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Abstract

Autonomous Underwater Vehicles (AUVs) are unmanned vehicles that give the opportunity
to carry out lengthy and dangerous tasks autonomously. This is particularly useful for survey
tasks, where the objective is to search the seafloor for objects. In this thesis work a planning
system is developed that can plan a path for survey tasks, while considering environmental
challenges such as communication limitations and location uncertainty. To compensate for
location uncertainty, the planning system requires a higher level of abstraction compared to
conventional path planning algorithms. For that reason, the planning problem is modelled in
the Planning Domain Definition Language (PDDL), creating a powerful and flexible planning
system which deals with the complex survey problem. Besides that, some additional planners
are added to support the PDDL-planner and provide suitable plans for the AUV to carry out.

The resulting plans are evaluated by simulation, showing that the planning system can suc-
cessfully survey different scenarios. Besides that, the PDDL model is validated by means of
the Event-B formal method, in order to obtain mathematical proofs of the validity of the
planning model. The results are a step forward in achieving full autonomy of the AUVs.
Besides that, a demonstration of the applicability of PDDL in real-world problems is given.
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Chapter 1

Introduction

1-1 Background

1-1-1 Autonomous Underwater Vehicles

An Autonomous Underwater Vehicle (AUV) is an unmanned vehicle which can operate un-
derwater autonomously. These vehicles come in a variety of sizes and capabilities, ranging
from more than 10 metres long to small portable vehicles (see Figure 1-1), each being capable
of fulfilling different tasks. The common purpose of these vehicles is to achieve persistent
autonomy, which is the ability to operate in complex and changing environments without
human intervention [1].

Figure 1-1: OceanScan-MST'’s LAUV [2]

Persistent autonomy is useful for lengthy and costly operations in underwater environments
and might even provide opportunities that would otherwise not be possible without the use
of AUVs. Typical applications are bathymetry [3, 4], underwater inspections [5], marine
geo-science [6] and fish tracking [7].
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2 Introduction

AUVs give the opportunity to carry out dangerous tasks as well, since these vehicles are
unmanned and thus do not involve any risks for human operators. For this reason, the AUV
is specifically interesting for Mine Countermeasure (MCM) operations, which are intended to
ensure the safety of vessels passing through an area. Such an MCM operation is generally
divided into four phases [8]:

i. Detection - First, the seafloor is scanned using sonar in order to detect objects, also
called contacts. The purpose of this phase is to cover the entire area.

ii. Classification - Then, these contacts are classified from the resulting images, determin-
ing whether they are mine-like contacts or not.

iii. Identification - The mine-like contacts are revisited to identify whether they are actually
a mine and what kind of mine it is (also called reacquisition).

iv. Disposal - Optionally, the identified mines can be neutralised by bringing a disposal
charge next to the mine.

The scope of this thesis work is the detection phase, where the objective is to survey a
designated area such that all potentially harmful objects in that area will be detected. In
this thesis work, the detection phase is further referred to as the survey task. A task planning
system needs to be developed to control the AUV, such that this survey task can be performed
autonomously in a reliable way.

1-1-2 The Survey Task

Whereas the goal of an MCM operation is to minimize the risk of navigating through a certain
area, the sub-goal of the survey task is to cover parts of the area and provide the probability
that all possible mines are detected. This probability depends on the environmental proper-
ties, the hardware that is used and the quality of the planning system. In Chapter 3-1 the
definition of this coverage probability is explained in more detail.

The Light Autonomous Underwater Vehicle (LAUV), which is the vehicle used by TNO, is
equipped with a Side-Scan Sonar (SSS) system. This sonar system looks straight in both port
and starboard direction (Figure 1-2). While moving forward, these lines of sonar-data can be
merged into an image as shown in Figure 1-3. From these images, objects can be detected
and classified as either being mine-like or non-mine-like, i.e., the classification phase.

w 2 altitude

Figure 1-2: This figure shows the geometry of the SSS system. It looks sideways straight in both
port and starboard direction. Due to the angle of the sonar transducers, there is a gap underneath
the vehicle, which is called the Nadir gap.
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1-1 Background 3
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Figure 1-3: An example of an SSS image [9]

To cover a certain area, the AUV generally navigates in a lawnmower pattern over the area
(also called boustrophedon pattern in literature [10]), such that it covers the entire area with
its SSS, as shown in Figure 1-4. The reason to navigate in a lawnmower pattern is that, in
order to get qualitative sonar images, the vehicle preferably needs to sail in straight lines.
The task-planner is responsible for planning this coverage path.

aNaYaYala

)

— Y U U

Figure 1-4: To cover a rectangular area, AUVs generally navigate in a lawnmower pattern.

Planning a coverage path is different from conventional path planning, as the focus is not on
a destination but rather on the path itself, which is often referred to as coverage planning.
At first sight, this might seem to be a straightforward planning problem. However, since
the AUVs operate in an underwater environment, some major challenges for navigation,
perception and communication arise, requiring a higher level of autonomy to successfully
perform survey tasks. The most important challenges are as follows:

i. Underwater currents - Underwater currents strongly influence the motion of the vehi-
cle. When the current is co-linear with the vehicle, it only influences its velocity. However,
when the direction of the currents is perpendicular to the AUV’s trajectory, crabbing will
occur, i.e., the heading of the vehicle is not equal to the direction in which the vehicle is
moving, which results in a sideways movement. When this is the case, the effective range
of the sonar is decreased.
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4 Introduction

ii. Seafloor structure - The seafloor can have different structures, significantly influencing
the sonar performance. Figure 1-5 shows three types of seafloor structures. In the case of
ripples, the direction of the AUV influences the amount of ’shadow’ present in the sonar
images.

(a) Flat sediment (b) Ripples (c) Complex

Figure 1-5: Sample sonar images that show three different seafloor types respectively: flat
sediment such as sand or mud (a), sand ripples (b) and more complex structures such as vegetation
or stone clutter (c) [11].

iii. Location uncertainty - Electromagnetic waves are heavily damped underwater, due to
the high conductivity of seawater [12]. This means that GPS is not available underwater
and hence, the vehicle has no access to its absolute position. For that reason, the AUV
navigates using an Inertial Navigation System (INS), which uses an Inertial Measurement
Unit (IMU) and gyroscope to calculate its location, orientation and velocity. Its location
is estimated by integrating the acceleration measurements of the IMU, which can be
noisy and have bias. Consequently, integration drift will occur, which leads to location
uncertainty.

Figure 1-6 [13] shows an example where an AUV needs to follow a simple lawnmower
pattern. Due to location uncertainty, the AUV might leave unacceptably large gaps
uncovered, resulting in low coverage percentages. The increase of location uncertainty can
be predicted using uncertainty models. The coverage planner can use this prediction to
adjust the distance of the lawnmower legs, accounting for location uncertainty. Figure 1-7
shows a typical uncertainty curve of an uncertainty model for lawnmower patterns.

High
Coverage

Low
Coverage

(a) Desired (b) Estimated (c) Actual

Figure 1-6: Discrepancy between (a) the desired coverage, (b) the estimated coverage and (c)
the actual coverage of an AUV following a lawnmower pattern. This is caused by environmental
disturbances and location uncertainty [13].
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Figure 1-7: This figure shows a typical uncertainty curve of an AUV navigating in a lawnmower
pattern. The solid line represents the along-track (forward) position uncertainty of the AUV
and the dashed line represents the across-track (sidewards) position uncertainty. When the AUV
makes a turn, the along-track position uncertainty is slightly reduced.

iv. Limited communication - Due to the high conductivity of seawater, communication
between underwater vehicles is difficult. For most applications above water electromag-
netic signals are used for communication, which is not an option for AUVs. Acoustic
communication is the obvious choice for underwater, but these signals are often noisy,
lossy and low-bandwidth in comparison to electromagnetic signals [14]. In addition,
the propagation of acoustic waves underwater is dependent on the prevailing conditions,
such as temperature, salinity and ambient noise. Besides that, no official communication
protocols are developed for AUVs yet, since this is accompanied by a lot of dynamical
constraints, making it a complex problem. Therefore, with the deployment of multiple
AUVs, communication is a challenge on its own.

The quality of the task planning system can therefore be defined by the number of challenges it
can cope with. In Chapter 3 the planning problem is described in more detail. The planning
problem is modelled such that the planning system in particular can account for location
uncertainty and limited communication.

1-2 Previous Work

For a few decades, this problem has already been researched. Several approaches were made
to plan coverage paths for AUVs in survey missions. Williams et al. developed a coverage
path planner that plans the optimal track spacing of the coverage path, taking into account
the properties of the seafloor structure [15]. As function of the range, each seafloor type
corresponds to a certain probability of detection, on which the optimal distance between the
tracks is based, while maintaining full coverage of the area. Another work of Williams et al.
takes into account the underwater currents, and adjusts the track direction appropriately to
compensate for that [16].
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6 Introduction

In [17] a genetic algorithm based planner was developed, to perform both the detection and
identification task. The vehicle surfaces between the designated survey areas to compensate
for location uncertainty, but does not plan to do that during the survey task itself.

An approach to compensate for location uncertainty while doing coverage planning has been
made as well by Paull et al.[13]. The probability of detection is used (based on the seafloor
properties) and is combined with location uncertainty, to get a probability that the area is
covered. In [18] this coverage probability was used to plan optimal locations to navigate to
the surface and get a GPS-update, significantly reducing the location uncertainty during the
survey task. More recently, in [19] an online dynamic programming-based coverage planning
algorithm was proposed, which was able to reduce the operation time even more.

The common factor of all these coverage planners is the usage of domain specific planners to
solve the survey problem, i.e., planners that are developed for one specific planning domain.
This works well in terms of performance, but does not provide the flexibility that is required
for persistent autonomy. To achieve this, the survey problem needs to be solved using a
more flexible approach so that it can adapt to different situations and operations in a more
convenient way. For this, a more generic definition of the survey problem is required. To the
author’s knowledge, this has not yet been done for MCM operations.

