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Abstract In recent years philosophers have used results from cognitive science to

formulate epistemologies of arithmetic (e.g. Giaquinto in J Philos 98(1):5–18,

2001). Such epistemologies have, however, been criticised, e.g. by Azzouni

(Talking about nothing: numbers, hallucinations and fictions, Oxford University

Press, 2010), for interpreting the capacities found by cognitive science in an overly

numerical way. I offer an alternative framework for the way these psychological

processes can be combined, forming the basis for an epistemology for arithmetic.

The resulting framework avoids assigning numerical content to the Approximate

Number System and Object Tracking System, two systems that have so far been the

basis of epistemologies of arithmetic informed by cognitive science. The resulting

account is, however, only a framework for an epistemology: in the final part of the

paper I argue that it is compatible with both platonist and nominalist views of

numbers by fitting it into an epistemology for ante rem structuralism and one for

fictionalism. Unsurprisingly, cognitive science does not settle the debate between

these positions in the philosophy of mathematics, but I it can be used to refine

existing epistemologies and restrict our focus to the capacities that cognitive science

has found to underly our mathematical knowledge.
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1 Introduction

How do we acquire mathematical knowledge? That question has kept philosophers

occupied at least since Plato, and nowadays does so in its modern reformulation by

Benacerraf (1973). The problem, of course, is that mathematical objects are

supposed to be abstract and causally inert, which leaves it unclear how we can learn

anything about them. Especially if one wants to stick to a naturalist epistemology—

one on which we acquire knowledge only with faculties countenanced by science. In

other words, without relying on unexplained abilities, for which e.g. the

mathematical intuition proposed by Gödel (1964) is often criticized.

Over the last two decades a number of philosophers have taken this to mean that

we should build our epistemology of mathematics on the findings from cognitive

science. In that area, findings such as the ability to discriminate stimuli based on

what is often described as their number with the Approximate Number System

(ANS, cf. Dehaene, 1997; Feigenson et al., 2004) are now well-known in the

philosophical literature. In fact, epistemologies of arithmetic partially based on the

ANS can be found in a number of papers (Giaquinto, 2001; Jones, 2018; Yi, 2018),

using the idea that numbers are learnt through a mapping with ANS-values

(Dehaene, 2009). Such epistemologies suffer from a number of problems, however.

First, other philosophers have argued that the ANS cannot yield knowledge of

numbers because its discriminatory ability is not precise enough: the ANS cannot

distinguish between 21 and 22, or between 50 and 53. Rather, it is approximate in

the sense that it can only distinguish between two stimuli if the ratio between the

number of items in each is high enough (e.g. one collection has twice as many items

as the other). This has been a reason for philosophers and leading cognitive

scientists to argue that the ANS is insufficient for numerical knowledge (Beck,

2015; Burge, 2010; Carey, 2009; Margolis and Laurence, 2005; Núñez, 2017).

While this has recently been challenged by Halberda (2016), the proponents of these

epistemologies usually do not give a detailed response to these arguments.

Second, and related to the first point, Azzouni has raised what he calls the

‘epistemic role objection’: the problem that the capacities appealed to do not clearly

have the role to respond to numerical properties. He states it as follows:

[E]xcept by the expedient of identifying the numbers with the concepts and/or

notation underlying our mastery of computation and perceptual numerical

recognition, such numbers visibly play no role in the successful execution of

these needed abilities, regardless of what properties they turn out to have.

(Azzouni, 2010, p. 30)

One can be described as recognizing that there are three objects there. One can

even be described as recognizing this immediately. One does so on the basis of

the objects themselves; no immediate grasping of numerical properties is to

explain this. Instead, what’s needed to explain this immediate grasping of a

fact are subpersonal explanations. (Azzouni, 2010, p. 33)

Third, even if one can get around the philosophical argument that the imprecision in

the ANS means that it cannot represent numbers one has to deal with competing
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explanations from cognitive science. A number of scientists have defended a, so far

empirically well-supported, alternative account of the ANS on which it represents

quantities and not numbers (Gebuis et al., 2016; Zimmerman, 2018). For a

successful epistemology of arithmetic along these lines such alternative explana-

tions of the ANS would have to be ruled out, which does not seem possible on the

basis of the current empirical data (Leibovich et al., 2017).

Finally, regardless of the exact interpretation of the ANS, there is empirical

evidence that suggests that the ANS plays a less important role than these

epistemologies claim. Carey et al. (2017) presents evidence that children do not

acquire small number concepts on the basis of the ANS. Lyons et al. (2012) found

that adults have trouble comparing symbolic numbers to arrays of dots for large

numbers, probably because large numbers are not associated strongly with ANS

representations. An epistemology based primarily on the ANS will have to explain

these experiments that suggest that, in fact, the ANS has relatively little to do with

our capacities with exact numbers.

