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Abstract. Traffic congestion in urban networks may lead to strong degradation in the
utilization of the network infrastructure, which can bemitigated via suitable control strate-
gies. This paper studies and analyzes the performance of an adaptive traffic-responsive
strategy that controls the traffic light parameters in an urban network to reduce traffic
congestion. A nearly optimal control formulation is adopted to avoid the curse of dimen-
sionality occurring in the solution of the corresponding Hamilton–Jacobi–Bellman (HJB)
optimal control problem. First, an (approximate) solution of the HJB is parametrized via
an appropriate Lyapunov function; then, the solution is updated at each iteration in such a
way to approach the nearly optimal solution, using a close-to-optimality index and infor-
mation coming from the simulation model of the network (simulation-based design). Sim-
ulation results obtained using a traffic simulation model of the network Chania, Greece,
an urban traffic network containing many varieties of junction staging, demonstrate the
efficiency of the proposed approach, as compared with alternative traffic strategies based
on a simplified linear model of the traffic network. It is shown that the proposed strategy
can adapt to different traffic conditions and that low-complexity parametrizations of the
optimal solution, a linear and a bimodal piecewise linear strategy, respectively, provide a
satisfactory trade-off between computational complexity and network performance.

History: This paper has been accepted for the Transportation Science Special Issue on Recent Advances
in Urban Transportation Through Optimization and Analytics.
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under the contract [611538] (LOCAL 4GLOBAL).
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1. Introduction
Urban traffic congestion appears when too many vehi-
cles attempt to use a common infrastructure with lim-
ited capacity and saturate it. Saturated links may pre-
vent upstream flow from crossing, even with a green
signal, possibly leading to an increased waste of green
time and gridlocks in the network (Abu-Lebdeh and
Benekohal 1997). A better utilization of the existing
infrastructure via appropriate traffic signal control
(TSC) strategies can mitigate congestion and improve
urban mobility without the need for increasing the
available infrastructure. Over the past three decades,
several traffic control strategieshavebeenproposedand
successfully implemented in actual cities, as reported
in Bell (1992); Gartner, Pooran, and Andrews (2001);
Farges, Khoudour, and Lesort (1990); Boillot, Midenet,
and Pierrele (2006); Siemens (2000); Friedrich (2002);
Robertson and Bretherton (1991); Osorio and Chong

(2015); and many other works. Despite the heterogene-
ity of these approaches, a commonly recognized chal-
lenge in the urban traffic control problem is related to
the so-called Bellman’s curse of dimensionality, which
arises when a large number of states and parame-
ters makes the online solution of the control problem
intractable. Traffic theorists and engineers have come
upwith different solutions to avoid the curse of dimen-
sionality and render the problem tractable for large-
scale traffic instances. Three major approaches can be
classified as distributed/hierarchical approaches; sub-
optimal approaches based on heuristics optimization;
and suboptimal approaches based on simplifications in
the trafficmodel. In thefirst group falls, for example, the
OPAC strategy, extensively tested in the United States
(Gartner, Pooran, and Andrews 2001), distributes the
control among individual intersections and focuses on
efficient coordinated control of the intersections in the

6
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network. Distributed control is also adopted in other
recent signal control strategies based on stochastic opti-
mal control (Sheu 2002), Petri-net (Di Febbraro, Giglio,
and Sacco 2004), job-scheduling (Xie et al. 2012), rein-
forcement learning (El-Tantawy, Abdulhai, and Abdel-
gawad 2014), and multiagent principles (Bazzan 2009).
Another celebrated strategy that divides the network
into small subnetworks and builds distributed con-
trollers is the SCOOT strategy, deployed in many cities
in Great Britain and around the globe (Robertson and
Bretherton 1991). The second group of suboptimal ap-
proaches based on heuristics optimization includes the
following: the bi-level sensitivity analysis algorithm in
Yang and Yagar (1995), which approximates the deriva-
tive of flows and queuewith respect to signal splits; the
optimizationmodule of theCRONOS strategy, tested in
Paris (Boillot, Midenet, and Pierrele 2006), which con-
sists of a modified heuristic version of the box algo-
rithm that does not investigate the entire set of solu-
tions; and the heuristic suboptimal forward dynamic
programming of the PRODYN strategy, developed and
tested in France (Farges, Khoudour, and Lesort 1990).
In the third group of traffic strategies adopting sim-
plifications in the traffic model we can mention the
following: the Traffic responsive Urban Control (TUC)
strategy (Aboudolas et al. 2010), which solves a linear-
quadratic problem based on a store-and-forward sim-
plification of the traffic flow; the DISCO or mixed-
integer linearprogramapproacheswhere traffic ismod-
eled after the cell-transmission model (Lo, Chang, and
Chan 2001; Lo 2001); model predictive control strate-
gies based on the simplified S-model (Lin et al. 2012);
and gating feedback regulators derived via a simplified
dynamicmodel based on the network fundamental dia-
gram of traffic flow (Keyvan-Ekbatani et al. 2012). We
conclude this nonexhaustive overview by mentioning
recently emerging approaches for optimal control of the
transportation network (Han, Szeto, and Friesz 2015;
Li, Canepa, and Claudel 2014): these methods rely on
a Lighthill–Whitham–Richards traffic flow model and
characterize the optimal solution by the Lax–Hopf for-
mula. The advantage is that no specific approximations
nor discretization are required; however, one limita-
tion is currently the lack of computational tractability,
when the problem size scales up. From this overview it
emerges that all implementable signal control strategies
must include some simplifications or heuristics, either
in their modeling approach, or in their optimization
algorithm, or in their extent of network coverage.
In this paper, the urban traffic control problem will

be solved using an adaptive approximately optimal
control strategy for traffic signal control, justified by
the following reasons:

Approximately optimal. The adoption of an approxi-
mately optimal control strategy avoids the Bellman’s

curse of dimensionality. It moderates the computa-
tional complexity of solving the optimal control prob-
lem by parameterizing the optimal solution. In the pro-
posed approach, the parametrization is developed in
such a way that the designer can control the trade-off
computational complexity/close to optimality;

Adaptive As the traffic network dynamics are influ-
enced by the traffic demand, saturation flows and turn-
ing rates at each link might exhibit time-varying be-
havior (Cremer 1991; Jacob and Abdulhai 2001); thus,
different strategies must be delivered in the presence of
modified traffic conditions. In the proposed approach,
adaptation arises from a mechanism that generates at
each iteration a number of candidate control strategies,
and selects the best one based on the estimation of
its close to optimality and on the information coming
from the simulation model of the network (simulation-
based design).

