
Bridging the world of 2D and 3D Computer Vision
Self-Supervised Cross-modality Feature Learning through 3D Gaussian Splatting

Andrei Simionescu
Supervisor: Dr. Xucong Zhang

EEMCS, Delft University of Technology, The Netherlands

June 23, 2024

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Andrei Simionescu
Final project course: CSE3000 Research Project
Thesis committee: Dr. Xucong Zhang, Dr. Michael Weinmann

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Current robotic perception systems utilize a variety of
sensors to estimate and understand a robot’s surroundings.
This paper focuses on a novel data representation tech-
nique that makes use of a recent scene reconstruction algo-
rithm, known as 3D Gaussian Splatting, to explicitly repre-
sent and reason about an environment using only a sparse
set of camera views as input. To achieve this, I generate
and analyze the first cross-modal dataset consisting of 3D
Gaussians and views taken around ten household objects.
I introduce the resulting 3D Gaussians and images to a
self-supervised feature learning network, that learns robust
2D and 3D embedding representations, by optimizing for
the cross-view and cross-modality correspondence pretext
tasks. I experiment with several 3D Gaussian features as
input to the model and two point sub-network backbones,
and report results on the two pretext tasks. The learned fea-
tures are subsequently fine-tuned for the 2D and 3D shape
recognition tasks. Moreover, by leveraging the fast scene
reconstruction capabilities of the algorithm, I propose the
use of rendered views as a visual memory aid to support
downstream robotic tasks. The proposed networks achieve
comparable results to state-of-the-art methods for point and
image processing. The code associated to this paper is
available at https://github.com/SimiOy/Self-
Supervised-Learning-for-3DGS.

1. Introduction
Robotic perception encompasses the study of how robots
perceive, understand, and reason about their surrounding
environment [9]. The representation of the observed en-
vironment through the use of sensors (e.g. RGBD, LiDAR,
Sonar etc.) is arguably the most important component of a
perception system, as it dictates the limits of the reasoning
capabilities of a robot. Sünderhauf et al. [15] present sev-
eral challenges in robotics that require the reasoning about
object and scene geometry e.g. 3D object structure estima-
tion, pose estimation or object-based simultaneous localiza-
tion and mapping (SLAM) [3]. The success of such tasks is
greatly influenced by the robot’s internal representation of
the environment.

This paper introduces a novel method for representing
the perceived environment through the use of 3D Gaus-
sian Splatting (3DGS) [6], a scene reconstruction technique,
and proves that this technique can be used to learn cross-
modality features in a self-supervised manner. 3DGS pro-
vides an explicit representation of the scene that allows a
robot to visualize and remember what parts of the environ-
ment look like, enabling unprecedented reasoning capabil-
ities e.g. retrieving a cup is more likely to be successful if
the agent knows a priori what a cup looks like (shape recog-

nition), which room is the kitchen (semantic segmentation),
and how to get there (path planning).

The proposed self-supervised framework follows closely
the work of Jing et al. [5], which introduce an optimization
technique for multi-modal feature learning for point clouds
and images. The authors train two sub-networks to recog-
nise whether a set of points and a view belong to the same
object (cross-modality correspondence), and whether two
images were taken around the same subject (cross-view cor-
respondence). I follow a similar approach (Fig. 1), but make
some adjustments to the point sub-network to allow for the
processing of 3D Gaussians. Using the learned network
weights and feature embeddings, I optimize for the shape
recognition task, and then compare these results with state-
of-the-art (SOTA) benchmarks on both image and point pro-
cessing. Findings suggest that the proposed data representa-
tion is capable of achieving comparable performance on the
evaluated dataset, without requiring an initial mesh (i.e. us-
ing only camera views), while also doubling as an efficient
memory module for an autonomous agent. To summarize,
the main contributions of this research are as follows:
• The first multi-modal data points consisting of 3D Gaus-

sians and distinct views taken around an object is gener-
ated and an extensive analysis is performed on the dataset.

• The introduction of 3D Gaussians to a self-supervised
cross-modal deep-neural network for Multi-View Learn-
ing (MVL), and comparison to SOTA models in this field.
Experiments are performed for different sampling tech-
niques, model backbones, and input features considered.

• The proposal of a new task, Memory-based Vision, which
facilitates the rendering and reasoning about a previ-
ously observed environment or object. The encoder sub-
networks are evaluated for shape recognition using both
views obtained at inference time, and remembered views
(i.e. using reconstructed images by the 3DGS algorithm).

2. Related Work

Multi-View Learning: MVL is concerned with the prob-
lem of learning a representative common feature space from
multi-modal data [18]. Although the multi-modal informa-
tion captured from multiple sources often represents com-
plementary views of the same data (e.g. different views
around the same object, mesh and render of an object, text
and audio etc.), this information has been used in the past
to enhance the accuracy of the task or the explainability
of the underlying method. One such example are Multi-
View CNNs (MVCNN) [14], introduced by Su et al., which
combine multiple views of a single 3D shape into a single
shape descriptor. The authors proposed a multi-view image-
based CNN architecture that pools together the image fea-
tures from distinct views into a single CNN which predicts
the class labels. Their findings suggest that the multi-modal

https://github.com/SimiOy/Self-Supervised-Learning-for-3DGS
https://github.com/SimiOy/Self-Supervised-Learning-for-3DGS


Figure 1. The proposed self-supervised network architecture (figure adapted from Jing et al. [5]), featuring three sub-networks. The first
two are feature extractors for the different modalities: a ResNet-18 (Fimg) that takes the different views and trains for detecting when two
views belong to the same object (i.e. cross-view correspondence, blue arrow), and a PointNet model (Fp) model that processes and embeds
the unordered Gaussian point cloud data into a global feature vector. The embeddings of the different modalities are then concatanated and
used by the last sub-network (Ff ) that jointly optimizes all three sub-networks for predicting whether the two cross-modal inputs belong
to the same object (i.e. cross-modality correspondence, green arrow).

information encoded in different views achieves better per-
formance than existing 3D shape descriptors at the time.

