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ABSTRACT

Pool fires are canonical representations of many accidental fires which can exhibit an unstable unsteady behavior, known as puffing, which involves
a strong coupling between the temperature and velocity fields. Despite their practical relevance to fire research, their experimental study can be
limited due to the complexity of measuring relevant quantities in parallel. In this work, we analyze the use of a recent physics-informed machine
learning approach, called hidden fluid mechanics (HFM), to reconstruct unmeasured quantities in a puffing pool fire from measured quantities.
The HFM framework relies on a physics-informed neural network (PINN) for this task. A PINN is a neural network that uses both the available
data, here the measured quantities, and the physical equations governing the system, here the reacting Navier–Stokes equations, to infer the full fluid
dynamic state. This framework is used to infer the velocity field in a puffing pool fire from measurements of density, pressure, and temperature. In
this work, the dataset used for this test was generated from numerical simulations. It is shown that the PINN is able to reconstruct the velocity field
accurately and to infer most features of the velocity field. In addition, it is shown that the reconstruction accuracy is robust with respect to noisy
data, and a reduction in the number of measured quantities is explored and discussed. This study opens up the possibility of using PINNs for the
reconstruction of unmeasured quantities from measured ones, providing the potential groundwork for their use in experiments for fire research.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0097496

I. INTRODUCTION

In fire research, pool fires are characterized by their stabilization
on a horizontal surface, solid or liquid, where the fuel is supplied
through evaporation or pyrolysis, which provides a feedback between
heat release, heat transfer, and fuel supply. In contrast to (jet) flames,
fires are further characterized by a low initial Reynolds number of the
fuel stream from evaporation or pyrolysis, a buoyant turbulent diffusion
flame, and a non-reacting buoyant plume.1 The study of pool fires is rel-
evant from both a theoretical and a practical point of view as they con-
stitute a canonical case for fire research that includes most key physical
phenomena essential to the dynamics of natural or accidental fires.
Consequently, the study of pool fires is of considerable interest in fire
safety research, where they have been commonly used, for instance, as a
model fire to study the suppression of fires2 or as ignition sources to
study the spread of fires in rail vehicles.3,4 The case of liquid sodium
pool fires is relevant to the safety of sodium cooled nuclear reactors.5

Finally, a similar behavior to the puffing of pool fires has also been
found to play an important role in the spreading of wildfires.6,7

Pool fires have been studied in depth, starting from some early
investigations,8–10 and several extensive reviews are available on the
topic.1,11–13 Here, we focus on an unsteady pulsating motion with a
well-defined frequency that pool fires can exhibit called “puffing,”
which has been shown to be the result of a fluid dynamic rather than a
combustion instability.14 In fact, at the onset of puffing, the pool fire
undergoes a bifurcation to a globally unstable puffing state driven by
baroclinic and buoyant vorticity generation.15 In a recent work,
Moreno-Boza et al.15 performed a global linear stability analysis of 2D
axisymmetric pool fires to determine the critical condition for the
onset of puffing, which was found to occur when exceeding a critical
Rayleigh number. While the above-mentioned onset of puffing occurs
in the laminar regime, recent progress on the modeling of turbulent
pool fires include several works using large eddy simulation for predic-
tive modeling.16–18

Despite their importance described above, the experimental study
of pool fires has been somewhat limited by the difficulties that arise
from the complexity of performing measurements on them, as such
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techniques are often restricted in either the regions that can be investi-
gated or the quantities that can be measured. This becomes even more
challenging for transient fire dynamics, such as puffing fires, as they
would require simultaneous diagnostics. In this context, the develop-
ment of data analysis and postprocessing techniques that can supple-
ment the missing information by, for example, reconstructing
unmeasured quantities or augmenting the resolution of the available
data is of great interest to fire research. To achieve this, recent techni-
ques in data science and machine learning have shown a great poten-
tial.19–27 For example, methods based on proper orthogonal
decomposition (POD) have been used to reconstruct the velocity field
from sparse measurements by finding a data-driven based mapping
between the measurable quantities (of, for example, sparse sensors)
and the velocity field22 or by using feedforward neural networks to
achieve a similar task.23,26 For reacting flows, an extension of POD,
called Gappy POD, was developed with some success to infer the
velocity in regions where it is not measured.27 Further attempts were
made at using convolutional neural networks (CNNs) to reconstruct
velocity fields from OH-planar laser induced fluorescence (PLIF)
data.19,20 Despite their success, the approaches in these works required
a database with both the measured quantities and those to be recon-
structed, to train the machine learning framework. To circumvent this,
a recent framework was proposed by Raissi et al.,25 called hidden fluid
mechanics (HFM), where a feedforward neural network is trained with
both the governing equations of the system and the measured quanti-
ties to perform such a reconstruction task without requiring data of
the quantities to reconstruct. Such a network was coined a “physics-
informed neural network” (PINN) and was originally designed to solve
ordinary differential equation (ODE) or partial differential equation
(PDE) problems41 such as the Navier–Stokes equation28 or its
Reynolds-averaged version.29 In the context of experimental measure-
ments reconstruction, as a proof of concept, Raissi et al.25 applied a
PINN to the K�arm�an vortex street in the wake of a cylinder. This prob-
lem presented itself as the prediction of a periodic laminar flow, i.e.,
velocity and pressure fields, from a conserved scalar variable. The so-
called physics-informed neural network was shown able to reconstruct
the velocity field in this canonical non-reacting flow. Cai et al.30 have
applied HFM to a buoyancy-driven flow using experimental data as
input. They inferred the velocity and pressure fields above an espresso
cup from snapshots of the temperature field recorded with tomo-
graphic background-oriented Schlieren imaging. However, the result
was only validated qualitatively since velocity measurements were not
carried out simultaneously with the temperature measurements. A
similar PINN-based framework was also applied to the problem of
super-resolution, i.e., inferring higher resolution flow features from
low resolution ones in space and time.31,32 It was shown that the PINN
could reconstruct the higher resolution flow characteristics in space
and time for a series of canonical non-reacting flows both from simula-
tion data31 or from experimental data.32 Therefore, the HFM approach
has only been applied to flows of constant density or small density var-
iations that can be described by a Boussinesq approximation. The
applicability of this approach has not been fully demonstrated for
reacting flows with large variations and steep gradients of density and
temperature as well as significant variations of composition.

