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Abstract
Many tasks require robots to manipulate objects while satisfying a complex interplay of spatial and temporal constraints.
For instance, a table setting robot first needs to place a mug and then fill it with coffee, while satisfying spatial relations
such as forks need to placed left of plates. We propose the spatio-temporal framework SpaTiaL that unifies the specification,
monitoring, and planning of object-oriented robotic tasks in a robot-agnostic fashion. SpaTiaL is able to specify diverse
spatial relations between objects and temporal task patterns. Our experiments with recorded data, simulations, and real robots
demonstrate how SpaTiaL provides real-time monitoring and facilitates online planning. SpaTiaL is open source and easily
expandable to new object relations and robotic applications.

Keywords Task and motion planning · Spatio-temporal logics · Monitoring · Object-centric planning

1 Introduction

Many real-world robot planning tasks require a complex
interplay of spatial and temporal constraints on the objects to
manipulate (Menghi et al., 2019; Billard and Kragic, 2019).
For instance, in the illustrated kitchen scenario (see Fig. 1),
the robot has to place the fork right of the plate; may not be
allowed to place the kanelbulle on the plate until the plate
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is at its dedicated location; and it needs to serve the coffee
within a given time bound, e.g., while it’s hot In addition,
the manipulated objects may have various shapes and their
exact positions may be uncertain due to sensor noise. These
requirements and properties make manipulation tasks con-
siderably harder to solve.

Various approaches have been developed to streamline
and standardize the specification, monitoring and planning
of complex robotic tasks, e.g., using the Stanford Research
Institute Problem Solver (STRIPS) (Fikes et al., 1972), the
PlanningDomainDefinition Language (PDDL) (McDermott
et al., 1998; Fox & Long, 2003) or symbolic planning (see
Sect. 1.1). For instance, users can specify initial and goal
states, predicates, objects and actions in PDDL. These spec-
ifications are powerful but usually become complex, since
users are required to specify both what the robot needs to do
and how the robot will do it, e.g., by specifying the robot’s
action space.

Temporal Logics (TLs) have become a popular tool to
focus on specifying what robots need to do in a task with-
out requiring information on how the robot will perform the
task (Kress-Gazit et al., 2018). In contrast to classical speci-
fication languages, TLs are rich and concise, often closer to
resemble natural language (Kress-Gazit et al., 2008) and can
be used to specify various temporal events of tasks without
explicitly modeling the robot’s action space. Many TL solu-
tions handle requirements only on the robot’s state and not
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Fig. 1 The illustrated kitchen task requires a complex interplay of spa-
tial and temporal constraints. The robot needs to arrange the objects in
a predefined temporal order, e.g., first place the fork left of the plate.
Moreover, it needs to consider time bounds such as placing the filled
coffee mug within 10s to the right side but close to the plate after the
kanelbulle has been placed within the plate. This specification requires
designers to deal with various object shapes, object detection uncer-
tainties, and temporal orders. SpaTiaL parses user specifications and
monitors their satisfaction in real-time, providing feedback to planners

on objects in the environment, target mobile robot domains,
require environment abstractions, e.g., grid cells, and focus
either on specifying/monitoring tasks or planning.

For complex manipulation tasks like the one shown in
Fig. 1, we require a specification tool that (1) is expressive
enough to cover the various spatial and temporal require-
ments of tasks in an object-centric fashion; (2) allows end
users to easily specify tasks while being formal for automatic
processing; and (3) can be used for specification, monitor-
ing and planning. Ideally, this tool should support various
object geometries, consider object detection uncertainties,
and operates in a continuous world.

Wepresent our frameworkSpaTiaL, that has beendesigned
to specify complex robotic tasks in an object-centric fashion.
It allows users to express various spatial and temporal rela-

tions between objects, e.g., an object is eventually left of and
never close to another object (see Sect. 3 and Sect. 4). We
demonstrate that SpaTiaL allows both for monitoring as well
as high-level planning (see Sect. 5). SpaTiaL is declarative
so that users only specify the task’s goal configuration and
constraints without defining high-level robot actions before-
hand. We present a high-level, online planning method for
SpaTiaL specifications in scenarios where the dynamics of
the robot are largely unrestricted. It is able to plan next steps,
monitor execution and replan in the case of failures.We illus-
trate the advantages of SpaTiaL in various experiments, e.g.,
pick-and-place tasks, in simulation and on robots.

1.1 Related work

In the following paragraphs, we briefly review classical and
recent approaches for task and motion planning (TAMP)
(Kress-Gazit et al., 2018; Karpas & Magazzeni, 2020) and
provide an overview of the spatio-temporal relations in com-
plex robotic tasks. We use the term specification to refer to
the desired goal configurations (e.g., a fixed object arrange-
ment) and constraints (e.g., objects should not be close to
each other for a predefined time interval) of a planning task
that a robot executes within an environment.
Task and motion planning Various description languages
exist for different robotic applications. STRIPS is one of the
earliest specification languages (Fikes et al., 1972). It mod-
els the planning problem as a state transition system (TS)
with pre- and post-conditions for applying actions. The states
in the TSs are composed of Boolean propositions to denote
the current planning phase. STRIPS has been successfully
applied to numerous tasks (Bylander, 1994; Jiménez et al.,
2012) and updated over the years (Garrett et al., 2017; Aineto
et al., 2018).

The Action Description Language (ADL) (Pednault,
1989) builds up on the success of STRIPS and allows users
to remove the closed-world assumption (negative literals are
allowed), specify goals with con- and disjunctions, and intro-
duces conditional action effects. These additions enabled the
expression ofmore complex robotic tasks. Although STRIPS
and ADL are powerful, they usually require users to specify
the whole domain and the problem instance from scratch for
new applications.

PDDL (McDermott et al., 1998; Fox & Long, 2003;
Garrett et al., 2020) separates domain and problem spe-
cific definitions. This choice makes planners comparable
and allows users to apply domain definitions across vari-
ous problem instances. PDDL can be seen as a generalized
and standardized version of STRIPS. It has shown success
in many applications and is supported by various systems,
such as the Robot Operating System (Cashmore et al., 2015).
PDDL is a powerful planning framework for robotic tasks,
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but it is challenging to account for object detection uncer-
tainties or low level control effects.

Manipulationprimitives (MPs) and related concepts (Finke-
meyer et al., 2005; Kröger et al., 2010; Pek et al., 2016;
Sobti et al., 2021) consider low-level control effects in TAMP
by interfacing robot programming and sensor-based motion
control. MPs represent primitive motions that are executed
with feedback control and available sensor data. By chain-
ing MPs, one can design high-level robot programs that are
automatically executed in the control architecture. TheseMP
chains need to be carefully designed for the intended appli-
cation. Similarly, Behavior Trees (BTs) are representations
of a solution to a TAMP problem and follow a reactive exe-
cution approach (Ghzouli et al., 2020; Iovino et al., 2022;
Colledanchise and Ögren, 2018). BTs form directed graphs
where nodes correspond to predefined (sub-) tasks that are
executed by (local) continuous controllers. They allow more
fine-grained control of robotic systems due to their resem-
blance to hybrid control systems (Ögren, 2020; Sprague et al.,
2018). Yet, users need to explicitly consider the problem-
specific task properties to properly chain MPs or create BTs.

Recent symbolic planning approaches unify the low-level
control benefits with the power of reasoning systems to auto-
matically synthesize plans (Zhao et al., 2021; Silver et al.,
2021; Loula et al., 2020), i.e., combined TAMP. Logic-
geometric programming (LGP) (Toussaint, 2015; Toussaint
et al., 2018), optimizes motions on a symbolic, interaction,
and low level. The symbolic level decides the high-level
actions, the interaction level encodes the resulting geome-
try of the world, and the low level takes care of the kinematic
planning. LGP has shown remarkable achievements for vari-
ous tasks by integrating differentiable physics and interaction
modes of objects in the scene (Migimatsu & Bohg, 2020).

The aforementioned TAMP approaches focus on com-
bining the specification and planning of tasks. Most of the
approaches require dedicated knowledge of the robotic sys-
tem and the available domain propositions. Yet, desired
tasks may be executed by various types of systems (e.g.,
manipulators and drones) and should be specified without
defining (discrete) propositions or actions beforehand.More-
over, these approaches cannot monitor how close the system
is to satisfying or violating the specification in the presence
of object detect uncertainties.
Temporal logics in robotics TLs have become increasingly
popular for robotic applications (Katayama et al., 2020; Pan
et al., 2021; Wells et al., 2021; Kshirsagar et al., 2019).
They allow users to specify what the robot needs to do with-
out dedicated knowledge about the robot’s dynamics. Linear
Temporal Logic (LTL) (Pnueli, 1977) is a modal logic over
Boolean propositions, where the modality is interpreted as
linearly progressing time. Originally developed to describe
and analyze the behaviour of software programs, it is now
widely used in robotics (Kress-Gazit et al., 2009, 2018; Li

et al., 2021; Plaku & Karaman, 2016). LTLMoP (Finucane
et al., 2010) is a toolkit to design, test and implement hybrid
controllers generated from LTL specifications.