Scene Reconstruction Techniques: Recently, a lot of ad-
vancements have been made in MVL aimed to solve the
problem of scene reconstruction i.e. novel-view synthesis
of an observed environment from a sparse set of input im-
ages. Mildenhall et al. [8] propose a Neural Radiance Field
(NeRF) scene representation algorithm that uses a deep neu-
ral network to approximate a view-dependent, continuous
volume of space. However, since the scene is represented
implicitly, the rendering process is very slow, and it’s diffi-
cult to modify it after the optimization process is completed.

Explicit scene representation has also seen an increase
in popularity lately. Kerbl et al. [6] introduce a fast differ-
entiable rendering and optimization algorithm (3DGS) that
uses a set of points, called 3D Gaussians, to approximate
the environment. The optimization process projects the 3D
Gaussians into 2D, by splatting them into the camera frus-
trum. The generated image is then compared to the original
view and a reconstruction loss is calculated, which is used
to optimize the 3D Gaussians. In particular, these points
have the following properties that they optimize for: po-
sition ∈ R3, rotation ∈ R4, scale ∈ R3, opacity ∈ R,
and spherical harmonics coefficients ∈ R44 (used to repre-
sent the view-dependent coloring of a Gaussian). The ren-
dering process is highly parallelizable and produces high-
fidelity reconstructions, while also allowing for the manip-
ulation of the resulting Gaussian point cloud, e.g. scaling

or adding/removing a subset of points, which makes it an
incredible multi-modal data point. To my knowledge, no-
body has yet attempted to directly use the 3D Gaussians in
a deep-neural network for Multi-View Learning.

3D Point Cloud Processing: To process a Gaussian point
cloud, there is a need of a network that accepts an unordered
set of vectors as input and embeds these into a feature
space. The revolutionary work of Qi et al. [10], the PointNet
model, is a simple, yet highly efficient solution that directly
processes a set of points. The network consumes a subset
of points sampled at the surface of a 3D mesh, and predicts
an affine transformation matrix of the input space, where
these points are invariant to translation, rotation or scale.
The transformed input is then fed through a series of multi-
layer perceptrons and a feature transformation layer to ob-
tain global and per-point feature vectors of the entire point
cloud. The network achieves remarkable performances on
several computer vision tasks e.g. shape classification, part
segmentation and scene semantic segmentation.

However, Qi et al. [11] recognizes that the PointNet al-
gorithm is limited by its ability to capture only global or
per-point features, and proposes a neighbourhood-based im-
provement that exploits the underlying metric space. Point-
Net++ works by hierarchically partitioning the points and
applying the PointNet abstractions for each neighbourhood
resolution. Similar to CNNs, the model learns features at
varying abstraction levels, yet the grouping of samples is
not given by a kernel size (an image can be thought of hav-



ing a uniform density of pixels), but by a metric distance (a
point cloud has a varying density e.g. LiDAR).

3D Self-supervised Feature Learning: An obvious chal-
lenge of this research is the lack of labeled data-points,
since it proposes a new form of data representation (3D
Gaussians) to perform Computer Vision tasks in. To mit-
igate this issue, I suggest switching the learning paradigm
to self-supervised learning (SSL), where no labeled data is
required to train a model. As opposed to completely un-
supervised learning which discovers patterns into the data
without any explicit guidance, SSL optimizes for a set of
supervisory signals (i.e. pretext tasks) that act as feedback
during the training process. Jing et al. [5] propose a self-
supervised cross-modal feature learning algorithm that is
trained for the cross-view and the cross-modality correspon-
dence pretext tasks. The network architecture consists of
two encoder sub-networks, one for the point and one for the
image modalities respectively. The image sub-network is
trained to recognize whether two views were taken around
the same object (cross-view correspondence), while both
sub-networks are jointly optimized to distinguish whether a
point cloud and an image belong to the same object (cross-
modality correspondence). These two pretext tasks are used
as supervision signals for the network to learn robust cross-
modality embeddings, which are later fine-tuned for specific
tasks e.g. shape recognition, retrieval and segmentation.

3. Deep Learning on 3D Gaussian Splats

The proposed method is working on a new type of data, and
thus, the process of constructing and validating the dataset
is essential to the success of the model. This section intro-
duces the first cross-modal dataset made from multi-view
images taken around an object, and the resulting 3D Gaus-
sian point clouds. Then, I present the self-supervised net-
work architecture, discuss its parameterization and training.

3.1. Data Generation

To train the model, the two types of data-points are gener-
ated from 3D objects. First, each 3D object is loaded in the
scene, a texture is applied and its scale is normalized, such
that all the objects have the same dimensions. Additionally,
three light sources facing the object are placed around the
scene to ensure a consistent lighting setup from all angles.
Similar to the works of Mildenhall et al. [8], a virtual cam-
era is pivoted around the object to capture V views, and dur-
ing its rotation, its vertical position is interpolated between
two points, leading to a spiralling motion around the object
of interest. These V frames, together with the camera ma-
trix transformations are used as input for the 3D Gaussian
Splatting algorithm [6]. Since the complexity of the scene
is low (only one object is placed at a time), the reconstruc-
tion algorithm only runs for a fixed 15000 iterations for each

object. In constructing the dataset, there was no significant
improvement observed to using the Structure-from-Motion
(SfM) [13] initialization for the Gaussians over the random
one. Thus, I opted for using the latter, as it proved more
time efficient as well. The models are loaded from the Mod-
elNet10 dataset [17], and the official train/test split is kept.
Figure 2 showcases an example of a generated cross-modal
data point featuring a bathtub. See supplementary (Sec. 8)
for a detailed analysis of the dataset.