In this work, we propose to extend this HFM methodology of
Raissi et al.25 to the reconstruction of the velocity field in a puffing
pool fire, thereby demonstrating the potential of this method in fire

research, which deals with complex reacting flows that include chemi-
cal reactions, large density variations, and buoyancy. This work opens
up the use of HFM to practical fire-related applications where obtain-
ing a full set of measurements is extremely challenging. In this first
attempt to apply HFM to a reacting flow proposed here, the dataset of
measured quantities will be obtained from numerical simulations as
this provides all quantities of interest from which only a subset will be
used for the development of the HFM framework and as it allows for a
thorough cross-comparison between the reconstruction from the
HFM framework and the values obtained from the simulations.
Nevertheless, these simulations are set up as numerical representations
of real flames studied experimentally and will be shown to reproduce
their behavior accurately.15 The basic reconstruction problem in scope
is the reconstruction of the full velocity field from measurements of
density, pressure, and temperature.

The remainder of this paper is organized as follows. Section IIA
presents the setup of the numerical simulations of the pool fire.
Section IIB provides details on the HFM framework. Numerical
results of the pool fire simulations are provided in Sec. IIIA, and the
velocity reconstruction with HFM is discussed in Sec. III B. Additional
comments on the robustness of the HFM framework with respect to
noisy data and a reduced number of measured quantities are also dis-
cussed. Section IV summarizes the results obtained and provides
directions for future work.

II. METHODS
A. Computational fluid dynamics

Simulations of the pool fire were carried out using the computa-
tional fluid dynamics (CFD) toolbox OpenFOAM-7 with the solver
fireFoam.33 The governing equations are the continuity equation,
Navier–Stokes equations, species mass fraction equations (for each
chemical specie k), and enthalpy equation,34

@q
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þ @qui

@xi
¼ 0; (1)

@qui
@t
þ
@quiuj
@xj

¼ � @p
@xi
þ
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@xj
þ qgi; (2)
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¼ @

@xi
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� �
þ q _xk; (3)

@qh
@t
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@xi
¼ @

@xi
qa

@h
@xi

� �
; (4)

where sij is the molecular stress tensor, _xk is the chemical reaction
rate, D is the molecular diffusivity, and a ¼ k=ðqCpÞ is the thermal
diffusivity.

A 2D axisymmetric pool fire with n-heptane fuel (YF ¼ YC7H16)
and at ambient conditions (p0 ¼ 100 000 Pa; T0 ¼ 300K; YO2

¼ 0:233; YN2 ¼ 0:767) was investigated, equivalent to the n-heptane
flames with an isothermal brass baseplate studied experimentally and
numerically by Moreno-Boza et al.15 A schematic of the numerical
domain is shown in Fig. 1. The domain size was 50a in axial and 5a in
radial direction, where a is the fuel pool radius. A 2D structured grid
was used with 600� 130 grid points. In radial direction, the pool
radius a was resolved by 91 grid points. In the region of interest, where
the flame was located, the same resolution was used in axial direction.
So, depending on the pool diameter, the grid resolution was in the
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range from approximately 0.088–0:11mm, which is sufficient to
resolve all scales of the flow and the reaction zone. This resolution was
the result of a grid sensitivity study, where the resolution was refined
until key characteristics of the flame, i.e., stable flame length and puff-
ing frequency in the transient case, did not change any more and grid
convergence was achieved. Numerical schemes were of second order
in space and first order in time with a fixed time step of 10�5 s, so that
CFL < 0:1, and using a fractional step scheme with adaptive step size
for the chemical source term. This was found to be sufficiently accu-
rate to replicate the characteristics of the flames observed in the experi-
ments and effective to avoid numerical instabilities.

