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Abstract

Direction of Arrival (DoA) estimation is an important topic in radar application and has
significant importance for advanced driver assistant systems in the automotive industry.
While there is an increasing need for higher resolution and increased target detection and
DoA estimation performance, such improvements often require increased hardware cost,
complexity and size. With the increase in computational power of modern systems, Com-
pressive Sensing methods have become more attractive as alternative methods for DoA
estimation to the established ones, which often rely on uniform linear arrays (ULA) and
the acquisition of multiple snapshots to provide good performance. Compressive Sensing
methods have been shown to fit very well into the DoA estimation framework and have
the ability to use far fewer snapshots, provide super resolution capabilities and by nature,
utilise sparse spatial sampling, i.e. sparse antenna arrays. The latter point is the key in-
centive of this thesis.

Specifically, Bayesian Compressive Sensing (BCS) which in addition to point estimates
also provides measures of uncertainty is used in this thesis, to generate and use sparse
linear array structures for DoA estimation. In particular, the entropy of the recovered co-
efficient vector is reduced in each step. Two array generation algorithms are proposed
building on the same concept to generate sensor arrays for the consideration of a uni-
formly spaced, linear grid of possible sensor locations and for a Multiple In Multiple Out
(MIMO) array setup. Utilising sparse arrays with BCS has the potential to reduce the hard-
ware complexity of the circuit board, reduce energy consumption and heat generation, as
well as ultimately saving costs in production and operation.

The proposed array generation algorithms are first tested and assessed with simulated
Frequency-Modulated Continuous-Waveform (FMCW) radar data, where it is shown that
the generated algorithms achieve good estimation and detection performance with a heav-
ily reduced number of sensors compared to their fully filled template arrays. Moreover, they
are shown to outperform randomly generated arrays in most cases that have been stud-
ied. To add practical insight, the generated antenna arrays are tested with measured data
that has been captured in two measurement campaigns with a Texas Instruments Cascade
Evaluation board, featuring an 86 element virtual ULA, which has been used as the grid
of possible sensor positions for the array generations. The simulated results are affirmed
by the measured data, although more sensors tend to be required depending on the clutter
present in the scene. It is shown, that BCS can work very well with the proposed, heavily
sparse arrays tested on both simulated and measured data, which translates directly to
a possible reduction in required hardware antennas. Although in this thesis the possible
sensor positions have been confined to a grid of positions spaced by half the wavelength, it
is easily possible to extend the procedure to a more finely divided search space.
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1
INTRODUCTION

In this first chapter, the topics of this thesis are introduced and an overview of current
literature is given. Starting with the general motivation why DoA estimation with sparse
sensor arrays can be desirable and how Bayesian Compressive Sensing (BCS) can be a good
method for that, an extensive literature review is followed. The concept of classical com-
pressive sensing is reviewed in 1.2.1 to give a general introduction of the underlying con-
cepts. Then the focus will be shifted to the Bayesian Compressive Sensing literature for DoA
estimation in 1.2.2 and a first prospect how it can be applied with sparse sensor arrays in
1.2.6. Finally, the potential gaps that have been worked out from the literature review are
formulated into key research objectives for this thesis in section 1.3.

1
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2 1. INTRODUCTION

1.1. MOTIVATION

A DVANCES in semiconductor manufacturing technology as well as signal processing
techniques have opened the field of application for radar (radio detection and rang-

ing) technology more and more to consumer technology [1]. A driving branch of such
applications is the automotive industry, where vehicles are increasingly equipped with
sensor and radar devices to realise Advanced Driver Assistance Systems (ADAS) and push
towards Highly Automated Driving (HAD). These radar sensors intend to deliver a good
resolution of the observed scene and provide the ability to detect and distinguish dif-
ferent targets as well as to locate them within a given Field of View (FOV). In particular,
radar has proven as a valuable sensing technology not only for automotive radar technol-
ogy, as it can still work reliably under most weather and lighting conditions. Moreover,
radar systems can simultaneously provide estimates for range, velocity, and the angle of
one or more objects [2]. As the reliability and performance of systems like ADAS is heav-
ily determined by the capabilities of gathering information of the car’s surroundings, au-
tomotive radar has become a topic of large scientific interest. However, while the need
for better performance increases, the cost, and complexity of the required hardware in-
creases as well [1], [3]. Large efforts are made to keep those latter parameters as small as
possible.
One of the prominent radar applications is the estimation of angular target locations or
direction estimation, called Direction of Arrival (DoA) estimation, since the direction of
returning radar pulses is estimated. This is made possible by the use of antenna arrays.
The performance of classic DoA estimation is largely influenced by the angular resolu-
tion∆θ that the underlying antenna array is able to provide, which is proportional to the
utilised wavelength λ and inversely proportional to the array aperture as ∆θ∝ λ

Aperture .
The most basic way of estimating the DoAs of impinging signals is known as classical
beamforming spectrum estimation and entails the Fourier transform (FT) of the data
vector obtained from the sensor array along the angular (spatial) domain. The angular
resolution of this method is bound by the Rayleigh resolution limit, directly related to
the array geometry (more precisely its aperture) [3]. Under good Signal to Noise Ratio
(SNR) conditions, methods like Multiple Signal Classification (MUSIC) and Estimation
of Signal Parameters via Rotational Invariance Techniques (ESPRIT) can achieve higher
resolution and resolve even targets within the Rayleigh resolution limit. Such estimator
properties are commonly referred to as super resolution. However, these methods de-
pend on a sufficient number of snapshots since they need to estimate the covariance
matrix of the received data. Furthermore, they often require a priori knowledge about
the number of targets to expect [3].

Compressive Sensing (CS) based DoA estimation approaches have shown promis-
ing benefits, as they do not show the need for numerous snapshots while still providing
super-resolution DoA estimation and are less sensitive to low SNR conditions [4]. In the
field of automotive radar, processing time to achieve DoA estimates is a critical factor
and this motivates the search for single-snapshot techniques, making the CS framework
an interesting candidate.
Another potential benefit of the CS framework is related to the number of measure-
ments that are needed to obtain good estimation results. It has been shown, that the
CS framework can provide a way of reducing the needed array elements while maintain-
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ing a good angular resolution and guaranteed recovery of the DoAs [5]. To summarise,
the CS framework provides two possible benefits to the DoA estimation:

• Requiring fewer, even only a single snapshot to potentially obtain highly resolved
DoA estimates with improved robustness against noise [6].

• Reducing the amount of antennas needed in the sensor array while providing high
probabilities for proper recovery of target DoAs [5].

While there have been numerous works in the literature investigating the optimal
arrangement of sensors for DoA estimation using classical CS recovery methods, the
question has not extensively been considered in the view of Bayesian recovery meth-
ods. Bayesian Compressive Sensing natively provides additionally to the point estimates
also measures of uncertainty, which makes it an option that is worth exploring.
In this thesis, compressive sensing DoA estimation is considered from the Bayesian
perspective, known in literature under Bayesian Compressive Sensing (BCS) and build-
ing upon the theory of Sparse Bayesian Learning (SBL). Specifically, the goal is to ob-
tain methods to reduce the amount of antennas in a physical ULA and a MIMO array,
such that DoAs can still be reliably estimated with the least amount of sensors needed.

In the context of Multiple In Multiple Out (MIMO) Radar, which is extensively ap-
plied in automotive technology [1], [3], the number of receive antennas can be virtually
increased by combining two arrays of properly spaced transmit and receive antennas
and transmitting orthogonal waveforms. The resulting virtual receive antenna array is
thus jointly determined by the number of transmit and receive antennas, which needs
to be accounted for in possible optimised array arrangements. To properly test the gen-
erated sensor arrays, they will be utilised in the BCS-based DoA estimation algorithm
(described in chapter 2) with the use of simulated and measured radar data. It will be
taken into account, that the desired Field of View (FOV) varies depending on the ap-
plication. Short-range radar used for example in the parking assistant system typically
needs a larger FOV of ±80◦, while long-range radar used in Automotive Cruise Control
(ACC) typically needs only a narrow FOV of ±15◦. For this thesis, an FOV of ±40◦ has
been used to confine this parameter to a common value for mid-range radar. Further-
more, two frequency bands of 24−29GHz and 76−81GHz are commonly used [3], while
the latter one is primarily used in most modern systems and therefore also in this thesis.

1.2. LITERATURE REVIEW

1.2.1. CLASSICAL COMPRESSIVE SENSING
Many signals are compressible in a proper representation domain, where the signal can
be represented by only a few non-zero coefficients. A common example for such signals
are audio signals, which are generally non-sparse in the time domain and have to be
sampled at Nyquist-Rate to allow for lossless reconstruction [8]. However, when trans-
forming such signals to the frequency domain e.g. by a Fourier-Transform, only few
non-zero frequencies can be enough to fully describe the audio signal. This gave rise
to many compression algorithms and formats like mp3 for audio or JPG for image data
[9]. It also raises the question, whether there is a way to sparsely sample such signals in
the first place, saving the cost and complexity of high sampling rates (or spatial sensors
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Figure 1.1: Short to long range radar in the automotive industry. Note the use of larger field of views for the
short range radar (red) and a rather small field of view for the long range radar (blue). Image derived from [7]

in the case of sensor arrays), instead of throwing away information in the processing.
This would allow for the design of less complex and expensive hardware measurement
systems, while maintaining high performance. The idea has found great interest in re-
cent literature under the term of Compressive Sensing (CS) [10]–[12]. It is based on the
assumption, that the signal of interest is sparse in some transform domain, typically de-
noted by Ψ, and that signals which are sparse in the domain of Ψ must be non-sparse
in the domain where they are measured [9]. This latter concept is described under the
name of coherence and is an important characteristic in CS literature. To fully utilise the
CS framework, usually far fewer measurements M are taken, than the dimension of the
signal of interest, i.e. M ≪ N , resulting in an undersampling of the signal and an un-
derdetermined set of equations to solve for the recovery of the original signal [9], [10].
Such a system then does not have a unique solution; however, through efficient compu-
tational methods the approximately sparsest solution of them can be found, recovering
the coefficients describing the signal [10], [13].
In application to DoA estimation, one faces the problem that the direction of arrival is
generally a continuous value, while the classical CS framework works with an overcom-
plete dictionary of discrete candidate basis functions, corresponding to possible direc-
tions (also called atoms). This can lead to errors or uncertainty in the recovered DoA,
when a target does not coincide with a DoA grid point of the chosen discretisation. There
have been different approaches to deal with these off-grid effects and the CS DoA esti-
mation framework can be roughly separated into three methods: On-Grid, Off-Grid and
Gridless sparse methods [14]. In this thesis, the applied methods will assume an On-Grid
framework.

Since its occurrence, the CS framework has found large interest in different areas of
electrical engineering, such as microwave imaging, Synthetic Aperture Radar (SAR), ar-
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Figure 1.2: Broad subcategories of sparse recovery algorithms and some examples. This thesis is aiming at the
Bayesian Compressive Sensing methods marked in red. Graphic based on [16].

ray synthesis or direction-of-arrival (DoA) estimation to name just a few [15]. The focus
of this thesis is directed towards 1-Dimensional DoA estimation in automotive radar sys-
tems, and this will be kept in mind while reviewing current state-of-the-art literature.
To recover the sparse coefficients that represent the original signal in the sparse basis,
a large amount of recovery algorithms have been proposed in literature over the years.
They can be grouped into three broad categories [16]:

• Convex Relaxation based: Posed as a convex optimization problem, the solution
to the underdetermined system can be computed efficiently with global optimiza-
tion methods like interior-point methods or gradient descent.

• Non-Convex Optimization based: Often these methods assume a prior knowledge
of the signal to recover and aim to compute a full statistical, posterior probabil-
ity density function, providing not only point estimates but also further statistics
about the signal. Compared to the first method, these methods are still suffering
from higher computational complexity.

• Greedy Algorithms: These methods utilize an iterative way to recover the signal,
selecting local optima in each iteration to finally end at a global optimum.

A graphical overview is given in figure 1.2. Reviewing all sparse recovery methods that
have been proposed would break the boundaries of this thesis, and since the emphasis
of this thesis is only on one of those methods, the reader is referred to [16] for an exten-
sive review of sparse recovery algorithms. To visualize the relation between the sparse
coefficients that have to be estimated, denoted as s, the measurement vector y and the
dictionary matrix Θ, which in the case of this thesis will be a form of the array steering
matrix, figure 1.3 aims to provide a first insight. The overcomplete dictionary matrix Θ
will be the central element of the array generation procedure. A deeper dive into the
compressive sensing theory will, however, be postponed to chapter 2 while this chapter
is dedicated to the state-of-the-art literature review.

In [4] it is shown, that the compressive sensing approach applied to source localisa-
tion is capable of achieving super-resolution with only a single snapshot. Two interesting
processing schemes are introduced, which might be of interest for this work. Firstly, data
from multiple snapshots is combined using the Singular Value Decomposition (SVD).
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Figure 1.3: Scheme of the central, underdetermined linear equation that CS and BCS tries to solve for the
unknown but sparse vector of coefficients s. The coloured coefficients in s are the unknown, sparse coefficients
that have to be recovered. They determine which column of the steering matrix A, which are basis functions
of the signal model (in this case the steering vectors a(θi ), are causing the observed signal y. Refer to chapter 2
for a more rigorous explanation.

With this method, multiple snapshots can be processed coherently while reducing com-
putational complexity by reducing the dimensionality of the data matrix obtained from
multiple snapshots. The data matrix is decomposed into its signal and noise subspace,
and only the latter one is kept. 1 Secondly, an iterative grid-refinement strategy is pro-
posed in order to combat off-grid estimation errors. To this end, the grid is refined only
in regions around coarsely estimated sources. This idea can be found in another paper
building on the Bayesian framework [17], which is described in more detail in section
1.2.2.
The CS framework is extended in [18] to MIMO radar and applied to DoA and range esti-
mation with specific waveform design. This is driven further in [19] to reconstruct target
signals in azimuth, range as well as Doppler domain. The importance of the sensing ma-
trix, which is a direct result from the steering matrix of the array geometry, is pointed
out. An important trade-off is specified: as the number of columns in the sensing matrix
is increased (i.e., increasing the angular grid resolution), the linear system given by the
CS equation becomes increasingly underdetermined, resulting in a worse coherence of
the sensing matrix. This is due to the fact that neighbouring columns will look more and
more alike. This in turn will influence the performance of classical CS recovery meth-
ods, and it is not unlikely, that this might be of importance for the Bayesian framework
as well.
In [20], [21] and [5], rigorous analysis is done regarding spatial compressive sensing with
respect to DoA estimation and MIMO arrays. In [20], mathematical lower bounds on the
number of virtual elements resulting from the MIMO architecture are derived and shown

1As described in the introductory section, time is viewed as a critical factor and methods that depend on larger
amounts of snapshots are less desirable. However, there might be a trade-off between robustness to noise
when more than one snapshot is used. Therefore, also multi-snapshot methods could still be a viable option
depending on the velocity of the vehicle.
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to be dependent on the number of targets in the scene. In [21] these ideas are extended
to a multi-snapshot measurement model. Furthermore, the relation between random
sensor arrays and the compressive framework is studied, coming to the result that a low
number of randomly placed sensors can achieve high angular resolution, offering the
possibility to trade off hardware complexity with computational complexity. In [5] the
authors further investigate the relation between the mutual coherence property and the
steering matrix, resulting from the MIMO array geometry. The insightful link is made be-
tween low mutual coherence and sidelobes of the array pattern, offering a more tangible
understanding of the property with respect to radar application.
In [22], a mathematical method for coherence reduction in compressive sensing applied
to DoA estimation is proposed. To this end, highly coherent columns of the sensing
matrix are replaced by Gaussian distributed random matrices, reducing the overall co-
herence. This method has been derived in a very theoretical way, and the proposed re-
placement columns might not be realisable by means of placing actual physical sensors.

1.2.2. SPARSE BAYESIAN LEARNING
A different, more statistically flavoured approach to solve the underdetermined systems
in compressive sensing problems is closely related to the topic of Sparse Bayesian Learn-
ing (SBL), which has its roots in an important property of Bayesian inference and finds
vast application in machine learning topics [23]. As it has been pointed out by D.J.C.
MacKay in [24], there are two steps involved in inference tasks, namely:

• Model fitting, where the most probable model parameters can be found utilising
Bayes rule under a fixed model assumption. The use of Bayesian statistics not
only delivers point estimates, but also provides confidence values in the estimated
parameters.

• The second task is termed “model comparison”, and involves the ranking of mod-
els, given the data, with respect to how well they describe the data and, impor-
tantly, intrinsically factoring in the model complexity as a penalty.

It is the second task of Bayesian inference which plays a major role in the development
of SBL. The ability to rank models against each other allows for model selection among
a set of candidates and simultaneously keeping the model complexity as low as pos-
sible. Model complexity is an important topic in general linear regression tasks and
machine learning, because a too complex model leads to overly parametrised models,
which may lead to a modelling of noise and poor generalisation properties 2[23]. As will
be explained in chapter 2, the important information for model selection lies within the
normalising denominator in Bayes’ rule, often termed evidence or marginal likelihood
[24]. The maximisation of this marginal likelihood lies at the core of the Bayesian com-
pressive sensing framework reviewed next. 3

2A popular adopted term in this regard is the “Occam’s razor”, which states that simpler models should be
preferred to overly complex ones [23], [24]

3In the light of sparsity, the selection process via a set of hyperparametrised weights with imposed sparsity (via
a prior) is also investigated under the term of Automatic Relevance Determination (ARD) (see for example
[25]).
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A general sparse Bayesian framework under the name of SBL is introduced by Tipping et
al. in [26], [27] to obtain sparse solutions to regression and classification tasks. Although
the work of M. Tipping et al. is focused more on SBL in general, and does not only ap-
ply to Bayesian Compressive Sensing (BCS), it provides the corner stone on which many
following papers base their application of the SBL paradigm to BCS. In [27], the sparsity
is promoted by means of prior densities on the model weights which have to be esti-
mated. A popular but analytically more complex choice for sparsity enforcing priors is
the Laplace density [28], [29], which concentrates much of its probability density at its
centre and along its tails. To ease the analytical complexity, [27] resort to a hierarchical
prior based on Gaussian densities which leads to an approximate analytical solution, as
it allows for conjugate-exponential analysis [27], [28]. Sparsity is finally obtained, since
the posterior PDF of most weights tend to be infinitely peaked around zero and can be
pruned away. The remaining non-zero weights are then termed ’relevance’ vectors and
give the basis functions which are included into the model. The term Relevance Vector
Machine (RVM) is thus introduced in [26], [27] which reminds of the Support Vector Ma-
chine (SVM). The first proposed iterative algorithm in [27] has later been developed into
an efficient, fast RVM algorithm [30], [31] to solve the Bayesian inversion task.
In a later research work [29], the proposed hierarchical prior in [27], [28] has been ex-
changed by a hierarchical, Laplacian prior. The authors of [29] point out, that Laplace
priors act stronger in enforcing sparsity and their method generally outperforms the one
in [27] in terms of sparsity and reconstruction error.

1.2.3. THE GENERAL BAYESIAN COMPRESSIVE SENSING FRAMEWORK
Based on the algorithm and framework developed in [27], [31], a general introduction to
the BCS framework is given in [28] without a direct link to DoA estimation, yet. The de-
rived signal model follows the same format as in classical compressive sensing literature,
the BCS framework merely offers a different method of solving the problem, as visually
depicted in figure 1.2. The authors point out the following most important benefits of
BSC in agreement with other literature ([32]) about the topic:

• Due to the underlying Bayesian framework, not only point estimates are obtained,
but rather a full probability distribution in the form of a posterior density func-
tion over the weights. This provides a measure of uncertainty or confidence in the
estimation.