An interesting research project is PANDORA (which stands for Persistent Autonomy through
Learning Adaptation, Observing and Re-planning), where AUVs need to carry out an inspec-
tion task, navigate and perform tasks such as turning valves and taking pictures [20]. To
achieve this, the generic Planning Domain Definition Language (PDDL) was used to solve
these complex tasks. This involved high-level planning, but did not make decisions about
more low-level parameters such as location uncertainty.

Although used for a different application, Mufioz et al. combined the higher level task planning
with the lower level path planning to control mobile robots to perform tasks at waypoints
[21]. They proposed a planning system which integrates both an abstract PDDL-planner and
a more domain specific path planner. Since the PDDL-planner has a broader view of the
tasks that need to be done, this leads to more efficient plans.

1-3 Problem Statement

Research Objectives

The main objective of this thesis is to develop a PDDL-based task planning system for survey
tasks of AUVs, taking location uncertainty and limited communication into account, while
minimizing operation time. To achieve this, the following sub-objectives need to be achieved:

i. Construct a representative simulation environment in order to assess survey plans, and
to analyse the dynamical behaviour of AUVs.
ii. Model the survey task in PDDL and select a suited PDDL-solver to solve these problems.

iii. Construct a planning system that integrates the PDDL-based task planner and generates
suitable actions for the AUV to carry out.

iv. Evaluate the quality of the plans and validate the PDDL model of the planning system.
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1-4 Thesis outline 7

Research Questions
Based on the results of the developed planning system, the main research questions are:

i. How can the complex survey problem be modelled into PDDL, and what assumptions
need to be made to achieve this?

ii. What are the benefits of using a more generic planning system compared to a domain
specific planner?

iii. How can the PDDL model be validated, to ensure that it is correct and brings up valid
plans in every possible scenario?

1-4 Thesis outline

This thesis is structured based on the research objectives stated in the previous section.
Chapter 2 gives an overview of the simulation environment, discussing the capabilities and
models of the simulation environment. Then, the software architecture of the LAUV, as
used by TNO, is discussed and an explanation is given how this connects to the simulation
environment.

In Chapter 3 a more in-depth description of the planning problem is given. Besides that,
the overall structure of the developed planning system is explained as well as its planning
procedure. In Chapter 4 it is discussed how the survey problem can be modelled in PDDL,
and which PDDL-solver is suited to solve a survey problem. The sub-planners of the planning
system are described in detail in Chapter 5, to give a full understanding on how the planning
procedure of the planning system works.

Finally, the planning system is evaluated through simulation and the PDDL model is validated
in Chapter 6. In Chapter 7, conclusions are made on the results and some recommendations
for future research are given.
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Chapter 2

Simulation

2-1 Simulation Environment

2-1-1 Advantages of Simulation

To evaluate the task planning system empirically, simulation is a convenient way to validate
that the generated plans work. To do so, it was decided to use a realistic physics simulator
that would simulate the dynamical behaviour of the AUV and its sensors as realistically as
possible. Although the drawback is that it takes more effort to realise such an accurate
simulation environment, it has several advantages:

i. A more abstract simulation environment is generally based on a lot of assumptions, re-
stricting the freedom of the simulator to reach states that were not expected. Unexpected
realistic behaviour might be overlooked when it is not modelled, i.e., the closer the sim-
ulation is to reality, the more confidence one can have in the simulated results.

ii. Having a realistic simulation environment provides dozens of applications. For exam-
ple, the simulation of each individual sensor (e.g., a sonar system) gives opportunity to
generate and analyse useful data before testing in a real world environment. TNO is
already using the simulation environment in several projects, and they assisted with the
development.

iii. It is worth to mention that a realistic underwater environment has already been developed
by Manhdes et al., including hydrodynamic models and a model of the AUV dynamics
[22]. This simulation environment was used for this thesis project, although it needed
some important additions in order to be usable. This is discussed in next subsections.

To make optimal use of the simulation environment, it is necessary to understand the software
architecture of the real LAUV platform. If the simulation environment is similar to the real
world, it is possible to directly test the already developed software of the LAUV, by replacing
the real world with the simulation environment. In Section 2-2, the implementation of the
simulation environment with the LAUV software is described.

Master of Science Thesis Lukas Steenstra



10 Simulation

2-1-2 UUV Simulator

As part of the EU-funded project SWARMSs, Manhdes et al. developed an underwater environ-
ment called UUV Simulator [22], where UUV stands for Unmanned Underwater Vehicle. It is
based on the Robot Operating System (ROS), which nowadays is a widely used framework in
the field of robotics. ROS provides a communication framework between different modules,
i.e., it connects sensors and actuators of a robotic system. In addition, it is compatible with
the open-source simulation platform Gazebo. Gazebo provides multiple physics engines to
simulate rigid-body dynamics. The UUV Simulator provides the following additional plug-ins
to Gazebo:

e Underwater world - ROS/Gazebo is generally used for above-ground applications,
and hence does not include an underwater environment. The UUV Simulator provides
an underwater world with different scenarios and seafloors. It includes models of the
hydrodynamic and hydrostatic forces on rigid bodies. These computations are based on
Fossen’s equations of motion [23]. Figure 2-1 shows an image of what this underwater
world looks like.

— 2

Figure 2-1: This figure shows a screen capture of the Gazebo simulation environment with the
underwater world and a model of the LAUV. The blue rays are a visualisation of the sonar signals
and display the geometry of the SSS system.

e Actuators and sensors - To simulate the interaction between the vehicles and the
underwater world, several plug-ins are made for the actuators and sensors. Actuator
plug-ins provide thruster dynamics for propulsion and fin dynamics for steering. Several
sensors are modelled as well, including an IMU, magnetometer, Doppler Velocity Logger
(DVL), pressure sensor, GPS sensor and a camera. A proper sonar plug-in was not
available, and uses only a LiDAR as replacement for a sonar system. The LiDAR does
not measure the target intensity in contrast to real sonar systems. A more realistic
sonar plug-in is currently being developed by TNO.
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2-1 Simulation Environment 11

e UUV models - As is visible in Figure 2-1, the UUV Simulator includes UUV models
as well, with their geometric and inertial properties. There is also a model of the LAUV
available, which is especially interesting for this project.

e Controllers - Lastly, the simulation environment provides ROS packages that are ca-
pable of controlling UUVs between waypoints, or by means of tele-operation. Although
these controllers work well for vehicles like the RexROV, it had quite some issues with
under-actuated vehicles similar to the LAUV. This certainly needed improvement.

The UUV Simulator provides a powerful basis for simulating survey tasks. However, as stated
before, it still lacks the necessary functionality. First of all, a suitable controller was needed
to be implemented that largely resembles the real behaviour of the LAUV. Besides that, the
provided controllers were ’cheating’, as they used the real position of the vehicle for control,
instead of doing pose estimation based on sensor data.

2-1-3 Motion Control

Inertial Navigation System

The real LAUV is equipped with an INS, which uses the measurements of the IMU and
other sensors to estimate the position of the vehicle. To simulate this correctly, an INS needs
to be implemented that uses the simulated sensor data. This is comparable to the real INS.
The following sensors are simulated in the UUV Simulator:

e IMU - The IMU measures the accelerations in all linear directions as well as the orien-
tation of the vehicle. Note that the accelerations are measured in body frame and not
in world frame.

e Pressure sensor - The pressure sensor measures the pressure of the water column on
top of the vehicle, which can be used to derive its depth.

e GPS - The GPS sensor provides an absolute position of the vehicle in geographical
coordinates. The simulation environment permitted the GPS signals to be measured
underwater as well. This has been adjusted, such that it can only take a measurement
when the vehicle is at least between 5 to 10 seconds at the water surface.

e DVL - The DVL measures the velocities in all linear directions with respect to the
seafloor. These velocities are measured in body frame as well.

All these measurements can be fused into a single pose estimation, using a Kalman filter.
How this is done is described in full detail in Appendix A. Figure 2-2 shows a screen capture
of the simulation environment where this pose estimation is implemented. The Kalman filter
gives a measure of the location uncertainty as well, which is valuable information for control
and planning.
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12 Simulation

Figure 2-2: This figure shows a screen capture of RViz (a visualisation tool of ROS). The blue
arrows represent the estimated poses, whereas the red arrows represent the real poses of the
LAUV. The white ring is the 1-o0 location uncertainty of its estimated pose. The green line is the
trajectory that the vehicle needs to follow. This is now controlled using the estimated pose.

Trajectory Tracking

The UUV Simulator provides a trajectory tracking algorithm, which works well for UUVs
with multiple actuators. However, for a non-holonomic, under-actuated vehicle like the
LAUYV, this trajectory tracking algorithm turned out to be insufficient. The algorithm defines
a reference marker that moves with a constant velocity over the trajectory. This is easy to
implement, but for the LAUV this resulted in undesired behaviour, e.g., when the LAUV
passes the reference point, it wants to reverse, resulting in strange manoeuvres which causes
the vehicle to lose track.

To cope with that, a simple follow-the-carrot algorithm is implemented, as shown in Figure 2-
3. The algorithm first projects the LAUV position on the trajectory. Then, based on a pre-
defined look-ahead distance, a reference point on the track is defined. A PID-controller tries
to minimize the distance between the LAUV and this reference point, resulting in the vehicle
following the trajectory.

P :—|

trajectory ?4
d

4]

Figure 2-3: This figure shows the follow-the-carrot algorithm, which is a basic trajectory tracking
algorithm. The position of the vehicle p, is projected on the trajectory in the point p;. Based
on the look-ahead-distance d;, a reference point p,.y on the trajectory is defined. The controller
minimizes the position and orientation error (e, and e, respectively), as shown in the figure.
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2-2 Software Architecture 13

Velocity Control

Another issue with the UUV Simulator controller is that it was not able to control its
velocity. The PID-values were too aggressive resulting in the LAUV to navigate at full speed,
regardless of the reference velocity. Reducing the gains was not an option as this made
the LAUV to fail following the trajectory properly. Therefore, a cascaded PID solution is
implemented, where the inner loop controls the position and orientation of the vehicle and
the outer loop controls the velocity of the vehicle.

