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Abstract. In this paper, we present a novel method for the dynamic bal-
ance of planar mechanisms, by transforming a mechanism into a dynami-
cally equivalent form where all links have zero mass but non-zero moment
of inertia. The dynamic balance of such pure-inertia systems is shown
to be governed by mirror symmetry that cancels out the system’s total
angular momentum. Our method not only covers well-known dynami-
cally balanced 1-DOF mechanisms, such as the slider-crank and four-bar
linkages, but also leads to the discovery of a novel dynamically balanced
2-DOF planar mechanism.

Keywords: Dynamic balance · Dynamic equivalence
Equimomental systems · Pure-inertia method · Symmetric space

1 Introduction

For robots and machines operating at high speeds, dynamic balance is desired to
eliminate varying reaction forces and moments (also termed shaking forces and
moments), which are known to be a major source of wear, noise and accuracy
degradation [1]. The necessary and sufficient condition for dynamic balancing is
that both the linear and angular momenta of the mechanism are constant. A
mechanism is force balanced when only the linear momentum is constant, which
in practice comes down to having a fixed center of mass (COM) of the system.

In principle, dynamic balance can be found by symbolically solving the kine-
matic and balancing equations for unknown kinematic and inertial parameters.
A solution is in general not guaranteed, or otherwise very difficult to find, due
to high algebraic complexity [1,2]. Alternatively, one may construct dynami-
cally balanced mechanisms from primitive functional modules which, either are
dynamically balanced [3] or have the dynamic balance conditions that are easy
to obtain symbolically [4–6]. The dynamic balance equations can be simplified by
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reducing the number of parameters through dynamic equivalence [7]. Two mech-
anisms with equal kinematics, but different mass distributions, are said to be
dynamically equivalent or equimomental [8] if their linear and angular momenta
are equal when undergoing a common arbitrary motion. Consequently, the two
mechanisms will always have the same shaking forces and moments even though
their masses, COMs, and moments of inertia are different.

A fruitful source of dynamically balanced mechanisms is the class of link-
ages, such as the pantograph [6], the slider-crank [4], and the four-bar [1], whose
geometric structures exhibit a mirror symmetry about a plane moving with half
magnitude (hence also half velocity) of that of the end-effector for full-cycle
motion. Recently, the second and third author of this paper made an addendum
to this class of mechanisms by systematically investigating plane and line sym-
metry of a class of parallel mechanisms known as symmetric subspace motion
generators [9,10].

The main contribution of this paper is twofold. Firstly, we propose a dynamic
balance method via dynamic equivalence to massless systems with only moments
of inertia. This approach, called pure-inertia method (PIM), provides a unified
understanding of several existing dynamically balanced mechanisms that were
previously synthesized by solving complex algebraic equations. Secondly, the
PIM is applied to a novel 2-DOF planar symmetric mechanism proposed in [10].
Numerical simulation confirms that the mechanism is dynamically balanced.

2 Pure-Inertia Method

The pure-inertia method relies on the dynamic equivalence of all links in a mech-
anism to a zero mass with non-zero moment of inertia. A pure inertia may be
interpreted as dynamically equivalent to an infinitely large and thin ring.

The principle of dynamic equivalence is illustrated in Fig. 1. A range of
dynamically equivalent links can by found via point mass redistribution [7]. The
initial inertial parameters comprise mass mo, COM co, and moment of inertia
go (Fig. 1(a)), whereas for the dynamic equivalent set we have: mf , cf , and gf
(Fig. 1(b)). If we start with a link hinged at o, we may transfer a point mass of

mo, co, go

o

(a)

−a

mf , cf , gf

(b)

m, c, g

(c)

g′

−m

(d)

