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Abstract
Optimal energy management is still a challenge in full-electric vessels. New degrees of flexibility in the energy management
resulting from the load sharing between multiple, heterogenous power sources lead to a suboptimal solution using rule-
based control. Therefore, advanced control strategies present a solution to the challenge of finding the optimal control
input for a nonlinear multi-objective power and energy problem in sufficient time. As additional benefit, advanced control
allows to incorporate multiple objectives in the optimization such as minimization of several emissions, operational costs,
and component degradation. Equivalent Consumption Minimization Strategy (ECMS) is a strategy for instantaneous
optimization, which is promising for applications in vessels with a high degree of uncertainty in the load profile. It
incorporates multiple objectives by assigning equivalent cost factors in the cost function, allowing a flexible expansion
of the control problem. In this paper, we present a novel ECMS-based control strategy for a full-electric vessel with the
ability to react flexibly to changing mission conditions. First, we define the objectives for the control problem, in this
study CO2 production, hazardous emission production, fuel consumption, energy cost, and the degradation of the battery.
Second, we develop a pareto-front approach for a-posteriori definition of the equivalent cost factors. To showcase energy
consumption reduction, we use a benchmark control based on state-of-the-art control strategies. A full-electric case study
vessel with high uncertainty in the load profile is chosen to evaluate the proposed controller. Several different load profiles
are generated and tested to evaluate the performance of the ECMS controller in dealing with different types of loads. The
results will demonstrate the effectiveness of the proposed novel control strategy in reducing energy consumption while
minimizing other hazardous emission outputs and preserving the health of the battery.

Keywords: Energy Management; Full-Electric Vessel; ECMS; Multiobjective Optimization; NOx emission.

1 INTRODUCTION

The electrification of vessels is an important
step in the direction of climate-friendly transporta-
tion [1]. Full-electric vessels often combine hetero-
geneous power generation and storage components,
which allows for a more fuel-efficient operation and
decreased CO2 emission [2]. However, this en-
hanced flexibility of the power generation also leads
to a raised complexity of the system [3]. This raised
system complexity leads to a non-optimal control
solution using rule-based control (RBC) [4]. A so-
lution to this problem is to use advanced control
strategies. An additional benefit of advanced con-
trol is the possibility to minimize several objectives
alongside the control strategy.

The first step to change the propulsion system
of a vessel towards zero-emission is to use battery-
only systems [5]. However, the short autonomous
travel distance limits the application of battery-only

systems due to the relatively low energy density of
batteries [6]. The autonomous travel distance can
be increased by using alternative fuels in the propul-
sion system [5]. Alternative fuels can be used in a
variety of technologies such as Internal Combustion
Engines (ICE) or fuel cells (FC) [7]. The first step
to introduce alternative fuels in the energy man-
agement of a full-electric vessel is the operation of
different sets of diesel engines alongside to bene-
fit from their individual characteristics. One major
benefit of using ICE is the ability to provide high
loads with comparatively fast dynamic response at
low cost [8].

However, ICE still produce emission under oper-
ation. One emission, which is not often considered
in current control research in the maritime is the pro-
duction of NOx. Different than CO2 output, which
relates linear to the fuel consumption, the formation
of NOx is not correlated to the fuel consumption
but rather to the operational conditions in the en-
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gine. Considering this in a control problem adds to
the complexity of the developed control since sev-
eral more objectives are relevant to vessel energy
management. While another major cost factor for
the control is the reduction of fuel consumption, the
extension of components’ lifetime due to optimal
usage gains more interest with full-electric systems
operating with batteries and fuel cells. This com-
bination of several objectives in the same strategy
is called multi-objective control. All the objectives
of interest for the vessel control can be categorized
into different categories. Depending on the type of
objective, the optimal point of operation differs, so
the control has to find the best possible compromise.
Batteries introduce greater flexibility into the opera-
tion of energy systems. However, their degradation,
influenced by time and improper usage, cannot be
overlooked. This degradation leads to increased
maintenance and replacement costs. One major
problem of multi-objective control is that it expands
the control problem further, leading to raised algo-
rithm solution times.

