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Abstract 
 
In the mining industry, sampling is an essential feature for the characterization of 
the material when all available material cannot be examined and only a small 
fraction of the total is evaluated. This study addresses how the minimum number of 
samples required to obtain a statistically accurate answer. This is important since 
less sample measurement save time and money. The sample size is related to the 
homo- and heterogeneity of a rock sample, where the sample size of a homogeneous 
material is smaller than a heterogeneous material.  
 
Many types of research is carried out on the sampling theory, but it is hard to create 
a formula to determine the sample size beforehand based on a rate of heterogeneity. 
The homogeneity percentage is not linked to the sample size, but with a spatial 
elemental distribution, this can be possible. However, further research is needed in 
order to answer the question more exact for a situation that is more complex. This 
study first mentions several definitions of homogeneity, second their origin within 
geology is evaluated. Last this is calculated with theoretical models to explore the 
minimum sample size required.  

 
The project evaluates how the sample size changes when homogeneity, 
heterogeneity and spatial distribution of the grade varies within a rock image. It is 
done with the help of an image analysis tool which creates a homogeneity curve, 
the mean and standard deviations for an increasing sample size. The standard 
deviations are used to generate answer within different levels of confidence for 
certain margins of error.  
 
Also, the variogram is used to determine the spatial correlation of the sample and 
interpolation is made using a general kriging method. Multiple images are evaluated 
with different rates of homogeneity, the number of elements and their spatial 
distribution. This study proofs generating more samples increases the accuracy of 
the characterization. With a lower target grade, the sample size will increase and 
also with an increasing image or grid size the number of samples will decrease. The 
variogram gives a first impression of the homogeneity since a smaller range and sill 
indicates more homogeneous material.  
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1. Introduction 
The characterization of ore in a mining environment is becoming more and more critical. 
Mostly it is carried out before any processing steps have taken place whereby quantity, grade 
or quality, densities, shape, and physical characteristics are determined to allow for the 
appropriate application of technical and economic parameters to support production planning 
and evaluation of the economic viability of deposits [1]. 
 
Ore reserves and grades are declining each year around the world, mainly due to massive mining 
and the need of the minerals. Due to more complex and extensive formations, it is becoming 
more challenging to mine high-grade minerals. Therefore, sufficient characterization of 
elements in the mineral is needed to assess, for example, the grade and classification of waste 
and ore material. Nowadays, this is already happening with multiple techniques like XRF, but 
these are in most of the cases, not the fastest. 
 
Laser-Induced Breakdown Spectroscopy (LIBS) is a well-known technique for elemental 
characterization. With LIBS the characterization time of the elements can be decreased, which 
make the costly and time-consuming laboratory analysis secondary in the decision making of 
the exploration phase [2]. This method can be applied for drilling cuttings or in drill hole 
samples, but also in activities not related to the mining industry. 
 
This study investigates the sample size of the LIBS spectroscopy in the mining industry for 
elemental determination. It is usually impossible to characterize all material available, so one 
is always dependent on taking a representative sample for any element. Here, the relation 
between heterogeneity/homogeneity and the sample size will be investigated, since it may have 
severe complications for characterizing the elemental composition of the ore. 
 
First, LIBS characterization will be evaluated, where after several theoretical concepts for 
assessing homo- and heterogeneity will be discussed. Next, multiple case studies are carried 
out to evaluate the required sample size within different situations. Last, the results will be 
discussed and a conclusion will be given. 
 
1.1 Spectral Industries 
This study is carried out in correspondence with Spectral Industries which is a young high-tech 
company that develops instrumentation for chemical sensing based on optical spectroscopy. 
Their applications are in the mining and recycling industry, in agriculture, but also in any 
research and development lab that needs real-time analysis of chemical composition. They 
focus on LIBS, a laser-based atomic emission technique where the focus market lies within the 
mining industry.  
 
They also contribute to the real-time mining project, a European collaboration in the field of 
real-time mining between fifteen partners from five different countries. The aim is to develop 
a real-time framework to decrease environmental impact and increase resource efficiency in the 
raw material extraction industry for Europe. For this research, in-situ and sensor-based ore 
characterization methods are evaluated. The geological parameters that are to be identified 
include texture, mineralogy, and geochemistry [3].  
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1.2 LIBS spectroscopy 
LIBS is an analytical method that has been evaluated in substantial researches over the last 25 
years. The typical setup can be found in Figure 1. It consists out of a laser which generates 
pulsed light. It includes a beam-shaping mechanism and steering optics, which can be a lens. 
With the help of collection optics, a spectrograph, and a wavelength-sensitive detector the 
plasma light can be measured. LIBS is operated using a high-energy pulses laser, which uses 
tens to hundreds of mJ per pulse and using the focusing lens it will generate a plasma where a 
little volume of the sample will be vaporized [4]. A portion of the plasma is dispersed by a 
spectrometer after which the detector records the emission signals. After digitalizing the signal, 
the data is displayed for the intensity and the wavelength components. 
 

 
Using this signal, interpretation of the minerals can be done. Characteristic elemental 
information is available in a database containing mineral reference spectra for most of the 
elements. On average, the spectra are broad bands reaching from 200nm to 800nm [2].  
 
As an example, Figure 2 shows the atomic transition lines for hematite (Fe2O3) and chalcopyrite 
(CuFeS2) minerals. Both minerals have similar intensity peaks at the same wavelength, which 
indicates a similarity in iron. Differences in wavelength are shown in the 510-521nm range, 
which discovers the variances between hematite and chalcopyrite. The same peaks are visible 
for 486nm, 488nm, 491nm, 495nm due to having iron in common. The differences are at 510m, 
515nm, 521nm for Chalcopyrite and 513nm, 516nm and 519nm for Hematite. 
  

Figure 1. Basic understanding of a simplified LIBS setup [21]. 

Figure 2. Atomic transition lines selected as indicators for hematite and chalcopyrite [2].  
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Comparing LIBS with other methods of atomic emission spectroscopy, its two significant 
advantages are that time-consuming sample preparation is not necessary and measurements can 
be done rapidly, which means several seconds instead of minutes, comparing it with XRF [5]. 
Also, elements with an atomic number less than twenty can be detected. A significant 
disadvantage is that the sample excitation conditions are sensitive to variation in laser 
parameters and characteristics of the sample, which will limit the analytical performance [5].   
 
1.3 LIBS for mineral characterization 
In the mining industry, mineral identification can provide valuable and essential information. 
It is stated that LIBS is a powerful and useful way to analyse the chemical compound of a 
subject. In this study, LIBS is needed to characterize mineral compounds. In several articles, 
LIBS is stated as a widely applied online surface scanning technique, unless some mineral 
groups cannot be determined yet [2]. 
 
LIBS has shown already promising results for characterization the quality of a spectrum of ore 
types including iron ore, copper ore, uranium ore, phosphate ore, nickel laterite, and coal [6]. 
The main problem with mineral characterization is that in an online system, heterogeneity of 
the material is problematic. In most of the researches focused on the utilization of LIBS, sample 
preparations have been carried out to make it homogeneous in the form of a powder or a pellet 
[6]. Only phosphate ore and coal are possible ores for online determination with the use of a 
LIBS sensor [7]. 
 
As mentioned before, heterogeneity is a significant concern for determining the elemental 
composition of an ore. It is expected that increasing the sample size will decrease the sampling 
error. However, it preferred to have a sample size as small as possible. To go into this more in-
depth, the hetero- and homogeneity will be discussed. 

2. Geological influence 
For LIBS measurements, the homo- and heterogeneity are very important for the sample size. 
LIBS can be used for a wide variety of activities. If it is used for separation of different alloys 
of aluminium, it is likely that one hit per sample is enough for a valid characterization. The 
sample size is low since the material is human-made and assumed to be homogeneous 
throughout the whole surface and volume of the material. For characterization of rocks, this is 
different. The material is not man-made but is created over millions of years and shaped and 
reshaped multiple times. It is a natural product where nobody will know the exact composition 
until further research has been carried out. Therefore, geological factors and activity are the 
main reason causing heterogeneity in a material. 
 
When characterizing a rock sample for its composition, knowing what kind of material is dealt 
with can make considerable importance to the number of samples needed for sufficient 
characterization. The structure of formations can give vital information about the heterogeneity 
of the material. As can be seen in Figure 3, eight examples are presented with different 
structures. At first sight, the obsidian can be categorized as homogeneous. The calico and 
banded gneiss are also homogeneous, but only in a particular direction due to their laminated 
structure. Breccia and coquina are coarse-grained and therefore more heterogeneous. 
Serpentine, talc schist and porphyry structures behave heterogeneously. Especially the 
porphyry structure, where a certain consistency can be observed.  
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From a first impression of the material, an idea for the required number of samples needed for 
characterization can be assessed. In the mining industry this is always done beforehand since it 
is unlogic and precarious to start digging at a random location hoping a valuable material will 
be discovered. In current mining industries, this is not possible since valuables occur as a trace 
element and are most of the time invisible [6]. 
 

 
Within geology, three main types of rocks are distinguished; 1) igneous, 2) metamorphic and 
3) sedimentary rocks. Igneous rocks form from the cooling of magma inside the earth and often 
have large crystals. Metamorphic rocks are formed through the change of igneous and 
sedimentary rocks, and sedimentary rocks are formed through solidification of sediment which 
can have an origin of organic remain or from cementing debris of other rocks.  
 
Within these types of rocks, certain elements are often characteristic for the lot. If a particular 
mineral is found, it can be correlated with another mineral so one can assume those other 
minerals can also be found within the material, which is making use of certain trace elements. 
However, this is also speculation since one cannot know what is inside of rock without doing 
proper research on the composition. 
 