• The additional confidence metric, termed “error-bars”, also provide a way to deter-
mine if a sufficient number of measurements has been taken. This is exploited in
[28] to optimise the measurements and reduce uncertainty with every new mea-
surement.

• The proposed framework inherently accounts for additive measurement noise and
can yield an estimate of its variance.

As in the classical CS framework, the proposed scheme assumes compressibility of the
signal of interest or, equivalently, sparsity in a proper transform basis. Given compres-
sive measurements and a known basis in which the signal can be represented via a sparse
set of coefficients, the objective is to recover those coefficients or weight values. The
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speciality and distinguishing factor to classical CS methods is the estimation of those
weights by means of a full posterior density function, providing not only point estimates
but also confidence values in the estimated weights [28]. The authors of [28], [33] pro-
vide an implementation of the RVM algorithm that has been proposed in [31], adapted
to the BCS task. In addition to the pure estimation of the unknown sparse coefficients,
the BCS framework is utilised to show a way for adaptive optimisation of the projections
onto the sparse basis, which has been introduced by the same authors in a previous
paper [34]. In contrast to random projections, optimised projections might be facili-
tated in the design of sensing systems [28], [34], an aspect which will be important in the
search for optimised antenna arrays. The authors compare the BCS method to classical
CS inversion methods like Basis Pusuit (BP), Orthogonal Matching Pursuit (OMP), and
Stagewise Orthogonal Matching Pursuit (StOMP). The BCS reconstruction is shown to be
cleaner than the BP reconstruction, while additionally providing confidence metrics and
outperforming BP in terms of computation time. In [33], Ji et al. extend their work by de-
veloping a method that incorporates statistical dependencies in the sparseness of con-
secutive snapshots to improve performance of the inversion. The shared sparseness is
exploited by placing a shared prior over the hyperparameters, which is influenced by all
the used snapshots (tasks). This method has been generally termed Multi Task Bayesian
Compressive Sensing (MT-BCS). Another follow-up contribution in [35] extends the mul-
titask method to work directly with complex valued input, thus exploiting joint sparsity
between the real and imaginary parts of input signals and better preserving phase infor-
mation. However, the developed algorithm is not working with the fast update equations
that have been worked out in [31] and subsequently used in [33], making it slower and
less stable.

1.2.4. BCS FOR DOA ESTIMATION

In [36], a narrowband DOA estimation method based on a minor extension to the BCS
framework in [28] is proposed. The array manifold matrix of a Uniform Linear Array
(ULA) is discretised into an over complete manifold matrix over the potential range of
DoAs, casting the problem into a grid-based CS problem, very similar to the classical CS
approaches reviewed earlier. The proposed signal model is derived to incorporate multi-
ple snapshots. The likelihood function (its logarithm in practice) that is to be maximised
is then computed by summing the likelihoods of all snapshots together. This is a differ-
ent approach as compared to the multitasking approach proposed in [33].
A following, more rigorous application to DOA estimation building upon [36] has been
done in [32], [37], where a similar expansion for the use of complex values is done as
in [38], first introduced in [39]. Both a single-snapshot and multi-snapshot framework
is provided, based on [28] and [33], respectively. In contrast to [36], they make use of
the multitasking strategy, where correlation between snapshots is exploited to facilitate
the estimation procedure. They show that their method is able to yield accurate DoA
estimation without prior knowledge about the number of targets in the scene (i.e., the
number of non-zero coefficients). Moreover, the accuracy and robustness to noise is in-
creased with the multi-snapshot method, since correlations between snapshots can be
exploited.
Another multitask BCS approach has been proposed by Carlin et al. in application to the



1

10 1. INTRODUCTION

DOA estimation problem in [40], building upon their earlier works in [32]. Here again
a grid-based discretisation of the steering matrix is considered. The work is compared
against the established techniques of ROOT MUSIC and ESPRIT under varying number
of snapshots, target spacings and Signal to Noise Ratio (SNR). The used performance
metric is the Root Mean Square Error (RMSE) of the estimated DoA. As it has already
previously been stated, the two traditional methods require a priori knowledge of the
number of targets, which BCS methods do not. With respect to the RMSE, the mutli-task
BCS approach outperforms the two traditional as well as the singletask BCS approach in
all aspects. It might be worth pointing out, that in the case of varying target spacing (in
azimuth), the singletask BCS seems to perform better than the multitask one under very
closely located targets. However, it is proved in [40], that the multitask BCS approach
efficiently exploits correlations between snapshots to arrive at an overall better perfor-
mance.
In [17], two new aspects are introduced, being the coupling between the antenna ar-
ray elements and a method of grid-refinement to locally increase the angular resolution
where targets have been estimated under a more coarse angular grid (Similar as intro-
duced by [4] in the classical CS scheme). To achieve the multi-scaling procedure, the
confidence values in the estimated weights, which are readily yielded by the BCS in-
version, are utilised. This is one option to deal with the off-grid estimation errors, in-
duced by targets that do not fall onto the discretised grid of DoAs. In this approach,
only single-snapshot processing is considered, and the sensor arrangement is a ULA but
this time with non-ideal dipole antennas including mutual coupling and polarisation
mismatch. The iterative refinement strategy is based on the confidence level of an initial
coarse angle estimation, and a defined number of “zooming” iterations is performed into
designated areas of interest ("ARoIs"). This allows for a selective grid refinement while
maintaining a coarser grid outside those regions, saving computational burden. The
refinement strategy provides a good way of “checking” again at angular sections and im-
proving the certainty of target presence. It is shown by means of the angular RMSE, that
the refinement iterations reduce the RMSE to almost 0 after only 3 zooming steps. Inter-
estingly, the authors show that the multi-scaling BCS approach outperforms the single
scale BCS approach even when this one is used with a very fine angular grid, while even
the computational time has been lower in the multi-scaling approach. Finally, a very
useful performance assessment provided in [17] is that the zooming strategy efficiently
corrects for falsely located targets. If in the initial coarse prediction 10 target DoAs are
estimated, but only 6 targets are present, following iterations are able to reduce the num-
ber of estimations to the correct value.
In [41] an off-grid approach to the DoA estimation problem is proposed by considering a
first order approximation of the array steering matrix. Following the sparse Bayesian in-
ference framework as in [27], however considering a complex valued dictionary matrix,
a reconstruction algorithm is proposed. In a further step, the algorithm is modified by
utilising the SVD in order to reduce the computational burden as well as the noise sen-
sitivity. The proposed algorithm can be utilised for both single- and multiple snapshot
data. Through simulations, the authors show, that their algorithm is not only more pre-
cise than ℓ1-based classical CS methods, but is also able to resolve closely spaced targets
where classical methods like MUSIC fail.
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Extending upon the idea presented in [41], Dai et al. propose a scheme in [42] to im-
prove the computational efficiency of the grid refinement to mitigate the off-grid errors.
To this end, they employ the Expectation Maximisation (EM) algorithm to iteratively per-
form the grid refinement, where they relate each update to a root-finding problem of a
specific polynomial. To deal with outlier measurements, Dai et al. in [43] propose a DoA
estimation algorithm, again derived similarly as in [27] and [41]. They resort to a grid
refinement as introduced before in [42] to deal with off-grid effects.
Another modification to the SBL model of [27], inspired by the use of a Laplacian prior as
in [29] is done in [44], where explicit attention is laid on the non-negativity of the sparse
weights (i.e. the target locations). To include this proposition into the SBL model, the
Laplacian prior as in [29] is adopted to yield only non-negative values. Similar deriva-
tions are then performed as in [27] and [29], yielding an algorithm based on the EM pro-
cedure, which is shown to outperform previous methods (including the one proposed in
[29]). An interesting addition is that the authors do not use ULAs, but instead evaluate
their method using a Minimum Redundancy Array (MRA).

Such array types can be generally grouped into the research category of sparse or
non-uniform arrays. One of the earlier works in this field by A.T. Moffet introduced the
concepts of Minimum Redundancy Array (MRA)s and Minimum Hole Array (MHA)s,
which are linear arrays with as few redundant inter element spacings as possible to
achieve maximum resolution capabilities [45]. This idea was extended to the MIMO
array concept in [46]. Another type of such arrays is termed Co-prime arrays, which
contrary to the MRA and MHA geometries have closed form expressions for the sensor
locations [47]. Following up, as an improvement to co-prime arrays, nested arrays and
super-nested arrays were introduced which also have closed form solutions for the an-
tenna positions [48], [49]. There are many other variations to these array geometries,
and reviewing those would go beyond the scope of this thesis. Generally, these array
types offer one way to reduce the antenna elements utilized within an antenna array,
by getting rid of redundant information [49], and have shown to improve the DOA es-
timation performance using subspace based methods like MUSIC estimation [50]–[52].
Moreover, using these array structures has offered the ability to estimate more targets
DOAs than there are physical sensors in the array, which has been demonstrated for ex-
ample using nested arrays in [47]. These array structures have also been applied to DOA
estimation in conjunction with sparse Bayesian learning methods. In [53], [54], coprime
and nested arrays are used. Another two papers using coprime arrays and nested arrays
can be found in [55] and [56], respectively.

Up until now, the discussed literature based their models on the assumption of nar-
rowband signals. In [57], the authors extend the multi-scaling BCS DOA estimation ap-
proach in [37] to work with wideband signals instead, working with single snapshot data.
The DoA estimation is facilitated and improved by exploiting correlations between dif-
ferent frequencies instead of different snapshots. Moreover, frequency contents of the
impinging signals can be estimated. Similarly to previous methods, the azimuth angle
domain is discretised, resulting in a grid-based method. It is shown in a small numerical
evaluation, that with this “spectral correlation”, multitask BCS method estimates both
DoA and signal bandwidth correctly. In a follow-up work [58], the authors extend their
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strategy to also incorporate multiple snapshots in time in order to improve the estima-
tion under low SNR conditions. However, since in the MIMO radar case the signals are
available only after the matched-filter processing, we might not have such wideband-
based opportunities.

Concluding this section, a collection of the main reviewed literature dealing with BCS
based DoA estimation is provided in table 1.1. It has become evident that most literature
utilises fully filled receiver array architectures within the Bayesian CS framework, leaving
the potential for reduction in sensor elements mostly untouched.

Reference Snapshots Method Grid-based Sensors
[36] single [28] yes ULA (full)
[37] single/multi [27], [28] yes ULA (full)
[40] multi [33] yes ULA (full)
[59] multi [37] yes (refined) ULA (full)
[17] single [28] yes (refined) ULA (full)
[57] single [37] yes ULA (full)
[58] multi [57] yes ULA (full)
[41] multi [41] similar to [27], [29] Off-Grid ULA (full)
[43] multi [43] similar to [27], [29] yes (refined) ULA (full)

[42], [43] multi [41], [42] yes (refined) ULA (full)
[44] single [29] yes MRA

Table 1.1: List of major BCS based DoA estimation methods. The works of S. Ji and L. Carin in [28], [33] as well
as the work surrounding M. Carlin et al. in [37], [40], [59] form a central contribution to the related literature.
Some methods build upon the Laplace prior as introduced in [29], while others build upon the Gaussian prior
model from the original paper of Tipping [27]

1.2.5. BCS APPLIED TO MIMO RADAR

To the best of the author’s knowledge, only few resources could be found that apply the
BCS scheme to MIMO Radar.
In [60], the BCS framework is applied to DoA estimation with MIMO radar. A grid of
possible DoAs is considered, discretising the angular domain and neglecting possible
off-grid errors. The discretised and known steering matrix obtained from the transmit-
ting and receiving steering vectors is used as the dictionary matrix in the sparse inversion
problem, where the task is to find the non-zero support, corresponding to the directions
of impinging signals. The complex valued data is extended to yield real valued vectors
and matrices similar to [17], [38]. In the proposed measurement model, the DoAs cor-
respond to the non-zero coefficients in a weight vector applied to the dictionary matrix.
To retrieve this weight vector, the RVM scheme is adopted, similar to [28], [31].
Another study in [61] aims to extend the MIMO DoA estimation framework using sparse
SBL to arbitrary transmit waveforms. Those waveforms are iteratively optimised to re-
duce the DoA estimation error. To perform the DoA estimation, the measurement model
is cast into the BCS framework similar to [60]. Finally, they show that the optimised
waveforms perform better in terms of estimation error compared to classical orthogonal
waveforms [61].



1.2. LITERATURE REVIEW

1

13

Figure 1.4: Overview of sparse array configurations that have been proposed throughout literature for different
purposes

In [62], the SBL framework is applied to MIMO radar DoA estimation under considera-
tion of unknown non-uniform noise. However, they assume a MIMO array with redun-
dant elements and include methods of reducing the data obtained by such redundant
elements. Dealing with imperfect waveforms that may not be perfectly orthogonal in
MIMO radar is considered in another off-grid DoA Estimation method utilizing sparse
Bayesian learning in [63], where similar to [62], the complexity stemming from redun-
dant virtual sensors is reduced via a reduced-complexity framework. Finally, a combi-
nation of sparse Bayesian learning and MUSIC is proposed in [64] for direction of arrival
and direction of departure estimation in MIMO radar. Again, the virtual sensor array
generated by the MIMO setup is considered to have a lot of overlapping elements caus-
ing redundant measurements, which are removed by a dimensionality reduction.

1.2.6. PROSPECT ON ARRAY OPTIMISATION

The literature reviewed so far and the methods therein have been proposed and tested
largely based on fully filled uniform receive arrays. It has been investigated and shown,
that the sensing matrix plays a major role in the performance of compressive sensing
algorithms and there exist different possible realisations [65]. This section is dedicated
to literature that specifically aims to find sparse sensing matrices under realisation of
antenna arrays. Optimality in this sense is understood with respect to the estimation
performance and/or with respect to the least amount of elements needed for robust DoA
estimation, specifically in the CS and BCS framework. It is important to note that there is
a wide range of sparse array types, but this thesis aims to use a specific characteristic of
the BCS method to find sparse arrays that work well specifically for BCS DoA estimation
methods. Refer to figure 1.4 for a first overview and orientation.

In the classical CS literature, many efforts have been made to optimise the measure-
ment matrix or, equivalently, the sensor placement in the DoA estimation context. One
of the metrics often found for this purpose is the mutual coherence [9], [66], a well es-
tablished criterion for successful recovery of the sparse weights, which has been related
to low sidelobes in the array pattern for all looking directions in [5]. The optimisation
with respect to the mutual coherence of the sensing matrix or its average has been the
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subject of previous literature [67]–[71]. In [72] the sensor placement in a MIMO setup is
considered with respect to minimising the mutual coherence of the sensing matrix and
to improve the CS recovery performance over randomly placed elements as proposed in
e.g. [5]. They formulate the problem into an iterative algorithm and compute proba-
bilities of sensor placement. Finally, they show by means of numerical simulation that
their antenna arrays perform better than randomly placed ones. Those positive results
motivate the search for a similar optimisation in the BCS framework. It is important to
point out, that the mutual coherence is a recovery condition derived in the classical CS
framework [9]. It is a property imposed on the measurement matrix that gives certain
guarantees for the existence of unique solutions [73].

To the best of the author’s knowledge, similar metrics directly related to the success
of the sparse Bayesian recovery have not been rigorously developed for the Bayesian CS
framework with regard to antenna arrays yet (which has also been stated in literature
[74]). Moreover, it has been explicitly stated that in BCS, the sensing matrix does not
need to fulfil recovery guaranteeing properties as for example the Restricted Isometry
Property (RIP) like classical CS inversion methods need to do [32], [74]. However, the
theory behind the sparse reconstruction follows a similar thought in the Bayesian ap-
proach, and thus array/sensing matrix optimisation might add valuable benefits to the
BCS field as well. It has been hinted at in [34] that the readily provided uncertainty mea-
surements in the BCS framework might be utilised to select measurement projections
which add the most new information. To this end, they propose the differential entropy
as a possible performance metric. This method is picked up in [75], [76] and viewed un-
der the more general term of Bayesian experimental design4, however, using a different
approach to SBL. In fact, the design of measurements that yield the most new informa-
tion in a Bayesian setting has been a general subject of research [24], [78]. This idea has
been applied in the fields of sonar sensing for the optimal creation of uniform linear
sensor arrays [74]. However, this technique has not yet been applied to the radar sensing
application and not under the MIMO radar setup. Moreover, it has not been tested with
real measured radar data yet, which could provide valuable new inside about the perfor-
mance of these techniques. This motivates the work of this thesis and its major research
questions, which will be described in the following section.

1.3. THESIS OBJECTIVE AND NOVELTY
After reviewing a large body of research concerning both the classical and the Bayesian
compressive sensing framework applied to DoA estimation, it has become clear that
those methods form promising and established new alternatives to classic DoA estima-
tion methods. They provide recognisable benefits such as super-resolution, reduced
number of snapshots, noise robustness and a reduced number of antenna elements
(leading to possible reduction in hardware cost and complexity), which make these meth-
ods worth investigating further. While impressive results have been obtained in the clas-
sic CS literature, the Bayesian framework offers several benefits, such as providing un-
certainty metrics, and has emerged as an attractive statistical alternative to the classic
CS literature. The reduction in sensor elements or, equivalently, the thinning of sensor

4It is also found under the term active learning in the machine learning field (see [77] for an overview)
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arrays has been investigated for classic CS methods, where the most popular choice of
metric for the thinning procedure is the mutual coherence of the dictionary matrix (i.e.
the array steering matrix). This mutual coherence is directly related to mathematical
theorems, in this case the restricted isometry property (RIP), which have been derived for
CS. However, in the Bayesian counterpart of CS, it has been claimed that such properties
do not exist or have not been derived yet [32], [74]. Furthermore, it is said, that in BCS,
the steering matrix does not need to fulfil the mutual coherence property. The ques-
tion arises, to what extent and by what methodology, arrays could be thinned in order to
reduce hardware complexity, cost and computational load due to high amounts of col-
lected data. Besides rather rigid architectures like Minimum Redundancy Array (MRA),
to the best of the author’s knowledge, no such methods have been proposed for radar an-
tenna arrays yet. This thesis makes use of the uncertainty measures provided by the BCS
method to propose a method for generating thinned sensor arrays for both the ULA and
the MIMO array architecture. A pipeline is developed, that aids in the generation and
performance assessment of thinned arrays when used for BCS-based DoA estimation. It
is shown, that the generated arrays are able to perform well in terms of ROC curves, even
when targets are spaced closer than the native resolution of the array aperture and the
number of sensors is heavily reduced.

Moreover, after reviewing related literature, there have not been many tests of the
BCS framework applied to radar DoA estimation with real measured data. Most liter-
ature uses simulated data to test the proposed methods. In this thesis, the generated
arrays are tested also with real data, captured with the Texas Instruments cascade evalu-
ation board, which uses a MIMO array architecture providing 86 unique virtual sensors.
Due to this fact, the proposed array thinning methods are tailored towards this array
architecture, such that the generated arrays can be tested with the available hardware.
However, the proposed methods rely on a very general measure (the provided uncer-
tainty) and can easily be extended and adjusted for different hardware.

Lastly, the BCS framework relies on the concept of sparsity in the signal of interest.
Most literature deals with simulated data that features point like targets. This thesis will
test the BCS method when targets, like a human body, are not point like.