Current approaches on multi-objective control
mainly combine fuel consumption and CO2 emis-
sion reduction [9]–[12]. Research also started to
address the combination of fuel cost reduction with
an extension of the battery lifetime [13]–[15]. The
combination of objectives from more than two cat-
egories, such as fuel cost, emission production, and
degradation, is rarely investigated [12], [15], [16].
However, even those only focus on the CO2 pro-
duction as emission output. The incorporation of
emission production besides CO2 ensures the pro-
tection of sensitive areas by specific optimization.
For a holistic optimization of the operation, the as-
pects of battery degradation and fuel price have to
be combined with the emission reduction.

One promising advanced control strategy, which
is able to optimize between several objectives
quickly, is Equivalent Consumption Minimization
(ECMS). A main advantage of ECMS is the in-
stantaneous optimization in one step, which makes
it suitable for high degrees of uncertainty and fast
dynamics. ECMS was already studied for its appli-
cation in the automotive sector, where it is used to
keep up with the quick dynamics in real-time [17].
For maritime application, Kalikatzarakis et al. [18]
applied it for the reduction of fuel consumption,
which showed promising first results. Even though
the authors successfully apply ECMS to a marine
energy management problem, the strategy’s poten-
tial to minimise more than one objective needs fur-
ther investigation.

2 PROPULSION LAYOUT

A full-electric vessel of the type Yacht is selected
as the case for this paper. The vessel is operating
with a DC-distribution system with two directly con-
nected battery packs as energy storage system. The
power generation uses two pairs of diesel generators
of different sizes. The generator sets are connected
via AC/DC converters to the DC grid, which allows
for a variable speed operation of the engines.
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Figure 1: Propulsive layout of the usecase vessel

2.1 System Modelling

We model the behavior of the propulsion system
using steady-state, first-principle equations. These
models are derived from mathematical relationships
combined with empirical measurements of the com-
ponents. In the table below are the specifications of
the propulsion system summarized. In the follow-
ing, we introduce the models used to describe the
component behaviour.

Table 1: Case study parameters

Parameter Description Value
VDC DC-bus voltage 800− 1000V
PE,l Engine power (x2) 1430KWe
PE,s Engine power (x2) 895KWe
EBat Battery capacity (x2) 2250KWh

ηAC−DC Conversion efficiency 0.98
ηDC−AC Conversion efficiency 0.98
ηDC−DC Conversion efficiency 0.98

ηm Motor efficiency 0.97
ηgb Gearbox loss 0.97
ηgen Generator efficiency 0.96

For the battery packs, we use the research of
Tremblay et al. [19] for a generic battery model of a
Lithium-Ion battery. The battery model is scaled to
match the required size for the vessel battery packs.
The control of the battery is indirect over the con-
trol of the engines using the power balance of the



system. No individual set point is required as the
batteries are connected directly to the DC bus.

The system contains two sets of two combina-
tions of engine and generator for the propulsion,
which all operate using Diesel. We model the en-
gines using performance maps, which are created
over the engine’s operating envelope. Since we
combine the engines with a DC grid in this study,
the engines can be operated flexibly using variable
speed set points. For each type of engine, the spe-
cific fuel consumption (SFC) is mapped over speed
in rounds per minute [rpm] and power [kWh]. The
emission production is modelled in two different
ways: while the CO2 production can be related lin-
early to the SFC, the NOx formation is related to the
engine’s operational conditions and not the SFC. We
model the NOx emission by creating a similar map
over the operational envelope based on real-world
measurements. The engines are controlled with a
set point for the requested power and one for the
speed.

The other power system components are mod-
elled using transfer functions for the losses. This
includes the gear box, generators, electrical mo-
tors, converters, and the DC grid. The selected val-
ues are derived from information provided by the
shipbuilder and manufacturers; however, we cannot
disclose the specific values due to confidentiality
reasons.