In the present modeling approach, radiation was not explicitly
included as a sink term in the enthalpy equation. Instead, radiative
heat loss was accounted for by reducing the heat of combustion of the
chemical reaction. Turbulence modeling did not need to be consid-
ered, since the flame is in the laminar regime at the onset of puffing.
Combustion chemistry was modeled as the irreversible single-step
reaction,

C7H16þ 11O2 ! 7CO2þ 8H2O; (5)

whose rate constant is given by the Arrhenius law,

K ¼ BTb exp ð�TA=TÞ (6)

with the model constants b ¼ 0, TA ¼ 12 000K and B ¼ 5:5
�107 m3=ðmol sÞ. The choice of TA and B was made to best fit the
laminar flame speed curve for heptane–air mixture with the single-
step mechanism, following the reasoning of Fernandez-Tarrazo
et al.,35 but without correcting heat release rate (HRR) and TA with
equivalence ratio /. This modeling of the chemical reaction was cho-
sen for the sake of simplicity, and it is sufficient for the present case of
a laminar diffusion flame characterized by high Damk€ohler number
and controlled by mixing. Indeed, Moreno-Boza et al.15 reproduced
the puffing behavior correctly using infinitely fast chemistry.
Reproduction of the laminar flame speed SLð/Þ and the HRRð/Þ over
a broad range of equivalence ratios, as suggested by Fernandez-
Tarrazo et al.,35 is less important for a diffusion flame where the reac-
tion occurs at stoichiometric conditions.

Density is given by the ideal gas law. Viscosity is computed from
Sutherland’s law, l ¼ As

ffiffiffiffi
T
p

=ð1þ Ts=TÞ, independent of species com-
position with As ¼ 1:672� 10�6 kg=ðmsK1=2Þ and Ts ¼ 170:67K.
Molecular and thermal diffusivity are computed based on the assump-
tions of unity Lewis number, Le ¼ a=D ¼ 1, and constant Prandtl
number, Pr ¼ l=ðqaÞ ¼ 0:7. Specific heat, Cp, and enthalpy, h, are
obtained from NASA polynomials but modifying the formation
enthalpy of n-heptane to reduce the flame temperature to approximately
1750K to account for the effect of radiative heat loss on the flame, fol-
lowing previous work.15

The liquid surface is modeled as a boundary condition following
Moreno-Boza et al.15 The liquid surface is assumed to be at the boiling
temperature of n-heptane, TB ¼ 371:5K. Walls are assumed isother-
mal at the ambient temperature T0. The fuel mass flow rate at the liq-
uid surface is determined by the evaporation rate relating the
conductive heat flux to the liquid with the surface normal velocity un,

qun ¼
1
lV

k
@T
@n

; (7)

where lV ¼ LV þ CLðTB � T0Þ with the latent heat LV ¼ 360 000 J=kg
and the liquid heat capacity CL ¼ 2 240 J=ðkgKÞ. The jump condition
at the phase interface for fuel mass fraction (species index k ¼ F) is

qun ¼ qunYF � qD
@YF

@n
; (8)

and for all other species (k 6¼ F),

0 ¼ qunYk � qD
@Yk

@n
: (9)

In the experiments, the fuel surface was maintained 0:756 0:25mm
below the surface of the brass baseplate to avoid fuel spillage and the
flame behavior was found to be very sensitive to that value.15

Therefore, this vertical offset between the isothermal baseplate, and
the liquid surface is included in the present simulations.

B. Reconstruction method

To reconstruct the unmeasured quantity, the approach called
hidden fluid mechanics proposed by Raissi et al.25 will be used. This
approach relies on a physics-informed neural network,36 illustrated in
Fig. 2, and uses a neural network to infer the measured and unmea-
sured quantities in a given flow, which is governed by the (reacting)
Navier–Stokes equations, listed in Sec. IIA. To achieve the inference of

FIG. 1. Schematic of the numerical domain. Coordinates normalized by pool radius a.
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unmeasured quantities, the PINN relies on two sources of information:
(i) the data which is related to the measurable quantities and (ii) the
governing equations of the flow, described in Sec. IIA. A PINN is a
conventional feedforward neural network (blue box in Fig. 2) which is
trained with a specific loss function that accounts for the governing
physical equations, which we will call the “physical residual error” ep
(red part in Fig. 2) and the measurement reconstruction error (em,
green part). Feedforward neural networks map the input to the output,
as shown in Fig. 2 where an input, two hidden, and an output layer are
represented. The network is termed feedforward as the output of a
given layer is not fed back into the input or preceding layers. Each hid-
den layer consists of neurons which are fully connected, meaning that
each neuron in a given layer l–1 is connected to all neurons in the fol-
lowing layer l through a weight matrix W l . Therefore, the intermediate
output of the hidden layer l can be written as Zl ¼WT

