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Layman’s Summary

Many real-world and theoretical phenomena can be modelled by a multivariate normal distribu-
tion, so understanding how to make reliable statements about its unknown mean vector θ ∈ Rk is a
central problem in statistics. Traditionally we tackle this in three stages:

1. Estimation: choose a rule (an estimator) that produces an educated guess for θ based on our
data.

2. Hypothesis testing: decide whether the data provides enough evidence to reject a given hy-
pothesis about θ.

3. Confidence sets: construct a region in Rk that, with probability 1−α, contains the true θ.

A surprising result by Charles Stein shows that when k ≥ 3, the usual sample mean is inadmissible
under mean-squared error: by shrinking the raw data vector toward a fixed point (typically the ori-
gin), one can obtain strictly smaller average squared error (Stein, 1954). James and Stein made this
concrete with the (positive-part) James–Stein estimator (Baranchik, 1964, James and Stein, 1961),
which multiplies the data vector X by(

1− a

||X ||2
)
+

, a > 0.

Although this introduces some bias, it cuts variance enough to improve overall accuracy whenever
k ≥ 3.

This thesis explores using that same shrinkage idea not just for point estimation, but for building
better hypothesis tests and confidence sets:

• Chapter 1: Derive the sampling distribution of T (X ) = ∥(1− a/∥X ∥2)+ X − θ∥2. We give
closed-form expressions for any spherically symmetric distribution centred around θ.

• Chapter 2: Use this distribution to perform

– Simple tests: testing θ = θ0,

– Composite tests: testing whether θ lies in a region,

at a chosen significance level α.

• Chapter 3: Construct (1−α)-confidence sets for θ centred at the positive-part James–Stein
estimator by

1. the plug-in method (estimating ∥θ∥ via various rules and solving for the radius), and

2. test-inversion (collecting all y not rejected by the James–Stein test of “θ = y” at level α).

Numerical approximations show that the quantiles of the positive part James-Stein test statistic are
smaller than that of the usual chi-squared test statistic.

1



2 Contents

Abstract
We study the problem of constructing confidence sets for the mean vector θ of a k-variate spheri-
cally symmetric distribution by centring them at the positive-part James–Stein estimator. Exploiting
its superior risk properties whenever k ≥ 3, we first derive in Chapter 2 the exact sampling law of the
test statistic

T (X ) = ∥θ̂+JS −θ∥2,

showing it consists of a point mass at ∥θ∥2 and a continuous density component valid for any spheri-
cally symmetric model. In Chapter 3, we develop level-α procedures for both simple and composite
hypotheses about θ, illustrated by a worked example with k = 4, α = 0.05. Chapter 4 then inverts
these tests to form (1 −α)-confidence sets via two approaches: (i) a plug-in method using vari-
ous norm estimators (including the James–Stein shrinkage itself) and (ii) a test-inversion principle
guaranteeing exact coverage. Numerical comparisons confirm that the plug-in method produces
smaller radii than classical sample-mean–centred sets. Our work thus extends classical multivari-
ate inference by integrating shrinkage estimation into confidence-set theory for spherical distribu-
tions.



1
Introduction

It is well known that many processes tend to follow a normal distribution, thanks in large part to
the Central Limit Theorem, and thus properties of this distribution are of high importance within
mathematical statistics. One such property we are often times interested in estimating is its mean
θ ∈ Rk . Since the normal distribution is a symmetric distribution it would be reasonable to assume
that the sample mean would be the best estimator for θ but Charles Stein showed in 1954 that this
estimator is actually inadmissible in 3 or more dimensions (Stein, 1954). In a later paper in collab-
oration with Willard James a concrete estimator with a lower mean squared error was introduced
which dubs the name the James-Stein estimator (James and Stein, 1961). In the same paper a slight
modification was conjectured to perform even better and this was shows to be true by Baranchik,
this estimator is known as the positive part James-Stein estimator (Baranchik, 1964).

Whilst a lot of excellent research has been done with respect towards the positive part James-Stein
estimator an area that remains to be explored more are confidence sets centred around this estima-
tor. Samworth showed some promising work regarding such confidence sets using the bootstrap
method and also provided some analytical results which involved finding the first few terms of the
Taylor series of the law of the test statistic centred around the origin (Samworth, 2005).

In this work we are mainly concerned with analytical results. Chapter 2 starts by formally defin-
ing the problem at hand followed by some properties of the defined quantities. Next the chapter
focusses on the problem of finding a general density function for the norm of X for arbitrary spher-
ically distributed random variables centred at θ. The chapter closes with its main result, the law of
the positive part James-Stein test statistic, and some of its properties. At the end some validation is
performed by taking the limit of a t-distribution and showing that this converges to a normal distri-
bution as expected.

Chapter 3 elaborates on classical hypothesis testing. It starts with an exploration of some of the
properties of the previously investigated positive part James-Stein test statistic with regards to hy-
pothesis testing. This is followed by a small discussion on simple and general hypothesis testing.
The chapter closes with a worked example.

The final chapter, Chapter 4, applies previously found results to construct confidence sets for θ.
It starts of by showing how classic confidence sets are constructed after which we will try to gener-
alise this to our estimator. We do this by estimation of the norm of the parameter θ for which we
have selected several candidates. The chapter also discusses the process of constructing confidence
sets by, in some sense, inverting the hypothesis tests.

3





2
The Law of the positive part James-Stein

Test Statistic

In this section we will be exploring the distribution of the distance between the true mean of some
spherically distributed probability distribution and the positive part James-Stein estimator. We first
formalise these concepts and from there build towards the main result of this section.

2.1. Notation and Core Concepts
As stated before we focus on spherically distributed random variables of which we now give a formal
definition.

Definition 2.1.1. A k-dimensional random variable X with mean θ ∈Rk is said to be spherically
symmetric around θ, spherically distributed for short, if for all orthogonal matrices Q we have(

X −θ)∼Q
(
X −θ)

,

where ∼ denotes equal in distribution.

Intuitively this can be interpreted as that the probability of X taking some value in Rk only depends
on the distance from its true mean θ. Mathematically this means that we can write fX (x) = g (||x −
θ||2) for some function g : [0,∞) → [0,∞) where fX denotes the probability density of X . We take
k ≥ 3 and note it is tempting to say that whenever a random variable is spherically distributed,
then its entries must be independent. This is not only false but actually characterises the k-variate
normal distribution.

Theorem 2.1.2. Let X be a k-dimensional spherically distributed random variable with mean θ
and mutually independent components X1, ...Xk . Then X ∼ Nk (θ,σ2Ik ) for some σ2 ≥ 0.

Proof. Define Y := X − θ. Let φ(t ) = ∏k
j=1φ j (t j ) be its characteristic function and note that

for all orthogonal matrices Q we have φ(t ) = φ(Qt ). Since φ only depends on the norm of its
argument we can write φ(t ) =ψ(||t ||) for some function ψ. If we set t3 = ... = tk = 0 then we get

ψ
(√

t 2
1 + t 2

2

)
=φ1(t1)φ1(t2)

k∏
j=3

φ1(0) =φ1(t1)φ1(t2),

in which we used that all marginal characteristic functions are equal. Take the natural log on
both sides, define f (s) := lnφ1(s) and u(s) := f (

p
s). Then

f (x)+ f (y) = f
(√

x2 + y2
)
=⇒ u(r )+u(s) = u(r + s).

5



6 2. The Law of the positive part James-Stein Test Statistic

The functional equation for u is known as Cauchy’s equation and has unique solution of the
form u(r ) = cr for some real constant c. This implies that we haveφ1(t ) = exp{ f (t )} = exp{u(t 2)} =
exp{ct 2}. Finally since |φ1(t )| ≤ 1 we have c ≤ 0 so we can write φ1(t ) = exp{−1

2σ
2t 2} for some

σ2 ≥ 0 which uniquely defines a normal distribution.

Note that Theorem 2.1.2 also allows the variance of our normal distribution to be equal to zero. In
this case we say that X is degenerate and thus by definition assumes one value with probability one.

Charles Stein showed that for k-variate normal distributions the sample mean is inadmissible (Stein,
1954). An estimator with a lower mean squared error was found in a later paper in collaboration with
Willard James together with an estimator which was conjectured to perform even better. This was
shown to be true by Baranchik (Baranchik, 1964).

Definition 2.1.3. (Baranchik, 1964, James and Stein, 1961) Let X be a k-variate spherically dis-
tributed random variable with true mean θ. The positive part Stein estimator for θ, denoted by
θ̂+JS is defined by

θ̂+JS =
(
1− a

||X ||2
)
+

X ,

in which (·)+ = max{0, ·}, ||X || the usual euclidean norm and a the shrinkage factor.

Since the positive part James-Stein estimator performs better than the sample mean under the
mean squared error it makes sense to use it for other purposes than estimation. Later chapters
will elaborate on this but for now, we need one more definition.