Figure 2: SFC and NOX maps for small engine [20]

Figure 3: SFC and NOX maps for large engine [21]

3 CONTROL DEVELOPMENT

For the energy management of the vessel, a
2-level multi-objective ECMS controller is devel-
oped. While the first layer decides the optimal
power scheduling combination of components, the
second layer determines the optimal set points for
the components in use. The controller uses a set of
variables to describe the system’s behaviour. The
system is defined by four states: the engine cur-
rent (IEng), the load current (ILoad), the battery
current (IBat) as represented in the power balance
on the DC bus, and the state of charge (SoCBat)
for one of the battery packs. For clarity, these
states are denoted as IEng = x1, ILoad = x2,
IBat = x3, and SoCBat = x4. Additionally, there
are eight control variables: four related to engine
power (PEng,i = ui for i ∈ 1, 2, 3, 4) and four to
engine speed (nEng,i = uj for j ∈ 5, 6, 7, 8). A
comprehensive overview of these state and control
variables, along with other inputs and parameters,
is provided in Table 2.

Table 2: State and Control Variables, Input, and Pa-
rameters

Parameter Description Role
IEng Engine Current State
ILoad Requested Load Current State
IBat Battery Current State
SoCBat Battery State of Charge State
PEng,i ith Engine Power Reference Control
nEng,i ith Speed Reference Control
PProp Propulsion Load Input
PAux Auxiliary Load Input
VDC DC Voltage Input
rCO2 Release Rate CO2 Const.
pD Price of diesel Const.
pBat Equivalent factor battery Const.
np Battery modules in parallel Const.
Qnom Battery nominal power Const.

It is worth noting that only one battery pack is
considered since both behave identically due to the
direct connection to the DC bus. The four states are
shown in Eq. 1.

x1 =
(u1 + u2 + u3 + u4) · ηgen

VDC
· ηAC−DC

x2 =
PProp · 1/ηgb · 1/ηm + PAux

VDC · ηDC−AC

x3 = x1 − x2

x4 = x4n−1 +
1

2

∆t · x3
Qnom · np

(1)

Using the relationships outlined in Eq. 1, the ref-



erences for the state variables can be determined,
which must be matched by the controller’s states to
ensure the similarity to the real system. In addition,
a set of objectives is defined to optimize special tar-
gets. First, the control variables of the problem are
used to determine the SFC and the NOx production
of the engines based on the maps in Fig. 2 and Fig. 3.
With i ∈ {1, 2} and j ∈ {3, 4}, the SFC and NOx
of the engines 1-4 can be expressed as

SFCEng,i = f1(ui, ui+4) (2)
NOxEng,i = f2(ui, ui+4) (3)
SFCEng,j = f3(uj , uj+4) (4)
NOxEng,j = f4(uj , uj+4) (5)

where f1 and f2 are functions that represent the SFC
and NOx formation of the small engines, and f3 and
f4 are similar functions for the large engines. Using
those references, we calculate the mass of fuel con-
sumed (mD) and emission produced (mCO2 ,mNOx)
as

mD =

4∑
i=1

SFCEng,i · ui (6)

mCO2 =

4∑
i=1

SFCEng,i · ui · rCO2 (7)

mNOx =
4∑

i=1

NOxEng,i · ui (8)

where rCO2 is the release rate of CO2 from diesel
during combustion.

3.1 Objective Function Definition

We introduce three objectives to account for the
fuel consumption and emission production in the
objective function. While the first objective C1 rep-
resents the price of a kWh as a comparison between
the engines and the batteries, the latter objectives
C2 and C3 account for the mass of emission format-
ted under operation. The price of a kWh diesel is
related to a pricing factor pD representing the fuel’s
market value. To allow for comparison, an equiv-
alent pricing factor for the battery pBat is defined.
With this, the three objectives are set up as denoted
in Eq. 9.

C1 : mD · pD + PBat · pBat

C2 : mCO2

C3 : mNOx

(9)

The objectives are normalized to allow an equal
comparison of the differently-natured targets.