One exception to these ANS-based accounts is the epistemology put forward by

Burge (2007, 2010). He relies, rather, on our capacity to exactly determine the

number of items in very small collections:

Obviously, complex numeral names are formed from simpler ones. I think that

the simpler ones are associated with a capacity for immediate, non-inferential,

non-computational counting. We have a capacity to count small groups ... at a

glance. We are able to apply the number in counting immediately – non-

inferentially through perception (Burge, 2007, p. 71)

Understanding what larger numbers are derives from this immediate hold on

the applicability of the smaller ones. The concept 547 is formed in simple

recursive fashion from the simplest canonical natural number concepts.

(Burge, 2007, p. 72)

The main problem here is that the argument by Azzouni (2010) also applies to

Burge’s account (unsurprisingly, since Azzouni there discusses Burge’s account).

The psychological processes Burge relies on for our grasp of small numbers—the

Object Tracking System (OTS, cf. Dehaene, 1997; Feigenson et al., 2004), a system

that allows us to follow up to three or four items—also has no clear numerical

content. Rather, it keeps track of several objects at once, noting their properties and

locations, which allows children to register surprise when presented with sums such

as ‘two puppets minus one puppet = two puppets’. Not due to the mathematical

inaccuracy, but because a puppet has appeared that wasn’t being tracked. So, with

the OTS Burge appeals to a system that has no (explicit) numerical content of its

own. More than just the OTS is needed.

In short, while there have been a number of attempts to formulate an

epistemology of arithmetic based on results from cognitive science, they run into

trouble because they rely exclusively on the OTS and ANS. I will formulate an

alternative in the rest of this paper that tries to avoid this shortcoming, relying on

earlier work of mine on the acquisition of number concepts (Buijsman, 2019, 2020).

Yet I will also maintain an approach similar to that of Burge (2007), dividing the
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epistemology into a part for small numbers (roughly those represented by single-

digit Arabic numerals, though the OTS is more limited) and larger numbers. This is

also in line with work on the relevance of the structure of numerals for any grasp of

these larger numbers (Overmann, 2016; Schlimm, 2018). Furthermore, the goal of

this epistemology should be clear from the outset. I do not intend to give an

epistemology for a particular metaphysics. In line with the idea that the

epistemology should be led by results from cognitive science I want to limit

myself here to what I think those results can tell us. Rather than offering, say, a

platonist epistemology, I want to set out a basis on which others can build more

specific epistemologies. This might not be the only basis on which this is possible.

For one, I won’t be providing detailed cognitive mechanisms (partly because these

are hotly debated in cognitive science, e.g. the disagreement on the mechanisms

behind the ANS between Gebuis et al. (2016) and Dehaene (1997), partly because I

aim at a philosophical epistemology where the focus is on what capacities people

have, and less so on the cognitive mechanisms enabling them). So, there might be

different accounts of the underlying cognitive mechanisms consistent with my

account, and perhaps there are also viable alternatives (there is, for example,

relatively little data on how larger cardinal numbers are acquired, though research is

picking up in this area). Since the accounts available in the philosophical literature

have all been roundly criticised, however, even having a viable option available

(though it might not be the only viable option) is a step forwards.

Therefore, I first lay out a framework for the acquisition of small numbers in

Sect. 2. Then, I offer an account of our grasp of larger numbers, based on that of

smaller numbers, in Sect. 3. Finally, in Sect. 4, I suggest how this might lead to a

full-fledged epistemology of arithmetic by linking it to two opposing metaphysical

positions: ante rem structuralism and fictionalism. I hope that the end result is that

we have a better idea what an epistemology of arithmetic based on results from

cognitive science looks like and that it shows that such an epistemology can

overcome the worries about lack of numerical content in the OTS and ANS that

have plagued earlier attempts.

2 Small numbers

2.1 One

The ANS and OTS are present, as far as we can tell, from birth (Feigenson et al.,

2004). I want to start a little later, with a capacity children only develop when they

are roughly two years old. Before then they can distinguish between collections with

one, two and three items using the OTS (because they can track the individual items

in the collections). However, they cannot distinguish between collections with one

and four items—in those cases their choices between the collections are at chance

level (Feigenson and Carey, 2003). This changes around the two-year mark (on

average, at 22 months). Then, thanks to a process that we do not yet understand,

children learn to distinguish between collections with one item and all other

collections with more than one item (Li et al., 2009; Sarnecka and Lee, 2009).
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However, they still exhibit at chance performance for comparisons between

collections with two and four items. Because of that, this new ability is separate

from the OTS.

This new ability also seems to be linked to language in interesting ways. Children

who grow up hearing languages with a grammatically marked singular/plural

distinction acquire this new ability faster (Barner et al., 2007; Barner and Bachrach,

2010). Children with a larger general vocabulary also need less time before they

distinguish between collections with one item and those with more than one item

(Negen and Sarnecka, 2012). Carey (2009) therefore suggests that children learn to

distinguish collections with one item from those with more items based partially on

natural language quantifiers (since if those are explicitly present children learn to

make the distinction faster).