Controlling the velocity of the vehicle is important, since the real LAUV navigates at different
speeds for different tasks. For example, when surveying a certain area, a specific velocity is
needed to get proper sonar images. Transiting between waypoints can generally be done at
higher velocities. For planning, it is also important to know the time it takes to execute a
certain plan. If the velocities do not correspond with the plan, then the execution time of the
simulation does not correspond to reality.

2-2 Software Architecture

2-2-1 The LAUV Software Architecture

The LAUYV is equipped with two on-board computers, a frontseat and a backseat computer, as
shown in Figure 2-4a. The frontseat computer runs the DUNE (DUNE Uniform Navigation
Environment) middleware, which is already installed on the LAUV by the manufacturer. This
software is responsible for the low-level motion control, obstacle avoidance and controlling
the actuators [24]. It uses a general message protocol called Inter-Module Communications
(IMC), which therefore is the necessary message protocol to communicate with the frontseat
computer. DUNE also reads the sensor data, and sends it to the interface layer using the
IMC message protocol.

The backseat computer runs the software developed by TNO, and contains a hierarchical
structure of planners. The LAUYV receives a mission from an operator, which for this use case
would be an MCM mission for a specific area. This will be processed by the different layers
of the software as follows:

e Mission layer - The mission layer generates a mission plan (for one or more vehicles)
and assigns tasks to the different vehicles.

e Task layer - The task layer receives a task and plans actions in order to execute this
task in an effective way. The proposed planning system of this thesis will be located in
this layer. The generated actions are low-level actions such as go to, follow path or hold
position.

e Interface layer - The interface layer translates these actions of the task layer to the
required IMC messages, in a way that the frontseat computer understands the actions.
The interface layer is also responsible for processing the sensor data it receives.

Each layer returns its progress percentage, such that the layer above can monitor what is
going on, and is able to send new tasks or actions at the right moment.

Master of Science Thesis Lukas Steenstra



14 Simulation
Backseat Computer Backseat Computer
1
. . 1 . .
Mission Mission Layer ! Mission Mission Layer
Mission Planning ' Mission Planning
1
1
Task Progress 1 Task Progress
1
1
Task Layer : Task Layer

Task Planning 1 Task Planning
1
1
Action Progress :
1
1
Interface Layer '

Interface between planner and platform ! ContrOI Inte rface

: Motion control

T -IM-CProgre-ss- oo - -----
Sensor data IMC Actions Simulated sensor data Actuator controls
Sensor ' DUNE Actuator Gazebo

data controls

Motion control Physics simulation

Frontseat Computer Simulation Environment

(b) DUNE and the interface layer are replaced for the
simulation environment

(a) The original software architecture

Figure 2-4: The diagrams above show the hierarchical software architecture, as it is implemented
on the real LAUV (a) and how the simulation environment replaces the real world (b). The mission
layer and task layer are responsible for mission planning and task planning respectively. The
interface layer translates the actions from the task layer into messages that can be interpreted by
the platform software (DUNE), which is responsible for the low-level control. With the simulation
environment, both the interface layer and DUNE are replaced for a control interface and the
physics simulator Gazebo.

2-2-2 Integration of the Simulation Environment

The backseat computer of the LAUYV is based on ROS as well. This makes it evidently easy to
connect the simulation environment to the backseat computer. As can be seen in Figure 2-4b,
the interface layer and DUNE are replaced by a control interface and the Gazebo simulation
environment. The Gazebo simulator replaces the real-world environment and contains the
LAUYV model with its sensors and actuators. It returns simulated sensor data, which can be
used for control. The control interface has the following tasks:

e Estimating the vehicle pose using the INS as described in Section 2-1-3

e Controlling the vehicle with a PID dynamic position controller, using the proposed
trajectory tracking method

e Translating the actions of the task layer to actuator controls
Chapters 3, 4 and 5 will focus on the task layer, where the planning system is located. In

Chapter 6, the plans of the planning system will be simulated using this simulation environ-
ment, in order to give measure to the quality of the plans.
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Chapter 3

Planning System

3-1 Problem Definition

As stated in Chapter 1-3, the purpose of this thesis work is to develop a planning system
for survey task of AUVs. In Chapter 1-1 the challenges that are present in the underwater
environment are described. This section discusses the survey problem in more detail, giving
a concise list of requirements for the planning system, in order to take these environmental
challenges into account.

3-1-1 Problem Description

Without considering the challenges described in Chapter 1-1, the survey task is a rather simple
problem, which can effortlessly be solved by a path planning algorithm. However, taking into
account the growing location uncertainty and the limited communication bandwidth, the
planner not only needs to plan a path, but needs to plan higher level actions as well to
support its core task of surveying the area.

Location Uncertainty

Due to the integration of the bias and noise on the IMU measurements, location uncertainty
grows unbounded. When the AUV is uncertain of its location, then this uncertainty is reflected
in its coverage as well (as was visible in Figure 1-6). Two directions of uncertainty can be
distinguished:

i. Along-track uncertainty - Along-track uncertainty is the uncertainty of the vehicle’s
position collinear with the lawnmower legs. To be sure that the entire track is covered,
these legs are elongated. In Figure 3-1 it is illustrated how this along-track uncertainty
is compensated.
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(a) Uncertainty compensation

/

N~/

N/

(b) Resulting lawnmower pattern

Figure 3-1: Compensation for along-track uncertainty u by elongating the survey legs. The red
rings represent the location uncertainty at that waypoint. The resulting leg length will be | + 2u.

ii. Across-track uncertainty - Across-track uncertainty is the uncertainty of the vehicle’s
location perpendicular to the lawnmower legs. This means that, in reality, the track can
be located more to the left or more to the right. Laying tracks closer to each other than
the sonar range would strictly require for complete coverage, ensures that the entire area
is still covered. This might result in a few more lawnmower legs in order to cover the
entire area. This is illustrated in Figure 3-2.
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(a) Uncertainty compensation
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(b) Resulting lawnmower pattern

Figure 3-2: Compensation for across-track uncertainty u by reducing de distance between the
survey legs. The red rings represent the location uncertainty at that waypoint. The effective
sonar range 7. is defined as r. = r — u. Laying the tracks next to each other, using the effective
sonar range, will compensate for the across-track uncertainty

Lukas Steenstra

Master of Science Thesis



3-1 Problem Definition 17

To which extent these uncertainties are compensated depends on the confidence interval of
the location uncertainty. Assuming that the location uncertainty is normally distributed, a
3-0 confidence interval is used for the location uncertainty. This corresponds to a confidence
of 99.7% that the AUV is located within the uncertainty ring.

Using these methods to account for uncertainty clearly is at the cost of operation time, espe-
cially when additional lawnmower legs are required. Hence, it is valuable to find solutions to
reduce this uncertainty during the execution of the survey task. In this thesis, two uncertainty
reducing actions are considered:

e GPS-fix - Since the AUV has a GPS on board, it has the possibility to navigate to
the water surface and receive its absolute position based on the GPS information. This
action will further be referred to as a GPS-fix and is equal to resetting the location
uncertainty to zero, except for some small uncertainty caused by the GPS sensor itself.

e Revisit - Simultaneous Localization and Mapping (SLAM) is the process of mapping
features of the environment that it recognizes, simultaneously localizing itself with re-
spect to this map. The seafloor generally is not feature-rich, but contacts can be used as
features. When these features are revisited, the vehicle can localize itself with respect
to the previous time these features were found. This way, the vehicle can significantly
reduce its location uncertainty.

One important constraint is that these contacts need to be revisited from the same
direction the contacts were previously seen. This is due to the fact that objects can
look significantly different when viewed from different angles by sonar.

Planning these type of actions require a more high-level task planning algorithm. For that
reason, the more generic planning language PDDL is used to describe these actions. The way
this is implemented is described in Chapter 4.

Limited Communication

During a survey mission, the AUV will generate data. This data will contain information
about its task, its odometry, the bathymetry of the area and information of the detected
contacts. When operating with multiple vehicles, it is certainly important to plan actions to
communicate with other vehicles or with a surface vehicle.

When communication with other vehicles is required, this needs to be done underwater. Since
the bandwidth underwater already is exceptionally low, it is not guaranteed that communica-
tion is possible anywhere. There are frequently so-called black zones where no communication
is possible at all. Therefore, two specific actions of communicating is considered in this thesis:

¢ Communication areas - Communication areas can be defined where the vehicle is
close enough to a surface vehicle (or other vehicles) to be able to communicate. Since
these areas are underwater, the transfer speeds are low. Therefore, the vehicle needs to
stay in that area as long as necessary to transfer all data. This means that the duration
of such an action is dependent on the amount of accumulated data.
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e Surface - When the vehicle is at the surface, it can just make use of normal wireless
communication methods. This way of communicating can be assumed to be instan-
taneous, as this goes at a much higher transfer rate. Communicating at the surface
can therefore nicely be combined with a GPS-fix, making it a useful action to com-
bine communicating with reducing uncertainty. However, this is only possible when
communicating with a surface vessel.

A third communication method, is to simply communicate while surveying. In practice, this
is done most of the times, although with limited communication bandwidth. Hence, the above
two actions are specifically for the case that the distance between the vehicle and the receiver
is too big, or the vehicle is in a black zone. Communicating while surveying can possibly
be modelled by reducing data accumulation per survey leg. This communication method is

therefore not explicitly modelled.

3-1-2 Requirements

Summarizing the background given in Chapter 1 and the problem description of the previous
subsection, the planner is required to be able to achieve the following:

Lukas Steenstra

e Cover the designated area, by planning survey tracks and transits between the tracks

e Reduce the operation time by planning uncertainty reducing actions such as a GPS-fix
or a revisit

e Communicate all information to a surface vehicle (or other vehicles), by planning com-
munication actions

Coverage

To be able to asses whether the above requirements are fulfilled, an exact definition of
coverage is required. Coverage is a direct consequence of the sonar performance, which
is highly dependent on the environmental properties such as water temperature, salinity
and seafloor structure. A Sonar Performance Model (SPM) can determine the Probability
of Detection (POD) based on these environmental properties. Figure 3-3 shows a typical
POD-curve p(r), decreasing proportional to the distance r from the AUV. Close to the
vehicle the POD decreases as well, due to the Nadir gap (which was also illustrated in
Figure 1-2).