The main contribution of the paper and the advan-
tages of the proposed method with respect to state-
of-the-art methods can be identified as follows. With
respect todistributed/hierarchical approaches, thepro-
posed method is fully centralized, exploiting informa-
tion stemming from all of the links in the network;
with respect to suboptimal approaches basedonheuris-
tics for optimization, the trade-off of computational
complexity/near optimality in the proposed approach
can be controlled by the user by increasing the com-
plexity of the control law; with respect to subopti-
mal approaches based on simplifications in the traffic
model, the proposed strategy can rely on elaborate traf-
fic simulation environments. A well-known problem of
adopting simplified traffic flow models is that, when
implemented in real life, the performance of the result-
ing strategy may be far from optimal and calibration
of the control gains might be necessary, which can be
time consuming because of the large-scale and com-
plex nature of the traffic system (Li, Tang, and Head
2003; Sanchez, Galan, and Rubio 2008; Kosmatopoulos
et al. 2007; Baldi et al. 2015).

Simulation results obtained using an AIMSUN (Bar-
celo,Casas, andFerrer1999)modelof the trafficnetwork
of Chania, Greece, an urban traffic network containing
many varieties of junction staging (45 control inputs
and 122 occupancy/flow states involved), demonstrate
the efficiency of the proposed approach via the follow-
ing points: (a) low-complexity parametrizations of the
optimal solution, respectively, a linear traffic-responsive
strategy and a bimodal piecewise linear one, are suffi-
cient to overcome the performance of alternative traffic
control strategies based on a simplified linear model of
the traffic network; (b) the low computational complex-
ity of the proposed traffic-responsive strategy makes it
feasibly implementable online in urban networks with
a large number of sections and junctions; (c) the pro-
posed method is capable of adapting to different traffic
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conditions, as shown via simulations with three traffic
demand scenarios of increasing intensity. A compara-
tive studywithdifferent traffic control strategies reveals
variations in the network dynamics and the need for
control strategies tailored to different traffic demand.
The paper is organized as follows: the problem

formulation of urban traffic control can be found in
Section 2. Section 3 presents the approximately opti-
mal control framework and the optimization algorithm
used for the solution of the urban traffic control prob-
lem. The simulation setup is discussed in Section 4.
Simulation results are given in Section 5. Section 6 con-
cludes the paper.

2. Control of Urban Traffic Networks
Traffic signal controls at intersections is the major con-
trol measure in urban road networks (Bielli et al. 1991).
When managing a traffic light, two main quantities
must be controlled: the cycle time and the split time
(offset is considered constant in this work). The cycle
time is the duration of the basic series of signal combi-
nations at an intersection. The split time is the relative
green duration of each stage as a portion of the cycle
time. We will concentrate on the development of traffic-
responsive strategies, where the traffic lights change their
settings according to the traffic conditions (as opposed
to fixed-time strategies). In the following, the traffic-
responsive TUC strategy (Diakaki, Papageorgiou, and
Aboudolas 2002) is briefly discussed for two main rea-
sons: the TUC strategy will be used as a competitor for
comparison with our proposed approach; explaining
the TUC strategy gives the opportunity to present the
store-and-forward trafficflowmodel and to identify the
states and the inputs playing a role in the urban traffic
controlproblem.TUCwas initiallydevelopedandfield-
implemented in Glasgow, Scotland, within the Euro-
pean DRIVE III project TABASCO (Diakaki, Papageor-
giou, and McLean 2000). The control decisions of TUC
are based on real-time measurements collected from
detectors that are located within the controlled area. To
control the cycle time and the split the TUC strategy
employs twomainmodules, the cycle and the split con-
trol module:

• The cycle control module calculates the cycle time
of all junctions in the network,1 according to the non-
linear proportional controller

c�

{
cmin+K1 · (‖σ‖−σ0) if ‖σ‖≤σcr ,
cmin+K1 · (σcr−σ0)−K2 · (‖σ‖−σcr) if ‖σ‖>σcr ,

(1)
where σ is the vector of the space occupancies in the
network, and σi � χi/χi ,max, the ith component of σ,
is the space occupancy of link i; χi and χi ,max are the
current number of vehicles in link i and its storage
capacity, respectively; the occupancy norm ‖σ‖ reflects

the saturation level in the network. Furthermore, K1
and K2 are gain constants, while σcr and σ0 are two
further constant parameters. The cycle time is trun-
cated if it exceeds the range c ∈ [cmin , cmax]. The piece-
wise bimodal behavior arising from (1) will soon be
explained.

• The split control module first calculates the un-
constrained green times g as an affine function k(χ) of
vehicle numbers, according to

g̃ :� g − geq � k(χ)�−KTUC · χ, (2)

where geq are the nominal green times and KTUC is the
matrix gain minimizing the cost

∞∑
k�0

χ′(k)Qχ(k)+ (g(k) − geq)′r(g(k) − geq), (3)

subject to the store-and-forward dynamics (as arising
from (4)). For the choice of the parameters Q and r,
the reader is referred to Diakaki, Papageorgiou, and
Aboudolas (2002) and Aboudolas et al. (2010). In a sec-
ond phase, the green times are constrained so as to
satisfy the minimum and maximum allowable green
time values and the constraint that the summation of
the green times of a junction must be equal to the
cycle time.

The rationale behind the two modules is based both
on mathematical considerations and on many field
implementations in different urban networks (Diakaki,
Papageorgiou, and McLean 2000; Kosmatopoulos et al.
2006; Dinopoulou, Diakaki, and Papageorgiou 2005).
The cycle control module in (1) is a piecewise linear
bimodal function of σ. In the first mode, the cycle
time is increased linearly with the norm of the nor-
malized occupancy; in the second mode, the cycle time
is decreased linearly with the norm of the normal-
ized occupancy. It has been observed empirically that
there exists a critical occupancy σcr such that below this
threshold an increased cycle time (and an increased
portion of green time) will make the traffic smoother.
Above the critical occupancy the increased portion of
red time will create longer queues, so it is more bene-
ficial to decrease the cycle time. The split control mod-
ule (2) solves a linear-quadratic control problem that
is based on a linearized store-and-forward model. This
model, first introduced in Gazis (2002), introduces a
simplification that enables the mathematical descrip-
tion of the traffic flow process without using discrete
variables. Assuming sufficient demand on the link and
sufficient available space in the downstream links, the
outflow oi of a link i is approximated as

oi(t)� (gi(t)/c)si , (4)

where gi is the green time duration for the stream
and si is the corresponding saturation flow. If the sam-
pling time is equal to the cycle time c, (4) is equal to the
average flow during the corresponding cycle.
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Note that in TUC the traffic signal parameters are
calculated based on a simplified Linear Quadratic (LQ)
formulation (3) for the split module, and on the heuris-
tic rule (1) for the cycle module. Because of these sim-
plifications, the TUC strategy is expected to deliver a
performance that is far from optimal. To approach opti-
mal performance, this work addresses the optimization
of both the split and the cycle time, i.e., the optimiza-
tion of the function k( · ) in (2), and of K1, K2, and σ0
in (1). These are now assumed to be functions of χ,
K1( · ), K2( · ), and σ0( · ), to be determined so as to maxi-
mize a given performance index. The performance of a
network can be measured using different indexes. The
following performance indexes will be considered: the
total time spent (TTS, in veh · h) by all vehicles in the
network over a time horizon; the total travel distance
(TTD, in veh ·km); and the mean speed (MS, in km/h).
At a particular time instant t, the TTD, TTS, and MS
are obtained from the occupancy/flow measurements
via

