A Framework for Alignment, Parameterization,

Modelling and Analysis of Aerodynamic Boomerang
Shapes

Computer Science, Master Thesis
Nils van Veen

VA AY T VAL LVYV

ANNAANNSTNANAANAN
N Y

AALIIANAANANAAN

5
TuDelft =




Shape
Correspondences
and Example-Based
Modelling for
Boomerang Design

A Framework for Alignment, Parameterization,
Modelling and Analysis of Aerodynamic
Boomerang Shapes

by

Nils van Veen

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday May 16, 2025 at 10:00 AM.

Student Number: 4917863

Main Supervisor: K. Hildebrandt

Second Supervisor: R. Marroquim

Third committee member: X. Zhang

Project Duration: September, 2024 - May, 2025

Faculty: Faculty of Electrical Engineering, Mathematics

& Computer Science, Delft

'i"U Delft F':



Preface

Boomerangs have previously been studied from a physics perspective, yet a fundamental understand-
ing of their shape variations remains elusive. What makes one shape superior to another? How do
subtle geometric differences influence performance?

This thesis addresses the correspondence problem for boomerang-like shapes, aiming to develop a
tool that enables users to analyze and compare different designs based on shape correspondences.
This work allows users to explore and refine boomerang shapes by providing a structured approach to
understanding these relationships.
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appreciate their openness to the idea from the start.

| would also like to thank the NewMedia Centre at the TU Delft, particularly Sharif Bayoumy, for his
assistance with the initial setup for 3D scanning. His guidance helped lay the groundwork for the
practical aspects of this research. | am also grateful to Roland van Roijen for his flexibility in allowing
me to use the equipment.

| extend my gratitude to a few individuals from the boomerang community: Manuel Schitz, for our
insightful discussions on the parameterization of boomerangs. His expertise has been instrumental
in refining my approach. Bill Hirst, for his scientific knowledge and for challenging me with thought-
provoking questions that shaped the direction of this thesis.

Finally, | would also like to thank my girlfriend, Brannie Haigh, for her unwavering support, patience, and
encouragement throughout this journey. Sharing intermediate results with her, discussing ideas, and
working alongside each other—me on my thesis and her on her dissertation—helped me stay grounded
and focused. Her presence made the challenges more manageable and the progress more rewarding.

This work would not have been possible without the encouragement and expertise of those around me,
and | am incredibly appreciative of their contributions.

Nils van Veen
Delft, May 2025



Abstract

This thesis presents a computational framework aimed at enabling the analysis and modeling of boomerangs
from example shapes. The goal is to provide a systematic and data-driven tool for boomerang design
based on real-world geometries. A key challenge in this context is establishing accurate shape corre-
spondences between handcrafted, asymmetric, and aerodynamically functional boomerangs.

To address this, the proposed pipeline integrates multiple components: landmark-based pre-alignment,
boundary extraction using alpha shapes, curve parameterization, and Least Squares Conformal Map-
ping (LSCM) to compute surface correspondences. Building on these correspondences, the framework
further incorporates principal component analysis (PCA) and Free-Form Deformation (FFD) to enable
the generation of new shapes.

Experimental results show that the method achieves low Hausdorff and Chamfer distances and has
been evaluated using area- and shear-based distortion metrics. Nonetheless, some localized inaccu-
racies - particularly near high-curvature regions - highlight areas for improvement in boundary handling
and local control. Additional limitations include the reliance on manual landmark selection, the linearity
of PCA, and the sensitivity of the pipeline to alpha shape parameters.

By combining elements of computational geometry with principles of aerodynamic design, this research
bridges the gap between empirical craftsmanship and formal shape analysis. The resulting methodol-
ogy not only enables the comparison and modeling of boomerangs but also lays the groundwork for
future tools in boomerang shape exploration and design.
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Introduction

Boomerangs may appear simple and planar at first glance, but their aerodynamic performance depends
on a combination of finely tuned features: wing twists, elbow angles, local airfoil variations, and sub-
tle thickness changes. These features are often shaped by hand, guided by intuition and experience
rather than parametric models or formal design tools. This makes them part of a broader class of “struc-
tured but irregular” geometries-objects that are largely planar but contain essential three-dimensional
variation, or what might be called (mostly) 2.5D shapes.

Despite the craftsmanship involved in their design, there is currently no computational tool that al-
lows throwers, designers, or researchers to systematically compare boomerang shapes, analyze their
aerodynamic structure, or explore design variations based on existing examples. This raises several
important questions: How can we systematically define and compare the geometry of handcrafted
aerodynamic shapes? What makes one boomerang fly better than another? How can small changes
in outline or curvature be traced and understood in a meaningful way? And more importantly, can this
understanding be used to model new shapes based not on trial-and-error, but on structured, data-driven
analysis?

As a competitive thrower, I've experienced how minor design changes - often made by intuition can lead
to dramatic differences in flight performance. Yet the lack of formal tools for comparison or modeling
based on real-world boomerangs leaves these insights largely unquantified.

To develop such a tool, a key computational challenge emerges: shape correspondences. Accurately
matching points and features across a set of handcrafted boomerangs is essential for any data-driven
analysis or modeling. However, this is not a trivial task. Most existing correspondence methods are
optimized for controlled settings, assuming dense datasets, consistent sampling, or global shape simi-
larity. These methods perform well on benchmarks, but they fail on objects like boomerangs.

Boomerangs highlight the limitations of current methods. While no two are exactly alike, most share a
recognizable structural layout: a central elbow connecting two wings and a continuous boundary curve.
This shared but flexible structure offers a pathway to develop correspondences, even in the face of
high global variation.

This thesis investigates whether it is possible to define a shape correspondence pipeline for this specific
class of shapes-structured, largely planar, and empirically derived. But beyond establishing correspon-
dences, the ultimate goal is modeling: enabling new boomerang designs to be generated from example
shapes with awareness of both structure and aerodynamic performance.

Though focused on boomerangs, the methods developed in this thesis aim to contribute more broadly
to the analysis and modeling of irregular yet structured 3D shapes, helping bridge the gap between
traditional craftsmanship and modern computational tools.
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1.1. Contribution
To address these restrictions, this research proposes a novel computational framework specifically
designed to analyze, parameterize, and reconstruct boomerang geometries systematically.

The core steps of the method involve:

1. Correspondence via Structural Landmarks: Given the inadequacy of traditional global shape-
matching methods for asymmetrical and handcrafted objects, structural control points (such as
wing tips, elbows, and prominent geometric features) are introduced.

2. Boundary Curve Extraction using Alpha Shapes: Rather than relying on standard geometric ap-
proximations, alpha shapes combined with boundary curve lifting from 2D to 3D is used, and
re-projection to systematically capture boomerang outlines.

3. Consistent Parameterization via Least Squares Conformal Mapping (LSCM): To systematically
analyze the shapes, LSCM is applied to achieve consistent UV parameterizations. This tech-
nigue minimizes angular distortion, preserving critical local aerodynamic features while enabling
accurate shape comparisons across different boomerangs.

4. Shape reconstruction via PCA and gradient optimization, and free-form deformation: New boomerang
geometries are generated using a PCA-based statistical model as a template. Gradient descent
is used to find a nearby shape in PCA space, followed by free-form deformation to better match
a target outline.

1.2. Key Academic Contributions
This thesis provides several distinct academic contributions to computational geometry and aerody-
namic shape analysis:

» A 3D Scanned Dataset with Established Correspondences: Over twenty high-performance com-
petition boomerangs were 3D scanned and post-processed to create a comprehensive dataset.
This dataset includes structured correspondences across multiple boomerangs, providing a valu-
able resource for further research and benchmarking correspondence techniques in related stud-
ies.

Introduction of a Specialized Framework for Aerodynamic Shape Correspondences: It explicitly
addresses the limitations of conventional shape-matching methodologies by integrating structural
considerations-such as airfoil geometry into the shape correspondence framework.

Bridging Empirical Craftsmanship and Digital Geometry: This research is the first to stimulate
computational formalization of empirically-crafted boomerangs, enabling their systematic analy-
sis, reconstruction, and optimization.

A Novel Approach to Boundary Definition and Parameterization: This framework demonstrates
how integrating alpha shapes with a 3D boundary curve for LSCM parameterization can yield
realistic results. It showcases the effectiveness of applying a restricted boundary condition within
an otherwise unrestricted parameterization method, offering precise control over seam creation
and ensuring consistency in shape correspondences.

Statistical Shape Reconstruction, Optimization and Reconstruction: Leveraging PCA combined
with gradient-based optimization and a free-form deformation aids in going from a set of 2D points
to a 3D shape.

Ultimately, this thesis provides a computational foundation for analyzing, reconstructing, and innovating
boomerang designs, bridging gaps between empirical craftsmanship, computational geometry and 3D
modelling.

Beyond immediate applications in competitive boomerang design, the methods presented herein may
extend to shape analysis and aerodynamic modeling in related fields where similar challenges regard-
ing empirical and intricate geometries persist.
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1.3. Report Structure

Chapter 2 reviews related work, highlighting existing approaches in boomerang design, shape corre-
spondences, parameterization, and statistical modeling.

Chapter 3 provides essential technical background on 3D scanning, anatomical boomerang features,
and mathematical concepts such as conformal mapping, Principal Component Analysis (PCA), and
Iterative Closest Point (ICP) alignment.

Chapter 4 describes the methodology in detail, including dataset creation, boundary extraction, align-
ment, UV mapping for correspondences, and PCA-based shape generation with Free-Form Deforma-
tion (FFD).

Chapter 5 outlines evaluation metrics assessing parameterizations and correspondences through dis-
tortion and distance measures, discussing practical interpretations.

Chapter 6 presents a series of experiments exploring the effects of parameter choices and method-
ological decisions, ranging from alpha shape tuning to PCA behavior and deformation performance.

Chapter 7 reflects on the results, discussing key findings, limitations of the current approach, and
potential directions for future work. Chapter 8 concludes the thesis with a summary of contributions
and final insights.

An appendix is included to cover supplementary material, such as methods not incorporated into the
main pipeline, relevant nomenclature, and documentation of the created dataset.
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Figure 1.1: Pipeline of the Methodology



Related Work

2.1. Boomerang Design and Aerodynamics

Although the physics of boomerangs has been studied extensively [18, 42, 16, 15, 41], the integration
of computational tools for their design and analysis remains limited. Most designs still rely on manual
crafting or basic 3D modeling techniques. While technologies like 3D printing and mold-based manu-
facturing highlight the potential of computational geometry to streamline the design process, they also
emphasize the difficulty of achieving aerodynamic precision and structural integrity.

2.2. Shape Correspondences

Establishing correspondences between shapes is a known problem in geometry processing. Whether
for shape interpolation, recognition, or statistical modeling, finding meaningful mappings between points
or regions of different shapes is a key enabler across domains like computer graphics, vision, and med-
ical imaging.

A wide range of techniques has been developed to tackle this challenge. For instance, recent work fo-
cuses on dense correspondences between genus-zero shapes, addressing the complexities of aligning
entire surfaces in a robust and automated manner [30]. Surveys such as [23] offer a structured overview
of these methods, organizing them by the types of assumptions they make, the features they rely on,
and their optimization strategies. Across the works, several recurring challenges emerge: managing
large deformations, handling partial data, and coping with complex or inconsistent topologies.

Different methodological choices tried to tackle these issues. Some approaches rely on segmenting
shapes into perceptually meaningful parts and then matching these parts across objects [28]. Others
take a deformation-driven route, iteratively refining correspondences by minimizing deformation energy-
a powerful strategy when shapes undergo non-rigid transformations or articulations [47]. A further
direction leverages spectral analysis, using Laplacian eigenfunctions to define correspondences in a
domain that is more invariant to noise and topological differences [22].

While many shape correspondence techniques are effective in general-purpose scenarios, applying
them to boomerangs proved challenging. Their assumptions-such as clean topology, global symmetry,
or elastic deformations-did not align well with the nature of handcrafted boomerangs. In particular,
methods operating in the spectral domain struggled with directional ambiguity, making it unclear which
regions of one shape should correspond to which regions of another.

These difficulties motivated the development of a dedicated correspondence pipeline tailored to boomerangs.
Rather than treating their semi-regular, (mostly) 2.5D-like geometry as a challenge, the approach in this
work approach leverages it as a structural advantage - incorporating domain knowledge through control
points and boundary-aware mappings. This allows us to construct correspondences that are not only
geometrically meaningful but also aligned with the functional design of each object.
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2.3. Parametrization

In the context of this thesis, parameterization plays a central role in establishing correspondences. By
flattening 3D surfaces to 2D domains in a consistent and conformal way, you can enable shape com-
parisons that preserve local geometric features and make meaningful alignment between structures
possible.

Mesh parameterization is widely used in texture mapping, simulation, and shape optimization. A com-
prehensive theoretical and practical guide to parameterization techniques is available in [19]. Founda-
tional work introduced Least Squares Conformal Maps (LSCM) for automatic texture atlas generation,
which has since become a standard method in the field [31].

Recent advances include techniques that combine intrinsic triangulations with parameterization to im-
prove robustness and efficiency [1], as well as spectral conformal parameterization methods that effec-
tively preserve conformal properties [35]. An efficient method for computing geodesic distances, known
as the heat method, provides a powerful tool for smooth and accurate parameterizations in complex
domains [7].

Further contributions propose local/global optimization approaches to improve parameterization quality
[33], and methods that address free-boundary linear parameterization under constraints [24]. Intrinsic
parameterizations of surface meshes have also been explored [11], and efficient boundary-based tech-
niques have been introduced to improve surface flattening [37].

A broad overview of historical developments and state-of-the-art methods can be found in comprehen-
sive surveys such as [13].

2.4. Deep Learning Approaches

In recent years, deep learning has emerged as a powerful tool for shape reconstruction, representation,
and parameterization. Several methods explore how neural networks can learn meaningful surface
representations directly from raw 3D data. For example, planar parameterization has been used to
drive symmetric shape reconstruction using neural architectures [21]. Other techniques, such as those
inspired by atlas-based learning, use deformable surface elements or learned patches to represent
collections of 3D shapes in an interpretable way, enabling both reconstruction and parameterization
[10].

Networks like SpiderCNN extend convolution operations to irregular point clouds, extracting local geo-
metric features for classification and segmentation tasks [46]. Hybrid models combine implicit surfaces
with geometric primitives to support both free-form design and engineering constraints in shape mod-
eling [43]. Furthermore, learning-based parameterization has been proposed specifically for aerody-
namic shape optimization, using either latent space embeddings or direct vertex mappings to enable
gradient-based design pipelines [44].

Despite these advances, several limitations persist when applying deep learning methods to the boomerang
shapes considered in this thesis. Most deep models rely on large training datasets and perform best
when shape variability is either global or follows smooth deformations. In contrast, prior to this work,

no dataset of boomerangs existed. These shapes are locally irregular and shaped by function rather
than data-driven priors. Moreover, neural parameterization techniques often lack geometric guaran-
tees such as conformality, and their outputs can be difficult to control or interpret in contexts where
precise correspondence is essential.

While some methods show promise in generalizing across collections of shapes, they are not yet robust
or accurate enough for the kind of high-fidelity, correspondence-driven modeling required in this work.
Additionally, many require retraining or extensive tuning to adapt to new classes of shapes. Given these
constraints, this thesis focuses instead on a geometry-driven pipeline, grounded in explicit structural
cues and conformal parameterization. Nevertheless, the growing body of work in deep shape learning
provides valuable inspiration and may become increasingly relevant as such models mature.
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2.5. Shape Reconstruction and Modelling with Statistical Models
Statistical models have previously been used in shape reconstruction and modeling, particularly in
medical imaging, vision, and design applications. These models leverage prior knowledge about geo-
metric structure to improve accuracy, robustness, and interpretability-especially in ill-posed or under-
constrained problems.

One classical approach to shape reconstruction is atlas-based reconstruction, where a predefined sta-
tistical model guides the recovery of a 3D shape - an approach closely aligned with the modeling
methodology used in this thesis. For instance, [27] demonstrates how a PCA-based anatomical prior
can be used to reconstruct 3D shapes from sparse 2D X-ray views. Similarly, statistical shape models
have been applied to tasks such as 3D/2D registration and segmentation. In [2], vertebrae are regis-
tered using a statistical model of spinal anatomy, while [17] employs a vertebra template with non-rigid
transformations to perform mesh warping for vertebra segmentation. These techniques are particularly
useful in the context of noisy medical imaging data.

Other methods have extended this to nonrigid shape alignment. For instance, [12] introduces a frame-
work for nonrigid image registration, which enhances alignment between shapes from multiple views.
Likewise, [32] integrates statistical priors into motion and geometry estimation pipelines to reduce ambi-
guity in monocular 3D reconstruction. Statistical models have also enabled real-time applications, such
as the facial animation system in [5], which uses online modeling to track and reconstruct expressions
in real time.

More recently, some approaches have combined statistical shape modeling with deep learning. These
include using latent shape spaces for parameterizing aerodynamic designs [25], or fusing CNNs with
statistical body models for robust 3D pose estimation from images [36]. While these methods show
promise for high-level reconstruction tasks, they often require large training datasets and lack fine
control over localized geometric features.

In contrast, traditional modeling tools such as Free-Form Deformation (FFD) remain highly relevant for
intuitive and locally-controllable shape modeling. Originally proposed in [38] and later extended in [6],
FFD provides a way to manipulate shapes using embedded control lattices, offering both global and
local deformation capabilities. Other refinement techniques such as As-Rigid-As-Possible modeling
[20] preserve fine-scale geometric detail during deformation and enable fast, interactive manipulation.
Related work also explores sketch-based modeling using annotated 2D inputs to produce structured
3D geometry [14], providing semantic control over complex shapes.

This thesis draws from both classical and modern modeling. A 3D PCA-based statistical shape model
is constructed from a dataset of boomerangs to define a low-dimensional, structured shape space.
This enables new boomerang shapes to be explored and optimized in a controlled and meaningful
way. Additionally, Free-Form Deformation from a 2D (sketch-based) perspective is used to provide
geometric flexibility when refining shapes toward target boundaries - preserving global structure while
allowing local variation.



Background

3.1. Anatomy of Boomerang

(a) 2-wing boomerang (b) 3-wing boomerang (c) Airfoil

Figure 3.1: Comparison of wing boomerangs and an airfoil.