Figure 2. The camera trajectory (Left) which takes 64 800x800 im-
ages around the subject in a spiralling motion, and the resulting 3D
Gaussian splat render and point cloud overlayed (Right). The 64
distinct views taken around the object, and the resulting Gaussian
point cloud represent the cross-modal data-point. The bathtub mesh
is up-scaled, and the point cloud (in blue) is down-scaled for visual-
ization purposes.

Figure 3. Visualization of the 3D Gaussian point cloud positions of
a bathtub model (Left), and zoomed in on the reconstruction of its
faucet and wall (Right). The faucet is an example where 3DGS uses
more Gaussians to represent complex geometries.

Since the PointNet model [10] expects an unordered set
of N points, and each 3DGS optimization results in a differ-
ent number of Gaussians, the resulting point clouds are also
filtered using an opacity threshold, and then N points are
sub-sampled. Two distinct approaches for the sub-sampling
of points are considered:
• Uniform sampling: Since the scene reconstruction uses

more Gaussians to represent intricate areas, a uniform
sub-sampling will also preserve a higher concentration
of points in more distinctive areas of an object. Con-
versely, flat surfaces, where Gaussians can more easily
be stretched to approximate the object’s face, require less
descriptive features (and thus less points are used). Fig-
ure 3 shows a highly concentrated area of Gaussians (the
faucet of the bathtub), and a less concentrated surface
(the wall of the bathtub). Section 4.1 analyses whether a



higher concentration of distinctive features aids the model
in classifying the point-cloud better.

• Farthest Point Sampling (FPS): FPS is a greedy algorithm
that iteratively selects the furthest away point from the
current selection. The resulting subset better preserves
the geometry and shape of the object and the features
learned could prove more stable for fine-tuning. Figure 4
illustrates the sampling difference between the two pro-
posed methods for the same 3D Gaussian point cloud.

Figure 4. Visualization of the 3D Gaussian point cloud positions of
a monitor model under the two proposed sub-sampling techniques
(for 4096 points). The Furthest Point Sampling (Left) preserves
the geometric structure of the object better, while the Uniform
Sampling (Right) preserves a higher concentration of Gaussians
in more intricate areas e.g. the stand of the monitor.

Notation: To ensure consistency, a similar notation to
the works of Jing et al. [5] is used throughout this pa-
per: Let D = {sample(1), sample(2)..., sample(N)} de-
note the training data of size N . Each sample(i) =

{g(i), v(i)1 , v
(i)
2 , v

(i)
3 , y

(i)
1 , y

(i)
2 , y

(i)
3 }, where v

(i)
1 , v

(i)
2 and

g(i) represent two distinct random views taken around the
same object and the sampled Gaussian point cloud, and
v
(i)
3 is a rendered image from a different mesh. Note that

the input images used for training the model are the same
set of images used for optimizing the 3D Gaussian splats,
and novel views are used only during testing. The labels
y
(i)
j ∈ {0, 1} denote whether the Gaussian point cloud g(i)

and the rendered view v
(i)
j belong from the same object,

where 1 indicates the same object, and 0 a different one. In
practice, since the first two views v(i)1 , v

(i)
2 are taken around

the same object, and the last one is taken from a different
one, the labels become y(i)={1, 1, 0} for each sample(i).

3.2. Network Architecture

Following the works of Jing et al. [5], the proposed network
architecture uses two pretext tasks for self-supervised learn-
ing: cross-view correspondence and cross-modality corre-
spondence. As presented in Figure 1, to optimize for the
cross-view task, an image sub-network Fimg is employed

to extract semantic features for each view. For the cross-
modality task, an additional point sub-network Fp is used to
extract global information about the Gaussian point-cloud.
The output of the image sub-network Fimg is concatenated
to the output of the point sub-network Fp, and fed though a
block of two fully connected layers Ff . The output of the
final block Ff is a binary classification value that is opti-
mized for the cross-modal similarities y(i).

For the image sub-network Fimg , a ResNet18 [4] is
used, where the last fully-connected layer is removed such
that the output becomes a 512-dimensional vector. For the
point-based sub-network Fp, I considered the PointNet [10]
and the improved PointNet++ [11] architectures, where the
classification and segmentation heads are removed. To en-
sure that the sub-networks can also capture the additional
features (scale, rotation, and spherical harmonics) that each
Gaussian has, both models were adapted to work with any
number of input dimensions per point. Additionally, af-
ter the last max pooling layer, both point sub-networks
are modified to output 512-dimensional embeddings instead
of the original 1024. Finally, the output of the last 512-
dimensional layers from both the image sub-network Fimg

and the point-based sub-network Fp are concatenated into
a 1024-dimensional vector and fed through the final block
Ff , that aims to predict whether the two input modalities
belong to the same object.

3.3. Model Parameterization

In the self-supervised learning framework proposed by Jing
et al. [5], two types of supervision signals are used during
training to help the model learn whether two distinct views
belong to the same object, and whether a rendered image
and a point cloud originated from the same mesh. This
paper uses the same tasks and shows that a similar model
parametrization can be extended to a Gaussian cloud ob-
tained from input images, instead of point clouds sampled
at the mesh level.
Cross-view correspondence: The network encounters im-
ages of the same object from different angles, and it must
learn similar semantic features for these views. Thus, this
task is modelled as a metric learning task, and uses the
triplet loss [12] to minimize the distances between positive
pairs (i.e. views belonging to the same object), and maxi-
mize the distance between negative ones (i.e. views belong-
ing from different objects). The loss is then given by:

Ltriplet =max(∥Fimg(v
(i)
1 )− Fimg(v

(i)
2 )∥2

− ∥Fimg(v
(i)
1 )− Fimg(v

(i)
3 )∥2 + α, 0)