l X l�1 þ bl ,
where X l�1 is the output of the layer l–1 and bl is the bias in layer l.
Following this, nonlinearities are introduced through the element-wise
activation function g, so that X l ¼ gðZlÞ. For what follows, the activa-
tion function used for all hidden layers will be the swish function37

with a linear activation in the final output layer. The choice of the
swish activation function was made following the propositions on
HFM architecture in previous work.25 The swish function was found
to provide sufficient accuracy for the present cases as well, which will
be discussed in Sec. III B. Other activation functions, such as the sig-
moid and Rectified Linear Unit (ReLU) activation functions, were also
tested but in those cases the accuracy of the resulting PINN was
smaller, in line with previous findings.37 The interested reader is
referred to this latter reference for details on how the swish activation
function outperforms previous activation function.

In the HFM architecture, the PINN takes as input a space–time
location ðx; tÞ (here, in axisymmetric 2D, x ¼ ½x; r�) and outputs the
flow state vector at that location, i.e., its output is ~U ¼ ½q; p;T; u;Y �,
where ~� indicates a prediction from the PINN, u ¼ ½u; v� is the veloc-
ity vector, with axial component u and radial component v, and Y is
the chemical composition vector. For simplicity, in this first attempt at
using the HFM for reacting flows, the species mass fraction will not be
considered in the reconstruction problem and, therefore, the consid-
ered flow state is just ~U ¼ ½q; p;T; u; v�. In the specific reconstruction
problem considered here, it should be stressed that, for the training of
the PINN, only a subset of these outputs have associated target data
(i.e., the measured quantities). Such measured states will subsequently
be noted /m for the target data and ~/m for the PINN prediction, with

their associated space–time locations noted as ðxm; tmÞ. In what
follows, it will be considered that the measurable quantities are
/m ¼ ½q; p;T� unless mentioned otherwise. A visual representation of
the quantities that are considered measured and the ones to be recon-
structed is provided in Fig. 3.

To enable the PINN to reconstruct the other unmeasured quanti-
ties (here the velocity field u), the loss function used to train the PINN
includes the residual of the reacting Navier–Stokes equations, noted R,
which is estimated at collocation points, noted ðxc; tcÞ, spread over the
time–space domain covered by the simulation. It should be noted that
given the specific choice made here in terms of the quantities taken into
account (species not considered and T being measured), it becomes pos-
sible to only consider a subset of the complete reacting Navier–Stokes
equations, namely, the continuity and momentum equations. Indeed, if
T is measured, these equations would form a closed set of equations (for
the density, pressure, and the velocity fields) and, therefore, the species
transport equations and the enthalpy equation are not considered in
what follows. Thus, the loss function to train the PINN is

L ¼ 1
Nm

XNm

n¼1
j/mðxn

m; t
n
mÞ � ~/mðxn

m; t
n
mÞj

2
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þ 1
Nc
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i¼1
jRð~Uðxi

c; t
i
cÞj

2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ep

: (10)

In the equation above, the first term, the measurements reconstruction
error em (green part in Fig. 2), corresponds to a standard mean-
squared-error (MSE) between the target data (the measured fields)
and the prediction of the PINN for the Nm space–time locations
ðxn

m; t
n
mÞ

� �
where those measurements data are available. It should

again be emphasized that only a subset of all the flow states are consid-
ered measurable and therefore /m does not account for the full flow
state. The second term (ep, red part in Fig. 2) represents a physics-
based loss, which is the residual of the (reacting) Navier–Stokes equa-
tions computed using the prediction of the PINN at arbitrary space–-
time collocation points ðxi

c; t
i
cÞ

� �
. This second term enables the

network to identify suitable predictions for the unmeasured quantities
that satisfy the governing equations. The role of the collocation points
is, therefore, quite important as these are the locations where the
PINN will try to minimize the residual of the governing equations.
This physical residual is computed using automatic differentiation38 as
in past work on PINN applications.25,28 Automatic differentiation ena-
bles the efficient computation of the (partial) derivatives of the output
(the flow states) with respect to the input (space and time). This allows
to estimate all the required partial derivatives needed in the (reacting)
Navier–Stokes equations i.e., Eqs. (1)–(4), therefore, enabling an esti-
mation of the residual of those equations at the collocation locations.
It should be noted here again that, given the specific choice of mea-
sured quantities and quantities to be reconstructed, it is only necessary
to consider the continuity and momentum equations in the physical
residual error calculations and, therefore, only Eqs. (1) and (2) are
actually considered in the calculation of ep in this work. Finally, for
simplicity, the collocation points are taken to be the same as the
space–time locations where target data are available, i.e., Nc ¼ Nm and
ðxi

c; t
i
cÞ

� �
¼ ðxi

m; t
i
mÞ

� �
.