Coverage can be defined in several ways, either by integrating the POD of the sonar
system over the entire area, or by computing the percentage of the survey area that has
a POD above a certain threshold. In this thesis work, the second approach is used. A
threshold & is introduced, such that the area is covered if:

p(r) >k (3-1)
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Figure 3-3: Typical POD-curve p(r) as function of the lateral distance r. By applying a
threshold k the sonar range can be determined as shown in this figure. Notice that with this
simplification the Nadir gap is neglected.

In Figure 3-3 it is illustrated how the sonar range can be extracted from the above
inequality. All the area that is within this sonar range is considered to be fully covered,
and all the area beyond this range is not covered. In Chapter 6 this definition is used to
evaluate the coverage of simulated plans.

It is visible that the effect of the Nadir gap is neglected. Moreover, the sonar range
is assumed to be constant for the entire area. However, these POD-curves are highly
dependent on the environmental properties and can differ significantly during a survey
mission. In Chapter 7 a solution is suggested to cope with a variable sonar performance.

Table 3-1 (next page) summarizes what input is given to the planning system and what output
is desired from the planning system. Note that the list of inputs is not entirely complete, since
some extra parameters can be given to configure the planning system. These parameters will
be discussed in Chapter 5.
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Table 3-1: Inputs and outputs of the planning system

Input

Domain The domain describes all possible actions which the planner can plan for
the vehicle, including the preconditions and effects of these actions.

Problem

States

Survey Area

Coverage

Location of
contacts

Communication
areas

Vehicle states

Sonar states

Environmental
states

The survey area is a polygon which needs to be
covered by the vehicle

A sonar range is required to determine the coverage of
the vehicle. To determine this range, a probability
threshold for the POD-curve needs to be provided.

Known locations of contacts are useful to do a revisit
action for reducing location uncertainty. Several
parameters are necessary to successfully plan revisits:
(i) the location of the contact, (ii) the uncertainty of
its location and (iii) the direction from which the
contact was seen.

Communication areas are polygon-shaped areas where
communication can be done. Each area requires a
parameter describing the transfer rate that can be
achieved at that area.

Both the (initial) estimated position and location
uncertainty are needed to initialize the planning
problem.

The sonar states describe how well the sonar system
can image the seafloor. This, together with the
environmental states, is important for the SPM to
determine the sonar range.

The environmental states are important for the
planning system, such that it takes into account their
consequences on sonar performance. Important states
are (i) current speed, (ii) current direction and (iii)
seafloor structure.

Output

Plan

As output, a plan is desired that contains survey actions, uncertainty
reducing actions and communication actions that can be translated to
low-level actions such as ’go to’, ’follow path’, ’hold position’ and
'(de)activate sensor’

Lukas Steenstra
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3-2 Unified Planning System

In order to meet the requirements of Table 3-1, a planning system is needed that encloses the
core task planner. This planning system is located in the task layer, as explained in Chapter
2-2. The planning system needs to generate a plan that can be received by the interface layer
or controller interface, from a mission given by the mission layer. In this thesis, the task
layer is decoupled from the mission layer and custom missions with the input as described in
Table 3-1 are given.

For clarity, three definitions are distinguished: planning system, planner and solver. The
planning system is the overall system which takes care of the entire planning process from
beginning to end. The planning system contains several planners, each responsible for their
own sub-problem. The solver is the specific algorithm that is being used by the planner, to
solve the problem. This section discusses the overall structure of the planning system and
how it works. The details of the planners inside this planning system are given in Chapters
4 and 5.

3-2-1 Structure

Coverage planning, using a generic planning language such as PDDL is a novel approach.
Generally PDDL is used for abstract planning problems where details of the problem are
omitted. PDDL is a powerful tool to plan abstract actions in an efficient way. However, when
omitting details one might decrease the quality of the plan. It would be useful to combine the
power of PDDL for making the abstract decisions, while considering the details of a problem.

As an example, Munoz et al. developed a planning system called up2TA (Unified Path-Planning
and Task-Planning Architecture), which used the details of a path planner to improve the
heuristics of the PDDL task planner, resulting in high quality plans [21]. For decision making
in a survey task, location uncertainty plays a prominent role and therefore cannot be omitted.
Hence, a planning system is required which allows the task planner to efficiently plan the
abstract actions as described in Section 3-1, while taking into account detailed information
about location uncertainty and communication constraints.

For this reason, it is decided to split up the planning system into three parts: (i) a Task
Planner which is the core PDDL-planner of the planning system, (ii) a Problem Generator
and (iii) a Path Planner. The structure of the planning system is shown in Figure 3-4.
Splitting up the planning system provides the following benefits:

e PDDL is limited regarding numerical expressions. Therefore, complex equations are
avoided in PDDL. The Problem Generator can provide the Task Planner with numerical
values, such that these computations are excluded from the planning domain (as defined
in Table 3-1).

e On the other hand, a PDDL-based planner is powerful for planning abstract actions,
such as GPS-fixes or communication actions. However, planning the entire problem
only in PDDL would give an explosion of the search space, as this is a complex com-
binatorial problem. Even a simple transit problem between waypoints would cause an
unreasonable computation time [21]. Consequently, planning the entire problem with a
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Figure 3-4: This figure shows the structure of the unified planning system. It consists of three
parts: a Task Planner, a Problem Generator and a Path Planner. The core planner is the Task
Planner, which solves the main task planning problem using a PDDL-solver. It retrieves its
information from a Knowledge Base, which stores all the information of the planning problem
and is updated by the Problem Generator. The circular arrow indicates that there is some form
of iteration between the Knowledge Base, Problem Generator and Task Planner. The action
dispatcher translates the final PDDL-plan and path, as planned by the Path Planner, to low-level
actions that can be interpreted by the interface layer.

PDDL-based planner only, would be highly inefficient. Splitting up the planning prob-
lem such that different planners solve a part of the problem where it is specifically good
at, would not only improve efficiency but the quality of the plans as well.

e Another benefit of splitting up the planning system is that it creates a modular system
that can be adjusted or improved in a convenient way. This makes it possible to change
planners or models without effect the way the planning system behaves, e.g., the location
uncertainty model or SPM can effortlessly be replaced.

Thus it is sensible to split up the planning system, such that each module solves a part of
the survey problem where it is specifically good at. The three modules, that are shown in
Figure 3-4, are able to share information with the other modules, making it a unified planning
system. These modules are responsible for the following tasks:

e Task Planner - The Task Planner is the core planner of the planning system, containing
the PDDL-solver. How the problem is modelled using PDDL is explained in detail in
Chapter 4. The entire planning system is based on ROS, so that it connects well with
the rest of the software architecture. Therefore, the planning system integrates a ROS-
based PDDL planning framework, called ROSPlan. ROSPlan provides all necessary
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interaction between a PDDL-solver and ROS [25]. The Knowledge Base, which is part of
ROSPIlan, stores all planning information which can be used by the PDDL-solver. Inside
the Task Planner, the PDDL-solver will be called using different ROSPlan interfaces.
The resulting plan is then translated to ROS-messages so that it can be shared with
the other modules of the planning system.

e Problem Generator - The Problem Generator translates the incoming survey task to
a PDDL-problem. It mainly generates a set of waypoints (endpoints of survey legs) and
computes the distances, durations and uncertainty growths between these waypoints.
It also provides extra planning information, e.g., where and when certain actions are
allowed or not. This is explained in detail in Chapter 5-1. The information is stored in
the Knowledge Base, such that it can be interpreted by the Task Planner.

e Path Planner - The Path Planner is the final step in the planning procedure. It
combines the PDDL plan from the Task Planner (describing the order of the waypoints
to visit) with the waypoint locations from the Problem Generator to plan a path between
those waypoints. The Path Planner is discussed in more detail in Chapter 5-2.

The final plan of the Task Planner and corresponding path of the Path Planner is given to
an Action Dispatcher, which basically is the interface between the planning system and the
control layer below. The abstract actions of the Task Planner are translated to actions such
as 'go to’ and ’follow path’. These low-level actions are understood by the real vehicle as well
as the simulation environment.

3-2-2 Planning Procedure

The way the planners cooperate is shown in Algorithm 3.1 and Figure 3-5. The Problem
Generator starts with generating an initial problem, based on the survey task. This problem
includes the location of the waypoints, revisit areas and communication areas, as well as the
durations and uncertainty growths for travelling between the waypoints.

Algorithm 3.1 Planning procedure of the Planning System (PS), consisting of a Problem
Generator (PG), Task Planner (TP) and Path Planner (PP)

1: PG: Generate initial problem

2: TP: Find initial plan, and store it as best_plan

3: while best_plan has new GPS-fix or revisit do

4: PG: Update waypoint locations

5: PG: Generate sub-problem from GPS-fix or revisit
6: TP: Plan sub-problem

T PS: Optimize the plan and store it as best_plan
8: PG: Update waypoint locations

9: PP: Plan the path according to best_plan

10: return path and best_plan

This problem is then planned by the Task Planner, finding a PDDL-plan containing a sequence
of actions solving the problem. These actions describe the order of the tracks to be covered,
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as well as when to perform actions such as a GPS-fix. When the Task Planner plans a GPS-fix
at a certain point, the location uncertainty is reduced. Having less uncertainty, the distance
between the survey legs can be increased (as was shown in Figure 3-2). Consequently, the
waypoint locations after the GPS-fix are no longer accurate. The same will happen when a
revisit is planned, or when the order of the legs is changed. In order to properly connect the
Problem Generator with the Task Planner, some form of iteration is needed to update the
waypoint locations, as soon as an uncertainty reducing action has been planned.

For that reason, the planning system will start its iteration loop and checks whether the plan
contains an uncertainty reducing action, as soon as a plan is found by the Task Planner. When
this is the case, all waypoint locations are updated and a new sub-problem will be generated
by the Problem Generator, starting from the point that the first uncertainty reducing action
has taken place. The Task Planner solves this sub-problem and merges it with the initial
plan, which then is the new plan of the planning system.