Definition 2.1.4. Let X be a k-variate spherically distributed random variable around θ. The
positive part James-Stein test statistic is given by

T (X ) =
∣∣∣∣∣∣(1− a

||X ||2
)
+

X −θ
∣∣∣∣∣∣2

.

Note that this is a one-dimensional random variable.

Considering the form of the positive part James-Stein test statistic it seems reasonable to assume
that its probability distribution only depends on θ through its norm, ||θ||. It turns out that this is a
general result for test statistics centred around estimators of a certain form.

Proposition 2.1.5. (Samworth, 2005) For α ∈ (0,1), the upper α-point of the sampling distribu-
tion of ||γ(||X ||)X −θ||2 depends on θ only through its norm ||θ||.

A consequence of this is that regardless of how the length of θ is distributed among its entries the
distribution of the positive part James-Stein test statistic will behave the same way. It also gives us a
quick way to check whether or not our found distribution functions are plausible or not.

2.2. Distribution of ||X ||
In the previous section we stated that if X is spherically distributed around θ, then there must exist
some function gX such that we have fX (x) = gX (||x − θ||2) but one might ask how we would find
such a function. This question is equivalent to asking what is the density of the radius of X from the
origin. In some cases these functions can easily be derived from their k-variate counterparts. When
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we have X ∼ Nk (θ, Ik ) this function is given by

fX (x) ∝ exp
{
− 1

2

(
x −θ)T Ik

(
x −θ)} =⇒ gX (u) ∝ exp

{
− 1

2
u

}
,

The problem of finding such a function gX becomes quite a bit more difficult when we drop the
centrality condition. For the norm of X as defined above its distribution is actually known as the
non-central chi distribution, beware that this is the root of the non-central chi-squared distribution.
Its density is given by

f||X ||(x) = e−(x2+λ2)/2xkλ

(λx)k/2
Ik/2−1(λx), (2.2.1)

in which we used λ= ||θ|| and Iν(z) is the modified Bessel function of the first kind.

Though the normal distribution is perhaps the most common it would be preferable if we had a
general expression for the distribution of R = ||X || for arbitrary spherically distributed random vari-
ables. It turns out there exists such a form.

Lemma 2.2.1. Let X be a k-variate spherically distributed random variable around θ with den-
sity function fX (x) = gX (||x−θ||2) and let λ denote the norm of θ. The density of R = ||X || is given
by

fR (r ) = r k−1
∣∣∣Sk−2

∣∣∣∫ 1

−1
(1− t 2)

k−3
2 g

(
r 2 +λ2 −2rλt

)
d t .

Where |Sk−2| denotes the surface area of a (k −2)-dimensional sphere.

Proof. To find the probability that R = r we integrate over the sphere with radius r . This gives

fR (r ) =
∫
||x||=r

fX (x)dS(x) =
∫
||x||=r

g
(||x −θ||2)dS(x),

where dS(x) denotes the k −1)-dimensional surface element. We substitute polar coordinates
along θ which gives us x ·θ = r ||θ||cos(ϕ) and ||x −θ||2 = r 2 + ||θ||2 − 2r ||θ||cos(ϕ). Write x =
r u,u ∈ Sk−1 ⊂Rk then we have

dS(x) = r k−1dS(u) = r k−1
∣∣∣Sk−2

∣∣∣(sin(ϕ)
)k−2dϕ

hence we can write

fR (r ) = r k−1
∣∣∣Sk−2

∣∣∣∫ π

0
g
(
r 2 +||θ||2 −2r ||θ||cos(ϕ)

)(
sin(ϕ)

)k−2dϕ.

Finally let t = cos(ϕ) and we have

fR (r ) = r k−1
∣∣∣Sk−2

∣∣∣∫ 1

−1
(1− t 2)

k−3
2 g

(
r 2 +||θ||2 −2r ||θ||t)d t

as desired.

Even though this integral cannot always be solved analytically it does provide us with a closed form
expression for the density of R provided we know gX . This integral may be approximated using a
number of numerical methods which are beyond the scope of this work.
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Lemma 2.2.1 does allow us to verify some previous results, let X ∼ Nk (θ, Ik ) then we have

fR (r ) = r k−1

(2π)k/2

∣∣∣Sk−2
∣∣∣∫ 1

−1
(1− t 2)

k−3
2 exp

{
− 1

2

(
r 2 +λ2 −2rλt

)}
d t .

Simplifying by taking out all the non t-dependent parts and substituting the surface area of a (k−2)-
dimensional unit sphere we get

fR (r ) = e−(x2+λ2)/2r k−1

(2π)k/2

( 2πk/2−1

Γ((k −1)/2)

)∫ 1

−1
(1− t 2)

k−3
2 erλt d t .

The integral in this expression is a result known as the Beta integral and evaluates to∫ 1

−1
(1− t 2)

k−3
2 erλt d t =

p
πΓ((k −1)/2)

( 1
2λr )k/2−1

Ik/2−1(λr ),

of which the derivation can be found in Appendix A. When we combine all this we get exactly Equa-
tion 2.2.1 as desired.

Before we close this subsection we introduce one final seemingly unrelated result. Provided we
know the distance of X from the origin we still need more information to uniquely determine the
actual point X in space where we by uniquely mean unique in probability, i.e. two points A and B
are equivalent if they have equal probability. There are of course several ways to do this but we will
be using the angle between θ and X .

Lemma 2.2.2. Let X be a k-variate spherically symmetric distributed random variable with ra-
dial density function g (||x−θ||2), define V as 〈X /||X ||,θ/λ〉 and take R to be the radius of X . Then
the joint density of V and R is given by

fR,V (r, v) = r k−1(1− v2)
k−3

2 |Sk−2|g (r 2 +λ2 −2rλv).

Note that V is the cosine of the angle between θ and X with respect to the origin.

Proof. Since our random variable is spherically distributed we may assume that θ is aligned
with the first coordinate axis. We write all x ∈ Rk in polar form x = r u where r = ||x|| > 0 and
u ∈ Sk−1. Provided we know its spherical density function we may write

fX (x) = gX (||x −θ||2) = gX (r 2 +λ2 −2λr u1).

In polar coordinates we have d x = r k−1dr dσ(u) where σ(u) is the surface-area measure on
Sk−1. The joint density of U = X /||X || and R = ||X || is then

fU ,R (u,r ) = r k−1g (r 2 +λ2 −2λr u1).

We now introduce

V =
〈 X

||X || ,
θ

||θ||
〉
= 〈U ,e1〉 = u1 ∈ [−1,1].

For a fixed v the set {u ∈ Sk−2 : u1 = v} is (k −2)-dimensional sphere with radius
p

1− v2 with
surface area ∣∣∣Sk−2

∣∣∣(1− v2)
k−3

2 .

Combining all gives the density.
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Since by definition if R and V have joint density fR,V the densities of R and V may be found by
integrating out the other. Since V is the cosine of some real angle we have that V ∈ [−1,1] and by
integrating over that interval we get back Lemma 2.2.1. Though not necessarily useful we also state
the following Corollary without proof.

Corollary 2.2.3. Let X be a k-variate spherically symmetric distributed random variable with
mean θ and density function g (||x−θ||2). Let Y = X /||X || and λ= ||θ||. Define V = 〈Y ,θ/λ〉, then
V has the following density

fV (v) = (1− v2)
k−3

2

∣∣∣Sk−2
∣∣∣∫ ∞

0
ρk−1g (ρ2 +λ2 −2λρv)dρ.

Where |Sk−2| denotes the surface area of a (k −2)-dimensional unit-sphere.
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2.3. The Law of the positive part James-Stein Test Statistic
In Definition 2.1.4 we introduced the shrinkage factor a. In many works this factor is taken to be
equal to k − 2 or is adjusted depending on the known (or estimated) variance of the distribution
at hand. We will assume arbitrary strictly positive a. For convenience we restate the positive part
James-Stein test statistic

T (X ) = ||γ(||X ||)X −θ||2, γ(||X ||) =
(
1− a

||X ||2
)
+

. (2.3.1)

The first observation we can make is that γ(||X ||) = 0 when we have that 1− a/||X ||2 ≤ 0 which in
turn implies ||X || ≤p

a. This is exactly our first result.

Proposition 2.3.1. The positive part James-Stein test statistic is equal to ||θ||2 if and only if ||X || ≤p
a, i.e.

P
{

T (X ) = ||θ||2
}
=P

{
||X || ≤p

a
}
=

∫ p
a

0
fR (s)d s.

In which fR is the density of the radius ||X ||.

If X follows a central k-variate normal distribution we have that by definition ||X ||2 ∼ χ2
k (λ2) and

then this integral simplifies to the a-quantile of the non-central chi-squared distribution. Similar
statements can be made for several known distributions, one of which was covered in the previous
section. Another observation that may be made from Proposition 2.3.1 is that since the probability
that T (X ) assumes the singular value ||θ||2 is not equal to zero we are dealing with a mixed density
with continuous part and a point mass. We are now ready to state the main result of this section.

