freéderickz alignment in a special
liquid-crystal configuration and present ray-tracing simulations that support the working
principle of the electro-optical device.

8.1.1 The Freéderickz alignment

Liquid crystal can be controlled by external electric (and magnetic) fields. Interactions
between boundaries and liquid crystal also have a large controlling effect. Often, the
influence of the boundaries opposes the response to an electric field. The result is a
threshold phenomenon called the Freédericksz transition. Fig. 8.1 shows a Freédericksz
alignment of a liquid crystal layer in which the local optical axis (indicated by the direc-
tor d̂) is rotated towards the direction of an external electric field E. In what follows,
we discuss Freédericksz alignments that show bend and splay deformations and no twist
deformations of liquid crystal.

We consider a simple geometry, defined by two parallel glass plates, separated by a
distance h, as depicted in Fig. 8.1. The space between the glass plates is filled with
liquid crystal. In the xz-plane, the director d̂ tends to align itself in the x-direction
parallel to the glass surfaces. When an electric field is applied in the z-direction the
liquid crystal deforms. In order to describe the deformation profile of the liquid crystal,
we will minimize the total free energy of the liquid crystal in the presence of an electric
field.

The free elastic energy density of a deformed nematic liquid crystal in terms of the
director d̂ is given by (cf. [9], p. 32)

U =
1
2
K11(∇ · d̂)2 +

1
2
K22(d̂ · ∇ × d̂)2 +

1
2
K33(d̂×∇× d̂)2, (8.1)

where K11, K22 and K33 are elastic constants with which the associated splay, twist and
bend deformation energies scale. The total free energy per unit volume between the glass
plates is the sum of the deformation (no twist: K22 = 0) and electric field energies and
is given by (cf. [9], p. 200)

U =
1
2
K11(∇ · d̂)2 +

1
2
K33(d̂×∇× d̂)2 − 1

2
ε04ε(E · d̂)2, (8.2)

where 4ε = ε|| − ε⊥ and E represents the electric field vector. It is convenient to write
the director vector components as d̂x = cos θ(z), d̂y = 0 and d̂z = sin θ(z), where θ(z) is
the angle between d̂ and the x-axis. As a result, we can write Eq. 8.2 as

U =
1
2

[
K11 cos2 θ(z) +K33 sin2 θ(z)

](
dθ

dz

)2

− 1
2
ε04εE2 sin2 θ(z). (8.3)

By minimizing the free energy, it can be shown that θ(z) must satisfy the Euler equation
(cf. [9], p. 205). Substituting Eq. 8.3 into the Euler equation yields

K11
d2θ

dz2
+ ε04εE2 sin θ(z) cos θ(z) = 0, (8.4)
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Figure 8.1: Freédericksz alignment of a liquid-crystal layer applied between two
parallel glass plates separated by a distance h. The director d̂ is
rotated by an angle θ towards the direction of the electric field E.
The deformation of the liquid crystal is opposed by the influence of
the boundaries.

where we only have considered the dominant terms (assuming K33−K11
K11

� 1 and (dθdz )
2 �

1). Apparently, the distortion of the liquid crystal is dominated by splay deformation.
By introducing the variable ζ = z

h , Eq. 8.4 can be written as

ξ2h

(
d2θ

dζ2

)
+ sin θ(ζ) cos θ(ζ) = 0, (8.5)

where ξh is given by

ξ2h =
K11

h2ε04εE2
. (8.6)

Eq. 8.5 is a differential equation of which the solution θ(ζ) can be expressed in terms
of an elliptic integral. Since dθ

dζ = 0 at ζ = 1
2 , we define θm as the maximum value of θ

at ζ = 1
2 . In addition, K(m), with elliptic modulus m = sin2 θm, is the complete elliptic

integral of the first kind. With these definitions, we can calculate the electric field E
between the glass plates. From this, we calculate the potential difference, simply by
multiplying E with the distance h. Then the potential difference across the liquid crystal
layer is given by (cf. [9], p. 207)

V = 2K(m)
√

K11

ε0∆ε
. (8.7)

Also, there is a threshold voltage below which the liquid crystal remains undistorted,
given by

Vth = π

√
K11

ε0∆ε
. (8.8)

Above this threshold voltage, the director starts to rotate from its undistorted config-
uration towards the direction of the electric field. Note that the threshold voltage is
independent of the distance h.

Finally, we use the incomplete elliptic integral of the first kind to calculate θ(ζ): the
Freédericksz alignment. This integral is defined as F (φ,m) = 2K(m)ζ, where φ is the
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Figure 8.2: Deformation angle θ(ζ) for several values of Vr = V
Vth

. K11 is
estimated 10 pN and ∆ε is estimated 10 (at room temperature). In
this case, the threshold voltage Vth is 1.0558 V.

Jacobi amplitude (cf. [9], p. 208). Given the Jacobi amplitude φ(ζ), the angle θ(ζ) can
be written as

θ(ζ) = arcsin
(

sinφ sin θm

)
. (8.9)

Fig. 8.2 shows θ(ζ) for different voltages, expressed in terms of Vr = V
Vth

. If Vr = 1,
θ(ζ) = 0◦, whereas θ(ζ) = 90◦ if Vr →∞. It is important to realize that the liquid-crystal
profile depends on the dimensionless coordinate ζ = z

h only. The results are calculated
for a liquid crystal with K11 = 10 pN and ∆ε = 10. These values are realistic estimates
and yield a threshold voltage of 1.0558 V.

In the next subsection, we use the mathematical formulation of the Freédericksz
alignment to define a special liquid-crystal configuration that can be switched electrically
between two optical states.

8.1.2 Back reflection phenomenon in a liquid-crystal layer be-
tween two parallel mirrors

The Freédericksz alignment can be designed in such a way that it enables a back reflection
phenomenon when applied between two parallel mirrors. The concept discussed is novel
and in what follows, we will discuss the optical configuration and present ray-tracing
simulations confirming the back reflection phenomenon.

Before we go into details, a few instructive remarks on the subject of light guides is in
place. In general, a light guide is an optical device which has the ability to ’guide’ light.
For example, optical fibers are light guides designed to guide light along its length. Also,
gradient-index fibers are optical fibers whose core has a refractive index that decreases
with increasing radial distance from the fiber axis. Gradient-index fibers are designed in
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Figure 8.3: Principle of gradient-index fibers. In (a), the optical properties are
inhomogeneous isotropic. Here the index of refraction decreases
with increasing distance from the fiber axis. In (b), the optical
properties are inhomogeneous anisotropic according to the director
profile depicted in Fig. 8.1. In both optical systems, light rays
follow oscillatory ray paths down the fiber.

such a way that light rays follow oscillatory ray paths down the fiber, as depicted in Fig.
8.3-(a). Fig. 8.3-(b) also shows a gradient-index fiber, but this time the optical properties
are anisotropic according to the director profile depicted in Fig. 8.1 (the Freédericksz
alignment). For light rays polarized in the xz-plane, the effective index of refraction is
similar to the index profile of the isotropic gradient-index fiber depicted in Fig. 8.3-(a).
Hence the functionality of the anisotropic gradient-index lens is the same and light rays
follow oscillatory ray paths down the fiber. Finally, we remark that in contrast with the
optical fiber depicted in Fig. 8.3-(a), the anisotropic optical fiber is not cylindrical.

We consider the liquid-crystal layer of Fig. 8.1. We assume that the thickness h
is at least in the order of 20 wavelengths or more. Then the properties of the liquid
crystal change slowly over the distance of a wavelength and the use of the Hamiltonian
method is justified. An incident light ray is linearly polarized in the xz-plane (TM mode)
and propagates in the positive x-direction. At (x, z) = (0, h2 ) the light ray is injected
in the liquid-crystal layer. Hence, the resulting light ray in the liquid-crystal layer is
extraordinary and then the Hamilton equations given by Eqs. 4.26-4.29 can be applied.
We simulate a nematic liquid crystal with no = 1.5266 and ne = 1.8181 (Merck BL009
mixture). We estimate K11 = 10 pN and ∆ε = 10, yielding Vth = 1.0558 V. We define
h = 5 and the ray path is calculated with the first-order Runge-Kutta method with
step size ∆τ = 0.001. Fig. 8.4 shows the result for the extraordinary ray path for four
different values of Vr = V

Vth
= 2

πK(m). For example, the ray path for Vr = 1 in Fig.
8.4-(a) corresponds to a potential difference of V = Vth and θmax = 0 radians whereas
Vr = 1.1803 in Fig. 8.4-(d) corresponds to a potential difference of V = 1.2461 V and
θmax = π

4 radians.
From Fig. 8.4 we can conclude that the ray path is oscillatory: the optical system

shows a light-guiding behavior. Moreover, the angle at which the light is refracted at
(x, z) = (0, h2 ) increases with Vr since θm increases with Vr. As a result, we can expect
that the period of the ray path decreases with increasing Vr. Fig. 8.4 shows that this
expectation is confirmed by the simulations.
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Figure 8.4: Ray paths of extraordinary rays for four different values of Vr. In
(a), Vr = 1. Here, the liquid crystal is homogeneous and the ray
path is a straight line. In (b), (c) and (d), Vr increases to 1.0062,
1.0252 and 1.1803, respectively. The ray paths are oscillatory and
the period decreases with increasing Vr.