In any case, the ability to distinguish between collections with one item and those

with more items does not provide us with numerical content. That is also the point

made by Azzouni, when he argues that the OTS is best described as recognizing not

that there are three items, but that there is one item, another one, and another, but no

more than that. That idea, if one tries to formalize it, seems best captured using

quantifiers (rather than numbers). So, what children learn in this stage, when they

learn to distinguish collections with one item from those with more, can formally be

described as them learning to recognize when 9!x:Fx is true—i.e. that ‘there is an F

and there are no other Fs’. No direct connection to numbers then, but it can

nevertheless serve as basis for an epistemology of arithmetic. This is because one

can fix the application conditions of ONE in terms of this quantifier, using Frege’s

definitions for the application conditions of numbers. He posited:

ðDZÞ 0 ¼ Nx:ðx 6¼ xÞ

However, I focus on the number one since children don’t learn zero until much later:

ðDOÞ 9!x:Fx $ 1 ¼ Nx:Fx

In this case there is no non-arbitrary choice of an F with a single instance, which is

why one needs the quantifier. Importantly, though, these are the same application

conditions one would get when using the standard Fregean definition of the suc-

cessor function to move from zero to one. Frege formulated this instead as a pre-

decessor relation, which means that the steps would be as follows:

ðDPÞ mPn $ 9F9y½m ¼ Nx:Fx ^ :Fy ^ n ¼ Nx:ðFx _ x ¼ yÞ�
ðDOÞ 0P1 $ 9y½0 ¼ Nx:ðx 6¼ xÞ ^ :ðy 6¼ yÞ ^ 1 ¼ Nx:ððx 6¼ xÞ _ x ¼ yÞ�

The latter is essentially my earlier version since :ðy 6¼ yÞ is guaranteed and

Nx:ððx 6¼ xÞ _ x ¼ yÞ is in effect Nx:ðx ¼ yÞ for a single object y.

Where does this leave us? Frege arithmetic, as established by Heck (2000, 2014)

who showed that a reformulated version of the Dedekind–Peano axioms can be

proved in Frege arithmetic (of which DP and DZ are two of the four basis, along

with Hume’s principle and the definition that something is a natural number if it’s

equal to zero or obtainable from zero using the predecessor relation). DO, as a

definition which leads to consistency with the Dedekind–Peano axioms, suggests a
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way in which we can acquire some knowledge of numbers. We can apply DO

correctly because of our developed ability to distinguish between singular and plural

sets. The numerical content isn’t present in that ability, but by abstraction via DO

we can arrive at the number one nevertheless. One may worry that this is, however,

still too ambitious: without Hume’s principle in the background we can’t be sure

that the identity conditions of ONE are also correct. In order to be sure that our

knowledge is of numbers, and not of a reformulation of a quantifier, HP should hold,

where HP is the following principle, with � a suitable formalization of ‘is in one-to-

one correspondence to’:

ðHPÞ Nx:Fx ¼ Nx:Gx $ F � G

Izard et al. (2014) found that once children can correctly apply ‘one’ they can also

correctly make inferences from ‘these collections have the same number of items’

and ‘this collection has one item’ to ‘this other collection has one item’. However,

they cannot do so before they have learnt to correctly apply ‘one’ (and similarly for

larger numbers, one-to-one correspondence tasks are performed successfully only

after children learn to apply the number word correctly), which makes it implausible

that children learn numbers on the basis of HP as a neo-logicist might suggest. The

important point is that, not long after learning the application conditions, children

are able to recognize the obtaining and non-obtaining of one-to-one correspon-

dences. They recognize whether there is exactly one item in the first collection for

every item in the second collection and can move from there to the claim that the

number of items is the same (Izard et al., 2014; Sarnecka and Gelman, 2004;

Sarnecka and Wright, 2013). In other words, children use number words in a way

that is consistent with HP. Questions about numerical identity can be settled, in an

appropriate way, by relying on that ability to recognize the obtaining and non-

obtaining of one-to-one correspondence. This also guarantees that their concepts are

consistent with Dedekind–Peano arithmetic, as the proofs by Heck (2000,, 2014) go

through (see also Buijsman, 2019).

Note that I am not proposing a neo-logicist epistemology in line with e.g. Hale

and Wright (2002). Number concepts are not acquired through implicit definition on

HP, but rather through DO and successive applications of DP. HP is needed to

ensure the infinity of the natural numbers, but I have an alternative explanation

based on the syntax of our numeral system for the consistency of number concepts

with that axiom (i.e. how children learn that there are infinitely many numbers;

Buijsman, 2020). Therefore, I am not suggesting that our knowledge of numbers

stems solely from HP combined with knowledge of one-to-one correspondences,

thus avoiding difficulties with reference on the basis of an abstraction principle.