Theorem 2.3.2. Let X be a k-variate spherically distributed random variable around θ. The pos-
itive part James-Stein test statistic as defined in Definition 2.1.4 has probability density function

fT (t ) =
(∫ p

a

0
fR (s)d s

)
δ(t −λ2)+ 1

2λ

∫ r+(t ;λ)

r−(t ;λ)

r

r 2 −a
fV ,R (v(r, t ),r )dr,

in which

v(r, t ) = (r 2 −a)2 − (t −λ2)r 2

2r (r 2 −a)λ
,

fV ,R as in Lemma 2.2.2, δ the Dirac-Delta function and the lower and upper bounds are given by

r±(t ;λ) = 1

2

(
|λ±p

t |+
√

|λ±p
t |2 +4a

)
,

respectively.

The proof can be found in Appendix B. This is a very powerful result because it allows us to calcu-
late actual quantiles of our test statistic T (X ) provided we know λ. Similar to before if we restrict
ourselves to the normal distribution we can perform some simplifications. When X ∼ Nk (θ, Ik ) the
distribution of V is actually known as the von Mises-Fisher distribution and we get the following
form.

Corollary 2.3.3. Let X ∼ Nk (θ, Ik ). Then the positive part James-Stein test statistic has the fol-
lowing density

fT (t ) =P(
R ≤p

a
)
δ
(
t −λ2)+Ck

∫ r+(t ;λ)

r−(t ;λ)

r k

r 2 −a
exp

{r 2(λ2 − t )

2(r 2 −a)

}(
1− v2(r, t )

) k−3
2 dr,
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with

Ck = e−(λ2+a)/2

p
πΓ

(1
2 (k −1)

)
λ2k/2

, v(r, t ) = (r 2 −a)2 − (t −λ2)r 2

2r (r 2 −a)λ
,

in which r−,r+ are as defined in Theorem 2.3.2 and R follows a non-central chi-squared distribu-
tion. When λ= 0 then the density is given by

fT (t ) = δ(t )Fχ2
k
(a)+ 2−k/2

Γ(k/2)

r k (t )p
t
p

t +4a
exp

{
− r 2(t )

2

}
,

with

r (t ) = 1

2

(p
t +p

t +4a
)
.

Corollary 2.3.3 follows from a straight substitution in Theorem 2.3.2. The zero-mean case can be
found using a limit, or more easily by modifying the proof of Theorem 2.3.2 as below.

Proof. Let X ∼ Nk (0, Ik ). Then we can write

T (X ) =
{

0, if ||X ||2 ≤ a,
(||X ||2−a)2

||X ||2 , if ||X ||2 > a.

Which then implies we have

P(T (X ) = 0) =P(||X ||2 ≤ a) = Fχ2
k
(a).

Let u = ||X ||2 and for values of t > 0 introduce the function

g (u) = (u −a)2

u
= t =⇒ u2 − (t +2a)u +a2 = 0.

In the region u > a and positive r this has one solution, namely

u = (t +2a)+p
t
p

t +4a

2
= r 2(t ), r (t ) = 1

2

(p
t +p

t +4a
)

The Jacobian is given by

du

d t
= 2r (t )r ′(t ) = 1

4

(p
t +p

t +4a
)( 1p

t
+ 1p

t +4a

)
= r 2(t )p

t
p

t +4a
.

Recall that U ∼χ2
k and let fU denote its density, we have

fT (t ) = fU (u(t ))
∣∣∣du

d t

∣∣∣= 1

2k/2Γ(k/2)

(
r 2(t )

) k
2 −1

exp
{
− r 2(t )

2

} r 2(t )p
t
p

t +4a
.

Combining yields

fT (t ) = δ(t )Fχ2
k
(a)+ 2−k/2

Γ(k/2)

r k (t )p
t
p

t +4a
exp

{
− r 2(t )

2

}
,

with

r (t ) = 1

2

(p
t +p

t +4a
)
,

as desired.
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2.3.1. Some results related to the t-distribution
Theorem 2.1.2 showed that if X is spherically distributed with independent components then it
follows a normal distribution. A natural next question would be to ask about other distributions,
here we will consider the t-distribution often used in hypothesis testing.

Definition 2.3.4. A random variable X is said to follow a non-central multivariate t-distribution
with ν degrees of freedom and non centrality parameter θ if X has the same law as

W +θp
U /ν

where W ∼ Nk (0, Ik ) and U ∼χ2
ν.

Note that for general θ the multivariate t-distribution is actually not spherically distributed and this
is only the case when θ = 0. Recall that for spherically distributed random variables we can write
fX (x) = gX (||x −θ||2) so when θ = 0 we may write

fX (x) ∝
(
1+ 1

ν
xT I−1

k x
)− 1

2 (ν+k)
=⇒ gX (u) ∝

(
1+ u

ν

)− 1
2 (ν+k)

.

The distribution of the norm of X when X follows a multivariate t-distribution can actually be found
with a little effort. First we need one more definition.

Definition 2.3.5. A random variable X is said to follow a F -distribution with ν and k degrees of
freedom if X has the same law as

U1/ν

U2/k

where U1 ∼χ2
ν and U2 ∼χ2

k .

Recall that we can calculate the norm of a vector by taking the root of the dot product with itself.

Proposition 2.3.6. Let X follow a k-variate (central) t-distribution with ν degrees of freedom and
scale matrix Ik . Then ||X ||2/k follows an F -distribution with k and ν degrees of freedom.

Proof. From Definition 2.3.4 we know we can write X as a ratio of a multivariate normal distri-
bution and the root of a scaled chi-squared distribution. This implies that we have

X T X

k
= 1

k

( Wp
U /ν

)T ( Wp
U /ν

)
= ||W ||2/k

U /ν
.

Recall that ||W ||2 ∼ χ2
k and thus by definition ||X ||2/k follows an F -distribution with k and ν

degrees of freedom.

In the same setting as Proposition 2.3.6 the actual distribution of R = ||X || follows through a simple
transform, or more precisely. Let f be the density of an Fk,ν-distribution. Then the density of R,
denoted fR is given by

fR (r ) = 2r

k
f
(r 2

k
;k,ν

)
Since the central multivariate t-distribution is actually spherically distributed it might make sense
to use the positive part James-Stein test statistic.
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Corollary 2.3.7. Let X ∼ tν(0, Ik ). Then the positive part James-Stein test statistic has the follow-
ing density

fT (t ) = Fk,ν

( a

k

)
δ(t )+ 1

k
fF

(r 2(t )

k
;k,ν

) r 2(t )p
t
p

t +4a
I{t>0},

in which fF is the density of an F -distribution with k,ν degrees of freedom.

Proof. Similar to as in Corollary 2.3.3 we split the two cases for T (X ). We know that ||X ||2/k ∼
Fk,ν from which it follows

P
{

T (X ) = 0
}
=P

{ ||X ||2
k

≤ a

k

}
= Fk,ν(a/k).

And for the same function g we get

u = r 2(t ), r (t ) = 1

2

(p
t +p

t +4a
)
,

du

d t
= r 2(t )p

t
p

t +4a
.

Let U = ||X ||2 then we have

fU (u) = 1

k
fF

(u

k
;k,ν

)
and fT (t ) = fU

(
r 2(t )

)∣∣∣du

d t

∣∣∣= 1

k
fF

(r 2(t )

k
;k,ν

) r 2(t )p
t
p

t +4a
.

Combining everything gives us

fT (t ) = Fk,ν

( a

k

)
δ(t )+ 1

k
fF

(r 2(t )

k
;k,ν

) r 2(t )p
t
p

t +4a
I{t>0},

in which fF is the density of an F -distribution with k,ν degrees of freedom.

The density function of an Fk,ν-distribution actually has a closed form, it is given by

fF (x) = Γ
(k+ν

2

)
Γ
(k

2

)
Γ
(
ν
2

)(k

ν

)k/2
x

k
2 −1

(
1+ k

ν
x
)−(k+ν)/2

.

Plugging this in the continuous part of our density for when X follows a central t-distribution we
get

1

k

( Γ
(k+ν

2

)
Γ
(k

2

)
Γ
(
ν
2

)(k

ν

)k/2(r 2(t )

k

) k
2 −1(

1+ r 2(t )

ν

)−(k+ν)/2) r 2(t )p
t
p

t +4a
,

which may be simplified to

Γ
(k+ν

2

)
ν−k/2

Γ
(k

2

)
Γ
(
ν
2

) r k (t )p
t
p

t +4a

(
1+ r 2(t )

ν

)−(k+ν)/2
. (2.3.2)

It is a well known fact that as ν→∞ that we have that the law of tν converges to the law of a normal
distribution, so it makes sense this expression in the limit converges to the one we found for the
normal distribution. To show that this works we approximate the Gamma function using Stirling,
which yields

lim
ν→∞

Γ
(k+ν

2

)
ν−k/2

Γ
(k

2

)
Γ
(
ν
2

) = lim
ν→∞

√
π
(
k +ν−2

)(k+ν−2
2e

)(k+ν)/2−1

Γ
(k

2

)√
π
(
ν−2

)(
ν−2
2e

)ν/2−1
νk/2

.
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Letting ν→∞ is equivalent to letting (ν−2) →∞ so after combining terms and substituting ν′ = ν−2
we get

(2e)−k/2

Γ
(k

2

) lim
ν′→∞

√
1+ k

ν′
(
1+ k

ν′
) ν′

2
(1+k/ν′

1+2/ν′
) k

2
.