Figure 8.5: Liquid crystal layer applied between two ideal parallel mirrors, sep-
arated by a distance h. In (a), V (x) ≤ Vth and d̂ = (1, 0). In (b),
V (x) = Vth + x

L (Vb − Vth), where L = 150 is the total length of the
optical system and Vb > Va.
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The light rays in Fig. 8.4 are modulated in the vertical z-direction, but not in the
horizontal x-direction due to the absence of a gradient in the x-direction in the director
profile. We can expect that a light ray is modulated both in the vertical and horizontal
direction if we induce an additional horizontal gradient. In what follows below, we will
show that these expectations are confirmed by our simulations.

Now let us consider a liquid-crystal layer applied between two parallel ideal mirrors
(100% reflectance). Similar to the configuration in Fig. 8.1, the corresponding director
profile d̂(x, z) is a Freédericksz alignment. This time, however, we apply a horizontal
gradient in the potential difference V = V (x) across the liquid-crystal layer. This can
be achieved with e.g. the application of a resistive electrode structure. As a result, the
director profile has an additional gradient in the horizontal direction. In Fig. 8.5, the
proposed optical design is depicted in two different situations. Fig. 8.5-(a) shows the
situation where V (x) ≤ Vth and d̂(x, z) = (1, 0). Hence, the properties of the liquid-
crystal layer are homogeneous. On the other hand, in Fig. 8.5-(b) we show the director
profile for which V (x) = Va+ x

L (Vb−Vth), where L = 150 is the total length of the optical
system, Va = Vth = 1.0558 V and Vb = 1.2461 V, corresponding to θmax = π

4 radians.
In this case, the director profile has a gradient both in the vertical and the horizontal
direction.

First, we will investigate the situation in Fig. 8.5-(a), where, at x = 0, an incident
extraordinary ray enters the liquid crystal at approximately 12◦ with the vertical z-
direction. This extraordinary ray is repeatedly reflected by the two ideal parallel mirrors
and propagates in the positive x-direction. Since the director profile d̂(x, z) = (1, 0), the
ray path of the light ray consists of straight lines. Fig. 8.6-(a) shows the ray path of the
extraordinary light ray inside the liquid crystal. Fig. 8.6-(b) shows the angle of reflection
ϕ inside the optical system as a function of the number of reflections. As expected, ϕ is
constant throughout the system. After approximately 145 reflections, the light ray leaves
the system at x = 150.

Secondly, we examine the configuration of Fig. 8.5-(b), where the light ray enters
the liquid crystal again at x = 0 at 12◦. The result is depicted in Fig. 8.7. The light
ray is reflected by the two ideal parallel mirrors and initially propagates in the positive
x-direction. Since in this case the director profile d̂(x, z) is inhomogeneous, the ray path
of the light ray is curved and affected in the horizontal direction. Due to the presence
of a lateral gradient in the liquid-crystal profile and the well-known fact that light bends
towards regions with high refractive index, ϕ decreases after each reflection, see Fig.
8.7-(b). After 120 reflections (x ≈ 75), ϕ is reduced to negative values. These negative
values for ϕ imply that the ray is now propagating in the negative x-direction. After 240
reflections, the light ray leaves the system at x = 0, as can be seen in Fig. 8.7-(a). From
these observations, we can conclude that the horizontal direction of propagation of the
ray is back reflected due to the lateral gradient in the director profile.

To realize an acceptable efficiency in a real application, we suggest the following
measures. For a high reflectivity of the mirrors, we suggest the use of dielectric stacks
with a reflectivity of 99.9 %, similar to mirrors used in laser cavities. Then, after 240
reflections, the total reflectivity is reduced to 78 % versus a reduction to below 1 %
for mirrors with 90 % reflectance. To minimize absorption and scattering, electrode
structures could be fabricated outside the liquid-crystal layer on top of the dielectric
stack. To optimize the optical response and minimize the number of reflections, the
birefringence ∆n = |ne−no| of the liquid crystal should be approximately 0.3 or higher.
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Figure 8.6: In (a), the ray path of the extraordinary light ray is depicted inside
the liquid-crystal layer as defined in Fig. 8.5-(a). In (b) the angle
of reflection ϕ of the ray path is constant. Eventually, the ray
leaves the system at x = 150.

Figure 8.7: In (a), the ray path of the extraordinary light ray is depicted inside
the liquid-crystal layer as defined in Fig. 8.5-(b). From (b), we
conclude that the angle of reflection ϕ decreases along the ray path:
the direction of propagation is reversed and the light ray leaves the
system at x = 0.
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Moreover, the gradients in the liquid crystal can be optimized with the thickness h and
the voltage V (x). With these suggestions, we believe that a total efficiency of 10 % or
higher is feasible.

In a three-dimensional design, the director is parallel to the xz-plane. Since the di-
rector has no gradient in the y-direction, light is not affected by the liquid crystal in the
y-direction. Therefore, the idea of multiple switches in parallel is possible and mainly
depends on the collimation of a light source and any residual scattering effects. In view
of this discussion, we point out the self confinement of spatial optical solitons in nematic
liquid crystal cells: in [131] simulations reveal an oscillatory self-confined light beam in
a 75 µm thick liquid-crystal cell, similar to the behavior presented in Fig. 8.4.

We have shown that a two-dimensional gradient in a liquid-crystal layer with a
Freédericksz alignment applied between two parallel mirrors enables a back reflection
phenomenon in which the direction of propagation of extraordinary light rays is re-
versed. As a result, the propagation direction of light in the proposed optical system can
be switched by means of an external electric field. Hence, the optical system behaves
like an electro-optical switch.

8.2 Ray-tracing simulations of a liquid-crystal-based
light guide structure

In this section, we discuss the working principle of a liquid-crystal-based light guide
structure. This liquid crystal light guide structure enables a controlled extraction of
polarized light by selectively applying a voltage to electrode structures. In addition, we
present ray-tracing results of the simulated optical properties of the liquid crystal light
guide structure. These results are intended to give the reader a first impression of the
optical behavior and potential use of the device discussed. In particular, our goal is to
show that the Hamiltonian method provides us with a tool to obtain an understanding
of the optical behavior of such a complex optical system.

8.2.1 Device principle

A schematic cross section of the device is depicted in Fig. 8.8 (xz-plane). The device
consists of two parallel glass plates with a liquid-crystal layer in between. The bottom
glass plate is equipped with a pattern of transparent conducting ITO (Indium Tin Oxide)
line electrodes with their long axis perpendicular to the plane of the figure (y-direction).
The glass plates are covered with alignment layers that orient the liquid crystal in the
y-direction, i.e. when there is no voltage applied to the electrodes. Then the optical
properties of the liquid crystal profile are homogeneous and the local optical axis of the
liquid crystal, indicated by the unit vector d̂(x, y, z) (the director), is given by d̂ =
(0,±1, 0). From the left the liquid-crystal device is illuminated by an unpolarized light
source. There, light is injected into the liquid-crystal layer and the glass plates. Due to
total internal reflection at the top and bottom glass-air interfaces, the injected light is
trapped and guided in the positive x-direction. In conclusion, when no voltage is applied
to the electrodes, the liquid-crystal device behaves like a light guide.

When a low voltage is applied to the electrodes, the liquid crystal aligns along the
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Figure 8.8: Working principle of the liquid-crystal light guide structure. When
a voltage is locally applied to the electrodes, the director d̂ aligns
along the electric field lines. TM-polarized light is affected by the
resulting local gradients in the liquid crystal and is extracted from
the device. TE-polarized light remains inside the device due to a
light guiding effect.

electric field lines and the director lies in the xz-plane (see Fig. 8.8). Then, the optical
properties of the liquid-crystal profile are inhomogeneous, i.e. the director d̂ depends
on the position inside the liquid-crystal layer. As a result, the light paths of light rays
inside the liquid crystal are curved. This is due to the fact that light bends towards
regions with high refractive index. However, the two-dimensional gradient in the liquid
crystal only affects light with a linear polarization in the xz-plane (TM polarization):
only extraordinary light rays are curved. Extraordinary light rays are deflected from
the linear trajectory in the liquid-crystal layer and can be extracted from the top and
bottom glass plates of the device. Ordinary light rays with a linear polarization in the
y-direction (TE polarization) are not affected by the gradients in the optical properties.
Hence the corresponding light paths are always straight lines. Similar to the case in which
d̂ = (0,±1, 0) (homogeneous alignment), ordinary light rays are trapped and guided by
the liquid-crystal device.