Fig. 1. Dynamic equivalence via mass redistribution. (a) A simple pendulum; (b) a
dynamic equivalent of (a) via adding or subtracting point mass at the hinge; (c) a
pendulum with COM located at the hinge; (d) a dynamic equivalent of (c) with pure
moment of inertia.
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arbitrary value a - located at the hinge - from the link to the base and vice versa,
without changing the link’s momentum and shaking forces and moments. In the
same manner, the link may exchange a point mass with any body i hinged to it
by a revolute joint at a location denoted by oi. This is a valid dynamic equiva-
lent operation, since at a revolute joint the linear velocities of both connecting
bodies are equal. Therefore changing the attachment of the a point mass from
one body to the other does not affect the mechanism’s momentum. We have the
following equations:

mf = mo+
n∑

i=1

ai, mfcf = moco+
n∑

i=1

aioi, gf = go−mf‖cf‖2+
n∑

i=1

ai‖oi‖2

(1)
To ensure dynamic equivalence, the point mass added to body i should be sub-
tracted from body j, which we refer to as mass continuity. If both mf = 0 and
cf = 0 (Fig. 1(c)), i.e., if mo = −∑n

i=1 ai and moco = −∑n
i=1 aioi, the dynam-

ics of the body is completely determined by a pure moment of inertia (Fig. 1(d)).
This pure moment of inertia - or for brevity; pure inertia - shall be denoted with
a prime: g′. When this holds for all bodies in the mechanism, the mechanism is
said to be a pure-inertia mechanism.

A pure-inertia body is not physically feasible, but it can be transformed back
into a feasible one by applying the reverse process of point mass recomposition
[7], i.e., by adding point masses at the revolute joints. For the purpose of this
paper, we shall consider bodies connected with at most two revolute joints, and
therefore all vectors in Eq. 1 can be treated as scalars. By assuming that one of
the joints is located at the origin and the other at a distance l, the following
relations hold for the mass, COM and moment of inertia:

m = a1 + a2, mc = a2l, g = g′ + a2

(
1 − a2

a1 + a2

)
l2 (2)

The links generated from dynamically equivalent pure-inertia bodies, remain
physically feasible if the equivalent mass m and moment of inertia g satisfy the
following positivity constraints:

m > 0 ⇔ a1 > −a2, g > 0 ⇔ g′

l2
> a2

(
a2

a1 + a2
− 1

)
(3)

which implies that a pure inertia, denoted g′, is allowed to have a negative
value. The limits on a1 and a2 are carried over to adjacent bodies due to mass
continuity. See [7] for more details about the mass redistribution method. It
should be noted that a pure-inertia mechanism has a fixed COM with respect to
the base and is therefore necessarily force balanced. However, the reverse does
not hold in general.

2.1 Dynamic Balance

In the literature, force balance conditions are usually inspected prior to moment
balancing. In comparison, for a pure-inertia mechanism, force balance conditions
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are automatically satisfied and therefore only the angular momentum, denoted
ξ, needs to be canceled out to achieve dynamic balance:

ξ =
∑

i

g′
iωi = 0 (4)

where the moments of inertia g′
i are pose independent. The pose dependence of

the angular velocities ωi, on the other hand, imposes conditions on the geometry
of the mechanism [1].

2.2 Dynamic Balance of the Slider-Crank Linkage Using the PIM

We shall now illustrate the PIM by considering the dynamic balance of a slider-
crank linkage, as shown in Fig. 2. According to [4], a slider-crank linkage can be
dynamically balanced under symmetric kinematic conditions (l1 = l2, l3 = 0), if
the total COM is located at the base revolute joint for all configurations, and
links’ inertial parameters satisfy:

c2 = 0, m1c1 = −m2l1, g1 = g2 − m2

(
m2

m1
+ 1

)
l21 (5)

It is apparent that the symmetry conditions constrain link 1 and 2 to move
with equal and opposite angular velocities: ω1 = −ω2. In reference to Eq. 4, the
dynamic balance condition for the slider-crank linkage reduces to:

g′
2 = g′

1 (6)

We shall show that Eq. 6 is exactly equivalent to the conditions given in [4].
Via the mass recomposition - refer to Eq. 2 - we have:

m1 = a10 − a21, m1c1 = −a21l1, g1 = g′
1 − a21

(
1 + a21

a10−a21

)
l21

m2 = a21, m2c2 = 0, g2 = g′
1

(7)

We remark that the dynamics of the slider can be easily included in the
above process. Because it generates no angular momentum (it only translates),
it is dynamically equivalent to a point mass which can be included in the dynamic
balance conditions via point mass recomposition, as in Eq. 1.

c1

l1

c2

l2

m1, g1
m2, g2

l3

(a)

a21

a10

(b)

g′
1 g′

2

(c)