Now if we exponentiate and take the natural logarithm of this expression we can apply the Taylor
series on the separate limits to get

lim
ν′→∞

ν′

2
ln

(
1+ k

ν′
)
= k

2
,

lim
ν′→∞

k

2

(
ln

(
1+ k

ν′
)
− ln

(
1+ 2

ν′
))

= 0.

Substituting these results back into our original limit gives us

lim
ν→∞

Γ
(k+ν

2

)
ν−k/2

Γ
(k

2

)
Γ
(
ν
2

) = 1

Γ
(k

2

)( e

2e

) k
2 = 2−k/2

Γ
(
k/2

)
For the term that looks a lot like the definition of the exponential it turns out to be exactly that in
the limit

lim
ν→∞exp

{
− k +ν

2
ln

(
1+ r 2(t )

ν

)}
= lim
ν→∞exp

{
− k +ν

2

r 2(t )

ν

}
= exp

{
− r 2(t )

2

}
.

Combining all of this we get that Expression 2.3.2 is equal to

fT (t ) = δ(t )Fχ2
k
(a)+ 2−k/2

Γ(k/2)

r k (t )p
t
p

t +4a
exp

{
− r 2(t )

2

}
,

in the limit, exactly the expression we found for the central normal distribution.



3
Hypothesis testing

We now shift our focus to the subject of hypothesis testing using the positive part James-Stein test
statistic. Recall that in hypothesis testing we are interested whether or not the parameter is with
some probability not contained in a specified set. Whether or not the set contains the parameter is
formulated as a null-hypothesis and alternative-hypothesis.

Let θ be the parameter of interest, Θ be the set of all possible values of θ and consider the two
hypothesises

H0 : θ ∈Θ0 and H1 : θ ∈Θ1 =Θ\Θ0

Let KT be the set of all value of T (X ) for which we reject the null-hypothesis, when testing at signif-
icance level α we want

sup
θ∈Θ0

Pθ

{
T (X ) ∈ KT

}
≤α

This means we want the probability of us falsely rejecting the null-hypothesis to be at most α, often
taken to be 0.05.

3.1. Behaviour of the law of T (X ) with respect to λ
Recall that from Proposition 2.1.5 we know that the distribution of the positive part James-Stein test
statistic depends solely on θ through λ = ||θ||. Intuitively, if the distance of the true mean were to
increase with respect to the origin we would expect the density of the observed norm, R, to shift
its mass away from the origin and thus it would be fair to assume that we have that the integral of
fR over some interval (0,r ) to be decreasing with respect to λ. Recall that when X ∼ Nk (θ, Ik ) that
R = ||X || ∼χk (λ).

Proposition 3.1.1. Let J ∼ Poisson(µ) and {an}n≥0 be a decreasing sequence. Then the Poisson
mixture

P (µ) =
∞∑

n=0
Pµ

(
J = n)an

is a decreasing function with respect to µ.

Proof. Taking the derivative of the infinite sum, which is valid since the sum converges, we get

d

dµ
P (µ) =

∞∑
n=0

( nµn−1

n(n −1)!
− µn

n!

)
e−µan =

∞∑
n=0

(
P
(

J = n −1
)−P(

J = n
))

an .

15
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With some index shifting, and applying that P(J =−1) = 0 we get

∞∑
n=0

(
P
(

J = n −1
)−P(

J = n
))

an =
∞∑

n=0

(
an+1 −an

)
P
(

J = n
)
.

Since {an}n≥0 is a decreasing sequence we have (an+1 − an) < 0 so this entire sum is negative
and thus our Poisson mixture is decreasing with respect to µ.

Let X ,Y ∼ N (0,1) then we have

P
(
X 2 +Y 2 ≤ t

)= 1

2π

∫
x2+y2≤t

e−
1
2 (x2+y2)d yd x =

∫ t

0

1

2
e−

1
2 sd s.

So X 2+Y 2 ∼ Exp( 1
2 ). It can easily be shown, using characteristic functions for example, that the sum

of exponential distributed random variables follows a Gamma distribution. I.e. Let Zi ∼ Exp( 1
2 ) then

k∑
n=1

Zi ∼ Gamma
(
k,

1

2

)
and thus we have that the chi-squared distribution with k degrees of freedom and Gamma distri-
bution with parameters k

2 and 1
2 are equivalent in distribution. From this follows a closed form

expression for the cumulative density function of a chi-squared random variable from which it can
be derived that this is a decreasing function with respect to k. Alternatively an intuitive argument,
which can be made formal, is that when we increase the parameter k we are adding more strictly
positive random variables and thus the probability of this distribution assuming a value smaller or
equal to some fixed t decreases.

Lemma 3.1.2. Let R follow a non-central chi distribution with k degrees of freedom, non-centrality
parameter λ and FR (r ;k,λ) its cumulative distribution function. Then FR (r ;k,λ) is a decreasing
function with respect to λ.

Proof. We know R2 ∼ χ2
k (λ2). Let J ∼ Poisson(λ2/2), the cumulative probability function of a

non-central chi-squared distribution may be written as Poisson mixture as follows

FR2 (r ;k,λ) =
∞∑

n=0
P
(

J = n
)
Fχ2 (r ;k +2n) = e−λ

2/2
∞∑

n=0

(λ2/2)n

n!
Fχ2 (r ;k +2n)

where Fχ2 (r ;ν) denotes the cumulative probability function of a central chi-squared distribu-
tion with ν degrees of freedom (Johnson et al., 1995). We know that Fχ2 (r ;ν) is a decreasing
function with respect to ν. By increasing λ we are also increasing λ2/2. Applying Proposition
3.1.1 then gives us that FR2 is a decreasing function with respect to λ, the result for FR follows
from a simple transform.

In Chapter 2 it was shown that the density of T (X ) has a point mass, this point mass means that the
cumulative function has a discontinuity at λ2. Or more precisely, let I (t ;k,λ) denote the continuous
part of the density of T (X ) then we have

FT (t ;k,λ) = FR (
p

a)I{t≥λ2} +
∫ t

0
I (s;k,λ)d s.

Furthermore, Lemma 3.1.2 showed that for at least the normal distribution the point mass portion
of this cumulative function is decreasing with respect to λ so for the behaviour of the full density we
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are also interested in the behaviour of the continuous part.

Due to the complicated nature of the analytic density it is challenging to prove that this cumula-
tive density is either increasing or decreasing with respect to λ. Numerical simulations suggest that
FT is a decreasing function with respect to λ but this remains an open problem.

Figure 3.1: Empirical CDF of T (X )

To close this section we introduce one final proposition.

Proposition 3.1.3. Let X ∼ Nk (θ, Ik ). Then limλ→∞ Tλ(X ) ∼χ2
k .

Proof. Write X = Z +θ where Z ∼ Nk (0, Ik ) and set Sλ = a/||X ||2. As λ→∞ we have for all ε> 0
that P(a/||X ||2 < ε) = 1. This in turn implies that we have P(1 ≥ (1−Sλ) > 1−ε) = 1 for all ε> 0.
So for large λ we may write

Tλ(X ) =
∣∣∣∣∣∣(1−Sλ)+X −θ

∣∣∣∣∣∣2
=

∣∣∣∣∣∣(1−Sλ
)(

Z +θ)−θ∣∣∣∣∣∣2
=

∣∣∣∣∣∣(1−Sλ
)
Z −Sλθ

∣∣∣∣∣∣2
.

Since (1−Sλ)
p−→ 1 we have by Slutsky’s lemma that (1−Sλ)Z

d−→ Z and sinceSλ
p−→ 0 we have by

the same lemma that Sλθ
p−→ 0 and (1−Sλ)Z −Sλθ

d−→ Z . Finally, since the norm of a vector is a

continuous mapping we conclude Tλ(X )
d−→ ||Z ||2 ∼χ2

k .
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3.2. Hypothesis testing
In classical hypothesis testing we want to test whether or not a parameter of interest, in this case θ,
is contained in some set Θ0 or its complement with respect to the full parameter space Θ. We call
θ ∈Θ0 the null-hypothesis and θ ∈Θ1 =Θ/Θ0 the alternative hypothesis. Then for some test statistic
T (X ) and significance level α we are looking for a critical region KT such that if T (X ) ∈ KT we reject
the null-hypothesis. Formally we require

sup
θ∈Θ0

P
(
T (X ) ∈ KT

)
≤α.