As seen in Figure 3, a variety of structures are known. One can say that for the three types of 
rock described above a typical composition can be assumed. Sedimentary rocks have a typical 
occurrence of layers, while metamorphic rocks can have quite a homogeneous appearance due 
to extensive mineralization with a widespread speckled surface but they also occur with a 
layered or laminated structure so an overall representation cannot be made. Igneous rocks like 
diorite are often relatively homogenous due to their equally divided mineralization. However, 
an assumption can be made for some variation in the structures of these rocks, and it is about 
all the structures within these categories. Many geological factors can have changed the 
materials composition so a normalization cannot be made. 
 
From the images in Figure 3 it can be seen that varieties of structures are possible and that 
different types of rocks require different sample size to be characterized. Next, sample size 
itself will be discussed and the level of confidence and margin of error will be introduced. In 
the end of this study, case studies will be carried out which are similar to Figure 3.   
 

Figure 3. Samples of different rock types. The varying composition and geological 
structures can be seen [27]. 
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3. Sample size  
As mentioned, the primary type of sampling error is known as the fundamental sampling error 
(FSE), defined by Gy (1979). These errors explain the precision and accuracy of the data, which 
is shown in Appendix A. For a given material, some samples will be taken to characterize the 
material. The factors of precision and accuracy have a significant influence and the sample 
results, comparing this with the composition of the population. 

Precision is a measure of how close sample values are to each other and accuracy is a measure 
of how close the sample value is comparing it with the true grade [8]. In characterization, the 
accuracy and precision are essential, since one wants to know the composition of a certain 
material. Unfortunately, in LIBS measurements it is not possible to know in front what the 
material is, so it is much harder to know the precision and accuracy beforehand. If the whole 
composition is known, assumption can be made, but in most cases, this is not possible. 
 
For LIBS measurements, ideally, it would be good to know the number of measurements 
needed to get information at a certain level of confidence. The access the variance of a sample, 
determination of several parameters is mandatory. Otherwise, no assumptions can be made 
since it is not possible to assume a certain sample size without any boundary conditions. 
 
For this research, the aim is to answer the question of how many samples are needed to 
determine a material within a certain level of confidence. Various possibilities are tried and 
investigated to evaluate the hetero- and homogeneity of theoretical and real-life samples. Since 
hetero- and homogeneity are the most significant factors contributing to the level of uncertainty 
in sampling, it will be tried to find a correlation between homogeneity and sampling size. 
 
Defining the sample size, two parameters are fundamental; 1) the margin of error and 2) the 
level of confidence. The margin of error is the level of precision that one requires for the results 
of the sample measurements and can be absolute or relative, which will be explained in a later 
section. It is the range in which the characterization of a material that is tried to be measured is 
estimated. Most of the times it is expressed as a percentage, as ±3%. It is commonly accepted 
that for decreasing the margin of error, the sample size needs to be increased, but that will be 
evaluated in the following paragraphs.  
 
The confidence level is linked to the confidence interval, since the higher the confidence level, 
the wider the interval will be. The confidence level is the percentage of all possible samples 
that can be expected to include a true population parameter. For example, a poll might state 
there is a 95% confidence level of 4.88 and 5.26. This means if the poll is repeated using the 
same techniques, 95% of the time the true population parameter will fall within the interval 
estimates 95% of the time. An example if the margin of error is equal to three percentage points, 
with mean of 35%, measurements will be within 32% and 38%, 95% of the time. 

Figure 4. Definition of the concepts of precision and accuracy [8]. 



 6 

Figure 5 gives an overview of the 68%, 95% and 99.7% related to the standard deviation and 
the mean of a given dataset. 
 

 
This is used to define the confidence level for a LIBS dataset, within a certain range from the 
mean of the measurements. For a 95% confidence interval, the measurements lie within two 
standard deviations from the mean. For 68% and 99.7%, these are respectively one and three 
standard deviations. For LIBS measurements, the standard deviation needs to be as small as 
possible in order to be within a range of, for example, 95%, because this will increase the 
accuracy. Logically, this is related to the sample size, and this study will evaluate the number 
of samples needed for a specific representation of the total image or population. The margin of 
error will be later be used to examine the required minimal sample size. 
 
3.1 Sample size for a known population 
The sample size for a given population can be calculated using the Cochran’s sample size 
formula for categorical data. The number of samples can be calculated with different margins 
of error and variances. To do so, the following formula is used [9];  
 

𝑛 =

𝑧$ ∗ (𝑝)(𝑞)
𝑒$

(1 +
𝑧$ ∗ (𝑝)(𝑞)

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝑒$)
 

 
Here, z is the selected alpha level for each tail in the Gaussian distribution. It corresponds to 
the level of confidence for evaluating the population. The values for z can be found in             
Table 1. (p)(q) is the estimate of the variance; for a maximum possible proportion, p is equal to 
0.5. q is equal to 1-0.5 = 0.5. p and q are the maximum possible proportion of the population, 
which is equal to 0.5. For two parameters, the change of sampling the target is 50%/50%, which 
explains the value for p and q. This produces the maximum possible sample size. e is the 
acceptable margin of error for the proportion. 
 

Figure 5. Overview where the 68%, 95% and 99.7% confidence 
intervals can be seen, related to the standard deviation [26]. 
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            Table 1. Values for z with their corresponding confidence level. 

Level of confidence 80% 90% 95% 98% 99% 
z 1.28 1.645 1.96 2.33 2.58 

 
For example, if a grid of 50x50 pixel2 is evaluated, the population size is equal to 2500. Using 
a level of confidence of 95%, a margin of error of 5% and a proportion of 50%, the sample size 
is equal to 333. 

	

𝑛 =
1.96$ ∗ (0.5)(1 − 0.5)

0.05$

(1 + 1.96
$ ∗ (0.5)(1 − 0.5)
2500 ∗ 0.05$ )

= 333 

 
According to Cochran, for a population of 2500, 333 samples are needed to evaluate with of 
95% level of confidence and a 5% margin of error. This indicates a sample size of 13.3% of the 
total grid size. It can be questioned if this is indeed true, since it is expected the distribution of 
the sample will contribute also to determination of the sample size. Appendix C provides an 
overview of the formula that finds the smallest sample size providing the desired level of 
precision. 

4. Homo- and heterogeneity 
Sensor-based sorting is one of the most critical parts in the processing of minerals. Typically, 
there are two sensors, one that measures a characteristic of the bulk of a particle and one 
measure a property of the surface of a particle [10]. LIBS measurements are categorized within 
the last group, where the surface measurement needs to be correlated to the bulk property of 
the material. Therefore, it needs to be analysed how well the surface correlates with the volume 
of the material. Intraparticle is one of the critical parameters linked to the correlation since it 
defines heterogeneity within each particle.  
 
Heterogeneity is created by geological processing that has taken place during the formation of 
the orebody. The first step in order to define a specific heterogeneity can be achieved by 
understanding the lithologies within the orebodies since specific lithologies often correspond 
with a typical elemental composition. The elemental composition is often related to the 
heterogeneity of the material since more elements often mean a higher heterogeneity. 
 
Pure homogeneity is assumed to have 1) a unique mineralogy with 2) all grains of similar shapes 
and sizes with 3) no spatial organization or patterns present [11]. Figure 6 gives an overview of 
the two components of heterogeneity, which consists out of grain components and spatial fabric 
and how the two components are build up. 
 
4.1 Scaling 
One of the most important parameters related to hetero- and homogeneity is scale. In the mining 
industry, it is mostly handled on an immense scale or at the concentration scale. The difference 
is, for example, a 20m x 20m x 20m block or within a micrometre scale. Sensor-based sorting 
is developed in order to explore the mid-scale heterogeneity [10]. Pierre Gy (1978) introduced 
two terms to classify heterogeneity; constitutional and distributional heterogeneity. These are 
related to intraparticle and interparticle heterogeneity. Intraparticle is used to describe the 
uniformity within a particle or rock. Interparticle heterogeneity is used to describe the 
uniformity between the rocks [10].    
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To define homo- and heterogeneity, it is necessary to evaluate these terms. Homogeneity is 
often defined as a compound that is composed of strictly identical fragments. They need to be 
identical in a complete way; they need to have the same size, composition, density surface 
morphology, and so on [12]. In a way, it can be said that there are no natural created 
homogeneous materials or substances. For the sensor-based sorting in the mining industry, it 
can, therefore, be hard to classify an ore since they are naturally formed and so never can be 
homogeneous. 
 
The scale is also crucial for assumption in models that can be made to express to the rate of 
heterogeneity. For example, if a drill core sample (30cm x 5cm x 5cm) will be analysed, how 
does this relate to a block with the dimension of 20m x 20m x 20m. If it assumed the volume 
percentage and distribution of the valuable material is the same, the calculation only needs to 
be converted to a larger volume. This means that if the target element has a grade of 5% in the 
drill core sample, you will also assume that the grade of the material is 5% in the 20m x 20m x 
20m block. Unfortunately, this cannot be assumed for the mineralogy of an unknown material. 
It is impossible to assume that a surface measurement correlates with such a volume. 
 

Figure 7. Scaling of mid-scale heterogeneity [10]. 

Figure 6. Classification on how heterogeneity can be separated into two 'end-members' of spatial 
fabric and grain component [11]. 
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If the level of confidence for a small sample is, for example, 95%, it does not imply this is valid 
for another size or volume. The spatial distribution of elements and mineralization throughout 
a rock is mostly heterogeneous and can approach homogeneity locally. On the contrary, for 
large block size, one can see that it approaches homogeneity faster since it has a larger volume 
which means the variety will be lower than looking on a microscopic scale. A rate of 
homogeneity is highly dependent on the scale it is evaluated. 
 
4.2 Constitutional heterogeneity 
A material is heterogeneous if it consists out of different components. To evaluate a substance 
analytical, constitutional heterogeneity (CHL) is used to describe the compositional differences 
between a set of individual fragments. In the calculation of CHL, weight factors are introduced. 
Large fragments have a possibility they differ a lot from the mean, which will indicate the 
heterogeneity contribution of that part will be more significant. The heterogeneity is assessed 
so that large fragments will contribute the most to CHL and small particles will contribute less 
to the total material heterogeneity [12] [13]. A mathematical summary of the procedure can be 
found in Appendix A. 
 