To the best of the author’s knowledge, except for a single paper in SONAR technology
[74], the utilisation of the uncertainty measures inherently provided by the BCS method
have not been studied in the literature for sensor placement in radar systems. This thesis
provides an algorithm exploiting the intrinsic characteristics of the Bayesian CS frame-
work to achieve a reduction in sensor elements used for DoA estimation with radar tech-
nology. Two methods are proposed based on the same underlying concept to generate
sparse arrays with a physical ULA based architecture and a MIMO array architecture.
The proposed algorithms are tailored towards the available hardware in order to test the
arrays with captured data, adding further contribution to this field of literature. Due
to the available hardware, the algorithms are bound to work with sensor arrays that are
confined to an underlying grid of ULA positions with a sensor spacing of λ2 . However, the
concepts used in the proposed methods are easily extendable to other boundary condi-
tions.

Considering the given boundary conditions and parameter choices in this thesis, the
resulting arrays perform well in terms of ROC curves and RMSE with a heavy reduced
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number of sensors. It is proven by real world measurements, that Bayesian Compres-
sive Sensing has the potential to be used in conjunction with sparse sensor arrays and
achieve good detection and estimation performance. For the MIMO case, this directly
translates to the possibility of removing or deactivating complete RF chips on the TI cas-
cade evaluation board, leading to reduced hardware complexity, energy consumption
and lower amounts of data to process.

Summarising the main contributions of this thesis:

• The inherently provided uncertainty measures by the BCS method in the form of
a covariance matrix for the estimated DoA coefficients are utilised to iteratively
fill an empty base-array by adding the most informative new sensor position at
each step. Two algorithms are proposed, for the physical ULA and MIMO array
architecture.

• Through simulation and measured data, the sensor arrays resulting from the pro-
posed method are shown to outperform randomly generated arrays in terms of the
ROC curves and are able to achieve good detection and estimation performance
with a reduced number of sensors.

• Valuable insight is gained by testing the generated sparse array structures in con-
junction with the BCS DoA estimation method with real-world measurements of
point-like targets and an extended target.

The results obtained in this thesis are being written up for submission in a journal
paper to IEEE Transactions on Aerospace and Electronic Systems.



2
THEORY

The preceding literature review has shown that the BCS framework has been applied for
DoA estimation with promising results. Possible questions that are yet to be answered
have been worked out and will be tackled in this thesis. This chapter is dedicated to review
the theoretical foundation for the methods that are used. First, the commonly used signal
model for DoA estimation as well as the concepts behind MIMO antennas are introduced
in sections 2.1 and 2.3, respectively. Following that, the theory behind the Bayesian com-
pressive sensing framework and its principal derivation is described in section 2.5. It will
be explained, how the DoA signal model can readily be cast into the BCS framework under
some small assumptions that are common practice throughout the literature. Important
relations between classical and Bayesian compressive sensing will be pointed out, to give
a good understanding of the common goal that both frameworks attempt to achieve, and
how they differ in achieving this goal. Finally, section 2.6 is dedicated to the generation of
the sensor arrays.
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2.1. DIRECTION OF ARRIVAL ESTIMATION SIGNAL MODEL

D IRECTION of Arrival estimation has already been a topic of large interest for a long
time. Different methods have emerged throughout literature, and this thesis will

only focus into one branch of them, namely sparse reconstruction based methods, which
is at its core a method of spectral estimation [79]. For a brief overview of the broader
methods, refer to figure 2.1.

Figure 2.1: Broad overview of major DOA estimation categories, grouped by the way they approach the prob-
lem. Methods can be found in more detail in [79]

To describe the signal model that will be used for the DoA task using compressive
sensing methodology, some assumptions will be adopted that are commonly encoun-
tered in related literature. Firstly, the signal sources (or reflecting targets) are considered
to be positioned in the far field of the antenna array. This allows the simplification of
the incoming wavefronts to be plane waves, and the time delays of the signal arriving at
each sensor in the array can be easily derived. Secondly, the signals arriving at the sen-
sor array are assumed to be narrowband signals, which holds when B ·∆T ≪ 1, where
B denotes the signal bandwidth and ∆T the signal’s maximum travel time between two
antennas in the array.

Figure 2.2: Incident plane of target return signals and sensor placement into a linear array. An exemplary target
is shown with its incident angle denoted as θk

Let K be the number of sources present in the scene. In general, for an antenna
array consisting of M antennas, the received signal at a specific antenna m = 1, . . . , M
in the antenna array is given by the sum of all impinging signals with a time delay τmk



2.1. DIRECTION OF ARRIVAL ESTIMATION SIGNAL MODEL

2

19

and a noise term nm . The time delay τmk is taken with respect to the first element of
the antenna array, which is often considered coinciding with the origin of the reference
system and this is adopted here as well [79]:

ym(t ) =
K∑

k=1
sp (t −τmk )+nm(t ) (2.1)

Now taking into account the far-field assumption resulting in incoming plane wave sig-
nals, the time delay τmk can be expressed as τmk = kT rm [79]. Here, rm is the position
of the m’th antenna in three-dimensional space and k denotes the propagation direction
expressed depending on the angles of arrivalφ, θ, of azimuth and elevation, respectively:

k =
sinφk cosθk

sinφk sinθk

cosθk

 (2.2)

Within the scope of this work, linear, 1-dimensional arrays are considered, which will
simplify the expressions a bit. To this end, the elements are formally placed along the
y-axis of the coordinate system (see figure 2.2). Reducing the DoA estimation problem
to a one-dimensional angle estimation problem, let φ= 90◦ =π/2 such that the plane of
incidence for incoming signals becomes the z-y-plane as depicted in figure 2.2, and the
propagation direction reduces to

k =
cosθk

sinθk

0

 (2.3)

With the sensor elements placed along the y-axis at positions spaced by ∆, the position
vectors become

rm =
 0

(m −1)∆
0

 (2.4)

As a result, the expression for the time delays simplifies to

τmk = kT rm = k(m −1)∆sinθ (2.5)

where k = 2π
λ is the propagation constant in free space. By furthermore expressing the

sensor spacing in units of wavelength as d =∆/λ, the incurred time delay at each sensor
can be expressed as τmk = 2πd(m −1)sinθ.

The signal vector received by the antenna array is obtained by stacking each array
output into a vector as y = [y1(t ), . . . , yM (t )]. Performing the Fourier transform on this
array output, due to the well known shift property of the Fourier transform and the plane
wave assumption, the time delays τmp become phase shift terms as e− jωτmp . Expressing
this for the M×1 data vector y leads to the commonly found model for the received data:

y =
K∑

k=1
a(θk )sk +n (2.6)
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where the phase shifts for each element have been stacked into the steering vector [79]
a(θk ) ∈CM as

a(θk ) =


1

e j 2πd si n(θk )

...
e j 2π(M−1)d si n(θk )

 (2.7)

Further combining the steering vectors for each source K into a M ×K matrix as Â =
[a(θ1), . . . ,a(θK )] ∈ CM×K , referred to as steering matrix [79], equation 2.6 can be com-
pactly expressed as

y = Âs+n (2.8)

with s ∈ CK now indicating the amplitudes of the K source signals and n accounts for
measurement noise in each sensor.

It should be pointed out that the problem given in equation 2.8 is not linear in the
unknown DoA parameters θk , since they are located in the exponents of the steering
matrix Â [37]. A common approach is therefore adopted here, which then also enables
the application of the BCS framework to this type of problem. The angular range over all
possible θ is discretised into a grid of G equally spaced angles θ̂. The steering matrix can
then be generated as an over complete dictionary matrix A ∈ CM×G where each column
is a steering vector ag = a(θg ) with g = 1, . . . ,G corresponding to each possible source
direction. Furthermore, since the number of sources K is typically not known, the vector
of signal coefficients s ∈ CK is now expanded into a sparse vector x ∈ CG with unknown
support s, corresponding to actually present targets at those angles. The resulting data
model is denoted as

y = Ax+n (2.9)

This overcomplete dictionary matrix A ∈ CM×G can now directly be used in the CS
framework, abiding to an on-grid method. As a consequence of this angular discretisa-
tion, target DoAs which do no fall exactly onto one of the G angles will lead to different
degrees of estimation inaccuracies, depending on the resolution of the angular grid. To
complete the signal model and prepare it to be used with the BCS algorithm in [28],
the complex valued representation given in equation 2.9 is expanded into a real valued
equation as proposed in [37]:[ℜ(y)

ℑ(y)

]
=

[ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

][ℜ(x)
ℑ(x)

]
+

[ℜ(n)
ℑ(n)

]
(2.10)

where ℜ(·) and ℑ(·) denote the real and imaginary part, respectively. Using this expan-
sion, the dimensions of the involved quantities are doubled.

2.2. MIMO DATA MODEL
The use of radar has become a key ingredient in current generations of automotive tech-
nology and the ones to come. In this sector of technology, radar devices are typically of
small size, have a considerably lower range, lower power consumption and lower cost
than their counterparts in military or airborne applications [80]. Among the alterna-
tives, Multiple In Multiple Out (MIMO) technology has received a lot of attention among
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automotive radar manufacturers as it is able to provide a high angular resolution by syn-
thesising a larger amount of virtual antennas with only a few physical transmit and re-
ceive antennas as described in section 2.3. Autonomous radar typically operates in the
frequency bands at 24GHz and 77GHz, while the latter one is preferred in newer gener-
ations [80]. The common choice of waveform is the Frequency-Modulated Continuous-
Waveform (FMCW) waveform (chirp), which is a complex sinusoidal signal with its fre-
quency modulated over a certain modulation time period. In this thesis, a linear FMCW
chirp is considered, where the chirp frequency fT is linearly modulated along a certain
bandwidth B over a time interval T as:

fT (t ) = fc + B

T
t (2.11)

where fc denotes the central carrier frequency and t ∈ [0,T ]. This is continuously re-
peated with a period TPRI called Pulse Repetition Interval (PRI) [80]. After transmission
in the high-frequency band and reflection at the target, the signal received back at the
radar receive antennas resembles a delayed and attenuated copy of the transmitted, lin-
ear FMCW chirp signal. Considering a target moving with a radial speed v at a radial
distance R, the delay induced in the receive-signal can be described as

τ= 2
R + v t

c
(2.12)

In the receiver, the received signal is mixed 1 with the transmitted signal (also called
dechirped [81]) and low-pass filtered, which yields a complex valued, sinusoidal signal
called beat signal and has a frequency of fb = fR + fD called beat frequency. The two
components in fb are the frequency corresponding to the target’s range:

fR = 2
RB

T c
(2.13)

and the Doppler frequency induced by radial movement

fD = 2
fc v

c
(2.14)

The beat signal is converted to the digital domain by means of an Analog to Digital Con-
verter (ADC). The dechirped and digitised time-domain echo signal is collected into a
signal vector of Nr samples. This time period of one chirp signal is commonly termed
fast time. When multiple such chirps are collected, e.g. Nc , the time along which this is
done is termed slow time. Furthermore, considering an array of NRx receiver antennas
or channels, the well known Radar Datacube can be assembled as shown in figure 2.3.

To obtain the range information from the collected beat signals, a Fast Fourier Trans-
form (FFT) is performed along the fast time, yielding an estimate of the beat frequency
fR of the beat signal, from which the target range can be calculated as [80]

R = fR cT

2B
(2.15)

1Mixing entails the multiplication of two signals. This operation is typically done in the analogue part of the
RF-Frontend.



2

22 2. THEORY

Figure 2.3: Radar Datacube on the left and the extracted range bin information (in blue). The different layers
of the data cube indicate the data captured from Nc consecutive chirps (in slow time). The x-Axis shows the
data for the different receiver channels, which are denoted here as NRx and can be either formed by a physical
or a virtual array.

This is possible, since under automotive conditions, fD ≪ fR and fD can be assumed
constant within a chirp [80]. An important aspect of the FMCW technology is, that for
signals with a time-bandwidth product satisfying T ·B > 10, the range resolution is de-
scribed by ∆R = c

2B , which does not depend on the sweep length but only on the mod-
ulation bandwidth. This decouples the dilemma faced in pulsed radar, where for a finer
range resolution, shorter pulse lengths are required, leading to a diminished overall sig-
nal power [81].

Since the target range is obtained via the beat frequency of a target’s return signal,
which in turn is calculated by means of an FFT, it can be related to the number of points
NF F T used in the FFT as [82]:

R = fR T c

2B
= NF F T c

4B
(2.16)

The desired maximum distance Rmax directly corresponds to the maximum beat fre-
quency fR,max = 2Rmax B

T c which determines the bandwidth of the beat signal (or IF sig-
nal). As the maximum beat frequency, fR,max , is capped by the sampling rate fs of the
ADC in the receiver chain, the maximum range of an FMCW system before ambiguities
arise is given by [82]

Rmax = fs cT

2B
(2.17)

Similarly, as with the range information, Doppler information can be extracted by
performing the FFT along the slow time, while the range frequency fR is considered fixed
across the slow time (this depends on the length of the processing interval). Transmitting
pulses with a PRI of TPRI , the reciprocal measure is called Pulse Repetition Frequency
(PRF) and is given as fPRF = 1

TPRI
. It has to satisfy fPRF ≥ 2 fD to avoid that targets with a

speed within the speeds of interest fold back onto the opposite of the velocity spectrum,
leading to ambiguities in the radial velocity estimation. The maximum radial velocity
without ambiguities is therefore given as vmax = c

4 fc TPRI
[80].

By performing the FFTs over fast-time (range) and slow-time (Doppler), a processing
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gain is introduced, which improves the SNR and further facilitates the DOA estimation
thereafter. This processing gain in units of dB can be described by [80]

GF F T = 10log10(NF F T ) (2.18)

To generate FMCW MIMO radar signals, the wideband, baseband model derived in
[83] is used, and its most important aspects are reviewed here. The baseband receive sig-
nal z(l )

i (m, t ′) of the m’th pulse, reflected from a target i , arriving at the l’th array element
after the dechirping operation, is described according to [83] as:

z(l )
i (m, t ′) = r (l )

i (m, t ′)× s∗(m, t ′)

≈αi exp

(
− j 2π( f0 +µt ′)

ld

c
sinθi

)
×exp

(
− j 2π( f0

2vi

c
Tm +µγi t ′)

)
×exp

(
− j 2πµ

2vi

c
Tmt ′

)
(2.19)

where t ′ = t −mT describes the fast-time domain with m = ⌊ t
T

⌋
. The frequency modu-

lation rate2 during a modulation period T0 over a bandwidth of B is described by µ= B
T0

.

The initial round trip delay of a scattering target i is denoted as γi = 2Ri
c ≪ T0. In equa-

tion 2.19, the first exponential term describes the phase shifts introduced by the dis-
placement of the antenna elements, while the second one describes the phase shifts in-
duced by the target’s range. The last exponential is a residual coupling term between fast
and slow-time. It is worth to point out, that this signal model has been derived in [83] for
a wideband investigation. In this thesis, however, the signals are assumed narrowband,
thus the model might be more complex than actually needed.
A typical, simplified FMCW radar block diagram is displayed in figure 2.4 where the sim-
ulated signal is indicated to give an orientation of the procedure.

Figure 2.4: Simplified example block diagram of a FMCW transmit and receive frontend. Based on [81], [82]

2Also called ramp-rate or slope [81]
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Figure 2.5: Block diagram of the simulation used in this thesis for received FMCW MIMO baseband signals
based on the model that has been described in this chapter.

Based on equation 2.19, raw FMCW data is generated without any noise in the block
"Baseband receive Signal model" shown in figure 2.5. Parameters are set according to the
desired radar, simulation and array parameters. The data cube of dimensions N f ast ×
Nsl ow ×Nchannel is then stored, to be loaded in a subsequent step for noise adding and
extraction of the range bin of interest, as shown in the steps in figure 2.5. Specifically,
additive Gaussian noise is added in the time domain to the raw receive signal. Then the
range FFT is performed over the fast time domain and the range bin where the targets
are located is found by a peak search. This range bin data is then extracted for all receive
channels and slow-time chirps. Since the noise is added additively before the range FFT
is performed, it is important to keep in mind that the range FFT induces a processing
gain, described by equation 2.18. Since the range FFT is calculated with 256 samples,
the resulting processing gain amounts to ≈ 24.1dB.

Finally, a matrix of dimension Nslow × Nchannel , containing the array data for the
selected range bin of each chirp, is stored for each simulated target scene. The generated
data by this pipeline is used in the remainder of this thesis for the array generation and
performance evaluation.

2.3. MIMO ARRAY ARCHITECTURE

Since in this thesis a Multiple In Multiple Out (MIMO) radar is considered, the architec-
ture of the MIMO antenna array will be described in this section. In general, MIMO radar
consists of an array of Nt ≥ 2 transmit antennas and an array of Nr ≥ 2 receive antennas.
The transmitting antennas are assumed to radiate uncorrelated signals, such that they
can be distinguished in the receiver chain. Ideally, the signals radiated by each individual
transmit antenna are orthogonal, which can be achieved for example by frequency divi-
sion or time division multiplexing and the latter one is assumed for this thesis. Moreover,
in this thesis a colocated MIMO architecture is considered where the transmitter and re-
ceiver array elements are closely spaced such that the target response can be assumed
equal for each pair of transmitting antenna and receiving array (i.e. they have the same
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viewing angle of the target). This MIMO architecture results in a virtual array, which is
generated by a convolution of transmitter and receiver sensor locations. If the antenna
positions of the two sub-arrays are well-designed, the resulting virtual array can have a
much larger aperture than the sub-arrays and therefore offer a higher angular resolution
[84]. The transmitted signal from the nt ’th transmit antenna will arrive at each receive
antenna nr with a time delay relative to their origins as τnt ,nr = τnt +τnr [85]. Recall-
ing the general steering vector given in equation 2.7, individual steering vectors for the
transmitter and receiver arrays can be defined. Again, the sensor elements are placed
linearly along the y-axis as shown in figure 2.2 and their positions in units of wavelengths
are denoted as [72]:

yt ,i = (i −1)d i = 1, . . . , Nt (2.20)

yr, j = ( j −1)d j = 1, . . . , Nr (2.21)

where again d = λ/∆. Then the individual steering vectors for the transmitter and re-
ceiver array can be written similar to equation 2.7 as [72], [85]

at (θ) = [e− j 2πyt ,1 sin(θ), . . . ,e− j 2πyt ,Nt sin(θ)] (2.22)

ar (θ) = [e− j 2πyr,1 sin(θ), . . . ,e− j 2πyr,Nr sin(θ)] (2.23)

The resulting virtual array is then given by the Kronecker product of the two steering
vectors [85]:

av = at ⊗ar

= [e− j 2π(yt ,1+yr,1)sin(θ), . . . ,e− j 2π(yt ,1+yr,Nr )sin(θ), . . . ,e− j 2π(yt ,Nt +yr,Nr )sin(θ)]
(2.24)

When the elements of both receiver and transmitter arrays are placed linearly along the
y-axis of the reference system (refer to figure 2.2), the time delays τr,nr and τt ,nt follow
the same expression as given in equation 2.5. Therefore, the positioning of the anten-
nas is very important for the resulting virtual array structure. This is illustrated with two
examples for a 2×2 MIMO array in figure 2.6. Observe how the spacing between trans-
mitter elements can create overlapping elements when chosen smaller than ∆× NRx .
The placement of transmitter and receiver elements offers a certain amount of Degrees
of Freedom (DOF) to create desired virtual arrays.

Taking into account the new steering vector given in equation 2.24, the steering ma-
trix introduced in section 2.1 is now constituted of rows given by equation 2.24. Taking
again θ = θg and g = 1, . . . ,G for each possible look direction, the overcomplete dictio-
nary matrix Av ∈CNv×G can be defined, where the first dimension results from the num-
ber of virtual array elements given as Nv = Nt · Nr . The resulting data model can then
again be written as shown in equation 2.9.