I.e. we want to find a set of values that T (X ) may attain such that if we reject the null hypothesis for
those values there is at most a α probability of us falsely doing so.

As test statistic we will be using the positive part James-Stein test statistic which is given by

T (X ) =
∣∣∣∣∣∣(1− a

||X ||2
)
+

X −θ
∣∣∣∣∣∣2

,

and whose density we will denote fT . We divide the problem of hypothesis testing into two sub-
problems. In the first case the set associated to the null-hypothesis only contains one value, in the
second case this may be a general set.

3.2.1. Simple null-hypothesis
The term simple hypothesis testing refers to the case whereΘ0 is a singleton and thus the supremum
no longer needed in the argument. More formally consider

H0 : θ = θ0 and H1 : θ ̸= θ0

at significance level α. Let

FT (t ) =
∫ t

0
fT (s)d s and qT (α) = inf{t : FT (t ) ≥α}

and since FT (t ) is an increasing function we can write KT = [c2
α,∞) for some c2

α ∈ R≥0. If we let
c2
α = qT (1−α) then we have

Pθ0

{
T (X ) ≥ c2

α

}
≤α

as desired.

3.2.2. Connected region hypothesis testing
In the first part of this subsection we covered the somewhat trivial case of hypothesis testing with
a simple null-hypothesis. We are now ready to cover the more complicated case where our set Θ0

contains more than one value. Recall that in general hypothesis testing we split our parameter space
Θ in two sets, one corresponding to the null-hypothesis,Θ0, and the other to the alternative hypoth-
esis, Θ1. Let α denote our significance level which is the maximum probability we accept of a false
rejection. Formally we have

H0 : θ ∈Θ0 and H1 : θ ∈Θ1 =Θ\Θ0

Let KT be the set of all value of T (X ) for which we reject the null-hypothesis, when testing at signif-
icance level α we want

sup
θ∈Θ0

Pθ

{
T (X ) ∈ KT

}
≤α.

To be able to calculate this we need to know for which value of θ ∈ Θ0 this expression obtains its
supremum. If we choose to make the assumption that FT is a decreasing function with respect to λ
this supremum is obtained at the θ ∈Θ0 for which we have the smallest norm.
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3.2.3. Worked example
Let X follow a 4-dimensional normal distribution with unknown mean θ and known variance matrix
I4, the identity matrix. We want to test whether or not the true mean of this distribution is equal to
the zero vector or not at significance level α= 0.05. We formalise this as the two hypothesises

H0 : θ = 0 and H1 : θ ̸= 0.

Under the null hypothesis the density of the positive part James-Stein test statistic was given by

fT (t ) = δ(t )Fχ2
4
(2)+ (

p
t +p

t +8)4

64
p

t
p

t +8
exp

{
− (

p
t +p

t +8)2

8

}
,

in which we used k = 4 and a = k−2 = 2. Numerically integrating this quantity gives us the following
cumulative density function.

Figure 3.2: CDF of T (X ) when X ∼ N4(0, I4)

The jump at t = 0 is the point mass part of our density which is located at the mean, we numerically
find that the probability of T (X ) attaining a value less that roughly 6 is 0.95 and thus if T (X ) were to
exceed this value we would reject the null-hypothesis.

Since we have θ = 0 we may write the positive part James-Stein test statistic as

T0(X ) =
(
1− 2

||X ||2
)2

+
||X ||2.

We have that this test statistic is less than or equal to the previously found quantile of roughly 6 when
||X || ≤ 3.094 which makes the volume of the critical region for X that of a 4-dimensional sphere with
radius 3.094. When using the standard chi-squared test we would reject H0 if we have ||X ||2 > 9.488
which is equivalent to when ||X || > 3.080. Since the distribution of X is the same in both cases it is
expected that the volume of the critical regions for X are the same .





4
Constructing Confidence Sets

In the classic setting we construct an analytical confidence set using a pivot, a statistic that is a func-
tion of our desired parameter but whose distribution does not depend on said parameter. Common
examples of such pivots are the Z test statistic for a one-dimensional normal distribution. We have

Z =p
n

X −θ
σ

∼ N (0,1)

which may then be used to construct a confidence interval of any desired level as follows

P
{
ξα/2 ≤

p
n

X −θ
σ

≤ ξ1−α/2

}
=P

{
X −ξ1−α/2

σp
n
≤ θ ≤ X +ξ1−α/2

σp
n

}
= 1−α

in which we used the symmetry of the standard normal distribution. This is also where we run into
our first issue. The distribution of our positive part James-Stein test statistic depends on the param-
eter we are trying to construct an interval for through λ= ||θ|| so we need a different approach.

4.1. The Quantiles of the positive part James-Stein test statistic
Before we look at techniques to approximate the quantiles using estimators for λ= ||θ|| we consider
the, unrealistic, case where λ is known. When λ is known we can calculate the true quantiles of the
positive part James-Stein test statistic, they are approximately given by

λ\k 3 4 5 6 7 8 9 10
1.0 6.10 6.16 6.25 6.31 6.34 6.37 6.40 6.43
2.0 6.43 6.79 7.09 7.33 7.51 7.66 7.78 7.90
3.0 7.45 8.35 8.98 9.01 9.04 9.34 9.61 9.85
4.0 7.66 8.89 9.88 10.69 11.38 11.98 12.49 12.94
5.0 7.72 9.10 10.30 11.32 12.25 13.06 13.78 14.44
6.0 7.75 9.22 10.51 11.68 12.76 13.72 14.62 15.47
7.0 7.78 9.28 10.66 11.92 13.09 14.17 15.20 16.13
8.0 7.78 9.34 10.75 12.07 13.30 14.47 15.56 16.61
9.0 7.81 9.37 10.84 12.19 13.45 14.68 15.83 16.94

10.0 7.81 9.40 10.87 12.25 13.57 14.83 16.04 17.18

Table 4.1: True, approximated, 0.95 Quantiles (λ, k)

These, and the following, values were obtained using python code provided as an appendix. In the
usual case when X ∼ Nk (θ, Ik ) we know that ||X −θ||2 ∼ χ2

k and thus we can construct a confidence

21
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set for θ using the (1 −α)-quantiles of the χ2
k distribution. The corresponding quantiles can be

approximated and are equal to

k 3 4 5 6 7 8 9 10
χ2

k,0.95 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31

Comparing these values we can see that in all cases the quantiles of the positive part James-Stein
test statistic are smaller.

4.2. Estimation of λ
Now that we have shown that when we know λ we can calculate the quantiles of the positive part
James-Stein test statistic. We now consider some techniques of estimating these quantiles when λ

is not known. Note that due to computational constraints a small sample size was used.

4.2.1. Naïve MLE
First we consider the maximum likelihood estimator for θ from which we can estimate λ= ||θ||. The
maximum likelihood estimator is well known and given by θ̂MLE = X . Though it might be tempting
to say that ||θ̂MLE || is an unbiased estimator for λ this is actually not the case. ||θ̂MLE || actually
always over estimates the parameter λ. To see this note that we have X = θ+Z where Z ∼ Nk (0, Ik )
and define the function f :Rk →R by f (u) = ||u||. Note that the Euclidean norm is a convex function
and thus by Jensen’s inequality we have

E
(||X ||)= E( f (θ+Z )

)≥ f
(
E(θ+Z )

)= ||θ+E(Z )|| = ||θ||,

and since Z non-degenerate and thus P(Z = 0) = 0 we have E(||X ||) > λ. When using the naïve MLE
we get the following quantiles.

λ\k 3 4 5 6 7 8 9 10 Average
1.0 +0.41 +0.74 +0.72 +2.43 +2.16 +2.99 +4.88 +5.31 2.46
2.0 +0.52 +0.93 +0.82 +1.97 +3.10 +3.33 +2.57 +5.00 2.28
3.0 +0.10 +0.37 +0.71 +1.03 +1.78 +2.24 +2.86 +3.89 1.62
4.0 -0.40 -0.17 +0.40 +0.31 +0.78 +0.98 -0.06 +1.04 0.52
5.0 +0.04 +0.09 +0.21 +0.00 +0.30 -0.03 +0.24 +0.37 0.16
6.0 -0.01 +0.05 +0.14 +0.12 +0.24 -0.16 +0.32 +0.19 0.15
7.0 -0.02 -0.02 +0.05 -0.02 +0.19 +0.16 +0.22 +0.42 0.14
8.0 +0.00 -0.01 +0.02 -0.02 +0.14 +0.26 -0.06 +0.00 0.06
9.0 +0.00 -0.01 -0.01 +0.00 -0.05 -0.06 +0.11 +0.03 0.03

10.0 +0.00 -0.01 -0.02 -0.04 -0.03 +0.03 +0.12 +0.16 0.05
Average 0.15 0.24 0.31 0.59 0.88 1.02 1.14 1.64 0.75

Table 4.2: Difference between true quantiles and estimated quantiles using the naïve MLE together with their absolute
error and averages.

