
Elephant random
walk

A comparison with the normal random walk
with a focus on the gambler’s ruin problem

by

B.S.Kaslim

to obtain the degree of Bachelor of Science

at the Delft University of Technology,

to be defended publicly on Wednesday July 2, 2025 at 11:00 AM.

Student number: 5876117
Project duration: April 22, 2025 – July 2, 2025
Thesis committee: Dr. ir. R. Versendaal, TU Delft, supervisor

Dr. ir. W. G. M. Groenevelt, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

In this bachelor thesis, we will look a variant of the random walk, namely the elephant random walk.
The elephant random walk, named after the elephant due to its excellent memory, is a random walk
where future steps are based on previous steps taken in the walk based on the memory parameter
𝑝. To that end, we will be looking at the differences between the normal random walk and elephant
random walk: we will look at the differences in behavior and properties of both types of random walks.
In particular, we will focus on the gambler’s ruin problem, where we discuss the chances of player A
winning, 𝜈(𝑎), and the expected number of steps until either player wins, 𝑒(𝑎). To do so, we will make
use of martingales and known theorems about martingales to prove the theorems about the elephant
random walk. For the gambler’s ruin problem for the elephant random walk, we use simulations to look
at the behavior of the gambler’s ruin for the elephant random walk.

We found that in general, the elephant random walk behaves differently from the normal random walk:
while the expected value of the normal random walk increases or decreases linearly or stays at zero,
the elephant random walk either diverges to infinity less than linearly or converges to zero based on the
memory parameter 𝑝. In addition to this, one finds that the elephant random walk has three different
diffusion regimes based on 𝑝: compared to the normal random walk, which only has a diffusive regime,
the elephant random walk has a diffusive, marginally superdiffusive and superdiffusive regime. Looking
at the properties, we see that some of the results of the normal random walk also hold for the elephant
random walk, in particular the law of large numbers. However, it turns out that the central limit theorem
only holds for certain values of 𝑝, and that the central limit theorem stops holding for larger 𝑝 due to the
dependence of steps on each other being too high. In addition, we found that the memory parameter 𝑝
and initial parameter 𝑞 for the gambler’s ruin for the elephant random walk affects how 𝜈(𝑎) and 𝑒(𝑎)
behaves, with the influence of 𝑞 increasing as 𝑝 increases on both 𝜈(𝑎) and 𝑒(𝑎). The total capital
𝑁 has little influence on the behavior of the gambler’s ruin for the elephant random walk, with 𝑁 only
affecting the maximal expected number of steps.

Layman abstract

Normally, a random walk consists of a sum of steps that randomly go the left or to the right. In this
bachelor thesis, we look at a variation of this random walk called the elephant random walk, where
the steps of the elephant random walk are based on the previous steps that have already been taken.
In particular, we are interested in the differences in behavior between the random walk and elephant
random walk, and whether or not important properties of the random walk also translate to the elephant
random walk. In addition to this, we look at an application called the gambler’s ruin problem for both
types of random walks, which concerns a gambling game between two players.

It turns out that, while the elephant random walk does behave quite differently from the random walk,
the elephant random walk still has a lot of important properties that the normal random walk has. Fur-
thermore, the behavior of the gambler’s ruin for the elephant random walk can be split into two cases
based on the parameters of the gambler’s ruin.
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1
Introduction

The random walk is one of the most well known processes: in its simplest form, the random walk is a
stochastic process which consists of multiple random steps with a value of either -1 or 1. The steps
are influenced on the parameter 𝑝: higher values of 𝑝 makes it more likely for steps to have the value
1, whereas lower values of 𝑝 causes more steps to have the value −1. Many aspects of the random
walk are well known, which include topics such as hitting times and hitting probabilities, recurrence
and transience, and long term behavior of the random walk, among various other topics. The random
walk has various applications in various disciplines, which includes particle movements, stock market
behavior and animal behavior (Hughes, 1995; Pokojovy et al., 2024; Codling et al., 2008). One of the
more interesting applications of the random walk has to do with the gambler’s ruin problem. In this
problem, two players with a certain starting capital play a game using a coin. After doing a coin flip, the
players exchange money based on who won the coin flip. This gets repeated until one of the players
is ”ruined” and has no money left.

However, by introducing memory to the random walk, the random walk becomes a lot more complex
when compared to its memoryless counterpart. This variant, called the elephant random walk, was first
introduced by Schütz and Trimper in 2004. In this version of the random walk, which was named the
elephant random walk due to the fact that elephants have a really good memory, the elephant bases
its steps based on the previous steps taken: the first step is based on the initial parameter 𝑞, whereas
later steps are randomly based on a previous step of the elephant random walk with memory parameter
𝑝, where higher values of 𝑝 causes the step to have a higher chance to go the same direction as the
previous step that is chosen. It turns out that the elephant random walk acts different when it comes to
the behavior of each step and the long term behavior, and that the elephant random walk has different
properties. But what changes exactly?

The goal of this bachelor thesis is to explore the differences between the normal random walk and the
elephant random walk. In particular, we will focus on the expected behavior, the asymptotic behavior
of both random walks, which includes the law of large numbers and the central limit theorem, and the
different diffusion processes in the two types of random walks. In addition to this, we will look at the
gambler’s ruin problem for the elephant random walk, which includes studying the behavior of both the
chance of winning the game and the expected numbers of steps until either player wins.

In Chapter 2, we will look at known literature about the elephant random walk and their results. In
Chapter 3, we will discuss the aspects of the normal random walk, which consists of the expectation of
the random walk, diffusion processes, the Markov property, the law of large numbers, the central limit
theorem and the gambler’s ruin problem. In Chapter 4, we will discuss how the elephant random walk
works, and we will discuss the same aspects that were discussed in Chapter 3.
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2
Literature study

The elephant random walk is a relatively new subject: the term ”elephant random walk”, which is used
to indicate a discrete-time random walk where each step is dependent on the complete memory of the
random walk, was coined by a paper in 2004 from Schütz and Trimper due to ”...the traditional saying
that elephants can always remember” (Schütz & Trimper, 2004). In the paper, Schütz and Trimper
(2004) calculated the expected value and expected second moment of the displacement for the ele-
phant random walk based on the memory parameter p, which determines how later steps steps get
determined based on previous steps. They found that there are two regimes for the expected value of
the elephant random walk1: for 𝑝 < 1/2, the expected value of the elephant random walk converges
to zero, whereas the expected value of the elephant random walk diverges to infinity for 𝑝 > 1/2. The
direction where it diverges to is dependent on the initial parameter q, which determines the first step
of the elephant random walk. Meanwhile, it was found by Schütz and Trimper (2004) that the type of
diffusion process of the elephant random walk can be split into three different regimes. Interestingly,
the critical value is not at 𝑝 = 1/2, but rather at 𝑝 = 3/4: for 𝑝 < 3/4, the elephant random walk
is a diffusive process, which means the variance of the elephant random walk grows linearly as the
number of steps increases. On the other hand, the elephant random walk becomes superdiffusive
for 𝑝 > 3/4, which means the variance of the elephant random walk increases more than linearly,
but less than quadratically. At the critical value 𝑝 = 3/4, the elephant random walk behaves like a
marginally superdiffusive process, which is characterized by a linearlogarithmically growing variance.
Furthermore, the paper of Schütz and Trimper (2004) explored the probability distribution of the ele-
phant random walk. By transforming the elephant random walk into a Fokker-Planck equation, Schütz
and Trimper (2004) conjectured that the elephant random walk converges towards a normal distribution
when looking at the odd and even moments of the Fokker-Planck equation.

However, a paper from Coletti et al. (2016) found that the probability distribution only converges to
the normal distribution for certain values of the memory parameter 𝑝. The paper proved that, even
though the steps are not independent and identically distributed, the law of large numbers still applies
to the elephant random walk. Unlike the results from Schütz and Trimper (2004), Coletti et al. (2016)
found that the central limit theorem only applies to the diffusive and marginally superdiffusive regime,
i.e. 𝑝 ≤ 3/4. For the superdiffusive regime, it is instead found that the probability distribution does
converge, but to a non-normal distribution. Coletti et al. (2016) suggest that this result is due to ”...cross-
correlations between the increments [that] are in some sense “too strong”” (Coletti et al., 2016). A later
paper from Coletti et al. (2017) showed that that, aside from the central limit theorem, the law of iterated
logarithms also holds for the elephant randomwalk in the diffusive andmarginally superdiffusive regime.

1At the transition point 𝑝 = 1/2, the elephant random walk reverts back to a normal random walk.
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4 2. Literature study

Aside from these results, results regarding the return time to the origin have also been proven: A paper
from Bertoin (2021), which looked at the diffusive regime of the elephant random walk, showed that the
number of times the elephant random walk returns to the origin grows like the square root of the number
of steps as the number of steps increases. Interestingly, for the marginally superdiffusive regime of the
elephant random walk, a paper of Fang (2024) showed that most of the times the elephant random walk
returns to the origin happens just before the last time the elephant random walk returns to the origin,
and that the number of returns to the origin divided by the logarithm of the number of steps approaches
the arcsine distribution as the number of steps approaches infinity.

Multiple extensions of the elephant random walk have also been studied: one of the more obvious ex-
tensions would be to extend the elephant random walk to multiple dimensions. A paper from Bercu and
Laulin (2017) showed that similar results hold for the elephant random walk for the diffusive, marginally
superdiffusive and superdiffusive regime, but that the critical point 𝑝𝑑 = (2𝑑 + 1)/4𝑑 shifts towards
𝑝 = 1/2 as the number of dimensions increases.

Another studied extension is making the elephant random walk not depend on the whole history of the
walk, but rather a part of it. A paper by Gut and Stadtmüller (2021) studied several variations of this,
which includes basing the current step on the first steps, latest steps, or a combination of both. As is
shown in the paper, the known results for the elephant random walk also hold for the variations that Gut
and Stadtmüller (2021) discussed, which include the law of large numbers, law of iterated logarithm
and central limit theorem.

Closely related to this is the elephant random walk with delays, where each step can take the value
−1, 0 or 1, which was studied by Gut and Stadtmüller (2019). Just like the original elephant random
walk, the paper shows that the elephant random walk with delays has three different diffusion regimes,
where the critical value is dependent on the chance of going the same direction as a previous step and
the chance of going the opposite direction as a previous step. Additionally, similar results hold for this
variation as the general elephant random walk.

It is important to note that the elephant random walk is connected to a number of other subjects. The
most important connection of the elephant random walk is to Pólya-type urns: Pólya-type urns in its
most common form consists of an urn with different types of balls in it. At each time step, a ball is taken
from the urn. Afterwards, two of the same type of ball is put back into the urn, after which the process
repeats. Baur and Bertoin (2020) showed that the elephant random walk can be modeled using Pólya-
type urns by representing the steps with value of −1 and 1. At each time step, one ball gets removed
from the urn and then two balls get returned: the ball that got removed and another ball based on the
removed ball. By modeling the elephant random walk in such a way, many of the results presented in
this section can be proved by using theorems from Pólya-type urns.



3
Random walk

In this chapter, the general version of the elephant random walk, the random walk, will be discussed,
and characteristics of the random walk such as the expected value, law of large numbers and central
limit theorem will be discussed. Lastly, we will briefly look at the gambler’s ruin. Note that the focus
for this chapter is to look at some of the results for the random walk that we will also discuss for the
elephant random walk, so that we can compare the behavior and results between the random walk and
elephant random walk. Thus, other results for the random walk will not be discussed. However, for
more information about the random walk one may look at Lawler and Limic (2010) and Hughes (1995).

3.1. The model

In this section, we will discuss the general model for the random walk. In particular, we will discuss
the one-dimensional random walk on ℤ, although this can be extended to multiple dimensions or to a
continuous random walk, among other variations. The random walk is defined as follows: The walk
starts at a point 𝑋0 ∈ ℤ at time 𝑛 = 0. At each discrete time step, the walker decides to move a step to
the left or to the right, which is given the value of −1 and 1 respectively. The value of each step, 𝜂𝑛, is
determined as follows: given a value 𝑝 ∈ [0, 1], 𝜂𝑛 is a random variable with

ℙ[𝜂𝑛 = 1] = 𝑝, (3.1)
ℙ[𝜂𝑛 = −1] = 1 − 𝑝. (3.2)

In Figure 3.1, the process for each step 𝜂𝑛+1 with 𝑛 ≥ 0 is illustrated.

𝑋𝑛 − 1 𝑋𝑛 𝑋𝑛 + 1

𝑝1 − 𝑝

Figure 3.1: Illustration of the random walk for each step 𝜂𝑛+1 with 𝑛 ≥ 0, with 𝑝 and 1 − 𝑝 denoting the probabilities to take a
step with value 1 and −1 respectively.

It is important to note that the value of 𝑋𝑛 can be represented in two ways, both recursively and non-
recursively:
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6 3. Random walk

𝑋𝑛 = 𝑋𝑛−1 + 𝜂𝑛 (3.3)

= 𝑋0 +
𝑛

∑
𝑘=1

𝜂𝑘 . (3.4)

For simplicity, we will assume that 𝑋0 = 0, as results for general 𝑋0 ∈ ℤ can be obtained by shifting the
starting point of the random walk with 𝑋0 = 0.

3.2. Results of the random walk

In this section, we will discuss some results of the randomwalk. In particular, we will discuss the Markov
property, expected values and asymptotic behavior of the random walk.

3.2.1. Markov chain

One of the most important properties of the random walk is that the random walk is an example of a
homogeneous Markov chain, which means that the random walk satisfies the Markov property, and
that the conditional probability for each step is independent of the time. The Markov property is defined
as follows:

Definition 3.2.1 (Markov chain). A sequence (𝑋𝑛)𝑛≥0 is a Markov chain if it satisfies the Markov prop-
erty:

ℙ[𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋0 = 𝑥0] = ℙ[𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋𝑛 = 𝑥𝑛] (3.5)

for all 𝑛 ≥ 0 and 𝑥0, … , 𝑥𝑛 ∈ 𝑆 points in the state space. Additionally, the Markov chain is homogeneous
if for all 𝑖, 𝑗 ∈ 𝑆, the probability ℙ[𝑋𝑛+1 = 𝑖 | 𝑋𝑛 = 𝑗] is independent of n.

We get the following result for the random walk:

Proposition 3.2.2. Let (𝑋𝑛)𝑛≥0 be a random walk with 𝑝 ∈ [0, 1]. Then, the random walk is a homo-
geneous Markov chain.

Proof. First, it is important to note that each step 𝜂𝑛 is independent of 𝑋𝑘 with 𝑘 ∈ {0,… , 𝑛 − 1}. We
denote the step we take at time 𝑛 with 𝜎𝑛. Thus, we get:

ℙ[𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋0 = 𝑥0] = ℙ[𝑋𝑛+1 = 𝑥𝑛 + 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋0 = 𝑥0]
= ℙ[𝑋𝑛+1 = 𝑥𝑛 + 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛]
= ℙ[𝜂𝑛+1 = 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛] = ℙ[𝜂𝑛+1 = 𝜎𝑛+1],

(3.6)

where the homogeneity property follows from the fact that 𝑃[𝜂𝑛+1 = 𝜎𝑛+1] is independent from n, which
completes the proof.

While the Markov property has plenty of interesting consequences, we will not go into much more detail
about Markov chains. However, more information can for example be found in Grimmett and Welsh
(2014).



3.2. Results of the random walk 7

3.2.2. Expected value

Next, we look at the expected value of the random walk. The reason we look at the expected value of
the random walk is because it gives us a way to analyze the behavior of the average of the random
walk, which gives us insight into whether or not the random walk will drift away from the origin and to
which direction it will drift to. Furthermore, it will be useful later on when discussing the variance of the
random walk.

Figure 3.2: Visualization of 25 iterations of the random walk for 𝑝 = 0.3, 𝑝 = 0.5 and 𝑝 = 0.7. The mean value at each step is
shown with a black line.

In Figure 3.2, 25 iterations for the random walk are shown for 𝑝 = 0.3, 𝑝 = 0.5 and 𝑝 = 0.7, along
with the sample mean value of each step illustrated with a black line. As can be seen from Figure 3.2,
the random walk 𝑋𝑛 tends to go to negative values for 𝑝 = 0.3 and to positive values for 𝑝 = 0.7. For
𝑝 = 0.5, the random walk tends to stay around 0. Intuitively, this can be explained by the fact that for
𝑝 = 0.3, each step has a higher probability to be negative than positive, while for 𝑝 = 0.7 each step has
a higher probability to be positive than negative. The behavior for 𝑝 = 0.5 can be explained by the fact
that the positive and negative step have equal chance of happening. Proposition 3.2.3 formally states
this observation:

Proposition 3.2.3. Let (𝑋𝑛)𝑛≥0 be a random walk with 𝑝 ∈ [0, 1]. Then, the expected value of 𝑋𝑛 is
equal to

𝔼[𝑋𝑛] = 𝑛(2𝑝 − 1). (3.7)

Proof. To find the expected value of 𝑋𝑛, it is important to note that 𝑋𝑛 = ∑
𝑛
𝑘=1 𝜂𝑘. Thus, we must first

find the expected value of each step, as the expected value of 𝑋𝑛 follows by taking the expectation on
both sides. To that end, note that for each step 𝜂𝑘, it holds that
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𝔼[𝜂𝑘] = ℙ[𝜂𝑘 = 1] − ℙ[𝜂𝑘 = −1]
= 𝑝 − (1 − 𝑝)
= 2𝑝 − 1.

(3.8)

Thus, we can find the expected value of 𝑋𝑛 by taking the expected value on both sides of the equation:

𝔼[𝑋𝑛] = 𝔼 [
𝑛

∑
𝑘=1

𝜂𝑘] =
𝑛

∑
𝑘=1

𝔼[𝜂𝑘] = 𝑛(2𝑝 − 1), (3.9)

as desired.

3.2.3. Second moment of displacement

Besides the expected displacement 𝔼[𝑋𝑛], we are also interested in the second moment of displace-
ment 𝑋2𝑛. The reason for this, is that the expected value of the random walk does not give information
about how much the random walk is expected to deviate from its expected value. In addition to this, the
second moment of displacement allows us to calculate the variance of the random walk, which makes
us able to make statements about whether or not it is a diffusive process. In Figure 3.3, 25 iterations
of the second moment of displacement of the random walk are shown for 𝑝 = 0.3, 𝑝 = 0.5 and 𝑝 = 0.7,
similarly to figure 3.1, along with the sample mean value of all the iterations at each step with a black
line.