Instead, I hold that knowledge that two collections have the same number of

items is based on the ability to recognize the obtaining of one-to-one correspon-

dences, whereas knowledge that there is one F derives from the ability to distinguish

between singular and plural sets. More numbers are needed for any kind of

arithmetic, so I turn next to the remaining small numbers—roughly those denoted

by single-digit numerals. I say roughly, because it is not quite clear where the border

is (if there is a clear-cut border). This will depend on when when we start to rely on
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the structure of the numeral system (see Sect. 3) and so on when the quantifier-

based grasp of numbers I outline in this section becomes too cumbersome.

2.2 Two, three, ...

In my opinion the same abilities that underlie knowledge about the number one also

support our knowledge of the other small numbers. By repeated use of the ability to

distinguish singular and plural sets it is possible to evaluate not just 9!x:Fx but also

higher cardinal quantifiers, denoted for simplicity with a number: 92x:Fx, 93x:Fx,

etc. Of course, these are nothing more than abbreviations for lists of quantifiers.

They have, for that reason, no explicit numerical content. In order to arrive at

numbers one has to, once again, appeal to the Fregean definitions. In particular, to

DP (stated earlier), the definition of the predecessor relation/successor function.

The idea is as follows: while children are acquiring number concepts, they do so

in strict order (Wynn, 1992). So, after they have acquired ONE they acquire TWO by

figuring out that a collection has two items precisely when it is made up of one item

and another single item. The same then happens for THREE: that applies to all

collections with two items to which precisely one item is added. At least, so I have

argued in Buijsman (2019), as the alternative suggestion that it is just the OTS—

with children forming long-term memory models that they compare to the collection

to be counted—by Carey (2009) cannot explain why these numbers are learnt in
order.

An epistemology for small numbers can build on that idea. While acquiring

number concepts, children learn to evaluate the relevant quantifiers (or rather, they

learn to distinguish between ever more collections based on the items in them,

which is formalized in the most minimal way using quantifiers, again in line with

the arguments mentioned in Sect. 1). One reason for thinking that they take a detour

via quantifiers, at least for small numbers, is that afterwards we are able to decide on

the number of items in a collection on the basis of the OTS (Cheung and Le Corre,

forthcoming). The OTS, as I mentioned earlier, has no numerical content of its own.

So, in the absence of a counting procedure (as in the study by Cheung and Le Corre,

forthcoming) it seems likelier that the OTS is extended while acquiring number

concepts, to allow the evaluation of (exact) cardinal quantifiers. In other words,

during the acquisition process we also learn to distinguish collections with two

items from all other collections and can then do so automatically, as with singular

v.s. plural sets.

Given that we acquire this capacity to evaluate also 92x:Fx, 93x:Fx and 94x:Fx
supported by the OTS, the epistemology for these small numbers can be quite

similar. How do we know when to correctly apply one of these numbers to a

collection of items? On the basis of the quantifiers we are able to evaluate. How do

we judge whether two collections have the same number of items? On the basis of

the ability to recognize one-to-one correspondences between collections. Yet, how

do we move from here to knowledge of, say, 1 þ 1 ¼ 2? The details will, of course,

depend on one’s preferred metaphysics. Postponing those metaphysical questions to

Sect. 4, is there something to be said here?
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Regardless of one’s position, with my account one seems to arrive at pure

arithmetical statements by abstraction. The Fregean definitions that give us the

application and identity conditions for numbers can be the basis for such an

abstraction procedure that leads to pure arithmetical statements. For, it is possible to

derive suitable reformulations of the Dedekind–Peano axioms in Frege arithmetic

(Heck, 1997,, 2000,, 2014; Linnebo, 2004). The Dedekind–Peano axioms are not

about applied arithmetical statements, which means that it is possible to move from

the application and identity conditions for applied arithmetical statements to truth-

conditions of pure arithmetical statements. Those pure arithmetical statements do

not have to be interpreted as abbreviations for statements about quantifiers.

Note though that what seem like arithmetical sentences might actually, in a large

number of cases, be sentences about quantifiers. A number of accounts in the

philosophical literature hold that the a swathe of arithmetical sentences in natural

language such as ‘two and two is four’ are best interpreted along adjectival lines, i.e.

as something like ‘two things and two other things are (together) four things’

(Barlew, 2017; Felka, 2014; Hofweber, 2005; Jackson, 2013; Moltmann,

2013, 2017; Roberts and Shapiro, 2017). While controversial, and certainly not

true for all arithmetical sentences (e.g. ‘seventeen is odd’ very likely is about

numbers), it could imply that a lot of the sentences used by children have terms

functioning as quantificational determiners rather than as singular terms referring to

numbers. This would actually fit well with the current suggestion: we arrive at

knowledge of these sentences about quantifiers/referents of quantificational

determiners1 on the basis of our developed ability to evaluate such quantifiers. Of

course, this is not arithmetical knowledge, as it does not concern numbers. For

numerical knowledge one will have to, on my account, follow an abstraction

procedure. Still, if the linguists are right then our facility with such natural language

statements can be explained on the same basis as the one I am suggesting for our

knowledge of numbers. Proper access to numbers will have to come from an

abstraction procedure, but facility with a large number of natural language

statements can be explained through cardinal quantifiers alone.