TTD(t)�
∑
l∈

ql(t)dl , (5)

TTS(t)�
∑
l∈

χl(t), (6)

MS(t)� TTD(t)/TTS(t), (7)

where l is the linkwhere ameasurement is collected,
is the set of measurement links, ql is the measured flow
in the link l at time t (in veh/h), and dl is the length
of link l. In particular, the performance criterion will
involve themaximization of a combined term involving
both MS and TTD

J̄ � max
γ( · )

∫ Tfin

0
[δ1MS(t)+ δ2TTD(t)] dt , (8)

where the maximization is carried out with respect to
γ � [ g̃ c1 c2 c3]T :� col(k( · ),K1( · ),K2( · ), σ0( · )), i.e., the
collection of the input functions to be optimized. The
nonnegative scalars δ1, δ2 take into account the scal-
ing of the two quantities to be maximized and Tfin is
a sufficiently long control horizon (e.g., 50–100 days),
so as to consider different realizations of random traf-
fic demands. The reason for including the TTD in the
cost (8) is to avoid gating phenomenona, i.e., avoid-
ing the fact that the mean speed is high because the
network allows few cars to enter the network. By
taking into account TTD, we guarantee that all cars
are “served,” that is, all cars are allowed to enter
the network (Dinopoulou, Diakaki, and Papageorgiou
2005). Maximization of (8) has been found to be ben-
eficial in increasing the throughput of the network
(Kosmatopoulos et al. 2006). It has to be underlined
that (8) is not the only possible choice: the discussion
about a good performance index for improved traffic
flow is still the object of research (Knoop, Van Lint,
and Hoogendoorn 2015; Treiber and Kesting 2013).
Minimization of TTS or maximization of the product

between mean speed and traffic demand can also ex-
hibit increasing throughput of the network.

Because of the underlying simplified model, the per-
formance obtained by TUC (or other strategies) in
terms of the index (8) may be not only suboptimal, but,
under certain circumstances, even far from optimal.
In Section 3, a systematic approach for adaptive ap-
proximately optimal control of urban traffic networks
is presented. The terminology approximately optimal
control arises from the approximation used to solve
the Hamilton–Jacobi–Bellman (HJB) equation associ-
ated with the optimal control formulation.

3. Approximately Optimal Control of Urban
Traffic Networks

In this section themain ideas behind the approximately
optimal control problem formulation and its solution
are presented. The interested reader is referred to Baldi
et al. (2014) for a deeper insight into the method. We
will assume that the traffic network can be described
by the dynamics

Ûξ(t)� F(ξ(t), γ(t))+ ζ(t), (9)
Ûγ(t)� u(t),

where ξ denotes the system state vector (e.g., the vehi-
cle numbers and flows of all links), γ � [ g̃ c1 c2 c3]T is
the control vector defined after (8), and ζ is a stochastic
noise affecting the network (e.g., the effect of stochas-
tic traffic demand). As a result, the traffic model has
stochastic dynamics. The function F describing the traf-
fic dynamics is assumed to be nonlinear and unknown.
In particular, in our case the function F is implemented
by a traffic network simulator. With the definition of
x � [ξT γT]T , we obtain a problem formulation more
suitable for our purposes

Ûx(t)� f (x(t))+ Bu(t)+ B2ζ(t), (10)

f (x(t))�
[
F(χ(t), γ(t))

0

]
, B �

[
0
I

]
, B2 �

[
I
0

]
. (11)

The system performance to be maximized is taken in
the form

J � E
[∫ ∞

0
[Π(x(τ))+ uT(τ)Ru(τ)] dτ

]
, (12)

where, for the traffic control problem at hand, Π rep-
resents the weighted MS and TTD functions, calcu-
lated from occupancy and flow measurements, which
is defined analytically via (8). In (12) E[ · ] is the expec-
tation operatorwhich is adopted in view of the stochas-
tic term ζ. The matrix R is a user-defined symmetric
positive definite matrix used to regulate the control
authority (similar to what happens in linear-quadratic
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control). According to the HJB equation, the optimal
solution to the maximization of (12) satisfies

max
u

{(∂V ∗

∂x

)T
( f (x)+Bu)+Π(x)+uT Ru+Σζ

}
� 0, (13)

where Σζ is the covariance of ζ and V ∗(x) denotes the
so-called optimal cost-to-go function. The optimal con-
troller u∗ can be seen to satisfy

u∗ �−1
2 R−1BT

(∂V ∗

∂x

)
. (14)

Solving exactly the HJB equation (13) would be in-
tractable for the large-scale instances arising frommost
urban networks. For this reason, in the following we
propose an adaptive approximate dynamic program-
ming approach to the solution of the optimization
problem.

3.1. The P-CAO Algorithm
The solution of the HJB equation is approximated via

V ∗(x)� V(x)+O(1/L)� zT(x)Pz(x)+O(1/L), (15)

where z(x) is an opportune transformation of the state,
P is a positive definite matrix, and O(1/L) indicates an
approximation error that can be made as small as de-
sired by increasing the complexity L of z(x). Several
functions can be used for z(x) to approximate the opti-
mal solution of the HJB equation with arbitrary preci-
sion: the most popular are neural networks with radial
basis, monomials, or other basis functions (Parisini and
Zoppoli 1998). In this case L refers to the number of
neurons: the more neurons, the better the approxima-
tion. In general, smoothness of F and J guarantee a
smooth solution of the HJB equation, which can be
approximated with arbitrary precision by increasing L
(Passino and Yurkovich 1998). The optimal controller
u∗ given in (14) can be approximated as

u∗ �−1
2 R−1BT

(∂V
∂x

)
+O(1/L). (16)

By using the approximations (15) and (16) and inte-
grating the HJB in the interval [t , t + δt), where δt > 0
is a discretization step, one can see that in case the
optimal controller u∗ were applied, then

∆V(x(t))+E
[∫ t+δt

t

[
Π(x(τ))+ u∗T(τ)Ru∗(τ)

]
dτ

]
� O(1/L), (17)

where ∆V(x(t)) � V(x(t + δt)) − V(x(t)). Having the
above equation in mind and the provided approxima-
tions, let us assume that the controller

û � û(x(t); P̂)�−R−1BT Mz(x)P̂z(x) (18)

is applied to the simulation model, where P̂ denotes an
estimate of the unknown matrix P. Let us also define
the “error” term