Figure 3.1 illustrates two types of (right-handed) boomerangs: a classic two-wing (here: "V’-like shape)
design and a more modern three-wing variant, along with an airfoil for reference. A boomerang gener-
ally consists of multiple wings and a central section, known as the elbow, where the wings intersect.

* Wings/Arms: The long, curved sections of the boomerang, known as wings or arms, generate
lift during flight. The images depict both a two-wing and a three-wing boomerang, demonstrating
how the number of wings influences stability and flight dynamics. For right-handed boomerangs,
the left arm is called the dingle wing and the right arm the leading wing.

* Elbow: The elbow is the central junction where the wings connect. It plays a crucial role in
maintaining the boomerang’s balance and rotation.

« Airfoil Shape: Each wing’s cross-sectional profile resembles an airfoil, which is designed to
optimize lift. The airfoil (Figure 3.1c) provides a reference for understanding how wing shape
affects aerodynamic performance.

3.1.1. Boomerang airfoil
Each boomerang wing has specific airfoils that influence its aerodynamic properties:

» Leading Edge: The front edge of the wing that first contacts the airflow. It is typically rounded
and plays a key role in generating lift. On the right in Figure 3.1c.

* Trailing Edge: The rear edge of the wing where the airflow separates. It is often tapered or sharp
to control airflow and reduce drag. On the left in Figure 3.1c.

» Chord Line: An imaginary straight line connecting the leading and trailing edges. The angle of
attack, which affects lift and stability, is measured relative to this line.

7
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» An-/Dihedral Angle: The slight downward/upward tilt of the wings, which contributes to the
boomerang’s returning flight path.

3.2. 2D Alpha Shapes

Alpha shapes [3] provide a formal framework for reconstructing the "shape” of a set of unorganized
points in 2D or 3D space. The construction is based on Delaunay triangulation [29] and a parameter
«, which governs the inclusion of simplices (vertices, edges, and faces). A simplex is included in the
alpha shape if its circumscribing sphere has a squared radius less than o and does not contain any
other points from the dataset. Varying « allows the shape to transition from the convex hull (a« — o0)
[26] to the point set itself (o — 0) .

Let P C R™ be a finite set of points and 7 its Delaunay triangulation. The alpha complex K, is defined
as:
Ko ={0 € T | R(¢s) < Va and o is conflict-free} (3.1)

where R(o) is the radius of the smallest circumscribing sphere of the simplex o, and “conflict-free”
means that no other points of P lie inside this sphere.

The corresponding alpha shape S,, is the union of the simplices in K, representing a polytope that can
capture both topological and geometric properties of the original dataset. Alpha shapes can approx-
imate an object’s surface with provable guarantees, provided the point set satisfies certain sampling
conditions. These conditions ensure that the reconstructed alpha shape is homeomorphic to the origi-
nal object and that the approximation error is bounded.

Since the alpha-shape construction can produce a large number of edges and simplices, especially
for small values of «, a filtering step is often applied to extract only the most relevant structures. The
approach used in this thesis is to classify edges and retain regular and singular edges, which define the
primary (outside) boundary of the shape: on the boundary of the a-shape, but no incident to a triangle
of the a-complex. Additionally, small isolated components or noise artifacts can be removed by filtering
out short edges or components with low persistence in the alpha filtration. This post-processing step
helps ensure that the extracted border is a meaningful representation of the underlying shape while
reducing unwanted noise.

3.3. Conformal Mapping

Conformal mapping is a technique that transforms one surface onto another while preserving local an-
gles. Although this may alter the overall scale, it ensures that small features retain their shape. This
property makes conformal maps useful in areas like texture mapping, mesh generation, and geometry
processing. In 3D graphics, they are particularly valuable for creating UV parameterizations that re-
duce distortion while maintaining detail. In this work, conformal mapping will be applied with a defined
boundary as input.

3.3.1. UV Mapping

UV mapping refers to the process of projecting a 3D surface onto a 2D plane by assigning each vertex
a coordinate in a 2D texture space. This mapping allows for accurate texture placement on complex
models. A good UV layout aims to minimize distortion, preserve the shape of features, and prevent
overlapping regions. While many traditional approaches rely on manual tweaking to balance stretch
and uniformity, automated methods - especially those using conformal techniques - can significantly
improve the quality of the mapping.

3.3.2. Least Squares Conformal Maps (LSCM)

Lévy et al. [31] introduced Least Squares Conformal Maps (LSCM) as an efficient parameterization
method that minimizes angular distortion while maintaining computational efficiency. Unlike harmonic
maps or energy-based methods, LSCM formulates the parameterization problem as a least-squares
approximation of the Cauchy-Riemann equations. This formulation leads to the following advantages:

» Angle Preservation: LSCM minimizes non-uniform scaling and shear, maintaining local struc-
tures.
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» Automatic Boundary Handling: Unlike earlier methods that require boundary conditions (e.g.,
fixed convex boundaries), LSCM allows free-form boundary constraints. This property is heavily
used in this work.

* Robustness to Mesh Resolution: The resulting parameterization is independent of the resolu-
tion of the mesh, ensuring consistent UV layouts across different levels of detail.

» Numerical Stability: The objective function is quadratic and can be solved efficiently using nu-
merical optimization techniques such as the Conjugate Gradient method.

3.3.3. Mathematical Formulation

The LSCM method aims to find a conformal parameterization of a 3D surface by minimizing angle
distortions. Given a triangulated surface with vertices V' and faces T', a mapping (z,y, z) — (u,v) that
locally preserves angles is sought.

Conformality is measured using a complex-valued function U = u + iv, representing the 2D parame-
terization in the complex plane. The conformality condition states that the Cauchy-Riemann equations
should hold:

ou  oU
— +i— =0. 3.2

o +1i a9y 0 (3.2)
Since an exact conformal map is not always possible for arbitrary surfaces, LSCM minimizes the devi-
ation from this condition in a least-squares sense:

2

U 20\ 44 (3.3)

oz "oy

Here,

T is the set of all triangles in the mesh,

(z,y) are the local coordinates of a point in a triangle,

(u,v) are the 2D texture coordinates of that point,

U = u + v is the complex representation of the parameterization,
dA is the differential area element of the triangle.

Minimizing C'(U) results in a parameterization that is as conformal as possible while ensuring compu-
tational efficiency. Unlike other methods that require the boundary to be mapped to a convex shape,
LSCM is more flexible in its handling of boundaries. It requires only two fixed vertices to ensure a
well-posed system, but can also incorporate arbitrary boundary constraints if desired. In this work,
full boundary constraints are provided to guide the parameterization and ensure consistent alignment
across shapes.

The whole algorithm is outlined in Section two of [31].

3.4. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction technique used to find a low-dimensional
representation of high-dimensional data while preserving the most significant variations. In this case,
PCA is applied to a set of 3D shapes to identify the principal modes of variation.

3.4.1. Data Representation
Each shape in the dataset consists of n vertices, each with 3D coordinates. Here, each shape is
represented as a vector:

T
8; = [331 Yyr Z21 T2 Y2 22 - Tn Yn Zn] S R?)n (34)
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Given a collection of m such shapes, construct a data matrix:

S=[s1 s2 -+ sp] R (3.5)
where each column represents a shape.

3.4.2. Mean Shape and Centering
The mean shape is computed by averaging the vertex positions across all shapes:

m

s= 3 s (3.6)

i=1

To center the data, subtract the mean shape from each shape:

S.=8-s51T (3.7)
where 1 is a vector of ones.

3.4.3. Singular Value Decomposition (SVD)
Instead of computing the covariance matrix S.SZ, which is large and computationally expensive, per-
form Singular Value Decomposition (SVD) directly on the centered data:

S.=UuxvT (3.8)

where:

« U € R3"*™ contains the principal components (eigenvectors).
* 3 is a diagonal matrix with singular values.
* 'V contains the right singular vectors.

The principal components (columns of U) represent the modes of shape variation.

3.4.4. Shape Deformation using PCA Modes
A new shape can be generated by adding a weighted sum of principal components to the mean shape:

k
s’ =5+ Z wju, (3.9)
j=1

where:

« s’ is the deformed shape.

* u; is the j-th principal mode (column of U).

* w; is a weight controlling the influence of the j-th mode.

* k is the number of principal components used (typically much smaller than 3n).

Similarly, starting from an input shape s;, a deformation can be applied using:

k
s’:si+ijuj. (3.10)
j=1

By adjusting the weights w;, new plausible shapes can be synthesized while preserving the dominant
geometric variations observed in the dataset.
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3.4.5. Justification

Principal Component Analysis (PCA) is particularly suited to this study due to its effectiveness in cap-
turing dominant shape variations from empirical data without relying on predefined parametric models.
PCA allows the extraction of statistically significant deformation modes (deformations from a template),
providing a foundation for generating boomerang shapes based on observed geometric variance. Al-
ternative methods, such as neural networks or parametric regression, often require large datasets or
predefined parameters, neither of which aligns well with empirically derived, small-scale boomerang
data. By employing PCA, this research delivers computationally feasible models.

3.5. Iterative Closest Point (ICP)

The lterative Closest Point (ICP) algorithm is a widely used method for aligning two point clouds or
surfaces by iteratively minimizing the distance between corresponding points. It is commonly applied
in 3D shape registration, object tracking, and reconstruction tasks. Given an initial estimate of the trans-
formation, ICP refines the alignment by iteratively finding closest point correspondences and updating
the transformation.

3.5.1. Algorithm Overview
Given two sets of points:

* P ={p1,p2,...,pn} (the source point cloud)
* Q={q,q,...,qm} (the target point cloud),

ICP seeks a rigid transformation (R, t), where R is a rotation matrix and ¢ is a translation vector, such
that:

* gk . . % 2
R*t —argrg}?ZIIRpﬂrt a; 1% (3.11)

where ¢} is the closest point in ) to Rp; + t.
The ICP algorithm follows these iterative steps:

1. Find correspondences: For each point p; € P, find the closest point ¢ € Q.

2. Compute transformation: Solve for the optimal rotation R and translation ¢ that minimize the
mean squared error.

3. Update and iterate: Apply the transformation to P and repeat until convergence (i.e., when the
change in error falls below a threshold).

3.5.2. Computing the Optimal Transformation
To compute R and ¢, the problem is formulated as minimizing the sum of squared errors:

E(R,t) =Y [IRp; +t —q; | (3.12)

This is solved using the Singular Value Decomposition (SVD) approach:

1. Compute the centroids of P and Q:

p= Y n a=2 Y (3.13)

2. Construct the covariance matrix:

H=> (-0 -7 (3.14)
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3. PerformSVDon Has H = UXVT.
4. Compute the optimal rotation as R = VUT.

5. Compute the optimal translation as t = § — Rp.



Methods

The implementation developed as part of this thesis is publicly available at:
https://github.com/NilsvVeen/MSc-Thesis-TUD---boomerang-correspondence

The dataset used in the experiments, consisting of scanned and parameterized boomerangs, is acces-
sible at: https://graphics.tudelft.nl/NilsVanVeen

4.1. Dataset Collection

To build a dataset of boomerangs for this research, a range of competition-grade , non-standard "V”-
shaped and multi-blade boomerangs were scanned using a Creaform Go!SCAN device. This handheld
3D scanner offers an accuracy of up to 0.05mm and a resolution of 0.1 mm [8]. Compared to alterna-
tives such as photogrammetry [34], it obtains 3d models faster and with a more reliable capture of
fine details, critical for modeling the intricate twists, curves, and thickness variations that influence
boomerang aerodynamics.

Since the Go!SCAN device cannot capture an entire boomerang in a single pass, each boomerang
was scanned from multiple static orientations to ensure comprehensive surface coverage. The result-
ing partial scans were then merged into a cohesive 3D model using VXelements software [9], which
supports user-guided alignment based on markers or reference points. Although the exact alignment
algorithm used in VXelements is not disclosed, it is likely based on an lterative Closest Point (ICP)
method [4] for minimizing point-to-point distances in overlapping regions. The software also includes
noise filtering and outlier rejection mechanisms that help achieve robust and accurate alignment.

After the scans were merged, additional post-processing was applied: small holes were filled, surfaces
were smoothed, and local artifacts introduced during scanning or alignment were corrected. In most
cases, the resulting meshes were decimated (in Blender) to reduce complexity and improve computa-
tional efficiency in later stages of the pipeline.

Some boomerangs presented scanning challenges due to thin airfoils, reflective surfaces, or transpar-
ent materials. To improve scan quality, these were treated with a temporary chalk spray to enhance
surface visibility. Scanning was conducted with an accuracy setting between 0.2 mm and 0.4 mm. While
the resulting 3D models reliably captured overall geometry, minor deviations were observed. For in-
stance, boomerangs with a measured thickness of 3—3.4 mm were occasionally reconstructed at slightly
higher values (3.5-3.8 mm), likely due to smoothing and surface interpolation during the alignment and
meshing process.

The scanned and processed boomerangs form the foundation of the dataset used throughout this the-
sis.
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4.2. Boundary Condition

A fundamental component of the proposed correspondence pipeline is the parameterization of boomerang
surfaces. Due to the structured yet non-standard nature of boomerang geometries - largely planar but
exhibiting critical three-dimensional variations - boundary-based parameterization offers a foundation
for establishing shape correspondences.

It is important to note that boomerangs, as scanned 3D objects, are typically closed surfaces and
do not possess true geometric boundaries. The boundaries referred to in this work are introduced
algorithmically: they are artificial seams created by projecting the shape from a top-down view and
extracting a representative 2D outline. This outline, derived from the surface silhouette of the projected
mesh, acts as a boundary condition for conformal parameterization. In this way, a consistent structure
is imposed across shapes that otherwise lack a natural edge.

To parameterize the surfaces, Least Squares Conformal Mapping (LSCM) is used. This technique min-
imizes angular distortion when flattening a 3D surface into a 2D domain. The result is a UV coordinate
system that places each shape into a shared parametric space.

While LSCM typically requires only two fixed vertices to anchor the parameterization, it also supports
additional positional constraints. In this work, the flexibility of LSCM is utilized by constraining the entire
(artificially introduced) boundary of each shape rather than relying solely on minimal anchors. This
approach enforces shared boundary conditions across different boomerangs, resulting in compatible
UV maps and correspondences in the parameter domain.

In this approach, two shapes are aligned by first matching their extracted boundary curves, then using
one as a reference for the other. Specifically, Shape 1 is projected from a top-view to define a 2D
boundary outline and this is used as the shared boundary constraint for Shape 2. Establishing a one-
to-one mapping between the outlines allows both shapes to be parameterized using LSCM with a
consistent boundary, ensuring meaningful correspondences across their surfaces.

4.2.1. Step 1: Align objects in world space

(a) Boomerang input (b) Boomerang Top-View-Aligned
Figure 4.1: Plane fitted alignment

Both shapes are rotated in the world space so their tops or bottoms face the same direction. This
is done by fitting a plane to each shape and ensuring the plane’s normal vector points in the desired
direction, e.g., (0,0,1).

The plane fitting in is achieved by minimizing the perpendicular distances of the vertices to the plane.
Instead of solving the full optimization problem:

N
. 2 _
min 2221 (n-v;+d)”, where|n| =1 (4.1)

)

a simplified version is used by assuming the plane passes through the centroid of the points (C). The
centroid is calculated as:

1 N

=



4.2. Boundary Condition 15

where v; are the vertices of the shape.

The covariance matrix of the points, computed as:
M= (vi-C)(vi-C)T (4.3)

captures the variance in all directions. The plane normal vector n is then found as the eigenvector
corresponding to the smallest eigenvalue of M.

Thus, minimizing:

N
miny~ (07 (v -~ C))° (4.4)
1=1

where the plane offset is implicitly given by d = —n ' C.

Users can manually flip the object if needed by rotating it 180° around a chosen axis to ensure consistent
orientation, aligning the normal vector to the desired direction, e.g., (0,0, 1).

4.2.2. Step 2: Project onto a parallel plane
Once aligned, each shape is projected onto a plane parallel to the fitted plane. In the general case, the
projection is computed as:

vi=v;,—(n-(v;—c))n (4.5)
where c is a point on the plane, and n is the plane normal. This formula ensures that the points are
projected orthogonally onto the fitted plane.

However, if the plane normal n aligns with the z-axis (e.g., after alignment in Step 1), the projection
simplifies to simply discarding the z-coordinate of each vertex:

vi = (i, i) (4.6)

(a) Boomerang input (b) Projection

Figure 4.2: Projection from a 3D shape to a 2D Shape

4.2.3. Step 3: Compute the 2D outline using Alpha Shapes

Using the 2D projections, the 2D alpha shape is computed for each object.

The « parameter is adjusted iteratively by the user to balance capturing the outer boundary while
minimizing internal sub-boundaries. Care must be taken not to use an « that is too large, as it may
introduce gaps in sharper corners, reducing accuracy.

How « is picked, is discussed in section 6.1.
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(a) 2D projection (b) 2D « shape

Figure 4.3: From a projected 2D shape to a 2D « outline

4.2.4. Step 4: Sort the boundary curve
The algorithm sorts the boundary vertices

{vi,v9,...,v,} withv; € R? (4.7)

using a nearest-neighbor approach. The steps are as follows:
Start with an arbitrary vertex, say v;,. Mark it as visited, and initialize the sorted sequence:
81 = U4y (48)

The Euclidean distance between two vertices v; and v, is given by:

d(Ui,Uj) e \l Z (UEI‘C) _ 1}§/€))2 (49)

k=1
For each subsequent step [ = 2,3,...,n, from the current vertex s;_, select the next vertex s; from
the set of unvisited vertices
S\{Sl,SQ,...,Slfl} (410)
such that:
s = arg min d(s;j—1,v) (4.11)

veS\{s1,52,..-,81—1}

Mark s; as visited and update the current vertex to s;.
After all vertices have been visited, the sorted list for Shape 1 is:
SBVshape 1 = {51,52,---,5n} (4.12)

Similarly, for Shape 2, the sorted boundary vertices are given by:
SBVshape 2 = {51, 85, .-, 8.} (4.13)

Since the choice of the starting vertex affects the traversal direction (clockwise or counterclockwise)
in the XY-plane, a post-processing step is applied. If the user-specified landmarks are provided in a
clockwise order and the computed curve is counterclockwise, the order of the vertices is reversed to
ensure consistency.

4.2.5. Step 5: User-defined landmarks

Since the outlines (curves) have different dimensions (number of points), users can select landmarks
along the boundaries that should correspond to each other. These landmarks L act as anchor points
for the parametrization. These points are the first correspondences. An example can be observed in
Figure 4.4 where there are four landmarks (at the tips of the wings, inner and outer elbow) between
two shapes.