LTLoffinite traces (LTL f ) (DeGiacomoandVardi , 2013)
and co-safe LTL (scLTL) (Kupferman & Vardi, 2001) are an
efficient fragment of LTL designed to analyze and verify
finite properties. Since robotic tasks usually have a defined
ending criterion, LTL f and scLTL are well suited as a spec-
ification language in task planning (Wells et al., 2020; He
et al., 2019; He et al., 2018; He et al., 2015; Vasilopoulos
et al., 2021; Lacerda et al., 2014; Schillinger et al., 2018).
All classical LTL definitions or fragments thereof rely on
discrete time andBoolean predicates, but some define quanti-
tative predicates (Li et al., 2017) or robustnessmetrics (Vasile
et al., 2017; Tumova et al., 2013). These quantitative evalua-
tions provide a continuous real value that measures the extent
to which a plan satisfies or violates a specification. Many
approaches require users to manually define predicates and
quantitative evaluations while we use spatial relations in a
general and compositional manner.

Metric Temporal Logic (MTL) (Koymans, 1990) enables
expressingquantitative timeproperties by introducingbounded
temporal operators. Metric Interval Temporal Logic (MITL)
(Alur et al., 1996) is a fragment of MTL that bounds all
temporal operators through intervals of time. In contrast to
MTL, MITL is decidable, making it more suitable for plan-
ning (Alur et al., 1996). Instead of Boolean propositions as
used in MITL and MTL, SpaTiaL reasons over real-valued
propositions and naturally provides quantitative semantics
(see Def. 16).

Signal Temporal Logic (STL) (Donzé et al., 2010) is
defined over real-valued signals and continuous time, where
all temporal operators are bounded by an interval. STL iswell
suited to analyze real-valued signals and has been applied
in control (Lindemann & Dimarogonas, 2018) and motion
planning (Raman et al., 2014). STL specifications can often
directly be used within optimization problems by exploit-
ing its quantitative semantics (Barbosa et al., 2019) or to
define satisfying regions in the state space (Lindemann and
Dimarogonas , 2017).

To summarize, TLs are well suited to cover temporal pat-
terns in various robotic tasks. Yet, we notice that some logics
(like LTL) are more user-friendly due to the use of dis-
crete high-level predicates, whereas continuous logics (like
STL) naturally provide evaluations of continuous signals and
quantitative semantics. SpaTiaL unifies these advantages to
synthesize high-level plans that can be executed through any
user-defined low-level controller.
Spatial and temporal requirements Many robotic tasks
involve a complex interplay of spatial and temporal pat-
terns (Menghi et al., 2019). Already allegedly simple box
stacking tasks require robots to consider both precise place-
ment of boxes relative to each other, as well as temporal

123



1442 Autonomous Robots (2023) 47:1439–1462

constraints, all while incorporating object detection uncer-
tainties. In (Menghi et al., 2019), the authors summarize
common temporal patterns of robotic tasks. These patterns
include surveillance, conditions, triggers or avoidance pat-
terns among others. Specifically, manipulation tasks include
temporal sequences to assemble parts, recurring triggers
(such as continuously moving certain parts), and time-
bounded actions (Correll et al., 2016).

Various approaches incorporate spatial relations between
objects into robotic frameworks (Ramirez-Amaro et al.,
2013; Ramirez-Amaro et al., 2017; Diehl et al., 2021; Yuan
et al., 2022; Liu et al., 2022; Paxton et al., 2022), e.g., what
it means when two boxes are touching. These spatial rela-
tions help robots to understand desired goal configurations
of objects (Izatt and Tedrake , 2020) and to predict an action’s
outcome (Paus et al., 2020). To this end, many approaches
perform object-centric planning (Devin et al., 2018; Sharma
et al., 2020; Shridhar et al., 2022), where planning is per-
formed in the task space of the object itself (Manuelli et al.,
2019; Migimatsu & Bohg, 2020; Agostini and Lee, 2020).

Spatial relations between objects range from high-level
geometric relations, such as an object being left of another
(Jund et al., 2018; Guadarrama et al., 2013), to relations that
describe which objects support another object within a 3D
structure (Kartmann et al., 2018;Mojtahedzadeh et al., 2015;
Panda et al., 2016). Learning spatial relations from data and
demonstrations is difficult (Rosman & Ramamoorthy, 2011;
Driess et al., 2021; Li et al., 2022) due to the variety of rela-
tions and the complexity of separating similar relations.

Specification frameworks for robotic tasks should be able
to encode the richness of temporal patterns and incorpo-
rate spatial relations of various kinds. Moreover, they should
measure how much the robot satisfies/violates desired spa-
tial relations so that the robot can monitor its progress even
in the presence of object detection uncertainties. To enhance
usability and interpretability, these frameworks ideally define
spatial relations close to natural language (Skubic et al., 2004;
Nicolescu et al., 2019).

1.2 Contributions

Our goal is to create a formal language that allows users to
specify, monitor, and plan various robotic tasks. To unify the
advances in formal methods as well as robot motion plan-
ning, we present our spatio-temporal framework SpaTiaL
that connects these two domain while maintaining the rigor-
ousness and properties of temporal logics. More specifically,
SpaTiaL:

1. is a formal object-centric, robot-agnostic specification
language for tasks with spatial and temporal relations
between objects in a continuous world,

2. provides a monitoring algorithm that answers how much
a specification is satisfied/violated in real-time, and

3. facilitates online planning through determining sequences
of high-level actions which are executed by user-define
controllers and are monitored online.

We demonstrate the advantages of SpaTiaL on various tasks
with real data, simulations, and on robots. SpaTiaL is openly
available as a Python package and extensible for various
applications.

1.3 Structure of the article

This article is structured as follows: in Sect. 2, we introduce
the necessary mathematical notations of sets and objects in a
scenario. Subsequently, we define spatial relations between
objects, define the syntax of SpaTiaL and derive the com-
putation of SpaTiaL’s quantitative semantics in Sect. 3 and
4. In Sect. 5, we illustrate how SpaTiaL can be used to
monitor and plan robotic tasks using an example scenario.
In Sect. 6, we demonstrate SpaTiaL in various experiments
ranging from monitoring pushing and pick-and-place tasks,
monitoring social distances in drone surveillance videos, to
planning pushing and pick-and-place tasks. We discuss the
results and limitations of our approach in Sect. 7 and finish
with conclusions in Sect. 8.

2 Preliminaries

We consider an environment which is modeled as a subset
of the Euclidean space R

d , d ∈ {2, 3}. This environment is
occupied by N ∈ N+ objects, e.g., robots, cups, or cubes.
Time discretizations are common in environmental mod-
els of various robotic systems due to the sampling rate of
used sensors (e.g., the frame rate of a camera mounted to an
end-effector). A perception module (e.g., a camera or laser
scanner) provides the footprintOt

i ⊂ R
d and orientation vec-

tor ui ∈ R
d , ||ui ||2 = 1, of each object i ∈ {1, . . . , N } in the

environment at discrete points in time t ∈ N≥0, where �t is
the time step between two consecutive time steps ti+1 − ti .
We denote the time step t0 = 0 as the initial time. We may
also consider uncertainties in the object representation, e.g.,
by providing a larger footprint for object i or enlarging its
footprint using the Minkowski sum and an error term E , i.e.,
Ot

enl,i = Oi ⊕ E := {p+ e | p ∈ Ot
i ∧ e ∈ E}. Furthermore,

we consider that footprintsOt
i are compact and convex sets:

Definition 1 [Compact and Convex Set] A set O ⊆ R
d is

compact if it is bounded and closed. Moreover, this set O is
convex if ∀p1, p2 ∈ O : ∀α ∈ [0, 1] : (1−α)p1+α p2 ∈ O.

The state st = (
(Ot

1, u
t
1), (Ot

2, u
t
2), . . .

)
contains the infor-

mation of all objects in the scenario at time step t . For brevity,
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we omit the time step from an object (Ot
i , u

t
i ) when the par-

ticular time step can be inferred from the context.
In certain tasks, objects may not be convex, e.g., a banana

or a cupwith a handle.We can either compute the convex hull
of these objects, i.e., hull(O), or decompose them into a set
of convex objects (Deng et al. 2020). For instance, we may
represent the inside and outside of a cup through two cylin-
ders and the handle with a set of three cuboids. One can also
specify phantomobjects in SpaTiaL. Phantomobjects are vir-
tual objects that do not correspond to a physical object in the
world and are used to specify goal regions, stay-in or stay-out
regions for physical objects.With the introduced spatial rela-
tions, users can specify forbidden rectangular region through
phantom objects and constrain objects to never enter this for-
bidden region.

The intersection between two sets X1 and X2 is denoted
asX1 ∩X2 and the Cartesian product asX1 ×X2. The power
set is written as 2X . Our definitions of spatial and temporal
relations follow the Backus-Naur form. The operators ∧, ∨
and ¬ denote the Boolean and, or, and negation operations,
respectively.

3 Spatial relations between objects

Many tasks require robots to arrange objects in desired con-
figurations relative to each other. For instance, an object Oi

needs to be placed close to and left of object O j . Our goal
is to define spatial relations in continuous space to elimi-
nate discretization effects (Wells et al., 2019; Dantam et al.,
2016) and to provide quantitative semantics, i.e., a continu-
ous measure about the extent that a scenario satisfies a spatial
relation. In the following four subsections, we use signed
distances, projections and cosine similarity to derive spatial
relations between objects and introduce quantitative seman-
tics to measure the satisfaction of a specification given a state
st of the scenario (more details on monitoring can be found
in Sect. 5).