ε(x(t), P̂)�∆V̂(t)+E
[∫ t+δt

t

[
Π(x(τ))+ ûT Rû

]
dτ

]
, (19)

where V̂ � V̂(x(t); P̂) � zT(x)P̂z(x) and ∆V̂(t) �
V̂(x(t + δt)) − V̂(x(t)). Using Equation (17), it can be
seen that the error term ε(x(t), P̂) provides us with a
measure of how far the estimate P̂ is from its optimal
value P. Using the above equation, one may employ
the standard gradient descent for updating P̂, i.e.,

P̂t+∆t � P̂t − η∇P̂ε(x(t), P̂), η > 0, (20)

in an attempt to minimize the error term ε(x(t), P̂) and,
thus, to have P̂ converge as close as possible to its opti-
mal value P. However, (20) needs an analytic expres-
sion for the gradient ∇P̂ε(x(t), P̂). Such an analytic
expression is practically impossible to be obtained for
large-scale systems, as it involves an analytic expres-
sion of the overall system dynamics. Furthermore,
the expression in (19) is stochastic. To overcome all
of the above problems, we combine the derivative-
free2 cognitive-based adaptive optimization algorithm
(Baldi et al. 2014; Baldi, Michailidis, and Ravanis 2015)
with the presented approximation of the HJB equa-
tion (via the P-based controller (18)) and a simulation-
based design described in Section 3.2.

3.2. Simulation-Based Design
The AIMSUN traffic model we used is stochastic, be-
cause of the stochastic traffic demand. As a result, the
performance index to be optimized is also stochas-
tic. The proposed cognitive-based adaptive optimiza-
tion algorithm is based on stochastic approximation
methods, which consider the case that the performance
index is calculated via noisy observations (e.g., be-
cause of the stochastic noise) (Kushner and Yin 1997).
The main idea behind stochastic approximation is to
update a parameter P̂ (e.g., the new traffic control strat-
egy in our case) via

P̂(k + 1)� P̂(k)+ α(k)(N̂ −N(P̂(k))), (21)

where N(P̂(k)) is a noisy estimate of the current per-
formance index and N̂ is another noisy estimate (as
predicted by an estimator). Convergence with prob-
ability 1 to a (local) minimum can be proved pro-
vided that the update gain α(k) satisfies the following
properties:

∞∑
k�0

α(k)�∞,
∞∑

n�0
α2(k) <∞. (22)

In the following, wewill explain how to create a proper
estimate for the performance index. Since stochastic
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approximation does not require any analytical form
for the gradient, the necessary traffic data can be col-
lected from an elaborate simulationmodel of the urban
traffic network, instead of a simplified model of the
traffic flow. A recent trend in control of large-scale sys-
tems is a simulation-based design, where an optimizer
redesigns the controller so as to maximize the sys-
tem performance. The system performance is evalu-
ated via simulations of the system to be controlled,
and the simulation/redesign procedure is repeated
in an iterative fashion (Andradóttir 1998; Fu 2002;
Tekin and Sabuncuoglu 2004). The main advantage of
this approach is that the controller design does not
require any simplifications of the system; the controller
can be designed and evaluated using realistic condi-
tions and historical data. To obtain an estimate for the
performance index that is robust to stochastic effects
one could test a control strategy over several traffic
demands and average the resulting performance.
The disadvantage of simulation-based design, how-

ever, lies in the fact that any control strategy must
be tested in the simulator and the lack of an ana-
lytical model of the system to be controlled requires
the use of derivative-free optimization methods that
have to repeatedly evaluate the performance index:
the convergence of derivative-free optimization meth-
ods is typically slow, and the scale of the problems
that can be efficiently tackled is substantially reduced
as compared to their derivative-based counterparts
(Conn, Scheinberg, and Vicente 2009). In this paper,
we aim at reducing the number of evaluations of the
performance index by developing an estimator of the
performance.

The setup of the simulation-based design is depicted
in Figure 1. Two loops can be identified, the first one
acting online on the real network, and the second one
acting offline to evaluate the performance of a cer-
tain control strategy. The parametrized controller (18)
acts on the traffic network and determines the control
strategy (split time, cycle times). After an initializa-
tion phase, where the controller parameters are ini-
tialized to some initial value (e.g., the TUC parameter
values), in real time, the traffic network reports the per-
formance of the strategy. This performance is used to
train an estimator, whose main task is to estimate (in a
mean-square sense because of the stochastic noise) the
relation between P̂ and ε in (19).

At the same time, offline, the simulator is used to
estimate the performance of the current strategy, which
is judged as the best till that moment: the purpose is
to provide the term N(P̂(k)) in (21). The term N̂ in
(21) comes from the estimator that evaluates the per-
formance of several candidate traffic strategies gener-
ated around the current strategy. The best strategy (in a
mean-square sense) according to the estimator is given

to the simulator, which uses it to calculate the average
performance measure (12) and assess if it is better than
any strategy tried thus far. The following two steps are
iterated until an optimal performance is reached:

Step 1. The control parameters are used offline to
simulate the average system performance over the
whole simulation period.

Step 2. Based on the average system performance,
the optimizer, via the estimator and the stochastic ap-
proximation approach (21) calculates the new control
parameters in an attempt to improve the system per-
formance at the next iteration.

The resulting simulation-based P-CAO scheme guar-
antees, with probability 1, convergence to a minimum
of the function ε2(x(t), P̂), as summarized by the fol-
lowing theorem, whose proof can be verified using the
same mathematical tools of Baldi et al. (2014).

Theorem 1. The P-CAO algorithm depicted in Figure 1,
guarantees that P̂t converges with probability 1 to the set

E� {P̂: P̂ is positive definite and ∇P̂ε
2(x(t), P̂)� 0.}

Proof. See Baldi et al. (2014).

Remark 1. The simulation-based design is simulator
independent: nothing forbids fromusingamacroscopic
simulation model for the control design (store-and-
forwardmodel, S-model, etc.). However, inmost practi-
cal casesmesoscopic/microscopic simulators likeAIM-
SUN emulate the behavior of real networkswith higher
precision. Furthermore,mesoscopic/microscopicmod-
els offer the opportunity to check important features
of a traffic network like position and velocity of single
vehicles and emissions (Papageorgiou 1998; Osorio and
Nanduri 2015).

4. Simulation Setup and Scenarios
The proposed algorithm has been tested by using the
urban traffic network of Chania, Greece, shown in
Figure 2. The network comprises 16 controlled junc-
tions with a total of 45 control inputs (42 split times
and 3 cycle time parameters) and 122 sensor mea-
surements (61 loop-detectors providing occupancy and
flowmeasurements): the signal-controlled network has
a total length of approximately 8 km, with many vari-
eties of junction staging. An AIMSUN-based simula-
tionmodel of the network, including themaster control
plan and dynamic traffic assignment, have been tuned
and validated within the activities of several European
Union projects (Traman21 2017; Nearctis 2017), so that
the behavior of the AIMSUN model can emulate the
behavior of the real network with high precision.