For the type of application we are interested in, the light guiding of ordinary rays is not
a desired effect when a voltage is applied to the electrodes. This problem can be overcome
if the ordinary rays are somehow recycled and transformed into polarization sensitive
light. This can be achieved by using, for example, depolarizing diffusing reflectors at one
or more sides of the liquid-crystal device. However, for simplicity, we do not take this
scenario into account and focus our attention to the optical response of extraordinary
light rays.

Summarizing, the liquid crystal light guide structure enables a controlled extraction
of TM-polarized light by selectively applying a voltage to the electrode structures. As
a result, the device enables local dimming and highlighting, a feature that is desired for
applications such as polarized backlight architectures [28].

8.2.2 Modeling aspects of the light guide structure

In order to model the optical properties of the liquid-crystal-based light guide structure,
we apply the Hamilton equations for extraordinary rays. Before the Hamilton equations
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Figure 8.9: Typical result of a director profile calculated by 2dimMOS. The
director is indicated by the bars and the contour lines represent
the equipotential lines. The director at the top is aligned in the
y-direction, whereas the director is in the xz-plane at the bottom of
the liquid-crystal cell. The period and height of the liquid-crystal
region are indicated by T and H, respectively. The width of the
electrodes and the inter-electrode distance are indicated by w and
t, respectively. In this particular case, T = 12µm, H = 6.4µm,
w = 3µm and t = 3µm.

can be applied, the director profile d̂ of the liquid crystal needs to be calculated. Numeri-
cal director profiles are produced by optical analysis software programs, like LCD Master
[114] or 2dimMOS [115]. We calculated the liquid-crystal profile obtained for one period
of the electrode structure. This period is defined as the liquid-crystal profile induced by
two electrodes: one electrode with a positive voltage and one with a negative voltage.
Fig. 8.9 shows a typical numerical director profile calculated by 2dimMOS. The dimen-
sions of the simulated liquid-crystal region are also indicated. The period and height are
indicated by T and H, respectively. The width of the electrodes and the inter-electrode
distance correspond to w and t, respectively. The periodical director profile is repeated
in the horizontal direction, hence producing a liquid-crystal cell as depicted in Fig. 8.9.

To simplify the modeling aspects, we assume that the electric field is strong enough
to induce a twist of 90◦ in the xy-plane: the director lies in the xz-plane. The assump-
tion that the director lies in the plane of the drawing is in good agreement with the
numerical results depicted in Fig. 8.9. The upper region of the director profile clearly
shows a twist and there the director has a component perpendicular to the plane of the
drawing. However, the gradients of the director in this region of the liquid-crystal layer
are not expected to affect the ray paths of light rays significantly. Therefore, in a good
approximation, the director can be assumed in the plane of the drawing: d̂y = 0. For the
moment, a two-dimensional approach is sufficient in order to obtain a good understanding
of the optical properties.

The illumination of the light guide structure is simulated by the injection of light rays
with initial positions and directions of propagation along the vertical edge: we define a
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Figure 8.10: The illumination is simulated by the injection of TM-polarized light
rays into the left side. The light rays exit the liquid-crystal cell
through the top, bottom and right side of the device. The angle of
refraction is indicated by the angle ϑ.

discrete set of initial values for the position and direction, as can be seen in Fig. 8.10.
In order to simulate the optical properties of the device we trace a sufficient number of
TM-polarized rays through the glass and liquid-crystal layer when a voltage is applied
to the electrodes. In the ray-tracing simulations, we also include the possibility that
rays can be totally reflected at the top and bottom glass-air interfaces (total internal
reflection). When this is the case, the ray tracing continues until the rays finally enter
the exterior of the device. In particular, we calculate the angle ϑ under which the light
is transmitted at the top and bottom glass-air interfaces of the liquid-crystal device (see
Fig. 8.10). In addition, we also calculate the light output from the side at the right. The
number of transmitted rays obtained for a certain angular range is a measure for the
light intensity. In this way, we obtain angular intensity distributions for the top, bottom
and right side of the device.

8.2.3 Ray-tracing results

In order to obtain an understanding of the optical behavior, we calculate the ray paths
of a number of rays when a voltage is applied to the electrode structure. In the ray-
tracing simulations we define an un-collimated light source that illuminates the light
guide structure from the left. This light source is modeled by injecting (TM-polarized)
light rays into the device at certain angles and positions. For each initial position r(τ0)
five rays are defined with an angle of incidence with respect to the horizontal axis at 60◦,
30◦, 0◦, −30◦ and −60◦ (see also Fig. 8.10). The initial positions of the rays (and the
corresponding vectors pe(τ0)) are distributed along the vertical rim of the device at 300
equidistant positions. The total amount of rays injected into the glass and the liquid
crystal is therefore 1500.

The position r(τ) and the vector pe(τ) of the rays inside the liquid crystal are calcu-
lated with the first-order Runge-Kutta method. For an arbitrary interval [τK , τK + ∆τ ],
with K ∈ N, the x- and z-components of the position and extraordinary phase velocity
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vector are given by

x(τK + ∆τ) = x(τK) +4τ ∂He

∂pex
(τK), (8.10)

z(τK + ∆τ) = z(τK) +4τ ∂He

∂pez
(τK), (8.11)

pex(τK + ∆τ) = pex(τK)−4τ ∂He

∂x
(τK), (8.12)

pez(τK + ∆τ) = pez(τK)−4τ ∂He

∂z
(τK), (8.13)

with the partial derivatives of He given by Eqs. 4.28 and 4.29. The step size 4τ that is
used in the simulations is 0.05.

The properties of the liquid-crystal material that we use in the simulations are listed
in Table 1.1. In this case, a BL009 mixture is used. Table 1.1 lists the elastic constants
K11, K22 and K33, the static dielectric permittivity 4ε = ε|| − ε⊥ and the viscosity γ of
the liquid crystal.

The thickness of the glass substrates is defined to be only 2 µm. This order of
magnitude is not realistic for the thickness of a glass substrate. However, in the first
approximations that we use, this is of little importance for the simulations since, for the
moment, we are mainly interested in the angular optical response of the device and not
so much in the position-dependent optical properties.

The numerical director profile d̂ calculated by 2dimMOS is given on the grid points
of a regular two-dimensional grid (see Fig. 8.9). In the simulations, the grid represents a
matrix of 7993 columns, corresponding to a length of 28 µm, and 321 rows, corresponding
to a height H of 6.4 µm. The width w of the electrodes and inter-electrode distance t
on the bottom glass substrate are both defined to be 4 µm. The voltage applied to
the electrodes is 5 V. The spatial resolution of the grid is limited and for an accurate
calculation of the ray path inside the liquid crystal, it is necessary to apply interpolation
techniques in order to obtain the director in intermediate space. Note that the order for
the interpolation of the director profile in intermediate space must be the order of the
Runge-Kutta method.

As mentioned before, we calculate the angular intensity distribution of the top, bot-
tom and right side of the light guide structure. The angular intensity distribution I
for the top side is depicted in Fig. 8.11-(a). The results are presented by a histogram:
each angular interval 4ϑ = 1◦ corresponds to a number of collected rays. From these
results we can conclude that the majority of the light that is transmitted at the top side
propagates at angles larger than 60◦. The remaining light is transmitted towards lower
angles. Moreover, for some light rays the angle ϑ is even negative. A negative value for
ϑ means that light rays are propagating in the negative x-direction. Although physically
possible, these kind of light rays rarely occur in the ray-tracing simulations.

The angular intensity distribution for the bottom side is depicted in Fig. 8.11-(b).
The light transmitted from the bottom glass substrate is primarily propagating between
−10◦ and −60◦. The negative values for the angle ϑ correspond to a direction of propa-
gation in the positive x-direction. Apparently, the angular intensity distributions of the
top and bottom side do not resemble each other. Hence, we can conclude that, accord-
ing to the ray-tracing simulations, the optical response of the liquid crystal light guide
structure is different for the top and bottom sides. In particular, the intensity profile
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Figure 8.11: (a) Angular intensity distribution I for the top side of the liquid
crystal light guide structure. The histogram shows the number of
collected rays for each angular interval ∆ϑ = 1◦. Most of the
light rays are collected in the range between approximately 65◦ and
80◦. (b) Angular intensity distribution I for the bottom side of
the liquid-crystal beam control device. The negative values for ϑ
correspond to rays propagating in the positive x-direction.

of the top side is confined in a smaller angular range than the intensity profile for the
bottom side.

Only an insignificant part of the (TM-polarized) light is guided by the liquid-crystal
device and transmitted through the right side. Almost all of the incident light is transmit-
ted through the top and bottom glass substrates. Therefore, the simulations support the
idea of a controlled extraction of light when a voltage is applied to the electrode structure.

In general, we can conclude that the preliminary ray-tracing simulations support
the working principle of the liquid crystal light guide structure. Moreover, the optical
response at the top side shows an angular intensity distribution that is confined in a
relatively narrow angular range. This angular range lies approximately between 65◦ and
80◦.