(1)

where v(i)1 is the anchor used to compare against the positive
v
(i)
2 and negative v

(i)
3 samples, and α is the margin hyper-

parameter that controls the minimum distance between the



anchor and the negative samples. The effect of this loss
is that it brings closer embeddings belonging to the same
object, and pushes away embeddings from different ones.
Cross-modality correspondence: To learn cross-modal
features the network must be able to distinguish whether
an input view and a sampled Gaussian point cloud belong
to the same original object. Following the works of Jing et
al. [5], this task is modelled as a binary classification task,
optimized using the Binary Cross-Entropy loss. As opposed
to the previous loss which was used to train only the image
network, this loss jointly trains all three sub-networks:

Lcross =−
3∑

j=1

[
y
(i)
j log

(
Ff (Fimg(v

(i)
j ), Fp(g

(i)))
)

+(1− y
(i)
j ) log

(
1− Ff (Fimg(v

(i)
j ), Fp(g

(i)))
)]

.

(2)

The cross-modal pretext task is much more difficult for
the network to learn then the cross-view one, so an addi-
tional regularization term β is used to balance the influence
of the two losses. Finally, the joint loss is given by:

Lself = Ltriplet + βLcross ,where β > 1. (3)

3.4. Optimization

The network is optimized using the Stochastic Gradient De-
scent (SGD) optimizer with an initial learning rate of 0.001,
momentum of 0.9, and weight decay of 0.0005. Each model
is trained for 100 epochs, with β = 3, and every 40 epochs
the learning rate is decreased by 90%. During training, the
images are augmented by randomly cropping and randomly
flipping with a 50% probability on the horizontal axis; the
Gaussian clouds do not go through any augmentation pro-
cess because the 3DGS algorithm produces indeterministic
results i.e. the high variation of the Gaussians acts as regu-
larization for the deep-neural network. Figure 5 showcases
the CM and CV losses and success metrics during training.

The metrics are computed on the test set, using a single
pass i.e. the number of samples in the data loader is equal to
the number of test models, and might show variation across
epochs depending on which views were sampled for each
object. Nevertheless, the network is clearly learning to op-
timize for both supervision signals, as the losses gradually
decrease closer to 0, and the measured success for each task
increases. Note that the model achieves remarkable perfor-
mance even after only 25 epochs, but letting the model train
for longer decreases the variation in reported performance.

4. Experiments
This section presents the experiments conducted to assess
the performance of the self-supervised network. The model

Figure 5. Training losses (Top) and pretext task metrics (Bottom)
using the PointNet point sub-network backbone. The model was
trained using only the point information, uniformly sampled. The
CM accuracy (Left) and the CV mean pair distance (mPD) (Right)
are computed on a single pass on the test set. For visualization
purposes, in the CV task, only the difference between the negative
mPD and positive mPD is reported.

is quantitatively and qualitatively evaluated on the two pre-
text tasks it was trained on. Then it’s fine-tuned for the
memory-based and real-time inference recognition tasks.

4.1. Evaluation of learned features

The network is trained under 12 different configurations
with varying number of input features, sampling methods,
and backbone architectures. More specifically, I considered
training the model using only the Gaussian positions, then
adding the scale & rotation, and finally including also the
spherical harmonics. For every feature, I also investigate
the effect of using uniform sampling as opposed to FPS.
As anticipated in Sec. 3.2, the point sub-network can ei-
ther be the PointNet or the PointNet++ model. For the CV
task, I report the mean pair distance (mPD) between pos-
itive and negative sample embeddings. Since the samples
drawn from D contain random views for each object, the
evaluation is computed on a test size 10 times larger than
the test split. This aims to minimize the variance in the re-
ported results, since some drawn samples are more difficult
for the model to classify than others (e.g. two desks vs. a
monitor and a desk). Table 1 and 2 showcase the results
obtained for the CM and CV correspondence pretext tasks,
under all configurations.

The results show that the point sub-network performs
better with FPS than with uniform sampling, indicating that
the model is more reliant on the geometrical structure of
the object than on the distinctive features. A reasonable ex-



Figure 6. TSNE [16] visualization of the learned features on the image and point sub-networks. All images belong to a network with a
PointNet backbone, using only the 3D Gaussian’s positions, sampled with FPS. For the image sub-network, multiple views are considered.
As the number of views increases, the class clusters are more clearly defined, and approach the ones formed in the point sub-network.

CM accuracy (%) PointNet PointNet++

FPS Unif FPS Unif

Positions 0.941 0.924 0.952 0.931
+ Scale & Rotation 0.938 0.942 0.938 0.906
+ Spherical Harmonics 0.943 0.943 0.939 0.918

Table 1. Performance comparison for the cross-modality pretext
task for PointNet and PointNet++ as point sub-network back-
bones, for the two sampling techniques (Uniform and Furthest
Point Sampling), and varying number of features. + indicates the
accumulation of the features for each row e.g., for sh. harmonics
the model uses position, scale & rotation and spherical harmonics.
The network achieves overall better performance with FPS.

CV mPD FPS Unif

Pos Neg Pos Neg

Positions 5.34 13.57 4.94 11.65
+ Scale & Rotation 4.94 12.07 5.05 12.6
+ Spherical Harmonics 5.12 12.91 5.1 12.79

Table 2. Performance comparison for the cross-view pretext task,
for the two sampling techniques (Uniform and Furthest Point Sam-
pling), and varying number of features. + indicates the accumula-
tion of the features for each row e.g., for scale & rotation the model
uses position and scale & rotation. The performance is measured
in mean pair distance (mPD) i.e. the mean distance between pos-
itive and negative sample embeddings respectively. The network
achieves the best performance when only the Gaussian positions
are considered as input.

planation would be that not all objects in the dataset have
complex geometries (as in in Fig. 3) that the network could
optimize for, and a more uniform approximation of the un-
derlying mesh leads to a better cross-modal accuracy.