Important to notice is that, due the numerical limitations of PDDL, the Task Planner needs
to use a linearised model of the uncertainty growth. This results in a mismatch between the
Problem Generator and Task Planner regarding waypoint locations and distances, making
the plan less accurate. For that reason, the planning system will optimize the plan by trying
to change the location of a GPS-fix slightly and compare the results. In Chapter 5-3 it is
discussed how this is done.

The optimized plan is checked again whether it contains any new uncertainty reducing actions.
This process is repeated until no new uncertainty reducing action is planned. As soon as this
is the case, all waypoint locations are updated once again, such that the Path Planner can
plan a path through these waypoints. The path, together with the last plan is sent to the
Action Dispatcher, which ensures that it will be executed by the AUV.

Problem Generator Task Planner

Generate initial Plan initial plan
problem

Problem Generator Path Planner

Has plan
new GPS-fix
or revisit?

Update waypoint Plan final path
locations

Planning System Task Planner Problem Generator

Generate sub-
problem from GPS-fix
or revisit

Optimize plan Plan sub-plan

Figure 3-5: Flowchart of the planning procedure
Chapter 4 will describe in detail how the survey problem is modelled and how the Task

Planner finds a plan. Then, in Chapter 5 a description of both the Problem Generator and
the Path Planner is given.
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Chapter 4

Task Planning

In Chapter 3-2 it was stated that the Task Planner is the core of the planning system, which is
explained in more detail in this chapter. The reason for splitting up the planning system into
multiple planners will become more evident. Section 4-1 will give a brief explanation of the
Planning Domain Definition Language (PDDL). Section 4-2 discusses how the survey task is
modelled in PDDL. Then, in Section 4-3 it is explained how PDDL-solvers apply heuristic
search to find a valid plan. Finally, a selection of solvers is discussed and compared.

4-1 Problem Definition Domain Language

In the previous decades many planning algorithms have been developed, where most of them
are domain specific planners. The intention of PDDL is to be a mneutral specification of
planning problems, which means that it does not favour any particular planning approach
[26]. For that reason, the slogan of Drew McDermott, who is the originator of PDDL, is:
‘physics, not advice’. This indicates that the language should focus on expressing the physical
properties of the world rather than advising the planner on how to search for solutions.
Modelling the survey task in this language enables the use of multiple PDDL planners for
solving the same problem.

A PDDL description always consists of two parts: a problem and a domain. The domain
describes the ’physics’ of the planning domain, by defining the planning concepts (types in
PDDL) and the possible actions that can be planned. Then a problem is defined, which the
planner needs to solve based on the available actions in the domain. Listing 4.1 shows an
example of a simple PDDL domain file, describing how an AUV can transit between predefined
waypoints.

The domain file starts with defining the domain name and some requirements for the PDDL-
solver, which for the survey problem is the functionality of strips, typing and fluents.
The requirement strips comprises the basic PDDL functionality, typing allows the planner
to define types and fluents allows the use of numeric values for planning.
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Listing 4.1: PDDL example domain file - AUV transit

(define (domain auv_transit)
(:requirements :strips :typing :fluents)
(:types waypoint)

(:predicates

(auv_at ?wp — waypoint) ; The AUV is at that waypoint

(is_connected ?from ?to — waypoint) ; Two waypoints are connected
(: functions

(total_time) ; The total time consumed for transiting

(time ?from ?to — waypoint) ; The duration of one specific transit

Transit from waypoint 7from to waypoint 7to
(:action transit

:parameters (?from ?to — waypoint)

:precondition (and
(auv_at ?from) ; The AUV should be at the first waypoint
(is_connected 7from ?to) ; A transit needs to be possible

:effect (and
Change AUV position to the new waypoint

(not (auv_at 7from) )
(auv_at ?to)
; Increase the total time by the transit duration
(increase (total_time) (time ?from ?to) )

)

)

The planning states are represented by predicates and functions, which are boolean and nu-
meric expressions respectively. The predicate auv_at is true when the AUV is at the waypoint
?wp. A question mark indicates a parameter of the predicate. The function total_time does
not need a parameter, as it is just a global variable, representing the total time consumed
while transiting.

The remainder of the planning domain file describes the possible actions. This domain only
contains one action called transit and requires two waypoints as parameter. Then, the
preconditions and effects are defined of the action. When the preconditions are true, this
action can be planned, and the defined effects will take place.

The problem file describes the actual problem that needs to be solved by the PDDL-solver.
An example problem is shown in Listing 4.2. The problem refers to the PDDL domain of
Listing 4.1, and defines some objects. Then all predicates and functions are initialized, being
the initial state of the problem. The goal is to reach wp3 while minimizing the total transit
time, represented by the goal and metric respectively.
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Listing 4.2: PDDL example problem file - AUV transit

(define (problem auv_transit_pO)
(:domain auv_transit)
(:objects wp0 wpl wp2 wp3 — waypoint)

(:init
Initially the AUV is at waypoint 0
(auv_at wpO)
; Initialize total transit time
(= (total_time) 0)
Define (one—way) connections between waypoints
(is_connected wpO wpl) (is_connected wpO wp2)
(is_connected wpl wp3) (is_connected wp2 wp3)
; Initialize the durations for transiting between waypoints
(= (time wpO wpl) 2) (= (time wpO wp2) 1) (= (time wpl wp3) 2)
(= (time wp2 wp3) 1)

)
(:goal (and
(auv_at wp3) ; Finish at waypoint 3
)
)
(:metric minimize (total_time)) ; Minimize the transit time

)

The PDDL-solver tries to find a valid plan based on the provided problem and domain file.
The quality of this plan, or whether a plan is found at all, is highly dependent on the PDDL-
solver that is being used. OPTIC, a solver that is used for this thesis, was able to find the
optimal solution to this trivial planning problem:

Listing 4.3: Planner output

; Solution Found

States evaluated: 6

Cost: 2.000
; Time 0.00
0.000: (transit wpO wp2) [0.001]
0.001: (tramsit wp2 wp3) [0.001]

4-2 Modelling the Survey Domain

This section describes how the domain of the survey task is modelled in PDDL. Initially it was
attempted to model the entire planning problem in PDDL, fulfilling all requirements stated
in Chapter 3-1. To do so, an enormous amount of numerical expressions, using fluents, are
needed to only model the locations of the waypoints, which is preferably avoided in PDDL.
Besides that, the sheer amount of possible solutions results in unreasonable computation time.
Hence, the planning system is split up, and the Task Planner is only responsible for planning
the higher level actions.
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4-2-1 Planning Variables

Before modelling the planning actions, the types, predicates and functions need to be defined.
The entire planning domain only uses two types: waypoint and area!. Both types are
locations, where the waypoint represents a specific point in the environment and the area
represents a location where contacts can be revisited or where communication can be done.
These locations are conceptual types, i.e., the actual longitude and latitude of these locations
are not stored in PDDL. The domain contains four important functions, which are the
planning variables and can be considered as the states of the planning problem. The functions

are defined as shown in Listing 4.4.

Listing 4.4: Planning variables

(: functions

Operation time (optimization metric) [s]
(total_time)

Accumulated location uncertainty of the vehicle [m]
(total_uncertainty)

Accumulated data that needs to be communicated [byte]
(total_data)

The total width that the vehicle currently has covered [m]
(total_width)

The function (total_time) is the operation time of the AUV, similar to the example of
Section 4-1. The location uncertainty is stored in the function (total_uncertainty) and
(total_data) represents the accumulated survey data. The function (total_width) is the
width of the area that is covered by the survey legs, as illustrated in Figure 4-1.

area_width

A
A2

A O

—

total width

Y

Figure 4-1: The function (total_width) represents the covered width by the AUV. The goal
of the planning problem is to ensure that (>= (total_width) (area_width)).

'The reader is referred to Appendix B where the full PDDL domain file is presented. Note that the code
snippets in this chapter only show the important aspects of the PDDL domain, as it would otherwise distract
the reader and consume too much space.
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In the problem file, the goal that needs to be achieved is defined, as shown in Listing 4.5.
First of all, the entire area needs to be covered, i.e., the (total_width) needs to be larger or
equal to the function (area_width), which represents the width of the entire area. It is also
desired that at the end of the survey task, all data is communicated. An optimization metric
is defined as well, which tries to minimize the operation time of the AUV.

Listing 4.5: Planning goal and metric

(:goal (and
(>= (total_width) (area_width))
(<= (total_data) 0)
)
)

(: metric
minimize (total_time))
)

4-2-2 Location Uncertainty

To accomplish this goal, it is important to model the coverage width properly. When the
planner comes with a plan that, according to the model, covers the entire area, one must be
sure that in reality this coverage is achieved as well. For this, several assumptions are made:

e The position controller of the vehicle is able to follow the path accurately.

e The range of the sonar is constant, neglecting irregularities of the seafloor, as well as
fluctuations of the underwater currents.

e The Nadir gap (which was shown in Figure 1-2 and Figure 3-3) is neglected.

As a result a constant (sonar_range) can be defined, which is the total width that the SSS
can cover. An action survey is defined, where the AUV moves between two waypoints in
a straight line over the area. During this action, (total_width) is increased, which is the
only way to reach the goal of the problem. As already discussed in Chapter 3-1 and shown
in Figure 3-2, the across-track uncertainty can be compensated by adding the effective width
of the sonar to the total width wyote;:

Wiotal = Wtotal T (T - U) (4'1)

Where r is the sonar range and w is the location uncertainty at the first waypoint of the
survey leg. This automatically implies that the planner will need to plan extra survey legs
when the uncertainty grows too large, in order to reach the goal of covering the entire area.
Previously, an attempt was made to model each leg as an object, where the goal was to
cover each leg-object. The advantage is that less numerical values are required, improving
the efficiency of the PDDL-solver. However, this way the across-track uncertainty could not
be properly modelled, without introducing a significant amount of numerical expressions in
the PDDL domain.
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The along-track uncertainty is modelled by adding extra duration to the survey action. This
extra time represents the elongation of the track due to the uncertainty (as was illustrated
in Figure 3-1). The total duration t;,, will therefore increase according to the following
definition:

l+2u

tiotal = total + (4'2)

Us

Here, [ is the length of a survey leg, and w is the along-track uncertainty at the first waypoint
of the leg. Dividing it by a predefined survey speed vy gives the duration of the survey
action. Thus, the survey action cost will increase proportional to the uncertainty. To get an
optimal solution, the planner is forced to plan actions that reduce this uncertainty. These
actions can be planned between the survey actions, during a transit. How the survey action
is implemented in PDDL is shown in Listing 4.6.