8.2.4 Comparison with experimental results

To verify some of the simulation results, the angular intensity distribution emerging
from the top glass substrate of a liquid crystal cell has been measured. A liquid-crystal
cell is characterized with design parameters resembling the configuration used in our
simulations: the thickness H of the liquid-crystal layer is 5 µm and the width of the
electrodes and the inter-electrode distance is 4 µm. The voltage applied to the electrodes
is 5 V.

The liquid-crystal cell was placed in a side-lit configuration directly in contact with a
cold-cathode fluorescence lamp (CCFL). The angular luminance was measured with an
EZContrast 160 conoscope from Eldim S.A. [132]. Fig. 8.12-(a) shows a typical result of
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Figure 8.12: (a) Polar coordinate plot of a typical light profile measured by the
EZContrast 160 conoscope. Note that the transmitted light is con-
fined in the angular range for ϑ approximately above 60◦. The
plane which corresponds to the plane y = 0 in the model and the
simulations is indicated by the arrow. (b) The experimental re-
sults (curve) and the numerical results (histogram) for the top side
depicted in one diagram. The angular region where the simulated
light intensity is maximal lies approximately between 65◦ and 80◦.
This observation is confirmed by the experimental results.

such an analysis. These results clearly resemble the angular characteristics obtained by
the ray-tracing simulations (see Fig. 8.11-(a)): the light is typically confined in the angu-
lar range for ϑ approximately above 60◦. The plane which corresponds to the xz-plane in
the model (y = 0) is indicated in Fig. 8.12-(a) by the arrow. The angular intensity dis-
tribution measured in this plane can be compared with the two-dimensional simulations
of Fig. 8.11-(a). For an accurate comparison between simulations and experiment, the
measured luminance (cd/m2) is scaled by a factor cos(ϑ) to obtain the relative luminance
intensity (cd).

Fig. 8.12-(b) shows the simulated intensity distribution (histogram) depicted in Fig.
8.11-(a) together with the experimental intensity distribution for y = 0. We can see that
the theoretical results and the experimental results are in a fair agreement: the high
intensity region between approximately 65◦ and 80◦ is confirmed by the experimental
results. The rapid decrease in the measured angular intensity at 80◦ is explained by the
limited angular range of the conoscope that lies between −80◦ and 80◦.

On the other hand, the results do not match quantitatively. The correspondence
between model and experiment is limited by, for example, the computational power of the
ray-tracing simulation program, i.e. the number of rays. Another reason for a mismatch
between theory and experiment can be due to the fact that near the electrode structures
of the light guide the material properties of the liquid crystal can change rapidly with
respect to the wavelength of light. On the other hand, the Hamiltonian method is based
on the assumption that the properties of a medium change slowly over the distance
of a wavelength. As a consequence, not all ray paths calculated in the simulations



140

necessarily represent physical light rays. In addition to this, yet another explanation for
the discrepancy can be ascribed to the fact that the ray-tracing simulations are performed
in two dimensions, whereas the experiment has a three-dimensional character, including
diffraction effects. In addition, light can be scattered by the pollution of the glass surfaces
and absorbed by the transparent conducting ITO electrode structures. Because of these
imperfections, the ray-tracing results presented in this section should be considered as a
first approximation of the actual optical properties of the liquid-crystal-based light guide
structure.

8.3 Conclusions

We have shown that the Hamiltonian method enables the modeling of the optical prop-
erties in the geometrical-optics approach of inhomogeneous anisotropic optical systems.
In particular, we have investigated the optical properties of two inhomogeneous liquid-
crystal-based optical configurations.

In a first example, we have shown that a two-dimensional gradient in a liquid-crystal
layer with a Freédericksz alignment applied between two parallel mirrors enables a back
reflection phenomenon in which the direction of propagation of extraordinary light rays
(TM mode) is reversed. The propagation direction of light in the optical system discussed
can be switched by means of an external electric field. As a result, the optical system
behaves like an electro-optical switch. This result is new and, besides the publication of
our letter [129], cannot be found in the literature. For this optical configuration, the use
of the Hamiltonian method is justified since we have assumed an inhomogeneous liquid-
crystal layer with a thickness of at least 20 wavelengths. In an attempt to demonstrate
this novel optical effect, we have succeeded in constructing a sample with a 100 µm
thick liquid-crystal layer with a Freédericksz alignment. However, we failed to reproduce
the back reflection phenomenon due to imperfections in the optical design. From this
exercise, we conclude that the effect might be obtained experimentally by minimizing
losses in the optical system and optimizing the gradients of the liquid crystal.

In a second example, we have simulated the optical properties of a liquid-crystal-based
light guide structure which enables a controlled extraction of TM-polarized light when a
voltage is applied to electrode structures. From ray-tracing simulations we can conclude
that the numerical results support the working principle of the liquid-crystal device. The
ray-tracing simulations show that the angular intensity distribution for the top side is
confined in a relatively narrow angular range. This angular range lies approximately
between 65◦ and 80◦. Qualitatively, this result is in good agreement with experimental
results. However, the quantitative correspondence between model and experiment is
limited by the computational power of the ray-tracing simulation program, i.e. the
number of rays. To improve this, the simulation program needs further optimization.
In addition, the liquid crystal contains regions where the material properties change
rapidly over the distance of a wavelength, which is in contradiction with the rules of
geometrical optics. Finally, the ray-tracing simulations are performed in two dimensions,
whereas the experiment has a three-dimensional character, including diffraction effects,
absorption and scattering of the light. Because of these imperfections, the ray-tracing
results presented for the liquid-crystal-based light guide structure should be considered
a first approximation of the actual optical properties. However, the observation that
the results are in agreement with experimental results in terms of quality rather than
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quantity is not in contradiction with the conclusions drawn in Chapter 5. Recall that
there it is concluded that for values of Ld below 20 wavelengths a qualitative agreement
between ray- and wave-optics (i.e. the experimental results) might still be established.

It has been shown that, given an arbitrary director profile, our polarized ray-tracing
method can be applied to calculate curved ray paths of light rays in inhomogeneous
anisotropic media. With the implementation of the method in a ray-tracing simulation
program, we are able to assess the optical properties of complex anisotropic optical
systems.
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Chapter 9

Conclusions and outlook

In this thesis, we have presented the electromagnetic theory for inhomogeneous anisotropic
media with a complex Hermitian permittivity tensor in the geometrical-optics approach.
The theory is discussed for general anisotropy, including both uniaxial and biaxial anisotropy,
and provides a general overview of the propagation of light in (non-absorbing, optically in-
active) inhomogeneous anisotropic media. One important conclusion is that light rays in
anisotropic media with a complex Hermitian permittivity tensor are in general elliptically
polarized and do not necessarily have an optical axis. In the special case of a real symmet-
ric tensor, light rays are linearly polarized by definition and always have an optical axis.
In addition, we have derived general ray-tracing equations for inhomogeneous anisotropic
media. In geometrical optics, these ray-tracing equations define the state-of-the-art in
the field of polarized ray tracing. They are derived from the Hamiltonian principle, are
formulated in complex notation and explicitly include the position-dependent material
properties. In other words, we have established the general relation between the material
properties and the curved ray paths of light rays in anisotropic media. In this thesis,
the ray-tracing equations are applied to study liquid-crystal applications that have been
under development at Philips Research. For the liquid-crystal material discussed, the
dielectric permittivity tensor is real and symmetric.

In geometrical optics, the material properties are allowed to change with position, as
long as the change per unit length is sufficiently small. We have investigated how much
the anisotropic material properties are allowed to change over the distance of a wavelength
in the geometrical-optics approach. We have shown for the first time that a criterion for
typical in-plane liquid-crystal configurations can be found based on advanced ray- and
wave-optics simulations. These simulations are applied to an anisotropic medium with a
two-dimensional periodic director profile. In this director profile, the director is rotated
by 90◦ over a distance Ld. Then Ld is the distance over which a maximum change in
optical properties occurs for fixed principal indices of refraction. Based on the results
of the simulations, we have concluded that if λ

Ld
< 0.05, it is fair to say that ray- and

wave-optics are in good agreement, both qualitatively and quantitatively. If Ld is smaller
than 20 wavelengths, the agreement between ray- and wave-optics worsens. However, a
qualitative agreement between ray- and wave-optics might still be established for values
of Ld below 20 wavelengths. This statement is verified by the ray-tracing simulations of
a liquid-crystal light guide structure discussed in Chapter 8.
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A significant part of this thesis is devoted to the application of liquid crystal in
switchable auto-stereoscopic 2D/3D displays. For lenticular-based 3D displays, we have
proposed an improved lens design. This lens design makes use of an anisotropic lens
plate to minimize any residual lens action in the 2D mode, without compromising the
performance of the 3D mode. In 2008, Philips Research succeeded in making samples of
anisotropic lens plates. This lens plate consists of a special liquid-crystal mixture that can
be polymerized by UV curing. It has been shown that, when applied in an electro-optical
configuration, the lens action of an anisotropic lenticular can be successfully switched off
without displaying any residual lens action.