To thoroughly analyse an ore, it is necessary to analyse and weigh all constituent fragments. In 
a rock body of 5m x 5m x 5m, this is possible, but very expensive. Therefore, sampling is 
needed. The perfect sample can be chosen randomly out of all the loose particles of an ore body. 
In practice, this cannot happen since there is no access to every free particle. In order to sample, 
a subset of neighbouring fragment needs to be sufficient. The loose particles can also be seen 
as a collection of fragments. This introduces a new way of quantifying heterogeneity; 
distribution heterogeneity (DHL). Distribution here means distribution in space, distribution 
within the geometrical volume occupied by the sampling target [12]. 
 

 
4.3 Distribution heterogeneity 
DHL is a representation of the differences between groups. Because the entire population of the 
fragments is available, mixing affects the differences between the groups. With mixing, the 
groups become more similar, which will result in a higher homogeneity. Mixing will, in the 
end, result in less variability within the sample. This process is not infinite, at some point, the 
material has reached the maximal effect of mixing. The heterogeneity will not decrease further. 
 

Figure 8. Concept with change from fragment-scale to group-
scale; from constitutional to distribution heterogeneity [12]. 
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CHL evaluates the relation between a single fragment and the group, where DHL evaluates the 
heterogeneity between the group and the material sampling target scale, or the size of the lot. 
Both of the parameters are needed to describe the heterogeneity of any material or substance. 
CHL and DHL are conceptual, theoretical components that in practice always exist intricately 
interwoven for any material [12]. The differences can be seen graphically in Figure 9. 

 
Two samples have the same CHL; In both images the number of black and red dots are the same. 
It only looks at points within the image that are the same. If the number of black and red dots 
vary, the CHL will be different. It can be seen that the distribution of the black and red dots is 
different. In the top image, the red dots are more abundant in the left side of the image, where 
in the bottom image it is more equally distributed.  
 
Using this data for interpreting homo- and heterogeneity within a larger sample will be 
challenging. Since CHL and DHL needs an input which cannot be known from a substance 
where a composition is unknown. Mandatory parameters are the grade and weight of the total 
lot, which is impossible to know in both a conveyer setup as with a smaller drill core sample. 
Defining heterogeneity is possible, but the theory of Pierre Gy cannot be used in order to answer 
the number of samples needed in order to get a typical answer. It can be used to evaluate and 
determine heterogeneity but within another context. In the next section, the modelling of 
heterogeneity will be discussed in order to calculate the minimum sample size. 

5. Modelling heterogeneity 
5.1 In situ heterogeneity 
From a particulate material, with sampling, the variogram and covariance can be calculated. 
The variogram is a function describing the degree of spatial dependence of a spatial random 
field. The grains together form, when heterogeneity is assumed, a random structure in 2D, 
which is not dependent on any direction. For sampling, it would be ideal to have a 0-
dimensional target. This target is the only representative if 1) the whole target can be taken as 
the sample and 2) if the lot to be sampled is mixed before sampling, which can be seen in Figure 
11. Evaluating a 0-dimensional target is more comfortable because it can be modelled using a 
binomial or Poisson distribution function since the material will become more homogeneous 
and accessible to evaluate analytically. This is used in the theory discussed above, where 
constitution and distribution heterogeneity are mentioned.  
 

Figure 9. Two lots having the same mean and CHL, but a different DHL [22]. 
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When a theoretical sample is made, true point samples can be taken in order to evaluate the 
heterogeneity. This means that a x by y grid is created and the volume fraction of interest is 
known, so that can be said that, for example, 70% is element A, 20% is element B and 10% is 
element C. In this case, if one samples n points with known areal fraction (f), it is expected that 
that the number of hits on the area of interest is equal to �̅� = 𝑛 ∗ 𝑓. With this information 
known, the variance can be calculated; 𝑣𝑎𝑟{𝑥} = 𝑛𝑓(1 − 𝑓). This can be summarized, for point 
samples, into the formula below. If the grade of the area of interest will decrease, the variance 
of sampling will increase. Here, the variance for a random point sample is found with n = 1, 
and the sill (section 5.2) of the variogram must be equal to 𝑓(1 − 𝑓) [14] 
 

𝑣𝑎𝑟{𝑥}
�̅�$ =

𝑛𝑓(1 − 𝑓)
(𝑛𝑓)$ =

1 − 𝑓
𝑛𝑓  

 
5.2 Geostatistics 
For describing the variance within in mineral materials, geostatistics can be used in order to 
predict values in a mesh grid, given an amount of sample point measurements. Geostatistics 
describes a domain with a random function [15]. Evaluating a limited number of samples gives 
more boundary conditions since the volume is not as large as infinity. One can define certain 
boundary conditions at one sight. For example, within a drill core of 50 centimetres, it is easier 
to define boundary conditions than for an 8000 m3 block.  
 
For analytical purposes it is easier to model a finite sample, since the total surface or volume is 
known. This can be used for the analysis of the sampling values compared with the lot. When 
describing the distribution of elements within a lot, a variogram is often used. This is a function 
taking a definite value in each point of space. It describes a curve which represents the degree 
of continuity of the mineralization [16]. It was first defined by Matheron (1963): 
 

𝛾(ℎ) =
1
2𝑉

F[𝑓(𝑀 + ℎ) − 𝑓(𝑀)]$𝑑𝑉
	

K
 

 
Here, M is a point in the field V, and f(M) is the value at that point. One of the most important 
parameters is h; the separation or lag distance of interest. To create the semivariogram for a 
given 𝛾(ℎ), all pairs of points at that exact distance would be sampled. Unfortunately, in 
practice, it is impossible to sample everywhere so that an experimental variogram will be 
created based on the values obtained with the function given above.  
 
  

Figure 10. Principle of mixing for a 0-dimensional sampling target [22]. 
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To create the final variogram, in general, three steps are needed. First, based on the known 
sample points and their corresponding values, the experimental variogram is calculated. Next, 
a variogram is tried to be fitted within the points created in the previous steps. The most 
important parameters here are initial values for the range and the sill. The range represents the 
distance limit beyond which the data is no longer correlated over distance. The sill represents 
the variance of the variable. Finally, the definitive variogram will be fitted with the variogram 
and can be used in practices like kriging. 
 
However, the formula described above is valid for a volume, which is three-dimensional. For 
analysis with LIBS, a 2D image of a sample is measured and used to evaluate the lot. Therefore, 
this formula can be simplified into the following expression: 
 

𝛾(ℎ) =
1

2𝑁(ℎ)	M(𝑧NO 	− 	𝑧NOPQ	)$
R(Q)

OST

 

 
Here, zx is the known value at the location x, zx+h is the known value at a distance h from the 
point zx. N(h) is the total number of combinations within the distance h. As mentioned above, 
the sill, range and nugget are the most important parameters for describing a (semi)variogram. 
An example, including the parameters, is shown in Figure 11. 
 
The range and sill correspond to the distance where the data is no longer correlated over 
distance. The sill is the maximum value for the value of the variogram and the range the distance 
at which this will occur. The nugget effect is a small-scale variation or an error within the 
measurements. If a nugget effect is there, the variogram model will be “lifted” upwards to create 
an intersection with the y-axis which is not equal to zero. Linking this to the sample size, it is 
assumed that the smaller the range, the more heterogeneity, which will require more samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When sampling in 2D, it is crucial to select the right sample size. It is generally known that as 
the size of a sample increases, the sampling variance decreases because it is evaluated over a 
greater area. Lyman (2011) composed two theoretical case studies in order to determine the 
relationship between variance and sampling size within a theoretical situation. 
  

Figure 11. Example of a fitted variogram with the sill, range and nugget effect [23]. 
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In the first case, a sample is composed of three phases; black, grey and the white background. 
This texture is based on a Boolean random set oriented with a size distribution of 5 to 100 pixels 
on edge with a 90% passing size of 70 pixels. The black and grey fractions have a proportion 
of 35%, which leaves a fraction of 30% for the white background. It is mentioned that this 
texture is typical for an ore containing relatively large grains of pyrite [14]. 

 
The variogram in Figure 12 is calculated focused on the black phase using 10000 random points 
for a series of sample sizes. The theory mentioned above is said to be true since the sill decreases 
when the range of the variogram increases. In LIBS analysis, the variogram of the rock sample, 
for example, a drill core, can be used in order to estimate the average size of the phases of 
interest, and also how the resolution of the variogram decreases while the sampling area will 
be increased. 
 
The other case study is carried out for material with multiple nuggets. The paper states that the 
target phase has an aerial fraction of only 1.62% [14],  this is much lower than 35% before. 
 

Figure 13 only contains a few fragments of the target phase. One would expect that the results 
for the variogram would be different, which can also be seen. Comparing both variograms, one 
can say that they are similar, but the values for the variance vary. Only the sample size of 
225x225 pixels is not used in the second case study.  
  

Figure 12. A texture of cubic grains at 35%. volume fraction, modelled phases are highlighted. 
Right; the variograms of the corresponding sample sizes are shown [14]. 

Figure 13. A texture with higher nugget effect, cubic grains only 1.62%. Right; the variograms of the 
corresponding sample sizes are shown [14]. 
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For analysing heterogeneity, Lyman et al. (2011) shows that a mineral texture has an associated 
variogram which characterizes its spatial covariance. Here, the direction of measurements is 
essential. The study gives a glaring example of a banded structure where the variogram in the 
direction typical to the bands will show a periodic structure. In the other direction, the 
variogram would look very different [14].  
 