We account for the battery’s health by impos-
ing constraints on the minimum and maximum of
the SOC. Those boundaries ensure the operation
to stay between 20% and 80% SOC. Further, we
aim to avoid excessive battery currents by intro-
ducing a penalty for the depth of discharge (DoD)
using a penalty factor cBat. This penalty term is
cBat · (x4 − 0.5).

The three objectives are incorporated in a scalar-
ized objective function function. Each of those ob-
jectives is combined with a weight λi with the index
i ∈ {1, 2, 3}. This leads to

J(x,u) =
∑

λi · Ci, (10)

where x and u represent the state and control vari-
ables, as reported in Tab. 2.

3.2 Optimization Problem

We solve the multi-objective optimization prob-
lem to determine the optimal control input for the
vessel energy system. For this purpose, the objec-
tive function, represented in Eq. 10, is expanded
with two parts. The first one includes the con-
troller’s reference values of the state variables in
the form of xref , which penalizes a deviation from
the expected values of the real system. The sec-
ond one adds the penalty for the depth of discharge
DoD. Taking this into account, the final objective
function can be expressed as:

J(x,u) = (x− xref) + DoD +
∑

λi · Ci, (11)

Additionally, constraints are imposed to further
characterize the minimization problem. The first
prominent constraint is the power balance between
the requested and the generated power in the form
of

PLoad = PGen. (12)
Further constraints limit the operational range of
system components as following

Olower ≤ O ≤ Oupper, (13)

where O stands for the component with its respec-
tive lower Olower and upper Oupper limits. The up-
per and lower limits of the two types of engines are
characterized by non-linear functions describing the
respective threshold. Therefore, the Eq. 13 for the
constraints imposed on the engines are represented
for i ∈ {1, 2, 3, 4}:

flower,i(x) ≤ OEng,i ≤ fupper,i(x), (14)

5 where OEng,i stands for the i-th engine and
flower,i(x) and fupper,i(x) are the corresponding non-
linear functions of the lower and upper limit.



Based on those constraints and our knowledge
about the system behavior, we aim to identify the
set of optimal control inputs u(·|k)opt that mini-
mizes the objective function J , respective Eq. 11.
This leads to the following minimization problem:

Minimize: J(u(·|k))
s.t.:

xk+1 = f(xk,uk)

uk = uk−1 +∆uk

gin(xk,uk) ≤ 0

geq(xk,uk) = 0

(15)

where xk+1 corresponds to the state at the next time
step as a function of the current values of the state
variables xk and the control variables uk. The value
of the control uk in time step k is formed by adding
the difference in the control value ∆uk to the con-
trol value uk−1 of time step k−1. The equality and
inequality constraints set is represented by geq and
gin in dependence on the control and state variables
uk and xk.

Eq. 15 analysis shows the problem to be non-
linear and non-convex in combination with non-
linear constraints. A problem natured like this can
be solved by applying different approaches [22]. Ac-
cording to Wolpert et Macready [23] and their no
free lunch theorem, determining the optimal algo-
rithm for an optimization problem a-priori is im-
possible. This decision is only possible by testing
various ones and later comparing their performance.
However, in this study, we decide to apply Sequen-
tial Quadratic Programming (SQP) [24], as it in-
cludes the required capabilities to solve problems
of the nature of Eq. 15 [25]. This is based on the
works and findings of [26] and [25]. To ensure algo-
rithm convergence and finding the global minimum,
we apply a multi-start approach [27]. In concrete,
we define a set of 50 randomly distributed starting
points inside the defined space for the optimization
problem. We implement the described optimization
framework inside a Matlab 2022b environment.