We have also investigated the angular-dependent lens action of an advanced liquid-
crystal GRIN lens structure for application in auto-stereoscopic 3D displays. Based on
the ray-tracing results, we conclude that the lens action meets the requirements for small
viewing angles, but needs improvement for large viewing angles (> 30◦). To optimize
the 3D performance for large oblique angles, the optical design of GRIN lenses for ap-
plication in 3D displays is in need of further research. In general we conclude that the
advanced ray-optics analysis procedures presented here form a useful tool in the search
for improvements and enable a better understanding of the liquid-crystal technology
discussed.

Recently, Philips announced that because of current market developments, the point
in time where mass adoption of auto-stereoscopic 3D displays will occur has shifted
significantly. As a consequence, Philips has decided to scale down its investments in this
area. Evidently, this has resulted in a drop in activity in the field of auto-stereoscopic
3D displays within Philips Research. Besides Philips, other companies are also active
in the field of stereoscopic imaging (with or without additional appliances), such as
Samsung, SeeReal Technologies, DLP Texas Instruments, Sharp or Hyundai. Before
auto-stereoscopic 3D displays become available for the consumer market on a large scale,
it is likely that 3D technologies first reach a desired level of maturity in markets for
digital signage (e.g. shopping malls, airports and hotels) and professional applications
(medical and scientific imaging, design and prototyping).

Another liquid-crystal application investigated in this thesis is the light guide struc-
ture enabling a controlled local extraction of polarized light. The application of geo-
metrical optics to the relatively small micro-sized liquid-crystal cells in the light guide
is a subject of debate. However, for this optical system, the results of our ray-tracing
simulations support the working principle of the light guide structure and show good
qualitative agreement with experimental results. These conclusions fully agree with the
conclusions on the applicability of geometrical optics mentioned above.

Finally, we have presented ray-tracing simulations of a liquid-crystal layer with a
Freédericksz alignment applied between two parallel capacitive mirrors. The simulations
show that such an optical configuration enables a back reflection phenomenon in which
the direction of propagation of light rays can be reversed. When applied in an electro-
optical configuration, the liquid-crystal profile can be switched and the system behaves
like an optical switch. In an attempt to demonstrate this novel optical effect, we have
succeeded in constructing a liquid-crystal sample with a Freédericksz alignment. How-
ever, we failed to reproduce the back reflection phenomenon due to imperfections in the
optical design. In the end, we have concluded that the effect might be obtained experi-
mentally by minimizing losses in the optical system and optimizing the gradients of the
liquid crystal.
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The theory discussed in this thesis applies to media with electrical anisotropy and
linear birefringence, defined by a Hermitian permittivity tensor. This means that ab-
sorption, magnetic anisotropy, optical activity (circular birefringence) and other types
of birefringence (both linear and non-linear) are subjects with which the theory can be
extended. We remark that in these cases, we can apply the same systematic approach
as presented in this thesis, but the mathematical equations and their physical interpre-
tations will be different. We can expect that the theory will become more complex and
whether the theory still provides a pragmatic approach to study complex optical systems
by means of ray-optics analysis is subject to debate.

In general, we can conclude that we have worked out the electromagnetic theory of
general inhomogeneous anisotropic media in the geometrical-optics approach for media
with complex Hermitian dielectric permittivity tensors. The theory has been applied to
investigate numerous novel liquid-crystal applications: these included display technolo-
gies for auto-stereoscopic imaging and micro structures with potential applications in the
area of lighting and/or telecommunication systems. The theory also aided in providing
a criterion for the applicability of geometrical optics to in-plane liquid-crystal configura-
tions. In contrast with other methods addressing optical anisotropy, ray-optics analysis
provides solid physical insight into the subject, is able to handle large computational
domains and can be applied relatively easy to assess complex anisotropic electro-optical
devices.
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Appendix A

Hermitian permittivity tensor
without optical axes

We will show that for a Hermitian dielectric permittivity tensor, there are in general no
optical axes.

On the complex principal basis {û, v̂, ŵ}, we can always find a direction along which
the wave normal p satisfies (see Eq. 2.40)

|pu| =

√
εw(εv − εu)
(εw − εu)

, (A.1)

|pv| = 0, (A.2)

|pw| =

√
εu(εw − εv)
(εw − εu)

, (A.3)

|p| =
√
εv. (A.4)

In addition, the length of the wave normal is twofold because the optical indicatrix
consists of two sheets: |p| = |p1| = |p2|. For a real symmetric permittivity tensor, the
basis {û, v̂, ŵ} is real and we would say that p is in the direction of the optical axis.
However, since the basis {û, v̂, ŵ} is now complex, things are a bit more complicated:
Eqs. A.1-A.4 determine the length of p, but do not give any information about the
phases of the complex vector components pu, pv and pw. These phases are defined φu,
φv and φw, respectively. Since |pv| = 0, we have φv = 0. As a result, the wave normal
on the complex basis {û, v̂, ŵ} is given by

p = |pu|eiφu û + |pw|eiφwŵ, (A.5)

where |pu| and |pw| are given by Eqs. A.1 and A.3. Similarly, we write the wave normal
on the real fixed basis {x̂, ŷ, ẑ}:

p = |px|eiφx x̂ + |py|eiφy ŷ + |pz|eiφz ẑ. (A.6)

Now consider the case for which the imaginary part of the wave normal is not zero:
Im{p} 6= 0. Then there is a complex vector p on the real fixed basis {x̂, ŷ, ẑ} for which
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|p1| = |p2| = |p|. This means that in real space there is no optical axis. In what follows,
we will give an example of a Hermitian permittivity tensor for which there are no optical
axes in real space R3.

Consider the Hermitian permittivity tensor given by

ε =

 2 2i 0
−2i 3 0
0 0 4

 . (A.7)

This tensor can be diagonalized on the complex orthonormal basis {û, v̂, ŵ}. On the real
basis {x̂, ŷ, ẑ}, the normalized eigenvectors and corresponding eigenvalues are given by

û = i0.788x̂− 0.615ŷ, εu = 0.438, (A.8)
v̂ = ẑ, εv = 4, (A.9)
ŵ = i0.615x̂ + 0.788ŷ, εw = 4.561. (A.10)

Note that in accordance with our previous assumptions εu < εv < εw. If the wave normal
direction is along an optical axis, we demand that Im{p} = 0. Then we obtain three
equations for the vector components of p:

Im
{
ûk|pu|eiφu + ŵk|pw|eiφw

}
= 0, k = x, y, z, (A.11)

where |pu|, |pw|, ûk and ŵk are given by Eqs. A.1, A.3 and A.8-A.10. For the Hermitian
tensor given by Eq. A.7, Eq. A.11 results in two equations for the phases φu and φw:

−10.404 cosφu = cosφw, (A.12)
6.342 sinφu = sinφw. (A.13)

By eliminating φw we then obtain

F1(φu) = −10.404 cosφu, (A.14)

F2(φu) = cos
[

arcsin(6.342 sinφu)
]
, (A.15)

F1(φu) = F2(φu). (A.16)

When we analyze functions F1(φu) and F2(φu), we come to the conclusion that for
arbitrary values of φu these functions are never equal. This means that Im{p} 6= 0. Hence
there is a complex wave normal p on the real basis {x̂, ŷ, ẑ} along which |p1| = |p2| = |p|.
Therefore there are no optical axes for the Hermitian tensor given by Eq. A.7. Therefore
we say that in general an anisotropic medium with a Hermitian permittivity tensor does
not have optical axes.



Appendix B

Optical anisotropy in
photolithographic systems

Photolithography is a process to create high resolution images. In the semiconductor
world, photolithography techniques are pushed to the physical limits to shrink the size
of transistors. One of these techniques is immersion lithography. Immersion lithography
is a photolithographic resolution enhancement technique that replaces the usual air gap
between the final lens and the wafer surface with a liquid medium that has a refractive
index greater than one. Current immersion lithography systems with deep-ultraviolet
light (193 nm wavelength) use for example highly purified water. Totzeck et al. [98]
mention that for these kind of systems it is desired to use a last lens element with a high
refractive index. The problem is that high-index materials are not of a quality required
for lithography and almost all of them suffer from a level of birefringence that is too
high to be acceptable. In this section, we will show that the performance of a last lens
element is indeed highly sensitive to the effect of optical anisotropy.

The size of the finest detail that can be resolved by a lens is

F = k1
λ

NA
, (B.1)

where λ is the wavelength of light and NA is the numerical aperture of the lens (cf. [3], p.
215). The factor k1 is a process-related factor and is determined by the properties of the
optical system. It has a physical limit of 0.25 [98]. This limit is called the diffraction limit.
Current production processes are capable of minimizing k1 to a value of approximately
0.28. The numerical aperture of a lens is given by

NA = n sin(αmax), (B.2)

where n is the index of refraction of the surrounding medium and αmax is the half-angle
of the maximum cone of light that can enter or exit the lens (see Fig. B.1). Today the
state-of-the-art is an immersion photolithography lens system with NA = 1.35 operating
at a wavelength of 193 nm, capable of printing structures with a 45 nm half pitch [98].