2.4. COMPRESSIVE SENSING FRAMEWORK
The general Bayesian Compressive Sensing (BCS) framework is very similar to the clas-
sical Compressive Sensing (CS) framework in terms of its linear model, the sparseness
requirements and the goal of the reconstruction. To give a consistent introduction to the



2

26 2. THEORY

(a) Example 1: The spacing between the transmitter elements (left) creates overlapping virtual re-
ceiver elements (right).

(b) Example 2: The spacing between transmitter elements is now equal to the spacing of the receiver
elements multiplied by their number, in this case 2. The resulting virtual array has now all-unique
element positions.

Figure 2.6: Two examples showing the concept of the MIMO array. It visualises the design choices regarding
the placement of the sensors.

theory, the classical CS framework is briefly described, before turning to the Bayesian
perspective.

It has been shown in literature [10], that a lot of natural signals that are non-sparse in
one representation space, e.g. time, can be represented equivalently using only a few co-
efficients and a corresponding transform basis. An example of such a basis is the wavelet
transform basis, which enables the representation of signals in terms of a dictionary of
frequencies. Those frequency components are often sparse and thus offer a way of com-
pression for such signals. This has been driven further, exploiting the compressibility of
a signal, in order to take fewer measurements (compressive measurements) of a signal in
the first place, offering a potential to save cost and complexity in the sensing hardware
system [10], [86]. Specifically, a signal vector x may be represented in terms of a set of
basis vectors which are multiplied by corresponding weights [86]:

x =
N∑

n=1
snψn =Ψs (2.25)

with s a N ×1 vector containing those weights or coefficients of the signal in the basis,
which is defined by a set of orthonormal basis vectorsΨ= [

ψ1,ψ2, . . . ,ψN
]

3. If a gener-
ally non-sparse signal vector x can be expressed in a basis that results in a sparse vector
s, the signal is said to be compressible [86]. With increasing redundancy in the signal
information contained in x, the coefficient vector s contains fewer K ≪ N significant co-
efficients, i.e. having few values considerably larger than zero, and is called "K-sparse".
Values in s can be seen as projections of the coefficients in x onto the basis vectors in
Ψ as s =ΨT x 4. This scheme requires the signal in its original basis to be non-sparse,

3In the DoA estimation problem, the signal of interest, namely the angular energy distribution, is already
sparse andΨ is therefore taken to be a "spike" base asΨ= IN . Therefore, x = s

4ConsiderΨT to be a Fourier transform matrix, to see the analogy of few Fourier coefficients for a non-sparse
time signal
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which is linked to the requirement of incoherence. Incoherence in this context refers
to the relation between the original and the sparse domain of the signal. If the two are
incoherent, the signal vector x will be non-sparse in one domain, while being sparse
in the other [9], [86]. To generalise the CS scheme to arbitrary signals, an intermediate
transform domain is introduced [86]:

y =Φx (2.26)

whereΦ denotes the M×N "sensing matrix" with columnsφn , n = 1, . . . , N , being the ba-
sis vectors of the intermediate domain and y now being the M ×1 compressed measure-
ment vector. A common choice for this intermediate transform matrix, i.e. the sensing
matrix, is a random transform domain, which has been shown to satisfy the incoherence
requirement with high probability [9]. Having this sensing matrix available for design,
it can be implemented on a hardware level, allowing for sub-Nyquist sampling [86]. For
this thesis, Φ will be constituted from the steering vectors of the antenna array, yielding
the steering matrix A, as it is this matrix that is used to "sense" the spatial signals.

One of the quests for this thesis entails the search for a good "design" of the sen-
sor array. This will amount to activate or deactivate sensors at certain locations, which
can directly lead to a reduction in hardware complexity, cost and energy consumption.
The process can be included into the model equations via a matrix J = diag(w1, . . . , wM ),
called selection matrix hereafter. The diagonal elements wm will determine whether the
corresponding sensor is included or excluded from the measurement. Combining equa-
tions 2.25, 2.26 and the selection matrix, the three described matrices (Ψ, Φ and J ) can
be collected into one M ×N compressed transform matrixΘ:

y = JΦx = JΦΨs =Θs (2.27)

The final goal becomes that of inverting 2.27 to recover the coefficients s, which since
problem 2.27 is an underdetermined system of equations, is ill-posed. Only by utilising
the assumed sparsity property, a unique solution can be found, namely the sparsest one.
The straightforward formulation of the reconstruction problem is by means of an ℓ0-
pseudo norm optimisation problem, which can theoretically recover the sparse s exactly.
However, as this combinatorial search problem is computationally intractable, the most
popular relaxation via the ℓ1-norm has led to the convex optimisation problem [87]:

ŝ = argmin
s

∥s∥1 subject to Θs = y (2.28)

which is also commonly known as Basis Pursuit (BP) [87]. Another, very similar found
formulation, which also accounts for noise in the measurements is known as least abso-
lute shrinkage and selection operator (LASSO), formulated as [9]:

ŝ = argmin
s

∥s∥1 subject to ∥Θs−y∥2 ≤ ϵ (2.29)

where ϵ is a parameter that has to be carefully, heuristically determined to bound the
noise in the data [9]. Yet another version of the above problem form is the ℓ1 regularised
formulation by use of Lagrangian multipliers, given as [28]:

ŝ = argmin
s

∥y−Θs∥2
2 −ρ∥s∥1 (2.30)
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which is given here as a reference for later, since it allows for an insightful comparison
with the BCS framework, introduced in section 2.5.
In the classical compressive sensing literature, properties of the matrix Θ have been
worked out to guarantee recoverability. Specifically, it is required that Θ has a suffi-
cient degree of linear independence to guarantee robustness in the underlying inversion
problem, which has been expressed by the Restricted Isometry Property (RIP) [13], [88].

This RIP condition has been further elaborated and a more computationally feasible
condition which approximates the RIP has been developed under the name of "Mutual
Coherence" regarding the matrix Θ [66]. It has been observed, that under selection of
the sensing matrix Φ to be a random matrix, good RIP as well as the mutual coherence
properties can be obtained [87]. It is worth noting here, that those requirements are only
valid for the classical, deterministic CS recovery. The focus will later be turned towards
a statistical approach with the Bayesian Compressive Sensing (BCS) framework, where
those requirements have, to the best of the author’s knowledge, not been developed yet
[74].

2.5. BAYESIAN COMPRESSIVE SENSING (BCS) FRAMEWORK
Based on the works of Tipping et al. in [27], [30], [31], the BCS framework has been gen-
erally introduced in [28] and [33]. It will be briefly introduced here, before making the
connection to the DoA estimation problem.

The Bayesian aspect comes into play, when the inversion or recovery of the sparse
weights s is performed. As it is typical in Bayesian statistics, a prior belief is formulated
in terms of a Probability Density Function (PDF), that in the transform basisΨ the vector
of weights s is sparse. It is then aimed to compute a posterior PDF about this vector s.
Due to this full posterior PDF, also confidence metrics about the estimates are provided,
as well as an estimate for the noise variance.
At this point it is again important to note, that in the DoA estimation framework, the
transform matrixΨ is taken to be a spike basis, i.e. Ψ= IN with IN being an identity ma-
trix, since our signal of interest is already sparse. This will give from equation 2.25 that
x =Ψs = IN s = s. The signal of interest, i.e. the sparse vector of coefficients indicating
the DoA of targets present in the scene, is denoted simply as x from now on. Conse-
quently, the sensing matrix will be denoted as Θ= JΦ, yielding the following notation of
the system of linear equations:

y = JΦx =Θx (2.31)

Finally note, that for the sake of readability, the sampling matrix J is omitted for this
section, indicating that the full sensor array, i.e. fullΦ is utilised. It will be reintroduced,
when array generation is discussed in chapter 3.
Following the assumption of sparsity of x, the N ×1 vector can be split into two vectors
of equal size N × 1. One containing all zero entries except for the largest coefficients
in x, termed xs , the other one with all zero entries except for the smallest entries in x,
termed xe . The CS measurement equation introduced earlier in equation 2.26 can be
reformulated as [28]:

y =Φxs +Φxe =Φxs +ne +nm =Φxs +n (2.32)
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where in the last step of equation 2.32, the influence of xe has been concluded as noise
ne and measurement noise has been introduced as nm

5. Both noise contributions are
assumed to be Gaussian distributed and are summarised into the Gaussian noise vector
n with zero-mean and unknown variance σ2. The Gaussian assumption for the noise
will now result in the likelihood model [28]:

p(y|x,σ2) = 1

(2πσ2)K /2
exp

{
− 1

2σ2 ∥y−Φx∥2
2

}
(2.33)

A full posterior PDF is now sought for x and σ2, while the matrixΦ and the CS measure-
ment vector y are known. To enforce sparsity onto the weights x, a sparsity promoting
prior probability is imposed, similar to the selection of a sparsity promoting norm in the
standard CS inversion. A popular choice for such a prior is the Laplace PDF [28]. Under
such a choice and the likelihood in 2.33, point estimates for x could be obtained by using
the Maximum a Posteriori (MAP) estimate, which would correspond to the result given
by the ℓ1-regularised problem in equation 2.30 [28]. To obtain a full posterior density
for the weights x, however, the full Bayesian formulation has to be evaluated. Since the
Laplace PDF is not conjugate prior to the Gaussian likelihood, the posterior cannot read-
ily be evaluated in closed form [23], [28]. The adopted method in [27], [28] is therefore
to utilise a hierarchical prior, which has similar sparsity promoting characteristics but
results in closed form expressions. To this end, a zero-mean Gaussian density is defined
as the prior probability on each element in x:

p(x|α) =
N∏

i=1
N (xi |0,α−1

i ) (2.34)

where α = [α1, . . . ,αN ] is the precision of each Gaussian density, and α−1
i = σ2

i the vari-
ance of each distribution for xi . Now hyperpriors are imposed upon the hyperparameters
α and the noise variance σ2, where its precision is denoted by β = 1/σ2 [27]. Since the
hyperparameters resemble scale parameters, the hyperpriors are chosen to be Gamma
distributions, as they feature only positive values [27]:

p(α) =
N∏

i=0
Γ(αi |a,b) (2.35)

p(β) = Γ(β|c,d) (2.36)

In [27], the hyperparameters a,b,c and d are all set to zero. That way, uniform or "im-
proper" hyperpriors are obtained, which provide the property that results will not de-
pend on the unit of measurement and furthermore will simplify the derivations later on.
Moreover, this enables the posterior probability to accumulate more at very large val-
ues at some hyperparameters α. The posterior of the corresponding weights will then
peak around zero, "turning-off" those weight inputs and their associated basis func-
tions (columns in Φ). This elimination process is causing the sparsity properties, and
the remaining weights are termed "relevant" vectors. As a visual example of the effects
of sparsity promoting prior distributions, see figure 2.7

5Since the interest always lies in the sparse weight solutions, the subscript s is dropped in what follows
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Figure 2.7: Upper row: Contour plots of a Gaussian, Laplace and a very sparse distribution P (ai ) ∝
exp(−T |ai |0.4) Lower row: Contour plots of the posterior distributions. It can be seen, how the probability
mass is dragged onto the axes by the sparsity promoting priors, while for the Gaussian prior the majority of
the probability mass lies somewhere off-axis. Note the similarity of the Laplace prior distribution and the ℓ1-
norm. Figure from [75]

The ultimate quantity of interest is the full posterior density describing all unknown
parameters x,α and σ2 and can be expressed as:

p(x,α,σ2|y) = p(y|x,α,σ2)p(x,α,σ2)

p(y)
(2.37)

Since the normalising constant in equation 2.37 cannot be calculated in closed form, the
posterior is decomposed into [27]:

p(x,α,σ2|y) = p(x|y,α,σ2)p(α,σ2|y) (2.38)

In this form, the posterior over the weights p(x|y,α,σ2) can be evaluated in closed form
(because the likelihood and prior in 2.39 are Gaussian) as a multivariate Gaussian distri-
bution [27], using Bayes’ equation:

p(x|y,α,σ2) = p(y|x,σ2)p(x|α)

p(y|α,σ2)
(2.39)

= 1

(2π)(N+1)/2|Σ|1/2
exp

{
−1

2
∥x−µ∥2

Σ−1

}
(2.40)
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with mean and covariance given as:

Σ= (σ−2ΦTΦ+ A)−1 (2.41)

µ=σ−2ΣΦT y (2.42)

and the definition A = diag(α0,α1, . . . ,αN ). Note here the dependence on the unknown
hyperparameters α as well as on β. The second term in equation 2.38, namely the hy-
perparameter prior p(α,σ2|y) is approximated as [27]:

p(α,σ2|y) ∝ p(y|α,σ2)p(α)p(σ2) (2.43)

and this equation 2.43 is to be maximised with respect to α and β, where under the pre-
viously made choice of uniform hyperpriors (a = b = c = d = 0), only the first term on the
right-hand-side of equation 2.43 remains. By marginalising ("integrating out") over the
unknown weights x, a closed form solution is obtained as [27] 6:

p(y|α,σ2) =
∫

p(y|x,σ2)p(x|α)dx (2.44)

= 1

(2π)N /2|C |1/2
exp

{
−1

2
yT C−1y

}
(2.45)

with C =σ2I+ΦA−1ΦT . This expression is known as the marginal likelihood or "evidence
function" for the hyperparameters [23], [24], [27]. The process of its maximisation, or
more commonly its logarithm:

L (α) = log p(y|α,σ2) (2.46)

=−1

2

[
N l og (2π)+ log (|C |)+yT C−1y

]
(2.47)

is termed as type-II maximum likelihood or "evidence procedure" [27]. Since the max-
imising α and σ2 for equation 2.44 cannot be acquired in closed form, it might be done
in an iterative fashion by the Expectation Maximisation (EM) algorithm, a popular tool
when it comes to maximisation when multiple unknown hyperparameters are involved
[23]. The type-II ML procedure estimatesα andβ as point estimates [23], [28]. In [27] and
[30], an efficient iterative algorithm is derived. During the iteration process, most of the
hyperparameters αi (representing the precision) tend to infinity and peak very sharply,
following that the posterior distribution of those corresponding weights, p(xi |y,α,σ2)
will peak infinitely high at zero. Therefore, after taking observed data, namely the CS
measurements y into account, there is a high certainty that those weights are zero and
can be pruned away, hence realising the sparsity property [27]. Building upon the anal-
ysis in [30], an efficient algorithm for the RVM inversion is provided in [31], which starts
with an empty model and iteratively adds or removes basis functions. Those basis func-
tions are ultimately columns inΦ, each corresponding to the steering vector of a possible
signal DoA. The deletion process distinguishes it from other CS algorithms like OMP and
StOMP, where added basis functions are not removed. This likely explains the improved
sparsity of this algorithm, as it has been investigated in [28].

6This marginal likelihood is found in the denominator of equation 2.39 and its maximisation amounts to the
well known model selection in Bayesian inference [89].
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2.5.1. MULTI-TASK BCS - EXPLOITING STATISTICAL INTERRELATION
The BCS framework described in the previous section represents the most popular for-
mulation, which can be found in many publications working with this topic. However,
this framework usually performs the regression task with only one CS measurement of
the data (one CS measurement refers to one vector of samples). Even if a set of L mea-
surements {yi }i=1,...,L has been obtained, the original BCS framework would be utilized in
a way that it performs the inversion tasks individually for each yi . However, if the mea-
surements yi are statistically related, there can be a benefit if the algorithm takes this
into account by sharing information between the regression tasks during the inversion
process. Such cases can be, for example, when the underlying measured signal is not
changing rapidly, such that L consecutive measurements may be combined. This can
be assumed for example in radar applications, where the target scene is nearly constant
between L consecutive chirps. A BCS algorithm that takes such statistical interrelation
into account has been developed in [33], based on prior work in [33] and [31]. Again, a
hierarchical Bayesian model is derived, only this time each regression task, working lo-
cally with its own single CS measurement vector yi , shares information with other tasks
via a common prior density function, used and learned by all L tasks. Placing this com-
mon or global prior is the means by which tasks share information, and it is a popular
method for information sharing in learning and regression literature [33]. Describing the
full derivative steps here would not add a lot of valuable information to this thesis, so the
reader is referred to [33] for detailed derivations. For this thesis, only the most important
key points of this modified method will be summarized.

• The use of the common prior, which has been introduced for the single task method
in equation 2.34, also means that the hyperparameters α are now shared and used
by all L regression tasks. Conversely, these hyperparameters and therefore the
common prior is learned in a combined manner by the information of all the
L individual tasks. This way, the information of each CS measurement vector
yi ∈ {yi }i=1,...,L is influencing the learning of both the common prior, and the in-
dividual learning tasks.

• It is important to note at this point, that if the CS measurements in {yi }i=1,...,L have
no or only little statistical relation (for example when the radar scene has changed
dramatically), then there can be no benefit in sharing the information. This has
been validated in [33], leading to the fact that in such cases, single-task learning
even outperforms the multi-task one.

• In a further modification to the algorithm, Ji et al. integrate out the noise vari-
ance parameter α0, thus avoiding the need to estimate it, relaxing the Gaussian
assumption for the noise and improving robustness.

Ji et al. provide a fast iterative scheme for their new algorithm in [33] very similar
to the one developed in [31] and provide their code online, which can be found here:
https://github.com/shihaoji/bcs. This version of the algorithm has been used
throughout this thesis. It is referred to simply as BCS whenever it is used with a single
snapshot (single task) and as MT-BCS when multiple snapshots have been used (multi-
task).

https://github.com/shihaoji/bcs
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2.6. PROJECTION OPTIMISATION
Recapping the important underlying assumption in compressive sensing, it is generally
assumed that measurements are taken randomly. The measurement or sensing ma-
trix Φ, which generates the CS measurements (refer to equation 2.27), is under this as-
sumption constituted of M rows as Φ = [r1, . . . ,rK ]T ∈ CM×G , with G denoting the num-
ber of discretised steering directions. The question to ask is now, what new measure-
ments could be added to a set of initial measurements (i.e. new rows in the sensing ma-
trix), such that they optimally facilitate the DoA estimation process using the RVM/BCS
method. This question has been addressed for a general BCS use case in [34]. The key
part and major novelty in the BCS framework compared to other compressive sensing
techniques is the availability of uncertainty measures in the form of the covariance ma-
trix, as in equation 2.41.

Running the inversion algorithm once, estimates of the weight’s mean values µx and
their covariances Σx are obtained. The estimated DoA is obtained by the index of the
non-zero coefficients (or mean values). The decisive information lies in the covariance
Σx . By having this information available, the computation of the differential entropy of
the reconstructed signal is proposed as [34]:

h(x) = 1

2
log |BΣx B T |+ c

= 1

2
log |Σx |+ c

=−1

2
log |A+α0Φ

TΦ|+ c

(2.48)

where A = di ag (α1, . . . ,αN ). The differential entropy corresponds to the Shannon en-
tropy of a continuous random variable, which can be understood as the minimum de-
scriptive complexity of a random variable or a measure of its average uncertainty [90].
This function constitutes what is referred to as a utility function in the literature of Bayesian
Experimental Design. Optimising the measurements with respect to the entropy, specif-
ically, is called D-Optimality [78].

The goal is now to select a new measurement, or in our case a new sensor position,
which would be optimal in the sense of minimizing the differential entropy, i.e. the av-
erage uncertainty of the variable. The new measurement must be designed such that it
adds the most informative new information, or the data which has been most uncertain.
In [34], it is proposed to add new measurement projections based on the Eigenvalue
analysis of the covariance matrix Σ, which has similarity with the topics of Principal
Component Analysis (PCA) and the Singular Value Decomposition (SVD). It is therefore
worth exploring these connections to gain more intuitive understanding.