Listing 4.6: The complete survey action in PDDL

(:action survey

:parameters (?from 7to — waypoint)

:precondition (and
(auv_at ?from)
(can_survey)
(is_survey ?from ?to)
; The uncertainty should not exceed the sonar range
(> (sonar_range) (total_uncertainty) )
; The data threshold should not be exeeded
(< (+ (total_data) (survey_data)) (data_threshold) )

)
:effect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
(auv_at ?to)
Prevent doing a survey task twice

(not (is_survey 7from 7to) )
(not (is_survey 7to 7from) )
; After the survey a transit needs to be done
(can_transit)
(not (can_survey))

Increase the total time by adding the time for surveying between
the waypoints, taking into account the along—track uncertainty:
total time 4= (142u)/v_s

(increase (total_time) (/ (+ (leg_length) (* 2 (total_uncertainty))
) (survey_speed)) )
Increase the total uncertainty

(increase (total_uncertainty) (uncertainty_survey) )

; Increase the accumulated data

(increase (total_data) (survey_data) )

Increase the covered width, taking into account the across—track
uncertainty: total width += 1 — u

(increase (total_width) (— (sonar_range) (total_uncertainty)) )
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4-2-3 Transit Actions

The survey legs are not directly connected to each other. The AUV needs to transit from one
leg to another, which in the most simple case is just a turn. In the case that the survey tracks
are not nicely aligned with each other, or that the planner plans the tracks in an arbitrary
order, the transit action will be a Dubin’s path between these waypoints (as described in
Chapter 5-2). In Listing 4.7 some effects of the transit action are shown. This is similar to
the transit action of the example shown in Listing 4.1, except for the fact that the uncertainty
is increased as well. This is important, as this discourages making long transits.

Listing 4.7: Some effects of the transit action

:effect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
(auv_at 7to)
Increase the total time by the transit duration
(increase (total_time) (time_transit 7from 7to) )
Increase the total uncertainty
(increase (total_uncertainty) (uncertainty_transit 7from 7to) )

During this period of transiting between the survey legs, the AUV is allowed to perform three
different actions as well: a GPS-fix, a revisit or a communication action (see Figure 4-2). In the
PDDL domain these actions are called transit_gps, transit_revisit and transit_comm
respectively.

Ao .
T 7via
?from 7to ?from 7to ?from 7to ?from 7to
(a) transit (b) transit_gps (c) transit_revisit (d) transit_comm

Figure 4-2: The four different transit types: (a) the default transit between two waypoints, (b)
a transit while going to the water surface to do a GPS-fix (e.g., by travelling in a helix shape to
the surface), (c) a transit while revisiting an area with landmarks to reduce location uncertainty
and (d) a transit while navigating through a communication area to communicate with other
vehicles. Chapter 5 gives a detailed explanation of how these actions are generated.

Some of the effects of the transit_gps action are shown in Listing 4.8, which has some
important differences with respect to the normal transit action. First of all, the uncertainty
is not increased by a value, but an uncertainty value is assigned to (total_uncertainty),
indicating a reset instead of an increase. However, the value for (uncertainty_gps) is not
equal to zero, as the GPS signal has a small amount of uncertainty, and descending back from
the surface will introduce some new uncertainties as well. Consequently, (uncertainty_gps)
is dependent on the depth of the survey area.
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Besides that, the time is increased with a different value than the normal transit action.
Since the transit is between the same waypoints, a new value is needed (provided by the
Problem Generator) to store the time it will cost to perform a transit together with a GPS-
fix. Finally, the data is reset to zero as well, since the data transfer at the surface is assumed
to be instantaneous (as mentioned in Chapter 3-1).

Listing 4.8: Some effects of the transit_gps action

:effect (and

Increase the total time by adding the time for travelling between
the waypoints and performing a GPS—fix

(increase (total_time) (time_gps ?from 7to) )
Reset the total uncertainty

(assign (total_uncertainty) (uncertainty_gps 7from ?7to) )

: Reset the accumulated data variable

(assign (total_data) 0)

The transit_revisit action resets the total uncertainty as well, dependent on the area
which is revisited. Therefore, an extra parameter ?via - area is defined. The total time is
increased in the same fashion. These effects are shown in Listing 4.9.

Listing 4.9: Some effects of the transit_revisit action

:effect (and
Increase the total time by adding the time for travelling between
the waypoints and revisiting an area
(increase (total_time) (time_revisit ?from 7to ?via) )
Reset the total uncertainty
(assign (total_uncertainty) (uncertainty_revisit ?from 7to 7via) )

)

Finally, the transit_comm action obviously sets the amount of data to zero and increases the
uncertainty as well. The increase in time requires some extra computation to account for the
time it costs to transfer the data, as defined in (4-3), since this can take quite a while.

dtotal
tiotal = tiotal T teomm + t:;a (4'3)

Here, tcomm is the time to transit from and to the communication area, di is the total
amount of cumulated data and 7, is the bit-rate. This bit-rate is dependent on the area
where communication is done. Listing 4.10 shows how this is modelled in the PDDL domain.

Also note that, in Listing 4.6, it is visible that a constant survey_data is used, which is the
only source of data. This value is a predicted amount of data that each survey leg will produce.
The survey action has a precondition which ensures that the AUV does not accumulate too
much data during the survey mission. When this function (data_threshold) has a low value,
the AUV is forced to communicate more often.
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Listing 4.10: Some effects of the transit_comm action

:effect (and

Increase the total time by adding the time for travelling between
the waypoints and communcating at a communication area:
t += t_comm + d/b_r

(increase (total_time) (+ (time_comm ?from ?to ?via) (/ (total_data)
(bit_rate ?via))) )
Increase the total uncertainty

(increase (total_uncertainty) (uncertainty_comm ?from 7to ?via) )

; Reset the accumulated data variable

(assign (total_data) 0)

)

One final important choice in modelling the survey task was to enforce the planner to alternate
between transit actions and survey actions. The predicate (can_survey) is used, such that
a survey action can only be planned when this predicate is true, and a transit action can
only be planned when this predicate is false. This way, there cannot be two transit actions
directly after each other. Several preconditions were added to increase the efficiency even more
(see Appendix B). As a result, the planner has less options to search, making the planning
procedure much more efficient.

4-3 Solvers

Having a model of the survey problem in PDDL, enables the usage of a wide variety of solvers.
This section will explain how most PDDL-solvers will find a solution using heuristic search.
Then, a selection of solvers is discussed and an explanation is given why OPTIC works best
as PDDL-solver for this planning domain.

4-3-1 Heuristics

With PDDL planning, especially without metrics, actions do not have explicit costs. For
planning this means that there is no obvious action to choose first. Performing an exhaustive
search to find a valid set of actions is highly inefficient for combinatorial problems, since even
for easy problems the search space might be exceptionally large. Therefore, more advanced
methods are required to find a valid plan.

Two well known methods are GraphPlan [27], which is a graph-based approach for finding a
valid set of actions, and SatPlan [28] which translates planning to propositional satisfiability.
A third approach is planning using heuristic search, which was a novel method used in the Fast
Forward (FF) solver. It outperformed all other planners during the International Planning
Competition (IPC) in 2000. Even in the most recent competition (IPC 2018) the heuristics of
the FF planning method were used [29]. Hence, a basic understanding of how these heuristics
work is relevant.

FF-plan uses a search technique called Enforced Hill Climbing (EHC), which is a combination
of Hill Climbing (local search) and systematic search using heuristics, as well as a powerful
pruning technique (which cuts out search branches that are not valid). These heuristics
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are based on the earlier mentioned GraphPlan method. GraphPlan constructs a so-called
planning graph which is composed of two alternating types of layers: proposition layers and
action layers, as shown in Figure 4-3. The proposition layer contains the propositions that
represent the states at that time instance. The first layer of the graph is a proposition layer
containing the initial states of the problem. Then follows the action layer, which contains
the possible actions (described in the planning domain) of which the preconditions are met.
The edges represent the precondition and effect relations between actions and propositions.
There are three types of edges: (a) positive (add) relations, (b) negative (delete) relations and
(c) propositions that are not changed by any action (no-op). This way, a graph can be built,
until a proposition layer contains all goal propositions, implying that the goal is reached.

mAR nmAR
10adAL/ /floadAL/ \

imBR

inBR _
load B L/ 1oad B ]_.-—--"""‘- >< unload A P AP
atR P ; atR P
move L-P / // move L P: / T—unload BP \
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‘ .‘

atAL o——— atAL ® * atAL
atBL //// . - . at BL // . atBL
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...- / ,..‘
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propositions actions p;opositions actions pp:)positions a?tions goals
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Figure 4-3: Example planning graph for a rocket problem with one rocket R, two pieces of cargo
A and B, a start location L and one destination P. The solid lines represent ‘add’ relations, the
dashed lines represent 'delete’ relations and the lines with a dot are no-ops. The graph is not
complete, but an indication of what it looks like. [27]

This method is a clever way to find a valid plan using a minimum amount of actions. FF
uses a relaxed version of GraphPlan, omitting the delete relations, to estimate the number of
actions that are probably needed to reach the goal. For each possible action, the states after
this action are used as initial propositions of the planning graph. The resulting number of
actions is used as heuristic for choosing this next action. This means that the EHC algorithm
chooses the action that will probably result in the shortest plan. This is a fast and efficient
way to solve a complex combinatorial problem, assuming that it is optimal to use the least
amount of actions.