Figure 3.3: Visualisation of the second moment of displacement of 25 iterations of the random walk for 𝑝 = 0.3, 𝑝 = 0.5 and
𝑝 = 0.7. The mean second moment of displacement at each step is shown with a black line.
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When looking at the second moment of displacement of 𝑝 = 0.3 and 𝑝 = 0.7, it is important to note
that the mean second moment of displacement for both figures are similar, and that the mean second
moment of displacement seems to increase quadratically for each step taken. Intuitively, this can be
explained by the symmetrical nature of the random walk, where a random walk (𝑋𝑛)𝑛≥0 with 𝑝 = 0.3 is
the same in distribution as a random walk −(𝑌𝑛)𝑛≥0 with 𝑝 = 0.7, causing the expected second moment
of displacement 𝔼[𝑋2𝑛] = ∑𝑘∈ℤ 𝑘2ℙ[𝑋𝑛 = 𝑘] to be the same. Meanwhile, for 𝑝 = 0.5 the mean second
moment of displacement seems to increase linearly for each step taken. Theorem 3.2.4 confirms this
observation.

Theorem 3.2.4. Let (𝑋𝑛)𝑛≥0 be a random walk with 𝑝 ∈ [0, 1]. Then, the expected second moment of
displacement of 𝑋𝑛 is equal to

𝔼[𝑋2𝑛] = 𝑛 + (2𝑝 − 1)2(𝑛2 − 𝑛). (3.10)

Proof. First off, we note that using the recursive representation of 𝑋𝑛 gives us

𝑋2𝑛 = (𝑋𝑛−1 + 𝜂𝑛)2
= 𝑋2𝑛−1 + 2𝑋𝑛−1𝜂𝑛 + 𝜂2𝑛 .

(3.11)

Thus, taking the expectation on both sides we get that 𝔼[𝑋2𝑛] = 𝔼[𝑋𝑛−1]2 + 2𝔼[𝑋𝑛−1𝜂𝑛] + 𝔼[𝜂2𝑛]. Note
that 𝔼[𝜂2𝑛] = 1 for all 𝑛 ≥ 1. Furthermore, due to each step being independent, we get

𝔼[𝑋𝑛−1𝜂𝑛] = 𝔼[𝑋𝑛−1]𝔼[𝜂𝑛]
= (𝑛 − 1)(2𝑝 − 1)(2𝑝 − 1)
= (𝑛 − 1)(2𝑝 − 1)2.

(3.12)

Thus, we get the following:

𝔼[𝑋2𝑛] = 𝔼[𝑋2𝑛−1] + 2(𝑛 − 1)(2𝑝 − 1)2 + 1

= 𝔼[𝑋21 ] +
𝑛−1

∑
𝑘=1

[2𝑘(2𝑝 − 1)2 + 1]

= 1 + (𝑛 − 1) + 2(2𝑝 − 1)2
𝑛−1

∑
𝑘=1

𝑘

= 𝑛 + (2𝑝 − 1)2(𝑛2 − 𝑛),

(3.13)

as desired.

Remark 3.2.5. As a result of Theorem 3.2.3 and Theorem 3.2.4, we find the variance of 𝑋𝑛:
Var(𝑋𝑛) = 𝔼[𝑋2𝑛] − (𝔼[𝑋𝑛])2

= 𝑛 + (2𝑝 − 1)2(𝑛2 − 𝑛) − (𝑛(2𝑝 − 1))2
= 𝑛(1 − (2𝑝 − 1)2).

(3.14)

As can be seen from Remark 3.2.5, the variance of the random walk increases linearly as n increases1,
where the choice of 𝑝 influences how quickly the variance grows. Values of 𝑝 closer to 𝑝 = 1

2 have a
faster growing variance than values of 𝑝 closer to zero or one. As a result, the random walk is known
as a diffusive process, which are characterized by a linearly increasing variance. Diffusion processes
in which the variance is not linearly increasing are known as anomalous diffusion. An example of such
a diffusion process will be discussed in Chapter 4.
1Unless 𝑝 ∈ {0, 1}, in which case the variance is zero.
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3.3. Law of large numbers and central limit theorem

Aside from the expected value of the random walk, it is also important to study the long term behavior
of the random walk. To that end, we look at how the random walk behaves for larger step numbers,
and how the distribution of multiple random walks of the same length look like. Luckily, each step of the
random walk is independent and identically distributed. As a result, we can use the strong law of large
numbers and central limit theorem and apply them to the random walk, both of which can be found
in Appendix A. Applying these theorems to the random walk, we obtain Corollary 3.3.1 and Corollary
3.3.2:

Corollary 3.3.1 (Law of large numbers for randomwalks). Let (𝑋𝑛)𝑛≥0 be a randomwalk with 𝑝 ∈ [0, 1].
Then:

𝑋𝑛 − 𝔼[𝑋𝑛]
𝑛 = 𝑋𝑛 − 𝑛(2𝑝 − 1)

𝑛 → 0 a.s. (3.15)

Corollary 3.3.2 (Central limit theorem for random walks). . Let (𝑋𝑛)𝑛≥0 be a random walk with 𝑝 ∈
(0, 1). Then:

𝑋𝑛 − 𝔼[𝑋𝑛]
𝜎√𝑛

= 𝑋𝑛 − 𝑛(2𝑝 − 1)
√𝑛(1 − (2𝑝 − 1)2)

𝑑→ 𝒩(0, 1), (3.16)

where 𝜎 = √var(𝜂) is the standard deviation.

Remark 3.3.3. It is of note that in Theorem 3.3.2, we leave out the case 𝑝 ∈ {0, 1}. The reason for this,
is that the central limit theorem cannot be applied, as the variance is equal to zero. However, in these
two cases we know that 𝑋𝑛 = 𝑛 for 𝑝 = 1 and 𝑋𝑛 = −𝑛 for 𝑝 = 0, making the use of Theorem 3.3.2
unnecessary.

These two corollaries give us important information about the behavior of the random walk: Corollary
3.3.1 states that the random walk will tend towards the expected value of the random walk as the
number of steps go to infinity, that is 𝑋𝑛

𝑛 → 2𝑝 − 1 almost surely, and that the limit is non-random as a
result. Corollary 3.3.2 states that distribution of the shifted random walk will converge in distribution to
the normal distribution, which gives us a way of predicting where a random walk will end up at after a
given number of steps.

Proof of Corollary 3.3.1. Since each step is independent and identically distributed and 𝔼[𝜂] < ∞, we
can use the strong law of large numbers (Theorem A.2.3) to get

𝑋𝑛 − 𝑛𝔼[𝜂]
𝑛 → 0 a.s. (3.17)

Furthermore, note that 𝑛𝔼[𝜂] = 𝑛(2𝑝 − 1) = 𝔼[𝑋𝑛], thus we get that

𝑋𝑛 − 𝔼[𝑋𝑛]
𝑛 = 𝑋𝑛 − 𝑛(2𝑝 − 1)

𝑛 → 0 a.s. (3.18)

as desired.

Proof of Corollary 3.3.2. Since each step is independent and identically distributed with finite mean
𝔼[𝜂] < ∞ and non-zero variance Var(𝜂) = 1−(2𝑝−1)2, we can use the central limit theorem (Theorem
A.2.4) to get:

𝑋𝑛 − 𝑛𝔼[𝜂]
𝜎√𝑛

= 𝑋𝑛 − 𝑛(2𝑝 − 1)
√𝑛(1 − (2𝑝 − 1)2)

𝑑→ 𝒩(0, 1), (3.19)

as desired.
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3.4. Gambler’s ruin

In the last section of this chapter, we will discuss the gambler’s ruin problem, which is based on the
material on the gambler’s ruin presented in Grimmett and Welsh (2014). The gambler’s ruin problem is
as follows: two players, player A and B, play a game. Player A starts with 𝑎 euros, and player B starts
with 𝑁−𝑎 euros. They play the following game: player A and player B repeatedly flip a not necessarily
fair coin that comes up heads with probability 𝑝 and tails with probability 1 − 𝑝. If the coin comes up
heads, player B gives player A one euro. If the coin comes up tails, player A gives player B one euro
instead. This continues until either player A or player B has zero euros and is ”ruined”.

We can transform this game into a random walk by only looking at the money of player A. Doing so,
we can see that it is a random walk on the numbers {0, … , 𝑁}, where 0 and 𝑁 are called ”absorbing
barriers”: the random walk stays at 0 or 𝑁 if it lands there. Interestingly, the chance that this game
continues forever is zero. If we say that heads correspond to a step value of 1 and tails correspond to a
step value of -1, then the chance of A winning with starting capital of 𝑎 euros corresponds to the chance
𝜈(𝑎) of the random walk being absorbed at 𝑁 from starting point 𝑎. To that end, we can describe the
chance of player A winning with Theorem 3.4.1:

Theorem 3.4.1 (Gambler’s Ruin). Let (𝑋𝑛)𝑛≥0 be a random walk with 𝑝 ∈ [0, 1] and starting point
𝑎 ∈ {0, ..., 𝑁}, where 0 and N are absorbing barriers. Then, the probability 𝜈(𝑎) of the random walk
being absorbed at N is equal to

𝜈(𝑎) =
⎧

⎨
⎩

( 1−𝑝𝑝 )
𝑎
−1

( 1−𝑝𝑝 )
𝑁
−1

if 𝑝 ≠ 1
2 ,

𝑎
𝑁 if 𝑝 = 1

2 .
(3.20)

Proof of Theorem 3.4.1. To begin, we condition 𝜈(𝑎) on the result of the first step taken, namely the
step being equal to 1 or -1. This results in the following:

ℙ[A wins] = ℙ[A wins | 𝜂1 = 1]ℙ[𝜂1 = 1] + ℙ[A wins | 𝜂1 = −1]ℙ[𝜂1 = −1],
⇒ 𝜈(𝑎) = 𝜈(𝑎 + 1)𝑝 + 𝜈(𝑎 − 1)(1 − 𝑝)
𝜈(𝑎 + 1)𝑝 − 𝜈(𝑎) + 𝜈(𝑎 − 1)(1 − 𝑝) = 0,

(3.21)

where we use the fact that the chance of A winning given that the first step is known is the same as
looking at the chance of A winning from the position after the first step. As a result, we find a differ-
ence equation, which can be solved with the following auxiliary equation with the following boundary
conditions2:

𝑝𝜃2 − 𝜃 + (1 − 𝑝) = 0, 𝜈(0) = 0, 𝜈(𝑁) = 1, (3.22)

where we derive the boundary condition by noting that the chance for player A to win with no money is
equal to zero, and that the chance for player A to win with the total capital is equal to one. Solving for
the roots, we find:

𝜃1,2 =
1 ± √1 − 4𝑝(1 − 𝑝)

2𝑝 = 1 ± |2𝑝 − 1|
2𝑝 ,

⇒ 𝜃1,2 = {
{1, 1−𝑝𝑝 } if 𝑝 ≠ 1

2 ,
{1, 1} if 𝑝 = 1

2 .

(3.23)

Thus, we find that:

𝜈(𝑎) = {𝑐1 + 𝑐2 (
1−𝑝
𝑝 )

𝑎
if 𝑝 ≠ 1

2 ,
𝑐3 + 𝑐4𝑎 if 𝑝 = 1

2 ,
(3.24)

2For more info about difference equations one may look at Grimmett and Welsh (2014).
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where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are constants. We determine these constants using the boundary conditions. For
𝑝 ≠ 1

2 , we get

𝜈(0) = 𝑐1 + 𝑐2 = 0,

𝜈(𝑁) = 𝑐1 + 𝑐2 (
1 − 𝑝
𝑝 )

𝑁
= 1,

⇒ 𝑐2 ((
1 − 𝑝
𝑝 )

𝑁
− 1) = 1

𝑐2 =
1

(1−𝑝𝑝 )
𝑁
− 1

,

⇒ 𝑐1 =
−1

(1−𝑝𝑝 )
𝑁
− 1

.

(3.25)

Thus, we find

𝜈(𝑎) =
(1−𝑝𝑝 )

𝑎
− 1

(1−𝑝𝑝 )
𝑁
− 1

. (3.26)

For 𝑝 = 1
2 , we will do similar calculations:

𝜈(0) = 𝑐3 = 0,
𝜈(𝑁) = 𝑐3 + 𝑐4𝑁 = 1,

⇒ 𝑐4 =
1
𝑁 .

(3.27)

Thus, we find

𝜈(𝑎) = 𝑎
𝑁 . (3.28)

Combining the two results, we get

𝜈(𝑎) =
⎧

⎨
⎩

( 1−𝑝𝑝 )
𝑎
−1

( 1−𝑝𝑝 )
𝑁
−1

if 𝑝 ≠ 1
2 ,

𝑎
𝑁 if 𝑝 = 1

2 ,
(3.29)

as desired.

In Figure 3.4, 𝜈(𝑎) is given for various probabilities 𝑝 and starting points 𝑎, as well as for different
total capitals 𝑁. When looking at Figure 3.4, we can roughly see what we expect: for 𝑝 = 1/2, we
find that the chance of a winning increases linearly. For 𝑝 < 1/2, we see that the chance of player A
winning increases exponentially as 𝑎 increases. Besides the parameter 𝑝, the total capital 𝑁 also plays
a role in 𝜈(𝑎): if the total capital is low, then the probability 𝑝 plays a moderate role when it comes to
𝜈(𝑎). However, if the starting capital is high, then changes of the probability 𝑝 result in more ”extreme
changes” in the chances of winning for player A.

We can also find the expected number of steps the random walk takes until it reaches either zero or N.
This is given in Theorem 3.4.2:
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Figure 3.4: Chance of player A to win for different total capitals 𝑁

Theorem 3.4.2. Let (𝑋𝑛)𝑛≥0 be a random walk with 𝑝 ∈ [0, 1] and starting point 𝑎 ∈ {0,… , 𝑁}, with 0
and 𝑁 absorbing barriers. Then, the expected number of steps 𝑒(𝑎) until the walk gets absorbed at 0
or N is given by

𝑒(𝑎) = {
1

2𝑝−1 (𝑁
((1−𝑝)/𝑝)𝑎−1
((1−𝑝)/𝑝)𝑁−1 − 𝑎) if 𝑝 ≠ 1/2,

𝑎(𝑁 − 𝑎) if 𝑝 = 1/2.
(3.30)

Proof. We use a similar approach as the proof of Theorem 3.4.1. To that end, let F be the number of
steps taken until the random walk gets absorbed at 0 or N. By conditioning the expectation of F on the
result of the first step, we get:

𝔼[𝐹] = 𝔼[𝐹 | 𝜂1 = 1]ℙ[𝜂1 = 1] + 𝔼[𝐹 | 𝜂1 = −1]ℙ[𝜂1 = −1]
⇒ 𝑒(𝑎) = 𝑝(1 + 𝑒(𝑎 + 1)) + (1 − 𝑝)(1 + 𝑒(𝑎 − 1)). (3.31)

Here, we use the fact that the expected number of steps of the random walk is equal to the expected
number of steps given we started after the first step is taken, plus the step that is already taken. As a
result, we get the following equation with the boundary conditions:

𝑝𝑒(𝑎 + 1) − 𝑒(𝑎) + (1 − 𝑝)𝑒(𝑎 − 1) = −1, 𝑒(0) = 𝑒(𝑁) = 0, (3.32)
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where we note that the expected number of steps is zero if either player A or player B starts with the total
capital. We solve this by solving for the homogeneous and particular solution. For the homogeneous
solution 𝑒ℎ(𝑎), we find the following auxiliary equation:

𝑝𝜃2 − 𝜃 + (1 − 𝑝) = 0,

⇒ 𝑒ℎ(𝑎) = {
𝑐1 + 𝑐2 (

1−𝑝
𝑝 )

𝑎
if 𝑝 ≠ 1

2 ,
𝑐1 + 𝑐2𝑎 if 𝑝 = 1

2 .
(3.33)

Here, we use the fact that we have already solved this equation in the proof of Theorem 3.4.1. Next,
we look at the particular solution. We split this into two cases based on the value of p:

• If 𝑝 ≠ 1/2, we try substituting 𝑒𝑝(𝑎) = 𝑘𝑎 with 𝑘 ∈ ℝ into Equation (3.32). Thus, we get:

𝑝𝑘(𝑎 + 1) − 𝑘𝑎 + (1 − 𝑝)𝑘(𝑎 − 1) = −1
𝑝𝑘𝑎 + 𝑝𝑘 − 𝑘𝑎 + 𝑘𝑎 − 𝑝𝑘𝑎 − 𝑘 + 𝑝𝑘 = −1

(2𝑝 − 1)𝑘 = −1

𝑘 = 1
1 − 2𝑝 .

(3.34)

• If 𝑝 = 1/2, we try substituting 𝑒𝑝(𝑎) = 𝑘𝑎2 with 𝑘 ∈ ℝ into Equation (3.32). Thus, we get:

1
2𝑘(𝑎 + 1)

2 − 𝑘𝑎2 + 12𝑘(𝑎 − 1)
2 = −1

1
2𝑘 (𝑎

2 + 2𝑎 + 1) − 𝑘𝑎2 + 12𝑘 (𝑎
2 − 2𝑎 + 1) = −1

(12𝑘 − 𝑘 + 𝑘 −
1
2𝑘)𝑎

2 + (𝑘 − 𝑘) 𝑎 + 2𝑘 = −1

𝑘 = −1.