Across the two backbones, there is a noticeable gain to
using the improved PointNet++ model across all features

and sampling techniques considered. Moreover, it seems
that adding more information to the model decreases the
reported performance in the CM and CV tasks, and the best
model is obtained when just the point positions are used.

Additionally, I also evaluate qualitatively the perfor-
mance of the learned features. To this end, I use T-
distributed Stochastic Neighbor Embedding (TSNE) [16] to
visualize the embeddings of both sub-networks. For the im-
age model, each feature is max-pooled from the extracted
features of the v views considered. Figure 6 shows class
clusters forming, meaning that the model has learned shape
recognition and retrieval without any explicit signals. Note
that the mistakes that the network makes are geometrically
correct e.g. it sometimes confuses the table with the desk,
since they have a similar shape and appearance. A compari-
son of the learned features using the two proposed sampling
techniques and model backbones is available in the supple-
mentary material (Sec. 9).

4.2. Applications

The performance for the multi-view 2D and 3D shape
recognition tasks is evaluated by attaching a Support Vec-
tor Machine, with one class linear kernel, on the image and
point cloud features extracted from the pre-trained Fimg and
Fp networks respectively. For the image network, when
multiple views are available, each feature is max-pooled
from the extracted features of the v views considered. The
recognition accuracy is reported on the generated dataset
test-split when 1, 4, 32 or all 64 views are available.
Memory-based Recognition: Humans have incredible re-
call abilities that allow them to visualize and remember pre-
viously observed environments or objects e.g. babies de-
velop object permanence at around 5 months old, when they
realize that objects exist even though they can no longer
sense them. Some robots lack such an ability and usually
make decisions based on the information received through
their sensors at inference time. The proposed 3D Gaussian
cloud used as a data-modality for the networks is primarily



a novel-view synthesis technique that enables a robot to re-
member (visualize) what environments look like. I coin this
novel task Memory-based Vision i.e. images are rendered
from memory, instead of storing them on disk. It can be
extended to other tasks such as object detection or segmen-
tation, but for the purpose of this research, I focus on clas-
sification. The implications in robotics for such a family of
tasks are numerous, ranging from enhanced navigation and
path planning to increased human-agent collaboration.
Real-time Recognition: Direct perception through the use
of onboard sensors (e.g. RGB cameras) is equally important
for a robot to be able to make decisions on-the-fly. This
is commonly referred to as 2D or 3D shape recognition in
literature. For this task, the recognition accuracy is reported
on the original views taken to construct the 3D Gaussian
clouds, which were also used to train the models.

Features # Views Accuracy (%)

PointNet PointNet++

Positions

1 0.86 0.86
4 0.93 0.93
32 0.95 0.95
64 0.95 0.96
64∗ 0.96 0.96

+ Scale
& Rotation

1 0.87 0.84
4 0.93 0.92
32 0.95 0.95
64 0.96 0.95
64∗ 0.96 0.95

+ Sh. Harmonics

1 0.85 0.83
4 0.93 0.91
32 0.96 0.95
64 0.96 0.95
64∗ 0.96 0.95

Table 3. Performance comparison for the 2D shape recognition
accuracy (%) for the image sub-network Fimg under varying num-
ber of features for the PointNet and PointNet++ point backbones,
using FPS. ∗ indicates that the evaluation is performed on recon-
structed (remembered) views. + indicates the accumulation of the
features for each set of rows e.g., for sh. harmonics the model uses
position, scale & rotation and spherical harmonics. Increasing the
amount of features considered does not result in a better accuracy.

As shown in Table 3 and 4, the pre-trained image and
point networks achieve very high accuracy on the 2D and
3D shape recognition tasks. When using the PointNet back-
bone, with just Gaussian positions, Fp obtains 89% ac-
curacy, and when switching to the improved PointNet++
backbone, the performance increases to 90%, indicating
that the accuracy can be improved by scaling up the net-
work. Similar to the findings reported in Sec. 4.1, the

Features Accuracy (%)

PointNet PointNet++

Positions 0.89 0.9
+ Scale & Rotation 0.87 0.88
+ Sh. Harmonics 0.88 0.87

Table 4. Performance comparison for the 3D shape recognition
accuracy (%) for the point sub-network Fp under varying num-
ber of features for the PointNet and PointNet++ point backbones,
using FPS. + indicates the accumulation of the features for each
row e.g., for scale & rotation the model uses position and scale &
rotation. The network achieves overall higher accuracy when the
PointNet++ backbone is used.

model’s performance does not increase when more of the
Gaussian’s features are considered. Note that this could be
in part caused by the way the dataset was constructed. The
spherical harmonics have a small influence in this exper-
iment, as all models in the dataset have the same texture
applied and are lit in exactly the same way (and thus have
similar view-dependent color). Similarly, the scale does not
contribute significantly since all models have been resized
to identical dimensions.

The image model outperforms the point one, obtaining
96% recognition accuracy when 32 or all 64 views are avail-
able. Increasing the number of views from one to all leads
to a 10-12% boost in performance (an observation which
is constant across all combinations of features, and point
backbone architectures considered). Moreover, using re-
constructed images from the 3DGS algorithm does not im-
pact the classification accuracy at all, suggesting that novel
views could be used to augment the performance of down-
stream tasks. Note that given the low complexity of the con-
sidered scenes, the reconstruction loss is minimal, and thus
has little influence on the quality of the rendered images.

5. Results

The performances of the proposed methods are evaluated
against a set of point-based and image-based SOTA model
baselines. The point sub-network Fp is compared to the
PointNet [10] and PointNet++ [11] models; and the image
sub-network is compared to the MVCNN [14] model. To
ensure a fair analysis between the type of networks, they
each share a common ground: the image networks use a
ResNet-18 as a backbone architecture, and are trained using
all 64 available views; the point networks share the same in-
put feature dimensionality, and are trained on the position of
the points/Gaussians, using 2048 points sampled with FPS.