Performing the eigenvalue decomposition of Σ yields a factorisation of the form

Σ=QΛQ−1

=QΛQ H
(2.49)

where Q denotes a square, unitary and orthonormal matrix of eigenvectors with the cor-
responding eigenvalues placed accordingly in the diagonal matrixΛ. By definition, such
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Figure 2.8: Visual example for a two-dimensional dataset and the eigenvectors of its covariance matrix. Ob-
serve how the largest eigenvector points into the direction of most variance.

a decomposition can always be obtained for a covariance matrix [91]. The covariance
matrix can be interpreted as defining the variance or "spread" of the data, as well as the
orientation of the data. Following this point of view, the eigenvectors of the covariance
matrix point in the directions of uncertainty or variance, while the eigenvalues give in-
formation about the degree of uncertainty, i.e. the spread. This allows to find the "direc-
tion" of maximum uncertainty, by selecting the eigenvector with the largest correspond-
ing eigenvalue. This is illustrated in figure 2.8 for a 2D case, where the largest eigenvector
(green) points into the direction of the largest spread of the data points. In [34], this geo-
metrical interpretation is used to generate the new projection or measurement (new row
in the sensing/dictionary matrix), which is taken to be exactly that eigenvector.

Another intuitive, geometric observation can be made. The goal is to reduce the en-
tropy, which is a measure of average uncertainty and directly related to the determinant
of Σx (see equation 2.48). Since the determinant can be interpreted as a measure of
volume spanned by a matrix [92], the goal is to reduce this volume. Equivalently, the
determinant of the eigenvectors scaled by their eigenvalues should be minimised along
with the entropy, which would correspond to the multidimensional volume spanned by
the degrees of uncertainty, expressed by the eigenvectors.

However, in our model for the radar DoA estimation, the sensing matrix is not a ran-
dom matrix, but rather the array manifold matrix with columns obtained from discre-
tised steering directions. Each row is directly related to an analogue antenna position.



2.6. PROJECTION OPTIMISATION

2

35

Figure 2.9: Visualisation of the concept of checking each candidate sensor location and adding the one which
achieves maxδh.

Taking the eigenvector of Σx with maximum eigenvalue as a new measurement, is not
realisable in terms of antenna array geometry. The differential entropy therefore has to
be minimised in another way. To this end, each new candidate sensor location along
a search space has to be evaluated in terms of how including this measurement would
benefit the minimisation of the entropy. In [34], an update equation is proposed which
allows testing a new candidate row for how much it reduces the entropy if it is included
into the sensing matrix:

hnew = hol d − 1

2
log(1+α0rnew Σ̂x rH

new ) (2.50)

Here,α0 denotes the noise variance, Σ̂x is the estimate of the covariance matrix obtained
in the previous run of the BCS algorithm and rnew denotes a new candidate row of the
sensing matrix Φ, which in the radar case is equivalent to a row of the steering matrix.
Therefore, adding a new candidate row amounts to including a new candidate sensor
location. It is at this point important to remember, that the steering matrix has been
expanded to real values as shown in equation 2.10. The estimated covariance matrix Σ̂x

therefore also abides to this expansion. This has to be taken into account and is further
discussed in chapter 3. The important term is the second one in equation 2.50. In order
to minimize the entropy with each new sensor as much as possible, the second term has
to be maximized for each new candidate. This term is defined as [34], [74]:

δh(rnew ) = log(1+α0rnew Σ̂x rH
new ) (2.51)

where the nomenclature δh is borrowed from [74], where this has been recently applied
to sonar technology. The procedure is visualised in figure 2.9. This idea, which is a very
general concept for no specific application, is in this thesis adopted to radar antenna
arrays in order to realize a sparse spatial sampling in the angular domain. The devel-
oped algorithms for ULA and MIMO antennas, based on 2.48 and 2.51, are described in
chapter 3.
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2.7. SYSTEM ASSUMPTIONS WITHIN THIS THESIS

R ADAR based DoA estimation, (Bayesian) compressive sensing and sparse array archi-
tectures are all large areas of research on its own. However, the scope of this thesis

is specifically focused on the generation of sparse array structures for one-dimensional
DoA estimation with the use of Bayesian compressive sensing. Sparse array structures
can deliver several benefits, such as reduced hardware cost, complexity and energy con-
sumption. The assumptions and boundary conditions to confine the scope of this thesis
are clearly summarised in this section.

• The targets are considered to be placed in the far field of the radar. This is also
reflected in the data model and the used data simulation framework.

• An On-Grid BCS framework is used within this thesis. The grid size of the dictio-
nary matrix (the steering matrix in practice) is chosen appropriately for the ex-
pected target’s angular separation.

• The aperture of the sensor arrays that are generated is fixed to the maximum aper-
ture that is provided by the TI cascade evaluation board. This is done by fixing the
two sensors at the outermost edges of the sensor array to be always included. This
way, the array generation problem is confined by the available hardware, how-
ever it can easily be adjusted for different preferences. More detail about the used
hardware as well as the radar parameters that are used in the TI cascade evaluation
board is given in chapter 4.

• The possible sensor locations are fixed to a grid which is based on a ULA with 86
sensors and spacing of λ2 . This is done, again, to be able to use the generated arrays
with the available hardware. The proposed method, however, can also be applied
to other design guidelines.

• The DoA estimation is considered for a one-dimensional angular domain (azimuth
DoA estimation)

• The simulated and measured targets have been placed at the same radial distance
to the radar, such that they are in the same range bin. To reduce unnecessary com-
putational load in empty range bins, the DoA estimation is only performed on the
range bin where the targets are present.

• An estimated number of 1 to 5 targets in one range bin has been chosen to repre-
sent example scenarios.

• Based on typical applications in automotive radar, an FOV of ±40◦ corresponding
to mid-range radar has been considered [39]. This is the FOV region where targets
are considered and placed in both simulation and measurement setup.

• The MIMO array architecture relies on orthogonality of the transmitting wave-
forms. In this thesis, this orthogonality is achieved in time by activating one trans-
mitter after the other. The waveform that is modelled and used in practice is a
linear FMCW chirp.
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SPARSE ARRAY GENERATION

It is pointless to do with more what can be done with fewer.

William of Ockham

Based on section 2.6 in the previous chapter, it will be described now how the theory is
applied to sensor arrays in order to reduce the number of sensors utilized, starting from
a full ULA (either physical or virtual by means of a MIMO architecture). This will be in-
vestigated separately for the physical ULA in section 3.2 and the MIMO case in section 3.3.
Since the project was planned with the aim in mind, that these arrays should be tested
with real, measured data, some simulation and array parameters are fixed to match those
of the available hardware (namely the Texas Instruments AWR2243 Cascade evaluation
board, whose parameters will be described in chapter 4). The resulting, sparse arrays will
then be further investigated and evaluated with respect to their performance using data
simulated with the model described in chapter 2 and then with real measured data. To
access the performance, the metrics of Root Mean Square Error (RMSE) of the angle esti-
mates, the Receiver Operating Characteristic (ROC) curves and the Jaccard index (inter-
section over union) will be used. How these metrics have been computed is described in
more detail in the appendix B. These metrics provide a means for the engineer to finally
pick a level of array sparsity with feasible performance. It is shown, that the entropy based
sensor-placement can reduce the overall uncertainty faster than randomly added sensor
positions. Furthermore, it is shown with different case studies that this method can gener-
ate sparse arrays which outperform random ones, and can successfully detect and estimate
target DoAs with very few sensors.

37
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3.1. PRELIMINARIES

B EFORE describing the algorithms in detail, a few important initializations will be
noted here. Referring back to the introduction of the compressive sensing frame-

work in chapter 2, recall the selection matrix used to activate or deactivate certain sensor
locations (corresponding to rows in the sensing matrixΦ), denoted as J = diag(w1, . . . , wM ).
In this case, for the physical ULA array arrangement, each weight wi ∈ {w1, w2, . . . , wM } ≡
WU L A will take on a value of either zero or one, corresponding to either excluding or in-
cluding this sensor location into the array, respectively. To keep a fixed aperture, and
therefore a fixed native angular resolution of the array, the two elements at the borders
of the array w1 and wM will be set to one (included) and not be changed during the
algorithm.

In the MIMO case, the weights are separated into the weights for the Tx and Rx ele-
ments as wT x

i ∈ {wi }i=1,...,MT x and wRx
i ∈ {wi }i=1,...,MRx , respectively. Their combination

results in a set of virtual weights, denoted as wV x
i . To ensure, again, that the largest pos-

sible aperture is obtained, the border elements of both Tx and Rx weights are set to one
as wT x

1 = wT x
MT x

= 1 and wRx
1 = wRx

MRx
= 1.

The algorithm can also be understood as a thinning algorithm working backwards.
Considering a fully filled physical ULA with 86 sensor elements (or a MIMO array with
the same number of virtual receivers), the algorithm starts with all but 2 sensors (for
maximum aperture) deactivated and subsequently reactivates sensors that lead to most
improvement with respect to the uncertainty in the recovered signal (which is measured
via the entropy). The resulting thinned array is not expected to have a better perfor-
mance than the fully filled array. It will be rather the question of how few sensors are
enough, to achieve an acceptable performance. Optimisation in this scenario means,
that the number of antennas is reduced, while the included antennas are placed in a
way that they reduce the uncertainty in the inversion (as assessed via the Entropy) as
good as possible. Table 3.1 shows important global parameters, that are set for the ULA
and the MIMO algorithm versions in this thesis. Notice, that the base grid which gives
the possible sensor locations consists of 86 elements. In the MIMO case, this refers to
the number of unique virtual receiver-sensor locations. This number has been chosen
to correspond with the resulting number of virtual sensors provided by the Texas In-
struments cascade evaluation board, but it could also be applied to any other one di-
mensional sensor arrangement. This way, the generated antenna arrays can directly be
tested with real captured data. Furthermore, targets are placed within a field of view re-
gion of ±40◦, according to mid-range radar [3]. It is noted here that the observation has
been made, that a larger field of view leads to generally more required sensors.

As the proposed algorithm needs to run the (MT-)BCS algorithm in order to obtain
an estimate of the covariance matrix, the method will inherently also be dependent on
the input data it is given. This will be the extracted range bins of simulated FMCW data
for different scenarios. After simulation of the FMCW receive data and addition of white,
Gaussian noise, a range FFT is performed to acquire the beat frequency bins and finally
the range of the simulated point targets. These are all placed on the same range bin to
obtain single, spatial measurement vectors with the dimension equivalent to the num-
ber of sensors (in this thesis 86). The range bin is then cut out and stacked into a matrix
for each simulated FMCW chirp (refer to figure 2.3 in chapter 2). This data will be used
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Parameter Value
No. of positions (ULA/virt.) 86

Sensor Spacing λ/2
SNR (before range FFT) 15dB

Grid-Spacing 0.5° or 1.0°
FOV ± 40°

No. of Training Scenes 100
Target Range 30m

Target RCS 1 (fixed for all)

Table 3.1: Parameters for the entropy-based sensor placement algorithm confined to a ULA sensor grid

Simulation ID No. of targets Description
S1 2 Separation < 1.33° (≈ 0.5°)
S2 5 Separation ≫ 1.33°
S3 5 Mixed separations
S4 2 Separation > 1.33°

Table 3.2: Summary of the simulated data for the subsequent performance assessments. The targets have been
placed in FOV region of ±40° for all simulations.

as input to the proposed array generation algorithm, as well as the subsequent perfor-
mance assessment. Different scenarios have been simulated, where targets are spaced
closer or further apart in the angular domain than the resolution limit of 1.33◦. Note that
in all cases, targets are not placed on the DoA grid that is used for the BCS based estima-
tion, which will inevitably induce off-grid errors but provides a more realistic scenario.
A reference table of the main simulated scenarios is given in table 3.2.

3.2. ALGORITHM: IMPLEMENTATION FOR PHYSICAL ULA

This version of the algorithm is considering a physical ULA, placing one new sensor at
each iteration until a fully filled, physical ULA is obtained. At its core, it runs the (MT-
)BCS algorithm to obtain an estimate of the covariance matrix Σ and is therefore reliant
on a set of training scenes. This estimate of Σ, which gives an estimate of uncertainty of
the recovered, sparse vector of coefficients, which directly relates to the DoA estimates, is
then used to compute the update equation 2.51 in order to find the next row that should
be added to the steering matrix. The algorithm repeats these steps in an iterative man-
ner, until all possible sensor locations have been included. After this procedure, further
analysis can aid in deciding a level of array sparsity which achieves sufficient perfor-
mance in terms of detecting the targets and estimating the angles. The block diagram
in figure 3.1 describes the high-level procedure for adding new sensor elements to an
initially empty uniform linear array. A more mathematical formulation of the algorithm
is provided in the appendix A.1.
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Figure 3.1: Overview block diagram of the entropy based sensor inclusion algorithm for the ULA case. It is
important to note, that the algorithm will run until all possible sensor positions are included. A stopping
criterion (i.e. maximum number of antennas) could be added depending on the use case.

The central part that is generated by the algorithm is a reduced steering matrix along
its rows, which serves as the dictionary matrix given to the (MT-)BCS algorithm. The
columns of the steering matrix, which correspond to possible target locations (basis
functions), are not altered during the process and depend on the angular grid resolu-
tion that has been chosen. Since the steering matrix is a complex-valued matrix but
the used (MT-)BCS algorithm has been developed for real valued input data, a few extra
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Figure 3.2: Conceptual visualization of the relationship between sensor elements and rows in the expanded
steering matrix. The upper row is the one for which the entropy update equation achieves a maximum. How-
ever, adding the corresponding sensor will add the lower row as well due to the matrix expansion from a com-
plex to a real valued one.

steps are necessary. In chapter 2, equation 2.10 it has been described, how the steering
matrix is expanded to obtain a real valued matrix as input for the RVM. The algorithm
described in this chapter therefore needs to take this into account, since it is looking for
a new row to add to the steering matrix (corresponding to a new sensor). However, as
the steering matrix is split, each sensor corresponds to two rows in the expanded steer-
ing matrix. Therefore, when the algorithm selects the row from the expanded steering
matrix that achieves the highest score for δh, also its twin-row resulting from the expan-
sion will be included, to represent correctly the new sensor location. It is observed, that
the secondary row does generally not score a high value for δh. It is argued that this will
most likely not result in a performance degradation, as with each new sensors, two rows
and therefore more information is added to the system. However, it should be noted
that the proposed update equation given in 2.51 has been derived for only one single
new measurement (i.e. row). Figure 3.2 visualizes the described relation.

During the procedure, at each iteration, the entropy calculated with equation 2.48 is
tracked. The resulting progression plot gives insight into how the uncertainty is reduced
with each new sensor, and might give a first indication about the minimum number of
sensors needed to be included into the array. As an example case, figure 3.3 shows how
the entropy is reduced with each new included sensor when using the entropy based
method and compared to the entropy achieved by a randomly filled array.

It has been observed, that the elbow change in the entropy progression marks a point
at which the estimation algorithm (the RVM) is able to recover the true targets and their
DoAs. Before that point, too few sensors and therefore spatial measurements are pro-
vided, and the algorithm generates target estimates rather randomly. After the elbow
point, the correct targets can be recovered and adding more sensors leads to further re-
duction of uncertainty. This observation leads to the expectation, that from a certain
number of included sensors, the algorithm could achieve acceptable performance and
the corresponding sparse array can be picked out. During testing, the algorithm has
been run with different training scenes, resulting in different behaviour of the entropy
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Figure 3.3: Example entropy progression when 5 targets are present in the training scenes. Note the slight
elbow-like change in entropy at about 30 included sensors, when the array reaches a certain number of in-
cluded sensor positions.

while more sensors are added:

• Increasing the number of targets: When fewer targets are present in the training
scenes, the elbow-like change is more pronounced than with increasing number
of targets.

• Reducing the step size of angular discretization: The RVM needs a matrix of basis
vectors, which is provided by the steering matrix. To compute the steering ma-
trix, the angular domain has to be discretized with a certain grid size. Making the
grid finer has shown to also lead to a more pronounced elbow-like change in the
entropy plot.

However, this elbow point is not always as pronounced, further performance assessment
of the array in conjunction with the RVM should be done to guide the array-sparsity
choice. This is described in section 3.4.
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3.3. ALGORITHM: IMPLEMENTATION FOR MIMO ARRAY
The procedure described before for the physical ULA has been extended for the MIMO
radar case. The MIMO array architecture naturally provides a more challenging scenario,
since the resulting virtual receiver array that is used in the DoA estimation is the result of
two separate arrays, the physical transmitter and receiver array. Running the algorithm
for the virtual array, thereby treating it as a ULA, will lead to the problem of factorizing
this array into a transmitter and receiver array afterwards. This is not a trivial task, and
it might be, that this factorization cannot be found (especially when overlapping virtual
elements are considered). In this thesis, an iterative approach is taken, where at each
iteration a new element is added to either the transmitter or the receiver array. The de-
cision, again, is made based on the entropy but of the resulting virtual array. This way
guarantees, that no virtual arrays are obtained that cannot be realised in terms of trans-
mitter and receiver arrays. The procedure is described schematically in 3.4 and a more
mathematical description is provided in the appendix, A.2.

Due to the MIMO architecture, adding a new sensor element to either of the two
arrays, might lead to more than one new element in the virtual array. The method there-
fore has fewer degrees of freedom for placing new sensors than in the ULA case. For this
thesis, the array layout of the TI cascade evaluation board has been adopted as noted
in section 2.7. As many of the resulting virtual receiver sensors occupy the same spa-
tial position, the relation between added physical sensors and resulting virtual sensors
changes from the typical MIMO layout case. The array layout of the TI board is described
in chapter 4. Due to the expansion of the steering matrix to real values, each of the new
virtual sensors leads to two new rows in the expanded matrix, similar as in the physi-
cal ULA case. In total, this can cause the addition of a multitude of rows to the steering
matrix, which is illustrated in figure 3.5.

There are some challenges with this MIMO version of the algorithm that have been
observed:

• The algorithm seems to add a lot of physical transmitter elements early during the
filling process. This could be due to the fact, that adding a new transmitter sensor
amounts to more added virtual receiver sensors, which are also more distributed
across the whole span of the array. Since transmitter elements are typically more
expensive from a hardware and energy consumption point of view, a higher cost
within the algorithm could be added to the addition of transmitter elements in a
future version of the algorithm.

• The entropy update equation which is used (equation 2.51) is based on the theory
for adding one single new measurement [93] (i.e. adding one row to the steer-
ing matrix). With one added measurement, the covariance matrix should be re-
estimated and then a next measurement position can be sought. In the MIMO
case, this is unfortunately not possible, due to the addition of multiple virtual sen-
sors at each step (which correspond to the added measurements). It is therefore
hard to access, whether the entropy is maximally reduced with each step. Further-
more, it cannot be prevented that also those virtual sensors that add only little new
information are added to the array.
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Figure 3.4: Overview block diagram of the entropy based sensor inclusion algorithm for the MIMO case.

Figure 3.5: Exemplary illustration of the relation between new sensors in the Tx MIMO array, resulting new
sensors in the virtual array and finally new rows in the expanded steering matrix. The Rx MIMO array is con-
sidered unchanged in this example.
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3.4. EVALUATING THE DETECTION AND ESTIMATION METRICS
The described algorithms can deliver different arrays, depending on when it is decided
to stop the addition of new elements. It is important to note, that this method is not
intended to provide the one best array to work in all application scenarios. It is rather
intended to provide a pipeline that can help to reduce the number of elements in a con-
trolled manner (via the entropy), which yields sparse/thinned arrays that perform well
on average in certain scenarios. Nevertheless, a criterion is needed to estimate a feasi-
ble level of sparsity. As a first measure, the progression of the entropy is analysed. This
progression is the result of the thinning process as described in sections 3.2 and 3.3, by
storing the current entropy value for each iteration.
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Figure 3.6: Example for the entropy progression in the physical ULA case, when running on scenes with 2
targets. For each step on the x-Axis, a new sensor location has been added to the ULA based on the best
improvement of Entropy.