4.2.2. An unbiased estimator for λ2

We have shown that the norm of the most likelihood estimator turns out to be positively biased so a
reasonable next step would be to consider an unbiased estimator for λ. It turns out that in the non-
trivial case finding such an estimator is quite hard but there does exist an easy unbiased estimator
for λ2. Consider λ̂2 = ||X ||2 −k, we know ||X ||2 ∼χ2

k (λ2)

E(||X ||2 −k) = E(||X ||2)−k =λ2 +k −k =λ2



4.2. Estimation of λ 23

and thus a reasonable estimator for λ might be λ̂U B =
√

(||X ||2 −k)+. When using this estimator we
get the following quantiles.

λ\k 3 4 5 6 7 8 9 10 Average
1.0 +0.95 +1.67 +2.02 +1.27 +1.05 +2.24 +2.92 +1.52 1.71
2.0 +0.07 +0.54 +0.00 +1.18 +1.43 +0.32 +0.56 +0.86 0.62
3.0 -0.21 -0.23 -0.44 +0.22 -0.55 -0.65 +0.10 +1.04 0.43
4.0 -0.59 -0.41 +0.17 -0.50 -0.08 -0.26 -1.20 -1.02 0.53
5.0 +0.03 +0.05 +0.11 -0.39 -0.13 -1.22 -1.11 -1.09 0.52
6.0 -0.03 +0.03 +0.08 -0.02 +0.03 -0.70 -0.24 -0.62 0.22
7.0 -0.02 -0.05 +0.02 -0.12 +0.10 -0.04 -0.03 +0.07 0.06
8.0 +0.00 -0.01 +0.01 -0.07 +0.06 +0.18 -0.30 -0.29 0.11
9.0 +0.00 -0.02 -0.02 -0.03 -0.12 -0.16 +0.00 -0.17 0.07

10.0 +0.00 -0.02 -0.05 -0.07 -0.07 -0.03 +0.04 +0.06 0.04
Average 0.19 0.30 0.29 0.39 0.36 0.58 0.65 0.67 0.43

Table 4.3: Difference between true quantiles and estimated quantiles using the unbiased estimator for λ2 together with
their absolute error and averages.

4.2.3. Positive part James-Stein estimator
A final obvious contestant is the norm of the positive part James-Stein estimator, i.e.

λ̂+
JS =

∣∣∣∣∣∣(1− a

||X ||2
)
+

X
∣∣∣∣∣∣= (

||X ||− a

||X ||
)
I{||X ||2>a}

When using this estimator we get the following quantiles.

λ\k 3 4 5 6 7 8 9 10 Average
1.0 +0.12 +1.16 +0.80 +1.20 +1.19 +1.62 +1.41 +0.55 1.01
2.0 +0.24 +0.15 -0.42 +0.48 +0.63 -0.06 -0.28 +0.05 0.29
3.0 -0.09 -0.11 -0.48 -0.46 -0.80 -1.09 -0.66 -0.44 0.52
4.0 -0.52 -0.37 +0.14 -0.66 -0.37 -0.89 -2.24 -1.93 0.89
5.0 +0.03 +0.05 +0.09 -0.52 -0.30 -1.61 -1.53 -2.32 0.81
6.0 -0.02 +0.03 +0.08 -0.06 -0.06 -0.98 -0.55 -1.10 0.36
7.0 -0.02 -0.05 +0.01 -0.15 +0.05 -0.14 -0.19 -0.13 0.09
8.0 +0.00 -0.01 +0.01 -0.08 +0.04 +0.13 -0.44 -0.48 0.15
9.0 +0.00 -0.02 -0.02 -0.05 -0.15 -0.22 -0.06 -0.29 0.10

10.0 +0.00 -0.02 -0.05 -0.09 -0.10 -0.06 +0.02 +0.01 0.04
Average 0.10 0.20 0.21 0.38 0.37 0.68 0.74 0.73 0.43

Table 4.4: Difference between true quantiles and estimated quantiles using the positive part James-Stein estimator to-
gether with their absolute error and averages.

4.2.4. Performance
To compare the three estimators for λ we computed, for each pair (k,λ), the average absolute error
in the 95th-percentile of the test statistic centred around the positive part James-Stein test statis-
tic. The naive maximum likelihood estimator appears to systematically overshoot when λ is small
and becomes less biased for larger λ. This can intuitively explained by the steep derivative of the
square root function for small values and the almost linear behaviour for large values. The unbi-
ased λ2 estimator tends to overshoot for very small λ, then mildly underestimates at moderate λ,
before approaching negligible bias once λ is large. In contrast, λ̂+

JS pulls the estimate closer to zero
enough to reduce the overshoot of the naive most likelihood estimator when λ small, yet does not
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introduce severe undershoot at moderate λ. Overall, the James–Stein approach achieves the lowest
average absolute error, closely followed by the unbiased-λ2 method, whereas the naive most like-
lihood estimators error is larger larger unless ∥θ∥ is known to be large. Consequently, if one seeks
to minimize average radius-error, and thus mis-coverage, across a range of (k,λ), the positive-part
James–Stein estimator is recommended. The unbiased λ2 estimator is a viable alternative once ∥θ∥
is not extremely small, and the naive most likelihood estimator should only be used for settings in
which ∥θ∥ is known to be large.

4.3. Hypothesis testing Inversion
Another approach is to in some sense inverse the hypothesis testing process. This idea is based on
theory from a textbook by Schervisch.

Proposition 4.3.1. (Schervish, 2012) Let g :Ω→G be a function.
For each y ∈ G, let φy be a level-α non-randomised test of H0 : g (θ) = y. Let R(x) = {y :
φy (x) = 0}. Then R is a level (1−α) confidence set for g (θ).

•• Let R be a level-(1−α) confidence set for g (θ). For each y ∈G define

φy (x) = I{y∉R(x)}.

Then, for each y,φy has level α as a test of H0 : g (θ) = y.

In our case we take g (θ) = θ and G = Θ = Rk . Thus, for each fixed candidate point y ∈ Rk , we wish
to test H0 : θ = y at level α. Under the null hypothesis we have X ∼ Nk (y, Ik ). Let Ty (X ) denote the
positive part James-Stein test statistic under this mean and define

c1−α(||y ||) = inf
{

t :Py
(
Ty (X ) ≤ t

)≥ 1−α}
This gives us

φy (x) =
{

1, Ty (X ) > c1−α(||y ||),

0, Ty (X ) ≤ c1−α(||y ||).

Now Proposition 4.3.1 states that the set

R(X ) = {
y ∈Rk :φy (X ) = 0

}
which may be written as

R(X ) = {
y ∈Rk : Ty (X ) ≤ c1−α(||y ||)}

is a (1−α)-confidence set for θ.



5
Conclusion

We set out to investigate the properties of test statistics centred around the positive part James-Stein
estimator and potential applications within the landscape of hypothesis testing and the creation of
confidence sets.

In Chapter 2 Theorem 2.1.2 showed that if we are working with a k-variate spherically distributed
random variable around θ with independent components then it follows a normal distribution. Ad-
ditionally formal definitions of the positive part James-Stein estimator and test statistic were given
and their properties were studied. Subsection 2.2 found closed form expressions for the distribution
of the radius of some spherically distributed random variable and Subsection 2.3 gave the density
for the positive part James-Stein test statistic. The chapter also states the normal distribution case
as a separate result and shows the link between the central t-distribution and normal distribution.

Chapter 3 sets out to apply the distribution found in Theorem 2.3.2 for simple and composite hy-
pothesis testing. The behaviour of the positive part James-Stein test statistic was studied in Subsec-
tion 3.1 we showed that the point mass part of the density of T (X ) is decreasing with respect to λ.
It it conjectured that the cumulative density of T (X ) is a decreasing function with respect to λ for
which numerical motivation is provided. The subsection ends by showing that the distribution of
T (X ) converges to that of a chi-squared distribution when λ tends to infinity. Subsection 3.2 goes
over the process of applying these concepts to hypothesis tests and it is shown that at least in the
4-dimensional normal distribution case there is no advantage to using the positive part James-Stein
test statistic over the classic chi-squared test statistic.

Finally Chapter 4 briefly goes over the construction of confidence sets using the positive part James-
Stein test statistic. Section 4.1 approximates the true quantiles of the positive part James-Stein test
statistic and compares them with the quantiles of a chi-squared distribution from which it is con-
cluded that the positive part James-Stein test statistic allows for smaller radii. Section 4.2 uses a
variety of estimators for λ to estimate these quantiles based on simulated samples. The subsec-
tion closes with a short conclusion in which is it concluded that the best estimator is based on the
unbiased estimator for λ2. Subsection 4.3 briefly goes over how one can apply hypothesis testing
inversion to construct confidence sets using the positive part James-Stein test statistic.
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6
Discussion and Further Research

Chapter 2 introduces a closed form expression for the law of the positive part James-Stein test statis-
tic but in its current form it is not very practical. Perhaps utilising the fact that the boundaries of
the integral in Theorem 2.3.2 are chosen such that v ∈ [−1,1] would allow for a cleaner formula. The
chapter additionally places a large focus on the multivariate normal distribution but the class of
spherical distributions is of course significantly larger.