Fig. 2. Dynamic balance conditions for a slider-crank mechanism. (a) Kinematic and
inertial parameters. (b) Conventional dynamic balance conditions for a symmetric
slider-crank. The symmetry line is represented by the green dash-dotted line. (c) The
pure-inertia equivalent of the dynamically balanced slider-crank
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2.3 Dynamic Balance of the Four-Bar Linkage Using the PIM

Gosselin and Ricard [1] showed that two types of symmetric four-bar linkages
can be dynamically balanced. The first one is the kite type, shown in Fig. 3. It is
symmetric about a plane passing through joint q2 and q4 (or equivalently q1 and
q3). The second type, the anti-parallelogram, is symmetric about a plane which
bisects the angle formed by the lines through body l1 and l3.

We shall focus on the first type here (the same procedure can be applied to
the anti-parallelogram). The kinematic symmetry conditions are: l1 = l2, and
l0 = l3 [3], whereas the dynamic balance conditions are:

g1 = gc1 + m1c1(l1 − c1)
m2c2 = m1c1 + m2l1, g2 = gc1 + m2c2(l1 − c2)
m3c3 = l3

l1
(c2m2 + l1m3) , g3 = −gc1 − m3c3(l3 − c3)

(8)

in which gc1 is a useful collection of inertial parameters introduced in [3]. The
corresponding pure-inertia mechanism can be generated by considering the fol-
lowing mass redistribution:

a21 = a10 − m1, a32 = a21 − m2, a03 = a32 − m3

m′
1c

′
1 = m′

2c
′
2 = m1(c1 − l1) + a10l1, m′

3c
′
3 =

l3
l1

m′
1c

′
1

(9)

The link masses can then be canceled out by setting a10 = −m1/l1(c1 − l1),
thus resulting in the following pure-inertia dynamic balance conditions:

g′
1 = g′

2 = −g′
3 = gc1 (10)

which offers a novel interpretation of gc1. It should be noted that these conditions
can also be derived from the relation between the angular velocities ω1 + ω2 =
ω3. Based on these pure-inertia conditions, we can find a range of dynamically
equivalent mechanisms, as long as the selection of inertial parameters g′

1, a10,
a21, a32, and a03 respect the positivity constraint mi > 0 and gi > 0.

−c1

l1
c2

l2 c3

l3

m2, g2

m1, g1

m3, g3

l0
q1

q2

q3

q4

(a)

g′
1

g′
2

g′
3

(b)

Fig. 3. (a) The dynamically balanced four-bar linkage. (b) A pure-inertia dynamic
equivalent of the linkage shown in (a). The green dash-dotted line shows the symmetric
plane, bisecting the kite through joint q2 and q4.
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3 Dynamic Balance of a Novel 2-DOF Symmetric
Mechanism Using the PIM

A novel 2-DOF symmetric planar mechanism, capable of generating finite rota-
tions about any axis on its symmetric plane, was recently proposed in [10]. A
variant is illustrated in Fig. 4. It comprises two RRR chains acting in-parallel on
the end-effector and an angle-bisecting device (gray links in Fig. 4) to ensure a
symmetric motion. The angle-bisecting device consists of a pantograph, attached
via two revolute joints to two collinear slider joints on the symmetric plane. The
symmetric plane bisects both “elbow” angles of the two RRR chains for full-cycle
motion. Due to the half-angle property [11], the symmetric plane also bisects the
angle between the base and the end-effector.

We shall apply the PIM to dynamically balance this novel mechanism in two
steps. In the first step, the mass and moment of inertia of the angle-bisecting
device are ignored (but assuming that the geometric constraint is still effective).
We set base joints (q1 and q3) as the input variables. Because of the symmetry
conditions, the angular velocity ωi,j of body i with respect to the actuator j =
{1, 3} can be written as:

ω1,1 + ω2,1 = ω4,1 = ω5,1

ω3,3 + ω4,3 = ω2,3 = ω5,3

(11)

Both relations are in fact equivalent to those of the kite-type four-bar linkage:
when one of the base joints is locked, the platform and its adjacent bodies move
as a rigid body, thus originating a kite-shaped four-bar linkage. Consequently,
dynamic balance conditions can be derived from Eq. 10 as:

g′
1 = g′

2 = −g′
4 − g′

5, g′
3 = g′

4 = −g′
2 − g′

5 (12)