The study offers two possibilities for a measure of heterogeneity; the best possibility is the 
range of the corresponding variogram. To add an extra measurement, the sill can also be 
considered. Comparing two materials with a known sill variance, it can be assumed that the one 
with the shorter range would be more heterogeneous than the other. This indicates it would 
need more samples to reduce the estimation variance for a given block size [14].  
 
The study concludes that when an orebody is sampled on a microscopic level, the variogram 
should not show a nugget intercept even when the target phase is highly discontinuous, which 
is equal to a so called “nugget-effect.” The downside is that for each analyte, the measurements 
will be different which will result in different results for the variogram. In the end, apart from 
special cases of diamonds and gold, there is no reasonable link between in situ heterogeneity 
and particulate heterogeneity, which would make it hard to link surface measurements to the 
in-situ composition of the material. 
 
It is important to mention that for successful characterization of the material using geostatistics, 
it is necessary to prepare the ore. This involves several stages of breakage and mass reduction 
which can reduce the speed to characterize a sample since beneficiation takes more time then 
real-time measurements. 
 
5.3 Statistics 
Basic statistics can be used to evaluate the precision of a particular sample size. This can be 
done using the mean and the standard deviation for different sample sizes. As mentioned, the 
standard deviation is assumed to decrease with increasing sample size. In later sections, this 
will be evaluated. The standard deviation and mean of a sample are calculated follows: 
 

𝑆𝐷WXYZ[\ = ]∑|𝑥 − 𝑥|
$

𝑛 − 1 ,						 						𝑀𝑒𝑎𝑛WXYZ[\ =
∑𝑥
𝑛 ,								 

 
 
The formula for calculating the standard deviation of a sample is different to calculating the 
standard deviation for a whole population. For example, the numerator is n - 1 where for a 
whole population it is equal to just n [17]. From section 6.2, these formulas will be used in order 
to evaluate the levels of certainty for different sample sizes for a 50x50 pixel2 grid.  
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5.4 Image analysis 
Evaluating heterogeneity could be done using image analysis. In combination with libs, one 
could combine these principles to assess heterogeneity per shot taken. Some papers are 
published on automatic heterogeneity determination using images. This paragraph will evaluate 
the potential of this technique. De Moura França et al. (2017) created a tool for evaluated 
homogeneity for images using a homogeneity curve. It based on the continuous-level moving 
block method (CLMB), which is relying on consecutive sub-sampling of one image in sub-
sample window of different sizes.  
 
First a picture divided into sections, where after the standard deviation is calculated based on 
the size of the sampled fraction. Figure 14 gives an overview of the working principle. The 
picture is evaluated for all sub-windows (𝐼b × 𝐽b) possible within the whole sample (𝐼 × 𝐽) . 
The size of the sub-window can be formulated as 𝑃𝐼𝑋ghiji = 𝐼b × 𝐽′. The total number of sub-
samples for all sub-window van be calculated as follows:  
 

𝑇𝑂𝑇𝐴𝐿ghiji = [𝐼 − (𝐼b − 1)] ∗ [𝐽 − (𝐽b − 1)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Afterwards, the standard deviation for all sub-samples is calculated and the sum of these values 
will be used to calculate the standard deviation for each sub-sample windows size which is 
available. These values are used for the vertical axis. For the horizontal axis is scalar is used, 
named r and is defined as 𝑟 = (𝐼b × 𝐽b)/(𝐼 × 𝐽). It is expected that with an increasing sub-
sample size, the standard deviation will decrease. How steeper the graph will be, the more 
homogeneous the sample is. The homogeneity curve is made by first calculating the standard 
deviation (SDI’xJ’), for all possible locations of the sub samples, then the sum of the standard 
deviations is divided by the total number of sub-samples (SDplot). SDplot is plotted against r. 
 

𝑆𝐷qi×ri = s
∑ ∑ t𝑇𝑂𝑇𝐴𝐿ghiji − 𝑠v

$ri
riST

qi
qiST

𝑃𝐼𝑋ghiji − 1
 

 

𝑆𝐷Z[wx =
∑𝑆𝐷qi×ri
𝑇𝑂𝑇𝐴𝐿ghiji

 

 
  

Figure 14. Left and middle; two examples of sub-windows with a size of two and three squared pixels. On the right, the 
corresponding value of the mean standard deviation of all the sub-windows [24]. 
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Figure 15 shows three theoretical situations where the homogeneity curve can be observed. All 
images have a white colour area of three percent, but these pixels are different looking at their 
distribution. The minimum size is one squared pixel. First, three nuggets (10 pixel2) within the 
sample are evaluated, followed by five and one pixel2 variants. It can be seen that the 
homogeneity curve behaves different looking at samples A, B and C. As said before, the line 
will approach a standard deviation of zero faster when the sample is more homogeneous.  
 
For LIBS, in section 6.2, the model will be evaluated and tested and evaluated for different 
homo- and heterogeneous samples; theoretical and real-life. 
 
 

 
Using the homogeneity curve give a solution to defining the homogeneity of a mono-channel 
image. It can be used to evaluate the homogeneity of images containing a minimum og two 
elements. For LIBS characterisation, this can be useful to evaluate the minimum required 
sample size. Chapter 6 investigates the homogeneity curve more in depth for relevant case 
studies. One of the case studies investigates the homogeneity percentage, obtained with the 
homogeneity curve, with the minimum sample size to be within a certain margin of error. As it 
is expected that this will correlate.  

Figure 15. Simulation of a case in which the concentration of white pixels is the same in the three 
images, but the distribution differs [24]. 
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6. Case studies 
6.1 First impression: LIBS for tailing slurries 
As mentioned before, it is expected that with an increasing number of samples, the standard 
error will decrease. A simple test case is created to evaluate if this is true. Therefore, a 
mineralogical assay is used of the tailing samples measured by the paper of Khajehzadeh et al. 
(2016). The mineralogic information was provided by the Mineral Liberation Analyzer (MLA) 
method. They consist out of fourteen samples from a tailing stream slurry in a flotation plant, 
which belongs to an iron ore concentrator. It is assumed that a composition of a slurry is 
relatively homogeneous, which means the composition are assumed to be the same. 
 
In order to provide a reliable answer and compensate instabilities and reduce the noise, three 
LIBS spectra per sample were measured. Each spectrum covered a wavelength range from 
190nm to 507nm and was the result of 200 accumulated laser pulses. For the three 
measurements taken, the average was noted. The complete assay can be found in Appendix B. 
 
For evaluating the use of more samples, the standard deviation (SD or σ), the standard error of 
the mean (SEM) and the coefficient of variation (CV) for increasing sample size are 
calculated. This means the data is evaluated for 1, 2, 3, …, 14 samples; 
 

𝑆𝐷 = ]∑|𝑥 − 𝜇|
$

𝑛 − 1 ,										𝑆𝐸𝑀 =
𝑆𝐷
√𝑛

,							𝐶𝑉 = 	
𝑆𝐷
𝑚𝑒𝑎𝑛 

 
Figure 16 gives an overview of the results for an increasing sample size. The standard deviation 
of the data increases rapidly for the circa the first five measurements but becomes more constant 
afterward. This indicates the data is becoming more stable with less variation. A more stable σ 
will result in a lower SEM since the number of samples (n) increases while σ stays relatively 
constant. The CV is the ratio between SD and the mean. In the plot is shown that up to five 
samples the CV increases, where after fluctuates. It can be said that an increasing sample size 
contributes positively to the material characterization. 

Figure 16. a) Standard deviation (σ), b) standard error of the mean (SEM) and c) the coefficient of variation (CV) for the 
data of element tailings characterization using LIBS [4].  
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6.2 Theoretically generated images 
Evaluating the sample size is difficult to achieve with real examples since the overall 
composition is not known. Therefore, it is hard to calculate how the results of the sample 
measurements compare with the overall material. With LIBS, it is possible to create images as 
Figure 17. Analysing this picture could indicate the grade of the sample, but it is not known 
what the total composition is. In order to do so, a theoretical model needs to be created where 
the overall composition can be determined. From that created material, random samples need 
to be taken in order compare how many samples are needed in order to give a sufficient 
estimation of the total material. 
 

A 50 pixel2 grid is created. For this grid, the grade percentages of a particular component can 
be inserted to create an image similar to Figure 17, which is created with 2500 LIBS spots. The 
pixels are divided for the assigned grade values and randomly distributed using the Sample 
and Shuffle functions in MATLAB, created by Daniel T. Kaplan [18]. The sample sizes will 
be evaluated for three cases, where the composition differs and increases; 
 

      Case 1:               Case 2:                  Case 3: 
        40%, 30% and 30%         70%, 15%, 10% and 5%         97%, 2% and 1% 

 
For Case 2 a general composition is chosen, a typical distribution of pyrite also used in section 
0. Case 2 involves a distribution containing four elements with one significant contributor. The 
remaining are 15%, 10% and 5%. Case 3 consist almost out of one element (97%), with two 
other elements contributing only 1% and 2%. It has to be noted that the examples given above 
are one representation of a possibility. For each run, another sample will be created to increase 
the randomness of the model.  

Figure 17. LIBS characterization results for Zn and Fe for a sample measurement [28]. 



 19 

For calculations, it is assumed that the spot size for LIBS measurements is 600x600µm2. This 
indicates for a 50x50-pixel grid, and the dimensions are 3x3cm. The theoretical cases are based 
upon these dimensions. It is assumed that the standard deviation will decrease with an 
increasing number of samples and the mean of the sample will approach the mean of the lot. 
For the three cases above, the standard deviation is calculated numerical from one until 2500 
samples. For each sample size, 1000 different samples are taken. For each sample, the grade is 
calculated. For these 1000 grades per sample size, the mean and standard deviation is calculated 
and plotted. The results for Case 1 can be seen below. The results for Case 2 and Case 3 can be 
found in Appendix E in Figure 36 and Figure 37. 
 