Chapter 3 studies the behaviour of the previously found law but fails to make any formal conclu-
sions about under what conditions this law attains its maximum. It also briefly considers hypoth-
esis testing but there is still a lot to be said about the general case where the null-hypothesis might
not be a singleton or neatly defined convex set.

In Chapter 4 it was shown that when λ is known that we can improve on the classic confidence
set but in practice this is not the case. The chapter attempts to mediate this by introducing several
estimators for λ but due to small sample size and computational constraints there is still work to be
done here.
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A
Derivation of the Beta integral

We want to find a closed form expression for∫ 1

−1
(1− t 2)

k−3
2 erλt d t =

∫ 1

−1
(1− t 2)

k−3
2

∞∑
n=0

(rλt )n

n!
d t =

∞∑
n=0

(rλ)n

n!

∫ 1

−1
(1− t 2)

k−3
2 t nd t

in which the swapping of the order of integration and summation is justified by dominated conver-
gence theorem. Let u = t 2, then

du

d t
= 2t =⇒

∫ 1

−1
(1− t 2)

k−3
2 t nd t =

∫ 1

0
(1−u)

k−3
2 u

n−1
2 du = B

(k −1

2
,

n +1

2

)
,

in which B(z1, z2) denotes the Beta function. Additionally note that when n is odd the original in-
tegral in the summation is the product of an even and odd function and is therefore equal to zero
which implies we may write

∞∑
n=0

(rλ)2n

(2n)!

∫ 1

−1
(1− t 2)

k−3
2 t 2nd t = 1

2

∞∑
n=0

(rλ)2n

(2n)!
B

(k −1

2
,n + 1

2

)
.

Recalling the identities for the Beta and modified Bessel functions

B
(k −1

2
,n + 1

2

)
= Γ

(k−1
2

)
Γ
(
n + 1

2

)
Γ
(
n + k

2

) , I k
2 −1(rλ) =

∞∑
n=0

1

n!Γ
(
n + k

2

)(rλ

2

)2n+
(

k
2 −1

)

we can write

Γ
(
(k −1)/2

) ∞∑
n=0

(rλ)2n

(2n)!

Γ
(
n + 1

2

)
Γ
(
n + k

2

) = Γ(
(k −1)/2

) ∞∑
n=0

(rλ)2n

(2n)!

p
π(2n)!

4nn!Γ
(
n + k

2

)
in which we used Γ(n + 1

2 ) =p
π(2n)!/(4nn!). Collecting terms we get

p
πΓ

(
(k −1)/2

) ∞∑
n=0

(rλ)2n

4nn!Γ
(
n + k

2

) = p
πΓ

(
(k −1)/2

)(1
2 rλ

)k/2−1
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n=0

1

n!Γ
(
n + k

2

)(rλ

2

)2n+
(

k
2 −1

)

and thus finally we have ∫ 1

−1
(1− t 2)

k−3
2 erλt d t =

p
πΓ

(
(k −1)/2

)(1
2 rλ

)k/2−1
I k

2 −1(rλ).

which was what we wanted to show.
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B
Proof of Theorem 2.3.2

Proof. We consider the two cases separately, Proposition 2.3.1 covers the case where we have
||X ||2 ≤ a so we now consider its complement, ||X ||2 > a. Define A(r ) = r − a/r,R = ||X || and
Y = X /||X ||. We may write

T (X ) =
∣∣∣∣∣∣X −a

X

||X ||2 −θ
∣∣∣∣∣∣2

=
∣∣∣∣∣∣A(R)Y −θ

∣∣∣∣∣∣2
= A2(R)||Y ||2 +λ2 −2A(R)〈Y ,θ〉.

Y lies on the unit sphere and thus its length is always one. Let V = 〈Y ,θ/λ〉 then we can write

T (X ) = A2(R)+λ2 −2A(R)λV = m −bV

which implies that we have

P
{

T (X ) ≤ t
∣∣∣R = r

}
=P

{
V ≥ m − t

b

∣∣∣R = r
}
= 1−P

{
V ≤ m − t

b

∣∣∣R = r
}

The distribution of T |R follows from Lemmas 2.2.2 and 2.2.1 which gives us

fT |R (t |r ) = 1

2A(r )λ
fV |R

( A2(r )+λ2 − t

2A(r )λ

∣∣∣r )
which then gives us

fT (t ) =
(∫ p

a

0
fR (r )dr

)
δ
(
t −||θ||2)+∫ ∞

p
a

1

2A(r )||θ|| fV |R
( A2(r )+||θ||2 − t

2A(r )||θ||
∣∣∣r )

fR (r )dr.

Recall that since we have v ∈ [−1,1] we can actually swap the bounds of the integral for finite
values. We require that

−1 ≤ A2(r )+λ2 − t

2A(r )λ
≤ 1 =⇒ (

A(r )−λ)2 ≤ t ≤ (
A(r )+λ)2.

Working out these inequalities we get the bounds

r−(t ,λ, a) =
|λ−p

t |+
√

|λ−p
t |2 +4a

2
,

r+(t ,λ, a) = (λ+p
t )+

√
(λ+p

t )2 +4a

2
Finally, combining the densities we get

fT (t ) =
(∫ p

a

0
fR (s)d s

)
δ(t −λ2)+

∫ r+

r−

fV ,R (v(r ),r )

2A(r )λ
dr, v(r ) = A2(r )+λ2 − t

2A(r )λ

as desired.
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C
Python code

1 import numpy as np
2 import pandas as pd
3 from scipy.stats import ncx2 , chi2
4 from scipy.special import gamma
5 from scipy.integrate import quad
6

7

8 def theoretical_cdf_T(lam , k=5, a=None , t_min =0.0, t_max =30.0, n_points
=300):

9 """
10 Compute the theoretical CDF of
11 T = || X_shrink ||^2
12 when X ~ N_k( , I_k), || || = lam , and a = k 2 (shrinkage

factor).
13

14 Special case: if lam == 0, then X ~ N_k(0, I_k) and one obtains the
c l o s e d form

15 density
16 f_T(t) = (t) * P( _k a)
17 + (2^{-k/2}/ (k/2)) * [r(t)^k / ( t (t + 4a))] *

exp( r (t) /2),
18 with r(t) = [ t + (t + 4a ) ] / 2.
19

20 Returns
21 -------
22 t_grid : ndarray , shape (n_points ,)
23 F_theor: ndarray , shape (n_points ,)
24 Theoretical CDF values F_T(t; lam) evaluated at every point in

t_grid.
25 """
26 if a is None:
27 a = k - 2
28

29 # 1) Build a uniform grid of t-values
30 t_grid = np.linspace(t_min , t_max , n_points)
31 dt = t_grid [1] - t_grid [0]
32

33 # -----------------------------------------------------------
34 # Special case: lam == 0

33
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35 # -----------------------------------------------------------
36 if lam == 0:
37 # (a) The p o i n t mass at t = 0 is P( ||X|| a ) for X ~

N_k(0,I) <=> _k a
38 p_atom = chi2.cdf(a, df=k)
39

40 # (b) The continuous density for t > 0 is
41 # f_cont(t) = [ 2^{-k/2} / (k/2) ] * [ r(t)^k / ( t

(t + 4a) ) ] * exp( r(t)^2 / 2 ),
42 # where r(t) = [ t + (t + 4a ) ] / 2.
43 #
44 # We will fill f_cont_vals[i] only for t_grid[i] > 0. At t

= 0, set f_cont = 0,
45 # since the d e l t a mass at 0 is handled by p_atom.
46

47 # Precompute the constant 2^{-k/2} / (k/2)
48 prefactor = (2.0 ** ( -k/2 )) / gamma(k/2)
49

50 f_cont_vals = np.zeros_like(t_grid)
51 for i, t in enumerate(t_grid):
52 if t <= 0:
53 # At exactly t = 0, the continuous part vanishes; the

d e l t a mass handles it.
54 f_cont_vals[i] = 0.0
55 else:
56 # compute r(t)
57 sqrt_t = np.sqrt(t)
58 sqrt_tp4a = np.sqrt(t + 4.0 * a)
59 r_t = 0.5 * (sqrt_t + sqrt_tp4a)
60