3.1 Distance-based relations

To derive distance-based spatial relations, such as an Oi

is close to O j , we rely on signed distance computations
between convex objects that are used in computational geom-
etry for robotic applications (Boyd et al., 2004;Oleynikova et
al., 2016; Driess et al., 2022). These approaches define con-
straints between geometric shapes through distances between
them, e.g., an object cannot be closer to another object by a
predefined margin (Zucker et al., 2013). We derive spatial
relations by exploiting the signed distance between objects.
The signed distance is computed using the distance and pen-
etration depth. The distance between two objects is defined
as:

Fig. 2 Illustration of signed distances sd (dashed lines) between various
objects: sd > 0when objects do not intersect (e.g., sd(O1,O2)), sd = 0
when objects touch (e.g., sd(O2,O5)), and sd < 0 when the interior of
objects intersects (e.g., sd(O2,O3))

Definition 2 [Distance] The distance d(Oi ,O j ) between
two objects, Oi and O j , is the norm of the smallest trans-
lation so that both objects intersect:

d(Oi ,O j ) := inf
{
‖T ∈ R

d‖ | (T ⊕ Oi ) ∩ O j �= ∅
}

.

Intuitively, the distance d(Oi ,O j ) is larger than zerowhen
Oi and O j do not intersect and zero otherwise. In the case
ofOi ∩O j �= ∅, we are interested in computing the distance
required to get both objects out of contact, denoted as the
penetration depth:

Definition 3 [Penetration Depth] The penetration depth
pd(Oi ,O j ) between two objects, Oi and O j , is the norm
of the smallest translation so that they do not intersect:

pd(Oi ,O j ) := inf
{
‖T ∈ R

d‖ | (T ⊕ Oi ) ∩ O j = ∅
}

.

The distance and penetration depth can be efficiently com-
putedwith theGilbert-Johnson-Keerthi algorithm (GJK) (Eric-
son, 2004, Sect. 9.5) in linear or logarithmic time complexity
with respect to the number of vertices. GJK is a popular
choice in real-time collision checking and uses Minkowski
differences between convex polygons to compute distances
in the polygon’s configuration space. Def. 2 and Def. 3 are
complementary to each other and can never simultaneously
be non-zero. Finally, we define the signed distance as (Schul-
man et al., 2014):

Definition 4 [Signed Distance] The signed distance sd(Oi ,

O j ) between two objects, Oi and O j , is given by:

sd(Oi ,O j ) := d(Oi ,O j ) − pd(Oi ,O j ).

The signed distance between two objects is positive if they
do not intersect, zero when they are touching, and negative
when their interiors intersect. Figure2 illustrates these three
cases. The signed distance allow us to define spatial rela-
tions for describing if two objects are in a certain distance or
overlap:
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Proposition 1 [DistanceandOverlapRelations] Twoobjects
Oi and O j are in ε-range (closeToε) of each other if:

Oi closeToε O j := sd(Oi ,O j ) ≤ ε,

and overlapping ( ovlp ) if:

Oi ovlpO j := sd(Oi ,O j ) ≤ 0.

Proof The proof follows directly from the properties of the
signed distance between two objects. ��

By exploiting the convexity of the object shapes, we can
also determine whether an object is enclosed in another
object:

Proposition 2 [Enclosed Within Relation] The shape of an
objectOi is fully enclosed in (enclIn) the shape of objectO j

if:

Oi enclInO j := ∀p ∈ hull(Oi ) : sd(p,O j ) ≤ 0

Proof When ∀p ∈ hull(Oi ) : sd(p,O j ) ≤ 0, then all points
of the hull ofOi are enclosed inO j . Since our objects are con-
vex, it follows that every line segment ofOi is also enclosed,
i.e., ∀p1, p2 ∈ hull(Oi ),∀ : α ∈ [0, 1] : (1− α)p1 + α p2 ∈
O j . ��
Figure3 illustrates the proof of Prop. 2 for two objects Oi

and O j .

Definition 5 [DerivedDistance-based Spatial Relations] The
spatial relations far from (farFrom), touch ( touch , with
numeric parameter), partial overlap ( partOvlp ), and closer
to than (closerTo) are derived from the distance-based rela-
tions:

Oi farFromε O j := ¬Oi closeToε O j

Oi touchO j := Oi closeToε O j∧
Oi farFrom−ε O j ,

Oi partOvlp := Oi ovlpO j ∧ (¬Oi enclInO j )

Oi closerToO j than Ok := sd(Oi ,O j ) ≤ sd(O j ,Ok)

3.2 Projection-based relations

The distance-based spatial relations already allow us to spec-
ify a variety of object configurations and to derive additional
relations, such as an object being far away or in a certain
range of distance values to another object. To place objects
more precisely, we are further interested in specifying direc-
tions, e.g., an object is left of another one.We can derive such
relations by projecting the objects onto a common coordinate
system axis and determine their order.

Fig. 3 The objects Oi and O j are convex, i.e., every line segment �

between any two points on the hull is also enclosed. Therefore, Oi
is enclosed in O j if the signed distance of every point on the hull is
negative or zero

Definition 6 [Projection] The projection operator projax(O)

projects the shape of an object O onto the axis ax.

Since our objects are compact and convex sets, the projection
operator returns a closed interval. We use interval orders to
determine the left-to-right precedence relation between two
given intervals (Allen, 1983):

Definition 7 [Interval Precedence] An interval I1 ⊂ R par-
tially precedes another interval I2 ⊂ R if min(I1) ≤
min(I2), and fully precedes it if max(I1) ≤ min(I2).
Thus, when we project two objects onto a given axis, we can
determine whether Oi is partially or fully left of O j with
respect to axis ax:

Definition 8 [Precedence Relations] An object Oi partially
precedes (partPrec) an object O j with respect to axis ax if

Oi partPrecax O j := min
(
projax(Oi )

) − min
(
projax(O j )

) ≤ 0,

and fully precedes (prec) O j if

Oi precax O j := max
(
projax(Oi )

) − min
(
projax(O j )

) ≤ 0.

With the precedence relations, users can derive spatial rela-
tions for a given application by choosing different axes, e.g.,
determining if an object is above another onewhen projecting
it to the height-axis. Figure4 illustrates how we can use the
projection and interval order to determine whether an object
is left of another object with respect to a given axis.

Finally, we derive additional projection-based spatial rela-
tions. Users can define various coordinate frames to express
the projection-based spatial relations, given as a parameter.
Without loss of generality, we consider a 2D environment
with a single reference frame with axes px and py in the
following paragraphs.

Definition 9 [Derived Projection-based Spatial Relations]
The spatial relations left of (leftOf), right of (rightOf), below
of (below), above of (above), and between (between) are
derived from the projection relations:

Oi leftOf O j := Oi precpx O j

123



Autonomous Robots (2023) 47:1439–1462 1445

Fig. 4 We can determine the order relation of two objects Oi and O j
by projecting them onto an axis ax ∈ {px , py, pz} and determining the
order of the intervals. Here,Oi is left ofO j for the axes px and py and
O j left of Oi for axis pz

Oi rightOf O j := ¬Oi precpx O j

Oi belowO j := Oi precpy O j

Oi aboveO j := ¬Oi precpy O j

Oi betweenax O j and Ok := O j precax Oi ∧ Oi precax Ok

Note that the partial versions of the relations are obtained by
using the partial precedence relation. These versions allow
one to check, e.g., whether a part of an object is left of another
object.

3.3 Angle-based relations

In some applications, we want to orient objects in a desired
way, e.g., a knife needs to point upwards. This requires us to
compare the orientation vector ui of an object Oi with the
desired orientation vector ud . In data analysis, the cosine sim-
ilarity measures the relative angle between two vectors. For
computational efficiency and to enforce a positive measure,
we use the Euclidean distance approximation of the cosine
distance:

Fig. 5 The Euclidean cosine distance ecd provides a measure for the
angle between two unit vectors, u1 and u2. The shaded area corresponds
to being κ−close to the desired angle of u2. The right figure shows the
orientation relation when rotating u1

Definition 10 [Euclidean Cosine Distance] The Euclidean
approximation ecd of the cosine distance between two vec-
tors u1 and u2 is given by

ecd(u1, u2) = (||u1−u2||22)/2,

where ||u1||2 = ||u2||2 = 1.

This definition allows us to define a relation that describes
whether two objects are aligned in the same orientation:

Definition 11 [OrientationRelation]AnobjectOi with angle
vector ui is oriented as object O j with angle vector u j if

Oi orientedO j := ecd(ui , u j ) ≤ κ,

where κ is a user-defined parameter to allow small numerical
deviation from the desired orientation.

Figure 5 illustrates the ecd between two angle vectors
u1 and u2 and how we use the parameter κ to account for
numerical deviations.

3.4 Spatial compositions and quantitative semantics

Users can create complex spatial specifications by compos-
ing our spatial relations with Boolean operators:

Definition 12 [Spatial Relation Grammar] Spatial relation
specifications are recursively defined using the following
grammar:

R := �|O1rel2O2|O1rel3O2,O3|¬R|R1 ∧ R2|R1 ∨ R2,

where rel2 and rel3 are spatial relations between two or three
objects, respectively. The vertical bar | represents a choice
between expressions and � represents unconditional truth.
Through the recursive definition, spatial relations can be
nested, negated or combined through logical conjunction and
disjunction in arbitrary fashion.

Similar to the quantitative semantics of STL (Donzé et al.,
2010), we define quantitative semantics for our spatial rela-
tions by converting their constraint formulation (i.e., a form
of g ≤ c, where g is a function and c a constant) into a satis-
faction formulation. We consider the state st (see Sect. 2) of
all objects at time t to compute the satisfaction.