An exemplary entropy-plot is shown in figure 3.6 for a sparse ULA (section 3.2) and
training scenes with 2 targets. It is compared against a purely randomized addition of
new sensor locations. As can be seen, the entropy based method shows a faster and
more stable reduction in entropy, until an elbow-like change happens. It can therefore
be argued, that compared to randomly generated sparse arrays, the proposed algorithm
offers a method that searches for the next sensor that decreases the uncertainty the most,
and therefore leads to a faster and more stable entropy reduction. Although this elbow-
like change is not always as pronounced as in this case (e.g. a higher number of targets
has been observed to soften this elbow), it is worth to investigate. It has been observed,
that before the point of this elbow, which in figure 3.6 appears between 10 and 20 el-
ements, the RVM algorithm is not able to reconstruct the correct coefficients and the
result is rather random. From the elbow onwards, however, the algorithm converges to
a result that includes the correct coefficients with very high probability. Including even
more sensors from this point further reduces the remaining uncertainty (as measured
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by the Entropy). It is therefore argued, that the entropy progression might serve as a
first indicator and rough estimate of the least number of sensors that is required for the
MT-BCS method to work. The same observation is made for the MIMO case.

As has been mentioned, the entropy progression might serve as a first indicator of
when the least amount of sensors has been reached, but is not always as prominent as
shown in the example cases. Furthermore, the MT-BCS method is acting like an estima-
tor and a detector at the same time. The resulting vector of coefficients returned from
the (MT-)BCS method is sparse and as such already acting like a kind of detector. At the
same time, the detected or non-zero coefficient’s locations within the return vector are
the angle estimate. In order to deal with coefficients that are non-zero only by a small
amount, a method of thresholding needs to be implemented, common to detector prob-
lems. Therefore, a second stage of evaluation is proposed, which will look at the Receiver
Operating Characteristic (ROC) when the arrays of different sparseness are used. In ad-
dition to that, a metric called the Jaccard Index will be utilized similar to [74], since it in-
cludes the number of true positives (TP), false positives (FP) and false negatives (FN) in
one, scalar value. This allows the comparison of the detector performance summarised
in the Jaccard index against a range of possible candidate thresholds. As used in [74], the
Jaccard index is defined as

Jaccard = TP

T P +F P +F N
(3.1)

As a first step, each array stage along the sensor addition process is utilised in the
MT-BCS method. For each array, a range of thresholds is used, providing a matrix of
array versus threshold data. The data that is stored for each point on this matrix are the
number of false positives (FP), number of false negatives (FN), number of true positives
(TP) and the Jaccard index calculated from the three. A two-dimensional map of array
sparsity vs threshold can be plotted, indicating the Jaccard index by the colour values.
This way, a parameter pair that scores the best performance in terms of the Jaccard index
can be selected. Lastly, the ROC curves are plotted for a selected set of array-sparsity
stages. To summarise, three stages are proposed to select a sparse array that performs
well on average with respect to detection and estimation metrics:

• Entropy progression, providing first insight into the least amount of sensors needed.
Depending on the training simulations, the described elbow might not be as pro-
nounced.

• Jaccard index, enabling the combined performance analysis for the two parame-
ters of array sparsity and detection threshold.

• ROC curves for a closer look, after the first rough parameter region has been de-
termined by the former two methods.

• Lastly, the DoA estimation error is assessed via the RMSE.

For a better visual overview, the steps are shown in the block diagram shown in figure
3.7.
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Figure 3.7: Visual block diagram of the array generation procedure proposed in this thesis.

In the next section, generated arrays are tested with simulated data for three different
case studies:

1. 5 targets that are separated in azimuth by more than the array resolution (the res-
olution using a ULA). This is to test the general estimation and detection perfor-
mance of the algorithm without looking at the super-resolution capabilities.

2. 2 targets that are spaced closer than the native array resolution, specifically to test
the super resolution capabilities of the arrays.

3. Scenes with 5 targets and mixed angular separations (can also be closer than the
array resolution).

3.5. CASE STUDY 1: 5 TARGETS WELL SEPARATED
For the first case study, the generated arrays are tested with simulated scenes that feature
5 targets placed in a field of view region of ±40◦. The minimal distance between two tar-
gets in this case is never closer than the Rayleigh resolution limit of the underlying array
aperture, which in this case of 86 · λ2 ≈ 16.96cm is ∆θ ≈ 1.33◦. The steering matrix that
is input to the BCS method and determines the angular resolution capabilities is there-
fore set to 1°, which will be sufficient for each simulation in this case. The BCS method
is used as a single-task method using only one snapshot. It will be pointed out, where
applicable when more than one snapshot has been used and the method is referred to
as MT-BCS (multi-task BCS). Figure 3.8 shows the entropy progressions for the physical
ULA and the MIMO cases, that have been tracked during the array generation proce-
dure. It is visible, that the proposed algorithm successfully achieves a faster reduction in
entropy for both ULA and MIMO, with each new sensor that is added, when compared
to a randomly generated array.

The next step is to look at the Jaccard index, as it gives an indication at what point
the number of correctly detected targets (true positives) is greater than the number of
false positives and false negatives. The scenes used for testing are again generated with
5 targets, but noise has been added to achieve an SNR of between 15dB and -20dB, such
that the method can be tested under good SNR conditions and rather bad ones. It is
important to recall that the noise is added as additive Gaussian noise before performing
the range FFT. Through the range FFT, there is an additional FFT gain of about 25dB
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Figure 3.8: Entropy progressions for the ULA (left) and MIMO (right) architectures during the array generation
process.

(refer to equation 2.18), leading to improved SNR conditions. Using the Jaccard index
allows plotting it against a threshold used for the target detection.

The two plots in figure 3.9 show, how the Jaccard index is used as a metric to get in-
sight into how many sensor elements might be sufficient for good detector performance.
The Jaccard index is plotted for the physical ULA, as more sensor elements are included
(x-Axis) and the detector threshold is swept (y-Axis). Bright yellow values indicate a Jac-
card index closer to 1, which implies that there are very few false negatives and false
positives (refer to equation 3.1). Comparing the right and the left side in figure 3.9 it can
be seen how the SNR heavily influences the performance and increases the amount of
sensors that have to be included in order to obtain higher Jaccard index values. While for
the high SNR case, around 20 sensors start to achieve good performance, in the low SNR
case as many as 40 sensors are needed. This condition can be improved to an extent by
utilizing more snapshots in the MT-BCS method, leading again to a slight reduction in
required sensors. Since the MIMO array has very similar plots, they are not shown here,
to not overfill this chapter with too many plots.

Considering the observations made in figure 3.9, the ROC curves are plotted for ex-
emplary, reasonable sparsity levels in figure 3.10 for both physical ULA and MIMO. It can
be seen, that the proposed thinning method achieves better performance with fewer el-
ements than if the sensors would have just been added randomly. This shows that the
entropy based methods indeed provide a level of improvement (coinciding with the re-
sults in [74] from the sonar literature). Note that in the MIMO array case, shown in figure
3.10 on the right, the number of sensors, given with 9 and 10, refers to the physical Tx
and Rx sensors that would constitute the resulting virtual arrays with 20 and 25 sen-
sors, respectively. To have a fair comparison, the stages of virtual array sparsity have
been matched to the randomly generated MIMO array. Furthermore, it can be observed
in some instances, that the performance of the random array in terms of ROC curves
comes closer to the array that has been thinned with the proposed method. It has been
observed, however, that this is not always the case and there is no guarantee that a ran-
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Figure 3.9: The Jaccard index plotted over the detection threshold and the number of sensors in the array. Plots
shown for the physical ULA case, with SNR of 15dB (+ range FFT gain) on the left and -20dB (+ range FFT gain)
on the right.

Figure 3.10: ROC curves shown for the ULA (left) and the MIMO array (right). The solid line represents the
array generated by the proposed method, compared to the random one shown by the dashed line.

dom generated array will always perform similarly well as the designed one.
To give a better feeling of the potential improvement, a zoomed in version of figure

3.10 is provided in figure 3.11. For an exemplary number of 25 sensors included into
the sensor array, the improvement in terms of the ROC curves is indicated for a constant
false alarm probability. For the physical ULA case in figure 3.10 on the left, it amounts to
an improvement of 1.4% for this study. Similarly, for the MIMO array on the right-hand
side in figure 3.10, where an improvement of 1.6% is observed. With 25 sensors utilised
in the array and assuming a fully filled physical ULA with 86 sensors has been the start-
ing point, this would amount to a reduction of ≈70% of sensors.
Considering the MIMO array setup as a base, the 25 virtual sensors are constituted from
5 transmitter and 5 receiver antennas. Transferring this to the TI board, which provides
3 transmit antennas and 4 receive antennas per chip, two such chips would be neces-
sary to realise the sparse array. This would directly translate to a reduction of 50% of
the utilised chips, as two of the four implemented chips could be removed. Of course,
the removal of these chips would necessitate the rearrangement of the antenna layout
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Figure 3.11: ROC curves shown for the ULA (left) and the MIMO array (right).

and the corresponding feeding circuitry. Other effects might come into play, but their
assessment is not part of this thesis.

Key-Observation: In this case study of 5 targets, a possible reduction of
sensors by around 70% could be achieved when a physical linear array is
considered. For the MIMO case and the example of the TI board which
has 4 transceiver chips, 2 of them could be removed, leading to a hard-
ware reduction of 50%.

To assess the estimation performance, the Root Mean Square Error (RMSE) is com-
puted for the angle estimates with respect to the known ground truth. The computation
of the RMSE is described in the appendix chapter B. Figure 3.12 shows the RMSE for the
physical ULA case and both levels of SNR. Again, the values and general observations for
the MIMO array are very similar and therefore not included as well. It has been observed,
that up to the point where the least amount of sensors is included such that the BCS can
properly recover the targets, the RMSE values are very high or unrealistically low. It is
however important to keep in mind, that the BCS estimation algorithm produces ran-
dom estimates and often no ground truth can be associated to an estimation. The RMSE
that is shown becomes meaningful only when the least amount of sensors is added, such
that the BCS estimator is able to roughly recover the correct number of targets. To avoid
confusion, the RMSE values are plotted from this point onwards.

Especially in the high SNR case (blue in figure 3.12), the addition of further sensors
seems to have no great impact on the estimation error. Moreover, also the proposed
sensor adding method does not seem to have a consistent effect on the estimation er-
ror, hinting that the array sparsity might play a more dominant role for the detection
capabilities.

As a final investigation for this case study, the computation time that is needed by the
BCS method (more specifically, the Relevance Vector Machine (RVM) that lies at its core)
is assessed by keeping track of the iterations that are needed until the BCS algorithm
converges to a reconstruction. By keeping track of the iterations rather than the exact
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Figure 3.12: Plot of the RMSE in the angular estimation assessed with 15dB and -20dB SNR in the testing
data. The MUSIC algorithm has been shown as a comparison for 15dB SNR, as it does not show a significant
difference for -20dB. It is plotted as a constant line, since it always uses all 86 antennas.

time, the assessment is less dependent on the machine the algorithm has been run on,
and other background tasks that could not have been controlled properly. To this end,
figure 3.13 shows the number of iterations for the two inspected SNR cases. It can be
seen, that for the high SNR case (blue), the number of iterations does not increase or de-
crease, when more sensors are added. However, for the low SNR case (red), the number
of iterations increases dramatically with more sensor elements. It is argued, therefore,
that for good SNR levels, the use of thinned down antenna arrays does not negatively
impact the computation time of the BCS method. For low SNR levels, the sparse arrays
may save iterations, but it has to be carefully checked that the arrays are equipped with
enough sensors to achieve the desired detection and estimation performances.

3.6. CASE STUDY 2: 2 TARGETS WITH SUB-RAYLEIGH ANGULAR

SEPARATION
A challenging scenario for DoA estimation problems is the case when targets are sepa-
rated in the angular domain by less than the native resolution limit, which is provided
by the array (more specifically by its aperture). This scenario is tested here for the array,
that has been generated with the 5 targets in the scenes, as in the previous section. Dif-
ferent to the previous case study, the steering matrix for the BCS estimation is generated
with an angular step-size of 0.5° to give the BCS algorithm better resolution capabilities
when tested with the testing data. Through multiple simulations it has been observed,
that the entropy based thinning method does not work very well in low SNR conditions
when it is trained with simulated scenes, in which the two targets are very close together.
Nevertheless, it is shown, that also in this case study, heavily thinned arrays are able to
achieve good detector performance when used with the BCS DoA estimation method.

The array that has been generated with the target scenes, as in case study 1, is now
tested against scenes where two targets are separated in the angular domain only by
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Figure 3.13: Iterations of the Relevance Vector Machine (RVM) used in the BCS method that are needed at each
step of array sparsity until the convergence criterion is fulfilled.

1°. This is below the potential native array resolution of around 1.33° at boresight and
will therefore test the super resolution capabilities of the array. At this angular distance,
the FFT beamformer utilizing the data of all 86 sensors is not able to discriminate the
two simulated targets, as can be seen in figure 3.14. However, the BCS method has the
capability of detecting both targets, which is shown by the red dots, indicating the BCS
angle estimates.

The steps to assess the array would be the same as before, looking at the Jaccard
index to locate the point from which on the array has enough sensors included and then
closer inspect it by means of the ROC curves. Repeating this for each scenario would
flood this thesis with plots that are all very similar. Since the whole procedure has been
shown once for the first case study, here only selected plots of interest will be shown. In
comparison to the scenes with 5 targets, it is shown that the array can be much more
sparse, when only two targets are present. This is shown by means of the ROC curves
for the thinned physical ULA and the thinned MIMO virtual ULA in figure 3.15. Note,
how the physical ULA is able to discriminate the two closely spaced targets with only 17
sensor elements and a proper threshold quite well on average, as compared to the 23
sensor elements needed when 5 targets are present. Although it has been claimed that
for the BCS DoA estimation method there does not exist a mathematical formulation on
the minimum number of sensors needed to detect a certain number of targets, there is
clearly a relation between the number of targets and the needed amount of sensors, as
the sparsity of the scene is also changed.

For this experiment, the angular step size of the dictionary (steering) matrix has been
set to 0.5°. This is an important parameter to set for the BCS method in this scenario of
closely spaced targets. Its connection to the steering matrix has been described in chap-
ter 2. Since the targets are spaced only 1° apart, a step size of 1° would lead to problems
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Figure 3.14: Example simulation scene with 2 targets that are 1° separated in angular domain. The FFT is not
able to discriminate the two targets and sees them as one.

Figure 3.15: ROC curves for closely spaced targets in the testing simulations and an SNR of -20dB (+ 21dB FFT
Gain). The solid lines represent the arrays generated by the proposed method, compared to the random ones
shown by the dashed line. The physical ULA case is shown on the left and the MIMO case on the right.
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Figure 3.16: Effects of finer angular resolution in the angular grid used to create the steering matrix. The
simulated scenes contain 2 targets with 1° angular separation. On the left side, the ROC curves are shown
and on the right side the impact on the computation by the BCS method (the RVM) is shown.

in the peakfinding stage of the detector. Ultimately, the algorithm would not be able to
distinguish the two targets, similar to the FFT beamformer. However, one strength of
the BCS method is that this step size can be chosen smaller. To see this in effect, refer
to figure 3.16a. Three different resolution sizes of 0.5°, 0.2° and 0.1° have been tested for
a selected number of sensors in the array. Observe, in figure 3.16a, that the resolution
capacity can potentially be improved by decreasing the angular step size used to create
the steering matrix. It should be kept in mind, that this increases the dimension of the
steering matrix and therefore the overall computation time, as it can be seen in figure
3.16b.

The resolution size plays an important role for the estimation error. Due to the dis-
cretization of the angular domain when creating the array steering matrix, there will be
off-grid errors when the real target locations do not fall onto one of the discretized an-
gular bins. It has been observed, in these cases, that the energy at that angular bin is
sometimes split over the angular bins that surround the true target location (which lies
off-grid). For this grid-based BCS method it is therefore intuitive, that a finer grid will also
improve the estimation error. This has been observed in this experiment and is shown in
figure 3.17. Furthermore, the splitting effect leads to false alarm detections. Therefore,
the angular grid size does also have an effect on the detector metrics, as shown in 3.16a.
Different methods to counteract these errors have been proposed in literature, but the
study thereof is not subject for this thesis.

Another important parameter for the BCS method is the number of snapshots it can
use in its inversion process. When using more than one snapshot, it is called "Multi-
Task BCS" (MT-BCS) since each snapshot is treated as an inversion task, contributing to
one common solution (this has been detailed in chapter 2). The experiments have been
run with the same testing data as before, but comparing the output when the MT-BCS is
used with 5 and 10 Snapshots. For this trial, the resolution has been kept fixed to 0.5°.
In 3.18a it can be observed, that using more snapshots can, to a certain degree, improve
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Figure 3.17: RMSE comparison for 0.5°, 0.2° and 0.1° grid resolutions when using the BCS method with one
snapshot and data of around 4dB SNR
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Figure 3.18: Influence of the number of used snapshots on the detection and estimation performance.

the detection performance. The two MT-BCS methods with 5 and 10 tasks (snapshots)
show a performance increase from 0.93% to 0.99% probability of detection. This is still
a much smaller amount of chirps that have to be utilized when compared to methods
like MUSIC, where at least 86 chirps need to be used (corresponding to the amount of
maximal antennas in the array for this thesis).

Finally, the performance of the BCS method is tested against the FFT beamformer
and the Multiple Signal Classification (MUSIC) algorithm, a well established DoA esti-
mation method that is able to resolve targets that are closer than the resolution limit
1. The angular RMSE has been investigated for the BCS, MT-BCS and classic methods,
which is shown in figure 3.19a. Since both the classic FFT beamformer method and the
MUSIC method can only work with a ULA, and it would be an unfair comparison if the

1The MUSIC algorithm usually needs to know the number of frequencies [94]. To have a fairer comparison,
an extended version of the MUSIC algorithm has been used, which estimates the number of targets using the
Minimum Description Length (MDL)
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aperture is changed, the metrics for these two methods have been computed only for the
full array case (all 86 sensors included) and are shown as horizontal lines. It is very im-
portant to point out here, that the RMSE can only be calculated based on the estimations
which have been paired to a true target. There might be cases where only one target has
been detected with a good RMSE, but the false negative is not reflected in the RMSE plot
shown in figure 3.19a. Therefore, when accessing the estimator performance, it is im-
portant not to look only at the RMSE but also at the detector metrics to see from which
number of sensors onwards the correct number of targets can be detected. In the case of
the FFT beamformer method, the targets cannot be discriminated, and it sees only one
target. This has to be kept in mind when looking at the RMSE. It has to be viewed in con-
junction with the detection metrics, which is shown in 3.19b. There it can be seen that
the FFT method indeed is not able to detect the correct number of targets most of the
time. With the focus still on the ROC curves in figure 3.19b, it is visible that the MUSIC
method performs very well. This might be partly due to the fact, that the targets in the
simulated scenes all have the same RCS and the simulated data is more ideal than real
data. It should also be kept in mind, that the MUSIC method has to utilize all 86 virtual
sensors and more than 86 snapshots to work. This, on the one hand, makes the direct
comparison between the methods skewed, but on the other hand shows the potential of
the BCS method, as it is not only able to work with heavily reduced, sparse sensor arrays
but also with only one single snapshot. At a good detector threshold, the BCS method is
able to resolve the closely spaced targets with only 17 sensors for the physical ULA.