FIG. 2. Schematic of the HFM framework. The dashed blue box indicates the actual
neural network. The dashed red box indicates the differential operators (I indicates
the identity operation, @� is the partial derivative), obtained via automatic differentia-
tion, required to compute the physical residual, ep. The green box indicates the cal-
culation of the measurement reconstruction error, em.
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Regarding the boundary conditions, previous work on HFM25

showed that an arbitrary domain could be considered for reconstruc-
tion. So, there was no need for an explicit knowledge of the boundary
condition, and the measurement data (from the scalar) was sufficient
for the reconstruction of the unmeasured quantities by the PINN.
Similarly, in our work, we did not need to explicitly provide the
boundary conditions to the PINN—the measured quantities were suf-
ficient for the PINN to infer the unmeasured quantities. In general,
other problems may exist where the boundary conditions would have
to be explicitly specified (for example when trying to solve the direct
PDE problem) to ensure the convergence of the PINN toward an
appropriate solution.28,29

In the present work, following Raissi et al.,25 a feedforward neu-
ral network of 20 hidden layers with 300 neurons each is used. The
swish activation function is used for all neurons in all layers except
in the last layer where the linear activation function is used. The
training is performed in two stages: (i) the network is pre-trained
using only the available data, i.e., the loss function only contains the
first term in Eq. (10), which allows for a rapid partial weight optimi-
zation as it corresponds to a traditional supervised training process
with a mean-squared error (MSE) loss; (ii) all the network weights
are optimized using the full loss function, as in Eq. (10) enabling the
reconstruction of the unmeasured quantities. All the training pro-
cesses are performed with the adaptive moment estimation
(ADAM) optimizer39 using a learning rate of 0.001 with a batch size
of 10 000. During this training, the value of the loss function is mon-
itored and the training is stopped when it has reached a plateau indi-
cating a fully trained network. A typical evolution of the loss
function is shown in Fig. 4 where the training process has converged
after approximately 6000 epochs.

III. RESULTS
A. Flame dynamics from CFD

The CFD simulations were validated against the experimental and
numerical results for the n-heptane flame with isothermal walls from
Moreno-Boza et al.,15 notably the reproduction of the flame length, the
critical point and the puffing frequency. Figure 5 shows temperature
contours for the subcritical flames of diameters 2a ¼ 15:9, 17.6, and
19.1mm with corresponding flame lengths of 7:0a; 7:7a, and 8:4a. The
flame length was determined based on the downstream tip of the stoi-
chiometric mixture fraction isocontour (Bilger’s definition of the mix-
ture fraction40 is used; the stoichiometric mixture fraction is
nst � 0:0622). These values are in good agreement with the experiments
where the flame lengths ranged from 6:7a to 8:0a. In the present simu-
lations, the critical point—defined as the characteristic diameter where
puffing first occurs—is found at 2a ¼ 20:1 mm, in line with the

FIG. 3. Typical fields that are used for the reconstruction problem. T, p, q are considered as measurements while u and v are quantities to be reconstructed.

FIG. 4. Typical evolution of the loss function [Eq. (10)] during the training process.
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experimental findings for the isothermal baseplate. At this condition,
the puffing establishes as a periodic process with a constant frequency of
approximately 12.0Hz, very close to the experimentally determined
value of 12.8Hz. Figure 6 shows one cycle of this puffing behavior; (a) a
photo sequence of the puffing flame from the experiments by Moreno-
Boza et al.15 is compared to (b) a time sequence from the present CFD
simulations; additionally, (c) the temporal variation of HRR during the
puffing cycle are shown. In this sequence, we can see the dynamics of
the puffing flame, where a “cusp” is formed due to buoyancy-driven
vorticity generation. Even though photographic images and temperature
fields are not fully equivalent, the numerical results closely resemble the
time sequence of the flame recorded in the experiments. Therefore,
the present simulations have been shown to accurately reproduce the
behavior of the n-heptane pool fire in the vicinity of the critical point,
studied by Moreno-Boza et al.15

Excellent agreement of flame length and puffing behavior suggests
that the present highly resolved numerical simulations are a close repre-
sentation of a real flame. Therefore, the comparison with experimental
work is implicit in the present work. For the reconstruction problem
discussed in Sec. III B, the puffing flame with 2a ¼ 20:1mm is consid-
ered. The dataset used to train the PINN consisted of 400 snapshots
recorded at 1000 frames per second, corresponding to approximately
five puffing periods with about 83 snapshots per period.

B. Velocity reconstruction

1. Base case

In this section, we demonstrate the ability of the PINN to recon-
struct the velocity field of the puffing flame from measurements of
temperature, density, and pressure. The PINN was trained as discussed

in Sec. II B using the dataset obtained from the simulations (and
shown in Sec. IIIA). It should be emphasized that, in the training data-
set, only the temperature, density, and pressure fields are provided to
the network and that it never receives any velocity information. The
network then infers both components of the velocity fields using the
residual of the reacting Navier–Stokes equations.

The reconstructed velocity field for a snapshot at time t ¼ 0:2 s
(which is the mid-time of the database) is shown in Figs. 7 and 8 for

FIG. 5. Subcritical flames for different diameters, 2a ¼ 15:9, 17.6 and 19.1 mm.
Black line: position of the reaction zone, indicated by the stoichiometric mixture
fraction; gray lines: isocontours for T¼ 600, 900, 1200, 1500 K.