The definitions discussed above explain why replacing the surrounding air with water
enhances the resolving power of a lens system, since nair < nwater. In the case of deep-
ultraviolet light with 193 nm wavelength, the index of refraction of water is nwater = 1.44.
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Figure B.1: Schematic representation of the last lens element above a wafer
surface applied in photolithographic systems. The refractive index
of the medium between the last lens element and the wafer is defined
n. The maximum half-angle of the light cone produced by the lens
is αmax. Then the numerical aperture of the last lens element is
defined NA = n sin(αmax).

Then, the resolving power is improved by a factor of 1.44. However, at the same time,
the angle αmax is reduced, since the difference in index of refraction between the lens
and the surrounding medium is reduced. In fact, the numerical aperture is conserved.
To overcome this effect, a lens with a higher index of refraction is required.

A possible high-index material for the last lens element is sapphire (Al2O3), which has
a refractive index of approximately 1.83 and higher for wavelengths below 270 nm [99].
Because of its hexagonal crystalline structure, sapphire is uniaxially anisotropic. The
birefringence 4n = |ne−no| of sapphire is approximately 0.008. An important question
is whether this birefringence destroys the resolving power of the last lens element or if
the effect of the optical anisotropy may be neglected.

In order to investigate the effect of optical anisotropy on the resolving power of a
last lens element, we apply a theoretical test case. In this test case, we investigate a
plano-convex last lens element (in air) with an a-spherical surface [100]. The a-sphericity
of the lens surface is needed in order to minimize the lens aberrations and optimize the
resolving power of the lens [101]. More details on the design of a-spherical lenses in the
geometrical-optics approach can be found in for example Born & Wolf (cf. [6], p. 197).
A cross section of the lens is depicted in Fig. B.2. The lens material is glass (nlens = 1.5)
and, in spherical coordinates, the a-spherical surface is given by

z(r) =
kmax∑
k=1

a2kr
2k, (B.3)

where a2k are coefficients. Incident to this a-sphere is a spherical wavefront, denoted by
the dashed curve in Fig. B.2. This wavefront has a virtual object point O at 40 mm
above the origin. The coefficients are calculated in such a way, that the perfect image
point O′ is at 38.3333 mm above the origin, exactly on the wafer surface (for λ = 193nm).
If kmax →∞, the spot size at the perfect image point O′ approaches zero. In Fig. B.2,
we have calculated the ray paths of several rays that correspond to the incident spherical
wave front. These rays are refracted by an a-sphere having coefficients given by Table
B.1 (kmax = 8). This a-sphere remains close to a sphere, but the a-sphericity is needed
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Table B.1: Coefficients a2k for an a-spherical lens surface [100].
k a2k

1 0.12500029 · 10−1

2 0.10385061 · 10−5

3 -0.53303489 · 10−9

4 -0.64002390 · 10−12

5 -0.15463937 · 10−14

6 0.20233996 · 10−17

7 -0.43270707 · 10−20

8 0.29961636 · 10−23

in order to correct for the last 3.3333 mm path in air. With these coefficients, the spot
diameter at the perfect image point O′ is approximately 2 nm, which is in the expected
sub-wavelength region. The ray paths near the wafer surface are again depicted in Fig.
B.2 for x ∈ [−0.5, 0.5] and z ∈ [38.0, 38.9].

Fig. B.3 shows the last lens element as defined in Eq. B.3, but now with uniaxial
anisotropy. The optical axis ŵ lies in the vertical z-direction and the anisotropic lens
material is defined with an ordinary index of refraction no = 1.500 and an extraordinary
index of refraction ne = 1.505. As a result, the light inside the last lens element contains
both ordinary and extraordinary components. The ordinary rays are linearly polarized
in the y-direction, orthogonal to the optical axis ŵ. These rays result in exactly the same

Figure B.2: Cross section of a last lens element. A spherical wave front (dashed
curve) with virtual object point O at 40 mm above the origin is
refracted by the a-spherical lens surface. The light is focussed in
the perfect image point O′ on the wafer surface, 38.3333 mm above
the origin. The spot diameter of the image is approximately 2 nm.
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Figure B.3: Cross section of the last lens element with a birefringence 4n =
0.005. The optical axis ŵ is in the z-direction. This time, the spot
diameter in the perfect image point O′ is approximately 100 µm.

optical behavior as depicted in Fig. B.2. On the other hand, the extraordinary light rays
are linearly polarized in the xz-plane. This part of the light results in a different spot size
on the wafer surface. The difference in spot size with Fig. B.2 is clearly demonstrated
in the additional figure of Fig. B.3, for which x ∈ [−0.5, 0.5]. For the extraordinary
polarization the spot diameter at the perfect image point O′ is approximately 100 µm.
This order of magnitude is unacceptable for photolithographic applications in the sub-
wavelength region.

Apparently, the lens is prone to changes in the spot size in the perfect image point
due to the effect of optical anisotropy. To determine the sensitivity of the spot size for
optical anisotropy, we have calculated the radius rs of the spot in the perfect image point
O′ as a function of the optical anisotropy 4n. Fig. B.4 shows the result for 0 ≤ 4n ≤ 1.
Clearly rs does not scale linearly with 4n. In addition, the sensitivity increases with
decreasing 4n. In Fig. B.5, we show rs for 0 ≤ 4n ≤ 0.01. For the range of 4n depicted
in this figure, the radius rs satisfies

rs = 97.96 · 10−11 + 1.78 · 10−24n. (B.4)

According to Eq. B.4, the spot diameter is approximately 50 nm when 4n = 1.35 ·10−6.
This means that for a birefringence higher than approximately 10−6, the performance of
the last lens element is inferior to the state-of-the-art performance, without taking into
account the diffraction limit. Hence the spot size at the perfect image point is highly
sensitive to the presence of optical anisotropy in the last lens element.

Due to the birefringence of the lens, the perfect image point of the lens no longer
corresponds to a focal point. The focal point now lies above the perfect image point.
As a result, the spot size on the wafer surface can be reduced if the wafer surface is
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Figure B.4: Radius rs of the spot size in the perfect image point O′ as a function
of the optical anisotropy 4n = |ne − no|.

Figure B.5: Radius rs of the spot size in the perfect image point O′ for 0 ≤
4n ≤ 0.01. For this range, the radius scales linearly with 4n:
rs = 97.96 · 10−11 + 1.78 · 10−24n.
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translated in the positive z-direction, see Fig. B.3. The diameter of the spot size on the
wafer surface can be minimized to approximately 12 µm at z = 38.46 mm. As a result,
the spot size can be reduced one order of magnitude. However, this result is still not
acceptable for photolithographic applications in the sub-wavelength region.

The results of the test case show that an optical anisotropy in the final lens element
in the order of 10−6 corresponds to a spot diameter of approximately 50 nm on the wafer
surface. Apparently, the resolving power of the last lens element is highly sensitive to
the optical anisotropy. Based on these results, we can conclude that high-index material
last lens elements with birefringent properties are not suitable for immersion lithography
as a resolution enhancement technique, unless the birefringence is compensated for.



Appendix C

Runge-Kutta method and the
Hamilton equations

In Chapter 4 and beyond we calculate ray paths in inhomogeneous media for which we
have derived the Hamilton equations. These equations are a set of six coupled first-order
differential equations for the position r(τ) and wave normal p(τ). In the appendix below,
we discuss two methods that we can apply to calculate the position and wave normal
numerically.

The generic problem in ordinary differential equations of a set of N coupled first-order
differential equations for the functions yi, with i = 1, 2, ..., N , reads

dyi(x)
dx

= fi(x, y1, ..., yN ), (C.1)

where the functions fi on the right-hand side are known. In our notation, the functions
fi correspond to the vector components of ∇rH and ∇pH. In addition, x corresponds
to the parameter τ and yi corresponds to the vector components of the wave normal p
and the position r.

When we advance the function yi(τn) from τn to τn+1 = τn + 4τ , we can write
yi(τn +4τ) as a Taylor series expansion:

yi(τn +4τ) = yi

(
τn, y1(τn), ..., yN (τn)

)
+ 4τ dyi

dτ

(
τn, y1(τn), ..., yN (τn)

)
+O(4τ2), (C.2)

where the term O(4τ2) incorporates the remaining higher-order terms. This formula is
called the first-order Runge-Kutta method, also known as the Euler method. The error
in Eq. C.2 is of order 2 in 4τ . In general, the Runge-Kutta method is called nth order
if its error term is O(4τn+1). If we apply the Hamilton equations to Eq. C.2, we obtain

ri(τn +4τ) = ri(τn) +4τ(∇pH)i(τn) +O(4τ2), (C.3)
pi(τn +4τ) = pi(τn)−4τ(∇rH)i(τn) +O(4τ2), i = x, y, z. (C.4)
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It is also possible to make a trial step to the midpoint of the interval [τn, τn +4τ ] and
use the value of τ and yi at that midpoint to calculate the step across the whole interval.
Then, the equations for yi(τn +4τ) become

c1 = 4τ dyi
dτ

(τn), (C.5)

c2 = 4τ dyi
dτ

(
τn +

1
2
4τ, y1(τn) +

1
2
c1, ..., yN (τn) +

1
2
c1

)
, (C.6)

yi(τn +4τ) = yi(τn) + c2 +O(4τ3), i = 1, ..., N. (C.7)

These equations define the second-order Runge-Kutta method. Since the error term
of the Euler method is a factor 4τ−1 bigger than the error term of the second-order
Runge-Kutta method, the latter is more accurate.