3.3 Pareto-Frontier Evaluation

The Pareto frontier represents solutions of the
multi-objective optimization defined in Eq. 15
where improvement in one objective can only be
achieved at the expense of another. Within this con-
text, the skyline operator [28] plays a crucial role
in assisting our algorithm in identifying dominant
and non-dominant solutions at each timestamp. The
skyline operator helps extract the subset of solutions

not dominated by any other solution in our multi-
dimensional space. In particular, a data point is
said to be in the ”skyline” if no other point is better
than it in all dimensions. This makes it an effi-
cient tool for sifting through vast solution spaces to
highlight those solutions that might be of particular
interest due to their dominance in certain objectives.
When applied to our Pareto frontier obtained from
the solution of Eq. 15 at each timestamp, the sky-
line operator was used to refine the Pareto frontier
solutions set by highlighting those solutions that
stand out in particular dimensions. By focusing on
skyline solutions, it is possible to have a clearer
view of the trade-offs involved and prioritize solu-
tions that align closely with strategic objectives or
users’ preferences. As the number of objectives of
Eq. 15 is large and the solutions space is large, the
skyline operator provides a more computationally
efficient way to isolate dominant solutions without
exhaustively comparing every possible pair of solu-
tions. Finally, the skyline operator doesn’t require
any a priori knowledge about the decision maker’s
preferences, making it a versatile tool for our multi-
objective scenarios.

4 SIMULATION STUDY

A simulation study is carried out to investigate
the performance of the proposed control framework.
Further, we develop an RBC, which we use to eval-
uate the ECMS control against a benchmark. The
chosen load profile has a length of 4 h, shown in
Fig. 4. It incorporates both periods of low and high
load demand. While the propulsion load is shown
in blue, the auxiliary loads are represented in red.

Figure 4: Load Profile



4.1 Benchmark Control

The RBC, shown as a schematic in Fig. 5, is
developed with a single focus on fuel consumption
while providing the requested load demand. For
this, the batteries are used to buffer for fluctuation
in the load and to allow a fuel-efficient operation
of the engines. The engines are operated at fixed
set points of the highest fuel efficiency along the
propeller curve. The RBC takes the requested load
demand and the current battery SoC as input values.
The SoC is used to determine if the battery mode re-
quires a change between charge and discharge. The
change is initiated when the battery SoC approaches
the upper or lower limit. We choose those limits to
20% and 80% SoC as a first step into battery life-
time beneficial operation. Further, we evaluate if
the change in power request between the steps ex-
ceeds 350 kW. If the deviation does not exceed the
limit and no change of battery mode is required,
the controller keeps the previous set points. In case
the set points need adjustment, the new set points
are chosen according to the battery mode to either
PLoad ≥ PSet or PLoad ≤ PSet. This allows the
operation of the engines at the most efficient points
at all times while slowly charging or discharging the
batteries.

Figure 5: Decision tree of the RBC

We test the RBC on the load profile to create
a benchmark. The discretization size is chosen to
5min to allow a fair comparison with the ECMS
controller. The smaller the step size of the dis-
cretization is chosen, the closer it resembles the
real-world load profile in Fig. 4. In Fig. 6, the

power balance at the DC bus is shown. The first
subplot shows the balance between the engine and
battery currents, while the second subplot compares
the load demand and the provided power. The RBC
is able to supply the required power demand while
keeping the engines at constant power levels most
of the time. The battery is used to buffer for fluctu-
ation.

Figure 6: Current sharing and power balance with
RBC. The current colors indicate the power source
(engines = red, battery = blue, load = dark green,
and light green = sum of produced power).

Fig. 7 shows the corresponding development of
the battery SoC and the DC system voltage over the
operation time. The battery behaviour is related to
the left y-axis of the plot, while the voltage is de-
picted on the right y-axis. It is observable that the
battery is slowly discharged but maintained between
the upper and lower limits.
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Figure 7: Battery SoC and DC system voltage using
RBC. SoC is shown in blue, and Voltage in red.

In addition, the fuel consumption and the for-
mated CO2 and NOx emissions are calculated to
compare the RBC to the ECMS in Section 5.