FIG. 6. Puffing cycle of the flame with diameter 2a ¼ 20:1 mm: (a) photo sequence
from the experiments by Moreno-Boza et al.,15 (b) time sequence from the present
CFD simulations, and (c) the corresponding time evolution of HRR, normalized by
period sp and maxðHRRÞ; instances of snapshots are indicated as �; snapshots
are spaced by sp=9 to match the spacing of the photo sequence.
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u and v, respectively. As can be seen in those figures, the two compo-
nents of the velocity field are accurately reconstructed by the PINN
and only minor differences can be observed at the base of the flame
where strong gradients are present. This shows that the PINN man-
ages to infer the dynamics of the buoyant plume from the residual of
the Navier–Stokes equations without any observation of the velocity
field. Additionally, the overall L2-error remains small over the majority
of the domain and most features of the velocity fields are accurately
reconstructed. While this is shown for a specific time instant, the
reconstruction accuracy was similar for most snapshots and the mean
squared error (averaged over the computational domain) in function
of time is shown in Fig. 9. It can be seen that the error is overall low
with a higher value at the starting time (t ¼ 0 s).

We infer that this higher error for that initial time instant is related
to the absence of data (in time) that prevents an appropriate estimation
of the time-derivative in the residuals as was observed in previous
work.25 Here, it should be emphasized that the time between two snap-
shots was 1ms (in contrast to the CFD time step of 10�5 s) and, there-
fore, time-derivative quantities could not be inferred accurately from the
measured fields, and even less so for the initial time instant. In contrast
to previous work,25 in our case the error at the final time instants remains
lower. This may be due to the fact that the PINN has appropriately rec-
ognized the periodic nature of the quantities to be reconstructed while
for the initial time instant, this apparent periodicity had not yet been
“detected” by the PINN. However, despite the seemingly “large” error at
the initial time (Fig. 9), the actually reconstructed velocity field at that

time instant, presented in Figs. 10 and 11 for the maximum error on u
and v, respectively, shows that the PINN still manages to reconstruct the
main features of the velocity fields. The PINN appears to underestimates
the axial velocity of the buoyant plume in the downstream region, while
the radial velocity ismispredicted near the flame anchoring point.

2. Effect of noise

An additional test of the proposed reconstruction method is per-
formed by considering the effect of noise on the reconstruction

FIG. 7. Comparison between actual and reconstructed u velocity for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a. FIG. 8. Comparison between actual and reconstructed v velocity for the mid-time

snapshot (t ¼ 0:2 s).

FIG. 9. Evolution of MSE of the reconstruction of u and v.
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accuracy. For this analysis, the originally noise-free dataset is corrupted
artificially by adding noise on all measured quantities (q, p, T) with a
specified signal-to-noise ratio (SNR, based on each field average). Three
levels of SNRs were considered: 20, 30, and 40dB. Note that 20dB refers

to the highest noise level. A typical noisy dataset is shown in Fig. 12 for
SNR ¼ 20 dB. It can be seen that the data used for training by the
PINN now exhibits noisy fluctuations. This makes the training of the
PINN more complex as it has to identify how to smooth out the data to

FIG. 10. Comparison between the exact and reconstructed u for the snapshot with
maximal error (t ¼ 0 s).

FIG. 11. Comparison between the exact and reconstructed v for the snapshot with
maximal error (t ¼ 0 s).

FIG. 12. Typical noisy data fields with
SNR ¼ 20 dB.
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minimize the physics-based residual in Eq. (10). For each noisy dataset,
a PINN with the exact same hyperparameters as for the noise-free case
is trained following the same procedure as earlier.

A typical reconstruction obtained from the trained PINN is
shown in Fig. 13 for the same time instant as the one shown in Fig. 12.
It can be seen that, for the measured quantities (q and T), the inferred
fields from the PINN do not exhibit the noisy behavior. This is
achieved thanks to the physics-based loss in Eq. (10), which provides
the means for the PINN to smooth out the inference of the measured
quantities. Otherwise, fitting the data too closely, based uniquely on
the mean-squared error, would lead to an excessively high physics-
based loss due to the resulting spurious gradients. Instead, the trained
PINN achieves a balance between fitting the noisy data and minimiz-
ing the residual of the governing equations. This illustrates that the
PINN can also act as a physics-based “denoiser” of measurement data.

Regarding the reconstruction of the velocity field, it can be seen
that the trained PINN reconstructed all features appropriately (com-
pare velocity in Fig. 13 with Figs. 7 and 8), indicating that the

reconstruction from the PINN is robust with respect to noise. The
resulting mean squared reconstruction error (computed with respect
to the noise-free data) in function of time is shown in Fig. 14 for all
considered noise levels. Overall, the level of reconstruction accuracy is

FIG. 13. Inferred density, temperature,
and reconstructed velocity fields obtained
from the PINN trained with noisy data with
SNR ¼ 20 dB.