=
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.

Figure 4.4: User-defined landmarks on two shapes

4.2.6. Step 6: Apply constant speed parametrization over the unit interval be-
tween landmarks

Between each pair of corresponding landmarks, constant speed parametrization over the unit interval

is applied to both shapes.

Denote the n landmarks as:
Landmarks L = {l1,l2,...,1,} (4.14)

Equalizing Between Landmarks

In the implementation of this work, the number of vertices between corresponding landmarks in Shape
1 and Shape 2 is balanced (equalized). This is necessary because the two shapes may have different
vertex distributions, meaning one shape could have more points between landmarks than the other.

‘{St78t+17--'7sq}| 2 ‘{5;75;+17---7S;~}} (415)

To formalize this, let’s define:

L1 = {s¢, 8141, .., 54} as the set of vertices between two consecutive landmarks in Shape 1, where ¢
and q are the indices of the landmarks in Shape 1.

Ly = {s},,8,+1,---, 5.} as the corresponding set of vertices in Shape 2, where p and r are the indices
of the landmarks in Shape 2.

These indices are determined based on landmark positions:

t and ¢ are the indices of the start and end landmarks in Shape 1. p and r are the indices of the
corresponding start and end landmarks in Shape 2.

The goal is to ensure
L] =~ [L (4.16)

While omitting this step would not necessarily break the process, it helps prevent an excess of points in
Shape 1 (or vice versa) from having too few corresponding matches in Shape 2. This imbalance could
introduce inaccuracies when lifting the curve in later stages. Equalizing beforehand ensures a more
consistent mapping and reduces unnecessary computations.
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Parameterization on Shape 1
For Shape 1, consider the sorted boundary vertices {si,so,...,sy} along the curve. The constant
speed parametrization over the unit interval between landmarks /; and /;, ; is defined as:

i»_ S; —S,;_
mzzkw” -1 u; € [0,1] (4.17)

N 9
Zj:l Isj —sj-1ll

where s; represents the jth vertex in the sorted boundary of Shape 1, and the index j runs over the
vertices between landmarks [; and [;41.

Parameterization on Shape 2

For Shape 2, assume the sorted boundary vertices are denoted by {s,s5,...,s},}. To establish a
correspondence with Shape 1, adjust the parameterization of Shape 2 to match that of Shape 1 as
follows:

Step 1: Compute the constant speed parametrization over the unit interval for Shape 2

;s sl
uy = S, uj € [0,1] (4.18)
Zk:1 ||Sk - Sk—l”

Step 2: Find the Corresponding Interval For each parameter «; from Shape 1, identify two adjacent
parameters u;, and u;_ , in Shape 2 such that:

wy, < up < up g (4.19)

This step ensures that the precise interval on Shape 2 is located where u; falls in Shape 1, allowing
interpolation between s and s; . By doing so, you can guarantee that the corresponding point on
Shape 2 is positioned at a relative distance along its boundary that mirrors the distance traveled along
Shape 1. In other words, it preserves the proportionality of the boundary walk between the two shapes.

Step 3: Interpolate the New Point on Shape 2 Once the correct interval is identified, compute the
interpolation factor:

oy
=t (4.20)
Uptq — Uk
Then, the new corresponding point on Shape 2 is obtained by:
si =(1—t)s, +ts, 4.21)

This yields a new set of points on Shape 2 that match the parameterization of Shape 1.

Note that in computations, there is one edge case where a point may be indexed across the boundary
indices. Specifically, if u; falls near the end of the parameterization in Shape 1, its corresponding
interval in Shape 2 may wrap around, requiring special handling to ensure continuity.

In Figure 4.5, the constant speed parametrization over the unit interval between two landmarks is
illustrated. The parameterization is color-coded in a rainbow gradient, allowing for an intuitive visual
representation of how the parameter values progress along the shape. In particular, you can observe
a one-to-one mapping between {si,ss,...,sy} and {s{,s},..., s }.

This step is necessary because simply assuming a one-to-one mapping between existing vertices would
be incorrect. The vertices in Shape 2 may have varying distances between neighbors, meaning the
total length of the boundary traversal could differ from that of Shape 1. By applying constant speed
parametrization over the unit interval, it ensures that longer sections receive proportionally larger spac-
ing, while shorter sections have smaller spacing, preserving the relative distribution of points along the
shape. Additionally, this step is helpful to minimize small inaccuracies at the boundary level, which mag-
nify during parameterization and reconstruction stages, potentially resulting in substantial deviations in
predicted shapes.
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(a) Unit parametrization between two landmarks on (b) Unit parametrization between two landmarks on
Shape 1 Shape 2

Figure 4.5: Unit parametrization between two landmarks on two shapes. Color encoded

4.2.7. Step 7: Lift the 2D curve to 3D
The 2D boundary curves are mapped back into 3D space. For both shapes, first calculate the average
z-value (thickness) of the entire mesh:

1 N
E= ; 2 (4.22)

where z; are the z-coordinates of the mesh vertices and N is the total number of vertices in the mesh.

Next, use the average z-value to lift the 2D boundary curve to a plane:

P, = (ps,,Py,, Z) foreach (ps,,py,) € 2D curve (4.23)

where (p,,, py,) represents the coordinates of each point on the 2D curve, and z is the average z-value
computed across the entire mesh. Note here that for shape 1 (p,,, py,) = (si,2, si,y) and for shape 2
(Pa;s Py:) = (874, 57,,)- An example is show in 4.6.

(a) Lifted curve to a plane in 3D, side view (b) Lifted curve to a plane in 3D, view from tip

Figure 4.6: Lifted curve to a plane in 3D, two perspectives

Once the 2D points are lifted to 3D-positioned in the middle of the boomerang’s height on a plane,
each (z,y, z) point of the boundary curve is projected onto the nearest point on the mesh surface. This
nearest point, denoted by P, is computed by finding the point on the mesh that minimizes the Euclidean
distance to the lifted point P;:

P, = arg min IP; — Q| (4.24)

Q€Emesh surface

Note that P} may lie on a face or an edge of the mesh rather than exactly at one of its vertices.

=
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To ensure the boundary curve aligns precisely with the mesh, identify the mesh vertex closest to P by
computing
P, = arg min P, — Pyl (4.25)

P emesh vertices

Once the closest vertex P; is determined, its coordinates are updated to match those of P;, thereby
aligning the mesh with the boundary curve.

(a) Lifted curve to a plane in 3D, side view (b) Lifted curve to a plane in 3D, view from tip

Figure 4.7: Lifted curve to a plane in 3D, two perspectives

Both the projected boundary curve and the updated mesh are shown in Figure 4.7. In Figure 4.6, the
boundary points are initially positioned at a uniform height, often above the mesh, giving the appearance
that they are "floating” in space. After projection, as seen in 4.7, these points are precisely aligned
with the mesh surface. The boundary points typically follow the most prominent features of the airfoil
geometry, particularly near the leading and trailing edges, where the curvature is steepest. Specifically,
they align with the uppermost regions of the leading and trailing edges, just before the surface curves
downward, essentially near the points (but still above) where the chord line intersects these edges.

4.2.8. Making the 3D Curve edge-connected

In cases where multiple vertices are closest to a single projected point, several boundary vertices are
discarded to ensure that each mesh vertex is only shifted once. A side effect of this simplification is the
loss of some correspondences between boundary vertices.

Using Least Squares Conformal Mapping (LSCM) requires at least two boundary vertices to function
correctly. During experimentation (see Section 6.7), it was observed that LSCM performs sub-optimally
when the boundary vertices are not directly edge-connected. To address this, the boundary vertices
are connected as follows:

1. For Shape 1: For each boundary vertex B; mesh 1 0N the 3D mesh, check if the next boundary vertex
shares an edge. If an edge exists, continue to the next vertex. Otherwise, calculate the shortest path
between the current boundary vertex and the neighboring boundary vertex using Dijkstra’s algorithm.
The vertices along this shortest path are added to the set of boundary vertices, resulting in an updated
boundary By, -

2. For Shape 2: Repeat the same process for Shape 2, resulting in an updated boundary By, -

Initially, there is a one-to-one correspondence between the original boundary vertices of the two meshes:

B; Mesh 1 <> Bi Mesh 2 (4.26)

However, for the newly added boundary vertices, By, 1 @and By 2, NO Such correspondence exists
because the two meshes may have different topologies. To establish a correspondence between the
new boundary vertices of Shape 2 and Shape 1, proceed as follows:

1. Identify Newly Added Vertices: Identify vertices in B}, », that are not part of the original boundary

Bhesh 2:
BI/\;Iesh 2= BI/VIesh 2 \ BMesh 2 (4.27)
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2.Find Neighbors: For each new boundary vertex B;'\eq, . find its two neighboring vertices in Buesn 2,
denoted as B,;,, mesh 2 and B, mesh 2. Let their indices in Byesh 2 be m and n, respectively:

/ /
Bj. Mesh2 = BmMesh 2, Bj mesh2 = Bn Mesh 2 (4.28)

3. Compute Shortest Paths: Calculate the shortest edge path between Bj yeq 2 and B yeqn - AlsO,
calculate the shortest edge path between B, ¢, @nd the new boundary vertex BYyjeqp 2-

4. Calculate Unit Distance: Compute the relative parameterization distance percentage dp; of Bngesh 2
along the shortest path from B;, eq, 2 10 B pesh 2

B! — B
dpi _ H i,Mesh 2 k,MeshZH (4.29)

”Bl/,Mesh 2 BI/c,Mesh 2”

where || X|| is the distance walking over the edges.

5. Calculate Distance to Walk in Mesh 1: Using dp;, calculate the distance d; to walk along the corre-
sponding path between B, mesh 1 and B), mesh 1:

d; = dp; - || BnMesh 1 — B Mesh 1| (4.30)

This d; represents the scaled distance along the path in Mesh 1. To find the exact point on Mesh 1,
you "walk” along the edges of the connected graph between B,, mesh 1 @and B, mesh 1, Summing edge
lengths until reaching the desired distance d;.

Since this involves traversing edges of the connected graph, the process is as follows: Startat B,,, mesh 1-
Traverse the edges along the shortest path toward B, mesh 1, keeping a running sum of the edge lengths.
Once the cumulative distance surpasses d;, identify the two neighboring vertices connected by the
edge containing the target point. Interpolate the position of the target point along this edge based on
the remaining distance.

6. Unit Parameterize with Shape 1:

"Mesh1 = (1 — @) - By Mesh 1 + @ - By Mesh 1 (4.31)

where B, mesh 1 and By mesh 1 are the two neighboring vertices, and « is the interpolation factor calcu-

lated as: R e Dist
.,  Remaining Distance 4.32)
|| Bg Mesh 1 — Bp mesh 1|

7. Repeat for All New Points: Perform this process for all new points in By, , to obtain the corre-
sponding updated boundary By, ;. Note that there is now a correspondences B}'yiesh 1 <> Bi'mesh 25
where By, » has vertices in the original mesh of shape 2 while By, 4 has no vertices in the original
mesh of shape 1.

4.2.9. Step 8: Calculate UV Maps

You want the boundary of the first shape to be used as the connected boundary. Therefore, for shape
1, use the connected vertices of itself, i.e., By,.q, 1- FOr the second shape, you can use the indices from
Bijesh » 10 map to Byjq, - To goal here is to map from a vertex to a boundary vertex location in the UV
map.

Hence,
UV, = LSCM(Shape 1, Indices(Byiesh 1) s Buesh 1) (4.33)

where LSCM (D, E, F'), means for Shape D and the indices E; you map to vertices F;.
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(a) Boundary curve before improvement (b) Boundary curve after improvement

Figure 4.8: Before and after view of the boundary curve improvement, observe three added vertices to make all vertices
neighbor-connected

(b) UV map of shape 1

(d) UV map of shape 2

(c) Checkerboard visualization on input shape 2

Figure 4.9: Input meshes with their checkerboard visualization to show UV distortion, and their UV maps

By using the boundary of Shape 1 as a shared constraint, a consistent UV parameterization is ensured
between the two shapes in the following steps.

Note here, if there are exact vertex-to-vertex mappings, then you might have to use both correspon-
dences (o : Concatenation), i.e.

UV, = LSCM(Shape 2, Indices(Bjesh 2 © BMesh 2) » Biesh 1 © BMesh 1) (4.35)

Figure 4.9 shows the results.

4.3. 3D Shape Correspondence

With UV maps for both shapes, a one-to-one vertex correspondence is established as follows:

1. Boundary-guided segmentation: Using the previously computed boundaries (i.e., By 1 @Nd Byeqn 2)»
split each shape into two parts: top and bottom.

2. Vertex correspondence: For each vertex v; in Shape 1:
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Identify the UV coordinate (u,v); of the vertex and determine whether it lies in the top or bottom region
using the boundary information, i.e., side classification like in Figure 4.10 . The algorithm used is
described in Section A.1.

Ve S

(a) Shape 1 side view (b) Shape 1 front view (c) Shape 1 back view (d) Shape 2 side view (e) Shape 2 front view (f) Shape 2 back view
Figure 4.10: Side, front and back view for input shapes. White is one side and pink is another side.
Locate the corresponding face in Shape 2’s UV map that contains (u,v);. Since the UV map contains
faces for both regions of the object, first look for the face on the same side (top or bottom) as v; in

Shape 1. If (u,v); is close to the boundary in UV space, a mismatch may occur, then also check the
other side.

In cases where (u,v); does not lie in any UV face of Shape 2 (which should theoretically be rare),
project (u,v); to the closest face in UV space. This provides a reasonable approximation but may
result in minor inaccuracies. Such cases can usually be avoided by addressing boundary alignment
issues as described in Step 4.2.8.

Compute the barycentric coordinates for (u, v); in the corresponding face:
3
V; = Z )\jVj, Z )‘j =1 (436)

where )\; are the barycentric weights for the vertices v; of the triangle in Shape 2 containing (u, v);.

The interpolated position v; in Shape 2 becomes the correspondence for v; in Shape 1.

y> e
y v ///
v
oM.
v
7
(a) (u,v); in UV map of (b) (u,v); with (u,v);'’s (c) v'; with v;’s around it of (d) v’; of output Shape 2,
Shape 1, and zoomed in around it in UV map of input input Shape 2, and zoomed and zoomed in
Shape 2, and zoomed in in

Figure 4.11: Barycentric mapping using UV maps with similar outlines.

An example of the one-to-one correspondences between the models is shown in Figure 4.12. In this
visualization, a color mapping is used to highlight the matching locations, with each color representing
a specific pair of points, facilitating the identification of regions with high similarity across the models.
While assessing the overall quality of the correspondences can be challenging at first glance, specific
regions provide more clarity. For instance, note the increased green area in Figure 4.12c compared to
Figures 4.12a and 4.12b. This is justified, as the elbow in Figure 4.12c¢ is larger, which accounts for the
difference.

4.4. Generating New Shapes

Based on the dataset of corresponding shapes, a PCA model is created, serving as a template to
deviate from. The detailed procedure for performing PCA is described in Section 3.4. Using this PCA

=
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(a) Shape 1 (b) Shape 2 one-to-one to Shape 1 (c) Shape 3 one-to-one to Shape 1

Figure 4.12: One-to-one mappings between input Meshes

model, you can generate new shapes by adjusting the weight vector w. The goal is to find the optimal
weight vector such that the 2D projection of the reconstructed shape best matches a given set of outline
points. These outline points are provided by the user and represent a desired shape outline. Once the
optimal weight vector is found, it can be used in the 3D model for further shape generation.

4.4.1. Mean Shape Projection

The mean shape gmean is given as a (3N, 1) vector, where each triplet corresponds to a 3D point. To
match this to the 2D outline points, only the z- and y-coordinates are extracted of the mean shape,
effectively ignoring the z-coordinate for the 2D projection. This allows us to form a 2D representation
of the shape, which is useful for matching the reconstructed shape to the user-provided outline points.

The 2D projected mean shape pmean is represented as:

pmean:[xl Yypr T2 Y2 ... IN yN]T€R2N (4.37)

where N is the number of points in the shape. This vector includes only the = and y components of
each point in the mean shape, arranged sequentially.

4.4.2. Eigenvector Projection

The eigenvectors G represent the principal components of the shape variation in 3D space. The eigen-
vectors are obtained after performing PCA, which models the variation in the dataset of shapes. Each
eigenvector corresponds to a direction of maximum variance in the shape data.

For generating new shapes, project the eigenvectors onto the 2D plane by extracting only their z- and
y-components. This allows us to use the 2D projections of the eigenvectors in the reconstruction of the
2D projected shapes. The eigenvectors are reshaped into a matrix P of size 2N x k, where k is the
number of eigenvectors used.

Gll G12 cee le
Go Goo - Goy,
P= _ _ _ _ € R2NVxk (4.38)
Geony Genyeg -+ Gengk

Here, G;; represents the j-th component of the i-th eigenvector, and the matrix P is the 2D projection
of the eigenvectors of the shape model.

4.4.3. Outline Points and Closest Matches

The outline points s are provided by the user and are represented as a set of 2D points. These points
are flattened into a single vector s of size 2M, where M is the number of outline points. This step
is necessary to match the dimensionality of the outline points with the projected mean shape and the
eigenvector projections.

s=[2 v wh uh ... 2hy yh] €RPM (4.39)
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For each outline point (z7, y;), find the closest point in the projected mean shape pmean by minimizing
the squared Euclidean distance between the outline point and the mean shape points:

i* = argmin ((z; — 2)* + (y: — ¥})?) (4.40)
This ensures that each outline point corresponds to the closest point in the projected mean shape.

4.4.4. Gradient Descent with Jacobian
To find the 'optimal’ weight vector w, gradient descent can be used. The weights are initialized as:

w=0¢cRr (4.41)

The residual vector r is computed as the difference between the outline points and the corresponding
projected mean shape points:

17/1 — I’q
Yi— Yix
33/2 — l‘i;
r=| Y27V | eRM (4.42)
Thy = Tiy,
_yﬁw — Yiz, |

Note the z;, points are calculated from the latest preconstruct iNstead of just pmean.