This means that all additional actions that might improve the quality of the plan are not even
considered. Initially, the planning domain was defined as a survey and transit action, with
separate actions for GPS-fixes, revisits and communicating at communication areas. This
meant that extra actions were needed to find better plans, which is not even considered using
the EHC algorithm. For that reason, the special actions were merged with the transit action,
so that the best plan is also the plan which uses the least amount of actions.

This way, the least amount of actions points to a plan that needs the least amount of survey
legs, but does not directly lead to better solutions as there are many ways to find such a plan.
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Therefore, it is necessary to formulate a heuristic function that also takes the metric values
into account. Hence, the basic FF algorithm suffices not for the survey problem.

During IPC 2002, PDDL 2.1 was developed, introducing metrics [30]. To comply with this
PDDL version, an extension to FF was made, called Metric-FF [31]. It uses the same method
as FF, taking into account the fluents in preconditions and effects of actions as well. Negative
effects are neglected making the metric values monotonically increasing, which relaxes the
planning graph. This works efficiently with numeric planning domains, although through this
relaxation optimality might be affected. Also note that still the least amount of actions is
taken, although capable of dealing with numerical effects and preconditions. However, the
plan costs are still not taken into account. Newer PDDL-solvers, such as OPTIC, optimize
the solution often resulting in more qualitative results [32], i.e., plans where the operation
time of the AUV is lowest.

Two years later, a different planning method was developed, called Fast Downward (FD) [33].
Instead of using GraphPlan as basis for the heuristics, FD translates the PDDL problem
to so-called causal graphs to compute its heuristic function. Due to the structure of these
graphs, negative interactions of operators are not needed to be ignored, resulting in more
accurate heuristics. Based on FD, a PDDL-solver called LAMA was developed, finding high
quality plans [34]. For that reason LAMA is often used to compare different PDDL-solvers
based on quality. The drawback of this method however, is that it only accepts one function
(total-cost) and therefore essential functions such as (total_uncertainty) cannot be
modelled.

4-3-2 Choosing a Solver

Choosing an appropriate solver for this planning domain is a challenge due to the large amount
of planners being developed since the first IPC. The idea of defining a PDDL description of
the planning problem is that multiple planners should be able to solve the same problem.
However, each solver has its own approach in solving the problem, where the quality of the
plans can differ significantly. Moreover, the planner needs to meet the following requirements:

e First of all, the PDDL-solver obviously needs to be able to meet the requirements
defined in the PDDL domain file. This means that it needs to be able to handle the
basic PDDL STRIPS functionality (which by definition each PDDL-solver should be able
to). It needs to allow typing, and the use of functions (fluents). The use of functions
and metric values already excludes a significant amount of PDDL-solvers, e.g., the FD
planning method can only handle one specific function. However, in order to model
location uncertainty properly, this is of main importance, making FD unusable.

e Besides having a valid plan that satisfies all preconditions and goals, it is important
that the AUV completes its survey task as efficient as possible. Therefore, the planner
should be able to provide qualitative plans. As the problem needs to be solved offline,
at the start of its survey task, the computation time is less important.

e A final practical requirement is that the solver needs to be compatible with the ROSPlan
framework. It is possible to expand ROSPlan to support more PDDL-solvers, but that
was not considered as an option for this thesis as this would consume an unnecessary
amount of time.
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Multiple PDDL-solvers were tested, but only four of them appeared to be able to consistently
solve the problems. These solvers are discussed briefly and a comparison is done between
these planners. In Table 4-1 a comparison is shown between computation time and plan
quality for the different planners.

Plan quality is defined by the resulting optimization metric: operation time. The lower the
operation time of the AUV is, when executing the generated plan, the higher the quality of
this plan is. The quality shown in Table 4-1 is therefore the value of (total_time) after the
last action of the plan provided by the PDDL-solver.

Metric-FF

Metric-FF was the first planner of choice, as it is an efficient planner. However, it soon
turned out that it was not finding the optimal plan, i.e., it does not consider the optimization
metric properly. For even the simplest problem it failed to plan a simple lawnmower pattern,
but instead started zigzagging. Switching the order of the waypoints in the problem file fixed
this problem, indicating that it does not translate the action costs into its heuristic function.

Moreover, when modelling the along-track uncertainty in the survey action, the Metric-FF
planner fails to find plans, as it cannot deal with non-constant effects on the optimization
metric. Therefore, the values shown in Table 4-1 correspond to a planning domain where the
along-track uncertainty is not modelled. Problems including communication constraints were
unsolvable for the same reason. It can therefore be concluded that Metric-FF is not suited
for the survey planning domain.

POPF

POPF was the default PDDL-solver of the ROSPlan framework and a successful planner
during the third IPC [35]. Similar to Metric-FF it uses forward search using relaxed planning
graphs as heuristics. In contrast to Metric-FF, the solver is able to solve all problems consis-
tently. However, POPF fails to find high quality plans, often not even considering the use of
uncertainty reducing actions.

LPG
LPG is a PDDL-solver that uses local search and planning graphs, called numerical planning
graphs [36]. These graphs are similar to the planning graphs discussed before, however with

a slightly different implementation of numerical relations. LPG was also a successful planner
at the third IPC.

Using LPG for the PDDL domain of Section 4-2 resulted in higher quality plans, taking
slightly more computational time. However, when the communication constraints are added
to the problem domain, its computation time is significantly longer, being one of the slowest
planners of this selection. This is probably due to the fact that these problems includes more
than one goal.

OPTIC

In 2012 an improved PDDL-solver, called Optimizing Preferences and TIme-dependent
Costs (OPTIC), was developed [32]. It uses a modified version of the POPF heuristic, and is
able to comply with the newest PDDL versions. Instead of minimizing the number of actions,
this planner focusses on the optimization metric. After an initial plan is found it repeats the
planning procedure in order to improve on this optimization metric.
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Table 4-1: In this table a comparison is made between PDDL-solvers for different survey problems.
The value n is the number of predicates in the problem file. The number of predicates is proportional
to the amount of available actions for the planner, thus giving an indication of the problem size. The
best plan is highlighted in bold, both for the computation time as the plan cost. The plan cost is the
value of (total_time) after the last action, giving an indication of the quality of the plan. All units
in this table are in seconds.

Metric-FF POPF LPG OPTIC OPTIC"
Problem 1  cost 2113 2342 1882 1882 2342
n="78 time 0.00 0.02 0.76 1.42 0.02
Problem 2  cost 1781 2342 1672 1504 2342
n = 188 time 0.00 0.02 0.76 10.50 0.02
Problem 3  cost 1772 2342 1585 1446 2342
n =243  time 0.00 0.04 2.76 51.58 0.04
Problem 4 cost - 2446 2063 2063 2446
n = 188 time - 0.10 312.27 27.44 0.12
Problem 5 cost 1772 2342 1503 1437 2342
n =352 time 0.00 0.06 2.01 114.68 0.08
Problem 6  cost - 1676 1658 1613 1676
n = 298 time - 0.22 326.53 48.46 0.22
Problem 7  cost - 1672 1639 1596 1672
n = 462 time - 0.44 62.08 856.42 0.42

* Without optimization

In Table 4-1 it is visible that OPTIC has consistently the highest quality, i.e., plans with the
lowest cost. However, it is also clear that OPTIC takes significantly more time to solve the
problems. Since the planning system is intended to plan offline, the computation time is not
that important. Hence, the chosen planner for this planning system is OPTIC.

Each solver has several options to change its behaviour. OPTIC can be used without the
optimization loop as well, decreasing the computation time. From this it is directly visible
that OPTIC uses the same algorithms as POPF, as the quality of the plans is exactly the
same for each problem.

It might be valuable to explore more PDDL-solvers to further improve the quality of the
planning system. For this thesis, OPTIC is sufficient to show the capabilities of the planning
system and show the benefits of using PDDL as modelling language. The next chapter will
discuss how the planning system will provide a relevant problem file for the Task Planner,
such that these plans can generated.
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Chapter 5

Planning Procedure

5-1 Problem Generation

The Task Planner requires both a domain file and a problem file. The domain file, as modelled
in Chapter 4, is static for each planning situation. The problem file however, needs to be
generated by the planning system such that the Task Planner can solve it. Recalling the
planning system described in Chapter 3-2, this problem file is generated by the Problem
Generator. The survey planning domain is kept as simple as possible, avoiding complicated
numerical expressions. These computations are passed on to the Problem Generator, which
will be discussed in this section.

Figure 5-1 schematically shows the overall structure of the Problem Generator. The Problem
Generator consists of five sub-planners, each responsible for its corresponding action in the
PDDL domain file:

e Survey Planner - The survey planner is the main planner of the Problem Generator,
generating the numeric information of the survey action. This sub-planner decides
where to place the survey legs and its corresponding waypoints. The locations of these
waypoints are relevant for all other sub-planners as well as the Path Planner.

e Transit Planner - This sub-planner plans when a transit between waypoints is allowed.

e GPS Planner - Additionally, the GPS Planner plans when and in what way a GPS-fix
can be performed.

e Revisit Planner - Based on a list of contacts, revisit areas are defined in this sub-
planner.

e Communication Planner - Lastly, the transits between waypoints and the different
communication areas are planned.
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Figure 5-1: The Problem Generator contains several sub-planners. Each sub-planner is responsi-
ble for its corresponding action type, and generates the problem. The survey planner is the main
sub-planner on which the other sub-planners depend.

This results in information about when the different actions are allowed, the cost (which is the
duration) of the actions and the uncertainty growth resulting from the actions. Especially
these numerical values are important, as these values are the parameters of the heuristic
function inside the PDDL-solver. All this information is stored in the Knowledge Base, such
that the Task Planner can generate a problem file and start planning.

5-1-1 Survey Planner

The whole planning procedure starts with a survey task, which is received by the Problem
Generator. This survey task includes a survey area and an initial position of the AUV, being
used by the survey planner. The survey planner will split up this area in order to define
waypoints and survey legs. In this subsection this procedure is discussed and shown how this
is translated to PDDL in a problem file.