(3.35)

As a result, we get the following equation:

𝑒(𝑎) = {𝑐1 + 𝑐2 (
1−𝑝
𝑝 )

𝑎
+ 𝑎
1−2𝑝 if 𝑝 ≠ 1/2,

𝑐3 + 𝑐4𝑎 − 𝑎2 if 𝑝 = 1/2.
(3.36)

We can solve for the constants using the boundary conditions:

• For 𝑝 ≠ 1/2 we get the following:

𝑒(0) = 𝑐1 + 𝑐2 = 0

𝑒(𝑁) = 𝑐1 + 𝑐2 (
1 − 𝑝
𝑝 )

𝑁
+ 𝑁
1 − 2𝑝 = 0,

⇒ 𝑐2 ((
1 − 𝑝
𝑝 )

𝑁
− 1) = − 𝑁

1 − 2𝑝

𝑐2 =
𝑁

2𝑝 − 1
1

(1−𝑝𝑝 )
𝑁
− 1

,

⇒ 𝑐1 = −
𝑁

2𝑝 − 1
1

(1−𝑝𝑝 )
𝑁
− 1

(3.37)



3.4. Gambler’s ruin 15

• For 𝑝 = 1/2 we get the following:

𝑒(0) = 𝑐3 = 0
𝑒(𝑁) = 𝑐4𝑁 − 𝑁2 = 0,

⇒ 𝑐4 =
1
𝑁

(3.38)

Finally, we get the value of 𝑒(𝑎):

𝑒(𝑎) = {
1

2𝑝−1 (𝑁
((1−𝑝)/𝑝)𝑎−1
((1−𝑝)/𝑝)𝑁−1 − 𝑎) if 𝑝 ≠ 1/2,

𝑎(𝑁 − 𝑎) if 𝑝 = 1/2,
(3.39)

as desired.

In Figure 3.5, the expected number of steps is given for different total capitals 𝑁 = 10,𝑁 = 25 and
𝑁 = 50. In general, we see that the maximum expected number of steps for a given value of 𝑝 shifts
to the left as 𝑝 increases and to the right as 𝑝 decreases. Intuitively, this can be explained by the fact
that the gambler’s ruin tends to be absorbed at zero for lower values of 𝑝, which is why the maximum
expected number of steps for lower values of 𝑝 shifts to the right, as the walks that go to the left will
take more steps. Furthermore, we can see that the the maximum expected number of steps for a given
𝑝 increases as it approaches 𝑝 = 1/2, and that the proportional difference between the maximum
expected value for 𝑝 = 1/2 and other values of 𝑝 increases as the number of steps increases. This can
be explained by the fact that the gambler’s ruin with value of 𝑝 close to zero or one tend to go to zero
or N faster than gambler’s ruins with values of 𝑝 close to 1/2, resulting a in lower maximum expected
number of steps. Lastly, one can see that the total capital does not influence the general shape of the
graphs, but the effect of 𝑁 on the maximum expected steps is greater near 𝑝 = 0.5.

Figure 3.5: Expected number of steps until either player A or player B wins for different starting capitals 𝑁. Note that the scale
of the y-axis increases as 𝑁 increases.





4
Elephant random walk

In this chapter, we will discuss the elephant random walk, and we will discuss several powerful results
of the elephant random walk, such as the law of large numbers and the central limit theorem. Lastly,
we will discuss the gambler’s ruin problem for the elephant random walk. Note that the content of this
chapter is largely based on published results by Schütz and Trimper (2004) and Colletti et al. (2016).

4.1. The model

In this section, we will discuss the general model of the elephant random walk. In particular, we will
discuss the one-dimensional elephant random walk on ℤ. In summary, the elephant random walk is a
random walk with complete memory: similarly to the normal random walk, the elephant random walk
consists of a sum of steps from a certain starting point 𝑋0. However, the way each step is taken differs
from the normal randomwalk: while the first step is the same, later steps are dependent on the previous
steps taken. This is unlike the normal random walk, where each step was independent and identically
distributed. The elephant random walk is defined as follows: the walk starts at a point 𝑋0 ∈ ℤ at time
𝑛 = 0. At each discrete time step, the elephant decides to move a step to the left or to the right, which
is given the value of −1 and 1 respectively. This gives rise to two ways to express 𝑋𝑛, similar to the
random walk:

𝑋𝑛 = 𝑋𝑛−1 + 𝜂𝑛 = 𝑋0 +
𝑛

∑
𝑘=1

𝜂𝑘 , (4.1)

where 𝑋𝑛 denotes the location of the elephant at time 𝑛 and 𝜂𝑛 = ±1 is a random variable which
denotes the step taken at time 𝑛. For 𝑝, 𝑞 ∈ [0, 1], which we will call the memory parameter and initial
parameter respectively, the value of 𝜂𝑛+1 is determined as follows:

• 𝜂1 is a random variable with

ℙ[𝜂1 = 1] = 𝑞,
ℙ[𝜂1 = −1] = 1 − 𝑞.

(4.2)

• For 𝜂𝑛+1 with 𝑛 ≠ 0 we first choose a previous step 𝜂′ ∈ {𝜂1, 𝜂2, … , 𝜂𝑛} with uniform probability.
Then, 𝜂𝑛+1 is a random variable with

ℙ[𝜂𝑛+1 = 𝜂′] = 𝑝,
ℙ[𝜂𝑛+1 = −𝜂′] = 1 − 𝑝.

(4.3)

17
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In Figure 4.1 and 4.2, the process of the elephant random walk is shown for 𝑛 = 1 and for 𝑛 > 1.

𝑋0 − 1 𝑋0 𝑋0 + 1

𝑞1 − 𝑞

Figure 4.1: Illustration of the elephant random walk for 𝑛 = 1.

𝑋𝑛 − 1 𝑋𝑛 𝑋𝑛 + 1

𝑝1 − 𝑝

𝑋𝑛 − 1 𝑋𝑛 𝑋𝑛 + 1

1 − 𝑝𝑝

Figure 4.2: Illustration of the elephant random walk for 𝑛 > 1. The blue arrow represents the direction of the chosen previous
step.

Similarly to the random walk, we will from now on assume that 𝑋0 = 0 for simplicity, as results for 𝑋0 ∈ ℤ
can be obtained by shifting the results of the elephant random walk with 𝑋0 = 0.

4.2. Step distribution and expectation

In this section, we will discuss the probability function of each step in the elephant random walk, as
well as the mean increment and mean displacement. Lastly, we will discuss the second moment of
displacement for the elephant random walk.

4.2.1. Step distribution

Before we can discuss the expected displacement of the elephant random walk, we must first discuss
the probability distribution of each step. It is too complex to write the probability distribution of each
step, due to the fact that each step is based of a random previous step. However, it is possible to give a
conditional based probability density function for each step, where we condition on the previous steps
of the walk. This gives rise to Theorem 4.2.1:

Theorem 4.2.1. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1], and let 𝜂 ∈ {−1, 1}. For the
first step, it holds that

ℙ[𝜂1 = 𝜂] =
1
2 [1 + (2𝑞 − 1)𝜂] . (4.4)

Furthermore, the conditional probability of a step 𝜂𝑛+1 given a previous history {𝜂1, … , 𝜂𝑛} is given by

ℙ[𝜂𝑛+1 = 𝜂 | 𝜂1, … , 𝜂𝑛] =
1
2𝑛

𝑛

∑
𝑘=1

[1 + (2𝑝 − 1)𝜂𝑘𝜂] . (4.5)

It may be confusing as to why we write the conditional probability this way. The reason for this, is that
we are able to write the probability of a step using the same formula, where the probability of a step
with value −1 or 1 only differ by changing the sign within the formula as seen in equation (4.4). As a
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result, we are able to take the sum over all steps as seen in equation (4.5), as we don’t have to split
the probability into multiple cases based on the step chosen. This will also be useful in keeping the
computations clear later in this chapter.

Proof of Theorem 4.2.1. The first part of Theorem 4.2.1 follows from the fact that we can write the two
cases, 𝜂1 = 1 and 𝜂1 = −1, as the following:

ℙ[𝜂1 = 1] = 𝑞 =
1
2 [1 + (2𝑞 − 1)(1))]

ℙ[𝜂1 = −1] = 1 − 𝑞 =
1
2 [1 + (2𝑞 − 1)(−1)] ,

⇒ ℙ[𝜂1 = 𝜂] =
1
2 [1 + (2𝑞 − 1)𝜂] .

(4.6)

For the second part of theorem 4.2.1, we can use the law of total probability (TheoremA.2.1) to condition
on the chosen previous step 𝜂′. In other words,

ℙ[𝜂𝑛+1 = 𝜂] =
𝑛

∑
𝑘=1

ℙ[𝜂′ = 𝜂𝑘]ℙ[𝜂𝑛+1 = 𝜂 | 𝜂′ = 𝜂𝑘]. (4.7)

Since each previous step has uniform chance of being chosen, we get that ℙ[𝜂′ = 𝜂𝑘] =
1
𝑛 for all

𝑘 ∈ {1,… , 𝑛}. To determine ℙ[𝜂𝑛+1 = 𝜂 | 𝜂′ = 𝜂𝑘], we can split the conditional probability into two cases
where 𝜂, 𝜂𝑘 ∈ {−1, 1}:

1. 𝜂𝑘𝜂 = 1 ∶ ℙ[𝜂𝑛+1 = 𝜂 | 𝜂′ = 𝜂𝑘] = 𝑝 =
1
2 [1 + (2𝑝 − 1)(1)] =

1
2 [1 + (2𝑝 − 1)𝜂𝑘𝜂] ,

2. 𝜂𝑘𝜂 = −1 ∶ ℙ[𝜂𝑛+1 = 𝜂 | 𝜂′ = 𝜂𝑘] = 1 − 𝑝 =
1
2 [1 + (2𝑝 − 1)(−1)] =

1
2 [1 + (2𝑝 − 1)𝜂𝑘𝜂] .

As a result, we obtain that ℙ[𝜂𝑛+1 = 𝜂 | 𝜂′ = 𝜂𝑘] =
1
2 [1 + (2𝑝 − 1)𝜂𝑘𝜂]. Combining both parts, we get

ℙ[𝜂𝑛+1 = 𝜂] =
𝑛

∑
𝑘=1

ℙ[𝜂′ = 𝜂𝑘]ℙ[𝜂𝑛+1 = 𝜂 | 𝜂′ = 𝜂𝑘]

=
𝑛

∑
𝑘=1

1
𝑛
1
2 [1 + (2𝑝 − 1)𝜂𝑘𝜂]

= 1
2𝑛

𝑛

∑
𝑘=1

[1 + (2𝑝 − 1)𝜂𝑘𝜂] ,

(4.8)

as desired.

4.2.2. Markov chain

In Section 3.2.1 of Chapter 3, we looked at the Markov property for the random walk. It turns out that
the Markov property still holds for the elephant random walk, but that the walk is time inhomogeneous.
Intuitively, this can be explained by the fact that it does not matter how the steps are taken, but instead
it matters how many steps there are of values −1 and 1. The inhomogeneous part stems from the fact
that the previous steps play a role in the probability of taking a step with value −1 or 1. We get the
following theorem:

Theorem 4.2.2. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1], 𝑝 ≠ 1/2. Then, the elephant
random walk is a inhomogeneous Markov chain.
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Proof. Just like in Proposition 3.2.2 we define 𝜎𝑛 to be the step at time 𝑛. We begin the proof by noting
that we can rewrite the conditional property as follows:

ℙ[𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋1 = 𝑥1] = ℙ[𝑋𝑛+1 = 𝑥𝑛 + 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋1 = 𝑥1]
= ℙ[𝑋𝑛+1 = 𝑥𝑛 + 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋1 = 𝑥1]
= ℙ[𝜂𝑛+1 = 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋1 = 𝑥1].

(4.9)

Thus, we need to show that ℙ[𝜂𝑛+1 = 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛 , … , 𝑋1 = 𝑥1] = ℙ[𝜂𝑛+1 = 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛]. To that
end, note that if 𝑋𝑛 = 𝑥𝑛, then (𝑛 + 𝑥𝑛)/2 steps have to be steps with value 1, and (𝑛 − 𝑥𝑛)/2 steps
have to be steps with value −1. As a result, we immediately find that the equation holds, with

ℙ[𝜂𝑛+1 = 𝜎𝑛+1 | 𝑋𝑛 = 𝑥𝑛] = {
𝑝𝑛+𝑥𝑛2𝑛 + (1 − 𝑝)𝑛−𝑥𝑛2𝑛 𝜂′𝑛+1 = 1,
(1 − 𝑝)𝑛+𝑥𝑛2𝑛 + 𝑝𝑛−𝑥𝑛2𝑛 𝜂′𝑛+1 = −1

(4.10)

for 𝑛 ≥ 1. To prove the inhomogeneity of the elephant random walk, we look at the following three
conditional probabilities:

ℙ[𝑋2 = 2 |𝑋1 = 1] = 𝑝
1 + 1
2 + (1 − 𝑝)1 − 12 = 𝑝, (4.11)

ℙ[𝑋4 = 2 |𝑋3 = 1] = 𝑝
3 + 1
6 + (1 − 𝑝)3 − 16 = 1

3(1 + 𝑝), (4.12)

ℙ[𝑋6 = 2 |𝑋5 = 1] = 𝑝
5 + 1
10 + (1 − 𝑝)5 − 110 = 1

5(2 + 𝑝). (4.13)

These three equations cannot all be satisfied simultaneously for a given 𝑝, which shows that the ele-
phant random walk is not homogeneous, as desired.

Remark 4.2.3. The reason we exclude the case 𝑝 = 1/2 is due to the fact that the elephant random
walk reverts to the normal random walk if 𝑝 is equal to 1/2, of which we know that this case would be
a homogeneous markov chain because of Proposition 3.2.2.

4.2.3. Expectation

Using the probabilities calculated in subsection 4.2.1, we can now discuss the expected values of each
step, as well as the expected value of the elephant random walk at each time step. For ease of reading,
we define 𝛼 ≔ 2𝑝 − 1 from now on. To begin, we first look at the expected value of each step:

Theorem 4.2.4. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1]. The conditional expected
value of a step 𝜂𝑛+1 given a previous history {𝜂1, … , 𝜂𝑛} is given by

𝔼[𝜂𝑛+1 | 𝜂1, … 𝜂𝑛] =
𝛼
𝑛𝑋𝑛 . (4.14)

Furthermore, the expected value of a step 𝜂𝑛+1 is given by

𝔼[𝜂𝑛+1] =
𝛼
𝑛𝔼[𝑋𝑛]. (4.15)
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Proof. Using the definition of expectation in combination with Theorem 4.2.1, we get

𝔼[𝜂𝑛+1 | 𝜂1, … 𝜂𝑛] = ℙ[𝜂𝑛+1 = 1 | 𝜂1, … , 𝜂𝑛] − ℙ[𝜂𝑛+1 = −1 | 𝜂1, … , 𝜂𝑛]

= 1
2𝑛

𝑛

∑
𝑘=1

[1 + (2𝑝 − 1)𝜂𝑘] −
1
2𝑛

𝑛

∑
𝑘=1

[1 − (2𝑝 − 1)𝜂𝑘]

= 1
2𝑛

𝑛

∑
𝑘=1
[2(2𝑝 − 1)𝜂𝑘]

= 2𝑝 − 1
𝑛

𝑛

∑
𝑘=1

𝜂𝑘 =
𝛼
𝑛𝑋𝑛 .

(4.16)

By taking the expectation of both sides and using the law of total expectation (Theorem A.2.2), we
obtain

𝔼[𝜂𝑛+1] = 𝔼[𝔼[𝜂𝑛+1 | 𝜂1, … 𝜂𝑛]] = 𝔼 [
𝛼
𝑛𝑋𝑛] =

𝛼
𝑛𝔼[𝑋𝑛], (4.17)

as desired.

Since we now know the conditional expected value of each step, we can now discuss the expected
value of 𝑋𝑛 at each time step 𝑛. While we are not able to obtain a direct formula for 𝔼[𝑋𝑛] using just
Theorem 4.2.4, Theorem 4.2.4 does allow us to find a recursive formula for the expected value by using
the fact that 𝑋𝑛+1 = 𝑋𝑛 + 𝜂𝑛+1:
Theorem 4.2.5. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1]. For 𝑛 ≥ 1, the conditional
expected value of 𝑋𝑛+1 given a previous history {𝜂1, … , 𝜂𝑛} is given by

𝔼[𝑋𝑛+1 | 𝜂1, … , 𝜂𝑛] = (1 +
𝛼
𝑛)𝑋𝑛 . (4.18)

Furthermore, the expected value of 𝑋𝑛+1 is given by

𝔼[𝑋𝑛+1] = (1 +
𝛼
𝑛)𝔼[𝑋𝑛]. (4.19)

Proof. We begin the proof by noting that 𝑋𝑛+1 = 𝑋𝑛 + 𝜂𝑛+1. By taking the expectation on both sides
and conditioning on the previous history, we get the following by using Theorem 4.2.4:

𝔼[𝑋𝑛+1 | 𝜂1, … , 𝜂𝑛] = 𝔼[𝑋𝑛 + 𝜂𝑛+1 | 𝜂1, … , 𝜂𝑛]
= 𝔼[𝑋𝑛 | 𝜂1, … , 𝜂𝑛] + 𝔼[𝜂𝑛+1 | 𝜂1, … , 𝜂𝑛]

= 𝑋𝑛 +
𝛼
𝑛𝑋𝑛

= (1 + 𝛼𝑛)𝑋𝑛 .

(4.20)

By taking the expectation of both sides and using the law of total expectation, we obtain

𝔼[𝑋𝑛+1] = 𝔼[𝔼[𝑋𝑛+1|𝜂1, … 𝜂𝑛]] = 𝔼 [(1 +
𝛼
𝑛)𝑋𝑛] = (1 +

𝛼
𝑛)𝔼[𝑋𝑛], (4.21)

as desired.