61 # density at t > 0
62 # f_cont(t) = prefactor * [ r(t)^k / ( sqrt(t) * sqrt

(t + 4a) ) ] * exp(-r(t)^2 / 2)
63 f_cont_vals[i] = (
64 prefactor
65 * (r_t ** k)
66 / ( sqrt_t * sqrt_tp4a )
67 * np.exp(-0.5 * (r_t ** 2))
68 )
69

70 # (c) Build c o n t i n u o u s CDF by Riemann sum ( l e f t Riemann /
trapezoid omitted , but dt is small)

71 F_cont = np.cumsum(f_cont_vals) * dt
72

73 # (d) Add the p o i n t mass at t = 0 for all t >= 0
74 F_theor = F_cont.copy()
75 idx0 = np.searchsorted(t_grid , 0.0, side=’left’)
76 if idx0 < len(F_theor):
77 F_theor[idx0:] += p_atom
78

79 return t_grid , F_theor
80

81 # -------------------------------------------------------
82 # General case: lam > 0
83 # -------------------------------------------------------
84
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85 # (1) P o i n t mass at t = lam^2 from R^2 ||X|| ~ _nc (k,
l a m )

86 p_atom = ncx2.cdf(a, df=k, nc=lam **2)
87

88 # (2) C o n t i n u o u s density prefactor
89 prefac_denominator = np.sqrt(np.pi) * gamma((k - 1) / 2) * (2 ** (k

/ 2))
90 C_k = np.exp(-(lam**2 + a) / 2) / (prefac_denominator * lam)
91

92 # (3) Loop over t_grid , integrate from r to r
93 f_cont_vals = np.zeros_like(t_grid)
94 for i, t in enumerate(t_grid):
95 sqrt_t = np.sqrt(t)
96 diff = lam - sqrt_t
97

98 # r (t) = [ | t | + { ( t ) + 4a } ] / 2
99 # r (t) = [ ( + t ) + { ( + t ) + 4a } ] / 2

100 r_minus = (np.abs(diff) + np.sqrt(diff **2 + 4.0 * a)) / 2.0
101 r_plus = ((lam + sqrt_t) + np.sqrt((lam + sqrt_t)**2 + 4.0 * a

)) / 2.0
102

103 if r_minus >= r_plus:
104 f_cont_vals[i] = 0.0
105 continue
106

107 def integrand(r):
108 # v = [ ( r a) (t ) r ] / [ 2 r ( r

a) ]
109 num_v = (r**2 - a)**2 - (t - lam **2) * (r**2)
110 denom_v = 2.0 * r * (r**2 - a) * lam
111 v = num_v / denom_v
112

113 base = (1.0 - v**2)
114 if base < 0:
115 base = 0.0
116

117 exponent = (r**2 * (lam**2 - t)) / (2.0 * (r**2 - a))
118 return (r**k / (r**2 - a)) * np.exp(exponent) * (base ** ((

k - 3) / 2))
119

120 integral_val , _ = quad(integrand , r_minus , r_plus , epsabs =1e-9,
epsrel =1e-9)

121 f_cont_vals[i] = C_k * integral_val
122

123 # (4) Build c o n t i n u o u s CDF by Riemann sum
124 F_cont = np.cumsum(f_cont_vals) * dt
125

126 # (5) Add the jump of size p_atom at t = lam^2
127 F_theor = F_cont.copy()
128 idx_jump = np.searchsorted(t_grid , lam**2, side=’right ’)
129 if idx_jump < len(F_theor):
130 F_theor[idx_jump :] += p_atom
131

132 return t_grid , F_theor
133

134
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135

136 # --- Compute only the 0.95 quantile of T for each (lam , k) pair ----
137

138 lam_list = np.linspace(1, 10, 10) # 10 values from 1 to 10
139 k_list = np.linspace(3, 10, 8) # 8 values from 3 to 10
140 N = 5
141

142

143 # P r e allocate a 2D array for the 0.95 quantiles
144 quantile_T = np.zeros((len(lam_list), len(k_list)))
145

146 # Use the first (lam , k) pair to get the t_grid length
147 t_vals_sample , _ = theoretical_cdf_T(lam_list [0], k=int(k_list [0]), a=

int(k_list [0]) - 2,
148 t_min=0, t_max =100, n_points =1000)
149

150 for i, lam in enumerate(lam_list):
151 print(f"finding theoretical quantiles for lambda = {lam}")
152 for j, k_val in enumerate(k_list):
153 k_int = int(k_val)
154 a_int = k_int - 2
155

156 # Compute the full theoretical CDF on the grid
157 t_vals , F_vals = theoretical_cdf_T(lam ,
158 k=k_int ,
159 a=a_int ,
160 t_min=0,
161 t_max=30,
162 n_points=len(t_vals_sample))
163

164 # Find the smallest t such that F_T(t) >= 0.95
165 # If no value reaches 0.95, assign NaN
166 if np.any(F_vals >= 0.95):
167 idx_095 = np.argmax(F_vals >= 0.95)
168 quantile_T[i, j] = t_vals[idx_095]
169 else:
170 quantile_T[i, j] = np.nan
171

172 # Now quantile_T[i, j] holds the 0.95 quantile for lam_list[i],
k_list[j].

173

174

175 # Create DataFrame with as rows and k as columns
176 df_quantiles = pd.DataFrame(
177 quantile_T ,
178 index=np.round(lam_list , 2),
179 columns=np.round(k_list , 2)
180 )
181 df_quantiles.index.name = ’ ’
182 df_quantiles.columns.name = ’k’
183

184 print(df_quantiles.round (2))
185

186

187 quantiles_naive = np.zeros((len(lam_list), len(k_list)))
188 quantiles_unbiased = np.zeros((len(lam_list), len(k_list)))
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189 quantiles_stein = np.zeros((len(lam_list), len(k_list)))
190

191

192

193 for i, lam in enumerate(lam_list):
194 print(f"Finding estimated quantiles for lambda = {lam}")
195 for j, k_val in enumerate(k_list):
196 k_int = int(k_val)
197 a_int = k_int - 2
198

199 # Construct vector of norm along first coordinate
200 theta = np.zeros(k_int)
201 theta [0] = lam
202

203 # Simulate N samples X ~ N_k( , I_k)
204 X = np.random.normal(size=(N, k_int)) + theta
205

206 # Compute norms ||X||
207 norms = np.linalg.norm(X, axis =1)
208

209 # Estimator 1: Naive MLE ||X||
210 est_naive_lambda = norms
211 q_naive = np.zeros(N)
212

213 # Estimator 2: Unbiased for ^2: sqrt ((||X||^2 - k)_+)
214 est_ub_lambda = np.sqrt(np.maximum(norms **2 - k_int , 0))
215 q_unbiased = np.zeros(N)
216

217

218 # Estimator 3: Positive part James -Stein: (||X|| - a/||X||) I
{||X||^2 > a}

219 est_js_lambda = np.where(norms **2 > a_int , norms - a_int /
norms , 0)

220 q_stein = np.zeros(N)
221

222

223 for I in range(N):
224 t_vals_1 , F_vals_1 = theoretical_cdf_T(est_naive_lambda[I],
225 k=k_int ,
226 a=a_int ,
227 t_min=0,
228 t_max=30,
229 n_points=len(

t_vals_sample))
230

231 t_vals_2 , F_vals_2 = theoretical_cdf_T(est_ub_lambda[I],
232 k=k_int ,
233 a=a_int ,
234 t_min=0,
235 t_max=30,
236 n_points=len(

t_vals_sample))
237

238 t_vals_3 , F_vals_3 = theoretical_cdf_T(est_js_lambda[I],
239 k=k_int ,
240 a=a_int ,
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241 t_min=0,
242 t_max=30,
243 n_points=len(

t_vals_sample))
244

245 # Find the smallest t such that F_T(t) >= 0.95
246 # If no value reaches 0.95, assign NaN
247 if np.any(F_vals_1 >= 0.95):
248 idx_095 = np.argmax(F_vals_1 >= 0.95)
249 q_naive[I] = t_vals_1[idx_095]
250 else:
251 print(F_vals_1 [-1])
252 q_naive[I] = np.nan
253

254

255 if np.any(F_vals_2 >= 0.95):
256 idx_095 = np.argmax(F_vals_2 >= 0.95)
257 q_unbiased[I] = t_vals_2[idx_095]
258 else:
259 print(F_vals_2 [-1])
260 q_unbiased[I] = np.nan
261

262 if np.any(F_vals_3 >= 0.95):
263 idx_095 = np.argmax(F_vals_3 >= 0.95)
264 q_stein[I] = t_vals_3[idx_095]
265 else:
266 print(F_vals_3 [-1])
267 q_stein[I] = np.nan
268

269 quantiles_naive[i, j] = np.mean(q_naive)
270 quantiles_unbiased[i, j] = np.mean(q_unbiased)
271 quantiles_stein[i, j] = np.mean(q_stein)
272

273 print(( quantiles_naive - quantile_T).round (2))
274 print(quantiles_unbiased.round (2))
275 print(quantiles_stein.round (2))
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