4.2 ECMS Control

The ECMS controller is tested with the same
load profile, depicted in Fig. 4. The discretization



time step size is also chosen to 5min. The density of
diesel ρD is chosen according to [29] and the release
rate of CO2 from fuel rCO2 according to [30]. The
price of diesel fuel is chosen based on an evaluation
of the market as shown in Tab. 3. The equivalent
pricing factor of the batteries is chosen to match the
point of minimal fuel consumption of each engine
to balance the power sources. Following, the equiv-
alent factor equals the minimum SFC of the large
engines when only operating those, while it corre-
sponds to the minimum SFC of the smaller engines
whenever they are involved in the power scheduling.

Some attention was spent on the choice of the
penalty factor for the DoD of the battery, as a too-
low factor will increase the gradient of the battery
current, and a too-high factor will result in non-
optimal use of the battery potential. While this
factor should be investigated using a logarithmic
scale to determine a good choice between flexibil-
ity and health preservation in theory, we choose a
factor of cBat = 1 in this study as a proof of con-
cept after testing a limited amount of choices. This
way, we can already showcase the performance of
the ECMS control, while a full study on the effect
of this parameter needs to be carried out to choose
it optimally. Taking those parameters into account,
the controller can determine the value of all defined
objectives and minimizes the cost function Eq. 10.

Table 3: Control parameters

Parameter Description Value
ρD Density diesel 0.838 kg/l
rCO2

CO2 release rate 2.7 tCO2/l
pD Price diesel 0.7Euro/l
pB Battery equivalent cost 0.7Euro/l
cBat Battery penalty 1
SoC0 Initial SoC 0.5

In our approach to determine the weights of the
objectives, we employ the Pareto-Frontier combined
with the skyline operator as reported in Section 3.3.
This method serves as an initial step towards a de-
liberate a-posteriori weight selection, tailored to the
end user’s preferences.

5 RESULTS

In the following, we showcase the behaviour of
the ECMS controller for the scenario in which we
use the Pareto-Frontier combined with the skyline
operator for weight selection. The power balance
of the currents using the ECMS controller is shown
in Fig. 8. The ECMS controller consistently meets

the power demand throughout its operation. The
battery serves as a buffer for load fluctuations and
provides crucial support during significant power
demand surges, especially during sailing.

Figure 8: Current sharing and power balance with
ECMS. The current colors indicate the power source
(engines = red, battery = blue, load = dark green,
and light green = sum of produced power).

The corresponding behaviour of the batteries and
the DC system voltage is shown in Fig. 9. The SoC
is represented in the left y-axis, while the voltage
is connected to the right y-axis. The ECMS con-
troller depletes the SoC fully during the large step
in the load demand and slowly charges the battery
again. Even though the ECMS controller breaches
the lower limit of the SoC, we observe that it after-
ward schedules the load to charge the battery again.
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Figure 9: Battery SoC and DC system voltage using
ECMS. SoC is shown in blue, and Voltage in red.

As an illustration, we assess the selected set
points of the engines, as depicted in Fig. 10. In
alignment with the load profile, it is evident that
the controller relies solely on the smaller engines
during periods of low loads. When the power de-
mand increases drastically, the controller starts to
use one of the large engines as an additional power
source. Further, the controller adjusts the engine’s
rotational speed under operation to fully optimize
the operation.



Figure 10: Power and speed reference set points for
all four engines over the 4 h load profile. Each color
represents a different engine.

5.1 Scenario Comparison

To further evaluate the performance of the pro-
posed ECMS framework, we tested three scenario
cases to compare with the RBC results. Two scenar-
ios investigate edges of the Pareto-Frontier, mean-
ing all weights besides one are set to zero, while
this specific one is set to 1. The first one (SFC)
is designed to singularly minimize the SFC, while
the second one (NOx) only focuses on the produced
NOx under operation. An overview of those sce-
narios’ weights is presented in Tab. 4. The third
scenario (Pareto) uses the Pareto-Frontier for the
selection of the weights, as explained in Section 3.3.