The following settings have been used for the AIM-
SUN model:

• No Origin-Destination matrix information and
dynamic traffic assignments have been used in our
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Figure 2. Schematic Map of Chania Traffic Network Showing Junction and Link Numbers
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simulations. Instead, turning rates at each junction
are constant throughout one simulation and could be
changed todifferent values (to test adaptation). This im-
plies that there is no actual disaggregate route choice
and that, for each simulation, traffic assignment is fixed
rather than endogenous.

• We assumed phase sequencing in traffic lights to
be fixed. The sequence is in practice fixed for all sys-
tems the authors are aware of.

• Stochasticity in the demand is achieved by adding
significant perturbations to nominal flow data for the
network origins/exits (so as to have different realiza-
tions of traffic demand).

4.1. Traffic Scenarios and Comparative
Control Strategies

By using flow data, the network origins/exits, i.e.,
number of vehicles/per minute entering/exiting the
network in each of the network origins/exits, three dif-
ferent traffic demand scenarios were created. Each sce-
nario has a length of 60 days, and they can be classified
as follows:

• Scenario 1, undersaturated scenario. This sce-
nario, with a daily average traffic demand of approx-
imately 1,800 veh/h, simulates the typical traffic de-
mand occurring most of the year.

• Scenario 2, slightly saturated scenario. This sce-
nario, with a daily average traffic demand of approx-
imately 2,900 veh/h, simulates larger traffic demands
than the normal operating conditions of the network.

• Scenario 3, saturated scenario. This scenario,
with a daily average traffic demand of approximately
3,800 veh/h, simulates the traffic demand during the
city’s tourist season.

The length of 60 days has been chosen because it
allows for different realizations of traffic demand: in
such a way the performance of a traffic signal con-
trol strategy can be averaged over different days, and a
more indicative performance index can be calculated.
It is worth mentioning that of the 60 days replications
we used, 40 are used for control design and 20 are used
for testing. In this way we can test whether the perfor-
mance of a traffic strategy is consistent with different
replications. Note that this test can be considered as a
test for robustness to replication seeds, rather than to
day-to-day variability, since the latter would actually
be composed of significant variations in the structure
and magnitude of the origin-destination matrix.3

Together with the proposed P-CAO strategy, three
alternative traffic control strategies will be used for
comparison purposes:

• The first strategy is the TUC strategy, which
uses the cycle control module (1) with proportional
gains K1 � 80 and K2 � 20, critical saturation σcr �
0.65, and target saturation σ0 � 0.15. These parameters
have been tuned within the activities of the aforemen-
tioned projects (Traman21 2017; Nearctis 2017), based
on many simulations and experiments on the Chania
network, so as to achieve a good performance (in terms
of mean speed) under several traffic demand scenar-
ios. The state-feedback gain in (2) has been found to



Baldi et al.: A Simulation-Based TSC for Congested Urban Traffic Networks
14 Transportation Science, 2019, vol. 53, no. 1, pp. 6–20, ©2017 INFORMS

be based on the simplified store-and-forward model of
the Chania network: for details on the design of the
split control module, the reader is referred to Diakaki,
Papageorgiou, and Aboudolas (2002).

• The second strategy is the receding-horizon strat-
egy of Aboudolas et al. (2010), hereafter abbreviated
RH-QPC. The receding optimization uses the same
store-and-forwardmodel as theTUCstrategy: theprob-
lem of networkwide signal control is formulated as a
quadratic-programming problem that aims at balanc-
ing the links occupancies. Note that the optimization
problem allows the optimization of the split time, but
not the cycle time. The cycle time is then chosen accord-
ing to the same Equation (1) as in the TUC strategy.

• The third strategy is an alternative simulation-
based strategy based on the fmincon optimizer imple-
mented in the Matlab Optimization Toolbox (Coleman
and Zhang 2013). The strategy is hereafter abbrevi-
ated FMINCON. The performance index to be opti-
mized is (8), the same as in the P-CAO case. Despite
many trials, it has been found when trying to optimize
both the split and the cycle time, fmincon is not able
to find a better solution than the initial one, despite
thousands of iterations. This was probably because of
the large search space and the need to estimate gra-
dients by finite differences. To reduce the number of
parameters involved in the optimization, the authors
adopted a particular implementation, where K1( · ),
K2( · ), and σ0( · ) are linear functions of χ optimized by
fmincon, while the split time is chosen according to the
same Equation (2) as in the TUC strategy.

4.2. P-CAO Strategy: Linear and Piecewise
Linear Control Strategy

To limit computational complexity, in this work we
will concentrate on two particular implementations of
P-CAO. The first implementation arises from choosing
L � 1 and is equivalent to considering the quadratic
Lyapunov function V(x) � xTPx in (15). The resulting
approximately optimal controller will be a linear one
of the form

u �−R−1BTPx �−KP-CAOx. (23)

As a result, both the split and the cycle time will be
linear functions of the network states. As a second
control strategy, we exploit the switching behavior of
the cycle control module (1), which employs two dif-
ferent control strategies for undersaturated (‖σ‖ ≤ σcr)
and saturated (‖σ‖ > σcr) traffic conditions. The second
implementation arises from choosing L � 2 and it is
equivalent to considering the following bimodal piece-
wise linear strategy. The piecewise quadratic Lyapunov
function V(x)� z(x)TPz(x) in (15) is taken as

z(x)�
[√
β1(x)x√
β2(x)x

]
, (24)

Figure 3. (Color online) Mixing Signals As a Function of
‖σ‖: β1(x) (Solid, Undersaturated Network) and β2(x)
(Dash–Dotted, Saturated Network)
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Such a (smoothly) switched control strategy is
achieved by defining the two mixing functions

β1(x)�
1

1+ eh(‖σ‖−σcr)
, β2(x)� 1− β1(x), (26)

u �−R−1BT Mz(x)
[

P1 0
0 P2

] [√
β1x√
β2x

]
, (27)

where h > 0 regulates the sharpness of the sigmoid,
β1 is active when ‖σ‖ ≤ σcr, and β2 is active when
‖σ‖ > σcr. The two mixing functions in (26) are shown
in Figure 3. We will refer to the control strategies aris-
ing from (23) and (27) as “P-CAO L � 1” and “P-CAO
L � 2,” respectively. The benefits of adopting hybrid
strategies under unsaturated and saturated conditions
have been demonstrated in works such as Abu-Lebdeh
and Benekohal (2003).