It needs to be mentioned that the x-axis is shown in a percentage of the total population (=2500 
pixels) and the y-axis shows the absolute percentage, so not a proportion of the true grade shown 
with the red dotted line.  
 

 

Figure 18. Results of the mean for Case 1 (40%, 30% and 30%), for an increasing sample size. 

Figure 19. Results of the standard deviation for Case 1 (40%, 30% and 30%), for an increasing sample size. 
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For a maximum of 2500 samples, it is observed that both the mean and the standard deviation 
decrease over an increasing sample size. According to Cochran, for a population of 2500 
(50x50) with a margin of error of 5% and a level of confidence of 95%, the recommended 
sample size is equal to 333 (=±14%). Comparing this with Figure 18 and Figure 19, the mean 
varies between absolute ±5% from the true mean. For a relative more accurate percentage, the 
sample size will be higher. If a higher level of confidence is desired, the standard deviation is 
required to be lower. For a standard deviation of 2%, a minimum sample size of 1500 is 
required. The standard deviation and confidence level are linked to each other, where one 
standard deviation from the mean is equal to 68% confidence level, two standard deviations 
from the mean is equal to 95% confidence level and three standard deviations from the mean is 
equal to 95% confidence level. 
 
To calculate the percentage of homogeneity, the image analysis tool by De Moura França et al. 
(2017) is used. First, this is done for the original image, then the material is converted into a 
homogeneous form. Last, it is converted to a heterogeneous material. Furthermore, the 
histogram of the original picture is shown. For all the original, the homogeneous and the 
heterogeneous case, the homogeneity curves are plotted. Comparing the line of the original 
material with the homo- and heterogeneous curves, a percentage can be assumed.  
 
For Case 1, it can be seen that the original input versus the homogeneous case is not very 
different. They are almost similar, only their distribution varies. The differences between the 
original input versus the heterogeneous case are apparent. Since there are no differences 
between the original and the homogeneous case, the percentage of homogeneity is assumed to 
be 100%. Because the original image is generated randomly with the input parameters for the 
grade distribution, the pixels are also distributed randomly. This, in the end, generates a 
homogenous material looking at the spatial distribution. To evaluate this further, more 
heterogeneous samples need to be researched. 
 

 

Figure 20. Top: overview of the original, (theoretical) homo- and heterogeneous material. Bottom: histogram of 
the distribution and the homogeneity curves of the images above. Also, the homogeneity percentage is displayed. 
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For Cases 1, 2 and 3 on page 18, the homogeneity percentages are evaluated at respectively 
100%, 98%, and 97%. In Appendix E; Figure 37, it can be seen that in the case of a low-grade 
image (Case 3), the grades converge to their given grades of 97%, 2%, and 1%. However, for 
estimating the grade of 2% and 1%, the standard deviations are well above 2% until 1000 
samples are taken. For example, assessing the grade this indicates a grade of 3% or -1%, which 
is impossible. To have a confidence level of 95%, two standard deviations are needed (Figure 
5). To be within 0.2% of the true known grade, a minimum of 2000 samples is needed within 
the population size of 2500. 
 
If the sample has a grade of 40%, 30%, and 30% and is evenly distributed, the sample size for 
characterization is relatively low since the composition is close to 1/3 of each element. 
Therefore, two general cases are evaluated for a vein and a nugget structure in order to evaluate 
differences in the homogeneity percentage, the mean and the standard deviation. 

Figure 21 shows the homogeneity curves for the images above. The homogeneity percentage is 
0% and is calculated with the image analysis tool mentioned in section 5.4. This indicates a 
heterogeneous distribution what can be expected with a nugget in the centre of the image. The 
areal percentage of black pixels is 99%, and the white “nugget” contributes 1% to the total. 
 
Figure 23 and Figure 22 show the mean and standard deviation of Figure 21. Due to the low 
concentration of the nugget, for relative sample sizes below 10%, it is still possible to determine 
the sample as 100% pure (no nugget). Afterward, the mean converges more to the known grade 
of 99%. It indicates how hard it is to determine the grade of a sample with a limited number of 
samples taken. Looking at the standard deviation, a minimum of 80% samples are needed to 
have a confidence interval of 95% to be within 0.5% precision of the measured mean. This is 
very high compared to the total image size of 2500 pixels. It indicates that with a “nuggety” 
image, the sample size needs to be extremely high to detect those low-available elements.  

Figure 21. Theoretical case for a "nuggety" structure with grade distribution of 99% and 1%. 
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The same is done for the “vein” structure, where on a band of secondary material is evaluated. 
This has resulted in a grade distribution of 88% and 12%. As can be seen in Figure 24, the 
homogeneity percentage is evaluated to be 10%, which is still low but higher than the case of 
the “nuggety” texture. The standard deviations of the “nugget” texture are lower, but compared 
to the known true grade the differences are more extensive. The standard deviation shows 
absolute percentages, which indicates most of the values are below 1%. This would indicate 
characterization between 0% and 2%, what is not accuracy on such a small scale. 

Figure 23. Mean of the "nuggety" structure versus the sample size. 

Figure 22. Standard deviation of the "nuggety" structure versus the sample size. 
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Figure 24. Theoretical case for a "vein" structure with grade distribution of 88% and 12%. 

Figure 25. Mean of the "vein" structure versus the sample size. 
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Figure 25 shown that the variances of the mean for the vein structure vary less than for the 
nugget texture. This can be explained due to the relative higher concentration of the two 
elements (88/12% vs. 99/1%). Due to the grades of 88% and 12%, the standard deviation in 
Figure 26 drops later below 1 than the nugget structure. Also, this can be explained due to the 
higher target grades within the image.  
 
When two elements are evaluated, the standard deviations for both elements are similar, due to 
the factor that their differences will be the same. If the selected grade of a sample for one is 
90%, the other is equal to 10%. Moreover, another run results in 80% and 20%. For both 
elements, the standard deviations will be 5%. With a more significant number of elements, the 
standard deviations will vary per elements, since it is not the case that if the grade x is known, 
the other grade is equal to 100 – x. 
 
With a small number of samples, in Figure 23 and Figure 25 it can be seen that the mean of the 
image fluctuates a lot. For a true grade of 88%, with a sample size of 20%, the measured grade 
can still be 91% or 85%. For determining the number of samples needed for sufficient 
characterization, the grade distribution, some elements, and the spatial distribution is essential. 
Changes within these parameters result in another standard deviation of the true grade. From 
the graphs of the standard deviations, one can calculate the sample size to within 1% of the true 
grade for different confidence levels. Most likely these are 68%, 95%, and 99% since they are 
equal to one, two and three standard deviations, see also Figure 5. 
 
In this section, theoretically generated images were used in order to calculate the homogeneity 
percentage, the mean and standard deviations for their corresponding sample sizes within a 
50x50 pixel2 grid, where they will be compared. Standard deviations are now evaluated for 
homogeneity percentages of 100%, 98%, 97%, 0% and 10%. In the next section, other 
percentages of homogeneity will be discussed, in order to evaluate images from 0% to 100% 
of homogeneity. These images are based upon real-life rock images, like chalk and granite.  

Figure 26. Standard deviation of the "vein" structure versus the sample size. 
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6.3 Real-sample based images 
As mentioned above, it is hard to generate randomly distribute a certain grade distribution, since 
the pixels will always be distribution in homogeneous way. Therefore, other images are created 
based upon real rocks images. This is done to reduce the level of homogeneity within the images 
and increase the variety of the generated homogeneity percentages. The images used are 
samples of gneiss, chalk, granite and peridotite. The jpg images are loaded into MATLAB with 
imread, where after they are converted to a mono-channel image with help of the rgb2ind 
function. They the matrix a conversion to a 50x50 pixel2grid using imresize. The last step 
is a conversion to a double array using im2double. Below these transformations are shown. 
It has to be mentioned that the accuracy will be decreased.  

  

Figure 29. Mono-channel image generated based on a gneiss rock sample. %H = 29% 

Figure 28. Mono-channel image generated based on a chalk rock sample. %H = 55%. 

Figure 27. Mono-channel image generated based on a granite rock sample. %H = 71% 
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For these images, 1 - 2500 samples are taken. This is done 1000 times per sample size, and the 
standard deviations are calculated over these 1000 measurements. The mean is calculated only 
for two samples since this will increase the variance for the sample size. The more iterations 
are done per sample size, the more the mean will converge to the true grade of the image. The 
results of the plots for calculations of the homogeneity percentage and the graphs for the mean 
and standard deviations can be found in Appendix E. The results will be discussed in 6.4. 
 
6.4 Summary 
In the previous sections, for several cases the homogeneity percentage, their grade distribution 
and the chance of characterization of the true grade for a certain confidence interval. For all 
images, the standard deviations and mean are calculated for the increasing sample sizes. Their 
variance from the true grade is evaluated for relative percentages of 1%, 10% and 20%. This 
indicates that, for example, a true grade of 15% is estimated to be 15 ± 0.15%, 15 ± 1.5% or 15 
± 3%. As mentioned before the percentages are relative and do not display an absolute 
percentage. The results can be seen in Table 2, Table 3 and Table 4. 
 
Relative percentages are used since absolute percentages can give a wrong impression. For 
example, comparing sample sizes for absolute 1% within the true grade, it differs if the true 
grade is 1% or 30%. For 1%, it lies between 0% and 2%, and for 30% it lies between 29% and 
31%. For the last case, the relative difference is not significant, where the relative difference 
between 0% and 1% is enormous. 
 
From these results, it is concluded that the homogeneity percentage does not correlate with the 
number of samples needed. If the %H increases, it does not indicate the number of samples 
needed to be within the confidence level will decrease. The number of samples is shown based 
upon the smallest grade (target grade) in the distribution since that one is hardest to estimate 
due to its low concentration. These grades are displayed in bold in the tables.  
 