Definition 13 [Quantitative Semantics for Spatial Relations]
We define the quantitative semantics ρ(st ,R) of a spatial
relation specification R as:

ρ(st ,�) = ∞
ρ(st ,¬R) = −ρ(st ,R)

ρ(st ,R1 ∧ R2) = min(ρ(st ,R1), ρ(st ,R2))
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ρ(st ,R1 ∨ R2) = max(ρ(st ,R1), ρ(st ,R2))

We define ρ for single spatial relations:

ρ(st ,Oi closeToε O j ) = ε − sd(Ot
i ,Ot

j )

ρ(st ,Oi ovlpO j ) = − sd(Oi ,O j )

ρ(st ,Oi closerToO j than Ok) =
sd(O j ,Ok) − sd(Oi ,O j )

ρ(st ,Oi enclInO j ) = − max
p∈hull(Oi )

sd(p,O j )

ρ(st ,Oi partPrecax O j ) = min
(
projax(O j )

)

− min
(
projax(Oi )

)

ρ(st ,Oi precax O j ) = min
(
projax(O j )

)

− max
(
projax(Oi )

)

The quantitative semantics for the other spatial relations are
computed analogously by recursively applying our intro-
duced semantics.

We can use our geometry-based spatial relations also
between objects over time, e.g., to describe the motion of
an object. As an example, we consider the composition of a
new unary spatial relation that describes if an object is mov-
ing side-wards over time.

Definition 14 [Time-Relative Relations]We define an object
Ot

i moving to the right side as

Ot
i movingRight ⇔ Ot−1

i leftOf Ot
i .

This time-relative property can be defined for all spatial rela-
tions and allows users to compose highly complex relations.
Since we operate on geometric objects, we can also create
phantomobjects, such as goal or forbidden regions, to specify
desired goal configurations or constraints.

4 Temporal behaviour of spatial relations

With the temporal operators from logics such as LTL or
MITL, we further allow users to specify the interplay of spa-
tial relations in time.

Table 1 Temporal operators in SpaTiaL

Symbol Operator

Xφ φ holds next time step

φ1Uφ2 φ1 holds until φ2

Fφ φ holds eventually

Gφ1 φ always holds

Definition 15 [Syntax of Temporal Relations] Temporal
behaviour of spatial relations is recursively defined using the
following syntax:

φ := � |R | ¬φ | φ1 ∧ φ2 |Xφ | φ1Uφ2 | φ1U[a,b]φ2,

where 0 ≤ a < b.

Similar to Def. 12, the vertical bar | represents a choice
between expressions and � represents unconditional truth.
Through the recursive definition, SpaTiaL formulas can be
nested, negated or combined through logical conjunction and
disjunction in arbitrary fashion. The temporal operators are
summarized in Table 1. The next-operator Xφ requires a
spatial relation to hold in the next time step. φ1Uφ2 requires
φ1 to hold until φ2 holds. Using the operators ¬ and ∧, we
obtain the full power of propositional logic. The operators
∨,−→,↔ are defined as usual (Baier andKatoen, 2008). Fur-
thermore, Fφ = �Uφ represents φ holding true eventually
in the future and Gφ = ¬F¬φ always holding from now on.
Bounded temporal operators additionally use a time interval
[a, b] to define a timewindow inwhich formulas have to hold.
Similar to their unbounded variants,F[a,b]φ = �U[a,b]φ and
G[a,b]φ = ¬F[a,b]¬φ.

We interpret a temporal formula φ over finite sequences
of states. We denote a sequence of states from time t to t + k
as st :t+k = st st+1 . . . st+k .

Definition 16 [Quantitative Semantics of Temporal Rela-
tions] We define ρ(st :t+k, φ) as:

ρ(st :t+k,�) = ∞
ρ(st :t+k,R) = ρ(st ,R)

ρ(st :t+k,¬φ) = −ρ(st :t+k, φ)

ρ(st :t+k, φ ∧ ψ) = min(ρ(st :t+k, φ), ρ(st :t+k, ψ))

ρ(st :t+k,Xφ) = ρ(st+1:t+k, φ), k > 0

ρ(st :t+k, φ1Uφ2) = max
t ′∈[t,t+k]

(min(ρ(st ′:t+k, φ1),

min
t ′′∈[t,t ′]

(ρ(st ′′:t ′ , φ2)))),

ρ(st :t+k, φ1U[a,b]φ2) = ρ(s(t+a):min(t+k,t+b), φ1Uφ2),

where 0 ≤ a ≤ b and a ≤ k.

From this definition, we can derive additional semantics for
the derived operators:

ρ(st :t+k, φ1 ∨ φ2) = max(ρ(st :t+k, φ1), ρ(st :t+k, φ2)),

ρ(st :t+k,Fφ) = max
t ′∈[t,t+k]

(ρ(st ′:t+k, φ)),

ρ(st :t+k,Gφ) = min
t ′∈[t,t+k]

(ρ(st ′:t+k, φ)).
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A sequence of states st :t+k satisfies a formula φ, denoted as
st :t+k |� φ, if ρ(st :t+k, φ) ≥ 0.We denote the set of all traces
that satisfy φ as L(φ).

Remark 1 [Comparison to other TLs] SpaTiaL takes con-
cepts and operators from established temporal logics, such as
LTL f , MITL and STL. As spatial relations are real-valued
functions, our language expresses a fragment of STL with
robust semantics (Donzé et al., 2013) over discrete intervals
of time. The syntax and semantics of unbounded temporal
relations are in line with LTL f (De Giacomo and Vardi,
2013) and TLTL (Li et al., 2017), which express tempo-
ral properties over finite intervals of time. Compared to
MITL (Koymans, 1990), our bounded temporal operators are
defined over discrete time instead of continuous time. Apply-
ing timed automata-based planning approaches to SpaTiaL
remains an interesting avenue for future research.

5 Monitoring and planning with SpaTiaL

The quantitative semantics of SpaTiaL allow users to mon-
itor the satisfaction of a given specification on a sequence
of states. This monitoring approach can be applied to video
data with tracked objects, as we demonstrate in Sect. 6.2 and
Sect. 6.3. In these experiments, we use SpaTiaL to moni-
tor both the completion of an object manipulation task with
complex spatial constraints, as well as real-time monitoring
of social distancing behaviour, where we showcase temporal
constraints. Beyond monitoring, SpaTiaL can also be used
to derive a plan to satisfy a specification. In this section,
we outline how to use SpaTiaL for online monitoring and
present a heuristic planning method that is independent of
the underlying robot dynamics.

5.1 Onlinemonitoring

SpaTiaL can evaluate the satisfaction of a specification online
with respect to the information about objects through its
quantitative semantics. These semantics measure the extent
to which a scenario satisfies or violates a specification and
can be used, e.g., to obtain fine-grained information on the
robot’s task progress during operation. Let us demonstrate
the monitoring on an example:

Example 1 [Monitoring an Object’s Motion] Consider a
workspace with a cube Ocube that needs to be moved to the
right into a pre-defined goal regionOgoal. The spatial relation
specification for this example isRbp = (Ocube enclInOgoal).

Figure 6a illustrates the example and the motion of the
object Ot

cube over time steps t . The computed satisfaction
value for the specification φbp is shown in Fig. 6b (blue
graph). While moving towards the goal region, the satisfac-
tion value increases. Values below zero indicate a violation of

the specification while values greater or equal zero indicate
satisfaction. As soon as Ocube is in the goal region, the sat-
isfaction value is positive. After leaving the goal region, the
specification is violated again. In Fig. 6b, we also show the
satisfaction values when replacing the enclIn relation with
other spatial relations.

The computational complexity of the monitoring scales
similary as the robust evaluation of STL as described in
(Donzé et al., 2013). To this end, the evaluation is linearly
in the number of nodes Ntree in the parsed syntax tree (eval-
uation of SpaTiaL relations) for each time step evaluation.
If more objects are contained in the specification, e.g., due
to the decomposition of non-convex objects, the syntax tree
contains more nodes. The evaluation of relations by using
the GJK algorithm scales in the worst case linearly in the
number of vertices in the polygons.

When evaluating specifications over time, the complex-
ity increases to O(Ntree · Nstates · Dh), where Nstates denotes
the number of states in the time history, h the maximum
length of a path in the syntax tree, and D a positive con-
stant denoting the number of samples needed to evaluate the
bounded time operators. Thus, the evaluation of complex
specifications may suffer from some degree of exponential
complexity.

To address this complexity, we have implemented two
strategies: (1) we use a dynamic programming approach to
cache previously evaluated nodes in the syntax tree, reducing

Fig. 6 The blue block Ocube needs to be pushed into the goal region
Ogoal, encoded as φbp = (Ocube enclInOgoal). (a) shows the motion of
Ot

cube over time. (b) shows the computed satisfaction value for φbp (in
blue), when using a leftOf relation, rightOf, and ovlp relation (Color
figure online)
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the complexity to a constant lookup when looking back in
time; and (2) the evaluation of the specification over a slid-
ing time window similar to Donzé et al. (2013). This sliding
window approach bounds the number of temporal evalua-
tions and can be used in many robotic tasks, since one is not
necessarily interested in all information since the start of the
robotic system.