This leaves one last issue to do with ‘small’ numbers: the enhanced OTS only

extends up to about four, which is why I ended at 94x:Fx earlier. So, if what I term

larger numbers start at the earliest from 10, there is still a gap that needs to be filled.

While no system is available to do so at a glance, I don’t think one is required.

Counting, whether by shifting visual attention or actually using your fingers, is the

obvious alternative. Unsurprisingly children at first evaluate pure arithmetical

statements using (finger) counting (see e.g. Butterworth, 2005; Dowker, 2008;

Jordan, 2008; Siegler and Robinson, 1982). Such finger counting can support the

evaluation of quantifiers: children might, for example, learn that the quantifier

95x:Fx applies precisely when one has added single items often enough to reach the

number word ‘five’.

1 If one prefers a different formalization than first-order quantifiers then that shouldn’t matter for my

view. I see no reason why our ability to distinguish singular from plural sets cannot be described in terms

of e.g. plural properties instead, which is how the referents of quantificational determiners are sometimes

formalized.
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Merely going through the count sequence, set up in one-to-one correspondence

with the collection one is counting is not enough: children can do this before they

have acquired any number concepts, treating the count sequence similar to other

word sequences such as ‘eeny, meeny, miny, moe’ (Carey, 2009; Sarnecka and Lee,

2009; Wynn, 1992). By combining the counting procedure with the ability to

evaluate 9!x:Fx it can get coupled to our number concepts and, via the Fregean DP,

it can give us knowledge of numbers beyond the reach of the OTS. We can correctly

apply the number five by counting from four, adding exactly one item, to reach five.

The counting procedure extends our ability to evaluate cardinal quantifiers, which

via the Fregean definitions leads to knowledge of numbers larger than four.

Counting is thus the last piece of my view of our knowledge of ‘small’ numbers,

with the explanation of application and identity conditions of the number concept,

and our knowledge of pure arithmetical statements proceeding as it did for the other

parts of my account for small numbers.

3 Larger numbers

We don’t typically count collections with very many items ourselves. Nor does it

seem likely that we evaluate arithmetical sums with large numbers on the basis of

counting, whereas this is quite plausible for small sums (before we just retrieve the

results from memory). For example, when required to solve 13089 ? 4386 we don’t

start counting from 13089 until we reach the correct answer. Instead, we perform the

addition on a digit-by-digit basis. That is the basis for my account regarding our

knowledge of larger numbers. As mentioned in the introduction, Burge (2010)

suggests something similar, though with less details from cognitive science.

Schlimm (2018), on the other hand, has argued for the role of the structure of the

numeral system using results from cognitive science but without connecting it to an

epistemology. I combine those two strands here.

The main reason for doing so is that an array of studies in cognitive science have

shown that the human brain processes multi-digit numerals in a decomposed

fashion: when you read a numeral such as 475 your brain automatically separates it

into 4, 7 and 5 (Garcı́a-Orza and Damas, 2011; Moeller et al., 2011; Nuerk et al.,

2015). Any operations are, researchers now think, performed with the single digits,

before recombining them into the final result (Ashcraft and Stazyk, 1981; Domahs

et al., 2006; Sandrini et al., 2003; Verguts and Fias, 2005). Good reason, then, to

think that our grasp of these numbers is based on a more basic hold on small

numbers, combined with a knowledge of the structure of the numeral system. For

example, that we acquire knowledge of the outcome of 13089 ? 4386 on the basis

of our knowledge of the sums for individual digits (9 ? 6, 8 ? 8 ? 1, etc.) together

with our knowledge of how to combine the outcomes of those smaller sums to arrive

at the final answer.

This knowledge of the structure of the numeral system needs to be learned, and

that can take quite a while (Fuson, 1990; Fuson and Briars, 1990). Children in

primary school who are learning to add multi-digit numbers often display errors
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related to the structure of the numeral system. Lengnink and Schlimm (2010)

discuss one example of a child performing the following addition:

In this case the confusion is that the fact that ‘4’ and ‘2’ occur in the decade position

is ignored: the child performs the addition 4 þ 3 þ 2 þ 6 ¼ 15. Before they realise

mistakes of that kind children often need to learn to count up to 100 first. Only then

do they acquire an understanding of the (syntactic, place-value) structure of the

numeral system (Fuson and Hall, 1983; Siegler and Robinson, 1982; Rule et al.,

2015; Guerrero et al., 2020). That means that any suggestion that larger numbers are

grasped in terms of the structure of the numeral system needs to acknowledge that

there is an intermediate stage, at least for numbers below 100.