Before we give a non-recursive formula for the expected displacement, we will discuss the value of
∏𝑛−1𝑘=1(𝑘 + 𝛼). The reason for this is that this term will show up frequently in the remainder of this
section, as well as in Subsection 4.2.4. The goal is to simplify the product of terms as a fraction of
gamma functions. To that end, we have Definition 4.2.6 and Proposition 4.2.8:
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Definition 4.2.6. The gamma function is defined as follows:

Γ(𝑥) = ∫
1

0
𝑡𝑥−1𝑒−𝑡 𝑑𝑡 (4.22)

Remark 4.2.7. The gamma function has three important properties which we will make us of in the
remainder of the chapter:

• For every positive integer n, we have that Γ(𝑛) = (𝑛 − 1)!,

• We have that Γ(𝑥 + 1) = 𝑥Γ(𝑥) for 𝑥 ∈ ℝ ∖ (ℤ− ∪ {0}),

• The gamma function is closely related to the beta function1, which can be defined as follows using
gamma functions:

𝐵(𝑥1, 𝑥2) =
Γ(𝑥1)Γ(𝑥2)
Γ(𝑥1 + 𝑥2)

. (4.23)

Proposition 4.2.8. For 𝛼 ∈ ℝ ∖ (ℤ− ∪ {0}), we have that

𝑛−1

∏
𝑘=1
(𝑘 + 𝛼) = Γ(𝑛 + 𝛼)

Γ(1 + 𝛼) . (4.24)

Proof. Using the fact that 𝑥Γ(𝑥) = Γ(𝑥 + 1), we get:

𝑛−1

∏
𝑘=1
(𝑘 + 𝛼) = (1 + 𝛼)(2 + 𝛼)… (𝑛 − 1 + 𝛼)

= Γ(1 + 𝛼)
Γ(1 + 𝛼)(1 + 𝛼)(2 + 𝛼)… (𝑛 − 1 + 𝛼)

= Γ(𝑛 + 𝛼)
Γ(1 + 𝛼) ,

(4.25)

as desired.

Using the recursive formula from Theorem 4.2.5, we can now describe the expected displacement of
the elephant random walk by using Proposition 4.2.8:

Theorem 4.2.9. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1]. The expected displacement
of 𝑋𝑛+1 is given by

𝔼[𝑋𝑛] = (2𝑞 − 1)
Γ(𝑛 + 𝛼)
Γ(2𝑝)Γ(𝑛) . (4.26)

Furthermore, for the asymptotic behavior, we obtain

𝔼[𝑋𝑛] ∼ (2𝑞 − 1)
𝑛2𝑝−1
Γ(2𝑝) . (4.27)

1The beta function is a special function which is used to define the probability function of the beta distribution.
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Proof. To obtain a non-recursive formula for the expected displacement, we will use Theorem 4.2.5.
To that end, note that

𝔼[𝑋𝑛] = (1 +
𝛼

𝑛 − 1)𝔼[𝑋𝑛−1]

= (𝑛 + 𝛼 − 1𝑛 − 1 ) (1 + 𝛼
𝑛 − 2)𝔼[𝑋𝑛−2]

= (𝑛 + 𝛼 − 1𝑛 − 1 )(𝑛 + 𝛼 − 2𝑛 − 2 )…(1 + 𝛼1)𝔼[𝑋1]

= 𝔼[𝑋1]
𝑛−1

∏
𝑘=1

(𝑘 + 𝛼𝑘 )

= 𝔼[𝑋1]
(𝑛 − 1)!

𝑛−1

∏
𝑘=1
(𝑘 + 𝛼)

= 𝔼[𝑋1]
Γ(𝑛)

Γ(𝑛 + 𝛼)
Γ(2𝑝)

= (2𝑞 − 1) Γ(𝑛 + 𝛼)Γ(2𝑝)Γ(𝑛) .

(4.28)

To obtain the asymptotic behavior of 𝑋𝑛, we use the asymptotic approximation Γ(𝑛 + 𝛼) ∼ Γ(𝑛) 𝑛𝛼 for
𝛼 ∈ ℝ (Proposition A.1.2) to get

𝔼[𝑋𝑛] = (2𝑞 − 1)
Γ(𝑛 + 𝛼)
Γ(2𝑝)Γ(𝑛)

∼ (2𝑞 − 1) Γ(𝑛) 𝑛𝛼
Γ(2𝑝)Γ(𝑛)

= (2𝑞 − 1)𝑛
2𝑝−1

Γ(2𝑝) ,

(4.29)

as desired.

Remark 4.2.10. By using both Theorem 4.2.4 and Theorem 4.2.9, we can find the expected value of
each step:

𝔼[𝜂𝑛+1] =
𝛼
𝑛𝔼[𝑋𝑛] ∼

(2𝑝 − 1)(2𝑞 − 1)
Γ(2𝑝) 𝑛2𝑝−2. (4.30)

As a result of Theorem 4.2.9, we see that the behavior of the displacement of the random walk can be
split into 3 cases based on the value of p:

1. If 𝑝 < 1/2, then we see that 2𝑝 − 1 < 0, and thus

𝔼[𝑋𝑛] ∼ (2𝑞 − 1)
𝑛2𝑝−1
Γ(2𝑝)

= 2𝑞 − 1
𝑛1−2𝑝Γ(2𝑝) → 0

(4.31)

as 𝑛 → ∞. As a result, we see that the elephant random walk will stay around its starting point
on average. Intuitively, this is what we expect: if the elephant random walk has a lot of step with
value 1 proportionally, then the chance of the elephant random walk taking a step with value -1
becomes a lot larger, effectively ”correcting” itself to its starting point.
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2. If 𝑝 = 1/2, we end up with a usual random walk with a fair coin after one step, as each step has
equal chance of happening regardless of the step chosen after the first one. As such, we find
that the expected displacement of the elephant random walk is equal to 2𝑞 − 1.

3. If 𝑝 > 1/2, then we see that 0 < 2𝑝 − 1 ≤ 1. We again split into 3 cases depending on the value
of 𝑞:
(a) If 𝑞 < 1/2, then

𝔼[𝑋𝑛] ∼ (2𝑞 − 1)
𝑛2𝑝−1
Γ(2𝑝) → −∞, (4.32)

(b) If 𝑞 = 1/2, then

𝔼[𝑋𝑛] = (2𝑞 − 1)
Γ(𝑛 + 𝛼)
Γ(2𝑝)Γ(𝑛) = 0. (4.33)

(c) If 𝑞 > 1/2, then

𝔼[𝑋𝑛] ∼ (2𝑞 − 1)
𝑛2𝑝−1
Γ(2𝑝) → ∞. (4.34)

as 𝑛 → ∞. As a result, we see that the displacement of elephant random walk increases indefi-
nitely as long as 𝑞 ≠ 1/2, and that the direction in which it diverges is dependent on the expected
value of the first step taken. It is of note that, unless 𝑝 = 1, the displacement of the elephant
random walk grows slower than linear, making it so that the speed at which the displacement
grows slows down as the number of steps increases.

4.2.4. Second moment of displacement

Similarly to the random walk, we will now look at the second moment of displacement 𝑋2𝑛 of the elephant
random walk. Unlike the random walk, where we could split the second moment of displacement into
two cases, the elephant random walk has three different cases. However, before we can discuss these,
we must first find the second moment of displacement of the elephant random walk. To that end, we
first find a recursive formula for the second moment of displacement of the elephant random walk:

Theorem 4.2.11. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1]. For 𝑛 ≥ 1, the expected
second moment of displacement is recursively given by

𝔼[𝑋2𝑛+1] = 1 + (1 +
2𝛼
𝑛 )𝔼[𝑋

2
𝑛]. (4.35)

Proof. To determine the expected second moment of displacement, note that

𝑋𝑛+1 = 𝑋𝑛 + 𝜂𝑛+1,
⇒ 𝑋2𝑛+1 = (𝑋𝑛 + 𝜂𝑛+1)2

= 𝑋2𝑛 + 2𝑋𝑛𝜂𝑛+1 + 𝜂2𝑛+1.
(4.36)

Taking the expectation on both sides, we obtain 𝔼[𝑋2𝑛+1] = 𝔼[𝑋2𝑛] + 2𝔼[𝑋𝑛𝜂𝑛+1] + 𝔼[𝜂2𝑛+1] by linearity.
Furthermore, note that 𝔼[𝜂2𝑛] = 1 for all 𝑛. Thus, it remains to express 𝔼[𝑋𝑛𝜂𝑛+1] in terms of 𝑋𝑛. To
that end, we use the law of total expectation to condition on the previous steps:

𝔼[𝑋𝑛𝜂𝑛+1] = 𝔼[𝔼[𝑋𝑛𝜂𝑛+1 | 𝜂1, … , 𝜂𝑛]]
= 𝔼[𝑋𝑛𝔼[𝜂𝑛+1 | 𝜂1, … , 𝜂𝑛]]

= 𝔼 [𝑋𝑛 ⋅
𝛼
𝑛𝑋𝑛]

= 𝛼
𝑛𝔼[𝑋

2
𝑛].

(4.37)
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This results in the recursive formula

𝔼[𝑋2𝑛+1] = 𝔼[𝑋2𝑛] + 2 (
𝛼
𝑛𝔼[𝑋

2
𝑛]) + 1

= 1 + (1 + 2𝛼𝑛 )𝔼[𝑋
2
𝑛],

(4.38)

as desired.

Before we look at the non-recursive form for the expected second moment of displacement for the
elephant random walk, we will first discuss a possible solution for the recursive formula of Theorem
4.2.11. To that end, note that the formula is of the form

𝑀𝑛+1 = 𝑓𝑛 + 𝑔𝑛𝑀𝑛 , (4.39)

with 𝑓𝑛 = 1, 𝑔𝑛 = 1+
2𝛼
𝑛 and 𝑀𝑛 = 𝔼[𝑋𝑛] for 𝑛 ≥ 1. Thus, if we can find a general solution for Equation

(4.39), then we can find a non-recursive form for the second moment of displacment of the elephant
random walk. Luckily, there does exist a general solution, as is shown in Theorem 4.2.12:
Theorem 4.2.12. Let 𝑓𝑛 , 𝑔𝑛 and 𝑀𝑛 be functions, and suppose for 𝑛 ≥ 1 they obey the form

𝑀𝑛+1 = 𝑓𝑛 + 𝑔𝑛𝑀𝑛 . (4.40)

Then, the general solution is given by

𝑀𝑛 = 𝑀1
𝑛−1

∏
𝑘=1

𝑔𝑘 +
𝑛−1

∑
𝑘=1

[𝑓𝑘
𝑛−1

∏
𝑖=𝑘+1

𝑔𝑖] . (4.41)

Proof. We proof this theorem using induction. To that end, note that for 𝑛 = 1, we get

𝑀1 = 𝑀1
0

∏
𝑘=1

𝑔𝑘 +
0

∑
𝑘=1

[𝑓𝑘
0

∏
𝑖=𝑘+1

𝑔𝑖] = 𝑀1, (4.42)

where we use that the empty product is equal to 1 and empty sum is equal to 0. Thus, the induction
hypothesis holds. For the induction step, suppose that

𝑀𝑚 = 𝑀1
𝑚−1

∏
𝑘=1

𝑔𝑘 +
𝑚−1

∑
𝑘=1

[𝑓𝑘
𝑚−1

∏
𝑖=𝑘+1

𝑔𝑖] (4.43)

holds for a 𝑚 ≥ 1. Then, we have that
𝑀𝑚+1 = 𝑓𝑚 + 𝑔𝑚𝑀𝑚

= 𝑓𝑚 + 𝑔𝑚 [𝑀1
𝑚−1

∏
𝑘=1

𝑔𝑘 +
𝑚−1

∑
𝑘=1

[𝑓𝑘
𝑚−1

∏
𝑖=𝑘+1

𝑔𝑖]]

= 𝑓𝑚 + 𝑔𝑚 [𝑀1
𝑚−1

∏
𝑘=1

𝑔𝑘] + 𝑔𝑚
𝑚−1

∑
𝑘=1

[𝑓𝑘
𝑚−1

∏
𝑖=𝑘+1

𝑔𝑖]

= 𝑀1
𝑚

∏
𝑘=1

𝑔𝑘 + [𝑓𝑚 +
𝑚−1

∑
𝑘=1

[𝑓𝑘
𝑚

∏
𝑖=𝑘+1

𝑔𝑖]]

= 𝑀1
𝑚

∏
𝑘=1

𝑔𝑘 +
𝑚

∑
𝑘=1

[𝑓𝑘
𝑚

∏
𝑖=𝑘+1

𝑔𝑖] ,

(4.44)

where in the last line, we use the fact that putting 𝑘 = 𝑚 in the last term would result in an empty
product, making the next term 𝑓𝑡. As a result, the induction is complete.
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We can now look at the general form of the expected second moment of displacement of the elephant
random walk by using Theorem 4.2.12 on the recursive formula found in Theorem 4.2.11:

Theorem 4.2.13. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1]. The expected second
moment of displacement is given by

𝔼[𝑋2𝑛] = {
𝑛

2𝛼−1 (
Γ(𝑛+2𝛼)

Γ(𝑛+1)Γ(2𝛼) − 1) if 𝑝 ≠ 3
4 ,

𝑛 ∑𝑛𝑘=1
1
𝑘 if 𝑝 = 3

4 .
(4.45)

Proof. Applying Theorem 4.2.12 directly to the recursive second moment of displacement of Theorem
4.2.11, we get

𝔼[𝑋2𝑛] = 1
𝑛−1

∏
𝑘=1

(1 + 2𝛼𝑘 ) +
𝑛−1

∑
𝑘=1

[1
𝑛−1

∏
𝑖=𝑘+1

(1 + 2𝛼𝑖 )]

=
𝑛−1

∏
𝑘=1

(𝑘 + 2𝛼𝑘 ) +
𝑛−1

∑
𝑘=1

𝑛−1

∏
𝑖=𝑘+1

(𝑖 + 2𝛼𝑖 )

= Γ(𝑛 + 2𝛼)
Γ(2𝛼 + 1)Γ(𝑛) +

𝑛−1

∑
𝑘=1

(Γ(𝑛 + 2𝛼)Γ(𝑘 + 1)Γ(𝑛)Γ(2𝛼 + 𝑘 + 1))

=
𝑛−1

∑
𝑘=0

(Γ(𝑛 + 2𝛼)Γ(𝑛)
Γ(𝑘 + 1)

Γ(2𝛼 + 𝑘 + 1))

= Γ(𝑛 + 2𝛼)
Γ(𝑛)

𝑛−1

∑
𝑘=0

( Γ(𝑘 + 1)
Γ(2𝛼 + 𝑘 + 1)) .

(4.46)

Thus, it remains to find an expression for ∑𝑛−1𝑘=0 (
Γ(𝑘+1)

Γ(2𝛼+𝑘+1)). To that end, note that multiplying the sum
with Γ(2𝛼) gives us an expression that is similar to that of a beta function:

𝑛−1

∑
𝑘=0

(Γ(2𝛼)Γ(𝑘 + 1)Γ(2𝛼 + 𝑘 + 1) ) =
𝑛−1

∑
𝑘=0

𝐵(2𝛼, 𝑘 + 1)

=
𝑛−1

∑
𝑘=0

∫
1

0
𝑢2𝛼−1(1 − 𝑢)𝑘 𝑑𝑢

= ∫
1

0

𝑛−1

∑
𝑘=0

𝑢2𝛼−1(1 − 𝑢)𝑘 𝑑𝑢

= ∫
1

0
𝑢2𝛼−1 (1 − (1 − 𝑢)

𝑛

𝑢 ) 𝑑𝑢

= ∫
1

0
𝑢2𝛼−2 𝑑𝑢 − ∫

1

0
(𝑢2𝛼−2(1 − 𝑢)𝑛) 𝑑𝑢

= 1
2𝛼 − 1 − 𝐵(2𝛼 − 1, 𝑛 + 1)

= 1
2𝛼 − 1 −

Γ(2𝛼 − 1)Γ(𝑛 + 1)
Γ(𝑛 + 2𝛼) ,

(4.47)
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where 𝐵(2𝛼, 𝑘 + 1) denotes the beta function. It is important to note that we assume that 𝛼 ≠ 1/2 in
Equation (4.47). The case 𝛼 = 1

2 will be discussed separately. Thus, we get:

𝔼[𝑋2𝑛] =
Γ(𝑛 + 2𝛼)
Γ(𝑛)

1
Γ(2𝛼) (

1
2𝛼 − 1 −

Γ(2𝛼 − 1)Γ(𝑛 + 1)
Γ(𝑛 + 2𝛼) )

= Γ(𝑛 + 2𝛼)
Γ(𝑛)Γ(2𝛼) (

1
2𝛼 − 1 −

Γ(2𝛼 − 1)Γ(𝑛 + 1)
Γ(𝑛 + 2𝛼) )

= Γ(𝑛 + 2𝛼)
Γ(𝑛)Γ(2𝛼)

1
2𝛼 − 1 −

Γ(𝑛 + 2𝛼)
Γ(𝑛)Γ(2𝛼)

Γ(2𝛼 − 1)Γ(𝑛 + 1)
Γ(𝑛 + 2𝛼)

= 1
2𝛼 − 1

Γ(𝑛 + 2𝛼)
(Γ(𝑛+1)𝑛 ) Γ(2𝛼)

− Γ(𝑛 + 1)Γ(2𝛼 − 1)Γ(𝑛)Γ(2𝛼)

= 𝑛
2𝛼 − 1

Γ(𝑛 + 2𝛼)
Γ(𝑛 + 1)Γ(2𝛼) −

𝑛Γ(𝑛)Γ(2𝛼 − 1)
(2𝛼 − 1)Γ(𝑛)Γ(2𝛼 − 1)

= 𝑛
2𝛼 − 1 (

Γ(𝑛 + 2𝛼)
Γ(𝑛 + 1)Γ(2𝛼) − 1) .

(4.48)

For 𝛼 = 1
2 , we obtain the following:

𝑛−1

∑
𝑘=0

(Γ(𝑘 + 1)Γ(𝑘 + 2)) =
𝑛−1

∑
𝑘=0

( Γ(𝑘 + 1)
(𝑘 + 1)Γ(𝑘 + 1)) =

𝑛

∑
𝑘=1

1
𝑘 ,

⇒ 𝔼[𝑋2𝑛] =
Γ(𝑛 + 1)
Γ(𝑛)

𝑛

∑
𝑘=1

1
𝑘

= 𝑛Γ(𝑛)
Γ(𝑛)

𝑛

∑
𝑘=1

1
𝑘

= 𝑛
𝑛

∑
𝑘=1

1
𝑘 ,

(4.49)

as desired.

From Theorem 4.2.13, we can see that the diffusion behavior can be split into three cases, depending
on the value of 𝑝, where we recall that 𝑎 ≔ 2𝑝 − 1:

1. If 𝑝 < 3/4, we then have that 2𝛼 < 1. As a result, we find

𝔼[𝑋2𝑛] =
𝑛

2𝛼 − 1 (
Γ(𝑛 + 2𝛼)

Γ(𝑛 + 1)Γ(2𝛼) − 1)

∼ 𝑛
2𝛼 − 1 (

𝑛2𝛼
𝑛

Γ(𝑛)
Γ(𝑛)Γ(2𝛼) − 1)

∼ − 𝑛
2𝛼 − 1 =

𝑛
3 − 4𝑝 .