Appendix D

Hamilton equations applied to
a surface of discontinuity

In Section 2.3, we have come to the conclusion that the optical properties of an (an)isotropic
medium should change slowly over the distance of a wavelength. However, at (an)isotropic
interfaces, the material properties are discontinuous and then condition 2.18 is not satis-
fied. In Chapter 3, we have discussed the classical optical theory of (an)isotropic media
in the interface region. Although condition 2.18 is not satisfied in the interface region,
the theory presented in Chapter 3 still applies within the framework of geometrical op-
tics. In view of this discussion, an important question is whether the Hamilton equations
derived for the bulk region can be applied to a surface of discontinuity, despite the fact
that in that case condition 2.18 is not satisfied. In this section, we will find an answer
to this question.

We consider a surface of discontinuity in the bulk region of an uniaxially anisotropic
medium with ε real and symmetric and a director profile as depicted in Fig. D.1. This
surface of discontinuity is defined in the plane z = 0. If z < 0, the director is in the
x-direction: d̂ = (1, 0, 0). If z ≥ 0, the director is in the z-direction: d̂ = (0, 0, 1).
Furthermore, the components of the director d̂ can be expressed in terms of a step
function u(z), defined as

u(z) =
{

0 if z < 0
1 if z ≥ 0 . (D.1)

Then, the vector components of d̂ can be written as

d̂x = u(−z), (D.2)

d̂y = 0, (D.3)

d̂z = u(z), (D.4)

where u(−z) is given by

u(−z) =
{

1 if z < 0
0 if z ≥ 0 . (D.5)
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z

x

Figure D.1: Director profile in the bulk region of an uniaxially anisotropic
medium with a surface of discontinuity at z = 0. If z < 0,
d̂ = (1, 0, 0), and if z ≥ 0, d̂ = (0, 0, 1). The refractive indices
no and ne are independent of position.

In addition, the refractive indices of the medium are independent of position. We consider
an incident extraordinary light ray with a linear polarization in the xz-plane propagating
from the bottom half space z < 0 into the upper half space z ≥ 0. Hence, we can apply
the Hamilton equations given by Eqs. 4.40 and 4.41. If we substitute Eqs. D.2-D.4 into
Eq. 4.41 we obtain for all z

dpex
dτ

= 0, (D.6)

dpey
dτ

= 0, (D.7)

dpez
dτ

= −2(n2
e − n2

o)

×
(
pexu(−z) + pezu(z)

)(
pexδ(z)− pezδ(z)

)
, (D.8)

where δ(z) is the derivative of the step function u(z): the Dirac-delta function. Ap-
parently, pex(τ) and pey(τ) are constant everywhere. For z 6= 0, this result is trivial,
since the medium depicted in Fig. D.1 is homogeneous for z 6= 0. For z = 0, the result
matches Snell’s law, since Snell’s law demands that the tangential vector components of
p are continuous across the plane z = 0 (see Eq. 3.4). According to Eq. D.8, we can
also conclude that pez(τ) is constant for z 6= 0. However, pez(τ) is discontinuous in the
plane z = 0, as expected.

Now we consider Eq. 4.40. If we substitute Eqs. D.2-D.4 into Eq. 4.40, we find

dx

dτ
= 2n2

opex

+ 2(n2
e − n2

o)
(
pexu(−z) + pezu(z)

)
u(−z), (D.9)

dy

dτ
= 2n2

opey, (D.10)

dz

dτ
= 2n2

opez

+ 2(n2
e − n2

o)
(
pexu(−z) + pezu(z)

)
u(z), (D.11)
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provided that z 6= 0, since pez(τ) is discontinuous in z = 0. For Eqs. D.9-D.11 it is
convenient to apply the identities

1− u(z) = u(−z), (D.12)

and
u(z)u(−z) = 0. (D.13)

Then, for z 6= 0, we can rewrite Eqs. D.9-D.11 yielding

dx

dτ
= 2n2

opex + 2(n2
e − n2

o)pexu(−z), (D.14)

dy

dτ
= 2n2

opey, (D.15)

dz

dτ
= 2n2

opez + 2(n2
e − n2

o)pezu(z). (D.16)

Since the vector components of the wave normal pe are constant for z 6= 0, Eqs. D.14-D.16
suggest that the ray path is represented by a straight line. For z < 0, Eqs. D.14-D.16
can be further reduced to the form

dr
dτ

= 2
(
n2
epex, n

2
opey, n

2
opez

)
= ∇pHe

∣∣
ˆd=(1,0,0)

, (D.17)

while for z > 0, Eqs. D.14-D.16 yield

dr
dτ

= 2
(
n2
opex, n

2
opey, n

2
epez

)
= ∇pHe| ˆd=(0,0,1)

. (D.18)

If we define pey = 0, we find that y(τ) is constant. This means that the ray path
will lie in a plane parallel to the xz-plane. Note that this statement is only true for
the director profile as defined in Fig. D.1, where the directors are also parallel to the
xz-plane. If the directors would have a y-component, the ray path can also have a
y-component.

By example, we define p = (0, 0, pez). As a result, taking into account the disconti-
nuity for pez at z = 0 (see Eq. D.8), Eqs. D.14-D.16 reduce to

dx

dτ
= 0, (D.19)

dy

dτ
= 0, (D.20)

dz

dτ
=

{
2n2

opez if z < 0
2n2

epez if z > 0 . (D.21)

From these equations for the ray path we can conclude that the extraordinary light ray
is propagating in the z-direction for all values of the coordinate z. Only the speed of the
light ray is altered when crossing the discontinuity surface at z = 0. We define the speed
for z < 0 as v1 and the speed for z > 0 as v2. In addition, by reading Fig. D.1, pez must
satisfy pez = ne for z < 0 and pez = no for z > 0. Then from Eq. D.21 we conclude that
the ratio of v1 and v2 yields

v1
v2

=
no
ne
. (D.22)
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This result is equivalent to the case when a light ray crosses the boundary between two
isotropic media, having indices of refraction ne and no.

Altogether, we have shown that the Hamilton equations applied to a surface of discon-
tinuity are not in contradiction with Snell’s law. Moreover, for the homogeneous director
profile defined in Fig. D.1, the Hamilton equations give rise to a position-independent
wave normal. Therefore the ray paths of light rays are represented by straight lines.
We can conclude that the Hamilton equations are not in contradiction with the rules of
geometrical optics when applied to a surface of discontinuity.

When the ray path in the bulk region of Fig. D.1 is calculated numerically, we first
define an initial wave normal p(τ0) at an initial position r(τ0). Then we can apply the
Runge-Kutta method to calculate the ray path r(τ) and the corresponding wave normal
p(τ) for τ = τ0+K4τ , with K ∈ N. According to Eqs. D.6-D.8, the wave normal is con-
stant for z 6= 0 and undefined for z = 0. Therefore, for all values of τ = τ0+K4τ (except
for τ with z(τ) = 0), the Hamilton equations give rise to a wave normal p(τ) = p(τ0).
However, p(τ0) cannot satisfy H = 0 for both z < 0 and z > 0 at the same time, unless
the director d̂ is the same on both sides of the plane z = 0. Hence the corresponding ray
path r(τ) must be incorrect. In order to find the correct wave normals at the surface of
discontinuity, we must apply the theory for anisotropic interfaces discussed in Chapter
3.

In general, we conclude that in theory, the Hamilton equations are not in contradiction
with the rules of geometrical optics when applied to a surface of discontinuity in the bulk
region of (in)homogeneous anisotropic media. However, in the ray-tracing procedure the
Hamilton equations alone cannot provide the wave normal on both sides of a discontinuity
surface. To find the wave normals on either side of a discontinuity surface, we need the
theory discussed in Chapter 3. Then a surface of discontinuity can also be interpreted
as an interface (rather than a bulk feature) between two homogeneous anisotropic media
with different anisotropic properties. These conclusions support the condition (mentioned
in Section 2.3) that in the bulk region we only consider anisotropic media for which there
are no discontinuities and condition 2.18 is satisfied.



Appendix E

Mode independency and
adiabatic propagation

Here we discuss two important consequences of geometrical optics: the mode indepen-
dency and the adiabatic propagation of light rays in (an)isotropic media. These proper-
ties apply to light rays in both homogeneous and inhomogeneous non-absorbing media,
provided that condition 2.18 is satisfied.