FIG. 14. Evolution of MSE of the reconstruction of u and v when using noisy data-
sets. (full line: SNR ¼ 20 dB, dotted–dashed line: 30 dB, dashed line: 40 dB).

FIG. 15. Comparison between actual and reconstructed u velocity for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a.
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similar compared to noiseless data (shown in Fig. 9). In addition, as
could be expected, the accuracy of the reconstruction decreases when
larger noise levels are considered in the measured quantities. However,
the overall accuracy remains within the range of what was obtained
with the noiseless data indicating that the PINN is able to smooth out
the measured data by using the equations and then use the relevant
information to infer the appropriate reconstruction.

3. Effect of reduced measurements

In this section, we analyze the reconstruction ability of the HFM
when fewer measured quantities are considered. First, we consider the
case when only the pressure and temperature measurements are avail-
able. The HFM framework is kept exactly the same as in Sec. III B 1,
and the only change is made by considering that measurements of
density are unavailable. Therefore, the PINN has to reconstruct that
quantity as well. Initially, this task was attempted without any assump-
tion about the density, but the convergence of the PINN during train-
ing was relatively poor, since the reconstructed fields were not
accurate enough. This was inferred to be due to the increased com-
plexity of the optimization problem solved by the PINN, where differ-
ent combinations of reconstructed quantities (q, u, and v) could allow
for a small loss during training. To compensate for this, and to drive
the PINN toward an appropriate solution, during the pre-training
phase (when the PINN is trained purely on data), a “physics-based”
guess of the target density is introduced to drive the PINN toward pre-
dicting this guess (i.e., this physics-based guess replaces the density

data during the pre-training). The physics-based guess for density is
defined as follows:

qguess ¼
pdata

rairTdata
; (11)

where the subscript data indicate that the value from the measured
data is used and rair ¼ 287:05 J=ðkgKÞ is the ideal gas constant of air,
which is taken as a constant for the whole domain. This is evidently an
approximation given the variations in composition (fuel and reaction
products) occurring throughout the domain, but this allows to have an
initial guess to drive the training of the PINN with this reduced set of
information.

Following this pre-training, the PINN is then further trained by
using the physical equations as described in Eq. (10). The resulting
reconstruction of the velocity fields when using such an approach is
shown in Figs. 15 and 16 for the u and v velocity, respectively, at a rep-
resentative time instance. It can be seen that the reconstruction accu-
racy is very similar to the case with three measurements shown
previously. There is, however, a larger error locally close to the flame
base at the fuel interface.

This latter error can be better understood from Fig. 17, where the
reconstructed density field for the same time instant is shown. It can
be seen that, overall, the density is very accurately reconstructed except
near the fuel inlet. This error originates from the approximation made
when proposing an initial guess for the density based on Eq. (11).

FIG. 16. Comparison between actual and reconstructed v velocity for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a.

FIG. 17. Comparison between actual and reconstructed density q for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a.
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Since the ideal gas constant of stoichiometric heptane–air reaction
products, �291 J=ðkg KÞ, is very close to the ideal gas constant of air,
this approximation is relatively accurate in all fuel-lean regions. In
contrast, in the fuel-rich region near the fuel inlet, this assumption is
most inaccurate, therefore leading to an inaccurate estimations of the
density, which could not be fully compensated by the physics-based
loss.

Nonetheless, despite this slightly inaccurate density reconstruction,
the overall reconstruction accuracy of this two-measurement-based PINN
remains of the same order of magnitude as for the three-measurement-
based PINN in Sec. IIIB1, as can be seen from the time-evolution of the
average velocity reconstruction error in Fig. 18(a), when compared to
Fig. 9. In both cases the error follows a similar evolution. In addition,
Fig. 18(b) shows the time-evolution of the density reconstruction error,
where it can be seen that the error remains more or less constant with
fluctuations related to the puffing frequency.

Second, it is attempted to reconstruct the velocity, density and
pressure fields solely from the measurements of temperature, to fur-
ther analyze the reconstruction capability of the PINN. Here, tempera-
ture is chosen as it could be relatively straightforwardly measured in
large-scale pool fires using infrared cameras, for example. Similarly as
above, where a “guess” for the density was used for the pre-training of
the PINN, a guess of the pressure field is also used to help during the
pre-training of the PINN. The pressure field is assumed to follow a lin-
ear distribution with the streamwise coordinate, as follows:

pguess ¼ p0 þ qairgxx; (12)

where qair is the density of air at standard conditions and
gx ¼ �9:81m=s2 is gravitational acceleration in axial direction. Then,
qguess is estimated as in Eq. (11), but using pguess instead of pdata. The
values obtained in this manner for q and p are then used during the
pre-training stage (i.e., they replace the data of density and pressure).
The reconstructed velocity field (for the same time instant as in Sec.
III B 1) is shown in Figs. 19 and 20. It can be directly observed that the
reconstruction accuracy is lower than in the previous case specifically
in the outer flame region (for rþ > 1:5) and that the reconstructed v-
velocity field (Fig. 20) does not accurately reproduce all the features
related to the puffing of the flame. This inaccuracy in the velocity
reconstruction can be related to the inaccurate reconstructed pressure
field (shown in Fig. 21), where it can be seen that the radial variations
of pressure are not accurately captured by the PINN. However, such
variations are crucial as they induce the radial velocity.