(4.50)

for large n. As a result, we see that the expected second moment of displacement grows asymp-
totically linear. In comparison, note that squaring the asymptotic expected displacement found in
4.2.9 gives the following:
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𝔼[𝑋𝑛]2 ∼ ((2𝑞 − 1)
𝑛2𝑝−1
Γ(2𝑝))

2

= (2𝑞 − 1)2
Γ(2𝑝)2 𝑛4𝑝−2. (4.51)

Since the mean second order of displacement is of a higher order than the square of the expected
displacement, we find that the variance Var(𝑋𝑛) = 𝔼[𝑋2𝑛] − 𝔼[𝑋𝑛]2 grows linearly, which means
that the elephant random walk is a diffusive process for 𝑝 < 3/4, similar to the normal random
walk.

2. If 𝑝 = 3/4, we then have that

𝔼[𝑋2𝑛] = 𝑛
∞

∑
𝑘=1

1
𝑘 ∼ 𝑛 log(𝑛),

𝔼[𝑋𝑛]2 = (2𝑞 − 1)2
(4.52)

Surprisingly, we find that for 𝑝 = 3/4, the variance of the elephant random walk is not linear
or quadratic, or 𝑛𝑥 for 1 < 𝑥 < 2, but linearlogarithmic. As a result, we have a marginally
superdiffusive process.

3. If 𝑝 > 3/4, then we have that 2𝛼 > 1. As a result, we find

𝔼[𝑋2𝑛] =
𝑛

2𝛼 − 1 (
Γ(𝑛 + 2𝛼)

Γ(𝑛 + 1)Γ(2𝛼) − 1)

∼ 𝑛
2𝛼 − 1 (

𝑛2𝛼
𝑛

Γ(𝑛)
Γ(𝑛)Γ(2𝛼) − 1)

∼ 𝑛
2𝛼 − 1

𝑛2𝛼
𝑛Γ(2𝛼)

= 𝑛2𝛼
(2𝛼 − 1)Γ(2𝛼) =

𝑛4𝑝−2
(4𝑝 − 3)Γ(4𝑝 − 2)

(4.53)

for large n. Comparing this to the square of the expected displacement we found in (4.51), we
note that, while both are of the same order, they are not equal to each other2. As a result, we
see that the variance of the elephant random walk is 𝑛𝑥 for 1 < 𝑥 < 2. As a result, the elephant
random walk is called a superdiffusive process for 𝑝 > 3/4.

4.3. Asymptotic properties of large scale elephant random walks

In this section, we will discuss the characterization of the elephant random walk when it comes to its
asymptotic properties. Even though the elephant random walk does not have independent steps, many
of the results of the normal random walk still hold, which we will discuss in this section.

4.3.1. Prerequisites

To be able to discuss the results regarding the long term behavior of the elephant random walk, it is
important to introduce some definitions and theorems that will be used in the proofs later in this section.
To that end, we look at the following two definitions regarding filtrations and martingales:

Definition 4.3.1 (Filtration). Let (Ω, ℱ) be a measurable space. Then {ℱ𝑛}𝑛≥0 with ℱ𝑛 a sub-𝜎-algebra
of ℱ is called a filtration if ℱ𝑖 ⊆ ℱ𝑗 for all 𝑖 ≤ 𝑗.
2Unless if (𝑝, 𝑞) = (1,±1), in which it is trivial due to the fact that 𝑋𝑛 = 𝑛 for (𝑝, 𝑞) = (1, 1) and 𝑋𝑛 = −𝑛 for (𝑝, 𝑞) = (1, −1).
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Remark 4.3.2. Given a measurable space (Ω, ℱ) and a sequence of real-valued random variables
(𝑋𝑛)𝑛≥0, the natural filtration (ℱ𝑛)𝑛≥0 is defined by

ℱ𝓃 = 𝜎(𝑋0, 𝑋1, … , 𝑋𝑛) 𝑛 ≥ 0, (4.54)

where 𝜎(𝑋0, 𝑋1, … , 𝑋𝑛) is the 𝜎-algebra generated by (𝑋0, 𝑋1, … , 𝑋𝑛).
Definition 4.3.3 (Martingale). Let (Ω, ℱ, ℙ) be a probability space. A martingale with respect to a
filtration {ℱ𝓃}𝑛≥0 is a discrete-time stochastic process {𝑋𝑛}𝑛≥0 such that, for all 𝑛 ≥ 0,

𝔼[|𝑋𝑛|] < ∞, (4.55)
𝔼[𝑋𝑛+1 | ℱ𝑛] = 𝑋𝑛 . (4.56)

Essentially, a martingale is characterized by the fact that the conditional expectation of the next value,
given that we know the previous values, is equal to its most recent value. An example of such a
martingale is the random walk with 𝑝 = 1/2, as we know that 𝔼[𝑋𝑛+1 | ℱ𝑛] = 0 = 𝔼[𝑋𝑛] for 𝑛 ≥ 0.
Furthermore, it is important to note that, unless mentioned, we are working with the natural filtration
(ℱ𝑛)𝑛≥0 for the elephant random walk. The reason we look at martingales, is because there are many
known theorems regarding martingales which will be useful, particularly when looking at the central
limit theorem for the elephant random walk. However, to make use of these theorems, we will need to
transform the elephant random walk into a martingale. To that end, for 𝑛 ≥ 1 let 𝑎𝑛 be defined by

𝑎1 = 1, 𝑎𝑛 =
𝑛−1

∏
𝑘=1

(1 + 𝛼𝑘 ) =
𝑛−1

∏
𝑘=1

𝑘 + 𝛼
𝑘 = Γ(𝑛 + 𝛼)

Γ(𝑛)Γ(2𝑝) ∼
𝑛𝛼
Γ(2𝑝) . (4.57)

Furthermore, let 𝑀𝑛 =
𝑋𝑛−𝔼[𝑋𝑛]

𝑎𝑛
. We claim that 𝑀𝑛 is a martingale with respect to the natural filtration

{ℱ𝑛}𝑛≥1 = 𝜎(𝜂1, … , 𝜂𝑛):
Theorem 4.3.4. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝, 𝑞 ∈ [0, 1]. Then, 𝑀𝑛 =

𝑋𝑛−𝔼[𝑋𝑛]
𝑎𝑛

is a
martingale with respect to the filtration {ℱ𝑛}𝑛≥1 = 𝜎(𝜂1, … , 𝜂𝑛).

Proof. To show that 𝑀𝑛 is a martingale, we must show that 𝔼[𝑀𝑛+1 | ℱ𝑛] = 𝑀𝑛 for all 𝑛 ≥ 1. To that
end, note that we can write the conditional expectation of 𝑀𝑛+1 as follows by using Theorem 4.2.4 and
the law of total expectation:

𝔼[𝑀𝑛+1 |ℱ𝑛] =
𝔼[𝑋𝑛+1 − 𝔼[𝑋𝑛+1] | ℱ𝑛]

𝑎𝑛+1
= 𝔼[𝑋𝑛 + 𝜂𝑛+1 − 𝔼[𝑋𝑛 + 𝜂𝑛+1] | ℱ𝑛]

𝑎𝑛+1
= 𝔼[𝑋𝑛|ℱ𝑛] − 𝔼[𝔼[𝑋𝑛]|ℱ𝑛]

𝑎𝑛+1
+ 𝔼[𝜂𝑛+1|ℱ𝑛] − 𝔼[𝔼[𝜂𝑛+1]|ℱ𝑛]𝑎𝑛+1

= 𝑋𝑛 − 𝔼[𝑋𝑛]
𝑎𝑛+1

+ 𝔼[𝜂𝑛+1 | ℱ𝑛] − 𝔼[𝜂𝑛+1]𝑎𝑛+1

= 𝑋𝑛 − 𝔼[𝑋𝑛]
𝑎𝑛+1

+
(2𝑝−1𝑛 )𝑋𝑛 − (

2𝑝−1
𝑛 )𝔼[𝑋𝑛]

𝑎𝑛+1

= 𝑋𝑛 − 𝔼[𝑋𝑛]
𝑎𝑛+1

+
(2𝑝−1𝑛 ) (𝑋𝑛 − 𝔼[𝑋𝑛]))

𝑎𝑛+1

= (𝑋𝑛 − 𝔼[𝑋𝑛])
1 + (2𝑝−1𝑛 )
𝑎𝑛+1

= (𝑋𝑛 − 𝔼[𝑋𝑛])
1
𝑎𝑛

= 𝑀𝑛 ,

(4.58)

as desired.
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In addition to this martingale, we let (𝐷𝑛)𝑛≥1 be the martingale differences of 𝑀𝑛, defined by 𝐷1 ≔ 𝑀1
and 𝐷𝑛 ≔ 𝑀𝑛 −𝑀𝑛−1. It will be important to bound 𝐷𝑛 later in this section. Thus, notice that for 𝑛 ≥ 2
we find the following:

𝐷𝑛 =
𝑋𝑛 − 𝔼[𝑋𝑛]

𝑎𝑛
− 𝑋𝑛−1 − 𝔼[𝑋𝑛−1]𝑎𝑛−1

= 𝑋𝑛−1 + 𝜂𝑛 − 𝔼[𝑋𝑛−1 + 𝜂𝑛]
𝑎𝑛

− 𝑋𝑛−1 − 𝔼[𝑋𝑛−1]

( 𝑎𝑛
1+ 2𝑝−1𝑛−1

)

= 𝜂𝑛 − 𝔼[𝜂𝑛]
𝑎𝑛

+ 𝑋𝑛−1 − 𝔼[𝑋𝑛−1]𝑎𝑛
− (1 + 2𝑝 − 1𝑛 − 1 )

𝑋𝑛−1 − 𝔼[𝑋𝑛−1]
𝑎𝑛

= 𝜂𝑛 − 𝔼[𝜂𝑛]
𝑎𝑛

− 𝑋𝑛−1 − 𝔼[𝑋𝑛−1]𝑛 − 1
2𝑝 − 1
𝑎𝑛

.

(4.59)

Taking the absolute value on both sides, we can bound the function in the following way by using the
triangle inequality and noting that 𝑎𝑛 > 0 for all 𝑛 ≥ 1:

⇒ |𝐷𝑛| = |
𝜂𝑛 − 𝔼[𝜂𝑛]

𝑎𝑛
− 𝑋𝑛−1 − 𝔼[𝑋𝑛−1]𝑛 − 1

2𝑝 − 1
𝑎𝑛

|

≤ |𝜂𝑛 − 𝔼[𝜂𝑛]𝑎𝑛
| + |𝑋𝑛−1 − 𝔼[𝑋𝑛−1]𝑛 − 1

2𝑝 − 1
𝑎𝑛

|

≤ |𝜂𝑛 − 𝔼[𝜂𝑛]
𝑎𝑛

+ |𝑋𝑛−1 − 𝔼[𝑋𝑛−1]|𝑛 − 1
|2𝑝 − 1|
𝑎𝑛

≤ 2
𝑎𝑛
+ 2(𝑛 − 1)𝑛 − 1

1
𝑎𝑛
= 4
𝑎𝑛
.

(4.60)

Thus we find that |𝐷𝑛| can be bounded by 4
𝑎𝑛

for 𝑛 ≥ 1. Similarly, we will need to make statements

later in this section using the value of ∑𝑛𝑘=1
1
𝑎2𝑘
. To that end, we look at the following lemma:

Lemma 4.3.5. ∑𝑛𝑘=1
1
𝑎2𝑘

converges if and only if 𝑝 > 3/4.

Proof. First off, we define 𝑏𝑛 ≔
1
𝑎2𝑛

. We split the proof up in 2 cases based on the value of 𝑝:

1. If 𝑝 ≠ 3/4, then we may use the Raabe’s test (Theorem A.5.1) to look at the convergence of the
series. But before that, note that

𝑎𝑛+1
𝑎𝑛

=
Γ(𝑛+𝛼+1)
Γ(𝑛+1)Γ(2𝑝)
Γ(𝑛+𝛼)
Γ(𝑛)Γ(2𝑝)

= Γ(𝑛 + 𝛼 + 1)Γ(𝑛)Γ(2𝑝)
Γ(𝑛 + 𝛼)Γ(𝑛 + 1)Γ(2𝑝)

= 𝑛 + 𝛼
𝑛

Γ(𝑛 + 𝛼)Γ(𝑛)Γ(2𝑝)
Γ(𝑛 + 𝛼)Γ(𝑛)Γ(2𝑝)

= 𝑛 + 𝛼
𝑛 ,

(4.61)
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where we use Γ(𝑧 + 1) = 𝑧Γ(𝑧) to simplify the fraction. Using Raabe’s test, we get:

𝜌𝑛 = 𝑛(
𝑏𝑛
𝑏𝑛+1

− 1)

= 𝑛((𝑎𝑛+1𝑎𝑛
)
2
− 1)

= 𝑛 ((𝑛 + 𝛼)
2 − 𝑛2

𝑛2 )

= 2𝑛𝛼 + 𝛼2
𝑛

⇒ 𝜌 = lim
𝑛→∞

𝜌𝑛 = lim
𝑛→∞

2𝑛𝛼 + 𝛼2
𝑛 = 2𝛼.

(4.62)

Looking at the value of 𝜌, we see that the series converges if 𝛼 > 1/2, which corresponds to
𝑝 > 3/4, and diverges if 𝛼 < 1/2, which corresponds to 𝑝 < 3/4.

2. If 𝑝 = 3/4, then we cannot use the Raabe criteria, as the test is inconclusive. Instead, we note
the following:

𝑎𝑛 =
Γ(𝑛 + 1/2)
Γ(𝑛)Γ(2𝑝) ∼

√𝑛
Γ(2𝑝) ,

⇒
𝑛

∑
𝑘=1

1
𝑎2𝑘
∼

𝑛

∑
𝑘=1

Γ(2𝑝)2
𝑛 ,

(4.63)

the latter of which diverges by comparison with the harmonic series as 𝑛 → ∞, and as a result we
find that ∑𝑛𝑘=1

1
𝑎2𝑘

diverges as well.

Thus, we find that ∑∞𝑘=1 1/𝑎2𝑘 converges if and only if 𝑝 > 3/4, as desired.

Lastly, we will introduce a notation to indicate the asymptotic growth of a function, namely the little-o
notation. This will be useful when estimating expectations when proving the central limit theorem for
the elephant random walk in Theorem 4.3.14. In addition to this, we will also introduce a proposition
regarding sums of little-o’s. Thus, we look at Definition 4.3.6 and Proposition 4.3.8:

Definition 4.3.6 (Little-o notation). A sequence (𝑥𝑛)𝑛≥1 is 𝑜(𝑦𝑛) if for every 𝜖 > 0 there exists a 𝑁 ≥ 1
such that:

|𝑥𝑛| ≤ 𝜖 𝑦𝑛 for 𝑛 ≥ 𝑁. (4.64)

Remark 4.3.7. If the sequence (𝑥𝑛)𝑛≥1 is nonzero for all 𝑛 ≥ 𝑁 for a certain 𝑁, then 𝑥𝑛 = 𝑜(𝑦𝑛) is
equivalent to

lim
𝑥→∞

𝑥𝑛
𝑦𝑛
= 0. (4.65)

Proposition 4.3.8. Let (𝑥𝑛)𝑛≥1, (𝑦𝑛)𝑛≥1 be two sequences such that 𝑥𝑛 = 𝑜(𝑦𝑛) and ∑
𝑛
𝑘=1 𝑦𝑘 → ∞ as

𝑛 → ∞. Then,

lim
𝑛→∞

∑𝑛𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

= 0. (4.66)
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Proof. As 𝑥𝑛 = 𝑜(𝑦𝑛), we get that for all 𝜖 > 0 there exists a 𝑁1 ≥ 1 such that |𝑥𝑛| <
𝜖
2𝑦𝑛 for 𝑛 ≥ 𝑁1.

Thus, we can write the following for 𝑛 ≥ 𝑁1:

∑𝑛𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

=
∑𝑁1𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

+
∑𝑛𝑘=𝑁1+1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

<
∑𝑁1𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

+ 𝜖2
∑𝑛𝑘=𝑁1+1 𝑦𝑘
∑𝑛𝑘=1 𝑦𝑘

≤
∑𝑁1𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

+ 𝜖2 .

(4.67)

Next, notice that ∑𝑛𝑘=1 𝑦𝑘 → ∞ as 𝑛 → ∞. In other words, for all 𝜖 > 0 there exists a 𝑁2 ≥ 1 such that
for all 𝑛 ≥ 𝑁2

𝑛

∑
𝑘=1

𝑦𝑘 >
2
𝜖

𝑁1
∑
𝑘=1

𝑥𝑘 ,

⇒ 1
∑𝑛𝑘=1 𝑦𝑘

< 𝜖
2

1
∑𝑁1𝑘=1 𝑥𝑘

.
(4.68)

Thus, we find for 𝑛 ≥max{𝑁1, 𝑁2},

∑𝑛𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

<
∑𝑁1𝑘=1 𝑥𝑘
∑𝑛𝑘=1 𝑦𝑘

+ 𝜖2 <
𝜖
2 +

𝜖
2 = 𝜖, (4.69)

as desired.