To monitor individual parts of complex specifications,
we automatically parse every SpaTiaL specification into a
tree structure, since SpaTiaL uses a Backus-Naur gram-
mar to compose specifications. This is done through the
Python libary lark. Figure7 shows an example tree generated
from the specification φex. By color coding and overlaying
satisfaction values, users can precisely inspect which indi-
vidual parts of the specification are satisfied or violated. For
instance, the negation branch of the specification tree in Fig. 7
is violated, since the objectOA is still positioned aboveOB .
Moreover, this tree visualization provides an easier way to
interpret the specification and allows users further to com-
pose specifications by concatenating trees.

5.2 Automaton-based online planning

The object-centric nature of SpaTiaL can be used to facil-
itate high-level planning agnostic of the underlying robot
platform. In this section, we demonstrate how SpaTiaL can
be used for planning, execution and monitoring of complex
tasks. For this, we present a greedy planning algorithm in
Alg. 1 that monitors the execution of the plan and is able to
replan if the execution of a step fails or if a step turns out to
be impossible to execute. We apply automaton-based meth-
ods from temporal logic-based strategy synthesis to create a
greedy planning method that aims to satisfy a syntactic sub-
set of SpaTiaL specifications. To achieve this, we translate
SpaTiaL specification into an LTL f formula by abstracting
spatial relations into atomic propositions. From there, we
automatically construct a Deterministic Finite Automaton
(DFA) to represent the temporal structure. Every LTL f for-
mula can be represented by a DFA (Baier and Katoen, 2008;
De Giacomo and Vardi , 2013) by off-the-shelf tools such
as MONA (Henriksen et al., 1995). We use DFAs to repeat-

Fig. 7 Automatically generated tree from the specification φex by
exploiting the Backus-Naur form of SpaTiaL. Through color coding,
we allow users to see which part’s of a specification are violated (red)
and satisfied (blue) (Color figure online)

edly plan the next high-level action, e.g., move object OA

left of OB . Through the quantitative semantics of SpaTiaL,
we translate the abstract high-level action of transitioning
between states in the DFA into a formulation more suited
for low-level execution. The high-level actions are planned
independently of the underlying robot dynamics. This makes
the plan agnostic of the executing robot. In our experiments
in Sect. 6.4, we use gradient maps as an example on how to
complete those high-level actions. We analyze the resulting
method and find it to be sound, but not optimal or complete
due to separation of robot dynamics from the high-level plan-
ning.

Definition 17 [DFA] A DFA is a tuple A = (Q, 
, δ, q0, F)

where Q is the set of states, 
 the alphabet, δ : Q ×
 −→ Q
the transition function, q0 the initial state and F the set of
accepting states.

Provided a sequence of symbols from the alphabet 
, a
DFA generates a run.

Definition 18 [Run] Given a trace τ = τ0τ1 . . . τn , where
τi ∈ 
, a finite run of a DFA is the sequence of states
q0q1 . . . qn+1 such that qi+1 = δ(qi , ρi ) for all 0 ≤ i ≤ n.
This run is accepting if qi+1 ∈ F .

When a run is accepting, the sequence of symbols pro-
vided to theDFA satisfies the specification (Baier andKatoen
2008). In other words, when we reach an accepting state in
the DFA, we have satisfied the specification.

In order to facilitate planning, we omit the usage of
bounded temporal operators and the next-operator X . When
omitting bounded temporal operators, every SpaTiaL for-
mulaφ can be translated into anLTL f formulaφt bymapping
every spatial relationR to an atomic proposition.

Example 2 Consider the SpaTiaL formula

φ = F(O0 closeToε O1) ∧ G¬(O0 touchO2) (1)

with spatial relations

r1 = (O0 closeToε O1),

r2 = (O0 touchO2).

The temporal structure of φ can be expressed by

φt = Fgoal ∧ G¬collide (2)

over atomic propositions AP = {goal, collide} and a map-
ping functionm : AP −→ R,m(goal) = r1,m(collide) = r2.

Additionally, through omitting the next-operator X , we
obtain stutter-insensitive temporal property.
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Fig. 8 DFA for Ex. 2 where state 1 and state 2 are the initial and
accepting states, respectively

Lemma 1 [Stutter-Insensitive Properties] Every LTL f for-
mula without X can be translated into a DFA A = (Q, 
 =
2AP, δ, qi , F) where for every state q ∈ Q \ qi , there exists
a self-loop transition such that q = δ(q, σ ) for some σ ∈ 


(Baier and Katoen, 2008; Kantaros et al., 2020).

Remark 2 [Properties without temporal operators] Formulae
where spatial relations occurwithout temporal operators, e.g.
φ = O0 touchO2 correspond to Aφ where qi does not have
a self-loop. An initial observation provides the truth value of
such properties and enables a transition into a state with a
self-loop before we plan our first step.

We translate the corresponding LTL f formula φt into a
DFA Aφt that precisely accepts L(φt ), e.g., using the tool
MONA (Henriksen et al., 1995). The resulting automaton
for (1) is depicted in Fig. 8.

Utilizing the structure of Aφt following from Lemma 1,
we determine a sequence of actions aiming to satisfy φ. With
Aφt handling the temporal structure of φ, we are able to
satisfy φ by determining a path to an accepting state in the
DFA. This path indicates which relations need to be satisfied
sequentially. After an initial observation, every state has a
self-loop.Weuse the conditions of the self-loop as constraints
for the next execution step. This way, we avoid triggering
unwanted transitions. The procedure is outlined in algorithm
1. First, we construct Aφt and keep track of the current state
(up to line 6). Using standard methods, we find a shortest
path to an accepting state inside the DFA. The path length
is defined through the number of required transitions. From
this path, we select a transition (qc, qnext) that we wish to
enable in a future step (line 10). If we are in an accepting
state, i.e., qc ∈ F , then we stay in that state, i.e., qnext = qc
(line 8). Let


t ⊆ 
 = {σ ∈ 
 |δ(qc, σ ) = qnext } (3)

be the progress set. By satisfying any σ ∈ 
p, we transition
into the planned state, bringing us closer to an accepting state.
A symbol σ is satisfied, if and only if ρ(m(x)) > 0 for all
x ∈ σ . We define


c ⊆ 
 = {σ ∈ 
 | δ(qc, σ ) �= qnext ∧ δ(qc, σ ) �= qc} (4)

Algorithm 1 Automaton-Based Monitoring and Planning
Data: SpaTiaL formula φ

1 construct DFA Aφt = (Q, 
, δ, q0, F)

2 prune infeasible transitions offline (see Rem 3)
3 qc = q0; // set current state to initial state
4 while qc /∈ F do
5 σi = {r ∈ AP | ρ(m(r), i) ≥ 0}
6 qc = δ(qc, σi ); // update current state
7 find shortest path q1q2 . . . qn ∈ Q∗ s.t. qn ∈ F, q1 =

qc and ∀i∃σ : (qi , σ, qi+1) ∈ δ

8 qnext = q2
9 if No path exists then

10 break

11 
p = {σ ∈ 
 | δ(qc, σ ) = qnext}
12 
c = {σ ∈ 
 | δ(qc, σ ) �= qnext ∧ δ(qc, σ ) �= qc}
13 execute (
p, 
c) (see Lemma 2)
14 if unable to execute (
p, 
c) then
15 set δ(qc, σ ) = ∅,∀σ ∈ 
p ; // prune edge

as the constraint set. By never satisfying any σ ∈ 
c, we
guarantee staying in qc until we satisfy any σ ∈ 
p. This
is always possible since there always exist some σ such that
(qc, σ, qc) ∈ δ due to Lemma 1.

Guided by the DFA, we have reduced the problem of sat-
isfying φ to the problem of sequentially aiming to satisfy
any σp ∈ 
p while avoiding to satisfy any σc ∈ 
c. This
planning approach is similar to the approach presented in
(Kantaros et al., 2020) without the domain- and problem-
specific constraints and pruning rules.

Lemma 2 [Satisfying Spatial Relations]Given a progress set

p and a constraint set 
c, we can plan to transition to the
desired next state of the DFA by satisfying

max
σp∈
p

(ρ(σp)) ≥ 0

with subject to the constraint

min
σc∈
c

(ρ(σc)) < 0

where ρ(σ) = minr∈σ (ρ(m(r))).

Lemma 2 aims at satisfying spatial relations that trigger
a planned transition while avoiding triggering any unwanted
transitions. In general, finding a solution to satisfy the equa-
tions presented in Lemma 2 depends on the dynamics of the
executing robot. However, by abstracting between high-level
planning and low-level control, we allow users to apply their
own methods to execute the planned next action.
Search-based planning using gradient maps We demon-
strate a solution that is straightforward to implement for the
case where satisfying the equations in Lemma 2 is possible
by moving a single object only. By choosing an objectO and
virtually moving it on a grid of the workspace, we compute
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a gradient map by evaluating spatial subformulae in 
p and

c for all positions of O.

Definition 19 [Gradient Maps] Given 
p and 
c, an object
O, and a point p ∈ R

2, we write Õ for the the objectO with
its center displaced to p. We write s̃t for a state st with O
replaced by Õ.

G
p,
c,O(p) =
{

−∞, if maxσc∈
c (ρ(s̃t , σc)) ≥ 0

maxσp∈
p (ρ(s̃t , σp)), otherwise.

Gradient maps are a uniform sampling approach in the
task-space of a selected object to determine the gradient of
satisfying a given spatial relation with respect to the object’s
position. Varying rotations can be integrated by computing
gradient maps for different rotations, similar as in (Lozano-
Perez, 1990).