The networks are evaluated on the ModelNet10 dataset
[17] using the official train-test split. The proposed methods
are trained on the Gaussian-views cross-modality dataset in-



Training
Data Modality Network

Accuracy
(%)

100 %

Points PointNet [10] 0.93
PointNet++ [11] 0.95

Gaussians Fp∗ 0.89
Fp++∗ 0.9

Images
MVCNN [14] 0.98

Fimg∗ 0.96
Fimg++∗ 0.96

50 %

Points PointNet [10] 0.92
PointNet++ [11] 0.93

Gaussians Fp∗ 0.88
Fp++∗ 0.9

Images
MVCNN [14] 0.96

Fimg∗ 0.95
Fimg++∗ 0.95

10 %

Points PointNet [10] 0.9
PointNet++ [11] 0.91

Gaussians Fp∗ 0.87
Fp++∗ 0.89

Images
MVCNN [14] 0.91

Fimg∗ 0.93
Fimg++∗ 0.92

1 %

Points PointNet [10] 0.6
PointNet++ [11] 0.75

Gaussians Fp∗ 0.76
Fp++∗ 0.75

Images
MVCNN [14] 0.49

Fimg∗ 0.77
Fimg++∗ 0.76

Table 5. Classification accuracy comparison with SOTA models
on ModelNet10 dataset [17], under different amounts of training
data available. The proposed methods (marked with ∗) are trained
using only the Gaussian positions, with FPS. ++ indicates that the
PointNet++ backbone was used during SSL and/or fine-tuning.
The 3D Gaussian modality achieves comparable performance to
the points sampled at the surface of the meshes.

troduced in Sec. 3.1, and the same images are used to train
the MVCNN model as well. The point-based baselines are
trained using the true point positions sampled from the mesh
of each object in the dataset. Since the sampling of points
uses the actual mesh of an object, these points are consid-
ered the ground truth, while the Gaussians represent only
an approximation. I also evaluate the performance of the
learned self-supervised features by reducing the amount of
training data available for fine-tuning. Table 5 reports the

recognition accuracy when 100%, 50%, 10% and 1% of the
data is available to train the baselines or to fine-tune the
proposed methods.

With the entire dataset available for training, the
MVCNN [14] model achieves a remarkable 98% recog-
nition accuracy, closely followed by the two image-based
proposed methods at 96% accuracy. The point modality
baselines obtain a higher performance (+3 to 5%) than
the Gaussian-based models. Although different learning
strategies were employed, most of the reflected difference is
caused by how the point clouds were constructed. Since the
PointNet models use the ground-truth coordinates sampled
at the surface of the mesh, these obtain better recognition
scores than an approximate representation thereof.

When reducing the amount of available training data by
half, the self-supervised models show only a 1 to 2% de-
crease in reported performance, and when considering only
10% of the data, the accuracy further drops again by an-
other 1 to 2%. This suggests that the proposed methods have
learned robust cross-modality features that enables them to
overcome the challenge of sparsely labeled datasets. The
advantage of the self-supervised methods becomes evident
when less than 10% data is available for training, as the
proposed networks outperform the SOTA supervised classi-
fiers for both the image and point modalities. With just 1%
data available, the image and point networks obtain scores
of 77% and 76% recognition accuracy respectively.

6. Conclusion & Future Work
In this work, I introduced a novel data-modality for jointly
learning 2D and 3D features requiring only a set of sparse
camera views as input. The 3D Gaussians used serve both as
an explicit representation of the observed environment, and
as input to the proposed self-supervised networks. Initial
experimental results on the considered dataset indicate that
Gaussian-based models perform better when considering
only the point positions and when the point cloud is sampled
with FPS. Moreover, I introduce a new task, Memory-based
Vision, which facilitates lossless 2D reasoning about a pre-
viously observed scene or object, via novel-view renderings
of the obtained 3D Gaussian point cloud. These findings are
subjected to the limits of the generated dataset. The contri-
butions show a promising direction of research that could
enhance current robotic perception systems.

This paper has presented a comparison between two dif-
ferent point-based modalities: points sampled at the surface
of a mesh, and 3D Gaussians. The former is guaranteed to
obtain a better performance since it represents the ground
truth, yet it is often inaccessible in real-world applications.
A valuable study would be a comprehensive comparison be-
tween current data representation techniques in perception
systems (e.g. LiDAR, Sonar, RGBD), which could advance
the practical applications of 3D Gaussians in this field.



7. Responsible Research

This section reflects on the reproducibility and integrity of
the research conducted. The proposed method does not uti-
lize any sensitive information and the construction of the
dataset is completely unbiased, and thus there are no moral
ethical concerns associated with this research.

7.1. Reproducibility

Dataset generation: The cross-modal dataset was gener-
ated and published following the FAIR data management
principles. It can be found and publicly accessed through
the 4TU website 1. To ensure interoperability, the dataset
is formatted in a widely-used format: .png for images and
.ply for point cloud files. For rendering the images, I used
Blender 2.8 [1] with the fast render engine Eevee, and the
.off file loading add-on which can be downloaded from this
GitHub repository 2. Moreover, reproducibility is ensured
by including in the same repository 1: the Blender scene,
the texture utilized 3, and the Python script used to pivot the
camera around the objects and to render the views. As pre-
sented in Sec. 3.1, the main logic of the script is an exten-
sion of the NeRF script used in generating spiralling cam-
era trajectories provided by Mildenhall et al. [8]. The script
can easily be extended to generate identical views for all
remaining 30 classes in the ModelNet40 dataset [17]. For
each model, the script generates 64 800x800 images and
a set of camera matrix transformations. These are subse-
quently used to generate the 3D Gaussian point clouds. The
3DGS algorithm [6] is ran using default hyper-parameters,
random initialization of the 3D Gaussians, for 15000 iter-
ations. The final .ply model files are also made available
under 4TU’s website 1.