4.3.2. Law of large numbers

Aswasmentioned in the introduction of this section, we are unable to use the usual law of large numbers
to make statements about the behavior of the elephant random walk, due to the fact that each step is
dependent on the history of the elephant random walk. As it turns out, we can still show that the law of
large numbers applies to the elephant random walk, as is shown in Theorem 4.3.9:

Theorem 4.3.9. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝 ∈ [0, 1), 𝑞 ∈ [0, 1]. Then
𝑋𝑛 − 𝔼[𝑋𝑛]

𝑛 → 0 a.s. (4.70)

Remark 4.3.10. Note that Theorem 4.3.9 does not hold for the case 𝑝 = 1. However, in that case we
know that:

ℙ[𝑋𝑛 = 𝑛] = 𝑞, (4.71)
ℙ[𝑋𝑛 = 𝑛] = 1 − 𝑞. (4.72)

This result basically shows that, even though the steps or not independent and identically distributed,
we still expect the average of a large number of iterations of the elephant random walk to converge to
the expected value. To prove this theorem, we will make use of the following lemma:

Lemma 4.3.11 (Kronecker’s lemma). Suppose (𝑥𝑛)𝑛≥1 and (𝑏𝑛)𝑛≥1 are sequences of real numbers
such that ∑∞𝑛=1 𝑥𝑛 converges and 𝑏𝑛 is a monotone sequence of positive constants such that 𝑏𝑛 ↑ ∞.
Then,

1
𝑏𝑛

∞

∑
𝑘=1

𝑥𝑘𝑏𝑘 → 0. (4.73)
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Remark 4.3.12. Alternatively, Lemma 4.3.11 may be restated as follows by letting 𝑦𝑛 =
𝑥𝑛
𝑏𝑛
: Suppose

(𝑦𝑛)𝑛≥1 and (𝑏𝑛)𝑛≥1 are sequences of real numbers such that ∑∞𝑛=1
𝑦𝑛
𝑏𝑛

converges and 𝑏𝑛 is a monotone
sequence of positive constants such that 𝑏𝑛 ↑ ∞. Then,

1
𝑏𝑛

∞

∑
𝑘=1

𝑦𝑘 → 0. (4.74)

Furthermore, it is important to note that 𝑋𝑛−𝔼[𝑋𝑛]𝑛 = 𝑎𝑛
𝑛 𝑀𝑛 =

𝑎𝑛
𝑛 ∑

𝑛
𝑘=1 𝐷𝑘. Thus, the proof boils down to

showing that ∑∞𝑘=1 𝐷𝑘
𝑎𝑘
𝑘 converges and that 𝑛

𝑎𝑛
diverges, after which we may use the lemma to show

that it goes to 0.

Proof of Theorem 4.3.9. We first prove that 𝑛
𝑎𝑛

diverges, which is shown by proving that 𝑎𝑛𝑛 converges
to 0. To that end, note that

𝑎𝑛
𝑛 = 1

𝑛

𝑛−1

∏
𝑘=1

(1 + 𝛼𝑘 )

= 1
𝑛

𝑛−1

∏
𝑘=1

(𝑘 + 2𝑝 − 1𝑘 )

=
𝑛−1

∏
𝑘=1

(𝑘 + 2𝑝 − 1𝑘 + 1 )

= Γ(𝑛 + 2𝑝 − 1)
Γ(𝑛 + 1)

∼ Γ(𝑛)𝑛
2𝑝−1

Γ(𝑛)𝑛 = 𝑛2𝑝−2.

(4.75)

Note that in the third line, we use the fact that

𝑛
𝑛−1

∏
𝑘=1

𝑘 =
𝑛

∏
𝑘=1

𝑘 = 1 ⋅
𝑛

∏
𝑘=2

𝑘 =
𝑛−1

∏
𝑘=1
(𝑘 + 1). (4.76)

Since lim𝑛→∞ 𝑛2𝑝−2 = 0 for 𝑝 ∈ [0, 1), we find that lim𝑛→∞
𝑎𝑛
𝑛 = 0 as well. In addition, note that

0 ≤ 𝑘+2𝑝−1
𝑘+1 < 1, thus (𝑎𝑛𝑛 )𝑛≥1 is a monotone sequence.

The other part to prove is that ∑∞𝑘=1 𝐷𝑛
𝑎𝑛
𝑛 converges. To that end, we may use the following Theorem:

Theorem 4.3.13 (Hall and Heyde, 1980). Let {𝑆𝑛 = ∑
𝑛
𝑘=1 𝑋𝑖 , ℱ𝓃 , 𝑛 ≥ 1} be amartingale and let 𝑝 ∈ [1, 2],

then 𝑆𝑛 converges almost surely on the set {∑∞𝑖=1 𝔼(|𝑋𝑖|𝑝 | ℱ𝑖−1) < ∞}.

Thus, we can show that ∑∞𝑘=1 𝐷𝑘
𝑎𝑘
𝑘 converges if we can show that ∑∞𝑘=1 𝔼 [(𝐷𝑘

𝑎𝑘
𝑘 )

2
| ℱ𝑘−1] < ∞. Note

that we can use the bound for 𝐷𝑛 found earlier in Equation (4.60) to get the following:

|
∞

∑
𝑘=1

𝔼 [(𝐷𝑘
𝑎𝑘
𝑘 )

2
| ℱ𝑘−1]| ≤

∞

∑
𝑘=1

(𝑎𝑘𝑘 )
2
( 4𝑎𝑘

)
2
=

∞

∑
𝑘=1

16
𝑘2 < ∞. (4.77)
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Thus, we may use Lemma 4.3.11 to get that

𝑋𝑛 − 𝔼[𝑋𝑛]
𝑛 = 𝑎𝑛

𝑛 𝑀𝑛 =
𝑎𝑛
𝑛

𝑛

∑
𝑘=1

𝐷𝑘 → 0 a.s., (4.78)

as desired.

4.3.3. Central limit theorem

Aside from the law of large numbers, we are also interested in whether or not the central limit theorem
also holds for the elephant random walk. Similarly to the law of large numbers, the usual theorem used
to prove the central limit theorem for the normal random walk does not hold anymore, as the steps are
neither independent nor identically distributed.

As it turns out, we can prove the central limit using the martingale differences we defined in Section
4.3.1. However, the central limit theorem only holds for the diffusive and marginally superdiffusive
regimes, i.e. 𝑝 ≤ 3/4, and does not hold for the superdiffusive regime. The result for the diffusive and
marginally superdiffusive regimes is shown in Theorem 4.3.14:

Theorem 4.3.14. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝 ∈ [0, 34 ] , 𝑞 ∈ [0, 1]. Then,

𝑋𝑛 −
2𝑞−1
Γ(2𝑝)𝑛

2𝑝−1

√ 𝑛
3−4𝑝

𝑑→ 𝒩(0, 1), 𝑝 < 3
4 , (4.79)

𝑋𝑛 −
2𝑞−1
Γ( 32 )

𝑛
3
2

√𝑛 ln𝑛
𝑑→ 𝒩(0, 1), 𝑝 = 3

4 . (4.80)

Before we prove this theorem, we first look at the theorem that will be used in the proof, namely a
central limit theorem for martingale difference arrays based on the one presented in Hall and Heyde
(1980)3:

Theorem 4.3.15 (Hall and Heyde, 1980). Let {𝑆𝑛𝑖 , ℱ𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be a zero-mean, square
integrable martingale array with differences 𝑋𝑛𝑖. Suppose that for all 𝜖 > 0,

∀𝜖 > 0,
𝑛

∑
𝑖=1
𝔼[𝑋2𝑛𝑖𝕀[|𝑋𝑛𝑖 > 𝜖] | ℱ𝑛,𝑖−1]

𝑝→ 0, (4.81)

𝑛

∑
𝑖=1
𝔼[𝑋2𝑛𝑖 | ℱ𝑛,𝑖−1]

𝑝→ 1, (4.82)

then 𝑆𝑛𝑘𝑛 = ∑
𝑘𝑛
𝑖=1 𝑋𝑛𝑖

𝑝→ 𝒩(0, 1).

This theorem gives us a way to prove that the probability distribution converges to a normal distribution
if the two conditions are satisfied, which are the Lindenberg condition (4.81) and a condition on the
conditional variance of the martingale (4.82).
3A general version of this theorem can be found in the appendix (Theorem A.5.3).
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To that end, the proof will consist of checking if these two conditions hold for the elephant random walk.
Before we do so, we will first look at the function (𝑠𝑛)𝑛≥1, which is defined as follows:

𝑠21 ≔ 4𝑞(1 − 𝑞), (4.83)

𝑠2𝑛 ≔ 4𝑞(1 − 𝑞) +
𝑛

∑
𝑘=2

1
𝑎2𝑘
. (4.84)

The reason we look at 𝑠𝑛, is so that we can combine the two statements from Theorem 4.3.14 into one
formula. To that end, note the following:

𝑠2𝑛 = 4𝑞(1 − 𝑞) +
𝑛

∑
𝑘=2

1
𝑎2𝑘

∼ 4𝑞(1 − 𝑞) +
𝑛

∑
𝑘=2

(Γ(2𝑝)𝑛2𝑝−1)
2

∼ Γ(2𝑝)2∫
𝑛

0
𝑥2−4𝑝 𝑑𝑥

= {Γ(2𝑝)
2 𝑛3−4𝑝
3−4𝑝 𝑝 < 3/4,

Γ(2𝑝)2 log𝑛 𝑝 = 3/4.

(4.85)

Here, we first use the fact that 𝑎𝑛 ∼ 𝑛2𝑝−1/Γ(2𝑝), after which we approximate the finite sum with an
integral, which is possible as ∑𝑛𝑘=2

1
𝑎2𝑛
→ ∞. Thus, we find

𝑎𝑛𝑠𝑛 ∼ {
√ 𝑛
(3−4𝑝) 𝑝 < 3/4,

√𝑛 log(𝑛) 𝑝 = 3/4.
(4.86)

Thus, we may look at following expression to prove Theorem 4.3.14:

𝑋𝑛 − 𝔼[𝑋𝑛]
𝑎𝑛𝑠𝑛

= 𝑀𝑛
𝑠𝑛

=
∑𝑛𝑘=1 𝐷𝑘
𝑠𝑛

. (4.87)

Proof of Theorem 4.3.14. We will first look at the first condition of Theorem 4.3.15. To that end, define
𝐷𝑛𝑗 ≔

𝐷𝑗
𝑠𝑛

for 1 ≤ 𝑗 ≤ 𝑛. We need to show that for all 𝜖 > 0,

𝑛

∑
𝑗=1
𝔼[𝐷2𝑛𝑗𝕀(|𝐷𝑛𝑗| > 𝜖) | ℱ𝑛−1] → 0 a.s. (4.88)

as 𝑛 → ∞, where 𝕀 denotes the indicator function. Recall that 𝑎1 = 1, 𝑎𝑛 = ∏
𝑛
𝑘=1(1 + 𝛼/𝑘). We split

Equation (4.88) into two cases based on the value of 𝑝:
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• If 1/2 ≤ 𝑝 ≤ 3/4, then we have that 𝑎𝑛 ≥ 1 for 𝑛 ≥ 1 and 𝑠𝑛 → ∞ as 𝑛 → ∞ by Lemma 4.3.5.
Thus, using the bound found in Equation (4.60) we get that:

|𝐷𝑛𝑗| ≤
4
𝑎𝑗𝑠𝑛

≤ 4
𝑠𝑛
. (4.89)

Thus, given an epsilon 𝜖 > 0 we can find a large enough n such that 𝐷𝑛𝑗 is smaller than 𝜖 for all
1 ≤ 𝑗 ≤ 𝑛.

• If 𝑝 < 1/2, then we notice that 𝑎𝑛 is a decreasing sequence, and thus 𝑎−1𝑛 is an increasing
sequence. If we combine this with the fact that 𝑎𝑛𝑠𝑛 → ∞ for 𝑛 → ∞, we get the following
estimation:

|𝐷𝑛𝑗| ≤
4
𝑎𝑗𝑠𝑛

≤ 4
𝑎𝑛𝑠𝑛

. (4.90)

Similar to the previous case, for a given epsilon 𝜖 > 0 we can find a large enough n such that 𝐷𝑛𝑗
is smaller than 𝜖 for all 1 ≤ 𝑗 ≤ 𝑛.

In both cases, we find that 𝕀[𝐷𝑛𝑗 > 𝜖] = 0 for all 0 ≤ 𝑗 ≤ 𝑛 given we choose a n large enough. Thus,
we find that Equation (4.88) holds.

Next, we check the second condition of Theorem 4.3.14, that is

𝑛

∑
𝑘=1

𝔼[𝐷2𝑛𝑘 | ℱ𝑘−1] =
1
𝑠2𝑛

𝑛

∑
𝑘=1

𝔼[𝐷2𝑘 | ℱ𝑘−1] → 1 a.s. (4.91)

If we prove that Equation (4.91) holds, then we have proven Theorem 4.3.14. Thus, we will need to
look at the value of 𝔼[𝐷2𝑘 | ℱ𝑘−1]. To that end, we use Equation (4.59) to get the following for 𝑘 ≥ 2:

𝐷2𝑘 = (
𝜂𝑘 − 𝔼[𝜂𝑘]

𝑎𝑘
− 𝑋𝑘−1 − 𝔼[𝑋𝑘−1]𝑘 − 1

2𝑝 − 1
𝑎𝑘

)
2

= 1
𝑎2𝑘
((𝜂𝑘 − 𝔼[𝜂𝑘]) −

(2𝑝 − 1)(𝑋𝑘−1 − 𝔼[𝑋𝑘−1])
𝑘 − 1 )

2

= 1
𝑎2𝑘
((𝜂𝑘 − 𝔼[𝜂𝑘])2 − 2(𝜂𝑘 − 𝔼[𝜂𝑘])

(2𝑝 − 1)(𝑋𝑘−1 − 𝔼[𝑋𝑘−1])
𝑘 − 1 + ((2𝑝 − 1)(𝑋𝑘−1 − 𝔼[𝑋𝑘−1])𝑘 − 1 )

2
)

= 1
𝑎2𝑘
(1 − 2𝜂𝑘𝔼[𝜂𝑘] + 𝔼[𝜂𝑘]2) +

1
𝑎2𝑘
((2𝑝 − 1)2 (𝑋𝑘−1 − 𝔼[𝑋𝑘−1]𝑘 − 1 )

2
)

− 2
𝑎2𝑘
((𝜂𝑘 − 𝔼[𝜂𝑘])(2𝑝 − 1)

𝑋𝑘−1 − 𝔼[𝑋𝑘−1]
𝑘 − 1 ) .

(4.92)

Now, we may use the law of large numbers for the elephant random walk. Recall that the law of large
numbers stated that (𝑋𝑛 − 𝔼[𝑋𝑛])/𝑛 → 0 almost surely. As a result, we find that

1
𝑎2𝑘
((2𝑝 − 1)2 (𝑋𝑘−1 − 𝔼[𝑋𝑘−1]𝑘 − 1 )

2
) = 𝑜 ( 1𝑎2𝑘

) a.s. (4.93)

2
𝑎2𝑘
((𝜂𝑘 − 𝔼[𝜂𝑘])(2𝑝 − 1)

𝑋𝑘−1𝔼[𝑋𝑘 − 1]
𝑘 − 1 ) = 𝑜 ( 1𝑎2𝑘

) a.s. (4.94)
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It remains to find the value of 1
𝑎2𝑗
𝔼[1 − 2𝜂𝑘𝔼[𝜂𝑘] + 𝔼[𝜂𝑘]2 | ℱ𝑘−1]. To that end, we use Theorem 4.2.4

along with the law of large numbers to get the following:

1
𝑎2𝑘
𝔼[1 − 2𝜂𝑘𝔼[𝜂𝑘] + 𝔼[𝜂𝑘]2 | ℱ𝑘−1] =

1
𝑎2𝑘
+ 1
𝑎2𝑘
(((2𝑝 − 1)(2𝑞 − 1)Γ(2𝑝) (𝑘 − 1)2𝑝−2)

2
)

− 2
𝑎2𝑘
(2(2𝑝 − 1)𝑋𝑘−1𝑘 − 1

(2𝑝 − 1)(2𝑞 − 1)
Γ(2𝑝) (𝑘 − 1)2𝑝−2)

= 1
𝑎2𝑘
+ 𝑜 ( 1𝑎2𝑘

) ,

(4.95)

where the second and third term are both 𝑜 ( 1𝑎2𝑘 ) due to (𝑘 − 1)2𝑝−2 converging to zero for 𝑝 ≤ 3/4.
Thus, we get for 𝑘 ≥ 2, we get

𝔼[𝐷2𝑘 | ℱ𝑘−1] =
1
𝑎2𝑘
+ 𝑜 ( 1𝑎2𝑘

) . (4.96)

For 𝑘 = 1, we calculate 𝔼[𝐷21 | ℱ0] explicitly:

𝔼[𝐷21 | ℱ0] = 𝔼 [(
𝜂1 − 𝔼[𝜂1]

𝑎1
)
2
| ℱ0]

= 1
𝑎21
𝔼[𝜂21 − 2𝜂1𝔼[𝜂1] + 𝔼[𝜂1]2 | ℱ0]

= 𝔼[𝜂21 | ℱ0] − 2(2𝑞 − 1)𝔼[𝜂1 | ℱ0]] + (2𝑞 − 1)2
= 1 − 2(2𝑞 − 1)2 + (2𝑞 − 1)2
= 1 − (4𝑞2 − 4𝑞 + 1) = 4𝑞(1 − 𝑞).

(4.97)

Lastly, it is important to note that we found that ∑𝑛𝑘=1
1
𝑎2𝑘

→ ∞ in Lemma 4.3.5. Thus, we can use
Proprosition 4.3.8 to get

1
𝑠2𝑛

𝑛

∑
𝑘=2

𝔼[𝐷2𝑘 | ℱ𝑘−1] =
4𝑞(1 − 𝑞) + ∑𝑛𝑘=1 (

1
𝑎2𝑘
+ 𝑜 ( 1

𝑎2𝑛
))

4𝑞(1 − 𝑞) + ∑𝑛𝑘=2
1
𝑎2𝑘

(4.98)

= 1 +
∑𝑛𝑘=2 𝑜 (

1
𝑎2𝑛
)

4𝑞(1 − 𝑞) + ∑𝑛𝑘=2
1
𝑎2𝑘

→ 1 a.s. (4.99)

Thus, we may use Theorem 4.3.15 to conclude that the central limit theorem holds for the elephant
random walk for 𝑝 ≤ 3/4, as desired.
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Unlike the diffusive and marginally superdiffusive regime, we find that a different result holds for the
superdiffusive regime. In Figure 4.3, a sampling of 10 000 random walks of length 1000 are shown
for 𝑝 = 0.9. As can be seen in the figure, the distribution of the sampling does not follow a normal
distribution. Rather, the distribution has two peaks, the size of which is influenced by the value of 𝑞.