  

Figure 30. Mono-channel image generated based on a peridotite rock sample. %H = 85% 
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Table 2. Sample size within relative 1% of the true grade for confidence levels of 68%, 95% and 99% 

Sample %H Grade distribution 
Confidence level: 
68% (1σ) 95% (2σ) 99% (3σ) 

Case 1 100 40%, 30%, 30% 90% 97% 99% 
Case 2 98 70%, 15%, 10%, 5% 99% 100% 100% 
Case 3 97 97%, 2%, 1% 100% 100% 100% 
Nugget 0 99%, 1% 100% 100% 100% 
Vein 10 88%, 12% 97% 99% 100% 
Gneiss 29 47%, 27%, 26% 92% 98% 99% 
Chalk 55 80%, 17%, 3%  99% 100% 100% 
Granite 71 61%, 32%, 7% 98% 100% 100% 
Peridotite 85 66%, 34% 88% 97% 99% 

 
 
Table 3. Sample size within relative 10% of the true grade for confidence levels of 68%, 95% and 99% 

Sample %H Grade distribution 
Confidence level: 
68% (1σ) 95% (2σ) 99% (3σ) 

Case 1 100 40%, 30%, 30% 8% 26% 43% 
Case 2 98 70%, 15%, 10%, 5% 42% 74% 86% 
Case 3 97 97%, 2%, 1% 78% 94% 97% 
Nugget 0 99%, 1% 79% 94% 97% 
Vein 10 88%, 12% 22% 53% 72% 
Gneiss 29 47%, 27%, 26% 10% 30% 49% 
Chalk 55 80%, 17%, 3%  55% 83% 92% 
Granite 71 61%, 32%, 7% 33% 67% 82% 
Peridotite 85 66%, 34% 7% 23% 40% 

 
 
Table 4. Sample size within relative 20% of the true grade for confidence levels of 68%, 95% and 99% 

Sample %H Grade distribution 
Confidence level: 
68% (1σ) 95% (2σ) 99% (3σ) 

Case 1 100 40%, 30%, 30% 2% 8% 17% 
Case 2 98 70%, 15%, 10%, 5% 15% 42% 61% 
Case 3 97 97%, 2%, 1% 48% 78% 89% 
Nugget 0 99%, 1% 49% 79% 89% 
Vein 10 88%, 12% 7% 22% 38% 
Gneiss 29 47%, 27%, 26% 3% 10% 19% 
Chalk 55 80%, 17%, 3%  24% 55% 74% 
Granite 71 61%, 32%, 7% 11% 33% 53% 
Peridotite 85 66%, 34% 2% 7% 14% 
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With relative margins, in Table 2 it is visible that being 1% within the true grade, for almost all 
the samples, the total sample size has a minimum close to the population size of 2500. This is 
reasonable since it would be hard to determine the exact grade. If the grade in the distribution 
is low, the number of samples needed for a 99% confidence level does not decrease fast. With 
a higher grade in the distribution, the number of samples decreases more rapidly, since that 
chance is higher to sample an element with an abundance of 30% than with 1%. 
 
As mentioned before, no correlation is found between homogeneity percentages and the sample 
sizes. A reason for this is that in the used model, one sample is equal to one pixel. If the sample 
dimensions would be more significant, per sample could be calculated what %H is. 
Unfortunately, this cannot be done with the used model. Therefore, %H can only be used to 
determine the homogeneity of the total image. However, the tool is very useful for assessing 
the homogeneity within an image. 
 
However, it can be seen that there is a trend between the grade distribution of the image and 
the sample size with its corresponding confidence level. For higher target grade, the sample 
size is lower than a low target grade. Table 5 gives an overview of the sample sizes focused on 
a target grade distribution from 1% to 99% and the sample sizes needed to be within relative 
10% of that grade. It is calculated for confidence levels of 68%, 95% and 99%, which are equal 
to one, two and three standard deviations. All calculations assume a grid size of 50x50 pixel2. 
 
Table 5. Grade distribution vs sample size (%) within relative 10% of true grade (bold) for multiple confidence levels. 

# Grade distribution 
within image 

Sample size (%)/confidence level: 
68% (1σ) 95% (2σ) 99% (3σ) 

1 99%, 1% 78% 94% 97% 
2 95%, 5% 41% 74% 86% 
3 90%, 10% 25% 57% 76% 
4 85%, 15% 17% 46% 65% 
5 80%, 20% 13% 38% 57% 
6 75%, 25% 10% 31% 50% 
7 70%, 30% 8% 26% 44% 
8 65%, 35% 7% 22% 38% 
9 60%, 40% 5% 19% 35% 
10 55%, 45% 4% 15% 29% 
11 50%, 50% 4% 13% 25% 
12 45%, 55% 3% 11% 21% 
13 40%, 60% 3% 9% 19% 
14 35%, 65% 2% 8% 15% 
15 30%, 70% 2% 6% 13% 
16 25%, 75% 1% 5% 10% 
17 20%, 80% 1% 4% 8% 
18 15%, 85% 1% 3% 6% 
19 10%, 90% < 1% 2% 4% 
20 5%, 95% < 1% 1% 2% 
21 1%, 99% < 1% < 1% < 1% 
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The sample size is displayed as a percentage of the total image (= 2500 pixels). The sample size 
for characterization of a 1% grade at a 99% confidence level needs to be 2429 (= 97%) to be 
within 10% of the true grade, which is between 0.9% and 1.1%. If the level of confidence 
decreases to 95%, the sample is equal to 2353 (= 94%), a decrease of only 3%. Of the 
confidence level decreases further to 68%, the required sample size is 1956 (= 78%). So, a 
difference of ±30% for the confidence level reduces the sample size with ±20% for a 50x50 
pixel image. For a larger image, the sample size is expected to be even lower, but this will be 
evaluated in section 6.5. 
 
The data from Table 5 is given as a graph in Figure 31. Here, it is visible that for a higher level 
of confidence (99%), the sample size is more extensive than with a lower confidence level 
(68%/95%). The function can be described as an exponential function which is steeper for a 
lower confidence level since it will need fewer samples with the same grade distribution. 
Therefore, it can be said that there is a correlation between the sample size and the grade 
distribution of the image. The more a target grade will decrease, the higher the sample size 
needs to be. For a target grade of 2% or lower, the sample size ratio needs to be at least 80%. 
For target grades above 90%, the required sample size ratio is lower than 5%. 
   

Figure 31. Graphical overview of grade distribution for a two-element material shown in Table 5. 
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6.5 Grid size versus sample size  
The images and calculations done above are based upon a 50x50 pixel2 grid. Within this grid 
size, one can calculate the chance of determining the true elemental composition of the image. 
From the previous section, the lower the target grade, the higher the percental sample size. 
However, does this also relate to the grid size? If a sample size needs to be 80% of the total 
population, can it be said about all grid sizes or will the sample size ratio be lower with a larger 
grid size or vice versa? 
 
To do so, the vein image of Figure 24 is evaluated. The grade distribution of the image is 88% 
and 12%. For a 50*50-pixel grid, this is equal to 2200 and 300 pixels. It is expected that with a 
lower grid size the relative sample size will increase. For example, 1% sample size of a 10*10-
pixel grid indicates a sample size of 1 pixel. With only 1 pixel, no sufficient characterization 
can be done. A 1% sample size of a 50*50-pixel grid indicates a sample size of 25 pixels. With 
25 samples, a basic characterization of the image can be done, based on the wanted level of 
confidence. So, with a sample size of 1%, the same accuracy cannot be achieved. It is expected 
that the higher the grid size, the lower the relative sample size ratio. 
 
For different grid sizes, the vein structure is evaluated. For all grid sizes, a distribution of 88% 
and 12% is used which is evaluated for a 68%, 95% and 99% confidence level with relative 
margins of error of 1%, 10%, and 20%. The sample size is evaluated for the target grade of 
12% since this is the lowest grade and therefore the hardest the characterize within the margins 
of error. Figure 32 gives a graphical overview of the grid sizes and the corresponding sample 
sizes. The used data can be found in Appendix D. 
 

Figure 32. Sample size percentage versus the grid size, evaluated for 5*5 grid up to a 140*140 pixels grid.  
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For an increasing grid size, it is wise to know how much the relative sample size will decrease. 
To do so, an extrapolation can be made with the known data. This is shown in Figure 33, where 
the data with a 95% confidence level can be seen. Here, significant differences can be seen for 
the 1% and the 10%/20% margins of error. Where the margins of error of 10% and 20% are 
going downwards quickly to ±3%. For the 1% margin of error, the trend decreases slowly. At 
a grid size of 250*250, for a 10% and 20% margin of error, the sample size is circa 3% of the 
whole population. For a margin of error of 1%, this is much higher, circa 86%, which is a 
significant difference. 
 
It can be said that the correlation between the sample and grid size is exponential, which is 
similar to sample size compared with the grade distribution in the previous section. For the 10% 
and 20% margin of error, after a grid size of 220*220, the relative sample size stays constant. 
It can be assumed that also the fitted line for 1% is exponential and will approach the same 
minimum. However, the grid size for this will be enormous, which can be clarified by the fact 
that a 1% margin of error is exact and therefore takes many measurements. 
 
So, there is a correlation between the relative sample and grid size, which indicates relative 
fewer samples are needed when a more substantial surface or volume is characterized using 
LIBS. The results for Figure 33 are only for an 88% and 12% distribution of two components. 
For other grade distribution, the sample size will be higher or lower, depending on the number 
of elements with their distribution. With this case study, it is only proved that an increasing grid 
size will results in relatively lower sample size compared to the total population of the image.  

Figure 33. Extrapolation of the relative sample size compared with an increasing grid size. 
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6.6 Variogram and kriging 
Kriging could be an option to evaluate the homogeneity of an image based on the samples taken, 
with the help of the range and the sill. To evaluate this, the samples from section 6.3 are 
evaluated using an (experimental) variogram which is used to recreate the image, and define 
the grade. For the four images, first, the sample percentage is determined using Table 5, which 
is evaluated for two elements, but will now also be used for three elements. A level of 
confidence of 95% is used. Table 6 gives an overview of the relative/absolute sample sizes.  
 