I don’t think that such an intermediate stage is particularly problematic. The

counting procedure that I outlined for ‘small’ numbers works just as well for larger

numbers, but is much less efficient than the eventual use of the structure of the

numeral system. Besides, performance on tasks involving larger numbers tends to

be imperfect before children can count to around 100. Davidson et al. (2012) and

Cheung et al. (2017) found that children often cannot answer questions of the type

‘there are n items in this box, how many are there if I add one?’ for larger numbers,

before children can count to 100, even though such numbers are within their count

list. The intermediate stage can thus be accounted for in terms of counting, where

the sub-optimal performance is in line with the practical limitations of counting

larger collections of items. We simply do not have as clear an idea of a collection

with 76 items as of a collection with 7 items.

But then how does it work, in detail, once we do know the structure of the

numeral system? Our knowledge of smaller numbers, and the results of arithmetical

operations on those smaller numbers, has been accounted for in the previous

section. However, there is a question left on the recombination of these individual

results into the final answer. This requires multiplication with powers of 10, yet

those numbers (e.g. 100,000) are themselves often larger than the small numbers

with which the reduction is supposed to end.

How this problem is best resolved depends, of course, on how the brain

implements this knowledge of the structure of the numeral system. As far as I am

aware, we don’t know much about the actual processes yet—they are decomposed

in the sense that digits are treated separately, but we don’t know how they are

recombined; how the brain internalises their place-value. One option, though, is that

there is indeed a complete reduction to small numbers. We use our grasp of 10

through counting, along with the idea that every next digit has ten times the value. A

hundred can be processed as 10 � 10, a thousand as 10 � 10 � 10, and so on. For

very large numbers, where the number of trailing zeroes is often used to indicate
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size, that seems the right conclusion. Whether it is also correct for a hundred, which

we seem to grasp more directly, is something open to debate (it could just be the

result of very frequent encounters with numbers that size). The mere fact that we

don’t notice the calculation is not enough—after all, we also don’t notice the

decomposition of multi-digit numerals even though there is ample evidence that the

brain processes numerals in that way. More evidence is needed, but it is at least

possible to deal with the structure of the numeral system in terms of iterated

multiplication with ten.

For larger numbers, then, we can use the structure of the numeral system to

acquire knowledge—thanks to our more primitive grasp of small numbers. Pure

arithmetical statements can be verified by performing calculations with the

individual digits. Those calculations with small numbers lead to knowledge through

counting procedures and quantifier evaluations, in other words through the detour of

cardinal quantifiers and the Fregean definitions of number. How that structure is

grasped precisely has been left open. I have suggested that iterated multiplication

with 10 is a way out, though this may be too indirect for a hundred and a thousand.

It also necessitates further reductions once there are very many zeroes: 1056 is a

number that can be grasped only after we have reduced the 56 to its component

digits, to know how many times we need to multiply with 10. We will have to await

more details on how the brain actually decomposes and recomposes multi-digit

numerals before we can be confident of having the right answer. Yet a reduction to

small numbers seems an important part of an epistemology of arithmetic that fits

how we actually acquire arithmetical knowledge. For that is how the brain deals

with large numbers: by decomposition (Nuerk et al., 2015).

As a final note to this section, I should point out that the suggested account here

is not restricted to those who know the Hindu-Arabic numeral system. As a reviewer

rightly pointed out, historically there have been other numeral systems, and

currently some cultures still use different numeral systems. All of these numeral

systems, crucially, have a recursive structure that uses a small base to describe

larger numbers (and so the same idea of acquiring knowledge about large numbers

through knowledge of small numbers applies). To give a few examples: the

Babylonian numeral system is often thought of as having base 60, but actually has a

repeating 10-6 cycle; there are different signs until 10 and then every decade (20,

30, 40, 50) gets a new sign until you reach 60, which is the sign for 1 (Høyrup,

2001). The Roman numeral system changes symbols in a 5-2 cycle: first at 5 (V),

then at 10 (X), then 50 (L), then 100 (C), etc. The Oceanic language Mangarevan

contains two numeral systems: a decimal system and a system that mixes decimal

and binary patterns (Bender and Beller, 2017). A common feature of all these

systems is a recursive structure with a base no higher than that for Hindu-Arabic

numerals. So my account should work for the whole range of numeral systems that

has been, and is, in use. It is thus a good basis for a full epistemology of arithmetic,

to which I turn next.
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4 Building a full-fledged epistemology

I have discussed the general structure of an epistemology of arithmetic in the

previous two sections. The processes through which we acquire mathematical

knowledge were mapped, and I suggested how these processes might arrive at

numerical content—the main issue with previous attempts to formulate an

epistemology based on results from cognitive science. However, that alone does

not solve the philosophical issues with our arithmetical knowledge. We also need an

account of what numbers are, i.e. what exactly this numerical content amounts to,

and how the identified psychological processes can yield knowledge of precisely

that kind of numerical content. Since my focus here is on what guidance we can get

from cognitive science for the philosophical project I have tried not to commit

myself to any particular view of the nature of numbers. I doubt that cognitive

science can decide between all the competing philosophical accounts. Therefore, I

want to suggest that the current work can be used to refine existing epistemologies.