Figure 4.3: Probability distribution of the elephant random walk for 𝑝 = 0.9 and different values of 𝑞.

While it turns out in theory that the elephant random walk does indeed not converge to a normal distri-
bution, the elephant random walk does converge to a non-degenerate distribution for the superdiffusive
regime:

Theorem 4.3.16. Let (𝑋𝑛)𝑛≥1 be an elephant random walk with 𝑝 ∈ (34 , 1] , 𝑞 ∈ [0, 1]. Then

𝑋𝑛
𝑛2𝑝−1Γ(2𝑝)−1 − (2𝑞 − 1)

𝑎.𝑠.→ 𝑀, (4.100)

where 𝑀 is a non-degenerate random variable with zero mean, but 𝑀 is not normally distributed.

The proof of Theorem 4.3.16 will consist of three parts:

• Showing that 𝑀𝑛 converges almost surely to a distribution 𝑀,

• Showing that𝑀 is non-degenerate and zero-mean, which means showing that 𝑀 has a non-zero
variance and 𝔼[𝑀] = 0,

• Showing that 𝑀 is not a normal distribution. To show this, we will use the fact that a nor-

mal distribution has skewedness zero and excess kurtosis zero, i.e. 𝔼 [(𝑀−𝔼[𝑀]𝜎 )
3
] = 0 and

𝔼 [(𝑀−𝔼[𝑀]𝜎 )
4
] = 0. For this, we will use the results presented in the article by Paraan and Es-

guerra (2006).
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To show that 𝑀𝑛 converges almost surely to 𝑀, we will use the following definition and lemma, which
give us a way to check for almost sure convergence for martingales:

Definition 4.3.17 (ℒ𝑝-spaces). For 1 ≤ 𝑝 < ∞, the random variable 𝑋 is in ℒ𝑝 if:

||𝑋||𝑝 = 𝔼[|𝑋𝑝|]
1
𝑝 < ∞. (4.101)

Lemma 4.3.18 (Williams, 1991). Let 𝑀 be a martingale such that 𝑀𝑛 ∈ ℒ2 for all 𝑛 ≥ 1. Then, M is
bounded in ℒ2 if and only if ∑∞𝑘=1 𝔼[(𝑀𝑘 − 𝑀𝑘−1)2] < ∞. If this is the case, then 𝑀𝑛 → 𝑀 in ℒ2 and
almost surely.

Proof of 4.3.16. To make use of Lemma 4.3.18, we will first show that 𝑀𝑛 is indeed in ℒ2 for all 𝑛 ≥ 1.
Thus, note that

||𝑀𝑛||2 = 𝔼 [|
𝑋𝑛 − 𝔼[𝑋𝑛]

𝑎𝑛
|
2
]

1
2

= 𝔼 [|𝑋𝑛 − 𝔼[𝑋𝑛]|
2

|𝑎𝑛|2
]
1
2

≤ 𝔼 [ 2𝑛
2

|𝑎𝑛|2
]
1
2
< ∞,

(4.102)

thus 𝑀𝑛 ∈ ℒ2. For almost sure convergence, note that Lemma 4.3.18 states that it is sufficient to
check if ∑∞𝑘=1 𝔼[𝐷2𝑘 ] < ∞. To that end, note that in lemma 4.3.5 we found that ∑∞𝑘=1

1
𝑎2𝑘
< ∞ for 𝑝 > 3

4 .

Combining this with the bound |𝐷𝑛| <
4
𝑎𝑛

we found earlier in Equation 4.60, we find:

lim
𝑛→∞

𝑛

∑
𝑘=1

𝔼[𝐷2𝑘 ] < lim
𝑛→∞

𝑛

∑
𝑘=1

16
𝑎2𝑘
< ∞. (4.103)

Since the mean sum of squares of martingale differences is bounded, we may use Lemma 4.3.18 to
conclude that 𝑀𝑛 → 𝑀 almost surely. To show 𝑀 is a non-degenerate zero-mean random variable,
note that

𝔼[𝑀𝑛] = 𝔼 [
𝑋𝑛 − 𝔼[𝑋𝑛]

𝑎𝑛
] = 𝔼[𝑋𝑛] − 𝔼[𝑋𝑛]

𝔼[𝑎𝑛]
= 0. (4.104)

Thus, using the ℒ2-convergence of 𝑀𝑛 and Jensen’s inequality (Theorem A.1.4), we get that

|𝔼[𝑀]| = |𝔼[𝑀 −𝑀𝑛]|
≤ 𝔼[|𝑀 −𝑀𝑛|]

≤ 𝔼[|𝑀 −𝑀𝑛|2]
1
2 → 0.

(4.105)

For the variance, we see that
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Var(𝑀) = lim
𝑛→∞

Var(𝑀𝑛)

= lim
𝑛→∞

Var(
𝑛

∑
𝑘=1

𝐷𝑘)

= lim
𝑛→∞

𝑛

∑
𝑘=1

(Var(𝐷𝑘) + 2 ∑
1≤𝑗<𝑘≤𝑛

cov(𝐷𝑗 , 𝐷𝑘))

= lim
𝑛→∞

(
𝑛

∑
𝑘=1
(𝔼[𝐷2𝑘 ] − (𝔼[𝐷𝑘])2) + 0)

= lim
𝑛→∞

𝑛

∑
𝑘=1

𝔼[𝐷2𝑘 ] < ∞.

(4.106)

Here, we use the fact that 𝔼[𝐷𝑘] = 𝔼[𝑀𝑘 − 𝑀𝑘−1] = 0. The fact that the covariance for 𝐷𝑗 and 𝐷𝑘 for
1 ≤ 𝑗 < 𝑘 ≤ 𝑛 is equal to zero follows by using the law of total expectation to condition on the natural
filter ℱ𝑘−1:

cov(𝐷𝑗 , 𝐷𝑘) = cov(𝑀𝑗 −𝑀𝑗−1, 𝑀𝑘 −𝑀𝑘−1)
= 𝔼[(𝑀𝑗 −𝑀𝑗−1)(𝑀𝑘 −𝑀𝑘−1)]
= 𝔼[𝔼[(𝑀𝑗 −𝑀𝑗−1)(𝑀𝑘 −𝑀𝑘−1)|ℱ𝑘−1]]
= 𝔼[(𝑀𝑗 −𝑀𝑗−1)(𝔼[𝑀𝑘|ℱ𝑘−1] − 𝑀𝑘−1)]
= 𝔼[(𝑀𝑗 −𝑀𝑗−1)(𝑀𝑘−1 −𝑀𝑘−1)] = 0,

(4.107)

where we note that the last line of Equation (4.107) follows from the definition of the martingale. We
have now shown that𝑀 is a non-degenerate zero-mean random variable, but it remains to show that𝑀
does not have a normal random distribution. To that end, we look at the kurtosis and skewedness of M.
In the article from Paraan and Esguerra, 2006, the asymptotic values of the kurtosis and skewedness
of M has been explicitly calculated for 𝛼 > 1

2 and 𝛽 ≔ 2𝑞 − 1, which is shown in Figure 4.4. As can be
seen from Figure 4.4, there exists combinations of 𝛼 and 𝛽 such that either the kurtosis or skewedness
of𝑀 is 0, but there are no combinations of 𝛼 and 𝛽 such that both the kurtosis and skewedness of𝑀 is
0. As a result, we find that 𝑀 cannot have a normal distribution for 𝑝 > 3

4 , which completes the proof.

Figure 4.4: Asymptotic values of the skewness (left) and kurtosis (right) of the elephant random walk (Paraan and Esguerra,
2006).
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4.4. Elephant gambler’s ruin

In Chapter 3, we have seen the gambler’s ruin problem for the random walk, and have seen and proved
results for the gambler’s ruin, which were the chance for player A to win and the expected amount of
steps until either player won. In this section, we will extend the gambler’s ruin to the elephant random
walk, and we will study the effect of the three parameters, N, p and q, on 𝜈(𝑎) and 𝑒(𝑎), where we recall
that we denote the chance of player A winning given a starting capital a with 𝜈(𝑎) and the expected
number of steps until the random walk gets absorbed at either 0 or N given that player A starts with
starting capital a with 𝑒(𝑎).

As we have seen in Section 3.4, we are able to determine the chance for player A to win and the
expected amount of steps until either player won using difference equations for the random walk. How-
ever, this approach cannot be used for the elephant random walk due to the dependence on the amount
of steps that have already been taken: the resulting difference equation involves both the amount of
steps taken and the place of the elephant random walk at a certain time. As a result, we get a difference
equation that we are unable to solve due to the presence of both time and place.

It is worth noting that we are also able to prove the theorems of Section 3.4.1 with martingales. While
we will not go into detail about this approach, the main idea behind the proof is to transform the random
walk into two martingales, with one of them only depending on the location of the random walk, after
which both 𝜈(𝑎) and 𝑒(𝑎) follows. This approach can also not be used for the elephant random walk
due to being unable to find a martingale which does not depend on the amount of steps taken.

Thus, we look at simulations of the gambler’s ruin for the elephant random walk. To that end, we look
at 10 000 simulations for the elephant random walk and look at the sample mean success rate, that is
the average win rate for player A, and the sample mean amount of steps needed until either player A
or B wins. Furthermore, we look at the influence of the three parameters, namely the total capital 𝑁, 𝑝
and 𝑞, on 𝜈(𝑎) and 𝑒(𝑎).

4.4.1. Initial parameter 𝑞 and memory parameter 𝑝

We first look at the influence of 𝑝 and 𝑞 on 𝜈(𝑎), where we fix 𝑁 = 50. It turns out we can split the
behavior of 𝜈(𝑎) into three cases, namely 𝑝 < 1/2, 𝑝 = 1/2 and 𝑝 > 1/2. To that end, we look at the
case 𝑝 = 1/2 first. In Figure 4.5, the gambler’s ruin is simulated for 𝑝 = 1/2 and varying values of 𝑞. As
can be seen from the figure, 𝜈(𝑎) increases linearly as 𝑎 increases, with the value of 𝑞 having minimal
effect on 𝜈(𝑎). This is to be expected, as the elephant random walk behaves like a fair random walk if
𝑝 = 1/2, as ℙ[𝜂𝑘 = 1] = ℙ[𝜂𝑘 = −1] = 1/2 regardless of the previous step chosen, with the value of 𝑞
only affecting the first step.

When looking at the expected number of steps for 𝑝 = 1/2, we get Figure 4.6. Due to the fact that the
elephant random walk behaves like a normal random walk with 𝑝 = 1/2, the expected number of steps
is similar to that of the normal random walk with 𝑝 = 1/2, with the value of 𝑞 having minimal influence
due to only having an affect on the first step.

Next, we look at the case 𝑝 < 1/2. Figure 4.7 illustrates 𝜈(𝑎) for 𝑝 = 0, 𝑝 = 1/8, 𝑝 = 1/4 and 𝑝 = 3/8.
As can be seen in Figure 4.7, the behavior of 𝜈(𝑎) turns into a sigmoid-like shape as p decreases. Also,
the influence of q on 𝜈(𝑎) is nihil. Intuitively, this result can be explained by the fact that it is harder for
the elephant random walk to reach the further point between 0 and 𝑁, as the elephant random walk
behaves like a reformer and thus stays near its starting location 𝑎 when looking at 𝔼[𝑋𝑛] in combination
with the law of large numbers. The minimal effect of 𝑞 follows from the behavior of 𝔼[𝑋𝑛] not depending
on 𝑞 for 𝑝 < 1/2. In Figure 4.8, we see the expected number of steps for 𝑝 < 1/2. As can be seen in the
figure, the general behavior of 𝑒(𝑎) resembles a normal distribution as 𝑝 decreases, with the sample
mean number of steps being maximal at 𝑎 = 25, although a decrease in the value of 𝑝 does make the
maximum sample mean number of steps higher. This can be explained by the elephant random walk
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Figure 4.5: Chance of player A to win for 𝑝 = 0.5. Figure 4.6: Expected number of steps of the elephant gam-
bler’s ruin for 𝑝 = 0.5

having a higher chance to stay near its initial position as 𝑝 decreases, and as a result will take longer
to reach either 0 or 𝑁.

Lastly, we look at the case 𝑝 > 1/2. In Figure 4.9, we see 𝜈(𝑎) for 𝑝 = 5/8, 𝑝 = 3/4, 𝑝 = 7/8
and 𝑝 = 1. In the figure, we can see that the increase of 𝜈(𝑎) as 𝑎 increases becomes slower as 𝑝
increases, with 𝑝 = 1 resulting in 𝜈(𝑎) being a constant value. Furthermore, 𝑞 has a larger effect as
the value of 𝑝 increases, with an increase in 𝑞 increasing 𝑒(𝑎) for all 𝑎. Intuitively, we expect that the
elephant random walk has a higher chance to go to the direction of the first step as 𝑝 increases due to
the elephant random walk choosing the same direction of a step from its history more often, and as a
result we expect the behavior of 𝜈(𝑎) to depend less on the value of 𝑝 and more on the value of 𝑞. In
Figure 4.10, we see the expected number of steps for 𝑝 > 1/2. As can be seen from the figure, the
behavior for 𝑝 = 1 is linear, with the values 1/2 < 𝑝 < 1 being a combination of the cases 𝑝 = 1/2
and 𝑝 = 1. Intuitively, we expect for 𝑝 = 1 that the elephant random walk has 𝑞 chance to go to 𝑁 and
1− 𝑞 chance to go to 0, and we can look at the cases between 𝑝 = 1/2 and 𝑝 = 1 as a combination of
the elephant random walk with 𝑝 = 1/2 and 𝑝 = 1, with values of 𝑝 closer to 1/2 behaving more like
the elephant random walk with 𝑝 = 1/2, and values of 𝑝 closer to 1 behaving more like the elephant
random walk with 𝑝 = 1.

4.4.2. Total capital 𝑁

Lastly, we will look at the influence of the total capital 𝑁 on both 𝜈(𝑎) and 𝑒(𝑎). In particular, we will
look at the cases where 𝑁 = 25, 𝑁 = 50 and 𝑁 = 75, where 𝑁 = 50 will serve as the reference point as
we have already discussed the behavior for the case 𝑁 = 50 in the previous subsection. It is important
to note that in both figures, namely Figure 4.11 and Figure 4.12, 𝑞 = 0.5 has been chosen.

In Figure 4.11, 𝜈(𝑎) is shown for different values of 𝑝 and 𝑁. When we look at the influence of 𝑁 on
𝜈(𝑎), we see that in all cases 𝑁 does not affect 𝜈(𝑎). This suggests that the chance for player A to win
depends on the percentage of the total capital that player A has. This result is unlike the gambler’s ruin
for the random walk, where we saw that an increase in N made the behavior of 𝜈(𝑎) more extreme.
Unlike for 𝜈(𝑎), 𝑁 does have an effect on 𝑒(𝑎), as can be seen in Figure 4.12, which shows 𝑒(𝑎) for
different values of 𝑝 and 𝑁. As can be seen in Figure 4.12, an increase in the number of steps causes
the expected number of steps to increase as the total capital increases. It is of note that 𝑝 affects this:
the expected number of steps for 𝑝 = 0 shows that 𝑒(𝑎) grows quadratically as 𝑁 increases, whereas
𝑝 = 1 shows linear growth in 𝑒(𝑎) as 𝑁 increases. This is similar to the gambler’s ruin for the random
walk, where we recall that an increase in total capital 𝑁 had a bigger effect on the expected number of
steps if 𝑝 was closer to 1/2.
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Figure 4.7: Chance of player A to win for various values of 𝑝 < 0.5.

Figure 4.8: Expected number of steps of the elephant gambler’s ruin for various values of 𝑝 < 0.5 and 𝑞 = 0.5. Note that the
scale of the y-axis changes as 𝑝 changes, with lower values of 𝑝 resulting in a higher maximal expected number of steps.
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Figure 4.9: Chance of player A to win for various values of 𝑝 > 0.5 and 𝑞 = 0.5.

Figure 4.10: Expected number of steps of the elephant gambler’s ruin for various values of 𝑝 > 0.5. Note that the scale of the
y-axis changes as 𝑝 changes.
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Figure 4.11: Chance of player A to win for various total capital 𝑁

Figure 4.12: Expected number of steps of the elephant gambler’s ruin for various total capital 𝑁. Note that the scale of the y-axis
changes as 𝑝 changes.





5
Conclusion

In this thesis, we explored the differences between the random walk and the elephant random walk,
with a focus on the gambler’s ruin.

All in all, we have found that there are several differences when comparing the normal random walk
and elephant random walk. The most obvious difference is in how each step is taken: the random walk
consists of steps where each step is dependent on the parameter 𝑝. For the elephant random walk,
the first step depends on the initial parameter 𝑞, whereas later steps are dependent on earlier steps
taken in the walk, where the value of the step is dependent on the memory parameter 𝑝.

When looking at the expected value, we found that the behavior of the expected value of the elephant
random walk can be split into two cases: for 𝑝 < 1/2 the expected value converges to zero, and for
𝑝 > 1/2 the expected value diverges to infinity with the direction of divergence being dependent on the
initial parameter 𝑞.

Unlike the random walk, which is a diffusion process regardless of the chosen value of 𝑝, the elephant
random walk shows three different diffusion regimes based on the value of 𝑝: a diffusive regime, a
superdiffusive regime and a marginally superdiffusive regime. The critical point at which the elephant
random walk changes regimes is based off the memory parameter 𝑝. Interestingly, the critical point is
not located at 𝑝 = 1/2, but rather at 𝑝 = 3/4: values of 𝑝 < 3/4 result in a diffusive process, values of
𝑝 > 3/4 result in a superdiffusive process and a marginally superdiffusive process occurs at 𝑝 = 3/4.

When looking at the long term behavior of the elephant random walk, there are several similarities and
differences between the normal random walk and elephant random walk. We find that the law of large
numbers holds for both random walks. Unlike the law of large numbers, the central limit theorem can
only be applied for certain values for the elephant random walk: for the normal random walk the central
limit theorem almost always holds, but for the elephant random walk the central limit theorem only holds
for the diffusive and marginally superdiffusive regime. For the superdiffusive regime, one finds that the
probability distribution does converge to a non-degenerate distribution, but that the distribution is not a
normal distribution.