The Jacobian matrix J is constructed by collecting the eigenvector components corresponding to the
selected mean shape points. It represents the linear change in the projected shape with respect to the
weights:

Piz1 Pia2 ... Pig
Piz1 Pia2 ... Pig
Pis1 Pio ... P
J=|Disr P2 Pigk | ¢ R2Mxk (4.43)
Pir P2 Pig
_Pile Pi?\42 e Pi?vjk_
The gradient VE of the energy function is computed as:
VE =Jr (4.44)

The Hessian matrix H is the product of the Jacobian and its transpose:

H=JJ (4.45)

The weight update step in gradient descent is:

w <« w+nH 'VE (4.46)

where 7 is the learning rate.



4.4. Generating New Shapes 26

4.4.5. Stopping Condition
Gradient descent stops when the update step is sufficiently small, indicating that the algorithm has
converged to a solution:

[H'VE| < ¢ (4.47)
where ¢ is a small threshold that determines when convergence is reached.

4.4.6. Reconstruction
The final reconstructed shape is obtained by adding the weighted sum of the eigenvector projections
to the projected mean shape:

k
Preconstructed = Pmean + Z w;P; (4.48)

Jj=1

where P; is the j-th eigenvector projection. The reconstructed shape is a 2D representation that best
fits the user-provided outline points.

Additionally, the shape can be reconstructed in 3D using the full PCA model as:

k
S/ =s; + ijuj (449)
j=1

where s, represents a shape in the original dataset, and u; are the eigenvectors of the PCA model.

4.4.7. Reqgularization

Overfitting can occur when the parameterization adapts too closely to local variations in the shape,
leading to instability or excessive deformation. To mitigate this, a regularization term can be introduced,
A, where 0 < A < 1.

Regularization helps smooth the solution by balancing the influence of the original shape and the defor-
mation applied. A lower \ enforces stronger adherence to the initial structure, while a higher X\ allows
for greater flexibility in the deformation. This results in a more stable parameterization that avoids
excessive distortion while preserving essential geometric features.

The regularized model is defined as:

k
s =5+ A wiu (4.50)

j=1

4.4.8. Non-Rigid ICP with Free-Form Deformation

Due to the intrinsic limitations of PCA, certain shapes are difficult to represent accurately, especially
when they lie far from the mean shape or involve complex deformations. This happens because PCA
relies on linear combinations of principal components, which may not capture the non-linear nature of
certain deformations or the full variability of the shapes. As a result, directly applying PCA to generate
these shapes might lead to unrealistic or poorly fitted results.

To overcome this, a hybrid approach is used. First, estimate the shape as closely as possible using
the PCA model and the input shapes. This provides a rough approximation of the target shape in the
PCA space. Then, to refine the shape and better account for local deformations, apply a Free-Form
Deformation.

To align the selected points with the target shape, employ a non-rigid Iterative Closest Point (ICP)
algorithm using Free-Form Deformation (FFD). This method allows for smooth, flexible deformations
by representing the transformation as a weighted combination of control point displacements. Unlike
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rigid transformations, which preserve distances and angles, FFD provides greater flexibility by allowing
localized shape adaptations while maintaining smoothness across the entire domain.

Bounding Box Computation
Before computing deformation influences, establish a bounding box that includes both the shape V
and the selected points S:

Tmin = Min (min Vi,0, min Sj_yo), Tmax = Max (max Vi0, max Sjyo), (4.51)
i J 1 J

Ymin = Min (min Vi1, min Sj71), Ymax = Max (max Vi1, max Sj,l). (4.52)
3 J 2 J

Since the deformation is primarily constrained to the XY'- plane, a 2D bounding box is used instead of
a 3D one. This choice simplifies the process by focusing on the projected view where depth variations
are irrelevant, reduces unnecessary degrees of freedom by preserving structure along the z-axis, and
improves efficiency by lowering computational cost and avoiding overfitting from an overly complex 3D
control grid.

To avoid numerical issues when the bounding box is too small, a minimum size is enforced:

Tmax = Tmin T max(l.O, Tmax — xmin)» Ymax = Ymin + max(l.O, Ymax — ymin)~ (453)

Why Free-Form Deformation (FFD)?

Free-Form Deformation (FFD) is selected over alternatives like Thin-Plate Splines, Radial Basis Func-
tions or a nonlinear deformation term, due to its ability to produce smooth yet localized deformations,
while keeping it simple. By using a structured control point grid, FFD offers a regular and efficient
parameterization, making it well-suited for iterative optimization. This grid-based approach allows de-
formation to be guided locally while maintaining smooth global transitions, preserving important shape
features without introducing unnecessary complexity. Moreover, the use of bilinear interpolation en-
sures a stable transformation that avoids the overfitting and oscillations often seen in higher-degree
based methods.

FFD Influence Weights
Each vertex v; € V is influenced by a set of four neighboring control points in the deformation grid. To
determine these influences, map each vertex into a normalized grid space:

sw:M(Nx—l), Sy:M(Ny_1)7 (4.54)

xnlax - xmin ymax - ymin

where N, and N, denote the number of control points along the x and y dimensions, respectively.

Each vertex falls within a grid cell, indexed as (|s.], |sy]). Letu = s, — |s,] and v = s, — | s, | denote
the relative position within the grid cell. The four influencing control points and their bilinear weights
are:

woo = (1 —u)(1 —v), wyp = u(l —v), (4.55)
wo1 = (1 — w)v, w1 = uv. (4.56)

The displacement of each vertex is then computed as a weighted sum of the control point displace-
ments:

Av; g = wooAzgo + wi0Az10 + Wo1Azo1 + W11 AT 11, (4.57)
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Av; 1 = wooAyoo + wi0Ayio + wo1 Ayor + w11 Ay (4.58)
Thus, the deformed vertex positions are given by:
Vi o = vio+Avig, vy =vi1+Avi, (4.59)

Result

(a) PCA mean shape (b) PCA weight fitted shape (c) with FFD

(d) with ARAP (e) Laplacian smoothed ARAP

Figure 4.13: Visualization of PCA-based deformations using FFD and ARAP+Laplacian.

In Figure 4.13, different stages of shape construction can be observed. Figure 4.13a represents the
mean shape, as described in Section 4.4.1. Figure 4.13b shows the reconstructed shape without
regularization, corresponding to the discussion in Section 4.4.6. Note that this example does not exhibit
major variations; more examples can be seen in the experiments Section.

Figure 4.13c presents the result after applying Free-Form Deformation (FFD), as detailed in Section
4.4.8. Finally, Figures 4.13d and 4.13e illustrate an alternative deformation approach, which is further
explored in the Experiments section (Section 6.13).



Evaluation

5.1. Evaluation Metrics

To assess the accuracy and quality of the shape correspondence framework, the results are evaluated
using four key metrics: area distortion, shear distortion, Hausdorff distance and Chamfer distance.
These metrics were selected to comprehensively measure both geometric accuracy and deformation
quality, ensuring that the correspondence method preserves essential structural properties.

5.1.1. Chosen Metrics

Area Distortion Area distortion quantifies how much surface areas have changed between the input
and output meshes. This is particularly important in applications where preserving local proportions
is crucial. If significant area distortion occurs, the correspondence method may introduce unintended
stretching or compression, altering the aerodynamic behavior of the boomerang.

Shear Distortion Shear distortion measures changes in angles within the mesh, indicating whether
elements have undergone excessive shearing. This metric is critical in ensuring that deformations
remain physically logical, preserving the overall structural integrity of the boomerang. High shear dis-
tortion values indicate that certain regions of the shape may have been deformed disproportionately,
leading to unrealistic geometric transformations.

Hausdorff Distance The Hausdorff distance measures the worst-case deviation between two shapes
by computing the largest minimum distance between points on one surface to the closest points on the
other surface. This metric was chosen because it captures localized mismatches and outliers, which are
particularly relevant when aligning geometries, where even small deviations can significantly change
the function of a boomerang.

Chamfer Distance Chamfer distance provides a more balanced measure of overall shape similarity
by computing the average squared distance between corresponding points on two surfaces. Unlike
Hausdorff distance, which is sensitive to outliers, Chamfer distance considers the distribution of differ-
ences, making it useful for evaluating global shape accuracy. This is particularly relevant in ensuring
that the overall geometry is well-matched while tolerating small local variations that may arise due to
noise or minor surface inconsistencies.

5.1.2. Alternative Evaluation Metrics
While the chosen metrics provide a well-rounded evaluation of shape correspondence, alternative mea-
sures could also be considered to further validate and refine the approach.

Geodesic Distances Instead of measuring Euclidean distances between corresponding points, geodesic
distances could be used to evaluate correspondences along the surface of the shape. This would be

29
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particularly useful in assessing whether boundary correspondences follow natural surface paths rather
than direct shortest-path mappings.

Bending Energy Bending energy measures the smoothness of deformation by evaluating how much
the curvature of the shape changes after transformation. This could be useful in determining whether
the correspondence method introduces unnatural warping, which may be undesirable for aerodynamic
analysis.

Volume Preservation While area distortion captures changes in 2D projections, volume preservation
could be used to evaluate whether the 3D nature of the shape is maintained. This would be particularly
relevant if future work extends the framework to boomerangs with more complex, non-flat geometries.

5.2. Distortion

To evaluate the quality of the correspondences, both area distortion and shear distortion are ana-
lyzed. These metrics measure how much the geometry of the mesh changes when mapped to another
shape.

5.2.1. Area Distortion
The area distortion quantifies how much the area of each triangle changes between the original and
transformed meshes. It is defined as:

Area Distortion = Aoriginal (5.1)
Amapped

where:

* Aoriginal is the area of a triangle in the original mesh.
* Amapped is the area of the corresponding triangle in the transformed mesh.

The area of a triangle given its three vertices v, vs, v3 is computed as:

1
A= S ll(vz = v1) x (v3 — i) (5.2)
where x denotes the cross product.

5.2.2. Shear Distortion
Shear distortion measures how much the relative lengths of triangle edges change between the original
and transformed meshes. The shear distortion for each edge is given by:

SH, = Limapved (5.3)
’ Li,original

where:

* L; original 1S the length of edge i in the original mesh.
* L; mapped iS the length of edge i in the transformed mesh.

The length of an edge between two vertices v, and vs is:

L= H’UQ - UlH (54)

The average shear distortion per triangle is computed as the mean of the distortions across all three
edges:

SH, + SHy + SH;

Average Shear Distortion = 3

(5.5)
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5.2.3. Global Distortion Metrics
To assess the overall quality of correspondences, you can compute the average area and shear distor-
tions across all triangles in the mesh:

S°¥ | Area Distortion;

Average Area Distortion = N

(5.6)

S°N | Average Shear Distortion,

Average Shear Distortion = N

(5.7)

where N is the total number of triangles. These metrics provide a quantitative measure of how well the
correspondence preserves the geometric structure of the mesh.

5.2.4. Interpretation
The distortion values provide a quantitative measure of how well the geometry of the original mesh is
preserved during the mapping process:

Area Distortion: A value of 1.0 indicates that the triangle’s area is perfectly preserved (no distortion). A
value greater than 1.0 indicates that the triangle in the mapped mesh is larger than its corresponding
triangle in the original mesh, representing stretching. A value less than 1.0 indicates that the trian-
gle in the mapped mesh is smaller than its corresponding triangle in the original mesh, representing
compression. The closer the average area distortion is to 1.0, the better the correspondence.

Shear Distortion: A value of 1.0 for any edge indicates perfect preservation of the edge length ratio (no
shear distortion). A value greater than 1.0 or less than 1.0 for an edge indicates a deviation from the
original edge length ratio, representing angular or shape distortion. The average shear distortion across
all edges and triangles should ideally be as close to 1.0 as possible for high-quality correspondences.

The overall metrics of Average Area Distortion and Average Shear Distortion provide a global assess-
ment of the mapping’s geometric consistency. Lower deviations from 1.0 in these metrics indicate
higher fidelity in the correspondence mapping.

5.3. Distance to Original Shape

To further assess the quality of the mesh correspondences, two additional metrics are computed that
measure the discrepancy between the original and transformed shapes: the Hausdorff distance and
the Chamfer distance. These metrics quantify the deviation between two sets of points, providing
complementary information about the worst-case and average-case differences, respectively. Note
here that given two shapes the first mesh will stay the same, while the second shape will end up with
the same amount of points as the first shape, thus a potential loss of information.

5.3.1. Hausdorff Distance
The Hausdorff distance [40] is defined as:

dy(A,B) = sup inf ||a — b||, sup inf ||la — b 58
(A B) = max {sup inf = ] sup in o~ 0]} 58)

where A and B denote the sets of points on the original and transformed meshes, respectively. sup
denotes the supremum operator, inf the infimum operator. The Hausdorff distance is the greatest
distance from a point in one set to the closest point in the other set. It captures the worst-case deviation
between the two shapes, ensuring that every point of one shape is within a certain distance of some
point in the other shape. A lower Hausdorff distance implies a better overall alignment and a closer
correspondence between the two meshes.

Since the computed distances are in units of the mesh (world space), it is more informative to express
them as a dimensionless ratio relative to the overall size of the mesh. There are several options for
normalization, but it was chosen to normalize by the diagonal length of the mesh’s bounding box. That
is, the normalized Hausdorff distance is given by
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du (A, B)

(5.9)

Where D is the length of the diagonal of the bounding box of the mesh (e.g., the original mesh).

Let by, and by, be the minimum and maximum corner points of the axis-aligned bounding box
(AABB) of the mesh. Then, the diagonal length D is given by:

D = ||bmax - bmin” (510)
where || - || denotes the Euclidean norm. Explicitly, in three dimensions:
D = /(B0 — Bin)? + (B — bain)? + (Brae — Diin)? (5.11)

This diagonal length is used to normalize the Hausdorff and Chamfer distances, ensuring that the values
are scale-invariant and comparable across meshes of different sizes.

This normalization yields a dimensionless value that represents the error as a fraction of the overall size
of the mesh. For example, a normalized distance of 0.01 indicates that the error is 1% of the mesh’s
bounding box diagonal.

5.3.2. Chamfer Distance
The Chamfer distance [45] provides a more averaged measure of discrepancy between two point sets.

It is computed as:
1

1
A B) = — in |la — = infla— A2
do(4,B) = GEGAIbIggIIG b+ 15 bEGngglla oll, (5.12)

where |A| and |B| represent the number of points in the original and transformed meshes, respec-
tively. The Chamfer distance calculates the average of the minimum distances from points in one set
to the other, thereby being less sensitive to outliers compared to the Hausdorff distance. It effectively
measures the overall fidelity of the mapping by averaging the discrepancies across the entire mesh.

And, the normalized Chamfer distance:

(5.13)

5.3.3. Interpretation:
Together, these metrics provide a comprehensive assessment of the transformation:

» The Hausdorff distance focuses on the maximum deviation, highlighting the worst-case error.

» The Chamfer distance offers an average error measure, which can be more robust in the presence
of a few misaligned points.

A successful correspondence mapping should yield both a low Hausdorff distance (ensuring that no part
of the mesh is drastically misaligned) and a low Chamfer distance (indicating overall good agreement).

5.4. Evaluation and Analysis

Evaluations on a subset of the dataset are presented in Tables 5.1 and 5.2. In this section, some of
the key findings are discussed.
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5.4.1. Distance Metrics
The ideal scenario is to achieve area and shear distortion values close to 1.0, with minimal standard
deviation. Similarly, Hausdorff and Chamfer distances should be as close to 0.0 as possible.

From Table 5.2, it is evident that the Hausdorff and Chamfer distances are relatively low, as expected.
Since these values are measured in world space, normalized values are more informative. Specifically,
all normalized Hausdorff distances remain below 3.5 x 10~3, meaning the worst-case deviation between
the initial and output meshes is less than 0.35%. Similarly, Chamfer distances are well below 8.5 x 1075,
indicating an average misalignment of less than 0.0085%. These results suggest that the output mesh
closely resembles the original.

While the Hausdorff distances highlight some localized areas with larger distortion, these values remain
within acceptable boundaries. Notably, these distortions tend to occur near the lifted boundary of the
mesh. One possible explanation is the displacement of vertices, as discussed in Section 4.2.7. Addi-
tionally, challenges near the boundary may stem from UV mapping inaccuracies. Matching boundary
points can complicate the mesh reconstruction process, potentially misplacing vertices on either side of
the shape. Consequently, the parameterization of boundary points in the UV map may be less precise.

Regardless of the cause, it is evident that points near the boundary are the most difficult to align -
though the overall deviations remain acceptable.

5.4.2. Distortion Metrics

Table 5.1 presents distortion metrics. The results indicate that when the mean area distortion is below
1.0, which typically signifies compression in the mesh, the mean shear distortion tends to be higher.
This correlation arises from the interplay between shape geometry and the effects of compression.

When the initial area of Shape 1 is smaller than that of Shape 2, the mean area distortion is often below
1.0, implying compression. Compression naturally reduces the shape’s area but may introduce local-
ized deformations, leading to increased shear distortion. As the shape compresses, different regions
may undergo varying degrees of stretching, causing non-uniform deformation.

Conversely, when models have similar initial areas, both area and shear distortions tend to be lower.
In such cases, the transformations applied to the shape are more uniform, leading to less localized
variation in the mesh structure.

However, when Shape 1 has a lower area than Shape 2, the area distortion often exceeds 1.0. This
suggests that the shape is being expanded to match the larger reference shape. As the area increases,
localized stretching may introduce additional distortions, leading to greater shear distortion. This effect
is particularly noticeable when the mesh undergoes uneven transformations.

5.4.3. Implications

These results highlight that the relationship between area and shear distortion is inherently tied to the
geometric properties of the shapes involved. While general trends can be predicted, the precise amount
of distortion is difficult to determine in advance due to the complex interplay of shape geometry, mesh
matching, and transformation processes.

One possible approach to mitigate area distortion would be to scale shapes to match their areas before
processing. However, such an approach has trade-offs. Specifically, scaling would alter intrinsic shape
characteristics, such as thickness, which is often a key design feature. For instance, in aerodynamic
applications, thickness directly influences lift. Thus, while scaling could reduce area distortion, it might
also compromise the intended functionality of the shape.

Another factor that may have influenced these results is the selection of landmarks. For example, row
five exhibits significantly worse results than other shapes. However, this shape is also the most distinct:
It is larger, thicker, and has a more blunt airfoil.

A possible contributing factor to the variation in results is the difference in the number of vertices and
faces generated by the decimation process for each mesh. While some variation is expected, certain
shapes showed significant discrepancies in mesh resolution. Notably, row 1 - where the input vertex
counts were nearly identical - exhibited the lowest area and shear distortion. Although this may be
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coincidental, it suggests that maintaining similar input resolutions across meshes could improve the
consistency and accuracy of the results.