In order to substantiate that suggestion I consider two accounts in this section, ante

rem structuralism and fictionalism and argue that both could make use of the work

from the previous two sections.

Ante rem structuralism is the position that mathematical objects are completely

characterized by their structural properties, i.e. that they are nothing more than

positions in certain structures, which exist (this is the ‘ante rem’ part) independently

from any instances that exemplify these structures. In the case of the numbers this

means that: ‘‘The essence of a natural number is its relations to other natural

numbers ...The number 2, for example, is no more and no less that the second

position in the natural number structure; 6 is the sixth position.’’ (Shapiro,

1997, p. 72, original italics)

In order to arrive at knowledge of these numbers Shapiro suggests that one starts

with very simple structures known as finite cardinal structures:

For each natural number n, there is a structure exemplified by all systems that

consist of exactly n objects. For example, the 4 pattern is the structure

common to all collections of four objects. The 4 pattern is exemplified by the

starting infielders on a baseball team (not counting the battery), the corners of

my desk, and two pairs of shoes. We define the 2 pattern, 3 pattern, and so on,

similarly. Let us call these ‘‘cardinal structures,’’ or ‘‘finite cardinal

structures.’’ The finite cardinal structures have no relations and so are as

simple as structures get. (Shapiro, 1997, p. 115, original italics)

We learn about these finite cardinal structures through ostensive definition

according to Shapiro, at least in the case of small numbers:

In part, our child starts to learn about cardinal structures by ostensive

definition. The parent points to a group of four objects, says ‘‘four,’’ then

points to a different group of four objects and repeats the exercise. Eventually,

the child learns to recognize the pattern itself. (Shapiro, 1997, p. 115)
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This is where my account from Sect. 2 fits in. Shapiro builds his epistemology on

the idea that children can recognize the pattern behind different instances where a

parent points to a collection of four items. My discussion from Sect. 2 fills in the

details by offering an explanation how children manage to recognize that pattern.

They do so through the mechanisms for evaluating quantifiers that cognitive

scientists are studying. Shapiro then has to do the additional work of explaining why

this pattern recognition helps us to arrive at knowledge of an abstract finite cardinal

structure. In that sense the current work doesn’t resolve the demand on platonists to

provide an epistemology: we still need an argument why this way to recognize a

pattern between cases leads to knowledge of an abstract structure rather than to

knowledge of something acceptable to nominalists. Yet my work refines this first

part of Shapiro’s epistemology because it clarifies the nature of the pattern

recognition he appeals to.

The same holds for Shapiro’s suggestions regarding larger numbers. He offers

two options:

Returning to our learning child, perhaps she reflects on the sequence of

numerals, eventually noting that the sequence goes beyond the collections she

has actually counted. She then sees that any finite collection can be counted

and thus has a cardinality. (Shapiro, 1997, p. 117)

A related possibility is that humans have a faculty that resembles pattern

recognition but goes beyond simple abstraction. The small finite structures,

once abstracted, are seen to display a pattern themselves. For example, the

finite cardinal structures come in a natural order: the 1 pattern, followed by the

2 pattern, followed by the 3 pattern, and so on. We then project this pattern of

patterns beyond the structures obtained by simple abstraction. (Shapiro,

1997, p. 118)

Again, it should be clear how my Sect. 3 can be used to expand on these two

suggestions. I have argued for a combination of the two: children and adults use a

pattern as in the second suggestion, but the pattern is that of the numerals (as per the

first suggestion). It is the pattern underlying the numeral system that one should

focus on, and not the pattern of the numbers under the successor function.

In short, my account from Sects. 2 and 3 can be plugged into the epistemology

provided by Shapiro (1997) in a fairly straightforward manner. It requires that one

argues that the capacities I have appealed to lead to knowledge of patterns and that

those patterns are best interpreted as ante rem structures. That there are patterns—

that shared between collections with a small number of items and that underlying

the numeral system—is clear. The difficult part is to argue that those should be

interpreted as ante rem structures. Of course, that is a wide-ranging philosophical

debate, which also includes arguments over what kind of ante rem structures are

acceptable (see Button, 2006; Hellman, 2005; Keränen, 2001; Macbride, 2006 for

one view and Shapiro, 2006, 2008, 2012; Leitgeb and Ladyman, 2008 for another).