4.3. Evaluation Objectives
The purpose of the simulations will be to evaluate the
performance of the different TSC strategies according
to the following objectives:

(a) Optimality. A first requirement to be satisfied by
any traffic control strategy is to optimize the cost in
(8), which refers to the joint maximization of MS (to
increase throughput) and of TTD (to avoid gating). In
general, we expect TUC to be the less performing TSC,
for the reason that it has less degree of freedom than
the other strategies (in FMINCON, K1( · ), K2( · ), σ0( · )
are linear functions of χ, while in RH-QPC the split
time is the result of a receding-horizon optimization).
Since P-CAO can optimize both split and cycle time, it
is expected to lead to the best performance.
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(b) Computational complexity/convergence. Effective im-
provements can be achieved only if the optimization
method is able to handle the optimization problem in
an efficient way. It might happen that increasing the
degree of freedom causes the optimization to fail. For
example, RH-QPC is at stake if the prediction horizon
becomes too long, and FMINCON is at stake with a
large parameter search space (e.g., optimize both split
and cycle time) and when gradients have to be esti-
mated by finite differences. The interest is in checking
how fast P-CAO can provide the nearly optimal solu-
tion. Here, we expect that more complex parametriza-
tions of the control strategy (e.g., bimodal) will lead
to slower convergence (because of the high number of
parameters) but to a better optimum than simpler pa-
rametrizations (e.g., linear).

Table 1. TUC and P-CAO Average Performances (Average Values Over 60 Days)

MS TTD TTS MS TTD TTS MS TTD TTS
(km/h) (km · veh) (h · veh) (km/h) (km · veh) (h · veh) (km/h) (km · veh) (h · veh)

TUC
Scenario 1 17.4 3.45 · 107 1.98 · 106

Scenario 2 13.1 4.35 · 107 3.32 · 106

Scenario 3 6.9 4.71 · 107 6.83 · 106

P-CAO L � 1 δ1 � 1, δ2 � 0 δ1 � 1, δ2 � 1e–8 δ1 � 1, δ2 � 1e–6
Scenario 1 20.1 3.46 · 107 1.72 · 106 18.9 3.51 · 107 1.86 · 106 18.2 3.55 · 107 1.95 · 106

(+15.5%) (+0.3%) (−13.1%) (+8.6%) (+1.7%) (−6.0%) (+4.6%) (+2.9%) (−1.5%)
Scenario 2 15.2 4.36 · 106 2.87 · 106 14.4 4.38 · 107 3.04 · 106 13.9 4.41 · 107 3.17 · 106

(+16.0%) (+0.2%) (−13.6%) (+9.9%) (+0.7%) (−8.4%) (+6.1%) (+1.4%) (−4.5%)
Scenario 3 8.6 4.76 · 107 5.53 · 106 8.0 4.88 · 107 6.10 · 106 7.6 5.07 · 107 6.67 · 106

(+24.6%) (+1.0%) (−19.0%) (+15.9%) (+3.6%) (−10.7%) (+10.1%) (+7.6%) (−2.3%)
P-CAO L � 2 δ1 � 1, δ2 � 0 δ1 � 1, δ2 � 1e–8 δ1 � 1, δ2 � 1e–6
Scenario 1 20.6 3.47 · 107 1.68 · 106 19.2 3.54 · 107 1.84 · 106 18.5 3.57 · 107 1.93 · 106

(+18.4%) (+0.6%) (−15.2%) (+10.3%) (+2.6%) (−7.0%) (+6.3%) (+3.5%) (−2.5%)
Scenario 2 15.9 4.37 · 107 2.75 · 106 14.7 4.41 · 107 3.00 · 106 14.1 4.44 · 107 3.15 · 106

(+21.4%) (+0.5%) (−17.2%) (+12.2%) (+1.4%) (−9.6%) (+7.6%) (+2.0%) (−5.1%)
Scenario 3 9.2 4.78 · 107 5.20 · 106 8.4 4.97 · 107 5.92 · 106 8.2 5.35 · 107 6.52 · 106

(+33.3%) (+1.5%) (−23.9%) (+21.7%) (+5.5%) (−13.3%) (+18.8%) (+13.6%) (−4.5%)

Note. The percentages are calculated with respect to the TUC performance.

Table 2. RH-QPC and FMINCON Average Performances (Average Values Over 60 Days)

MS TTD TTS MS TTD TTS MS TTD TTS
(km/h) (km · veh) (h · veh) (km/h) (km · veh) (h · veh) (km/h) (km · veh) (h · veh)

RH-QPC
Scenario 1 19.7 3.46 · 107 1.76 · 106

(+13.2%) (+0.3%) (−11.1%)
Scenario 2 14.0 4.36 · 106 3.11 · 106

(+6.9%) (+0.2%) (−6.3%)
Scenario 3 7.1 4.72 · 107 6.65 · 106

(+2.9%) (+0.2%) (−2.6%)
FMINCON δ1 � 1, δ2 � 0 δ1 � 1, δ2 � 1e–8 δ1 � 1, δ2 � 1e–6
Scenario 1 19.3 3.46 · 107 1.79 · 106 18.5 3.49 · 107 1.89 · 106 17.9 3.52 · 107 1.97 · 106

(+10.9%) (+0.3%) (−9.6%) (+6.3%) (+1.1%) (−4.5%) (+2.9%) (+2.0%) (−1.0%)
Scenario 2 14.7 4.36 · 106 2.97 · 106 14.0 4.38 · 107 3.13 · 106 13.6 4.40 · 107 3.24 · 106

(+12.2%) (+0.2%) (−10.5%) (+6.9%) (+0.7%) (−5.7%) (+3.8%) (+1.1%) (−2.4%)
Scenario 3 8.4 4.74 · 107 5.64 · 106 7.9 4.83 · 107 6.11 · 106 7.5 5.01 · 107 6.68 · 106

(+21.7%) (+0.6%) (−17.4%) (+14.5%) (+2.5%) (−10.5%) (+8.7%) (+6.4%) (−2.2%)

Note. The percentages are calculated with respect to the TUC performance.

(c) Adaptation. If the traffic conditions change, the
traffic flow model will also be affected (in particular,
the turning rates might change). This will create a mis-
match between the model used for control design, and
the real system: such a mismatch is called model-plant
mismatch. The interest is to quantify the mismatch and
the possible improvements arising from adapting to
the new system.

5. Simulation Results
The discussion of the results is organized according to
the three evaluation objectives of Section 4.3.