While the selection of landmarks was consistent - targeting key locations such as the convex hull, tips,
outer elbow, and inner elbow - the definition of the "elbow” is somewhat flexible. In this approach, it
is defined as the connecting point of the wings. However, for certain shapes (e.g., rows two, three,
and four), the elbow could alternatively be interpreted as starting from the midpoint of the wings. This
discrepancy may have influenced the results, particularly for larger shapes with proportionally bigger
elbows. A larger elbow region increases the potential for parameterization distortions, as the affected
area becomes more extensive.

5.4.4. Conclusion

In summary, the observed distortions are influenced by multiple factors, including differences in initial
shape areas, compression-induced shear effects, and landmark selection. While scaling could mitigate
some of these distortions, it would come at the cost of altering fundamental shape properties. Similarly,
landmark placement plays a critical role, especially for shapes with significant structural variations.
Additionally, inconsistencies in mesh resolution due to decimation may also impact the results - meshes
with more closely matched vertex counts tended to show reduced distortion, suggesting that maintaining
similar input resolutions can contribute to more stable correspondences.

These findings suggest that while certain trends in distortion behavior can be anticipated, the precise
impact of shape differences remains highly context-dependent. Variations in mesh resolution, land-
mark placement, and initial shape properties all contribute to the complexity of the outcome. Future
work could investigate alternative landmark selection strategies, more consistent mesh simplification
methods, or adaptive scaling techniques that minimize distortion while preserving the essential charac-
teristics of each shape.
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Table 5.1: Distortion results.
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Table 5.2: Distance results.
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5.4.5. Challenges in Comparing Other Methods
While the aim was to compare the results with other open-source implementations, significant difficulties
were encountered when setting up alternative projects. Although several repositories exist, most had
dependencies that proved challenging to resolve. Despite extensive efforts, these limitations prevented
successful benchmarking against several existing solutions.

Robust 3D Shape Correspondence in the Spectral Domain
https://github.com/cheapl/SpectralCorrespondence

The method proposed by [22] operates in the spectral domain. The original implementation was de-
veloped in MATLAB, and the output visualizations were used directly. To ensure compatibility with the
framework, the output shapes from the correspondences were decimated by an additional factor of
twenty to make them processable.

Experiment: Spectral Correspondences Tthe spectral domain correspondence method was eval-
uated on various shapes. Figures 5.1 and 5.2 show the resulting correspondences produced by this
approach. One challenge in interpreting these results is the visual overlap of the meshes, which can
make the correspondences harder to assess. While the method generally captures the shape similari-
ties well, a critical issue arises: the sides of the shapes are flipped. This results in incorrect mappings,
where the front of one shape is matched with the back of another. As seen in Figures 5.2c and 5.2d,
the spectral domains appear visually similar despite this flip. This phenomenon - known as intrinsic
symmetry ambiguity is a well-documented challenge in computing correspondences.

Given that the mappings consistently flip to the opposite side, a direct comparison with this method is
not meaningful. Especially since the proposed pipeline from this work approach provides more reliable
and intuitive correspondences.

/\ N\

(a) Front view of correspondence (b) Back view of correspondence

Figure 5.1: Spectral correspondence of a pair of shapes
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(a) Front view of (b) Back view of (c) Spectral domain of first (d) Spectral domain of
correspondence correspondence shape second shape

Figure 5.2: Spectral correspondence of another pair of shapes


https://github.com/cheapl/SpectralCorrespondence

Experiments

In developing a correspondence method for boomerang shapes, several experimental factors play a
crucial role in shaping the accuracy and reliability of the results. These include the choice of alpha
shape parameters for boundary extraction, sensitivity to landmark placement, and the handling of 2D
boundary representations. Additionally, UV parameterization techniques such as LSCM and ARAP
affect distortion characteristics. Finally, model behavior under PCA and Free-Form Deformation (FFD)
settings determines how well shape variation and deformation are captured. Careful evaluation of these
factors is essential for achieving meaningful and consistent correspondence across varying boomerang
geometries.

6.1. Affect on o selection

Preferably, the resulting shape should have a smooth boundary. Since the 3D mesh if first projected to
2D before computing the alpha shape, this is not a major concern because the projection yields more
points than are strictly on the boundary. However, the choice of « is crucial. The input meshes were
decimated by a factor of ten, which inevitably leads to some data loss. Experiments showed that an «
value of 1 worked well for the original, non-decimated meshes, but for decimated meshes, the value of
« needs to be adjusted dynamically.

(a) Boomerang with oo = 1 (b) Boomerang with o = 8 (c) Boomerang with o = 13

Figure 6.1: Comparison of alpha selection. Higher o reduces noise inside the shape but results in the loss of boundary points.

38



6.2. Affect on landmark selection 39

In Figure 6.1, you can see that if « is set too low, the outline of the shape is not well defined and
contains considerable noise. As « gradually increases, the points that are not on the outside boundary
disappear and it will become less dense.

(a) Boomerang with o = 1 (b) Boomerang with o = 5 (c) Boomerang with o = 8 (d) Boomerang with o = 50

Figure 6.2: Comparison of alpha selection. Higher « reduces noise inside the shape, but results in boundary loss near sharp
curves, such as the inner elbow.

In Figure 6.2, a similar pattern emerges, but with an additional issue: at higher «, the sharp-angled
inner elbow region (as opposed to in Figure 6.1 where it is rounded) loses points on the boundary. This
effect becomes evident between Figures 6.2b and 6.2c, where the elbow region is already degraded.
In Figure 6.2d, the boundary loss is even more pronounced. Although the effect in Figure 6.2c is subtle,
it can complicate the parameterization process in later stages, potentially leading to visually suboptimal
results.

This illustrates the delicate balance required in choosing «: it must be low enough to preserve the bound-
ary’s detail without introducing excessive noise, yet high enough to ensure a complete and smooth
outline of the shape.

In step 4.2.7 the projection is from the average mean. Projecting in high curvature areas may project
into the wrong direction of the curve. While preferably there are no gaps such as in Figure 6.2d, it also
means that there are less points to project in problematic areas. A shortest Dijkstra path traversal to
get a valid 3D boundary for the boundary gap will do. This path is more jagged than a smooth traversal
when there are no gaps.

In Step 4.2.7, the lifting of the 2D boundary to 3D is performed by projecting each point along the
averaged normal direction. However, in regions of high curvature, this approach can become unreliable,
occasionally resulting in misaligned projections or lifting in the wrong direction relative to the surface.
While it is preferable to avoid boundary discontinuities-such as the gap illustrated in Figure 6.2d-the
absence of points in such regions also reduces the risk of incorrect projections. To recover a valid 3D
boundary across these gaps, a shortest-path traversal using Dijkstra’s algorithm is applied. Although
this produces a more jagged segment compared to the smooth boundary seen in well-sampled areas,
it ensures completeness of the projected curve.

While the o« parameter performs well for meshes grounded in real-world scale-such as those obtained
from 3D scanners - it requires careful adjustment when applied to rescaled models or those not orig-
inating from real-world measurements. In tests using models from an external repository, the param-
eterization only succeeded when the meshes were first scaled to approximate real-world dimensions,
highlighting the importance of consistent scaling when using a-based methods.

6.2. Affect on landmark selection

User-selected landmarks significantly impact the quality of correspondences in the non-lifted 2D bound-
ary, and any inaccuracies at this stage propagate through subsequent steps. Since some models are
larger than others-featuring wider wing chords, asymmetric wings, or variations in the elbow region-the
choice of landmarks plays a crucial role in ensuring accurate UV mappings.

Forinstance, Fuzzies (B) exhibit a combination of these shape variations. When matching a TyphoonXL120%
with a Fuzzy Phoenix, the landmarks directly influence the UV map quality, as illustrated in Figure 6.3.

In Figure 6.3, two different landmark configurations are compared. Figure 6.3c shows a naive approach
where only two landmarks are set. While the rainbow mapping does not immediately reveal inconsis-
tencies, the other input shape (similar to Figure 4.5a) has a noticeably less stretched elbow region.
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(a) Five landmarks set by the user (b) Checkerboard visualization resulting from the UV map
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(c) Two landmarks set by the user (d) Checkerboard visualization resulting from the UV map

Figure 6.3: Effect of landmark selection on the UV map quality. In 6.3d, the squares appear more stretched compared to 6.3b.

Ignoring this aspect during landmark selection results in a distorted UV map, as seen in Figure 6.3d,
where the checkerboard pattern exhibits noticeable stretching.

A simple yet effective improvement is to place additional landmarks in stretched areas, as shown in Fig-
ure 6.3a, with the corresponding UV resultin Figure 6.3b. While some distortion remains, the stretching
is significantly reduced, leading to a more evenly distributed mapping.

6.3. 2d Boundary

There are various methods for selecting a boundary condition, and in certain shapes, the seams (which
define the outer boundary) may lie in areas where the object experiences significant changes, such as
a pronounced curve. In the case of boomerangs, a 2D boundary was chosen for two key reasons:

Visibility and Input Definition: Later in the process, input points need to be defined where the boomerang
should change. The projection of the angle, where most of the surface is visible, facilitates this more
effectively than viewing the side of the boomerang. A 2D representation allows for clearer input point
definitions that are easier to manage and interpret.

Airfoil Dominance in Shape Variations: Boomerangs have a distinctive structure, with shape variations
mostly occurring in the airfoils, not in the general design of the boomerang itself. By focusing on a 2D
boundary, you can more easily match these variations and reduce complexity in the matching process.

However, this raises the question of why this work did not approach the problem directly in 3D, instead
of mapping the shape to 2D and then projecting it back into 3D. The decision was based on the fact that
working in 2D simplifies the problem and allows us to focus on the key features - primarily the airfoils
- without being distracted by the more complex 3D details. Additionally, mapping the boomerang’s
surface to a 2D plane makes it easier to visualize and manipulate the boundary conditions before
reintroducing them into the 3D model. This two-step process helps ensure accuracy while maintaining
manageable complexity.

6.3.1. Alternatives for Boundary Condition Representation

While a 2D boundary condition was chosen for the reasons mentioned above, several alternative meth-
ods could have been explored:

=
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Isolines: One alternative to using a 2D boundary is the use of isolines, which represent curves where a
specific value (such as height or a scalar field) is constant across the surface. Isolines are often used
in topography, but they could have been employed here to define boundaries where the scalar field
(e.g., surface height or curvature) stays consistent. This would have allowed for a more flexible rep-
resentation of the boundary, particularly in regions where the surface curvature changes significantly.
However, isolines may not provide as intuitive or easily defined control points as a 2D projection. Ad-
ditionally, the leading and trailing edges have different heights, which would be hard to navigate via
isolines.

Another possibility to extract a 2D curve is using a flood fill approach instead of relying on 2D alpha
shapes on the projected mesh. This method could better capture complex concave regions-such as
inner elbow sections-which may be missed or oversimplified by alpha shape-based boundaries. Flood
fill would adapt more dynamically to the local geometry, offering improved coverage in regions with tight
curvature. However, implementing flood fill in this context can be challenging, as the spacing between
points is not explicitly defined. Without a reliable notion of local connectivity or distance, the fill may
‘leak’ into unintended regions, resulting in inaccurate boundary extraction. boundaries.

3D Boundaries: Another potential alternative would have been to directly define the boundary condition
in 3D. This approach would involve working with the boomerang’s surface in its full 3D form, but it
would introduce additional complexity in terms of defining control points and projecting them onto the
surface. While this could provide a more detailed representation of the shape, it also risks increasing
the computational burden and making the matching process more challenging. And, the initial mapping
of which part of the wing should corresponds with the other wing (other shape) would have to be tackled
via a similar route as in this work.

Slicing and Cross-sections: Another method might involve slicing the 3D object into a series of cross-
sections, each representing a 2D slice of the object at a specific height or depth. These cross-sections
could be treated individually as 2D boundaries, with their relationship to one another captured through
the slicing plane. This approach is similar to the one used, but it focuses on different 2D representations
from multiple planes of the object. While this approach might offer more precision in capturing the
object’s internal structure, it could also result in a loss of global context and require more complex
algorithms to stitch the 2D slices together.

An alternative approach that was initially tested was slicing the boomerang at the cross-section with
the maximum area. This method aimed to capture a representative 2D boundary while preserving the
3D structure. Given that boomerangs are generally flat, this approach seemed promising, as it would
directly provide the 3D boundary points, eliminating the need for additional projection steps. However,
one major drawback became apparent: while most boomerangs are relatively flat, many incorporate
minor twists or tuning adjustments, cambering or aggressive airfoils (e.g. large undercuts). These
subtle variations affect the overall shape, and relying on a single maximum-area slice would mean
losing control over precisely where the boundary is defined. For example, consider a flat boomerang
with no undercuts - meaning the lower part of the airfoil is blunt rather than shaped. In this case, the
maximume-area slice could lie somewhere between the lower surface of the boomerang and the point
where the trailing edge changes its angle. If this were used as the reference boundary, attempting to
match it with a boomerang that does have undercuts (where the airfoil extends beneath the main body)
would lead to inconsistencies. Specifically, the 3D boundary points would not align properly, causing
mismatches when establishing correspondences between different boomerangs. While this method
offered the advantage of reducing processing steps, the loss of boundary control and the potential for
mismatches made it unsuitable for the intended purposes.

6.4. Parameterization

While, several options could have been used, it was decided to use a single patch, fixed boundary
approach. One of the downsides of that is these algorithms usually produce high-distortion maps due
to the fixed boundary. The goal is to use a fixed boundary while minimizing distortion.

One example of a fixed-boundary, single-patch algorithm known for its smooth interpolation and ab-
sence of internal crossings is harmonic mapping. However, its effectiveness diminishes when con-
strained by a fixed boundary - such as the projected outlines used in the approach - particularly if the
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shape’s intrinsic geometry deviates significantly from the prescribed boundary.

This issue is particularly evident in Figure 6.4, where you can observe a clear distinction in how the
checkerboard pattern is mapped, using harmonic paramaterization:

(b) Harmonic parameterization of Shape 2 with Shape 1’s
(a) Harmonic parameterization of Shape 1 boundary

Figure 6.4: Comparison of harmonic parameterization on two different shapes. While Shape 1 maintains a well-structured
checkerboard pattern, Shape 2 suffers from severe distortions when constrained by Shape 1’s boundary.

Least Squares Conformal Mapping (LSCM) is well-suited for the given case. It does not require a fixed
boundary, operates as a single patch, and allows for self-intersecting borders, which is acceptable since
you can track their locations on the original mesh. Therefore, providing an input boundary remains a
viable option.

Another free-boundary alternative is As Rigid As Possible (ARAP) parameterization, initialized with
harmonic parameterization. When using the same boundary as LSCM, ARAP produces ok results for
both Shape 1 and Shape 2, however, only on the front side of the boomerang. Distortions appear on
the back sides, as shown in Figure 6.5.

(a) ARAP parameterization of Shape 1, front side (b) ARAP parameterization of Shape 1 back side

Figure 6.5: Front and back side of UV parameterization using ARAP with a fixed boundary. Observe the front side has a clear
checkerboard pattern, while the back has distortion.

While 3D scans are ideally expected to be flawless and independent of external factors, real-world
scanning conditions introduce challenges. The equipment performed well overall, but certain surfaces
posed difficulties-particularly reflective surfaces and thin airfoils.

6.5. Affect on 3D Scan quality when Parameterizing

When parameterizing with LSCM, challenging surfaces-such as reflective stickers-are still handled cor-
rectly, even though the triangulation near these areas fluctuates. Despite this, LSCM effectively pre-
serves the overall shape.

In contrast, ARAP exhibits noticeable distortions, not only near the sticker but also in surrounding
areas. This suggests that ARAP struggles to maintain local rigidity, whereas LSCM provides a more
stable mapping, even in the presence of surface variations.

=
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(b) ARAP, Distortion near sticker, (c) ARAP, Distortion near sticker,
(a) LSCM, perspective near sticker perspective 1 perspective 2

Figure 6.6: A checkerboard pattern visualized after parametrization on Shape 2. ARAP has trouble handling near a reflective
sticker, while LSCM performs well

6.6. Boundary Shape

In the suggested approach, one of the 3D shapes is projected onto a 2D plane to serve as a UV map.
However, an alternative is to let Least Squares Conformal Mapping (LSCM) determine the optimal
boundary shape instead of enforcing a predefined structure. This raises a critical question: How does
constraining the UV boundary to a specific shape affect the overall mapping quality?

(a) Checkerboard texture mapped onto the model using a
circular UV domain (b) The circular UV parameterization

Figure 6.7: A visualization of a 3D shape mapped to a circular UV domain. Observe the distortions in the checkerboard pattern
due to boundary constraints.

In Figure 6.7a, a checkerboard pattern is visualized on the 3D model when its UV map is constrained
to a circular boundary, as shown in Figure 6.7b. The circular parameterization is a common choice
due to its well-defined boundary constraints and ease of implementation. However, this approach
introduces distortions, particularly in regions where the original shape deviates significantly from a
disk-like structure.

A key observation is that the checkerboard pattern in Figure 6.7a exhibits noticeable stretching and
shearing. This is a direct consequence of forcing the model’'s boundary to conform to a perfect cir-
cle, disregarding its intrinsic geometric properties. While the circular mapping preserves continuity, it
sacrifices local conformality, leading to uneven distortions across the surface.
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Figure 6.8: Checkerboard pattern under an unconstrained LSCM mapping with only two fixed boundary points



6.7. Boundary smoothness 44

An alternative approach is to relax boundary constraints and allow LSCM to determine the UV layout
dynamically. Instead of enforcing a specific shape, provide only the minimal necessary constraints-
two fixed boundary points-and let the algorithm compute an optimal mapping. However, as seen in
Figure 6.8, this results in a highly distorted parameterization where the structure of the original shape
is lost entirely. The checkerboard pattern, which should retain uniform spacing, is completely deformed,
indicating severe non-uniform scaling and warping. Similar findings were found for harmonic and ARAP
without an input boundary.

Another important observation is that LSCM exhibits instability when boundary vertices are duplicated
at the same location. For example, if in step 4.2.7, indices reference multiple vertices that occupy the
same position in 2D space, LSCM struggles to compute a well-behaved parameterization. While the
overall UV map may appear reasonable, these duplicate boundary constraints cause certain regions
to collapse to a single point. As a result, the solver places those points at extreme distances, leading
to large spikes in the UV map and introducing severe noise.