Example 3 [Gradient Maps] Consider a rectangular work-
space with three colored blocks. Each block is described by
its color, its position and its orientation. Given a progress
set 
p ⊆ 
 induced by φp = (green rightOf red) ∧
(d(green, red) ≤ 0.05) and a constraint set characterized
by φc = ∧

i �= j (d(i, j) < 0.01), i, j ∈ {green, red, blue},
we depict gradient maps for the green block and for the red
block in Fig. 9. The white cut-out regions around the blocks
are the result of the constraint set and represent the areawhere
φc would be satisfied if we moved the currently considered
object into that region. Since φp can be satisfied both by
moving the green block right of the red block or by mov-
ing the red block left of the green block, both gradient maps
have positive values. The gradient map for the blue block
(not depicted) does not have any positive values.

If for a given 
p, 
c no gradient map has any positive
values for any considered object, the corresponding transition
is deemed infeasible and pruned. The steps of algorithm1 and
the construction of gradient maps can be repeated until a goal
state is reached. Depending on the application, the gradient
maps can be used to find either a continuous path or a new
position for a single object in order to transition to the desired
next state of the DFA. Two examples using this procedure are
demonstrated in Sect. 6.4.

Remark 3 [Pruning the DFA] Some symbols σ and therefore
transitionsmight be infeasible, especiallywhen physical con-
straints are not represented in the specification. An example
for such a transition might be requiring an object to be both
close and far from another object at the same time. Addi-
tional offline pruning of infeasible transitions might be done
through specific domain knowledge, depending on the appli-
cation. In the following experiments, we employ only online
pruning of edges that turn out to be infeasible throughLemma
2 (see Alg. 1 line 15).

5.2.1 Analysis of the planning approach

In the following paragraphs, we analyze the termination,
optimality, completeness, and soundness properties of our
proposed planning approach.
Termination Assuming the executing robot can either com-
plete or determine infeasibility of a planned step (
p, 
c)

in finite time, the planning algorithm Alg. 1 is guaranteed to
terminate in finite time. This follows directly from the finite
amount of transitions in the DFA and the iterative pruning of
infeasible transitions.
Optimality The chosen path is greedily chosen with respect
to the least amount of transitions in the DFA. Without addi-
tional reasoning on the dynamics of the executing robot, it is
not possible to infer further information about the quality of
the solution. Within the scope of our experiments, reaching
an accepting state with the least amount of transitions led to
solutions where the robot performs the least amount of prim-
itive actions possible, i.e. moving the fewest elements in the
scenario.
Completeness If any solution exists to satisfy a given specifi-
cation φ, it can be expressed as a sequence of
p and
c (see
Alg. 1 and Lemma 2). This follows directly from the obser-
vation that the DFA is without loss of generality complete,
meaning it covers all combinatorial evaluations of spatial
relations in the specification φ. Since the planning algorithm
does not take the low-level dynamics of the executing robot
into consideration, the algorithm cannot be complete. In sit-
uations with complex restrictions on the robot’s dynamics,
planning approaches that take these restrictions into account
are preferable to the presented robot-agnostic approach.
Soundness If a sequence of executable actions that lead to
an accepting state of Aφt can be found, the generated trace of
the execution is satisfying φt and transitively satisfying the
specification φ. This follows directly from known results on
the translation of LTL f formulae to DFA (Baier and Katoen,
2008; De Giacomo and Vardi , 2013).

6 Experiments

To demonstrate the capabilities of SpaTiaL, we designed
three different experiments with recorded data, simulations,
and a robot. Each experiment focuses on different aspects of
SpaTiaL (see contributions in Sect. 1.2):

1. in Sect. 6.2, we monitor object pushing and pick-and-
place tasks. This experiment highlights the creation of
specifications, the use of quantitative semantics, and
accounting for object detection uncertainties;

2. in Sect. 6.3, we monitor social distancing of agents in the
Stanford drone dataset. This experiment highlights the
usage of temporal properties with time bounds;
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Fig. 9 Gradient Maps for the spatial relation φp = (green rightOf red) ∧ (d(green, red) ≤ 0.05) with spatial constraint φc = ∧
i �= j (d(i, j) <

0.01), i, j ∈ {green, red, blue} from the perspective of the green cube and the red cube (Color figure online)

3. in Sect. 6.4, we use SpaTiaL for planning in robotic tasks.
This experiment illustrates the high-level temporal and
low-level control abstractions.

Additional experiments are in our code repository and videos
of our experiments in the article’s media attachment.

6.1 Implementation

We implemented a SpaTiaL parser and interpreter in Python
3, using Lark (Shinan, 2021) to parse the logic, Shapely
(Gillies et al., 2007) for geometric computations, andMONA
(Henriksen et al., 1995) with LTLf2DFA (Fuggitti, 2021)
to construct DFAs for planning. Our software is published
under the MIT license and available at https://github.com/
KTH-RPL-Planiacs/SpaTiaL. We provide an API to parse
SpaTiaL specifications, define objects through sets of con-
vex polygons, and to automatically interpret the formula to
obtain satisfaction values, as well as DFA planning func-
tionalities. An API overview is available at https://kth-rpl-
planiacs.github.io/SpaTiaL/. We have also released the full
code for all experiments, including gradient map computa-
tion and our simulation setup in PyBullet (Coumans and Bai,
2022).

Table 2 Mean and standard deviation of the computation time per
frame in our monitoring experiments over five runs

Experiment Framerate Mean StdDev

Block pushing 30 fps 32.12 ms 0.2 ms

10 fps 12.7 ms 0.44 ms

Pick-and-place 30 fps 71.15 ms 0.57 ms

10 fps 16 ms 0.86 ms

6.2 Monitoring robotics tasks

SpaTiaL allows user to monitor the satisfaction of specifi-
cations in real time for various applications. In our first two
experiments, we monitor a block pushing and a pick-and-
place task.We recorded both tasks using a camera with 30fps
and localized objects in the scene using AprilTags (Wang
et al., 2016). The computation times per frame of both exper-
iments can be found in Table 2when analyzing the videowith
30fps and 10fps (i.e., skipping every 2 frames). We used
a machine with macOS, an Intel i5 2GHz Quadcore CPU,
32GB of DDR4 memory, and Python 3.8.
Block pushing task In this task, a human is pushing small
blocks on an even surface towards a goal configuration
while not violating constraints (see setup in Fig. 10). We
placed 2 red, 2 green, and 2 blue blocks in the scene and
specify additional phantom objects that serve as goal areas.
The specification requires the human to push the red and
green blocks to their corresponding goal regions redGoal and
greenGoal, respectively. At the same time, we impose a task
constraint: when moving red/green blocks to the other side,
the human needs to push the blocks through the passage that
is formed by the two blue blocks. This specification φblocks is
encoded using the eventually and always operators as shown
in Table 3.

Figure10 illustrates selected camera frames. At t = 7s,
the human is pushing a red block through the passage to
not violate the mission constraint. However, even though the
human is moving one red block towards the goal, the satis-
faction value is not yet changing. This observation is due to
the fact that the computed satisfaction value corresponds to
the worst violation of the subparts of φblocks, i.e., every and
operator in the quantitative semantics is essentially a min-
imum operation. In this scenario, the human did not move
the red block that is further away from its goal region. Our
monitoring algorithm monitors each subpart of the syntax
tree parsed from the specification. Sect. 5.1 outlines how the
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Table 3 Considered specifications in the experiments of Sect. 6.2 and 6.4

Specification Definition

φblocks (F(red enclIn redGoal)) ∧ (F(green enclIn greenGoal)) ∧ (G((red1 closeTo blue1) → (red1 below blue1)))

∧(G(red2 closeTo blue2) → (red2 above blue2))) ∧ (G((green1 closeTo blue1) → (green1 below blue1)))

∧(G((green2 closeTo blue2) → (green1 above blue2)))

φpnp (F((mug leftOf plate) ∧ (mug ovlp plate))) ∧ ((¬(platemoved plate[−1]))U ((cookies above plate)

∧(cookies ovlp plate) ∧ (orange above plate) ∧ (orange ovlp plate)) ∧ (F(coffee rightOf plate) ∧ (milk closeTo coffee)

∧(milk rightOf coffee)∧))(F(jug leftOf coffee) ∧ (jug closeTo coffee))

φplan,pnp F(kanelbulle enclIn plate)

∧F(0.1 ≤ banana d plate ≤ 0.3 ∧ banana leftOf plate ∧ banana below plate)

∧F(0.1 ≤ mug d plate ≤ 0.3 ∧ mug leftOf plate ∧ mug above plate)

∧F(0.1 ≤ bottle d plate ≤ 0.3 ∧ bottle leftOf plate ∧ bottle above plate)

∧F(sugarbox d plate ≥ 0.4 ∧ sugarbox d crackerbox ≤ 0.2)

φABB (G((bowl d fork ≥ 0.001) ∧ (bowl d knife ≥ 0.001) ∧ (bowl dmug ≥ 0.001) ∧ (mug d knife ≥ 0.001)

∧(mug d fork ≥ 0.001) ∧ (knife d fork ≥ 0.001))) ∧ (F(((bowl d center ≤ 0.01) ∧ (F((fork leftOf center)

∧(fork d center ≤ 0.10))) ∧ (F((mug above center) ∧ (mug rightOf center)

∧(mug d center ≤ 0.20))) ∧ (F((knife rightOf center) ∧ (knife d bowl ≤ 0.10))))))

Fig. 10 Results of our experiment in which we monitor a pushing task.
a shows the camera frames and trajectories (full trajectory for t = 0s
and partial ones with length 3s otherwise) of the cubes for selected time

steps. The trajectories show the future positions of the cubes. b illus-
trates the satisfaction value of the specification and its sub-parts over
the time of the recording

green goal

red goal

constraints

temporal

temporal

spatial

spatial

spatial

temporal

Fig. 11 Tree representation of the parsed specification φblocks. The
recursive computation of the quantitative semantics allows us to also
monitor individual subtrees

evaluated syntax tree allows one to obtain this fine-grained
information. Figure11 shows the parsed tree which repre-
sents the three individual components that specify the red
goal, green goal, and the constraints. For instance, when the
human moves the green block at around 12s, the subpart of
the specification that considers the green blocks is changing
(see purple line in Fig. 10b).