Results: To ensure transparency and reproducibility of
the reported results, the (fully-commented) code associated
with this paper, the trained model weights, the experiments
performed, and their logs are available in the GitHub repos-
itory 4. The model weights can be loaded to reproduce any
of the results reported in the experiments, and the logs asso-
ciated ensure the full transparency of the research process.
The code base makes use of the PointNet and PointNet++
PyTorch implementations available at the following GitHub
repository 5. The training and fine-tuning of the models was
performed on the Delft High Performance Computing Cen-
tre [2] using NVidia V100S GPU nodes. To ensure repli-

1 https://data.4tu.nl/private_datasets/q32Led--
j18SvCZ_X4-RLQBsZRy5Ded3Pf6EbdkzXJg

2https : / / github . com / alextsui05 / blender - off -
addon

3https://polyhaven.com/a/patterned_clay_plaster
4 https://github.com/SimiOy/Self- Supervised-

Learning-for-3DGS
5https://github.com/yanx27/Pointnet_Pointnet2_

pytorch/tree/master

cability of the results, the slurm job configurations used
to train the networks are also made public under the same
repository 4.

7.2. Integrity

This research adheres to the 5 integrity principles outlined
in the Netherlands Code of Conduct 6: honesty, scrupulous-
ness, transparency, independence, and responsibility. All
results were reported in a truthful manner, logs were made
available 4, and limitations of the method are discussed. To
ensure the transparency of the research and of the reported
results, this section describes in detail the training of the
point- and image-based baselines.

The implementation used for the MVCNN [14] model
can be found at the following Github repository 7. The net-
work is optimized using the Adam optimizer [7] with an
initial learning rate of 0.0001. The model is trained using
the original 64 generated views, with a batch size of 16,
for 100 epochs, and every 30 epochs the learning rate is de-
creased by 90%. As presented in Sec. 5, the model is trained
4 times, under varying amounts of training data available.
To ensure a fair comparison, both the image-based proposed
network and the baseline are trained using identical dataset
splits (i.e. the same data subset is used when reducing the
amount of training data available). The same data subsets
are also used to train the point- and Gaussian-based models.

The PointNet [10] and PointNet++ [11] models 5 are
trained using 2048 points sampled with FPS at the sur-
face of the object’s meshes. The networks are optimized
using the SGD optimizer with an initial learning rate of
0.001, momentum of 0.9 and weight decay of 0.0001. The
models are trained with a batch size of 24, for 100 epochs
each.

References
[1] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 9

[2] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 2). https :
/ / www . tudelft . nl / dhpc / ark : /44463 /
DelftBluePhase2, 2024. 9

[3] Hugh Durrant-Whyte and Tim Bailey. Simultaneous local-
ization and mapping: part i. IEEE robotics & automation
magazine, 13(2):99–110, 2006. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

6https : / / www . nwo . nl / en / netherlands - code -
conduct-research-integrity

7https://github.com/RBirkeland/MVCNN-PyTorch/
tree/master

https://data.4tu.nl/private_datasets/q32Led--j18SvCZ_X4-RLQBsZRy5Ded3Pf6EbdkzXJg
https://data.4tu.nl/private_datasets/q32Led--j18SvCZ_X4-RLQBsZRy5Ded3Pf6EbdkzXJg
https://github.com/alextsui05/blender-off-addon
https://github.com/alextsui05/blender-off-addon
https://polyhaven.com/a/patterned_clay_plaster
https://github.com/SimiOy/Self-Supervised-Learning-for-3DGS
https://github.com/SimiOy/Self-Supervised-Learning-for-3DGS
https://github.com/yanx27/Pointnet_Pointnet2_pytorch/tree/master
https://github.com/yanx27/Pointnet_Pointnet2_pytorch/tree/master
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://github.com/RBirkeland/MVCNN-PyTorch/tree/master
https://github.com/RBirkeland/MVCNN-PyTorch/tree/master


[5] Longlong Jing, Ling Zhang, and Yingli Tian. Self-supervised
feature learning by cross-modality and cross-view corre-
spondences. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1581–1591,
2021. 1, 2, 3, 4, 5

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1–14, 2023. 1, 2, 3, 9

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 9

[8] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 2,
3, 9

[9] Cristiano Premebida, Rares Ambrus, and Zoltan-Csaba Mar-
ton. Intelligent robotic perception systems. Applications of
mobile robots, pages 111–127, 2018. 1

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2, 3, 4, 7, 8, 9

[11] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2, 4, 7, 8, 9

[12] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 4

[13] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections in 3d. In ACM siggraph
2006 papers, pages 835–846. 2006. 3

[14] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 945–953,
2015. 1, 7, 8, 9

[15] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Had-
sell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel,
Wolfram Burgard, Michael Milford, et al. The limits and
potentials of deep learning for robotics. The International
journal of robotics research, 37(4-5):405–420, 2018. 1

[16] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 6, 1, 5

[17] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 3, 7, 8, 9, 1

[18] Xiaoqiang Yan, Shizhe Hu, Yiqiao Mao, Yangdong Ye, and
Hui Yu. Deep multi-view learning methods: A review. Neu-
rocomputing, 448:106–129, 2021. 1



Bridging the world of 2D and 3D Computer Vision

Self-Supervised Cross-modality Feature Learning through 3D Gaussian Splatting

Supplementary Material

8. Dataset analysis

The dataset is comprised of ten household items. The
classes are not equally represented as some classes can have
up to 6 times more models than others. Table 6 shows the
average number of 3D Gaussians used to reconstruct each
of these models. The 3DGS algorithm will use more points
to represent intricate or complex gemetries, and as a result,
some models will produce more Gaussians during optimiza-
tions. As observed in Fig. 7, on average, the simplest to
represent object is the bathtub, and the hardest is the night
stand. On closer inspection of the dataset, most bathtub
models are simple convex shapes, or a hallowed out rect-
angular cuboid. On the other hand, most night stands have
handles and support feet which are more complex geome-
tries that require more 3D Gaussians.