6.7. Boundary smoothness

In Figure 6.9, two UV maps are shown-one with and one without the boundary correction from Sec-
tion 4.2.8. Notice that in Figure 6.9b, the UV map exhibits jagged edges, whereas in Figure 6.9a, the
boundary is smooth and well-connected.

This difference arises from how Least Squares Conformal Mapping (LSCM) handles the input bound-
ary. While LSCM does not explicitly require a structured boundary, it relies on fixed boundary vertices
to compute an accurate UV parameterization. In cases where the boundary appears jagged, certain
key boundary points were missing from the constraint set, leading to distortions. To address this, re-
fine the boundary by including all intermediate points between existing boundary vertices, ensuring a
continuous and properly connected edge structure.

(a) UV map with boundary correction (b) UV map without boundary correction

Figure 6.9: Comparison of UV maps with and without boundary correction, as described in Section 4.2.8.

While the UV maps without guaranteed edge-connections yield suboptimal results, the discrepancies
are primarily noticeable only upon close inspection of the shape itself. Specifically, the boundary regions
of the boomerangs experience the worst distortions. This is evident in the final outcome, where a one-to-
one correspondence is established between shape 1 and shape 2. In Figure 6.10, shape 2 is displayed
with this correspondence, showing that the UV map without boundary correction leads to noticeable
jaggedness in the 3D model, as seen in 6.14b. This is undesirable, as smoothness is preferred for
consistency. In contrast, 6.10a shows the result from the improved boundary, which remains smooth
and free of distortions.

Figure 6.11 illustrates another issue: shape 2’s UV map struggles to fit the points from shape 1, which
are contained within shape 1's UV map. As a result, the points fall outside of shape 2’s UV map,
complicating the mapping process. To address this, projecting the points onto the UV map provides an
effective estimate, though this is not an ideal solution.

This estimation approach is measured by the results in Table 6.1 and one can observe that the Mean
Area Distortion and Shear Distortion values are closer to 1.0, indicating improved consistency, and the
Distance Metrics are reduced, approaching 0.0 - an ideal scenario for minimizing distortion. Though,
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(a) One-to-one mapping from shape 2 to shape 1 using (b) One-to-one mapping from shape 2 to shape 1 using
the corrected UV map (6.9a). the uncorrected UV map (6.9b).

Figure 6.10: Comparison of shape correspondence results (in 3D) using UV maps with and without boundary correction. The
improved UV map produces a more accurate one-to-one mapping.
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Figure 6.11: UV map of shape 2 without boundary correction, points from shape 1 that fit in the UV map of shape 1. Observe
that the points are outside the UV map.

visually this can be best confirmed for correctness.

6.8. Lifting Curve

In this work, the 2D boundary points is placed in a plane at the average thickness of the boomerang,
which corresponds roughly to the midpoint between the airfoils. While other options could have been
explored, this approach worked well because each airfoil is unique. Given that the lowest point of the
trailing edge slope is typically lower than the leading edge. To account for this, project the mean lifted
2D coordinate onto the closest point on the surface near the trailing edge. This guarantees that the
point will be lower than the mean, as the trailing edge slopes downward. The hypothesis is that this
point will coincide with the location where the slope angle changes most significantly in the trailing edge,
which has proven to be the case in tests.

The same logic applies to the leading edge, though with more uncertainty, as this part of the airfoil is
typically more blunt and has less of a defined slope compared to the trailing edge. However, through
experimentation, it was found that the projected point tends to fall somewhere between the invincible
mean line and the lower part of the sloped edge, which provides sufficiently accurate results.

While this method works well, exploring alternative approaches could be considered in the future. Ad-
ditionally, this step inherently forces the boomerang to be flat, though ways to make this process more
flexible were considered, to account for certain parameters like the angle of attack or adjustments for
anhedral/dihedral angles. These improvements are considered possible, but it is suggested they be
explored in future work.

An alternative to using the mean might involve taking the mean over a neighborhood of points or using
a cross-section of the airfoil at that location. This could help account for variations in height, manufac-
turing inaccuracies, or lower-quality 3D scans.



6.9. Effect on Base shape 46

Table 6.1: Comparison of UV Mapping Distortions with and without Boundary Improvement - for TyphoonXL120% and 3d3

Metric Without Improvement With Improvement
Area Distortion
Min 0.00 0.00
Max 381.01 599.67
Mean 1.13 1.1
StdDev 3.07 3.76
Shear Distortion
Min 0.00 0.12
Max 443 3.41
Mean 1.03 1.02
StdDev 0.15 0.12
Distance Metrics
Hausdorff Distance 0.43 0.40
Chamfer Distance 0.01 0.01
Normalized Hausdorff 1.35e-03 1.24e-03
Normalized Chamfer 4.40e-05 4.08e-05

6.8.1. Projecting Lifted Curve
When the lifted curve is projected back onto the surface (see Section 4.2.7), the closest vertices are
adjusted (6.12a), which can lead to some faces overlapping if vertices belong to multiple faces.

While the current approach retained this method - since the final correspondences yielded statistically
better results and potential overlaps can be undone in post-processing if desired - several ways to
mitigate this issue were explored.

One option that worked, but gave a jagged boundary is in 6.12b, where the projected point is shifted
toward the closest vertex. Note that this point can also be shifted several times if there are several
projected points closest to it.

A logical approach would be to avoid shuffling vertices and instead split faces where the projected
points lie, i.e Figure 6.12c. This method proved effective, however a decrease in accuracy due to an
increased number of faces was observed, which in turn made the UV maps denser near the boundaries
(where they were already denser compared to regions such as the midpoint of the wings).

A potential improvement to this approach could involve modifying a step in the pipeline: rather than
using the in-between shape to determine UV correspondences, use the original input shape while
keeping track of the split faces to backtrack their original positions. This adjustment should be feasible
since each triangle splits into three new faces that remain within the same plane.

AALAAA

Projected a) Closest Vertex b) Shifted to Closest c) Re-Triangulate
Shifted Vertex

Figure 6.12: Alternatives when lifting Curve

6.9. Effect on Base shape
To ensure consistency when mapping to different shapes, it is crucial to select a single base shape.
Ideally, the base shape should be simple and not predisposed to excessive stretching in specific regions.
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(a) Shape 1

Figure 6.13: Input shapes

(b) Shape 2

Shapes that inherently stretch more than others will introduce bias, as most mappings would require
shrinking rather than balanced transformations.

Evaluating the Results
The results do not definitively suggest an optimal base shape, but the goal is to minimize mean area
distortion while ensuring that:

» Shear distortion remains close to 1.0, as this should be enforced by Least Squares Conformal

Mapping (LSCM)

» Hausdorff and Chamfer distances remain as low as possible, ensuring minimal deviation between

mapped shapes.

Metric Shape 1 — Shape 2 Shape 2 —» Shape1 Winner
Area Distortion

Min 7.73e-04 5.89e-04 -
Max 115.96 536.55 -
Mean 1.09 1.13 Shape 1
StdDev 1.66 4.01 Shape 1
Shear Distortion

Min 0.00 0.23 -
Max 3.49 3.67 -
Mean 1.02 1.01 Shape 2
StdDev 0.1 0.12 Shape 1
Area

Object 1 2.32e+04 2.34e+04 -
Object 2 2.33e+04 2.32e+04 -
Distances

Hausdorff Distance 0.33 0.43 Shape 1
Chamfer Distance 0.01 0.01 Shape 1
Normalized Hausdorff Distance 1.05e-03 1.23e-03 Shape 1
Normalized Chamfer Distance 4.03e-05 4.00e-05 Shape 2

Table 6.2: Comparison of mapping metrics between Shape 1 and Shape 2

Conclusion
While the results in Table 6.2are close, Shape 1 is the 'better’ choice for a base shape. It exhibits:

=

» Lower mean and standard deviation in area distortion, reducing unwanted stretching/shrinking.

» Lower Hausdorff and Chamfer distances, meaning closer shape matching.

« Slightly higher shear distortion mean, but within an acceptable range (close to 1.0).
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Given these factors, Shape 1 is the recommended base shape for consistent mapping. While this
analysis is based on two shapes, it can be generalized to multiple shapes depending on your specific
shape goals.

It's worth noting that the results from both input orders are visually similar, highlighting the potential
influence of landmark selection. Consequently, while the statistics favor Shape 1 as a more reliable
option, one cannot definitively state that it is inherently "better” than the other. In this example, the
statistical data strongly suggest that Shape 1 is the more dependable choice, but the final decision
should also consider other factors such as application-specific requirements and the context of the
shape data.
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6.10. Alignment With(out) ICP

¥ ¥

(a) Input shapes. Same mean, rotationally unaligned. (b) Shapes after ICP.
> 3 Y
(c) Shapes after ICP: Subset 1. (d) Shapes after ICP: Subset 2. (e) Shapes after ICP: Subset 3.

Figure 6.14: ICP applied to shapes with only the mean location in common, rotationally unaligned. Note that the final result is
not perfectly rotation-aligned, showing three possible perspectives of alignment.

Although pre-alignment (before PCA) might seem redundant, it is essential. Certain boomerangs pos-
sess features that make alignment more challenging. For example, some shapes (like fuzzies) have
both wings shaped in a way that either can be interpreted as a three-blader, making automatic alignment
ambiguous. Without proper pre-alignment, distinctive features such as the elbow may be misidentified
as the leading or trailing arm, leading to incorrect orientation and affecting downstream processing.
Figures 6.14 and 6.15 illustrate why manual rotational alignment is necessary in such cases.

(a) Input shapes. Same mean, manually rotationally
aligned. (b) Shapes after ICP.

Figure 6.15: ICP performed on shapes where only the mean location is common and the shapes are manually rotationally
aligned as a starting point. All boomerangs are now well aligned.

6.11. Affect of missing Boundary points in overall PCA

As discussed in Section 6.1, the choice of « is crucial. Although row two in Table 5.1 does not indicate
any extreme irregularities, it exhibits a relatively high mean shear distortion, which could be due to
inaccurate mappings. While it is known that the selection of « directly impacts the inner elbow regions,
the selection of landmarks is believed to play a significant role in this issue.

Due to the chosen «, even when optimally selected, the border remains disconnected. As a result,
the projection between the two points where the disconnect begins introduces estimation errors during
reprojection onto the surface. This leads to a flawed reconstruction of the lifted curve in the inner elbow

region.

=
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Figure 6.16 illustrates that a shape with a sharp inner elbow angle exhibits a less desirable triangulation
after a one-to-one mapping to Shape 1. When stretching a boomerang in PCA space, an unusual peak
- visible in Figure 6.16a - often appears in the inner elbow, further highlighting these distortions. When
leaving out this model in the PCA model, those noisy peaks disappear near that location.

(a) Shape deformed including the (b) Shape deformed excluding -
Shape in Figure 6.16¢ in PCA the Shape in Figure 6.16¢ in PCA (c) Boomerang with inner elbow
model model triangulation issues inner elbow

Figure 6.16: Boomerang deformations in PCA space, with and without a model that issues in the inner elbow

6.12. Overfitting PCA

When using Principal Component Analysis (PCA) to model shape variation, it is important to consider
the risk of overfitting - especially when working with a limited number of training examples or when the
model is used for tasks like correspondence or deformation. Overfitting can lead to unrealistic shape
reconstructions, reducing generalization to new or unseen shapes. In this section, a brief discussion is
provided on how overfitting may arise in the given setting.

6.12.1. Overfitting with Two-Point Constraints: The Need for Regularization

To illustrate how PCA attempts to reconstruct a given shape, two points near the wing tips were se-
lected as constraints. Figure 6.17 shows the resulting deformations in PCA space as the regularization
parameter \ varies from 0 to 1 in increments of 0.2. As ) increases, the shape becomes increasingly
overfitted, losing its characteristic boomerang structure. This highlights a key limitation of the PCA
space: while it optimizes for the best fit, it can fail to preserve structural integrity when regularization is

/\/\/\/‘\'

(@x=0 (b) A =0.2 (€)X =0.4 (d)A=0.6 (e)X=0.8 Hr=1

Figure 6.17: Deformations in PCA space with varying regularization. less regularization leads to overfitting, causing the shape
to lose its structural integrity.

A similar experiment could have been conducted by selecting a third point near the elbow. However,
another limitation arises due to the recalculation of closest points: as the shape deforms, it can shift
in such a way that a different internal vertex is selected as the closest point. This allows the model
to achieve an "optimal weight” in PCA space while no longer maintaining correspondence with the
original boundary. To mitigate this issue, it is sometimes preferable to keep the original vertex indices
and minimize distances based on the fixed set of points rather than recalculating them dynamically.

6.12.2. Overfitting in PCA and the Role of Principal Components

As the number of input shapes increases, the number of principal components grows accordingly.
This can lead to overfitting, where higher-order principal components receive disproportionately high
weights. Notably, the first principal components capture the most variance in the data and should be
prioritized, while the later components often represent noise or minor variations.

Figure 6.18 illustrates this effect. The mean shape (Figure 6.18a) appears smooth and undistorted,
while applying only the last principal component (Figure 6.18b) introduces significant deformations,
highlighting the risk of overfitting when excessive weight is assigned to less significant components.

=
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(a) Mean shape without deformation (b) Shape deformed using only the last principal component

Figure 6.18: Effect of overfitting in PCA. The mean shape remains well-defined, while applying only the last principal
component results in unrealistic deformations.

6.12.3. Effect of Less Standard Airfoils in PCA

Certain boomerangs feature cambering, where material is removed from the bottom of the wing in a
way that is not connected to one of the sides (otherwise, it would be classified as an undercut). While
most shapes in the dataset do not exhibit this characteristic, cambering can still be partially captured
by the PCA model as a feature.

The expected effect of this in the PCA space is a transition from a regular shape to one with cambering,
or vice versa, where material is effectively added to the bottom of the wing. However, an interesting
phenomenon was observed: in some cases, PCA-generated shapes exhibited cambering on the top of
the wing instead, particularly in areas where cambering is naturally present in the dataset on the other
side of the wing. This effect, though subtle, is visible near the wing tips in Figure 6.19.

A more extreme case occurs when certain principal components are weighted too heavily, either pos-
itively or negatively. Under these conditions, the reconstructed boomerang may wrap through itself,
producing an unrealistic geometry - but if gone too far potentially realistic. Notably, this behavior was
only present in cases where cambering was involved, suggesting that the PCA model struggles to
generalize such non-standard airfoil features effectively.

Figure 6.19: Effect of cambering in PCA. When one principal component is weighted too highly (either positive or negative),
the object deforms unrealistically, wrapping through itself. Top View.

6.12.4. PCA Amount of Principal components

Figure 6.20 provides insight into how shape variations are distributed across different principal com-
ponents. The mean shape acts as the foundation, capturing the essence of the dataset before any
transformations occur. From there, each principal component reveals a unique mode of deformation,
gradually introducing more intricate details.

The first few components drive the most noticeable changes, altering global structure-stretching, widen-
ing, or bending the shape in more predictable ways. As you move further down the hierarchy, the
higher-order components refine these variations, encoding more localized transformations. This bal-
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ance between broad structural shifts and fine-grained adjustments is what makes PCA so effective for
understanding shape variability.

Another important aspect is the interplay between symmetric and asymmetric changes. Some compo-
nents introduce uniform distortions, preserving overall balance, while others create asymmetries that
push the shape in distinctly different directions. This behavior highlights the complexity of how struc-
tures can vary within a dataset.

Ultimately, the number of components retained determines the level of detail and generalization in any
reconstruction. Keeping only the most influential components preserves the essential structure while
eliminating noise. However, including too many can lead to overfitting, capturing irrelevant variations
rather than meaningful patterns.

In the illustration, you can observe that the first three principal components show that the general
structure of the boomerang moves smoothly. While the fourth until the sixth show more unpredictable
movements, while the seventh until the eleventh show unpredictable changes and make the boomerang
unbalanced and the changes are not symmetrically distributed across both wings. E.g. part of the wings
turning inwards or outwards. The last principal component is noisy with only local changes.
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Figure 6.20: Visualization of PCA components. The base shape is at the top, with negative and positive variations side by side.
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6.13. Deformation term

An alternative approach explored in place of the current bilinear Grid-based FFD involved using As-
Rigid-As-Possible (ARAP) deformation. In this method, the closest vertices to the control points were di-
rectly manipulated, and Laplacian smoothing was applied to reduce sharp peaks and ensure smoother
transitions across the surface.

ARAP

To refine the shape and achieve a more accurate fit to the target shape, adjust the coordinates of the
points (z;:,y;:) to (21, 1), (@i, viz) to (x5, y3), and so on, for each of the selected points. Mathemati-
cally, this can be represented as:

where xz and y; denote the boundary input coordinates of the point corresponding to the surface points
that are closest to i} in the PCA space. These adjustments are made to minimize the residuals between
the PCA-based approximation and the target shape.

Smoothing

Since ARAP (As-Rigid-As-Possible) can produce spiky or overly deformed solutions when the points
are not sufficiently close to each other, apply Laplacian smoothing afterward. This smoothing step
helps to mitigate excessive deformations by enforcing local smoothness, ensuring that the points are
not moved too drastically in relation to their neighbors. Laplacian smoothing redistributes the vertex
positions by averaging the positions of neighboring vertices, which results in a smoother, more stable
deformation that better conforms to the desired shape.

While Laplacian smoothing is beneficial for stabilizing the deformation and reducing spikiness, it also
means that the smoothed points no longer lie exactly on the outline points. This trade-off occurs be-
cause the smoothing process alters the vertex positions to achieve a smoother, more cohesive shape,
which may slightly deviate from the original outline. However, this deviation is often necessary to ensure
that the overall shape maintains a natural, stable form without excessive distortions.

Results

While the results could work, the downside of this approach is that it is a local deformation instead of
a global deformation. In other words, instead of stretching out the whole object to fit the target points,
it only moves a small area toward a point. And, because the results look so spiky a smoothing term is
needed. The smoothing term on the other hand could be handy as a regularization term.

An example is shown in Figure 6.21. Points near tips and outer elbow, and additional points near the
right wing. Observe the local spiky behavior in 6.21b that gets smoothed out in 6.21c.

(a) Optimized Weights (b) Applying ARAP (c) Laplacian Smoothing

Figure 6.21: Results when using ARAP and Laplacian smoothing after PCA with optimized weights.