Figure 22 shows the evolution of the mean squared reconstruc-
tion error for the velocity field, q and p. As expected, it can be seen
that compared to the case where more measurements are available, the
error is larger (one order of magnitude larger for the v-velocity), indi-
cating that relying solely on one measurement (here the temperature)
to reconstruct all the other quantities of interest may be out of reach of
the current PINN architecture. This result would suggest that we
would generally need at least two measurements (of temperature and
pressure) to be able to deduce an appropriate kinematic field in a
reacting flow. It may be possible that another combination of

FIG. 18. Evolution of MSE of the reconstruction of (a) u and v (b) q.
FIG. 19. Comparison between actual and reconstructed u velocity for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a.
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measured quantities (such as temperature and one of the chemical
species) could achieve a higher accuracy but such an analysis is left for
future investigations.

In addition, the observations above also highlight that, in the case
when only one measurement becomes available, the optimization
problem that the PINN has to solve (i.e., the minimization of the loss)
becomes much more complex as there may exist various combinations
of the other quantities to be reconstructed that could lead to a small
loss values, but which are not the actual physical quantities. In other
words, the PINN may reach a local minimum during its training
which does not correspond to the actual flow solution. Such an obser-
vation shows the limit of the proposed PINN-based approach for the
presented cased of a puffing pool fire.

The presently noted deficiencies in the predictions of velocity
from temperature can be compared to relative success in a previous
work by Cai et al.,30 albeit limited to a qualitative validation. The most
apparent difference between the cases lies in the presence of both large
temperature variations (DT=T0 > 1) and significant variations of
composition in the present pool fire, in contrast to small temperature
variations, linearized density variations and negligible composition
variations in the previous work. As a consequence, in the pool fire,
larger errors are introduced when relating temperature with density
and pressure. This problem is alleviated when two “measured” quanti-
ties are available. Evidently, two measured quantities allow to
better describe two types of variations, temperature, and composition.

This may be related to the fact, that a diffusion flame structure cannot
be described unambiguously by temperature alone. Nevertheless, var-
iations of temperature and composition in a flame are not indepen-
dent and could be related if the PINN was aware of the flame structure
and able to detect the position of the flame through, for example, the
measurements of a representative species.

IV. CONCLUSION

In this paper, we demonstrated for the first time the capability of
the HFM framework to reconstruct unmeasured quantities from mea-
sured ones in the buoyancy-driven, reacting flow of a puffing pool fire.
First, CFD simulations of pool fires at the onset of puffing were per-
formed and validated against previous experiments to accurately
reproduce the appropriate subcritical flame lengths, critical point, and
puffing frequency. The present simulations can, therefore, be seen as a
surrogate for experimental data, but the simultaneous availability of all
variable fields allows to explore the capabilities and limitations of
HFM. The dataset obtained from CFD results was then leveraged to
train the PINN and to show its reconstruction capabilities: inferring
the velocity field from measurements of density, pressure, and temper-
ature—but without any observations of the velocity field itself—a high
reconstruction accuracy was obtained. A further test was performed
by considering noisy data. It was shown that the HFM framework
could act as a physics-based “denoiser” as it could smooth out the
added noise on the measured data. In addition, the PINN could still

FIG. 20. Comparison between actual and reconstructed v velocity for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a.

FIG. 21. Comparison between actual and reconstructed pressure p for the mid-time
snapshot (t ¼ 0:2 s). Superscript þ indicates coordinates normalized by a.
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accurately reconstruct the main features of the velocity field, which
shows that the proposed method is robust with respect to noisy data.
In a final step, it was attempted to reduce the number of measured
fields required to predict the velocity field. Reasonable results were
obtained when using density and pressure as inputs. However, it was
not possible to make predictions from the temperature field alone.
This emphasizes the complexity of the present case involving both
large variations of temperature and chemical composition. This may
suggest that a PINN capable of predicting the behavior of a flame
needs to be able to identify the position and structure of the reaction
zone.

This work demonstrates the potential of deep learning techniques
for reconstructing unmeasured quantities in reacting flows in a physi-
cally consistent manner. This opens up possibilities for augmenting
data obtained from experimental measurements in fire and combus-
tion diagnostics.

In future work, the ability of this framework to reconstruct physi-
cal quantities in 3D and turbulent conditions will be explored. In addi-
tion, a further analysis will be conducted on assessing which
measurements are required to be able to infer a unique kinematic field.
The reconstruction of quantities from actual experimental data will
also be investigated.
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