Mode independency

When a ray incident to an interface between two anisotropic media is refracted, there
are in general two refracted wave normals. Each of these wave normals at the interface
is considered an initial wave normal at ‘time’ τ = τ0 for the ray-tracing procedure in
the bulk region. The Hamilton equations then result in two independent light rays.
Both light rays have a linear polarization state (in case of a real symmetric permittivity
tensor), but in general have different polarization vectors. This mutual independency of
rays in (an)isotropic media is called mode independency.

The mode independency of rays in the bulk region is particularly well demonstrated
by the Hamilton equations for uniaxially anisotropic media. For uniaxial anisotropy,
the Hamiltonian reads H = HoHe. As a result, for extraordinary rays, the Hamilton
equations only depend on the extraordinary Hamiltonian He (see Eqs. 4.26 and 4.27)
whereas for ordinary rays the Hamilton equations solely depend on the ordinary Hamilto-
nian Ho (see Eqs. 4.30 and 4.31). This means that once a ray is, for example, ordinary,
it will stay ordinary and, in geometrical optics, there is no reason whatsoever for an
ordinary ray to become extraordinary, except at a surface of discontinuity. Hence the
mode independency in geometrical optics does not apply at a surface of discontinuity.

Moreover, the mode independency is valid only to some approximation. Consider the
limit where the birefringence 4n→ 0. Under these circumstances, two rays can interact
after being refracted at an anisotropic interface. In this case, the anisotropy can be
considered as a weak disturbance of the isotropic properties of the medium. The latter
is called a quasi-isotropic approximation (cf. [105], p. 251). However, in this treatise, we
will assume that mode independency applies in general provided that the birefringence
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4n is sufficiently high.

Adiabatic propagation

Since the material properties in the bulk region are assumed to be continuous, the am-
plitude A and phase δ of a light ray are constant along the ray path. Then we say that
the propagation of a ray in the bulk region is adiabatic. In other words, the total energy
flow of a light ray is conserved and no energy is lost along the ray path.

To better understand this feature, we conduct a numerical experiment, of which the
outcome is determined by a sequence of calculations. We consider a light ray traveling
inside an uniaxially anisotropic medium with arbitrary position-independent no and ne.
In the medium, the director is rotated as a function of the coordinate z from the direction
(0,0,1) at z = 0 towards the direction (1,1,0) at z = h in the plane x = y (see Fig. E.1).
This rotation is described by a stepwise rotation. With each step, we define an artificial
anisotropic interface with local normal vector n̂ = (0, 0, 1). We define the total number
of steps, which is equivalent to the total number of artificial anisotropic interfaces, as
the integer K with K ∈ N. For step k, with k = 1, ...,K, the directors d̂k−1 and d̂k are
the directors on both sides of the anisotropic interface. If K has a small value, the dot
product of d̂k−1 and d̂k is expected to approach zero. On the other hand, if K has a
large value, the dot product of d̂k−1 and d̂k is expected to approach the value 1. In other
words, in the limit where K → ∞, d̂k−1 = d̂k so that the material properties change
continuously per unit length in the bulk region of the medium.

Consider Fig. E.1. We will examine an incident ray with a normalized Poynting
vector 〈Ŝinc〉 = 1

2

√
2(0, 1, 1) and polarization vector Êinc = (1, 0, 0) at z = 0. The

refracted ray at z = 0 is then ordinary, since there d̂ = (0, 0, 1). We define K = 10,
which means that the step size of the rotation of d̂ is 9◦. For each step, we calculate the
refracted Poynting vector 〈So〉 for the ordinary ray at the artificial anisotropic interface
with the help of the classical theory discussed in Chapter 3. In addition, we calculate the
corresponding polarization vector Êo. Since d̂ is not in the plane of incidence for z > 0,
the refraction of the ordinary ray at each artificial interface gives rise to both ordinary
and extraordinary rays. Therefore, the intensity transmittance factor for the ordinary ray
at an interface is smaller than 1. After K steps, when d̂ = (1, 1, 0), 〈Ŝo〉 = 1

2

√
2(0, 1, 1)

and Êo = 1√
3
(−1, 1,−1), see Fig. E.1. Apparently, the direction of propagation has not

changed, which is what we expect for an ordinary ray after K successive refractions at
K parallel anisotropic interfaces with constant position-independent no.

In addition to the polarized ray tracing, we calculate the intensity transmittance
factor To of the ordinary ray for each step. Then, for step kz at position z, the total
intensity transmittance factor is:

Ttot =
kz∏
k=1

Tok, (E.1)

where 1 ≤ kz ≤ K. Fig. E.2 shows Ttot as a function of the step kz for K = 10,
K = 100, K = 1000 and K = 10000. From the results we can conclude that Ttot → 1 if
K → ∞. As a result, if the material properties change continuously with position, the
ordinary light ray propagates adiabatically in the bulk region of the medium. Then the
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Figure E.1: Anisotropic medium with thickness h in which the director is a
function of the coordinate z. The rotation of the director is defined
by K steps in the plane x = y, from d̂ = (0, 0, 1) at z = 0 to
d̂ = (1, 1, 0) at z = h. In between two arbitrary successive steps we
define an artificial anisotropic interface with local normal vector
n̂ = (0, 0, 1). We consider an incident ray at z = 0 with a normal-
ized Poynting vector 〈Ŝinc〉 = 1

2

√
2(0, 1, 1) and polarization vector

Êinc = (1, 0, 0). Hence, the refracted ray at z = 0 is ordinary.
When the ordinary ray arrives at z = h, the normalized Poynting
vector is 〈Ŝo〉 = 1

2

√
2(0, 1, 1) and the ordinary polarization vector

is Êo = 1√
3
(−1, 1,−1).
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Figure E.2: The total intensity transmittance factor Ttot as a function of the
step kz at height z. In the figure, we show the results for different
values of the total number of steps K, namely K = 10, K = 100,
K = 1000 and K = 10000. From the results we can conclude that
Ttot → 1 for any kz if K →∞.

total energy is confined to the ordinary light ray only and there is no extraordinary light
present in the medium.

According to the numerical experiment conducted above, we can conclude that in the
limit where the material properties change continuously with position in the bulk region
a light ray propagates adiabatically.



Appendix F

Transport equations

In the following discussion, we will discuss the Maxwell equations for arbitrary values of
k0.

With the quasi-plane wave as a general solution of the electromagnetic wave field (see
Eqs. 2.11 and 2.12), the Maxwell equations are of the form

∇ψ × H̃ + cε0εẼ = − 1
ik0
∇× H̃, (F.1)

∇ψ × Ẽ− cµ0H̃ = − 1
ik0
∇× Ẽ, (F.2)

∇ψ · εẼ = − 1
ik0
∇ · εẼ, (F.3)

∇ψ · H̃ = − 1
ik0
∇ · H̃. (F.4)

In the geometrical optics, we are interested in solutions of the wave field for large values
of k0. However, for the moment, we do not make this approximation and explore the full
Maxwell equations. When we combine Eqs. F.1 and F.2 and eliminate H̃ we find (see
also [6], p. 112):

∇ψ × (∇ψ × Ẽ) + εẼ +
1
ik0

[
∇ψ × (∇× Ẽ) +∇× (∇ψ × Ẽ)

]
+

(
1
ik0

)2[
∇× (∇× Ẽ)

]
= 0. (F.5)

In the limit where k0 → ∞, we obtain Eq. 2.27, the ‘eikonal equation’ for media with
electrical anisotropy in the geometrical-optics approach. Apparently, the full Maxwell
equations result in an equation that is significantly more complex than Eq. 2.27.

A widely used approach consists of expanding the wave amplitude in powers of 1
ik0

:

Ẽ(r) =
∞∑
m=0

(
1
ik0

)m
Ẽm(r). (F.6)
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This type of series expansion is called a Debye expansion (cf. [105], p. 7). When we
substitute Eq. F.6 into Eq. F.5 and collect the coefficients of terms of equal power in 1

ik0
,

we obtain a set of first-order partial differential equations. These equations are called
the transport equations. The zeroth-order transport equation is given by

∇ψ × (∇ψ × Ẽ0) + εẼ0 = 0, (F.7)

while the first-order transport equation reads

∇ψ × (∇ψ × Ẽ1) + εẼ1

+∇ψ × (∇× Ẽ0) +∇× (∇ψ × Ẽ0) = 0. (F.8)

The higher-order transport equations are given by

∇ψ × (∇ψ × Ẽm) + εẼm

+∇ψ × (∇× Ẽm−1) +∇× (∇ψ × Ẽm−1)
+∇× (∇× Ẽm−2) = 0, (F.9)

where the indexm ≥ 2. In the geometrical-optics approach, the optical wave field satisfies
the zeroth-order transport equation. The higher-order transport equations define the
higher-order corrections to the zeroth-order wave field.
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