Another reason for choosing Bilinear Free-Form Deformation (FFD) over ARAP+Laplacian can be ob-
served in Figure 4.13. Figures 4.13c and 4.13e appear visually similar; however, the FFD technique
results in a more uniformly stretched airfoil, while the ARAP+Laplacian method primarily stretches the
leading and trailing edges, keeping the main body relatively static.
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This difference leads to an undesirable thinning effect in the ARAP+Laplacian approach, altering the
airfoil's overall shape more significantly. Since preserving the structural integrity of the airfoil is crucial,
FFD provides a more controlled and desirable deformation for the application.

While thinning of the airfoil might be design choice, a more challenging issue with ARAP arises when
multiple target points are aligned perpendicularly in a straight line toward the deforming shape. In
such cases, ARAP can become unstable, as illustrated in Figure 6.22, particularly in subfigure 6.22c.
When this limitation is taken into account, the deformation behaves more predictably, as seen in sub-
figure 6.22g. In contrast, FFD remains stable in these scenarios, as it simply guides the surface toward
the outermost target point, making it more robust to such alignment configurations.

(a) Mean shape

(e) Mean shape (f) PCA deformed (g9) ARAP (h) FFD

Figure 6.22: Comparison of deformation techniques on two different sets of input points. Each row shows the mean shape,
PCA deformation, ARAP, and FFD results respectively.

6.14. 3-Bladers

The methodology was also evaluated on three-blader boomerangs. Due to the limited availability of
3D-scanned tribladers, the analysis was conducted on the few flat models available. The results align
well with the findings from the two-blader experiments.

As seen in Figure 6.23, the checkerboard pattern exhibits some shearing, which is further confirmed by
the values in Table 6.4. While some compression is present, the overall area distortion remains within
reasonable limits.

The resulting correspondences, shown in Figure 6.24, reveal no unexpected discrepancies. Both Haus-
dorff and Chamfer distances remain low, comparable to those observed in the two-blader cases.

Figure 6.25 illustrates the results of PCA-based deformations. Given the limited number of shapes in
PCA space, a direct match to the target outline points is unlikely. However, Free-Form Deformation
(FFD) effectively bridges this gap. While ARAP + Laplacian deformation yields similar results, it tends
to thin out the airfoil, as noted in previous discussions.

(a) (b) (c)

Figure 6.23: Checkboard pattern Visualization on thee models
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(a)

(b)

Figure 6.24: Correspondences visualized

(c)

(a) Mean Shape

(d) with ARAP

(b) Deformed shape with optimized weights

(c) with FFD

(e) with ARAP+Laplacian

Figure 6.25: Principal Component Analysis (PCA) with optimized weights, FFD and ARAP+Laplacian.

Shape 1: )\

Area

Area

Area

Area Shear Shear

Shear

Shear

Distortion  Distortion Distortion Distortion  Distortion Distortion Distortion Distortion sna‘“"“‘;‘ 5“:“’; Shape 2
Min Max Mean StdDev Min Max Mean StdDev o i
0 0.0 110.0 0.99 250 0.00 2179 1.19 0.66 220860  26752.0 ,L
1 0.0 330.66 0.93 254 0.38 3.86 1.15 018 220858  25558.0 ,L

Table 6.3: Distortion results.
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Shape 1:
Normalized MNormalized
Hausdorff Chamfer
Distance Distance Hapsdorﬁ C_Nﬂmler Shape 2
Distance Distance
0 0.70 0.02 2.08e-03 4.72e-05 A
1 0.46 0.01 1.31e-03 3.80e-05

Table 6.4: Distance results
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6.15. Affect on FFD paramaeters

The number of outline points significantly influences the required grid resolution in Free-Form Defor-
mation (FFD). When fewer outline points are selected, a coarser grid is sufficient since only minimal
deformation is needed. However, as the grid resolution increases, more outline points are required to
prevent overfitting and ensure smooth deformations.

This effect is clearly visible in Figure 6.26, where grids larger than 11x11 begin to exhibit overfitting.
At these higher resolutions, "sensitive” areas develop peaks and distortions unless additional control
points are introduced near critical regions.

The number of iterations is a less influential parameter. After a single iteration, FFD usually provides
results very close to the expected shape. However, in cases where long wing tips or other elongated
features are present, additional iterations may help refine the shape.

Figure 6.26 illustrates the impact of grid resolution in the X and Y directions on the final shape. If you
use different setups, e.g. 14x2 or 2x14, similar behavior can be observed.

6.16. Comparison of PCA+FFD and FFD-Only Deformation

Combining Principal Component Analysis (PCA) with Free-Form Deformation (FFD) brings together
global shape modeling and local flexibility. PCA captures the dominant modes of variation across
training shapes, enabling the initialization to already approximate the target outline. As the number of
training shapes increases, this initialization gets closer to the outline, reducing the deformation effort
required during the FFD stage.

In contrast, using FFD alone - without prior PCA adjustment - starts from the mean shape and requires
more parameter tuning to match the target. This results in a higher-dimensional, more sensitive opti-
mization problem, often leading to less stable or less accurate deformations.

Figure 6.27 illustrates this difference. In particular, Figure 6.27c shows that using PCA followed by FFD
with a 10 x 10 grid effectively adapts to the target outline. On the other hand, Figures 6.27d, 6.27e,
6.27f, 6.27g, and 6.27h demonstrate the limitations of using only FFD starting from the mean shape.
Without PCA, FFD struggles to generalize across any tested grid resolutions: while higher grid sizes
(e.g., 10x 10) get closer to the target, they are computationally more expensive and prone to introducing
artifacts unless additional target points are provided. Lower-resolution grids, conversely, fail to capture
finer details, while higher-resolution grids resulted in "spiky” behavior.

Additionally, the mesh topology is more severely affected when PCA is omitted. For example, surface
features such as stickers located on the inner elbow, dingle, and leading arm of the boomerang are
slightly stretched - as expected - in Figure 6.27c¢, while in Figures 6.27d, 6.27e, 6.27f, 6.27g, and 6.27h,
these features are sheared and distorted more drastically. The airfoil lines (e.g., where the trailing and
leading edges start from the top of the boomerang) also become disproportionately scaled, indicating
that the airfoil is distorted as well.

In summary, for target shapes that deviate more significantly from the mean, applying PCA before
FFD is crucial. It brings the initial shape closer to the target, simplifies the deformation task, reduces
computational cost, and better preserves topological and structural details.
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Figure 6.26: Comparison of different grid resolutions used in the analysis. Each subfigure represents a different grid size from
2x2 to 14x14.
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(a) Mean shape (b) PCA with optimized weights (c) PCA+FFD 10x10
(d) FFD 6x6 (e) FFD 8x8 (f) FFD 10x10 (g) FFD 13x13 (h) FFD 15x15

Figure 6.27: Shape reconstructions using PCA+FFD versus solely FFD using different grid sizes.



Discussion

This thesis introduced a computational framework explicitly designed to analyze and generate new
boomerang shapes by solving the correspondence problem across a dataset of 3D scanned models.
To enable this, a dedicated dataset of over twenty boomerangs was created and post-processed. The
framework combined structural landmark alignment, alpha-shape boundary extraction, curve param-
eterization, Least Squares Conformal Mapping (LSCM), and statistical modeling using PCA, further
enhanced by gradient-based optimization and Free-Form Deformation (FFD). This pipeline allows for
structured shape correspondence across boomerangs and enables the creation of new geometries
through statistical shape reconstruction.

Scan Quality and Dataset Preparation 3D scanning proved effective for most boomerangs, but
some challenges were encountered with transparent or reflective surfaces and particularly thin airfoils.
Interestingly, models with less aggressive post-processing yielded better results, suggesting that min-
imizing manual editing helps preserve original shape quality. Preliminary comparisons on clay tablets
conducted at TU Delft's NewMedia Center showed that both photogrammetry and micro-CT (uCT) scan-
ning produced comparable results to the structured-light scanner, with uCT offering higher volumetric
accuracy. This may be worth exploring in future datasets, especially for capturing intricate geometric
details in thin or twisted regions.

Additionally, the decimation process in Blender may not be optimal, as it often produces jagged artifacts
near the boundaries and results in inconsistent triangulation. Future work could explore alternative pre-
processing techniques to reduce distortion and improve overall mesh quality.

Landmark Selection and Structural Alignment Manual landmark selection played a central role
in the correspondence pipeline but introduced subjectivity and potential inconsistencies. In particular,
additional landmarks in the elbow region were often required to preserve area consistency during pa-
rameterization. Without these, correspondences in high-curvature regions became stretched, reducing
the quality of the resulting UV mappings. Automating or guiding landmark selection based on curvature,
boundary salience, or structural heuristics could substantially improve repeatability and accuracy.

Boundary Extraction and Curve Lifting Alpha shape-based boundary extraction proved effective,
but required careful tuning of the alpha parameter to avoid artifacts. While this method handles most
boomerang geometries well, it occasionally fails to capture sharp elbow curvature, especially for in-
ward curvatures. For such cases, alternative techniques such as flood-fill-based boundary detection
or adaptive alpha selection could enhance robustness.

The curve lifting step currently relies on projecting boundary points from a globally averaged plane.
While this works well for (mostly) flat boomerangs, it becomes less accurate for boomerangs with tuned
(non-flat) wings. To better accommodate such cases, a more localized projection strategy could be
adopted. For instance, computing a local cross-sectional average to project from or fitting a surface
patch in the neighborhood of each projected point could yield more accurate lifting onto the 3D surface.
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In Step 4.2.7, boundary curves are lifted from 2D to 3D by projecting each point along averaged nor-
mal directions. However, in regions of high curvature, this projection may fail-either by misalligning
the vertex or projecting it in the wrong direction relative to the surface. Interestingly, alpha shapes
can indirectly help here: highly curved regions may be excluded from the boundary entirely, resulting
in a gap rather than risking an incorrect projection. To address such gaps, a shortest-path traversal
using Dijkstra’s algorithm is used to reconstruct a continuous 3D boundary. While this approach en-
sures topological completeness, the resulting paths are often more jagged and lose information about
the precise location of the original boundary. As a result, the reconstructed path may diverge in dif-
ferent directions across shapes, potentially introducing inconsistencies. Incorporating geodesic paths
instead could offer a more accurate and surface-aware alternative, preserving better alignment across
corresponding shapes.

Parameterization Techniques LSCM was found to outperform alternative parameterization methods
such as harmonic mapping and ARAP, particularly when applied with full boundary constraints. ARAP,
while theoretically promising, introduced unwanted distortions on the boomerang’s reverse side. Impor-
tantly, using the actual projected 3D boundary as the parameterization constraint significantly outper-
formed circular constraints, as expected due to greater shape consistency across samples. However,
ensuring that the boundary is fully connected is crucial - disconnected boundaries led to severe inac-
curacies in the UV maps.

LSCM performs best on surfaces with disk topology - that is, genus-0 surfaces without holes. Boomerangs
with deliberately introduced holes or higher-genus structures were not considered in this work and are
not directly supported by standard LSCM implementations. To extend LSCM to such cases, a practi-
cal approach is to preprocess the mesh by temporarily filling the holes to create a disk-like topology
suitable for parameterization. The holes can then be reintroduced after the UV mapping is complete.

Correspondence Evaluation Quantitative evaluations confirmed the effectiveness of the proposed
correspondence framework, yielding low Hausdorff and Chamfer distances across the dataset. Nonethe-
less, small local deviations-particularly in high-curvature or elbow regions-were observed. These are
largely attributable to vertex shifts during projection and triangulation, further emphasizing the need for
precise and curvature-aware boundary processing.

Distortion analysis across parameterizations suggested a possible inverse relationship between area
distortion and shear distortion, where shapes experiencing compression tended to exhibit higher shear.
While this trend was consistently observed across several examples, it remains a hypothesis that re-
quires more systematic evaluation to confirm. Also, selecting a base shape that is geometrically similar
to the target is important, ideally close to the dataset's mean shape. Landmark selection also played
a major role in local distortion control. As such, both base shape choice and landmark placement
significantly influence correspondence quality.

Scaling shapes to equal surface area before correspondence could reduce distortion, but this comes at
the cost of altering physical properties-especially thickness-which may impact aerodynamic behavior.
Furthermore, inconsistent mesh resolution across the dataset introduced additional complexity. Al-
though all final correspondence meshes shared the same number of vertices, the input meshes did not.
Future work may benefit from mesh resampling or remeshing to enforce consistent vertex densities.

This work was compared against an alternative correspondence method based on the spectral domain,
as proposed in [22]. However, this approach was found to be unsuitable for boomerang shapes, as it
mismatched corresponding sides.

Statistical Modeling and Shape Synthesis While PCA proved effective in modeling global shape
variation, its inherent linearity limited its ability to capture fine-grained local details. Its performance
depends heavily on the variation present in the input dataset; a broader or more diverse dataset would
increase the expressiveness of the PCA space. Regularization was necessary to suppress the influ-
ence of noisy components - particularly from inner-elbow regions - and higher principal components
were found to carry less meaningful information, often amplifying noise.



63

Combining PCA with Free-Form Deformation provided a powerful hybrid approach. The bilinear grid-
based FFD worked as expected, but required careful tuning. Larger grid sizes allowed for finer defor-
mation but increased the risk of introducing noise, while smaller grids produced smoother results at
the cost of flexibility. Additionally, point density in the outline influenced the effectiveness of FFD-the
denser the outline, the better the high-resolution grid performed.

An alternative deformation method, an ARAP-based grid, was also tested. While it produced valid
results, it tended to over-thin airfoils and deviated more from the original shape than the bilinear FFD
approach. Additionally, Laplacian smoothing was necessary to avoid spiky or irregular behavior in the
deformed shapes, as ARAP alone occasionally introduced sharp local distortions. Using PCA before
FFD (rather than relying on FFD alone) proved crucial: the PCA step moves the shape globally toward
the target, while the FFD refines local structure. This combination resulted in more natural-looking
outputs and minimized extreme deformations.

Incorporating a non-linear deformation term during PCA weight optimization is a promising direction
for future work. While the current implementation uses gradient-based optimization with a Jacobian
in the PCA space, the deformation model itself remains linear and prone to end in a local minima, as
PCA defines a linear subspace of shape variation. Introducing non-linear deformation models-such
as non-linear energy terms or constraint-based formulations-could further improve shape realism and
reduce overfitting (or underfitting), particularly in regions with complex local geometry. Additionally,
more targeted constraints could be integrated to enforce known physical or aerodynamic properties of
boomerangs. Forinstance, a thickness constraint was implemented in this work, but no conclusive anal-
ysis was conducted on its impact. Future studies could explore such constraints more systematically
to guide deformation while preserving critical aerodynamic features.

One limitation of the current FFD-based approach is that it minimizes the distance from points to the
surface. However, when points already lie on the surface, this distance becomes zero-making them
appear ‘optimized’ regardless of whether they correspond to the correct structural feature. As a result,
shapes with a thinner wing chord than the mean shape may not be accurately reconstructed, since the
outer geometry is under-constrained. A straightforward strategy to tackle this issue is to reparameterize
the outline points with respect to the mean PCA shape using a constant-speed parameterization over
the unit interval, similar to the method described in Section 4.2.6. Alternatively, one could modify the
loss function to consider only the distance from the outermost points of the reconstructed shape to the
target outline, ensuring that the outer geometry is explicitly preserved during optimization.

N-bladers The proposed method has been primarily evaluated on two-bladed boomerangs, with ad-
ditional tests performed on a subset of three-bladed examples. The results were consistent across
both cases, suggesting that the approach generalizes well. While explicit experiments on boomerangs
with more than three blades (i.e., N-bladed designs) have not been conducted, the methodology is
expected to extend naturally to such cases.



Conclusion

Summary and Contributions This thesis introduced a computational framework for analyzing and
modeling boomerangs based on example shapes. Motivated by the lack of formal tools for under-
standing and designing handcrafted aerodynamic objects, the work addressed the shape correspon-
dence problem as a foundational challenge. Boomerangs, with their subtle 3D features, asymmetries,
and functional structure, fall outside the scope of standard shape matching pipelines. The developed
method offers a tailored alternative by leveraging structural landmarks, alpha shape-based boundary
extraction, boundary re-projection, Least Squares Conformal Mapping (LSCM), and statistical shape
modeling using PCA, further refined through Free-Form Deformation (FFD).

By combining these components, the pipeline enables consistent correspondences across a set of
scanned boomerangs and supports the generation of new designs grounded in geometric structure.
Quantitative evaluation confirms the validity of the approach, and a curated dataset of over twenty
scanned boomerangs serves as a practical foundation for further research. In doing so, this work
bridges the gap between empirical craftsmanship and digital modeling, contributing to the digitalization
of aerodynamic design tools for real-world objects.

Limitations and Insights While the framework performs well overall, several limitations remain. The
reliance on manual landmark selection introduces subjectivity and variability, particularly in complex
regions such as the elbow. Boundary extraction using alpha shapes is sensitive to parameter tuning
and may struggle with sharp concavities or tuned geometries. The lifting process, while effective for
flat shapes, is less accurate for boomerangs with curved or warped wings - highlighting the need for
more localized projection strategies.

Parameterization using LSCM, though effective when constrained appropriately, assumes disk-topology
surfaces and requires consistent, connected boundaries. While the modeling pipeline successfully
combines PCA and FFD to balance global and local control, the linear nature of PCA limits its expres-
siveness, and FFD remains sensitive to grid resolution and outline density. Moreover, reconstructed
shapes can fail to match target features when the outer geometry is under-constrained or poorly pa-
rameterized.

Broader Implications Beyond boomerangs, the methodology developed in this thesis has broader
relevance for analyzing and modeling irregular but structured 3D shapes. In these contexts, the combi-
nation of structural guidance, data-driven modeling, and deformable reconstruction provides a powerful
toolkit for shape exploration and comparison.

Future Work Several directions for future research emerge from this thesis. First, automating land-
mark selection using curvature, or learned feature detectors could improve robustness and consistency
across shapes. Second, advancing boundary extraction through adaptive alpha tuning or geodesic-
driven techniques could improve reliability in difficult cases. Third, extending LSCM to handle more
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complex topologies - through pre- and post-processing, or alternative parameterization strategies -
would allow the framework to support a wider variety of shapes.

On the modeling side, incorporating non-linear deformation models could enhance fidelity, particularly
in regions where PCA falls short. Introducing additional constraints - such as preserving average thick-
ness - may further improve stability and ensure physically plausible deformations.