Key-Observation: While the (MT-)BCS method can perform considerably
well with as little as one single snapshot and a heavily sparse array, the
MUSIC method is bound to a full ULA and at least as many snapshots as
array elements, in this case 86.

3.7. CASE STUDY 3: 5 TARGETS WITH MIXED ANGULAR SEPARA-
TION

The prior two case studies have looked at the performance of the generated, sparse an-
tenna arrays for rather isolated cases. In practice, targets in one considered range bin
may appear in angular domain very close together, further apart, or both in case of more
than two targets. This section aims to investigate a scenario, with simulated scenes
where 5 targets have been randomly placed in the same range bin with angular sepa-
rations that are quite large, or below the Rayleigh resolution limit of 1.33°. An array has
been generated based on this data using the proposed method and is again compared to
a randomly generated array with the same sparsity. In addition, the performance of the
generated arrays using other data has been tested for this scenario as well, to see how
much the training data influences the performance when different data is present. Dur-
ing the testing, the BCS method is given a steering matrix with angular grid size of 0.5°,
to provide the required angular resolution capabilities. The same grid size is given for
the MUSIC method.

It is observed, that generally more sensor elements are required to reach good detec-
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Figure 3.19: Comparison of the BCS method against different established estimation methods.
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Figure 3.20: Exemplary view of the ROC curves for a selected number of array sparsity (27 sensors) and arrays
of the physical ULA type.

tor performance in terms of the ROC curves. Moreover, in this scenario, the proposed
entropy based method seem to have a harder time deciding on the most informative
sensors to add. This has been revealed by the fact, that the randomly generated array is
sometimes performing better than the one generated by the entropy method, at certain
levels of array sparsity. However, another interesting observation has been made. Arrays
that have been generated using the proposed method, but having been generated based
on target scenes where all 5 targets have been well separated, seem to perform well with
this data of mixed angular separations. This is illustrated by a view of the ROC curves
in figure 3.20 for a selection of physical ULA arrays with 27 activated/included anten-
nas. It can be observed, that the arrays generated based on simulated scenes with well
separated targets (green and violet) achieve a better detection performance than the ar-
ray trained for the same simulation (S3, blue curve). The different simulations S1-S4 are
listed in table 3.2.

Figure 3.21 shows the RMSE for the same arrays.
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While the MUSIC method always needed more than 86 snapshots and all 86 antennas (hence the constant
line) the BCS method has been used with only one snapshot.





4
TESTING WITH REAL RADAR DATA

As a final step in the assessment of the sparse arrays, they are tested with measured data.
To this end, the Texas Instruments AWR2243 cascade evaluation board is used, which pro-
vides a total of 86 unique antennas for DoA estimation in azimuth when using the MIMO
principle. A selection of different target scenarios have been set up to test the arrays in
combination with the BCS DoA estimation method. Two measurement campaigns have
been conducted at different locations, which are described in this chapter. The approxi-
mate point targets have been build with small-sized corner reflectors (described in 4.2 and
4.3), while two persons have been used as an extended target (shown in 4.4). The overall
measurement setup and scenarios that have been captured will be described in section 4.1.
To keep the chapter concise, it is described in the appendix C, how specific parameters for
the BCS algorithm have been found and set specifically for the data and scenario at hand.
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Figure 4.1: Sensor layout of the TI cascade evaluation board. The Tx sensors (green, spaced by 2λ) and the Rx
sensors (blue) form a MIMO array with a lot of overlapping sensors. The final 86 unique sensor positions are
marked in red.

T HE final step in the performance analysis of BCS using sparse arrays is to test them
with data that has been acquired through real measurements with the Texas Instru-

ments AWR2243 Cascade evaluation board. This board features four single AWR2243
FMCW Transceiver chips which operate in the frequency band of 76 to 81 GHz [95], a
typical frequency for state of the art automotive radar application [3]. Each single chip
provides 3 transmit and 4 receive antennas, which brings a total of 12 transmit and 16
receive antennas to the cascade evaluation board [96]. By combining these antennas
with the MIMO array principle described in chapter 2, a virtual array of 192 antennas
can be obtained. However, due to the fixed printed antenna layout of the evaluation
board design, many of these virtual antenna positions will be redundant, leaving a total
of 86 unique virtual sensor positions which form a ULA. The array geometry is shown
in figure 4.1. The virtual uniform array provides the basis for data acquisition and has
also already been used as an exemplary case to apply the entropy based array genera-
tion which has been described in the previous chapters. The occurrences of overlapping
antenna positions might even facilitate the MIMO version of the proposed sensor adding
algorithm, as it reduces the repetition of sensor groups across the array aperture. For the
physical ULA version of the proposed algorithm, only the resulting virtual elements are
considered as unique sensor locations. Two measurement campaigns will be described
in the following sections, where the generated arrays from chapter 3 are tested. To this
end, data is always captured with the full number of antennas that the board can pro-
vide. In post-processing, only data from the sensors that are included into the generated,
proposed sensor arrays is used.

4.1. MEASUREMENT SETUP
To take the real measurements, two measurement campaigns have been conducted. The
TI cascade radar board has been mounted on a tripod roughly 1 meter above the ground
at a feasible empty space outdoors. Corner reflectors have been placed at a constant
distance of 5 and 10 meters, with varying angles to the line of sight of the radar. The dis-
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Parameter Value Unit
Start frequency 77 GHz

Slope 5 MHz/µs
Ramp-End-Time 80 µs

Bandwidth 400 MHz
ADC samples 256 range samples

Rx Gain 48 dB
No. Chirps 128 -
No. Frames 4 -

Table 4.1: Parameters set and fixed between measurements in the TI cascade radar board.

tance has been chosen as it is feasible to walk back and forth during the measurement
procedure and is acceptable for the far-field assumption. The far-field is computed con-
sidering the aperture of the physical receiver array, which is D =10.45 cm and results in
a radial distance of r = 2D2/λ =5.6 m. Although the closest positioning of the targets is
at 5 m, it is noted here that these conditions are rather soft thresholds, and it has been
verified that the reasonable measurements are acquired. To obtain target measurements
with varying RCS and possibly stronger reflections, multiple small corner reflectors have
been attached to the poles in some cases (more detail is given in section 4.2).

The radar parameters for the measurement campaign have been set prior and kept
constant to the values that are listed in table 4.1. Importantly, the maximum range has
been set to about 108 meters in order to avoid too many target returns from outside the
range of interest. Moreover, the range resolution has been set to a quite high value of 37.5
cm, such that in post-processing, the range bin where the targets are placed can be cut
out and is less sensitive to the case when a target is not exactly at the expected distance.
Since the available measurement equipment and the circumstances of the campaign did
not allow for highly precise placement of the targets, this was a necessary step. Since the
aperture of the radar is fixed and the number of unique, virtual receive antenna elements
is NRx =86, the resulting angular resolution is obtained as

∆θ = λ

d ·NRx ·cosθ
· 180°

π
(4.1)

and can be calculated for a zero-degree view angle as∆θ0 =1.33°. It is noted here, that the
settings presented in table 4.1 do not break the narrowband assumption, since 400MHz ≪
77GHz (i.e. Bandwidth ≪ f0). Another important aspect to note is the actual distance
between sensors in the receiver array, when a certain frequency and bandwidth combi-
nation is chosen for the TI board. With the parameters shown in 4.1 the centre frequency
is f0 =77.2GHz with wavelengthλ= c/ f ≈3.88 mm. In units of this wavelength, the spac-
ing of the printed antenna on the TI board is ∆/λ = 0.5023. It is only a small deviation
from the theoretical half-lambda spacing, but it has shown to noticeably improve the
DoA estimation accuracy.

Since no precise measurement equipment was available to place the corner reflec-
tors at exactly the desired angles, the law of cosines has been utilised with fixed and
known distance between target and radar, as well as the desired angular separation be-
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tween targets (one of which has been used as a reference at 0°). The law of cosines to
calculate the linear distance between two targets on the same radial distance from the
radar is given as:

dmeter =
√

2r 2(1−cosθ) (4.2)

where dmeter denotes the distance between two targets that lie on the same radial dis-
tance r from the radar and θ is the desired angular separation in degrees.

4.2. WELL SPACED TARGETS
The general overview of the first measurement site is given in figure 4.2. The red shaded
area indicates the radar board’s field of view and adjusted maximum FMCW range. The
green shaded area marks the range resolution cell of about 37.5 cm, which has been
extracted in the post-processing. The chosen site has been mostly flat soil. However, as
can be suspected from figure 4.2, there is some ground clutter in the form of foliage and
scree, which is clearly visible in the received data.

Figure 4.2: Overview of the measurement site close to the TU Delft campus (satellite image via Google Maps).

Different target arrangements have been captured during the first measurement cam-
paign, which are listed in its full extent in table 4.2. For this thesis, only the measure-
ments with all 5 targets present (as shown in figure 4.3, number 09 in table 4.2) have
been used and are analysed in this section.

The BCS algorithm has been utilised and tested with the array proposed in chapter 3
for the 5 target scenes. It has been observed, that at around 37 included sensors for the
physical ULA, the algorithm is able to detect the 5 targets quite well. Figure 4.4 shows
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Figure 4.3: Measurement scene from the Radar point of view. All four maximally used targets have been placed
at the 10m range from the radar at the angles -20°, -10°, 0°, 20° and 30°.

No. No. Targets Angles Note
00 0 - Empty reference scene
01 1 0° 5m distance for calibration matrix

02-06 1 -20°, -10°, 0°, 20°, 30° Single measurement for each angle
07 2 0°, 30° -
08 2 -10°, 0° -
09 5 -20°, -10°, 0°, 20°, 30° -
10 1 0° Human target
11 2 -10°, 0° Human targets

Table 4.2: Captured target arrangements during the first measurement campaign.



4

66 4. TESTING WITH REAL RADAR DATA

the BCS estimates using the sparse array compared to the classical FFT spectrum with
the full 86-sensor array as a reference. Note that the used array has not been generated
based on the measured data, but on simulated data.
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Figure 4.4: Example result of BCS-based DoA estimation for the 5 targets measured scene.

Figure 4.5 shows the RMSE for this measurement, using arrays with more and more
sensor elements. The BCS method is compared to the MUSIC estimator and the FFT
beamformer. Since both the MUSIC and the FFT method need a fully filled ULA, the
RMSE values for these two methods have been displayed as a horizontal line. It can be
observed, that the inclusion of more and more sensors does not decrease the RMSE, al-
lowing for the conclusion that the usage of sparse arrays does not necessarily lead to a
loss in estimation accuracy, which coincides with the observations from the simulated
data. Figure 4.6 shows the ROC curves for the BCS method using 5 snapshots and a
sparse array of 42 sensors with the physical ULA and 64 virtual sensors with the MIMO
array. As an example, it is compared against a randomly generated array of 42 sensors
in the physical ULA. The distinct difference in the physical ULA and MIMO based cases
could be related to the different degrees of freedom in the MIMO array generation pro-
cess. While the physical ULA based method has the freedom to place each physical re-
ceiver sensor according to the entropy update, in the MIMO array, such individual place-
ment of the virtual receiver sensors is not possible.

The ROC curves displayed in figure 4.6 for this measurement show that in this real
world measured case, more sensors are required to achieve good detection performances
than have been promised by the simulated tests in chapter 3.4. A partial reason for this
could be the strong clutter and the diverse RCS of the single targets. Moreover, it has been
observed that over the number of multiple chirps, some targets fluctuate very strongly
in terms of their RCS. In an attempt to improve the signal strength of the corner reflector
targets against the surrounding clutter, to counteract possibly suboptimal orientation
and design of the used corner reflectors, and to have some variance in their RCS multi-
ple corner reflectors of the same size have been attached to the same pole. This is shown
in figure 4.7. During the post-processing of the data, it has been observed that this has
not led to the desired effect. Poles that had multiple corner reflectors attached some-
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Figure 4.6: Comparison of BCS method against MUSIC and FFT DoA estimation.

times even showed a lower RCS in the spectrum compared to ones with fewer corner
reflectors. Moreover, a strange behaviour has been observed, where the RCS of a target
slowly diminished within one frame of 126 FMCW chirps. It is suspected, that the attach-
ment of multiple corner reflectors might have led to deconstructive interference among
them and did not benefit the operation. In the second measurement campaign, it has
therefore not been repeated this way and the effect was not observed again. Anyhow,
even with these effects and results which could also be viewed as realistic imperfections,
the reduction of hardware could still entail the removal of one entire chip (3 transmitter-
and 4 receiver antennas) while keeping good performance with respect to the detection
of targets and estimation of their DoAs. In case a physical ULA is to be built, the results
indicate a reduction of about 50% of the required antennas.
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Figure 4.7: Composition of corner reflectors to achieve different target RCS values.

4.3. CLOSELY SPACED TARGETS
A second measurement campaign has been conducted to obtain measurements where
two corner reflectors are very close together in angular domain, but again at the same
radial distance from the radar. Since the clutter that has been present during the first
measurement campaign was quite strong, the second round of measurements has been
taken on a football field, offering a very homogeneous, clutter-free ground. Two corner
reflectors have been mounted on a thin, horizontal, wooden pole, such that they can
be shifted very close together. Starting from a distance of 1.4 cm from corner to corner
(13 cm from centre to centre) the two corner reflectors have been shifted apart in steps
of 3 cm (that corresponds to 0.3° at 5.6 m distance), until their separation has increased
by 12 cm (corresponding to 1.22° at 5.6 m). The described setup is shown in figure 4.8.

No. No. Targets Angles Note
12 0 - Empty reference scene
13 1 0° 5 m distance for calibration matrix
14 2 0°, (1.33° to 2.56°) Separation increase in steps of 3 cm/0.3°

Table 4.3: Captured target arrangements during the second measurement campaign.

Since for this type of real-world data captures, it was not feasible to acquire 100 dif-
ferent target locations, the presented results are not averaged over multiple trials. How-
ever, they are averaged over all recorded chirps (when the single snapshot BCS method is
used) and might still offer valuable insight. First, the array generated with the proposed
method for the physical ULA and 5-target training scenes has been tested for the cap-
tured data. The BCS method is given a steering matrix with angular discretisation of 0.5°
steps, in order to give it enough resolution capabilities. It is compared against the FFT in
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(a) Setup of the second capture, showing the radar in the front and the corner reflectors
in the back.

(b) Close-up photo of the two corner reflectors at their closest spacing of 13 cm (mea-
sured from their centres), corresponding to 1.33° angular separation.

Figure 4.8: Reference photographs for the second measurement campaign to capture very close corner reflec-
tors.
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this first examination. At the closest angular spacing of 1.33°, the FFT is not able to re-
solve the two corner reflectors, while the BCS method is. This is shown in figure 4.9. Note
how the two BCS estimates (red dots) estimate the true angle values (black, horizontal
lines) quite well and with around 15dB separation from the remaining false detections.
The first secondary lobes left and right from the centre are roughly 13dB relative to the
mainlobe and therefore might indeed be the secondary lobes of the array pattern (in case
of the full array). This is, however, difficult to know for sure, since even the football field
is not free from clutter or multipath echoes. Note also, that the shown estimate has been
provided by the BCS using only one single snapshot (chirp). The same can be observed
for the MIMO array, when a similar number of virtual sensors is included into the array.
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Figure 4.9: Angle estimation plot for the two corner reflectors at their closest spacing of 1.33°.

The number of sensors that seem to be enough for successful detection of the two
targets can be best investigated by looking at the Jaccard maps as shown with the sim-
ulated data before. They are plotted for the physical ULA and the MIMO in figure 4.10.

When the two corner reflectors are separated by additionally ≈ 0.30°, such that also
the FFT method is able to distinguish them, the BCS method seems to need even fewer
sensors. In this case, the BCS method is able to distinguish the two corner reflectors with
as few as 5 sensor elements, compared to 15 sensors needed for the case before in figure
4.9. An exemplary plot for this is shown in figure 4.11.
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Figure 4.10: Jaccard index plotted over varying number of sensors and varying threshold for the two closely
spaced targets using the BCS method.
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Figure 4.11: Angle estimation plot for the two corner reflectors at their second-to-closest spacing of 1.66°.
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Figure 4.12: Measured scene of 2 persons standing closely together to form an extended target. The span from
shoulder to shoulder is about 1 meter, corresponding to around 10° angular spread.

4.4. EXTENDED TARGET OF OPPORTUNITY
A final measurement has been taken to see how the BCS method behaves, when the re-
flecting target is not as pointlike as the corner reflectors. To test this, two people have
been positioned shoulder to shoulder, to form an extended target with a span of about
1 m as shown in figure 4.12. This results in an angular span of about 10 degrees from
shoulder to shoulder. As can be seen in figure 4.13, the estimated coefficient vector pro-
duced by the BCS has high non-zero values in the region where the extended target is
placed. It seems to locate the DoA estimates at the points where also the FFT beam-
former has its peaks. Those peaks could be related to the scattering centres of the ex-
tended target, which is not a smooth surface. Figure 4.13 shows two versions of esti-
mates. The red dots show the output of the BCS method, when the parameter b is set to a
rather low value of 25. This value has shown to be a good compromise between the spar-
sity of the estimated vector and the preservation of weaker target RCS for the data in this
thesis, as it is discussed in more detail in the appendix C. Increasing this parameter to a
value of 200 shows to eliminate almost all the estimates besides the ones corresponding
to the extended target. These estimates are shown by the violet star markers. Moreover,
it is visible that the magnitude estimate is not visibly degraded.



4.4. EXTENDED TARGET OF OPPORTUNITY

4

73

Figure 4.13: Example of the spatial spectrum estimation for the 2-Person extended target. Observe how a clear
larger extent of spectral energy is present in the green marked region, corresponding to the target location.
Note also, that changing the b-parameter of the BCS method can greatly reduce the number of secondary non-
zero coefficients.

Finally, it has also been investigated how the sparse arrays are able to perform in this
scenario. Again, the generated array from the previous sections is used, which is based
on simulated data with 5 targets in the scene. For the physical ULA based array and
this data capture, around 30 sensors seem to be sufficient such that the BCS algorithm
obtains non-zero coefficients that cover the angular span of the extended target, which is
shown in figure 4.14a. Similarly, the MIMO based generated sparse array with 30 virtual
elements is able to recover those coefficients as well, which is displayed in figure 4.14b.
In both cases, fewer than 50% of the sensors from the original, full (virtual) ULA of 86
sensors are needed. However, these conclusions are only tentative, as only one example
capture of an extended target has been investigated.

Summarizing the insights of this chapter, it has been shown, that the BCS method is
capable of performing well with measured data using the sparse arrays that have been
generated purely based on simulated data. It is generally observed, that compared to
the assessment based on simulated data, more sensor elements are needed when the
captured data is used. Nevertheless, the measured data confirms that sensors could be
removed while still being able to locate point targets that are further apart or below the
Rayleigh resolution limit, as well as providing a point cloud of estimates for an extended
target. The parameter that can be adjusted in the BCS method, which has been called b-
parameter, could be used as either an addition or possibly even a substitute for a detector
threshold, as it shows to suppress spectral energies caused by clutter while keeping the
spectral energies corresponding to actual targets intact.
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(a) BCS estimates using a physical ULA based sparse array with 37 sensors.
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(b) BCS estimates using a MIMO based sparse array with 6 physical transmitters, 5 physical receivers and resulting 30 virtual
receivers.

Figure 4.14: Example of the BCS estimates when an extended target is present, compared to the FFT beam-
former spectrum for reference. The b-parameter for the BCS has been set to 200, to suppress the spurious
estimates.