All spatial relations are evaluated in continuous space
while considering the currently available environment infor-
mation. At t = 23s, the human is moving the blue blocks of

the passage. SpaTiaL adapts to this change so that the remain-
ing red and green block also need to be moved through the
new passage. From t = 33s to t = 43s, the last red block
is successfully pushed into its goal region, as indicated by
the satisfaction graph of the red goal in Fig. 10b. Finally, the
specification φblocks is satisfied at t = 50.1s with a value of
15.35.
Object pick and place task In our second monitoring experi-
ment, we have a closer look at the temporal operator until U
and evaluations of spatial relations over time. Therefore, we
consider a pick-and-place task in which kitchen items need
to be placed according to a given specification (similar to the
task shown in Fig. 1). In our example, the plate needs to be
moved close to the coffee mug; however, the plate is only
allowed to be moved when the objects cookies and orange
have been placed on the plate. This requirement is encoded
in the specification φpnp using the until operator in Table 3.
Moreover, φpnp specifies how the other objects jug, coffee,
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mug, and milk need to be placed. SpaTiaL allows users to
easily define new relations. In this experiment, we defined
a new spatial relation moved that indicates if an object has
been moved over time using time-relative spatial relations:

OmovedO[−1] := O enclInO[−1] ⊕ Cε, (5)

where Cε is a circle with radius ε = 25 pixel to enlarge an
object to account for object detection uncertainties of the
camera detection. The relation in (5) checks whether the
object has moved with respect to its occupancy in the previ-
ous time step.

Figure 12a–e illustrate selected time steps of our pick-and-
place experiment with partial trajectories (length: 3s) of the
objects. The computed satisfaction value is shown in Fig. 12f
over the course of the experiment with a duration of 35s. As
soon as the required objects cookies and orange have been
correctly placed on the plate, the human is allowed to move
the plate (see images for t = 11s and t = 16s). In contrast,
we also tested amodified version of the specification inwhich
we require that the humanplaces theorange left of the cookies
on the plate. This modified specification is violated since the
human is moving the plate without reaching the required
spatial relation (see orange line in Fig. 12f).

6.3 Monitoring agents in the environment

We can also use SpaTiaL to monitor agents in an environ-
ment. Bounded temporal operators allow users to specify
that certain spatial relations need to hold or not hold within

a given time interval. We choose a surveillance application
in which a drone is recording an environment to demonstrate
the bounded time operators and the nesting of temporal oper-
ators. In our case, we focus on detecting violations of social
distancing using the StanfordDrone dataset (Robicquet et al.,
2016). We select the bookstore data where a drone is hover-
ing and recording the bounding boxes of pedestrians, cyclists,
and other objects.With this experiment, we show that we can
specify constraints on an agent’s state by grounding the state
on geometrical representations, e.g., bounding boxes.

We consider four different social distancing specifications
which use different temporal operators and time bounds.
They are based on checking whether an object is coming too
close to another object in the current scene. To identify when
objects are too close, we consider two variations, close1 and
close2:

close1 := (ego ovlp others), (6)

close2 := (ego closeToεd others), (7)

where ego denotes the currently selected object for investi-
gation, others corresponds to all other objects in the scene,
and εd = 15 is the preferred minimum distance between
bounding boxes of the objects (chosen empirically using dis-
tance measurements in the pixel space of the image). Our
considered social distancing specifications are:

(φ1)
(G close → (G[30,60]¬close)),

(φ2)
(G close → (G[90,180]¬close)),

(φ3)
(G close → (F[0,60]¬close)

)
,

Fig. 12 Results of our experiment in which we monitor a pick-and-
place task. a–e show the camera frames and trajectories (partial ones
with length of 3s) of the objects in the scene for selected time steps.

The trajectories show the future positions of the objects. f illustrates
the satisfaction value of the original specification and the modified one
with an until violation over the time of the recording
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(φ4)
(G close → (F[0,150]¬close)

)
,

where close ∈ {close1, close2}. Specifications φ1 and φ2

encode that whenever an object is too close to another, it
needs to be always distant to other objects during 1 to 2 s
or 3 to 6 s after contact (since the video has been recorded
with 30fps). Specifications φ3 and φ4 specify that whenever
an object is too close to another, it needs to be eventually
distant to other objects within 2 s or 5 s after contact.

Figure 13 illustrates the evaluation of the four specifica-
tions on frame number 9000.We colored the bounding boxes
to encode whether the object is satisfying (blue color) or vio-
lating (red color) the specification. The temporal operator
always or eventually allow us to encoded different levels of
strictness of social distancing. This observation can be seen
from the fact that the specifications with the eventually oper-
ator have a higher percentage of satisfying objects in the
scene. Table 4 provides a more detailed analysis of the num-
ber of satisfying or violating objects. Finally, Fig. 14 shows
the satisfaction value for the object with ID 224 over time.

6.4 Task andmotion planning

In the following three experiments, we demonstrate the
online monitoring and planning technique outlined in Sect.

Fig. 14 Satisfaction values of the object with ID 224 with respect to the
four specifications φ1 to φ4 and the closeness definition close1, where
two objects are close when their bounding boxes overlap

5.2. The first experiment features a simulated robot arm
pushing blocks and illustrates the individual steps of DFA
planning and the gradient maps to find continuous paths
to push objects along. The second experiment features a
pick-and-place specification, requiring a simulated robot to
arrange a table. The third experiment demonstrates a table
setting task on ABB YuMi robots.
Pushing task and motion planningWe consider a robot arm
mounted on a planar surface as depicted in Fig. 15. The robots
is required to push three colored blocks within a rectangular

Fig. 13 Excerpts of our experiment where we monitor which agents in
the environment respect social distancing to other objects. The images
show the frame 9000 (5min) of the dataset for our four specifications φ1

to φ4 and the too close definition close1. Blue and red colored bounding
boxes denote satisfying or violating the specification, respectively. The
visualized IDs of the objects correspond to the IDs in the dataset

Table 4 Evaluation results of the four social distancing specifications φ1 to φ4 for the two too close definitions

Predicate Specification Satisfying Obj Violating Obj Worst Violation Highest Satisfaction

ovlp G(
close1 → (G[30,60]¬close1)

)
35 (53%) 31 (47%) ID 40, value=−47.0 ID 113, value=296.0

G(
close1 → (G[90,180]¬close1)

)
41 (62%) 25 (38%) ID 40, value=−47.0 ID 113, value=293.8

G(
close1 → (F[0,60]¬close1)

)
43 (65%) 23 (35%) ID 40, value=−47.0 ID 113, value=298.1

G(
close1 → (F[0,150]¬close1)

)
49 (74%) 18 (26%) ID 40, value=−47.0 ID 113, value=298.2

closeTo G(
close2 → (G[30,60]¬close2)

)
25 (38%) 41 (62%) ID 40, value=−62.0 ID 113, value=281.0

G(
close2 → (G[90,180]¬close2)

)
30 (45%) 36 (55%) ID 40, value=−62.0 ID 113, value=278.8

G(
close2 → (F[0,60]¬close2)

)
31 (47%) 35 (53%) ID 40, value=−62.0 ID 113, value=283.2

G(
close2 → (F[0,150]¬close2)

)
40 (61%) 26 (39%) ID 40, value=−62.0 ID 113, value=283.2
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Fig. 15 Simulator environment for the pushing TAMP experiment

workspace to fulfill the SpaTiaL specification:

φ =F(g rightOf r ∧ g rightOf b)

∧¬(g rightOf r ∧ g rightOf b)U(r above b)

∧G
∧

i �= j

d(i, j) ≥ 0.03, i, j ∈ {r, g, b},

where r , g and b denote the red, green, and blue blocks,
respectively. Intuitively speaking, this specification requires
the green block to eventually be right of both the red and the
blue block at the same time. We disallow the green block
to be right of the other blocks until the red block is above
the blue block (which is not true in the initial configura-
tion). Additionally, no block should ever come too close to
another block. From this specification,we automatically gen-
erate a DFA representing the temporal structure as described
in Sect. 5.2. The resulting automaton is depicted in Fig. 16,
with the followingmapping from atomic propositions to spa-
tial subformulae:

a := g rightOf r ∧ g rightOf b

b := r above b

c :=
∧

i �= j

d(i, j) ≥ 0.03, i, j ∈ {r, g, b}

Given the initial configuration of objects depicted in
Figs. 15 and 17, the planning algorithm starts in DFA state
3. The shortest path to a satisfying configuration is by taking
the transition 3 −→ 5 to the accepting state, requiring all the
spatial subformulae to hold true at the same time. Since it
is not possible to satisfy all subformulae directly by moving
only a single object, the transition is assessed as infeasible
and pruned. The next (and only) path to an accepting state is
3 −→ 4 −→ 5.