Table 6. Overview of the required sample size based on the lowest target grade. 

Image Lowest target grade Relative sample size  Absolute sample size 

Gneiss 26% à 25% 31% 775 

Chalk 3% à 5% 74% 1850 

Granite 7% à 5% 74% 1850 

Peridotite 34% à 35% 22% 550 
 
For each image, a randomly selected number of the optimal absolute sample sizes is selected. 
From these selected values, a variogram is made which is defined as the variance of the 
difference between field values at two locations across realizations of the field [19]. These 
represent the spatial correlation between the sample points of the image. So, when the distance 
between a point increases, there will be a point where there is no spatial correlation, so no 
assumptions of the characterizations can be made.  
 
Figure 34 shows an overview of the variograms for all images, where some differences can be 
distinguished at first sight. The variogram with the highest range is expected to be the most 
spatially correlated until that given lag distance. So, one can say that the smaller the range, the 
faster an image is spatially correlated over a given distance, so it should behave more 
homogeneous. If the range is broad, the correlation is higher, so the same elements are expected 
to be closer to each other. 
 
For the evaluated cases, the variogram for gneiss has the highest range, but also the highest sill. 
This indicates the sample points are spatial correlated quite a lag distance. These values can be 
found in Table 7 below. Here, the partial sill is the sill value minus the nugget. The nugget is 
the value at which the variogram intercept the y-axis. A nugget effect indicates more 
homogeneity, since it indicates less spatial distribution between the samples. 
 
Table 7. Overview of values of the range, sill and nugget. 

Image Range (Partial) Sill Nugget 

Gneiss 19.3 0.55 - 

Chalk 7.1 0.16 0.02 

Granite 12.9 0.14 0.23 

Peridotite 3.5 0.22 - 
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Lyman et al. (2011) state that the lower the sill and range are, the more homogeneous an image 
will be. Looking at Table 7 and Figure 34, this would indicate that the chalk and peridotite 
images will be more homogeneous than the gneiss and granite. Comparing this with the known 
homogeneity percentages, this is not valid.  For the selected sample sizes of Table 6, the results 
of the kriging interpolation are shown in Figure 35. These images have been created using the 
Kriging function in MATLAB with input data from the variograms in Figure 34. 
 
Comparing the kriging results with the original images, the interpolations are quite the same. 
The gneiss image shows the characteristic vein in the image, but can be a bit blurry looking at 
the other pixels. This also the case for all the other images, since it is interpolated and the images 
are more smoothened than the original ones, where more single pixels can be spotted.  
 
Kriging can be used in order to generate an interpolation between sample points of an image. It 
could be used to get a first impression on the spatial distribution within certain sample spots 
with the help of the variogram. However, it can be concluded that it is not accurate since the 
kriging results are not similar to the results obtained with the image analysis tool [14].   

Figure 34. Fitted variograms for the a) gneiss, b) chalk, c) granite and d) peridotite images. 
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Figure 35. Kriging interpolation based upon samples from the original image. From top till 
bottom the gneiss, chalk, granite and peridotite image. 
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7. Discussion 
The aim of this study was to investigate the relation between the homogeneity of a rock and the 
corresponding minimum sample size to reach a certain margin of error within a specified level 
of confidence. Different possibilities to encounter homo- and heterogeneity are discussed, for 
example, constitutional and distribution homogeneity. However, these options are not ideal for 
calculating and evaluating the percentage of homogeneity. The formulas need extra parameters, 
which include density and the grain size estimation of the throughput, which would difficult or 
not even possible within this context. 
 
For different images, the homogeneity curves are calculated which are used to obtain a 
percentage of homogeneity. This is tested for several theoretical and real-life cases, where it 
proved to be a good manner to determine homogeneity within an n by n pixel grid. However, 
this cannot be used to determine a minimum sample size. Further, the standard deviation and 
mean is evaluated for increasing sample sizes compared with the total population. This resulted 
in graphs where the standard deviations are indeed decreasing if the sample size will be 
increased, but it is independent of homogeneity. This can then be used in order to determine 
margins of error compared to the target grade which needs to be characterized within the entire 
grid. 
 
Further, the correlation between the grade distribution and sample size is shown. For smaller 
target grades, more samples are needed in order to reach the same margin of error. For a more 
substantial target grade the required sample size will decrease. However, this is evaluated for 
two elements were the results of an increasing number of elements are expected to be different. 
If the grid size (n by n) will be increased, a relatively smaller proportion of the samples is 
needed to get the same margins of error within the same levels of confidence. Kriging could be 
used to evaluate the spatial correlation of the distribution when sample points are known. 
Within a grid environment, this can be useful, but sample coordinates are required in order to 
create a variogram.  
 
Overall, for specific cases, the minimum sample size can be calculated. However, in a real-life 
mining environment, the subsurface is not known, as is the distribution or composition of that 
material. Therefore, it is unlikely that a standard formula can be determined to assess the sample 
size based on specific parameters as the rate of homogeneity since this is already hard to 
determine at itself. The results of this study are valid for their specific case studies, which is a 
50 x 50 pixel2 grid with a maximum of four elements. Within a rock, much more particles and 
elements are available, making it difficult to use the results from this study in real cases. 
 
This is also the hardest part of this study. No natural material or rock has the same composition. 
For LIBS measurements, only the surface is characterized. What is in the subsurface can only 
be guessed since there is no correlation between the surface and the volume for the majority of 
the rocks. Sampling within the mining industry is always tricky and incorporates risk since it is 
hard to give a minimum sample size. The total composition is not known, which makes it is 
almost impossible to assume the minimum sample size. 
 
In a future study, it is recommended to use more elemental compositions and different grid 
sizes. Also, no correlation between the percentage of homogeneity and the grade distribution 
was found, which can be valuable for determining the minimum sample size. If the rate of 
homo- or heterogeneity can be determined for more complex structures, calculating a minimum 
sample size can be a step closer. This study had limited time to incorporate this, but it could be 
done in the future.  
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8. Conclusion 
For a long time, the theory of sampling has been studied in order to assess the problem of 
determining the required sample size for an image or material. This study has resulted in the 
findings that the spatial distribution of elements in a sample can increase or decrease the relative 
sample size of an image. It has been shown that more homogeneous images require fewer 
samples than, for example, a vein structure. Within different levels of confidence and margins 
of errors, the sample sizes of the images vary, where the lower the margin of error and the 
higher the level of confidence, the more samples one need to take. This is shown with the help 
of modelling several case studies in MATLAB. Also, the homogeneity percentage is calculated 
with the help of an image analysis tool. 
 
Interpreting these results, it is possible to determine the required sample size for an image, if 
the right assumption will be made. These include a known fixed grid size and a predefined 
grade distribution. With these assumptions, the minimum sample sizes can be calculated within 
the levels of confidence and margins of error. In real-life these situations this is not realistic.  
 
The grid size, surface area or volume in real life situation is hard to determine since the 
boundary conditions are not constant. Also, the grade distribution is not known, and these are 
likely to be much more complicated than the case studies within the work. However, within a 
LIBS grid, similar to Figure 17, the percentage of homogeneity can be assessed, and the grade 
distribution could be used, and such a sample could be used to assess the overall composition, 
but this is not recommended since the surface area is minimal and not continuous through the 
whole image. 
 
No correlation has been found between the percentage of homogeneity, calculated with the 
image analysis tool [14], and the minimum sample size. This indicates that the distribution is 
not needed for determining the sample size. However, this is only valid for the used image 
analysis tool, fixed boundary conditions, a known grid size and grade distribution. In real life, 
these parameters are mostly hard to known. 
 
For the grade distribution and sample size, a correlation was found. This has also been done for 
comparing an increasing grid size and the relative sample size between a certain margin of error 
and level of confidence. These correlations are exponential, which means for doubling the grid 
size or grade distribution, the sample size will decrease. This can be valuable and needs further 
research for more complex grade distributions with more than two elements and grid sizes 
exceeding 1000 x 1000 pixels. 
 
It was known that answering the question on a minimum sample size based upon a specific rate 
of homo- or heterogeneity would be hard to answer. Evaluating the homogeneity of a surface 
itself is already very difficult, and many studies have been carried out trying to answer the 
question. Some good work has been done, but the mining industry will always be different, and 
one research cannot be used for a wide variety of other cases. Therefore, this study can be useful 
with simple and basic images, but for more complex structures more research is needed to 
answer what the minimum sample size will be. 
 