Section 3.1 briefly discussed the problem of selecting a
representative sample of Gaussians from which the sam-
pling is performed. Besides positions, scale, rotation and
spherical harmonics, the 3D Gaussians also have an opac-
ity associated to them. Since the opacity is mostly used
during the rendering process to accumulate the color, I de-
cided to leave it out from the input feature consideration of
the proposed networks, and instead use it as a measure of
the Gaussian importance during sampling. A small opacity
would mean that the point has small influence during the
rendering process, and thus, intuitively, should also have
smaller influence in the deep neural network.

To be sure that we don’t leave out any important points,
the opacity threshold is an important hyper-parameter of
the proposed method. Table 7 shows the minimum number
of 3D Gaussians that a model has under different opacity
thresholds. Moreover, Fig. 8 and 9 illustrate the distribution
of all points above a certain opacity threshold. As it can be
observed, there are some extreme cases (e.g. one simple bed
model) where there are very few 3D Gaussians used, and
using a high opacity threshold limits the number of points
available for sampling drastically. The threshold used by
this paper is 0.3, as it still preserves most of the points for
each object, but filters out less relevant ones. Observations
have shown that thresholds too high impact the quality of
the sampled point cloud, and negatively affect the reported
results (i.e. smaller recognition accuracy).

Classes # Models
Average number of

3D Gaussians

Bathtub 156 77327
Bed 615 115809

Chair 989 105881
Desk 286 102624

Dresser 286 123331
Monitor 565 91509

Night stand 286 145933
Sofa 780 85950
Table 492 99062
Toilet 444 105715

Table 6. Average number of 3D Gaussians that were used to rep-
resent each model in the ModelNet10 dataset [17]. The object that
requires the least amount of points on average is the bathtub, and
the one that requires the most amount of points on average is the
night stand. Most bathtubs have simple geometries (simple convex
shapes), whereas the night stands usually have handles which are
more complex and require more 3D Gaussians to represent.

Opacity
threshold ≥ 0.3 ≥ 0.5 ≥ 1.0 ≥ 2.0

Number of
3D Gaussians 1288 1062 641 153

Table 7. Minimum number of 3D Gaussians that a model has un-
der different opacity thresholds. The count is based on the number
of 3D Gaussians for all classes that exceed the considered opacity
threshold.

9. Qualitative analysis of learned features

Although TSNE [16] evaluation cannot be quantitatively as-
sessed, it can still provide a reasonable understanding on
the quality of the learned features. In the shape recogni-
tion setting, a good representation of the emeddings would
have clear compact clusters for each class label. Such self-
supervised features would indicate that the model requires
less training samples during fine-tuning (i.e. if the model
knows what monitors look like, but doesn’t know what a



Figure 7. Boxplot of the count of 3D Gaussians per class. Overall all models have between 50000 and 150000 3D Gaussians each. The
bed class has both the simplest and the most complex model, because some 3D models were canopy beds or came with pillows, while
others had a simple rectangular geometry. On average the night stand object required the most amounts of 3D Gaussians, while the bathub
required the least. The toilet class exhibits the least amount of variation between models, requiring around 100000 points each.

monitor is, it would have to see fewer labeled monitors to
be able to correctly identify the rest).

Figure 10 illustrates a comparison between the two sam-
pling techniques and model backbones, for networks trained
using only the Gaussian positions. This experiment con-
firms again that FPS outperforms uniform sampling, show-
ing more distinctive cluster shapes forming. Between the
two point backbones, the difference is minimal, and since
the TSNE algorithm is not deterministic, a definitive con-
clusion between the two is difficult to draw.

Across all models, there exists some common confusion.
For example, the table and the desk, or the dresser and the
night stand are often mistaken for one another. That is
in part to their similar geometrical appearance but also to
their similar visual appearance (the 2D appeareance of the
objects still contributes during the self-supervised learning
framework). Since all models have the exact same texture
applied, are lit in an identical fashion, and have the same

scale, it’s much more difficult to differentiate between such
shapes. Perhaps the model would benefit more from a real-
istic dataset, where sizes and colors have meaning.



Figure 8. Boxplots for the number of 3D Gaussians above a certain opacity threshold for each class. As the threshold gets increased to
0.75, a simple bed model has only 800 3D Gaussians left. The overall distribution of the number of points remains constant.



Figure 9. Boxplots for the number of 3D Gaussians above a certain opacity threshold for each class. As the threshold gets increased to 2.0,
a lot of the models are left with less than 2000 points, signaling that such threshold are too large to consider.



Figure 10. TSNE [16] visualization of the learned features for the Gaussian-based models, for the two network backbones and sampling
techniques considered. The embeddings correspond to networks that have been trained using only the 3D Gaussian positions. FPS is better
than uniform sampling at making compact class clusters, showing that a better geometrical representation of the objects is favoured. There
aren’t any noticeable differences in the learned feature visualizations when using the advanced PointNet++ model.


	. Introduction
	. Related Work
	. Deep Learning on 3D Gaussian Splats
	. Data Generation
	. Network Architecture
	. Model Parameterization
	. Optimization

	. Experiments
	. Evaluation of learned features
	. Applications

	. Results
	. Conclusion & Future Work
	. Responsible Research
	. Reproducibility
	. Integrity

	. Dataset analysis
	. Qualitative analysis of learned features