Figure17a shows the gradient map for the blue block gen-
erated from the goal and constraint set for transition 3 −→ 4.
The dashed line indicates the border to a satisfying value.
The shortest pushing path that avoids all constrained areas
and triggers the desired transition is computed through Jump-

Fig. 16 The generated DFA for the pushing task. Except for the initial
state 1, each state has a self-loop. The initial state not having a self-loop
is an implementation detail that is circumvented by providing an initial
observation

Point-Search (Harabor and Grastien , 2011). The path avoids
all areas that violate the constraints in 
c, depicted in white.
Moving the blue block below the red block satisfies theUntil-
requirement of the specification. The robot executes the plan
and pushes the blue block along the computed path. Our
implemented pushing controller uses the feedback of our
monitoring algorithm in continuous space to adjust control
inputs and account for low level control effects where blocks
are not pushed properly into satisfying regions. Note that we
do not need to specify the exact order of which block needs to
be pushed; the planning algorithm has the freedom to decide
suitable actions on the fly. For example, the planning algo-
rithm may decide to push the red block above the blue block
instead, as this action also leads to specification satisfaction.
Afterwards, the DFA state is updated through observation
and the current state evolves to 4. From here, the planner can
reach the satisfying state 5 by pushing the green block right
of both other blocks, depicted in Fig. 17b. After execution,
the specification is satisfied and the algorithm terminates.
Pick-and-place taskandmotionplanningThe second exper-
iment considers a similar setup,where a robot arm ismounted
on a planar surface. The robot is tasked to arrange the differ-
ent objects on the table. The robot can pick and place objects
in a radial area around the base. The objects are identified
by the labels: bottle, banana, mug, gelatin, sugarbox, can,
crackerbox, kanelbulle and plate. The SpaTiaL specification
φplan,pnp is given in Table 3, and requires the robot, e.g., to
place the Swedish cinnaman bun kanelbullewithin the plate.
The resulting DFA has 33 states and 275 transitions. The
shortest paths to an accepting state are unsatisfiable through
manipulation of a single object and are pruned online. When
the computed gradientmaps contain positive values, the robot
chooses to place the considered object at the position which
maximises the value of the gradient map. After executing
the action, the DFA is updated with the latest observations.
Since we monitor the evolution of the workspace during exe-
cution, our planning method is able to detect failing grasps
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Fig. 17 In the pushing task experiment, the robot has to satisfy a given
specification by pushing the blocks around the workspace

or misplaced objects. Execution failures in the simulation
range from tipping over neighbouring objects or losing grasp
of the current object. After failed executions, a new path to
an accepting state is found and execution continues with an
alternative next step or another try of the same execution step.
An exemplary execution progression is depicted in Fig. 18.
Since the specification does not impose any constraint on the
order in which the desired spatial relationships are fulfilled,
each execution can slightly differ.

Our planning experiments illustrate how to facilitate
TAMP over SpaTiaL specifications through repeated obser-
vation and planning of the next step through the DFA and
gradient maps.
Experiments with an ABB YuMi Robot After our successful
simulation experiments, we implemented our approach on
an ABB YuMi Robot to validate planning with real sensor
data and low-level controllers. The robot’s table setting task
specification φABB can be found in Table 3. The objects are
detected using camera images.

Grasping objects is a difficult problem and depends on
the robots kinematics, end-effector dynamics and shape of
the object. We deliberately designed SpaTiaL to not consider
those dynamical effects and focus on the object placement
itself.Yet,we can consider the grasping of objects in ourABB
YuMi experiments: we use a Behavior tree approach to com-
bine symbolic planning and geometric reasoning. As in the
other experiments, our planning automaton first determines
which spatial relation should be satisfied next. This triggers
the behavior tree controller of the robot. The gradient maps
provide the behavior tree the desired object pose. The picking
pose is determined by another behavior tree controller when
the tree determines the behavior to pick or release an object.
In this way, we can be controller-agnostic and allow users
to use their designated controllers to determine the picking
pose while SpaTiaL solely provides feedback in continuous
space about how objects should be arranged.

Figure 19 shows two snapshots from our two robot exper-
iments. In the first experiment (see Fig. 19a), the robot
executes the desired table setting task by rearranging the
objects according to φABB, e.g., placing the knife right of
the plate with orientation pointing away from the robot. In
the second experiment (see Fig. 19b), we use a mobile YuMi
robot for the same specification φABB. However, we place the
knife on another table in this scenario. Our satisfaction values
guide the behavior tree-based controller of our mobile robot
to first pick up the knife and then to transport it to goal table.
The online monitoring in our example planning approach
automatically reflects the successful placement of the knife
to continue rearranging the remaining objects. Videos of the
two experiments can be found in the paper’s media attach-
ment.

7 Discussion and limitations

Our results showed that we can use SpaTiaL to specify, moni-
tor and plan rich spatio-temporal robotic tasks, such as object
pushing, pick and place, and agent monitoring tasks.

We propose various spatial relations, such as leftOf,
rightOf and above, to specify object placements. Currently,
users can only address tasks which can be described with
the existing set of spatial relations. However, this set can
be extended by defining new spatial relations, such as pre-
sented in our experiments. In the future, we would like to add
more spatial relations and support for occlusions and partial
observability.

Our quantitative semantics only capture spatial and tem-
poral aspects. For many robotics tasks, it may be important
to include additional object properties in the specification,
e.g., an object’s color, weight, or temperature. Since SpaTial
is a subset of STL, these properties can be translated into a
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Fig. 18 Several snapshots of the simulator environment during execution of the pick-and-place TAMP experiment. For visibility, the camera is
offset by a 90 deg angle in comparison to the workspace orientation

Fig. 19 Experiments with an ABB YuMI robot. a the robot places a
fork left of the plate. b the robot orientates and laces a knife

signal function that provides a satisfaction value for every
timestep and could be incorporated.

Compared to classical TAMP approaches such as PDDL-
stream (Garrett et al., 2020), SpaTiaL focuses on object-
centric tasks, allowing users to be robot-agnostic and dis-
regard robot dynamics for simplicity. This comes with the
limitation that SpaTiaL cannot synthesize plans directly as
opposed to the reasoning system in PDDL. Moreover, Spa-
TiaL specifications can only define pre-conditions on the
robot’s state that can be grounded on geometrical representa-
tions and not yet identify dynamical illogical specifications.
Yet, SpaTiaL operates in continuous space and can be com-
binedwith almost any planner and controller. By determining
the desired object configuration, a dedicated planner and
controller can take care of the successful satisfaction of the
specification.

This combination with a planner and controller, how-
ever, cannot guarantee completeness (see also Sect. 5.2.1) as
opposed to integrated symbolic and control approaches such
as logic geometric programming (Toussaint, 2015). These
integrated approaches can also consider object physics and
plan object grasps. On the other hand, SpaTiaL provides a
larger spatial and temporal expressivity. Users can specify
a wide variety of tasks with the rich set of spatial rela-
tions, easily incorporate new relations, and use bounded and
unbounded temporal operators. This makes it possible to use
SpaTiaL for a wide variety of tasks, alone as a specification
language or monitoring approach.

To improve the panning with SpaTiaL, we will expand
the planning algorithm by providing general pruning rules
for infeasible DFA transitions. Currently, the tool MONA
can generate the DFAs from SpaTiaL specifications in mil-
liseconds. However, finding object target positions to satisfy
Lemma 2, e.g., by sampling, is more costly and can take
from seconds to minutes. To address the computation times,
we will investigate optimization-based approaches to sat-
isfy spatial relations in our planning approach. Lastly,
we like to develop approaches to learn specifications from
demonstrations and to leverage users to correct specifica-
tions (Kress-Gazit et al., 2008, 2021; van Waveren et al.,
2021; Kent et al., 2017; Zhang et al., 2021; van Waveren
et al., 2022).

8 Conclusions

We presented SpaTiaL, a spatio-temporal framework that
combines techniques from computational geometry and tem-
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poral logics to provide a unified framework to specify,
monitor and plan rich spatio-temporal tasks for robotic appli-
cations. It operates in an object-centric fashion and provides
various spatial relations between objects, such as an object is
left of or overlaps with another object. These relations resem-
ble natural language which increases the usability by end
users (Skubic et al., 2004; Nicolescu et al., 2019; Kress-Gazit
et al., 2008). SpaTiaL can monitor the satisfaction of spatial
relations in continuous space through its quantitative seman-
tics. Users can easily compose new relations from existing
ones. Spatial relations can be composed with (bounded) tem-
poral operators to specify complex temporal patterns, e.g.,
constraints or sequences of configurations.

In various experiments, we used SpaTiaL to monitor
tasks in real-time and for online planning. For the latter,
we can decompose a specification into temporal and spa-
tial abstractions by generating automata and computing the
specification’s robustness value. This decomposition has the
advantage that high-level actions and low-level control can
be treated separately. Furthermore, the low-level control level
can make use of existing optimal controllers (e.g., MPC) and
planners (e.g., CHOMP). SpaTiaL is open source and can be
modified and extended by anyone.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10145-
1.
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