The point is that it is possible to work out an epistemology for ante rem

structuralism in more detail using the current work. It might even help for a more
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detailed debate as to whether or not these abilities can be interpreted such that they

lead to knowledge of ante rem structures.

Should one decide that our capacities do not lead to knowledge of ante rem

structures then the current work fits just as well with nominalist epistemologies. As

an example, one can look at fictionalism: ‘‘the fictionalist considers that the methods

of pure mathematics ...provide us with knowledge of logical consequence—even

though she rejects the claim that these methods give us any genuine mathematical

knowledge’’ (Leng, 2007, p. 87). There are different ways of spelling this out in

detail; Leng (2007) talks mostly about axioms whereas Bueno (2009) relies more

heavily on descriptions of objects in general (whether they are axioms or not):

Knowledge of mathematical entities, just as knowledge of fictional entities in

general, is the result of producing suitable descriptions of the objects in

question and drawing consequences from the assumptions that are made.

(Bueno, 2009, p. 73)

On this approach to mathematical ‘‘knowledge’’, the existence of mathemat-

ical objects, relations, or structures plays no role. What matters is what can be

derived from the relevant principles, assuming a given logic. (Bueno,

2011, p. 366)

Here is one suggestion for combining this kind of epistemology with my account.

While children (and most adults) may not have axioms or particular descriptions in

mind, they do have natural number concepts. In fact, they have natural number

concepts which, as I have argued in Buijsman (2019), are consistent with the

second-order Dedekind–Peano axioms. The mathematical knowledge they acquire

through the processes I have outlined earlier can then be seen as ways to find out

consequences of those concepts.

in particular, the ability to evaluate (small) cardinal quantifiers allows us to find

out that a number concept applies to a particular collection of items. Similarly, the

ability to recognize that a one-to-one correspondence obtains between two

collections allows us to find out that the same number concept applies to those

two collections. In terms closer to those used by Bueno: the number of items is the

same, given the way numbers are described. Pure arithmetical statements are not

much different; either we learn that 1 þ 1 ¼ 2 is a consequence of our number

concepts through an abstraction procedure, or we rely on our ability to work with

cardinal quantifiers to settle the natural language version ‘one and one is two’.

Finally, for larger numbers we find out consequences of our number concepts by

relying on the structure of the numeral system.

While this way of fitting my account into fictionalism may not quite fit the

explicit statements of some fictionalists, such as when Leng says that fictionalists

‘‘need to account for our knowledge of the consistency of those theories, and for our

knowledge of what follows logically from their axioms’’ (Leng, 2007, p. 84), it is in

line with the spirit of those accounts. No fictionalist is likely to think that children

actually arrive at arithmetical knowledge through a logical derivation from the

Dedekind–Peano axioms. My suggestion, that they arrive at arithmetical knowledge

by finding out consequences of number concepts that are consistent with the
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Dedekind–Peano axioms, seems a plausible way of avoiding such an extreme view

while staying close to the claims of fictionalists. As a result, the framework for an

epistemology of arithmetic that I have presented in Sects. 2 and 3 can also be built

into a nominalist epistemology.

5 Conclusion

I have explored what results from cognitive science might add to an epistemology of

arithmetic. Previous attempt at such work have been criticized for an overly

ambitious, i.e. overly numerical, interpretation of our cognitive abilities. In

particular, they assigned numerical content to the ANS and/or the OTS, and

appealed to these systems to account for our arithmetical knowledge. I have tried to

avoid these issues by sticking to an interpretation of the early systems in purely

logical (quantifier) terms and by not appealing to the ANS in my own framework for

an epistemology.

Instead, I appealed to our ability to distinguish between singular and plural sets,

interpreted by e.g. Carey (2009) as the ability to evaluate a quantifier, as the basis

for an epistemology. Thanks to the Fregean definitions this ability offers a way to

learn about the application conditions of number concepts. Combined with the OTS

and the counting procedure this leads to a way in which one can learn about small

numbers. The structure of the numeral system, by way of the decomposed way in

which our brain processes multi-digit numerals, shows that we can learn about

larger numbers on the basis of this knowledge of small numbers.

Yet all these findings provide no more than a framework for an epistemology of

arithmetic. As I have also argued, this framework can fit into different philosophical

accounts of numbers. Both ante rem structuralism and fictionalism are compatible

with the framework I have outlined; they merely differ in how they interpret the

knowledge that results from using the capacities I described in Sects. 2 and 3.

Cognitive science, as one would expect, does not settle these philosophical debates.

It does, however, give us a more refined picture of the processes by which we

acquire mathematical knowledge and, as such, the processes out of which one

should build a complete epistemology of arithmetic.
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