Lastly, we looked at the elephant random walk variant of the gambler’s ruin: when looking at the chance
of player A to win given starting capital 𝑎, 𝜈(𝑎), and the expected number of steps until either player A
or player B wins given that player A has starting capital 𝑎, 𝑒(𝑎), we see that 𝜈(𝑎) behaves linearly for
𝑝 = 1/2 exponentially for the random walk for 𝑝 ≠ 1/2, and that this exponential behavior becomes
more pronounced as the total capital 𝑁 increases. In addition to this, we find that both the location and
value of the maximal expected number of steps 𝑒(𝑎) are influenced by 𝑝 and 𝑁.

47
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This is in contrast to the gambler’s ruin for the elephant random walk. Firstly, 𝜈(𝑎) behaves differently
depending on the value of 𝑝: for 𝑝 = 1/2, we obtain the normal random walk, and as a result we find
similar results as the normal random walk with 𝑝 = 1/2. For 𝑝 < 1/2, 𝜈(𝑎) turns into a sigmoid function-
like shape as 𝑝 decreases, with 𝑞 having minimal influence on 𝜈(𝑎). For 𝑝 > 1/2, we find the effect of 𝑞
on 𝜈(𝑎) increases as 𝑝 increases, with 𝜈(𝑎) being solely dependent on 𝑞 when 𝑝 = 1. Looking at 𝑒(𝑎),
we once again find similar results for 𝑝 = 1/2 as the normal random walk with 𝑝 = 1/2. For 𝑝 < 1/2,
we find that the the behavior of 𝑒(𝑎) turns into a shape similar to the normal distribution, with 𝑞 having
minimal affect on the shape. In comparison, for 𝑝 = 1 we find that the 𝑒(𝑎) behaves linearly, with 𝑞
being the only factor in the shape of 𝑒(𝑎), and the cases 1/2 < 𝑝 < 1 behaving like a combination of
the cases 𝑝 = 1/2 and 𝑝 = 1. Lastly, we found that 𝑁 has no significant effect on 𝜈(𝑎), and that 𝑁 only
influences the maximal value of 𝑒(𝑎) and does not affect the general behavior of 𝑒(𝑎).



6
Discussion

As can be seen in Section 3.4, it was not possible to derive a explicit formula for 𝜈(𝑎) and 𝑒(𝑎) with the
two proof methods that were presented, namely the difference equation approach and the martingale
approach. As a result, we instead looked at simulations of the gambler’s ruin, after which we looked at
the sample mean values of 𝜈(𝑎) and 𝑒(𝑎). However, we only looked at a select few combinations of
values of 𝑝, 𝑞 and 𝑁 due to simulation times.

A future study could look at other combinations of 𝑝, 𝑞 and 𝑁 to see whether or not interesting behavior
emerges for intermediate values for the elephant gambler’s ruin. Even more of note would be to look
at a possible way to derive an explicit formula for the chance of player A to win 𝜈(𝑎) and the expected
number of steps 𝑒(𝑎), which could possibly involve a numerical analysis or transforming the elephant
random walk into a partial differential equation with boundaries.

Another possible extension would be to look at the exact distribution of 𝑀 from Theorem 4.3.16, which
was about the convergence to a non-normal distribution of the elephant random walk for the superdif-
fusive regime. As we saw in Theorem 4.3.16, the probability distribution does converge, but to a
non-normal non-degenerate distribution. As we saw from Figure 4.3, the probability distribution seems
to be a distribution with two peaks, of which the shape depends on 𝑝 and 𝑞. As a result, one may be
interested in whether or not we can describe this probability distribution in terms of 𝑝 and 𝑞 using an
already known distribution.
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A
Used theorems

Below, one will find a collection of the theory, asymptotics and other formulas used in Chapters 3 and
4.

A.1. Asymptotics & funtions

Definition A.1.1. We write 𝑎𝑛 ∼ 𝑏𝑛 if

lim
𝑛→∞

𝑎𝑛
𝑏𝑛
= 1. (A.1)

Proposition A.1.2. For 𝑥 → +∞, it holds that

Γ(𝑥 + 𝛼) ∼ Γ(𝑥) 𝑥𝛼 . (A.2)

Lemma A.1.3 (Kronecker’s lemma). Suppose (𝑥𝑛)𝑛≥1 and (𝑏𝑛)𝑛≥1 are sequences of real numbers
such that ∑∞𝑛=1 𝑥𝑛 converges and 𝑏𝑛 is a monotone sequence of positive constants such that 𝑏𝑛 ↑ ∞.
Then

1
𝑏𝑛

∞

∑
𝑘=1

𝑥𝑛𝑏𝑛 → 0. (A.3)

Theorem A.1.4 (Jensen’s inequality). Let (Ω, ℱ, 𝑃) be a probability space, and 𝑋 a random variable on
that probability space. If g is a convex function, then

𝑔(𝔼[𝑋]) ≤ 𝔼[𝑔(𝑋)]. (A.4)

Definition A.1.5 (Indicator functions). Given a constant 𝜖 > 0, the indicator function of x is the
function

𝕀[𝑥 > 𝜖] = {0 𝑥 ≤ 𝜖,
1 𝑥 > 𝜖. (A.5)

Definition A.1.6 (Little-o notation). A sequence (𝑥𝑛)𝑛≥1 is 𝑜(𝑦𝑛) if for every 𝜖 > 0 there exists a 𝑁 ≥ 1
such that:

|𝑥𝑛| ≤ 𝜖 𝑦𝑛 for 𝑛 ≥ 𝑁. (A.6)
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A.2. Probability & expectation

Theorem A.2.1 (Law of total probability). Let (Ω, ℱ, 𝑃) be a probability space with 𝐴 ∈ ℱ. If {𝐵𝑛 ∶ 𝑛 ≥
1} ∈ ℱ is a partition of Ω with ℙ[𝐵𝑘] > 0 for all k, then

ℙ[𝐴] =
𝑛

∑
𝑘=1

ℙ[𝐴 | 𝐵𝑘]ℙ[𝐵𝑘]. (A.7)

Theorem A.2.2 (Law of total expectation). Let (Ω, ℱ, 𝑃) be a probability space. If 𝑋 and 𝑌 are random
variables on the probability space, then

𝔼[𝑋] = 𝔼[𝔼[𝑋 | 𝑌]]. (A.8)

Theorem A.2.3 (Strong law of large numbers). Let 𝑋, 𝑋1, 𝑋2, … be independent and identically dis-
tributed random variables with finite mean and finite variance, then

𝑆𝑛 − 𝑛𝔼[𝑋]
𝑛 → 0 a.s. (A.9)

as 𝑛 → ∞, where 𝑆𝑛 ≔ ∑𝑛𝑘=1 𝑋𝑘.

Theorem A.2.4 (Central limit theorem). Let 𝑋, 𝑋1, 𝑋2, … be independent and identically distributed ran-
dom variables with finite mean and non-zero variance. Then,

𝑆𝑛 − 𝑛𝔼[𝑋]
𝜎√𝑛

𝑑→ 𝒩(0, 1) (A.10)

as 𝑛 → ∞, where 𝑆𝑛 ≔ ∑𝑛𝑘=1 𝑋𝑘.

A.3. ℒ𝑝 spaces
Definition A.3.1. For 1 ≤ 𝑝 < ∞, the random variable 𝑋 is in ℒ𝑝 if

||𝑋||𝑝 = 𝔼[|𝑋𝑝|]
1
𝑝 < ∞. (A.11)

A.4. Filtrations & martingales

Definition A.4.1 (Filtration). Let (Ω, ℱ) be a measurable space. Then {ℱ𝑡}𝑡≥0 with ℱ𝑡 a sub-𝜎-algebra
of ℱ is called a filtration if ℱ𝑖 ⊆ ℱ𝑗 for all 𝑖 ≤ 𝑗.

Remark A.4.2. Given a measurable space (Ω, ℱ) and a sequence of real-valued random variables
(𝑋𝑡)𝑡≥0, the natural filtration (ℱ𝑡)𝑡≥0 is defined by

ℱ𝓉 = 𝜎(𝑋0, 𝑋1, … , 𝑋𝑡) 𝑡 ≥ 0, (A.12)

where 𝜎(𝑋0, 𝑋1, … , 𝑋𝑡) is the 𝜎-algebra generated by (𝑋0, 𝑋1, … , 𝑋𝑡).

Definition A.4.3 (Martingale). Let (Ω, ℱ, ℙ) be a probability space. A martingale with respect to a
filtration {ℱ𝓉}𝑡≥0 is a discrete-time stochastic process {𝑋𝑡}𝑡≥0 such that, for all 𝑡 ≥ 0,

𝔼[|𝑋𝑡|] < ∞, (A.13)
𝔼[𝑋𝑡+1 | ℱ𝑡] = 𝑋𝑡 . (A.14)



A.5. Convergence theorems 55

A.5. Convergence theorems

TheoremA.5.1 (Raabe’s test). Let (𝑎𝑛)𝑛≥1 be a sequence of real valued numbers. Define the following:

𝜌𝑛 ≔ 𝑛( 𝑎𝑛
𝑎𝑛+1

− 1) , (A.15)

𝜌 ≔ lim
𝑛→∞

𝜌𝑛 . (A.16)

Then, the following holds:

• If 𝜌 > 1, then ∑∞𝑘=1 𝑎𝑘 converges,

• If 𝜌 < 1, then ∑∞𝑘=1 𝑎𝑘 diverges,

• If 𝜌 = 1, then the he test is inconclusive.

Theorem A.5.2 (Hall and Heyde, 1980). Let {𝑆𝑛 = ∑
𝑛
𝑖=1 𝑋𝑖 , ℱ𝑛 , 𝑛 ≥ 1} be a martingale and let 𝑝 ∈ [1, 2].

Then 𝑆𝑛 converges almost surely on the set {∑∞𝑖=1 𝔼(|𝑋𝑖|𝑝 | ℱ𝑖−1) < ∞}.

Theorem A.5.3 (Hall and Heyde, 1980). Let {𝑆𝑛𝑖 , ℱ𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑘𝑛 , 𝑛 ≥ 1} be a zero-mean, square
integrable martingale array with differences 𝑋𝑛𝑖, and let 𝜂2 be an almost surely finite random variable.
Suppose that

∀𝜖 > 0,
𝑘𝑛
∑
𝑖=1
𝔼[𝑋2𝑛𝑖𝕀[|𝑋𝑛𝑖 > 𝜖] | ℱ𝓃,𝒾−1]

𝑝→ 0, (A.17)

𝑘𝑛
∑
𝑖=1
𝔼[𝑋2𝑛𝑖 | ℱ𝑛,𝑖−1]

𝑝→ 𝜂2. (A.18)

Then 𝑆𝑛𝑘𝑛 = ∑
𝑘𝑛
𝑖=1 𝑋𝑛𝑖

𝑝
→ 𝑍, where Z has characteristic function 𝑒−

1
2𝜂

2𝑡2 .

Lemma A.5.4 (Williams, 1991). Let 𝑀 be a martingale such that 𝑀𝑛 ∈ ℒ2 for all 𝑛 ≥ 1. Then, M is
bounded in ℒ2 if and only if ∑∞𝑘=1 𝔼[(𝑀𝑘 − 𝑀𝑘−1)2] < ∞. If this is the case, then 𝑀𝑛 → 𝑀 in ℒ2 and
almost surely.





B
Code used

Below, one finds the code used for the figures in Chapters 3 and 4. In particular, it contains the following:

• Simulations of 𝑋𝑛 and 𝑋2𝑛 for the random walk,

• Simulations of 𝜈(𝑎) and 𝑒(𝑎) for the random walk,

• Probability distribution from multiple samples of the elephant random walk,

• Simulations of 𝑋𝑛 and 𝑋2𝑛 for the elephant random walk,

• Simulations of 𝜈(𝑎) and 𝑒(𝑎) for the elephant random walk.

1 import matplotlib.pyplot as plt
2 import random as rnd
3 import math as m
4

5 #%%
6

7 #Random walk
8 def random_walk(p,n,s):
9 walks = []

10 mean = []
11 for j in range(n):
12 X = [0]
13 S = [0]
14 chance1 = rnd.random()
15 if p > chance1:
16 X += [1]
17 S += [1]
18 else:
19 X += [-1]
20 S += [-1]
21 for i in range(s-1):
22 chance2 = rnd.random()
23 if p > chance2:
24 X += [1]
25 else:
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26 X += [-1]
27 S += [sum(X)]
28 plt.plot(S)
29 walks += [S]
30 for i in range(s+1):
31 mean+=[0]
32 for j in range(n):
33 mean[-1] +=walks[j][i]
34 mean[-1] = mean[-1]/n
35 plt.plot(mean,color=”black”, linewidth = 2.5)
36

37 #Second moment of displacement random walk
38 def random_walk2(p,n,s):
39 walks = []
40 mean = []
41 for j in range(n):
42 X = [0]
43 S = [0]
44 chance1 = rnd.random()
45 if p > chance1:
46 X += [1]
47 S += [1]
48 else:
49 X += [-1]
50 S += [-1]
51 for i in range(s-1):
52 chance2 = rnd.random()
53 if p > chance2:
54 X += [1]
55 else:
56 X += [-1]
57 S += [sum(X)**2]
58 plt.plot(S)
59 walks += [S]
60 for i in range(s+1):
61 mean+=[0]
62 for j in range(n):
63 mean[-1] +=walks[j][i]
64 mean[-1] = mean[-1]/n
65 plt.plot(mean,color=”black”, linewidth = 2.5)
66

67 #%%
68

69 #Gambler's ruin RW probability
70

71 def gambler_ruin(p,n):
72 q=1-p
73 values = []
74 for i in range(n+1):
75 if p == 1/2:
76 values += [i/n]
77 else:
78 values += [((q/p)**i-1)/((q/p)**n-1)]
79 return values
80
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81 #%%
82

83 #Gambler's ruin RW expected steps
84

85 def gambler_ruin_steps(p,n):
86 q= 1-p
87 ratio = q/p
88 values = []
89 for i in range(n+1):
90 if p == 1/2:
91 values += [i*(n-i)]
92 else:
93 values += [(1/(p-q))*((n*ratio**i- n)/(ratio**n-1)-i)]
94 return values
95

96 plt.plot(gambler_ruin_steps(0.1, 100))
97

98 #%%
99

100 #Distribution of the elephant random walk
101

102 def elephant_sample(Number,N,p,q):
103 Lst = []
104 for i in range(Number):
105 X = []
106 chance1 = rnd.random()
107 if q > chance1:
108 X += [1]
109 else:
110 X += [-1]
111 for i in range(N):
112 choose = rnd.randint(0,i)
113 chance2 = rnd.random()
114 if p > chance2:
115 X += [X[choose]]
116 else:
117 X += [-X[choose]]
118 Lst += [sum(X)]
119 plt.hist(Lst, density=True, bins = 25)
120 plt.xlabel(”s”)
121 plt.ylabel(”Density”)
122 plt.title(”Distribution elephant random walk, p=”+str(p)+”,

q=”+str(q))↪

123

124 #%%
125 #Elephant random walk
126 def elephant_random_walk(p,q,n,s):
127 walks = []
128 mean = []
129 for j in range(n):
130 chance1 = rnd.random()
131 X = [0]
132 S = [0]
133 if q > chance1:
134 X += [1]
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135 S += [1]
136 else:
137 X += [-1]
138 S += [-1]
139 for i in range(s-1):
140 choose = rnd.randint(1, i+1)
141 chance2 = rnd.random()
142 if p > chance2:
143 X += [X[choose]]
144 else:
145 X += [-X[choose]]
146 S += [sum(X)]
147 plt.plot(S)
148 walks += [S]
149 for i in range(s+1):
150 mean+=[0]
151 for j in range(n):
152 mean[-1] +=walks[j][i]
153 mean[-1] = mean[-1]/n
154 plt.plot(mean,color=”black”, linewidth = 2.5)
155

156 #Second moment displacement
157 def elephant_random_walk2(p,q,n,s):
158 for j in range(n):
159 chance1 = rnd.random()
160 X = [0]
161 S = [0]
162 if q > chance1:
163 X += [1]
164 S += [1]
165 else:
166 X += [-1]
167 S += [-1]
168 for i in range(s-1):
169 choose = rnd.randint(1, i+1)
170 chance2 = rnd.random()
171 if p > chance2:
172 X += [X[choose]]
173 else:
174 X += [-X[choose]]
175 S += [sum(X)**2]
176 plt.plot(S)
177

178 #%%
179

180 #Elephant Gambler ruin
181

182 def elephant_ruin(N,a,p,q):
183 if a==0:
184 return 0,0
185 if a==N:
186 return N,0
187 chance1 = rnd.random()
188 S=a
189 if q>chance1:
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190 X = [1]
191 S += 1
192 else:
193 X = [-1]
194 S += -1
195 i=0
196 while (S!=0 and S!=N):
197 choose = rnd.randint(0, i)
198 chance2 = rnd.random()
199 if p > chance2:
200 X += [X[choose]]
201 S += X[choose]
202 else:
203 X += [-X[choose]]
204 S += -X[choose]
205 i+=1
206 return S,i
207

208 #Simulating multiple elephant ruins for a certain starting capital a
209 def elephant_ruin_simulation(Number,N,a,p,q):
210 counter = 0
211 steps = 0
212 for i in range(Number):
213 Values = elephant_ruin(N, a, p, q)
214 if Values[0]==N:
215 counter+=1
216 steps+=Values[1]
217 return counter/Number,steps/Number
218

219 #Plotting the elephant ruin
220 def plot_elephant_ruin(Number,N,p,q):
221 Y1 = []
222 Y2 = []
223 for i in range(N+1):
224 Y1 += [elephant_ruin_simulation(Number, N, i, p, q)[0]]
225 Y2 += [elephant_ruin_simulation(Number, N, i, p, q)[1]]
226 return(Y1,Y2)
227

228 def plot_elephant_ruin_N(Number,N,p,q):
229 X = []
230 Y1 = []
231 Y2 = []
232 for i in range(N+1):
233 elephant_sim = elephant_ruin_simulation(Number, N, i, p, q)
234 X += [i/N]
235 Y1 += [elephant_sim[0]]
236 Y2 += [elephant_sim[1]]
237 print(i)
238 return (X,Y1,Y2)
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