Table 4: Scenario Design
Scenario SFC CO2 NOx

λ1 λ2 λ3

SFC 1 0 0
NOx 0 0 1

We can evaluate the results for all three scenar-
ios compared to the RBC. The results are presented
in Tab. 5. We compare the scenarios in the aspects
of consumed fuel, formatted CO2 and NOx emis-
sions, and the total operational cost in AC. For the
calculation cost, we take only the consumed fuel
into account with the price assumed in Tab. 3. In
addition, the percentage of deviation to the RBC is
calculated for comparison and displayed in Tab. 6.

Table 5: Scenario Comparison

Fuel Emission Cost
Diesel [t] CO2 [t] NOx [t] [AC]

RBC 0.8948 2.8829 0.0328 747.39
SFC 0.8815 2.8401 0.0223 736.33
NOx 0.9809 3.1606 0.0195 819.42

Pareto 0.9746 3.1402 0.0203 814.17

Table 6: Scenario Comparison (relative differences)

Fuel Emission Cost
Diesel [%] CO2 [%] NOx [%] [%]

SFC -1.5 -1.5 -32 -1.5
NOx +9.62 +9.6 -40 +9.6

Pareto +8.9 +8.9 -38 +8.9

We observe a difference in the results between
the three scenarios. The first scenario is the scenario
that is the most similar to the setup of the RBC.
Therefore, the results are relatively similar, with
savings of about 1.5% for fuel consumption, CO2,
and operational cost. This saving can be explained
by a more efficient battery operation resulting in
the complete discharge under operation. This result
represents one edge of the Pareto-Frontier focusing
only on SFC. Another edge of the Pareto-Frontier is
shown in the NOx scenario. We report savings of
40% compared to the RBC. Accompanied by that,
we see an increase of about 9.6% in fuel consump-
tion. This is related to the fact that the most NOx
efficient operating points are not equal to the fuel
efficiency optima. Relating to this, the cost of the
operation increases, which is basically the price paid
for the saving in terms of emissions. Since the CO2
production is linearly related to the fuel consumed,
we observe an increase in CO2 emissions alongside.
The third scenario uses the Pareto-Frontier for the
weight selection. We see a saving in terms of NOx
formation of 38% and a corresponding increase in
fuel consumption, operational cost, and CO2 emis-
sions of about 8.9%.

Evaluating the performance of the ECMS frame-
work, we can state that the ECMS framework is
able to outperform a well-designed RBC for a
single-objective scenario. With the other edge of
the Pareto-Frontier, we can account for maximum
NOxemission savings and the corresponding price
increase. Further, we showcase that a conscious de-
cision for a compromise is possible using the Pareto-
Frontier.



6 CONCLUSION

This paper presented an ECMS-based frame-
work for multi-objective optimization of a vessel
energy system. The control could fulfill the re-
quired load demand at all times while taking the
fuel efficiency and emission formation of two sets of
differently behaving engines into account. We im-
plemented a Pareto-Frontier approach to allow for
an a-posteriori selection of the objective weights.
In three scenarios, we showed that the controller
can optimize between the different optimal points
for each objective based on the assigned weight in
the objective function. We first tested the developed
control on a 4 h load profile obtained from a real
vessel. This allowed us to showcase the adaptation
capability of the controller to adjust the performance
based on the choice of objective weights. A com-
parison with an intelligent RBC with a focus on fuel
efficiency showed the potential for up to 1.5% sav-
ings of fuel or up to 40% savings of NOx emissions
under operation for the cases of single-objective fo-
cus.

Future work will focus on improvements in the
battery handling in the control strategy. This in-
cludes more detailed research on the choice of the
equivalent cost factor and the penalty factor for the
DoD. Furthermore, handling delays in the system,
such as engine start-up and cool-down times or set
point switches, needs further study. Potential con-
tribution can also be seen in handling the battery’s
health from the control perspective, which can be
considered combined with a degradation model of
the component. Last, further research is required on
choosing the optimal objective combination from
the Pareto-Frontier by implementing enhanced user
selection.
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