5.1. Optimality
Tables 1 and 2 summarize, for different weights δ1 and
δ2 in (8), the results of P-CAO,RH-QPC, andFMINCON
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control strategies as compared to TUC. The values
reported in the tables are average values over 60 days;
the performance of the P-CAO and FMINCON strate-
gies is calculated using the final controller to which the
optimization converged. Note that the improvement
results are given with respect to the entire 60 days,
because we did not note any relevant difference in per-
formance improvement between the 40 days used for
design and the 20 days used for testing. This observa-
tion gives us a reasonable hint that the presented traffic
control strategies are robust to stochastic variations in
the demand. Table 1 reveals that, depending on the
particular weights δ1, δ2 and on the particular scenario,
improvements from 5% to 33% in MS and from 0.2% to
13% in TTD can be achieved. In particular, the bigger
δ2, the more the emphasis on TTD improvement with
respect to MS improvement. The TTS is also reported,
showing that, as δ2 decreases, the improvement with
respect to the time spent on the network goes from
1.5% to 23.9%. The biggest improvements over the TUC
strategy can be achieved in Scenario 3 (saturated). Note
that P-CAO L � 2 shows its superior performance over
P-CAO L � 1 especially in Scenario 3, because in this
scenario the bimodal behavior of Figure 3 is more pro-
nounced (while in Scenarios 1 and 2 the first mode is
mostly active, and a single-mode linear control strategy
can do as good as a bimodal one).
Table 2 reports the improvements of the RH-QPC

and FMINCON strategies as compared to the TUC
strategy. Being based on the minimization of TTS, the
RH-QPC does not employ any tuning parameter δ1, δ2.
The following observations can be made: In all three
scenarios it appears that the cycle time strategy found
by FMINCON has a more beneficial effect than the
split time found by RH-QPC; the improvement of the
RH-QPC strategy is less effective going from Scenario 1
to Scenario 3 (as shown in Aboudolas et al. 2010);
finally the improvement of the FMINCON strategy is
more effective going from Scenario 1 to Scenario 3.
To understand the reasons behind the improvements

of Table 1, Figure 4 demonstrates, for a particular peak
traffic of Scenario 2, the improved performance of P-
CAO (L � 2, δ1 � 1, δ2 � 1e–8) as compared with TUC.
More precisely, Figure 4 depicts the occupancies for five
significant links of the network (links 10, 21, 22, 23,
and 39) during a peak traffic demand period. Note that
theP-CAOtrafficcontrol systemreduces congestion sig-
nificantly by decreasing the occupancy (roughly speak-
ing, smaller occupancy peaks are related to shorter
queues and thus reduced congestion). It is interesting to
note that P-CAO can serve all of the vehicles in the net-
work faster than the TUC strategy: serving all vehicles
means that all of thevehicles thatwere at theoriginhave
exited the network. When all vehicles are served, the
network is empty and occupancy drops to zero. From

Figure4, note thatP-CAOhasalreadyservedall vehicles
in the network when in the network controlled via the
TUC strategy there is some residual traffic: this demon-
strates the capacityof theP-CAOstrategy to increase the
throughput of the network.

Remark 2. The comparison between RH-QPC and
P-CAO shows that, at least in this traffic application, it
seemscrucial todocontroldesignonanalreadyrealistic
model. In fact, traffic parameters optimized on a simpli-
fied trafficmodel (the store-and-forwardmodel) lead to
a performance that is far from the performance of a traf-
fic strategy designed directly on the AIMSUNmodel.

5.2. Computational Complexity and
Convergence of P-CAO

We now analyze the computational complexity and
convergence of the P-CAO algorithm. The total number
of decision variables is equivalent to the elements of
the matrix P̂, i.e., 14,028 × L optimization parameters.
Keeping L low (L � 1 or L � 2) is beneficial in keep-
ing the total complexity low. In a workstation with a
quad-core processor at 3.6 GHz, 10 MB, 8 GB RAM
at 1,600 MHz, the time required at each iteration to
run the secondary simulation-based loop of Figure 1
is around five to six minutes (including training the
P-CAO estimator and evaluating the performance of a
TSC strategy over a horizon of 50 to 60 days). The over-
all iteration is therefore feasibly implementable online
adopting a time step of 10 minutes.

From a practical point of view, the 50 to 60 days of
traffic demand can be taken from a buffer of historical
traffic demands collected in the past and stored in a
database. In fact, many traffic centers use cluster traf-
fic demand data in different groups according to the
day, season, weather, etc. (Anbaroglu, Heydecker, and
Cheng 2014).

Figure 5 shows, for Scenario 3, the convergence of the
performance index (both MS and TTD) during the P-
CAO iterations with L � 1 and L � 2 (δ1 � 1, δ2 � 1e–6).
At every iteration, the performance index is the mean
performance indexover the 60days simulationhorizon.
The convergence of P-CAO L � 1 is faster, since a smaller
number of parameters has to be optimized, but P-CAO
L � 2 can eventually converge to a better performance.
The time required to run 500 iterations of P-CAO on
the workstation is of the order of one day, and a result
that is close to convergence, with an improvement from
10% to 30% over TUC, depending on the scenario and
the weights. So the P-CAO strategy can be adopted as
an offline optimization strategy, where the traffic sig-
nal control strategy is updated from one day to the next
and P-CAO runs till convergence, using the data col-
lected during the last day, and possible traffic demand
predictions based on historical data for the next day(s).
Compared to the Nelder–Mead method (implemented
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Figure 4. (Color online) Peak Traffic Demand in Scenario 2 (Slightly Saturated): Occupancies (in %) at Selected Representative
Network Links Under TUC and P-CAO Strategy (L � 2, δ1 � 1, δ2 � 1e–8)

(a) Occupancy at links 10 and 22
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(b) Occupancy at links 10 and 22
using P-CAO L = 2
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(c) Occupancy at link 21 using TUC
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(d) Occupancy at link 21 using
P-CAO L = 2
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(e) Occupancy at links 23 and 39
using TUC
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(f) Occupancy at links 23 and 39
using P-CAO L = 2
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in the derivative-free version of the function fmincon),
which is used to optimize both cycle and split time, we
achieved only minimal improvements (around 0.2%)
with respect to the initial solution after 1,000 iterations
and five days of computational time. This was proba-
bly because of being stuck in a local minimum and to
critical performance of the algorithm when gradients
have to be estimated by finite differences over a large
parameter search space. We decided to use fmincon

only for the optimization cycle time,where convergence
was achieved after around three days of simulations
(against the one day of P-CAO).

5.3. Model-Plant Mismatch and Need for an
Adaptive Strategy

This section is devoted to investigating the suboptimal-
ityof theTUC,RH-QPC,andFMINCONstrategies.Two
main causes for suboptimality can be identified:
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Figure 5. (Color online) Convergence of MS and TTD
During P-CAO Iterations in Scenario 3: P-CAO L � 1
(Dotted) and P-CAO L � 2 (Solid) (δ1 � 1, δ2 � 1e–6)
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• The store-and-forwardmodel is an approximation
of the AIMSUN network dynamics. As a consequence,
any control strategy synthesized on such a model is
suboptimal with respect to the real network dynamics.
This is valid for TUC and RH-QPC, but not P-CAO,
which uses the AIMSUNmodel for the control design.
It is partially valid for FMINCON, where the cycle time
is optimized based on the AIMSUN model, but the
split time is based on the store-and-forward model.