−c1

l1
−c2

l2

−c3
l3 −c4

l4

c5

l5

l0

m1, g1

m2, g2

m5, g5

m4, g4
m3, g3

l61

l72

−c6
l6

m6, g6

c7

l7m8, g8

m7, g7

c8

q1 q3

symmetric
plane

Fig. 4. The dynamically balanced 2-DOF planar symmetric mechanism (a variant of
the M2A-type symmetric mechanism proposed in [10]). The angle bisecting pantograph-
slide on the symmetry plane is shown in gray. When fixing one of the base joints, in
this case q1, the mechanism acts as a symmetric four-bar mechanism (red).
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Table 1. Geometric and inertial parameters for the dynamically balanced 2-DOF
symmetric mechanism used in the simulation.

Length [m] PI [kgm2] Point mass [kg] Mass [kg] COM [m] Inertia [kgm2]

l1 1.0 g′
1 1.00 a10 −1.93 m1 1.3 c1 −0.43 g1 0.17

l2 1.0 g′
2 1.00 a21 −0.570 m2 0.30 c2 −0.89 g2 0.50

l3 1.0 g′
3 1.01 a30 −1.18 m3 0.69 c3 −0.71 g3 0.17

l4 1.0 g′
4 1.01 a43 −0.490 m4 0.23 c4 −1.1 g4 0.46

l5 4.0 g′
5 −2.03 a52 −0.260 m5 0.52 c5 2.0 g5 55× 10−3

a54 −0.260

l61 0.25 g′
6 10.0× 10−3 a61 −10.0× 10−3 m6 7.0× 10−3 c6 −0.32 g6 7.6× 10−3

l6 0.75 g′
7 10.0× 10−3 a72 −10.0× 10−3 m7 13× 10−3 c7 −0.17 g7 11× 10−3

l71 0.25 g′
8 10.0× 10−3 a76 −3.00× 10−3 m8 10× 10−3 c8 0.0 g8 10× 10−3

l7 0.75 a81 −10.0× 10−3

In the second step, the entire mechanism is dynamically balanced. First, note
that links l6 and l7 of the pantograph (the angle-bisecting device in Fig. 4) have
the same angular velocity as that of links l2 and l1, respectively. Their moments
of inertia can then be easily lumped together in the dynamic balance conditions
derived in the first step (Eq. 12). Secondly, due to the half-angle property, the
angular velocity of the connecting link l8, is exactly half the angular velocity of
the end-effector. Thus we have:

ω6 = ω2, ω7 = ω1, ω8 = 0.5ω5 (13)

The dynamic balance conditions for the entire mechanism are then given by:

g′
1 + g′

7 = g′
2 + g′

6, g′
3 = g′

4, g′
5 + 0.5g′

8 = −g′
2 − g′

4 (14)

time(s)
0 0.5 1

q(
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z
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0

5
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Fig. 5. Simulation results of the novel 2-DOF manipulator. The figure shows the input
angles (a), shaking forces in x and y direction (b, and c respectively) and the shaking
moment (d). The shaking forces (Fs) are the sum of reaction forces on base joints
(F1, F3). The shaking moment (Ms) is the sum of motor torques (M1, M3) and the
couple (Mc) induced by base joint forces.
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A simulation of the dynamically balanced 2-DOF mechanism was performed
to validate the PIM. The numerical values chosen for the lengths, COM, masses
and moments of inertia can be found in Table 1. The simulation results, as shown
in Fig. 5, confirm that the sum of the shaking forces and moments are zero for
arbitrary motion.

4 Conclusion

All dynamically balanced mechanisms discussed in this paper share the same
property of kinematic symmetry and dynamical equivalence to pure-inertia
mechanisms. The pure-inertia method provides a simplified approach for achiev-
ing dynamic balance for two reasons: (i) Force balance conditions are automat-
ically satisfied; (ii) in the planar case, moments of inertia are pose invariant
and can be treated as scalars, reducing the dynamic balance conditions to linear
kinematic relations between angular velocities. These relations, in the class of
mechanisms shown here, are linear due to kinematic symmetry conditions. Based
on this new understanding, a new dynamically balanced 2-DOF mechanism was
presented.
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