Closing Remarks This thesis contributes a practical, flexible, and extensible pipeline for analyzing
and generating boomerang shapes based on real-world data. By treating handcrafted geometry not
as a problem but as a structured input to be understood, the work offers new possibilities for design,
comparison, and exploration - both within boomerang sports and in the broader field of computational
shape modeling.
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Additional Algorithms

A.l. Face Classification Using Flood-Fill

To segment the mesh into two regions, a flood-fill approach based on face connectivity can be used.
Given:

* V7 : The set of vertices of the mesh.
» F) : The set of triangular faces, where each face consists of three vertex indices.
» B’: The set of vertices forming the connected boundary.

Identifying the Seed Face

Aface f € F} is considered adjacent to the boundary if at least one of its vertices is close to a boundary
vertex:

Jvef suchthat v~b, Vbe B (A1)

where v is a vertex of face f, and b is a vertex in the boundary B’. The first such face found is selected
as the seed face.

Determining Face Adjacency
Two faces f;, f; are considered adjacent if they share at least two vertices:

{ve fitn{ve fi} =2 (A.2)
This ensures that only faces connected by a shared edge (not just a vertex) are considered neighbors.

Flood-Fill Region Expansion
Starting from the seed face, iteratively classify faces using:

F4 = {f € F1 | f is reachable from the seed face through shared edges and |f N B’| <2}  (A.3)

Fy=F\Fa (A4)

where:

» F4 is the set of faces connected to the seed face via shared edges, allowing at most one boundary
vertex.
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» Fp is the set of remaining faces, forming the opposite region.

» Each edge appears in exactly one of F4 or F'g, ensuring that no boundary edge is shared between
both regions.

Since each edge in a manifold triangular mesh appears in exactly two faces, ensure that:

Ve € B’, e belongs to exactly one face in F4 or Fp. (A.5)

Thus, a face f is classified as:

f € F4 ifitis reachable from the seed face and |f N B’| < 2 (A.6)

f € Fp otherwise (A.7)

This ensures that the segmentation follows mesh connectivity while preventing any edge from appear-
ing in both F4 and Fz, which would lead to ambiguity.

A.2. As-Rigid-As-Possible (ARAP) Deformation

As-Rigid-As-Possible (ARAP) deformation is a widely used technique in geometry processing that al-
lows flexible deformation of shapes while preserving local rigidity. The method is especially effective in
mesh editing, where it is desirable to maintain the intrinsic structure of a shape under transformation.

ARAP aims to minimize local distortion by computing a deformation that is as close as possible to a rigid
transformation at each local neighborhood of the mesh. That is, each local patch is allowed to rotate
and translate but not scale or shear excessively. The global deformation is then formed by blending
these local rigid transformations in a way that maintains consistency across the mesh.

Formally, given a mesh with vertex positions v; € R¢ (where d = 2 or 3), and a deformed version with
positions v, the ARAP energy is defined as:

Enrap = Z Z Wi H(Vg - V;) - Ri(v; — Vj)H2

i JEN()

, (A.8)

where:

« N (i) is the set of neighboring vertices of vertex i,
+ w;; are weights (often cotangent weights) that control the influence of each edge,
* R; € SO(d) is the best local rotation matrix for vertex i,

* SO(d) denotes the Orthogonal group of degree d, i.e., the set of all d x d orthogonal matrices with
determinant 1.

In particular:

* For 2D deformations, R; € SO(2), which includes all 2D rotation matrices:

(A.9)

sinf  cos@

R(0) — [cos@ —sin&]

* For 3D deformations, R; € SO(3), which includes all 3D rotation matrices that preserve orienta-
tion:
RTR=1, det(R)=1 (A.10)

The deformation is solved through an iterative optimization process: alternating between estimating
the optimal rotations R; (local step), and updating the vertex positions v/ to best match those rotations
(global step). This alternating minimization converges to a deformation that maintains geometric detail
while satisfying high-level constraints, such as control points or boundary conditions.



Additional nomenclature

Symbol Definition Unit

................... Appendix - Face Classification Using Flood-Fill ...................

Vi Vertex positions of the mesh R7*3

Py Set of triangular faces (indices into V;) Nmx3

B’ Set of boundary vertices forming a connected loop -

f A triangular face in F -

v A vertex in a face f -

Fy Subset of faces reachable from seed face with < 2 -
boundary vertices

Fg Complement of F'4; faces on the opposite side of the -
boundary

e Mesh edge defined by a pair of vertex indices -

|f N B Number of boundary vertices in face f -

............... Appendix - As-Rigid-As-Possible (ARAP) Deformation ...............

\'e Original position of vertex i R?

v Deformed position of vertex i RY

N(3) Set of neighbors of vertex i -

Wij Edge weight between vertices i and j (e.g., cotan- -
gent weight)

R; Optimal local rotation for vertex i SO(d)

SO(d) Special orthogonal group (set of d x d rotation matri- -
ces with determinant 1)

Earap ARAP energy measuring deviation from local rigidity -
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Dataset Description

This dataset was created as part of the MSc. thesis "Shape Correspondences and Example-Based
Modelling for Boomerang Design” by Nils van Veen and supervised by K. Hildebrandt and R. Marro-
quim, conducted at TU Delft. The research presents a shape correspondence pipeline tailored for
irregular but structured aerodynamic boomerang shapes, focusing specifically on handcrafted compe-
tition boomerangs.

C.1. 3D Scanning and Processing

To construct the dataset, over twenty competition-grade boomerangs were 3D scanned using a Creaform
Go!SCAN device. Each boomerang was scanned from multiple static orientations and merged into a
complete 3D model with VXelements software, using an lterative Closest Point (ICP) algorithm for
alignment.

Post-processing included:
* Noise filtering and outlier rejection to eliminate isolated patches,
» Surface smoothing,
» Small hole filling,
+ Correction of local artifacts from alignment or scanning,
* Mesh decimation (10%) in Blender to improve computational efficiency.

To improve scan quality for thin airfoils or reflective/transparent surfaces, a temporary chalk spray was
used to enhance surface visibility. Scans were captured using a resolution between 0.2 mm and 0.4 mm.
In some cases, original boomerang thicknesses of 3-3.4 mm were reconstructed as slightly thicker
(3.5-3.8 mm), likely due to smoothing and surface interpolation effects during reconstruction.

C.2. Dataset Format and Access

The dataset consists of 3D mesh files in ‘.obj* format. Each mesh is aligned, decimated, and prepro-
cessed for use with the shape correspondence pipeline.

* Number of shapes: 16

* File format: OBJ (.obj)

« Average resolution: 10,000-50,000 vertices

+ Correspondences: 20,000 point-to-point matches per shape

* Naming convention: boomerang_XX.obj

» Correspondence-ready: All meshes are including correspondences.
» Access link: https://graphics.tudelft.nl/NilsVanVeen
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* Thesis code link: https://github.com/NilsvVeen/MSc-Thesis-TUD---boomerang-correspondence

Additional models are added for future research.

C.3. Shape Correspondence Pipeline

The dataset serves as the foundation for establishing shape correspondences using a novel pipeline
that combines conformal mapping and structural constraints. The key idea is to parameterize each
boomerang into a shared 2D UV space using Least Squares Conformal Mapping (LSCM), guided by a
shared 2D boundary outline.

While LSCM typically requires only two fixed vertices to anchor the map, this work leverages its flex-
ibility by constraining a full boundary curve. This ensures consistent UV mappings across different
boomerangs.

The correspondence process involves the following steps:

1. Align boomerangs in world space: A plane is fitted to each mesh, and the mesh is rotated such
that the plane normal aligns against the z-axis.

2. Project onto a parallel plane: The mesh is orthogonally projected to a 2D plane (typically the
XY plane).

3. Compute the 2D alpha shape: A user-defined alpha parameter is used to extract the 2D outline
of the projected shape using a-shapes.

4. Sort the boundary curve: The boundary vertices are sorted using a nearest-neighbor traversal
to ensure consistent vertex ordering.

5. Obtain user-defined landmarks: Key landmarks (e.g., wing tips, elbow) are manually selected
along the boundary.

6. Apply constant-speed parameterization: The boundary is parameterized between the land-
marks using constant speed parametrization over the unit interval.

7. Lift the 2D boundary to 3D: The 2D curve is lifted back to 3D by projecting onto surface near
the average z-coordinate and then shift the closest vertices to the projected points.

8. Make the 3D boundary neighbor-connected: To allow LSCM to operate properly, the lifted
curve is connected into a watertight boundary loop.

9. Compute UV maps with LSCM: Using the shared boundary as a constraint, each mesh is
mapped to 2D space using Least Squares Conformal Mapping.

10. Compute 3D shape correspondences: For each UV coordinate in Shape 1, barycentric inter-
polation is used in the UV triangle of Shape 2 to obtain the corresponding 3D point.

C.4. Citation

If you use this dataset, please cite the accompanying thesis:
N. van Veen. Shape Correspondences and Example-Based Modelling for Boomerang De-
sign. MSc. Thesis, Delft University of Technology, 2025.

Abbreviations of Boomerangs

=


https://github.com/NilsvVeen/MSc-Thesis-TUD---boomerang-correspondence

C.4. Citation 74

Abbreviation Definition

AR Australian Round
FC Fast Catch

END Endurance

ACC Accuracy

TC Trick Catch

LD Long Distance

MTA Maximum Time Aloft
Misc. Miscellaneous

Additional Information on Boomerangs Dataset
Most models can be viewed in the gallery on www.boomerangsbynils. com/product-category/nils-collection/

Name Type Thickness Distance LandmarkslIncluded File Comment

......................................................... Two-bladed boomerangs ........... ...

Typhoon-XL 120% AR 3mm 45m Variable  Yes (base) boomerang_01.obj

3D3 AR 3mm 45m 4 Yes boomerang_02.0bj

3DX AR 3mm 40m 4 Yes boomerang_03.0bj

Fuzzy Frido AR 6mm 50m 6 Yes boomerang_04.0bj a-shapes inaccuracy in inner el-
bow

Fuzzy Mark AR 5mm 50m 6 Yes boomerang_06.0bj

Fuzzy Phoenix AR 5.3mm 55m 6 Yes boomerang_05.0bj

Woodie Misc. 6mm 30m 6 Yes boomerang_07.0bj Significantly bigger and bad area
and shear distortion

Dragonfly 2 AR 3mm 60m 4 Yes boomerang_08.0bj

Kick A2 AR 3mm 50m 4 Yes boomerang_09.0bj

Ayr Adj AR 3mm 50m 4 Yes boomerang_10.0bj

Pisang AR 3mm 50m 4 Yes boomerang_11.obj

Hummingbird AR 3mm 50m 4 Yes boomerang_12.0bj

Deevee AR 3mm 50m 4 Yes boomerang_13.0bj

Fuji AR 3mm 55m 4 No unused/Fuji.obj High avg. Area distortion due to
one outlier

Marathon AR 3mm 65m 4/6 No unused/Marathon.obj UV mapping issues near wing
tips, more landmarks is better

Nabab AR 3mm 55m 4 No Heavily post-processed. Failed
when UV mapping due to hole(s)

Acongua FC 3mm 25m No Noisy Scan

........................................................ Three-bladed boomerangs ............ ... i

Rotor AR 3mm 50m 6 Yes boomerang_1.obj

Rotor Il AR 3mm 50m 6 Yes boomerang_2.obj

Deborah AR 3mm 50m 6 Yes boomerang_3.obj

.................................................. Twisted or Non-Genus-0 BoOmerangs .................c.iiiiiiiiiiiiniiniiiananaenns

Manu-Big Triblader MTA 2mm 60m No Not flat

Braket MTA 2mm 45m No Not flat

Beppy MTA 2mm 20m No Not flat

Alex Triblader MTA  2mm 65m No Not flat

Manu Flat MTA 2mm 70m No Scanning inaccuracy near thin
airfoil

Ninja Mark END 4mm 22m No Not flat, not Genus 0

Guillem Injected END 5mm 22m No Not flat, not Genus 0

IceRunner END 4mm 22m No Not flat, not Genus 0

Aurora FC 5mm 19m No Not Flat, note Genus 0
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Implementation Insights and
Debugging Notes

D.1. Overfitting the Template Shape Due to Incorrect Correspondences

Even when input shapes are aligned using ICP, computing a mean shape via PCA can overly smooth
localized variations-especially in the thickness direction-resulting in an averaged shape that is notice-
ably flatter than any of the individual inputs. This effect becomes more pronounced when thickness is
the most variable dimension, or when correspondences are incorrectly matched in symmetric regions
of the shape (e.g., one shape’s correspondence lies halfway along the wing surface while another lies
closer to the top, or when the correspondences are incorrectly UV mapped).

A practical test to verify the correctness of correspondences is to examine the resulting mean thickness.
During the UV mapping stage, if the side classification is accidentally flipped (i.e., the top and bottom
sides are reversed), the PCA mean shape may exhibit a thickness that is thinner than the minimum
thickness of any individual shape in the dataset. This is physically implausible: the mean thickness
should logically fall between the minimum and maximum values of the inputs.

Interestingly, similar issues are rarely mentioned in related works that rely on template-based shape
models, such as [27, 2, 17, 5]. However, since averaging is intrinsic to PCA, such artifacts are expected
not to occur assuming the correspondences are consistent.

Another key observation is that increasing the dataset size tends to amplify this over-smoothing effect.
As more shapes with inconsistent or noisy correspondences are introduced, the mean shape tends
to flatten further and deviate from realistic geometry. A particularly problematic consequence is the
emergence of unrealistic cambering near the trailing edge of airfoils-resulting in shapes with structural
features that no real boomerang in the dataset exhibits.

D

Figure D.1: Trailing edge cambering artifact in the PCA template shape.

This kind of deformation is especially visible near the wingtips, where the geometry is highly sensitive to
small correspondence misalignments. Unlike Figure 6.12.3, where the camber is well-distributed and
consistent with realistic airfoil shapes, the distortion in Figure D.1 is localized and unrepresentative.

In this thesis implementation, the issue has been resolved by enforcing consistent side classification
during UV mapping, to avoid mapping a point from the top the the bottom of a boomerang. Nevertheless,
this serves as an important debugging strategy and a diagnostic tool: when the mean thickness drops
below the expected range, it likely indicates incorrect or flipped correspondences.
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D.2. Convergence of a-Shapes Under Different Definitions

There are multiple ways to implement Alpha Shapes. In this work, the implementation from CGAL
was used. However, when testing a custom implementation, it became clear that the conditions for
determining whether a point is a-exposed can vary. For example, many approaches subtract circles
from the shape outline that do not contain any data points (Figure D.2). Alternatively, a method based
on the Delaunay triangulation can be used, where an edge is considered part of the alpha shape if it
lies on a circle that passes through its two endpoints and contains no other points (Figure D.3).

Both approaches produce different results but converge reasonably well in practice—each following a
slightly different geometric interpretation.

Py B> B>y B> BN

Figure D.2: Alpha shape Convergence when using method 1: subtract circles without any points in it
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Figure D.3: Alpha shape Convergence when using method 2: subtract circles without 2 points of the Delaunay-triangulated
edges in the boundary of the circle, and no other



	Preface
	Abstract
	Nomenclature
	Introduction
	Contribution
	Key Academic Contributions
	Report Structure

	Related Work
	Boomerang Design and Aerodynamics
	Shape Correspondences
	Parametrization
	Deep Learning Approaches
	Shape Reconstruction and Modelling with Statistical Models

	Background
	Anatomy of Boomerang
	Boomerang airfoil

	2D Alpha Shapes
	Conformal Mapping
	UV Mapping
	Least Squares Conformal Maps (LSCM)
	Mathematical Formulation

	Principal Component Analysis (PCA)
	Data Representation
	Mean Shape and Centering
	Singular Value Decomposition (SVD)
	Shape Deformation using PCA Modes
	Justification

	Iterative Closest Point (ICP)
	Algorithm Overview
	Computing the Optimal Transformation


	Methods
	Dataset Collection
	Boundary Condition
	Step 1: Align objects in world space
	Step 2: Project onto a parallel plane
	Step 3: Compute the 2D outline using Alpha Shapes
	Step 4: Sort the boundary curve
	Step 5: User-defined landmarks
	Step 6: Apply constant speed parametrization over the unit interval between landmarks
	Step 7: Lift the 2D curve to 3D
	Making the 3D Curve edge-connected
	Step 8: Calculate UV Maps

	3D Shape Correspondence
	Generating New Shapes
	Mean Shape Projection
	Eigenvector Projection
	Outline Points and Closest Matches
	Gradient Descent with Jacobian
	Stopping Condition
	Reconstruction
	Regularization
	Non-Rigid ICP with Free-Form Deformation


	Evaluation
	Evaluation Metrics
	Chosen Metrics
	Alternative Evaluation Metrics

	Distortion
	Area Distortion
	Shear Distortion
	Global Distortion Metrics
	Interpretation

	Distance to Original Shape
	Hausdorff Distance
	Chamfer Distance
	Interpretation:

	Evaluation and Analysis
	Distance Metrics
	Distortion Metrics
	Implications
	Conclusion
	Challenges in Comparing Other Methods


	Experiments
	Affect on  selection
	Affect on landmark selection
	2d Boundary
	Alternatives for Boundary Condition Representation

	Parameterization
	Affect on 3D Scan quality when Parameterizing
	Boundary Shape
	Boundary smoothness
	Lifting Curve
	Projecting Lifted Curve

	Effect on Base shape
	Alignment With(out) ICP
	Affect of missing Boundary points in overall PCA
	Overfitting PCA
	Overfitting with Two-Point Constraints: The Need for Regularization
	Overfitting in PCA and the Role of Principal Components
	Effect of Less Standard Airfoils in PCA
	PCA Amount of Principal components

	Deformation term
	3-Bladers
	Affect on FFD paramaeters
	Comparison of PCA+FFD and FFD-Only Deformation

	Discussion
	Conclusion
	References
	Additional Algorithms
	Face Classification Using Flood-Fill
	As-Rigid-As-Possible (ARAP) Deformation

	Additional nomenclature
	Dataset Description
	3D Scanning and Processing
	Dataset Format and Access
	Shape Correspondence Pipeline
	Citation

	Implementation Insights and Debugging Notes
	Overfitting the Template Shape Due to Incorrect Correspondences
	Convergence of -Shapes Under Different Definitions