5
CONCLUSIONS AND FUTURE WORK

R ADAR technology has emerged as an important technology for countless modern
technological solutions. Due to the progress made in chip manufacturing, it has

found its way into more consumer based, civil applications. One of such applications
is the use of radar systems in automotive vehicles, where it is aimed for more and more
intelligence and automation. A key aspect of this and many other applications is often
times the direction estimation of targets that are present in the observed scene. Im-
proving the DoA estimation capabilities is generally a costly task, since the addition of
more antennas and the increase in mechanical size entails an increase in hardware com-
plexity, cost, energy consumption and difficulties due to spatial confinement in certain
applications (the radar device has to fit somewhere on the car) [3].

A promising, emerging method that trades the described costs for better DoA estima-
tion against computational demand is known under the term (Bayesian) compressive
sensing [38]. It has found vast interest in literature, not only for DoA estimation. The
DoA estimation problem is one application that is especially well suited for the use of
BCS methods. When targets that are very confined in angular domain are assumed (e.g.
point targets), the necessary sparsity condition is fulfilled and the CS framework can be
applied. But besides offering a possible increase in resolution and the reduction of nec-
essary snapshots, the CS framework offers the opportunity for sub-Nyquist sampling of
the scene of interest. For DoA estimation, this amounts to a sparse spatial sampling of
the scene, i.e. a sparse arrangement of antennas. Since the Bayesian CS framework also
provides measures of confidence, Bayesian experimental design theory could be used
to locate informative sensor positions, an opportunity that has not been extensively ex-
plored in radar based DoA estimation yet.

This thesis has made use of those intrinsic properties of the BCS DoA estimation
framework (namely the provided uncertainty measures in the estimated signal vector),
to devise a method that helps in the generation of sparse sensor arrays for one dimen-
sional DoA estimation in the field of radar technology. Particularly, the entropy of the
recovered signal (i.e. the uncertainty of the estimation) has been utilised, to fill up an
empty grid of possible sensor positions by deciding at each step, which new sensor could
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decrease the uncertainty the most. The method has been applied to generate arrays that
can be implemented by a direct placement of physical antennas, or by means of a MIMO
array configuration.

The proposed method is shown to decrease the estimated uncertainty faster, than if
sensors would be added purely random. It is generally shown, that sparse arrays can be
used in conjunction with the BCS DoA estimation method and can provide good estima-
tion and detection results. When different sparsity levels are picked (i.e. the arrays are
not filled up to a full ULA), it is shown that the generated arrays outperform randomly
generated arrays in terms of the detection metrics, meaning that for certain scenarios
the proposed arrays need fewer sensors than the random ones for similar detection per-
formance. By the case study of 5 targets located within an FOV of ±40◦ and good SNR
conditions, the improvement for a sparsity level of 25 out of 86 sensors included (a factor
of ≈ 0.3 times the full number of possible sensors) as compared to a randomly generated
array with the same number of antennas lies at about 1.4-1.6%. It has been shown that
the estimation performance shows to be more related to the angular grid that is used for
the BCS estimation method and the entropy based arrays do not show consistent perfor-
mance increase in terms of estimation accuracy measured by the RMSE.

Furthermore, the proposed arrays and generally sparse arrays have been tested with
real captured measurements using a Texas Instruments evaluation board. It is shown,
that even heavily sparse arrays can still detect and estimate the targets and their DoAs
quite well, when compared to methods like MUSIC and the FFT beamformer. With the
example study of the TI cascade evaluation board, and all the corresponding parameters
that have been set accordingly, the proposed arrays could directly lead to a theoretical
removal of entire transceiver chips on the board. Based on the measured data that has
been captured, one single chip could be removed in the MIMO array case, while about
50% of the antennas in a physical ULA case could be removed. Ultimately, the proposed
method is another step into the direction of reduced complexity, cost and energy con-
sumption for one dimensional sensing systems, which in today’s ecological world can
be a small, but valuable contribution. On a broader scope, the idea this thesis is based
on can be applied to other sensing systems as well, where spatial sampling is applied to
measure sparse signals.

The proposed method for array generation, as well as the BCS algorithm that is used
for DoA estimation, are influenced by numerous parameters. Many of those parameters
have been reasonably fixed to certain values, based on empirical investigation or the
given boundary conditions by the available hardware. However, it is noted that the pro-
posed method is generally not confined to a grid of equally spaced candidate positions
and could be expanded to either finer grids or even irregular positions.

5.1. FURTHER RESEARCH
• The proposed method has been confined to place sensors on a grid of possible

locations, which is based on the virtual ULA provided by the TI cascade evaluation
board. Further research could look into finer grids of possible sensor locations, or
possibly even irregular or entirely grid-less options to place new sensors. Coupling
effects between close sensor elements should probably be taken into account as
well.
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• The MIMO based approach for sensor placement has been observed to add many
Tx sensors early on. Future algorithms could include techniques to either penalize
the addition of transmitter elements, as they are generally more costly in terms
of hardware and energy consumption. More over, abandoning the confinement
to positions on a grid on λ/2 basis could offer more available search space and
therefore more informative new sensor locations.

• To extend the study of practical feasibility, more dynamic scenarios could be mea-
sured. It has been hinted at in chapter 4.1 that strong clutter and a large variance
in target RCS could impact the detection performance. This could be explored
further for real world environments.

• Some subtopics have been covered only very simplistic here, to keep the scope
of the thesis manageable. The detection algorithm, for example, is just based on a
simple global thresholding. More elaborate detection methods could be employed
to improve the overall detector performance. Furthermore, tracking algorithms
could be appended to the pipeline to improve the robustness against false alarms
and missed detections.





A
ARRAY GENERATION ALGORITHMS

A.1. PHYSICAL ULA ALGORITHM
Here, the mathematical steps that have been implemented in Matlab are described for
the algorithm operating on a physical ULA are described. The following notation is in-
troduced: The complex valued steering matrix is denoted as A and has the dimensions
M rows corresponding to the sensors and G columns corresponding to the discretised
steering angles. The expanded, real valued steering matrix is denoted as AR and has
doubled dimensions. The weights for each sensor, determining whether it is included
or not, are denoted as wi with i = 1, . . . , M and can take values of either 0 or 1. The
number of new candidate rows is denoted as C and represents the potential new rows
in AR. Therefore, C = 2M and in the case of the assumed example with 86 total sensors,
C = 2 ·84 = 168, since the two edge sensors have already been fixed. For each simulation
δh(rc ) is computed according to equation 2.51 for each candidate c. This results in a
matrix of C rows and I columns, which is then averaged over the I simulations for each
candidate to obtain δhr. Finally, as it has been shown in chapter 3, the expansion to real
values has to be taken into account. To this end, the vector of 2M averaged candidate
values is summed as shown in algorithm 1. For the calculation of the entropy update
equation 2.51 an estimate for the noise variance α0 = σ2 is required. This is calculated
with the proposed re-estimate equation in [31], which uses the estimated covariance
matrix Σ̂ and the MSE of the reconstructed measurement vector ŷ as

α0 = ∥y− ŷ∥2

M −2G +∑
mαmΣ̂mm

(A.1)

where ŷ = Ax̂, y is the vector of CS measurements that is input to the BCS algorithm, M
denotes the rows of the current basis (i.e. the number of antennas) and G is the num-
ber of basis vectors (i.e. the number of steering vectors in the steering matrix A. The
subscripts m index the steering vectors that are currently included, meaning that Σ̂mm

denotes the m’th element on the diagonal of Σ̂.
The set of sensor candidate rows has been denotes as R.
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Algorithm 1 Sequential Sensor Adding: physical ULA

Require: Input example data for the BCS
A ∈CM×G ⇒ AR ∈R2M×2G

wi ∈ {wi }i=1,...,M = 0
w1 = wM = 1
Precompute steering matrix, AR
while candidates rc , c = 1, . . . ,C do

for Training scene i = 1, . . . , I do
Run BCS to obtain Σ̂i

Estimate α0 via equation A.1
Compute δhi (rc ) for each candidate rc ∈ R
δH ∈RC×I ← δhi (rc )

end for
δhr = 1

I

∑I
i δHr,i

δ̃hr = δh1:M +δhM+1:2M

Set wi = 1 for argmaxr δ̃hr

Recompute steering matrix
end while

A.2. MIMO-BASED ALGORITHM
The MIMO-based algorithm follows the same principle as the physical ULA one with the
major difference that the new candidate at each iteration is sought for either a transmit-
ter or receiver antenna, resulting in more than one new row in the steering matrix. In
each iteration, the transmitter and receiver candidates are swept (individually), and the
virtual array that results for each candidate is computed. Then the new resulting rows
in the virtual array for each candidate are used in the entropy update equation given
in 2.51. Again, to ensure the maximal array aperture is achieved, the border antennas
are included. This has to be done for both the physical transmitter and receiver arrays.
Two sets of candidate rows are generated for each iteration, denoted as RT x

V x and RRx
V x

for the transmitter and receiver candidates, respectively. When the physical transmit-
ter candidates are iterated, for each candidate the corresponding weight is set to 1 as
wT x,cT x = 1 and the resulting weights for the virtual receiver array are calculated, de-
noted as wT x ⊗wRx = wV x (the receiver weights are unchanged). The procedure for the
physical receiver candidates follows analogous.
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Algorithm 2 Sequential Sensor Adding: MIMO

Require: Border elements activated in Tx and Rx
Ensure: Reduction in Entropy per step

initialization;
wRx,i ∈ {wRx,i }i=1,...,M = 0
wRx,1 = wRx,M = 1
wT x,i ∈ {wT x,i }i=1,...,M = 0
wT x,1 = wT x,M = 1
Compute A ∈CM×G ⇒ AR ∈R2M×2G

while candidates rc , c = 1, . . . ,C do
for Training scene i = 1, . . . , I do

Run BCS to obtain Σ̂i

Estimate α0 via equation A.1
for Tx Candidate cT x do

wT x,cT x = 1
wT x ⊗wRx = wV x

wV x → rV x

Compute δhi (rc ) for each candidate rc ∈ RT x
V x

Store maxrc δhi → δhT x
i

wT x,cT x = 0
end for
for Rx Candidate cRx do

wRx,cRx = 1
wT x ⊗wRx = wV x

wV x → rV x

Compute δhi (rc ) for each candidate rc ∈ RRx
V x

Store maxrc δhi → δhRx
i

wRx,cRx = 0
end for

end for
δhT x = 1

I

∑I
i δHr,i

δhRx = 1
I

∑I
i δHr,i

if maxi δhT x ≥ maxi δhRx then
wT x,i = 1 for i = argmaxi δhT x

else
wRx,i = 1 for i = argmaxi δhRx

end if
end while





B
COMPUTING DETECTIONS AND THE

DETECTOR/ESTIMATOR METRICS

The RVM estimator returns a vector of coefficients, which ideally has only non-zero co-
efficients at the indices corresponding to DoAs with targets present. In reality, however,
there might be more than those coefficients non-zero. By empirical investigation it has
been observed, that in some cases the returned vector constitutes a rather discontinu-
ous function when plotted over the angular domain, while in other cases there are more
smooth slopes towards the present targets. This seems to be dependent upon a multi-
tude of factors, including the noise level, the sparsity of the utilised array, and the pa-
rameters (a and b) that are input to the BCS algorithm (the latter two are described in
more detail in the appendix C).

In chapter 2 it has been described how the complex valued radar data is expanded
using equation 2.10 to fit the real valued RVM model. Consequently, the vector returned
by the RVM follows this expansion and has to be reduced to obtain the correct DoA esti-
mates. This is done as

x̂cpl x = (x̂1, . . . , x̂G )+ j (x̂G+1, . . . , x̂2G ) ∈C (B.1)

where x̂i denotes the i ’th coefficient in x̂ ∈ R, which is the real valued output vector of
the RVM abiding to the expansion shown in equation 2.10. Depending on whether the
multi-task or single-task BCS is utilized, the RVM returns a vector x̂l ∈ R for each of the
L tasks (snapshots/chirps). After applying equation B.1, each i ′th coefficient estimate is
averaged individually over all L tasks and then normalised as

x̄i = 1

L

L∑
l
|xi ,l | ·

1

max x̄
(B.2)

To pick out the peaks in the resulting vector, the MATLAB function findpeaks is used,
yielding point estimates for potential target locations. However, since there can also be
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Figure B.1: Visualisation of the pairing radius around a ground truth. Note that the radius of this region is
shown here as an exaggeration. In practice, it has been set to values of 1 and 2 degrees.

false non-zero coefficients, a thresholding must be applied. Finding the correct thresh-
old can be a complicated task on its own. Therefore, an iterative procedure is applied,
where a decreasing threshold is used and analysed via the Jaccard index and ROC curves
(this is shown in detail in chapter 3). To obtain the metrics of true positives, false posi-
tives and false negatives, the known ground truth values are used. To this end, for each
ground truth, a region of association is cut out from the estimates. This region can be
defined as a user input. Within the cutout region, the estimate that is closest to the
true value is paired with the ground truth and all others are retained for a possible next
ground truth. At the end of the algorithm, all unpaired estimates are counted as false
positives. Similarly, all ground truths for which no pairing estimate has been found in
the defined region are counted as false negatives. This is shown with a visual example in
figure B.1.

To calculate the RMSE of the angle estimate, only the paired estimates are used. This
way it can happen, that the RMSE could be very good, while the detector performance is
very bad (i.e. detecting only 1 out of 5 targets). It is therefore necessary to observe both
the detection metrics and the RMSE (estimator metrics) when looking for a feasible level
of array sparsity.

The equations used to compute the probability of detection, and the probability of
false alarm are given as [97]:

PD = T P

T P +F N
(B.3)

PF A = F A

F A+T N
(B.4)

where TP is the number of true positives, FN the number of false negatives, FA the num-
ber of false alarms and TN the number of true negatives.
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To access the estimation error in degrees, the Root Mean Square Error (RMSE) is com-
puted for those estimates that have been paired to a ground truth (i.e. for valid true posi-
tives). Denoting the estimated target DoAs by the estimator θ̂ as θ̂i , and the ground truth
as θi , the RMSE is computed as:

RMSE(θ̂) =
√

MSE(θ̂) =
√√√√ 1

T P

T P∑
i

(θ̂i −θi )2 (B.5)

In the analysis of chapter 3, the RMSE metrics are shown for varying
degrees of array sparsity on the x-axis. The computation of the RMSE
at each array sparsity level, however, does not include the performance
of detection in its calculation, leading to rather unusable RMSE values
when only very few sensors are included in the array. This has to be kept
in mind when looking at the RMSE.





C
RVM PARAMETER SELECTION

The multitask-BCS algorithm that has been proposed in [33] and is used in this thesis
has two input parameters, besides the data and dictionary matrix. These parameters are
related to the hyperparameters, which in turn control the hyperpriors in the algorithm
(refer to chapter 2). For one of the hyperparameters, termed a, which is related to the sig-
nal variance, a data dependent expression is provided, and it can be set with knowledge
of the standard deviation of the data [33]:

a = 102

σ2
d at a

(C.1)

However, this setting, as well as the b-parameter can also be set to zero, giving the algo-
rithm no prior initialization and thus leading to so called a priori ignorance about the
precisions of α [33]. Doing so, however, might result in coefficient vectors which have
a lot of secondary coefficients with non-zero values. Increasing the b-parameter shows
to suppress these other coefficients, leaving only the ones corresponding to the correct
targets or highest energy. It has been observed in the case where only very few sensor el-
ements are included in the utilised array, that initialising a with zero will cause the used
BCS algorithm to not converge, and it will run for too many iterations. Therefore, al-
though in theory no special initialisation for a and b should be needed, in the case of this
thesis they have been initialised. In a practical array design application, the b-parameter
could be fine-tuned to the selected level of array sparsity. For the a parameter, equation
C.1 has been used.

For the b-parameter, however, there is no such direct equation provided. Therefore,
an empirical search procedure has been conducted, which is described in the remain-
der of this section. Firstly, it is important to understand the influence this parameter
has on the reconstruction algorithm. In the derivative steps of the algorithm in [33], the
b-parameter is assigned to the rate parameter of the Gamma hyperprior, which is im-
posed on the hyperparameters α, representing the precision values of the zero-mean
Gaussian prior imposed on the coefficients (the vector of DoA estimates, which should
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be sparse). The rate parameter can be ascribed to the steepness of the Gamma distri-
bution, relating it in a sense to the concentration of probability density. Increasing b
leads to a more spiky Gamma distribution and, in turn, to the Gaussian prior being more
concentrated around its mean for the corresponding α. From [31], this will let the algo-
rithm remove the corresponding basis vector (i.e. the steering vector) from the model.
In practice, it can be seen that when the parameter’s value is increased, the non-zero co-
efficients which may contribute weaker to the reconstruction of the signal are more and
more suppressed, leading to an increase in the sparsity of the resulting vector of weights
(more coefficients are pushed to zero). To find a good value for the scenarios covered in
this thesis, a sweep over a range of b ∈ {0,1, . . . ,50} ≡ B has been computed. The MT-BCS
algorithm has been run for different real-data target scenes for each value b ∈ B . As can
be seen in figure C.1 in red, the RMSE of the reconstructed signal will increase as b is
increased. This is according to the expectation, since also weaker coefficients have an
influence to the total received signal by all antennas. However, as the interest lies not
in the exact reconstruction of the signal that is received at the antennas, but rather in
the main reflecting objects that correspond to the larger frequency coefficients, this loss
might be tolerable. The RMSE is computed as the error between the original measure-
ment vector y , and the reconstructed measurement vector ŷ using the estimate of the
sparse coefficients vector x̂ as

ŷ = Ax̂ (C.2)

where A denotes the steering matrix (or generally the used basis matrix) and

RMSEy =
√∑N (ŷ − y)2

N
(C.3)

with N denoting the dimension of the signal vector y, which is in this case the output of
the sensor array at one range bin after the range FFT. The red plot in figure C.1 shows a
factor of how sparse the vector of coefficients is, which is calculated as:

Sparsity = car d(x̂)

dim x̂
(C.4)

where car d(x̂) denotes the cardinality of the coefficient-vector x̂ and dim x̂ the dimen-
sion of x̂, i.e. the total number of coefficients.

By investigating different target scenes and different ranges of b, it has been found
that often times the decrease in the sparsity factor becomes very small for larger b. In-
creasing b from there on does not seem to have a large influence on the algorithm’s re-
sult. This is shown in figure C.2 for scenes with different numbers of targets present.
Although both lines settle to a different value of sparsity, which is consistent with the
expectation, as both depict different numbers of targets in the scene, they settle at their
respective values at a similar b-value. It can be argued, that this parameter is able to in-
fluence the number of false alarms that will be present in the result of the BCS method.
The higher this parameter is set, fewer coefficients besides the ones corresponding to the
strongest targets will be non-zero, but the risk of eliminating weak targets is increased. It
is therefore argued, that a non-zero value for this parameter can be desirable, but a too
high value should be avoided as to not suppress real targets. Based on the study in this
thesis and figure C.2, the b-Value is set to 25.
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Figure C.1: Sparsity (blue) and reconstruction RMSE (red) for sweeping b-parameter.
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Figure C.2: Comparison of sparsity of the coefficients-vector with different target scenes
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It has generally been observed, that the two parameters a and b have to be balanced
against each other. Setting a very high initial value for a also requires higher values for b
to suppress unwanted, non-zero coefficients and vice versa.

Based on the empirical study and the described considerations and ef-
fects of the discussed parameter, the value has been fixed to 25 for the
processing of the measured data. This value appears to be a good setting
that also works in cases where the utilised array is very sparse.
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