• Modifications of the turning rates of the net-
work require retuning the simplified store-and-forward
model for the new conditions. A modified store-and-
forwardmodel is required to describe the new network
dynamics: as a consequence, any control strategy syn-
thesized on the “wrong” store-and-forward model is
suboptimalwith respect to thenewnetworkdynamics.4
In both cases we have a model-plant mismatch that

might lead to suboptimality of the control strategy.
To check suboptimality, two performance indexes are
adopted in this work:

(a) The one-step-ahead prediction error of the occu-
pancies χ based on the store-and-forward model.

(b) The improvements achievable by tuning KTUC in
(2) via the approach described in Li, Tang, and Head
(2003).We call the resulting strategy TUC-MOD,mean-
ing that the underlying split module employs a modi-
fied store-and-forward model.
The norm of the one-step-ahead prediction error

is normalized with respect to the norm of the real
occupancies

ERR% �

∫ Tfin

0 (χ(t) − χ̂(t))′(χ(t) − χ̂(t)) dt∫ Tfin

0 χ′(t)χ(t) dt
, (28)

where χ̂ are the one-step-ahead occupancies predicted
by the nominal store-and-forward model. Table 3

Table 3. One-Step-Ahead Prediction Error Based on the
Fixed Store-and-Forward Model (Average Values Over
60 Days)

TUC ERR%(%)

Scenario 1 17.3%
Scenario 2 21.8%
Scenario 3 30.4%

Note. The error is calculated under the TUC strategy.

shows the values of the one-step-ahead prediction
error (28) for each scenario under the TUC strategy.
The table indicates the presence of a large mismatch
between the real network dynamics and the store-and-
forward model. Furthermore, the mismatch increases
with increasing traffic demand, which indicates phe-
nomena in the network dynamics that cannot be cap-
tured by the store-and-forward model (e.g., saturating
links). We conclude that both causes for suboptimal-
ity are present in the Chania traffic network, and that
any effective traffic control strategy must be embedded
with adaptation capabilities to minimize the effect of
model-plant mismatch.

The change of performance after tuning KTUC in (2) is
adopted to check to what extent adaptation can help in
minimizing the effect of the aforementionedmismatch.
The improvement goes from 4.3% to 10.9% in terms
ofMS. From theproposed analysiswe conclude that the
traffic conditions of Scenarios 1, 2, and 3 require differ-
ent trafficcontrol strategies (i.e., differentKTUC): by look-
ing back at Table 1we can then appreciate that P-CAO is
able to deliver improved performance under any traffic
demand, thus showing adaptation capabilities.

Remark 3. The performance of RH-QPC in Table 2
already showed us that, at least in this traffic applica-
tion, it seems crucial to do control design on a real-
istic traffic model. The results of Table 4 reinforce
this concept because the change of performance after
tuning KTUC can give a measure of the effect of the
aforementionedmismatch. Table 4 justifies the employ-
ment of an adaptive control strategy with the ability to
deliver different traffic light parameters with different
traffic demand conditions.

Table 4. TUC–MOD Average Performances (Average Values
Over 60 Days)

TUC–MOD MS (km/h) TTD (km · veh) TTS (h · veh)

Scenario 1 19.3 (+10.9%) 3.47 · 107 (+0.6%) 1.80 · 106 (−9.1%)
Scenario 2 14.0 (+6.9%) 4.38 · 106 (+0.7%) 3.13 · 106 (−5.7%)
Scenario 3 7.2 (+4.3%) 4.80 · 107 (+1.9%) 6.67 · 106 (−2.3%)

Note. The percentages are calculated with respect to the TUC per-
formance.
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6. Conclusions and Future Work
The need for simulation models to analyze complex
systems is expected to increase the interest in simu-
lation-driven control synthesis: an algorithm for sim-
ulation-based urban traffic control design has been
exposed. The proposed algorithm maximizes a per-
formance index composed of mean speed and total
travel distance: the maximization problem involves
checking how close the applied control action satis-
fies the HJB equation associated with the optimiza-
tion problem. A mesoscopic/microscopic simulation
model of the system has been used to assess the future
performance of the control action. Employing meso-
scopic/microscopic models in simulation-driven con-
trol synthesis has the advantage of reducing themodel-
plant mismatch occurring in the presence of simplified
macroscopic traffic models. A well-known problem of
adopting simplified traffic flow models is that, when
implemented in real life, the performance of the result-
ing strategy may be far from optimal and may need to
be further improved by opportunely tuning the control
gains. A contribution of the proposed work was the
quantification of the model-plant mismatch occurring
with a store-and-forward model, and the quantifica-
tion of the benefits of adopting the proposed strategy.
Extensive simulations, conducted using a microscopic
simulation model on the urban network of Chania,
Greece, shows the effectiveness of the method, and
its capability of efficiently handling large-scale con-
trol problems. The scalability of the controller, together
with the algorithm employed to solve the approxi-
mated HJB equation, makes the proposed methodol-
ogy capable of handling control problems resulting
from very large urban networks. Six traffic control
strategies have been implemented: the TUC strategy, a
receding-horizon based strategy, a strategy found via
the fmincon optimization of Matlab, a fine-tuned TUC
strategy, and two implementations of the proposed
P-CAO strategy. The numerical comparisons show rele-
vant improvements in terms of mean speed, total travel
distance, and total time spent in the network: further-
more, the proposed strategy is able to deliver effective
control strategies under many different traffic demand
scenarios (low, medium, and high demand).
This work can be extended in further directions.

In most applications, cycle lengths must be the same
for all intersections in the coordination plan to main-
tain a consistent time-based relationship: one exception
would be an intersection that “double cycles,” serv-
ing the phases twice as often as the other intersections
in the system. Further work will concentrate on more
elaborate cycle time control strategies, requiring adap-
tive switching control tools in the spirit of Baldi, Ioan-
nou, and Kosmatopoulos (2012) and Baldi et al. (2012).
Another topic of future work will be elaborating online
key performance indicators that might reveal when

a significant model-plant mismatch is occurring, so
that redesign of the traffic control strategy is required.
Finally, since we are not calibrating the traffic model
used for simulations in real time, future work could
consider other calibration/optimization exercises to
calibrate the model based on recent data received in
real time (Kosmatopoulos et al. 2007).

Endnotes
1 In most practical situations, the cycle time is the same in all junc-
tions in the network to avoid dead times caused by resynchronization
of adjacent junctions.
2With the term “derivative-free optimization,” we refer to any algo-
rithmwhere the derivative is not available analytically, but it is either
not calculated at all like in genetic algorithms or it is approximated
numerically like in Quasi–Newton methods.
3 In the authors’ experience, changing the replication seed brings
enough variability to test robustness to stochasticity (see real-life
studies in Dinopoulou, Diakaki, and Papageorgiou 2005).
4Note that in this last case, the AIMSUN model might require re-
tuning the turning rate parameters, unless route choice features
like dynamic traffic assignment or dynamic user equilibrium (not
addressed in this work) are adopted in the model.
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