LIBS can be used very good for detection of minerals, but it will hard to know the minimum 
sample size for these measurements. In the future, it would be perfect to have a tool that 
evaluates the rate of homogeneity and the grade distribution real-time so the sample size can be 
adjusted automatically by the system. Therefore, an automated system to detect the elemental 
composition is needed, and extensive research needs to carried out.   
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Appendices 
A. Theory of constitutional and distribution heterogeneity 
 

The contribution made to the heterogeneity of lot L by some unknown unit Um: 
Lot L, the subject of the study, can be regarded in general terms as a population of unspecified 
units Um that can be defined alter as the case requires. A sit he ‘critical component’ or analyte, 
the component of interest. References to the grade or concentration of component A are to its 
actual but unknown grade, not to some estimate of it. The following definitions are made: 
 
NU number of units Um in lot L 
Mm mass of the unit Um 
ML mass of lot L. It is the sum of the masses Mm of the NU units of Um 
Mm* mass of the mean unit Um* of lot L, defined as the mean of the masses Mm 
am the grade of the analyte A in unit Um (i.e. the proportion by mass of A in Um) 
aL the grade if analyte A in lot L (i.e. the proportion by mass of A in L) 
hm the contribution of the heterogeneity of lot L made by Um, defined as follows: 
 

ℎO =
(𝑎O − 𝑎�)

𝑎�
∗
𝑀O

𝑀O∗
	𝑤𝑖𝑡ℎ	𝑎� =

∑ 𝑎Y𝑀YY

∑ 𝑀YY
	𝑎𝑛𝑑	𝑀Y∗ =

𝑀�

𝑁�
 

 
The constitutional Heterogeneity CHL of Lot L: Um = Fi: 
Initially, the scale of observation will be such that unit Um is a fragment, a molecule or an ion 
Fi. The following are thus defined: 
 
hi the contribution of the fragment Fi to the heterogeneity if L 
 

ℎO =
(𝑎O − 𝑎�)

𝑎�
∗
𝑀O

𝑀O∗
	𝑤𝑖𝑡ℎ	𝑖 = 1,2, … , 𝑁�	𝑎𝑛𝑑	𝑀O∗ =

𝑀�
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CHL the constitutional heterogeneity of lot L defined as the variance of hi: 
CHL = s2(hi), nothing that m(hi) = 0 
 
As long as the fragments, molecules, ions Fi remain unaltered the constitutional heterogeneity 
CHL is an intrinsic property of L. 
 
Distributional heterogeneity DHL of lot L: Um = In: 
The scale of observation is now that at which the unit Um is a group In of neighboring fragments, 
molecules or ions. The following can be defined: 
 
hn the contribution of the group In to the heterogeneity if L, defined as: 
 

ℎ� =
(𝑎� − 𝑎�)

𝑎�
∗
𝑀�

𝑀�∗
	𝑤𝑖𝑡ℎ	𝑛 = 1,2,… ,𝑁q	𝑎𝑛𝑑	𝑀�∗ =

𝑀�

𝑁q
	 

 
DHL the distributional heterogeneity of fragments Fi within L, defined as: 
DHL = s2(hn), nothing that m(hn) = 0. 
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Unlike the fragments Fi, the groups In of fragments can alter. Any mixing, homogenizing or 
segregation alters the distribution of the fragments between the groups and thus the value DHL. 
Mixing and homogenizing reduce DHL; segregation increases it.  
 
From: Sampling for Analytical Purposes, Pierre Gy (1998) 
 
B. Mineralogical assays of the tailing samples using LIBS 
 

Mineral 
Sample (%) 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 

Quartz 34.8 40 30.4 45.1 60.8 52 44.8 37.1 48.2 59.3 61.5 54.4 38 46.6 

K-feldspar 2.2 3.5 3.1 2.4 2.1 2.3 2.4 2.2 1.5 2.6 2.4 2.8 2.4 1.8 

Aegirine-augite 3 2.7 4.3 2.9 1.5 2.1 1.9 3.2 2.1 1.4 1.4 1.5 2.5 1.1 

Biotite 1.9 1.9 2.1 4 4.2 3.5 3.5 2.9 2 1.9 1.7 1.7 1.6 1.3 

Galuconite 0.1 0.2 1.1 1.8 2.5 1.3 1.3 0.6 0.1 0.2 0.2 0.4 0.3 0.5 

Stilpnomelane 4.3 4.2 3.8 4 2.1 2.8 2.6 3.7 5.3 3 1.8 1.9 3.2 3.6 

Actinolite 0.1 0.2 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.5 0.3 

Ferrorichterite 8.6 8.1 2.5 3.7 1.9 3.4 3.5 7.7 9.1 3.2 2.1 2.3 3.6 1.9 

Magnetite 42 37.1 47.2 31.1 17.6 26 32.3 39.1 29.1 19.6 21 27 39 35.6 

Hematite 1.7 1 4.3 3.8 5.8 5 6.2 2.4 1.3 7 6.6 6.3 7 5 

Unknown 0.9 0.9 0.9 0.8 1.2 1 1 0.8 0.8 1.3 1 1.3 1.1 1.9 

 
C. Formula for calculating the smallest sample size 
 
Sample statistic Population size Sample size formula 

Mean Known 𝑛 =
𝑧$𝜎( 𝑁

𝑁 − 1)

𝑒$ + 𝑧$𝜎$
(𝑁 − 1)

,								𝜎$ → 𝑝𝑜𝑝�		𝑣𝑎𝑟. 

Mean Unknown 𝑛 =
𝑧$𝜎$

𝑒$  

Proportion Known 𝑛 =
𝑧$𝑝𝑞 + 𝑒$

𝑧$	𝑝𝑞
𝑁 + 𝑒$

 

Proportion Unknown 𝑛 =
𝑧$	𝑝𝑞 +	𝑒$

𝑒$  
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D. Data sample size/grid size versus a constant grade 
 
Table 8. Overview of increasing grid sizes with corresponding sample size for different levels of confidence and margins of 
error. Results are displayed in both absolute value and the percentage to the whole population. 

Grid  
size 

Level of  
confidence 

Margin of error (relative to 12%) 

1% 10% 20% 

5*5 
68% 25 100% 25 100% 23 92% 

95% 25 100% 25 100% 25 100% 

99% 25 100% 25 100% 25 100% 

10*10 
68% 100 100% 90 90% 63 63% 

95% 100 100% 97 97% 90 90% 

99% 100 100% 99 99% 94 94% 

25*25 
68% 620 99% 301 48% 119 19% 

95% 624 100% 481 77% 301 48% 

99% 625 100% 564 90% 412 66% 

50*50 
68% 2404 96% 412 16% 103 4% 

95% 2477 99% 1191 48% 412 16% 

99% 2490 100% 1699 68% 807 32% 

75*75 
68% 5076 90% 513 9% 152 3% 

95% 5479 97% 1482 26% 513 9% 

99% 5570 99% 2553 45% 887 16% 

100*100 
68% 8437 84% 567 6% 147 1% 

95% 9539 95% 1722 17% 567 6% 

99% 9805 98% 3219 32% 1099 11% 

120*120 
68% 11071 77% 490 3% 155 1% 

95% 13528 94% 1605 11% 490 3% 

99% 13985 97% 3171 22% 1054 7% 

140*140 
68% 13810 70% 529 3% 135 1% 

95% 17901 91% 1638 8% 529 3% 

99% 18835 96% 3354 17% 1229 6% 
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E. Plots 

  

Figure 36. Mean, standard deviation and homogeneity curve of Case 2 (70%, 15%, 10%, 5%) in section 6.2. 
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Figure 37. Mean, standard deviation and homogeneity curve of Case 3 (97%, 2%, 1%) in section 6.2. 
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Figure 41. Histogram for distribution and homogeneity curve for the gneiss rock sample. 

Figure 41. Histogram for distribution and homogeneity curve for the chalk rock sample. 

Figure 41. Histogram for distribution and homogeneity curve for the granite rock sample. 

Figure 41. Histogram for distribution and homogeneity curve for the peridotite rock sample. 



 45 

 
Figure 42. Standard deviations for Gneiss image, with grade distribution 47%, 27%, 26%. 

 

 
Figure 43. Variations of the mean for Gneiss image, with grade distribution 47%, 27%, 26%. 

 
 
 
 
 
 

 
Figure 44. Standard deviations for Chalk image, with grade distribution 80%, 17%, 3%. 
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Figure 45. Variations of the mean for Chalk image, with grade distribution 80%, 17%, 3%. 

 
 
 
 
 

 

 
Figure 46. Standard deviations for Granite image, with grade distribution 61%, 32%, 7%. 

 
Figure 47Variations of the mean for Granite image, with grade distribution 61%, 32%, 7%. 
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Figure 48. Standard deviations for Peridotite image, with grade distribution 66%, 34%. 

 

 
Figure 49. Variations of the mean for Peridotite image, with grade distribution 66%, 34%. 
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F. MATLAB script manual 
Generating the figures in this study, several MATLAB scripts are used. This section explains 
how these scripts can be used to obtain the same results. The scripts are provided with this 
study as zip file and can be requested by the author. Within the scripts, a description can be 
found including which inputs and output it generates.  
 
Most of the times, the input image needs to be a mono-channel matrix. This indicates an n by 
m matrix with positive integer values, like 1, 2, 3, 23, etc.  
 
Generate an image: 
Fig2pix.m and griddistribution.m can be used to generate an image from a 
theoretical and real-life source. 
 
Standard deviation and mean: 
Samplesd.m and samplemean.m can be used to calculate the standard deviation and/or 
mean from a matrix input; for example, generated with fig2pix.m or 
griddistribution.m 
 
Homogeneity percentage: 
Homogeneitycurve.m can be used to gather three images of the original and generated 
homo- and heterogeneous images to create homogeneity curves and determine the percentage. 
Grade calculation: 
To calculate the grade of a matrix input, gradecalc.m can be used. All matrix sizes and 
composition can be inserted. The script returns the grade distribution in percentages per 
element. 
 
Sample size: 
The required sample size is based on the standard deviation from an inserted grade. The lower 
the desired margin of error, the lower standard deviation is required. Samplesize.m can be 
used to determine the minimum sample size using the standard deviations generated with 
samplesd.m. 
 
All in calculation: 
Samplesize2.m can be used to generate a minimum sample size with a mono-channel 
matrix input and a relative margin of error from the target grade.  
 
Variogram and kriging: 
For calculating the variogram and kriging output, kriging_sample.m is used. This is not 
in a function as the scripts above. It is divided in three sections, which have to executed 
chronologically. A mono-channel matrix needs to be inserted and the number of samples. In 
the second part, the initial sill, range and nugget can be inserted to generate and modify the 
variogram. If the variogram is fitted, the kriging result can be obtained by running the third 
section of the script.  
 
Random points with coordinates: 
For kriging random points need to be generated with the corresponding x and y coordinate. 
Samplegrid.m generated a n number of samples with its corresponding coordinates. This is 
used within kriging_sample.m. 
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