It is assumed that the survey area has a rectangular shape, as vessels normally travel in
straight tracks. If the survey area appears to have a polygonal shape which is not rectangular,
this is first transformed to a rectangular shape by finding its minimum bounding box, as
shown in Figure 5-2a. Although algorithms exist that can plan a coverage path over arbitrary
polygonal areas [37], this is not included in the planning system. Yet it can be extended by
it, when suitable.

Starting from the side of the area closest to the starting point, survey tracks are laid in order,
assuming that no uncertainty reducing actions are performed. By default, the survey planner
will lay the tracks along the longest edge of the area, but this can be changed to the shortest
edge by changing a parameter of the survey planner.
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Figure 5-2: The survey planner (a) creates a rectangular area from an arbitrary polygonal survey
area, then (b) divides the area into survey legs assuming that no uncertainty reducing action is
performed and finally (c) makes the legs equidistant and of equal length for the Task Planner.
Waypoints are generated at the endpoints of the line segments, which will be used by all other

planners.

This results in tracks that decrease in width and increase in length (see Figure 5-2b), as was
discussed in Chapter 3-1. However, this will result in false heuristics, as this already implies
the order of the tracks which should be chosen by the Task Planner instead of the Problem
Generator. Therefore, the along-track uncertainty is not used such that all track have equal
length. For the same reason, the planned legs are distributed equally over the area, such
that transiting between the survey legs has equal cost (as shown in Figure 5-2¢). This way,
enough survey tracks are planned without influencing the heuristics of the Task Planner. The
resulting waypoints can then be stored in the problem file as waypoint objects. An example

is shown in Listing 5.1.

Listing 5.1: Declaration of waypoint objects in the PDDL problem file

(:objects
start wpO wpl wp2 wp3 wp4 wpb wp6 wp7 wp8 wp9 — waypoint

)

Besides that, the PDDL problem is initialized by connecting the waypoints using the predicate
(is_survey), as is visible in Listing 5.2. Each connection needs to be defined in both ways,
such that the planner is able to plan a survey action in both directions. The length of a
survey leg, for computing the duration of a survey action, and the uncertainty growth during
a survey action is initialized as well. These are the same for each survey leg, neglecting the
additional leg length due to the along-track uncertainty. Finally, the initial position is defined
as well as the total width of the survey area. The predicate (can_transit) indicates that

the planner should start with a transit action.

!For an example of a complete problem file, the reader is referred to Appendix B
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Listing 5.2: Initialization of states by the survey planner

(:init
Initial position of the AUV
(auv_at start)
The AUV needs to start with a transit
(can_transit)
Connect all waypoint as survey leg
is_survey wpO wpl) (is_survey wpl wpO) (is_survey wp2 wp3)
is_survey wp3 wp2) (is_survey wp4 wp5) (is_survey wpb5 wp4d)
is_survey wp6 wp7) (is_survey wp7 wp6) (is_survey wp8 wp9)
is_survey wp9 wp8)
; Length of one survey leg [m]
(= (leg_length) 356.27)
The uncertainty growth during a survey action [m]
(= (uncertainty_survey) 6.31)
The width of the area that needs to be covered [m]
(= (area_width) 310.79)

(
(
(
(

5-1-2 Transit Planners

The information of the survey action is now properly generated into the PDDL problem file.
Having a set of waypoints and their locations, makes it possible to define the transits that can
be planned between these waypoints, as well as the durations and uncertainty growth. This
subsection describes how this is done in the four different transit planners that were shown
in Figure 5-1.

Transit Planner

The transit planner takes the waypoints of the survey planner as input, and determines the
connections between waypoints that the AUV is allowed to transit between. Creating these
connections has a major influence on the computation time of the PDDL-solver. The solution
space grows exponentially with the amount of transit connections. Hence, these connection
needs to be chosen wisely, without reducing the freedom of the Task Planner. The current
implementation makes for each waypoint a connection with a specified number of closest
adjacent waypoints and checks whether the distance between the waypoint is below a certain
threshold. The number of connections as well as the threshold are parameters that need to
be given to the planning system.

These connections can be stored in the PDDL problem file as shown in Listing 5.3. The time
to transit between these waypoints is determined by planning a Dubin’s path between the two
points (which is explained in Section 5-2). The resulting duration and uncertainty growth is
stored in the PDDL problem file as well.

Listing 5.3: Initialization of states by the transit planner - only a part of the connections is shown

(:init
Define all transit connections between the waypoints
(is_transit start wpO) (is_transit wpO start) (is_transit wpO wp2)
(is_transit wp2 wp0O) ;... etcetera
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The time to transit between the waypoints [s]

(= (time_transit start wp0) 47.22) (= (time_transit wpO start) 47.22)

(= (time_transit wpO wp2) 37.34) (= (time_transit wp2 wp0) 37.34)
The uncertainty growth between the waypoints [m]

(= (uncertainty_transit start wp0O) 1.53)

(= (uncertainty_transit wp0O start) 1.53)

(= (uncertainty_transit wp0 wp2) 1.21)

(= (uncertainty_transit wp2 wpO) 1.21)

GPS Planner

The GPS planner creates connections between waypoints the same way as the transit
planner does. However, to compute the transit time and uncertainty, some extra computations
are needed. A GPS-fix can be done in two ways (also shown in Figure 5-3):

e Simple - The AUV can navigate the original transit path between two waypoint, while
ascending to the surface and descending back to the second waypoint.

e Helix - If the distance between the two waypoints is too short to be able to do this,
the AUV needs to ascend and descend in a helix shape.

0 0
wpl 5o wp2 I z
d(]pé
=20 - -20
€ €
: dtotal :
—-40 —40
wpl wp2
-60 -60 .
0 20 40 60 80 0 20 40 60 80
x [m] x [m]
(a) Simple (b) Helix

Figure 5-3: There can be planned two types of GPS-fixes: (a) a simple GPS-fix and a (b)
helix-shaped GPS-fix. Which type of path is used depends on the depth z of the waypoints, the
maximum pitch 6 of the AUV and the distance dyps required to get a reliable GPS signal.

The required distance to be able to do a simple GPS-fix, is determined by the depth z of the
waypoints, the maximum pitch angle 6 of the AUV and the distance dg,s which is at least
needed to stay at the surface for receiving a reliable GPS-signal. If the required distance is
larger than te total distance diotq; a helix-shaped path is needed to do a GPS-fix, i.e., when
the inequality of (5-1) is true, a helix is required.

2z
dtotal < m + dgps (5—1)
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When the GPS-path is determined, the duration of the GPS transit can be computed, as well

as the uncertainty. Recall that the uncertainty is reset, instead of increased. The uncertainty
is the sum of the variance of the GPS-signal and the uncertainty growth while descending
back to the second waypoint. These values are stored in the PDDL problem file as well, in a
similar fashion as Listing 5.3.

Revisit Planner

As stated in Chapter 3-1, the survey problem might include already discovered contacts
that can be revisited by the AUV to reduce its location uncertainty by means of SLAM. These
contacts have a location uncertainty themselves as well, and have a preferential direction from
which to approach them. Since the contacts are discovered using sonar, they can look much

different when detecting it from another viewpoint. Therefore, the revisit planner ensures
that the AUV revisits the contacts from the same direction.

To do so, clusters are formed of contacts based on their direction and position, as shown
in Figure 5-4. A cluster is formed when (i) the contacts lay close to each other and (ii)
when the direction of the contacts does not vary too much. The maximum width of the
clusters is defined by the expected sonar performance. The maximum length of the cluster
and maximum angle variation between the contacts needs to be provided as a parameter. The

resulting clusters form the revisit areas that can be used for planning. The revisit areas can
be stored in the PDDL problem file, as shown in Listing 5.4.
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(a) Contacts with different orientations

(b) Clustering of contacts
Figure 5-4: This figure shows how revisit areas r; are formed, by clustering the contacts ¢;. In
(a) an arbitrary set of contacts is shown with their direction and location uncertainty ring. The

Revisit Planner finds revisit areas as shown in (b), with a given direction (depicted by a white

arrow). At both ends of the revisit area, waypoints are defined that can be used for planning a
path.

Listing 5.4: Decleration of area objects in the PDDL problem file
(:objects

r0O rl1 r2 r3 — area

)

Lukas Steenstra
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At each end of the revisit area a waypoint can be created and a path can be planned between
the two original transit waypoints and the waypoints of the revisit area. Having this path, the
duration and uncertainty growth can be determined. The location uncertainty is chosen to be
the average location uncertainty of all contacts in the area. Taking the average uncertainty
obviously is not a good model for SLAM, but acts as a place-holder to provide the planning
system some representative planning variables.

Communication Planner

The communication planner is a relatively simple planner, since the communication areas
are defined in the survey task. This planner will find the centre of the polygonal commu-
nication areas and computes the travel distance between the waypoints when navigating via
a communication area. Based on this distance, the duration and uncertainty growth can be
computed and stored in the PDDL problem file (see Listing 5.5). An expected bit-rate per
area needs to be provided in de PDDL problem file as well, such that the duration of the
transit_comm can be computed.

Listing 5.5: Problem generation by the communication planner

(:objects
cl c2 — area ; Define communication areas

(:init

Connections between waypoints and communication areas
(is_comm wp5 wp2 c2) (is_comm wpl wp2 c2) (is_comm wp3 wp4 cl)

; Store the bit rate per area [bit/s]
(= (bit_rate c1) 10) (= (bit_rate c2) 8)

Transit time between the waypoints via the communication area [s]
(= (time_comm wp5 wp2 c2) 100.39) (= (time_comm wpl wp2 c2) 98.15)
(= (time_comm wp3 wp4 cl) 76.99)

Uncertainty growth for transiting via the communication area [m]
(= (uncertainty_comm wp5 wp2 c2) 10.7) (= (uncertainty_comm wpl wp2 c2)
9.36) (= (uncertainty_comm wp3 wp4 cl) 4.2)

5-2 Path Planning

At the end of the planning process, the final plan and waypoint locations are given to the
Path Planner. the Path Planner takes the order of the waypoints from the Task Planner, and
combines them with the waypoint locations of the Problem Generator. Based on the locations
and the type of action (transit or survey) it will plan a path through the waypoints. It will
take into account the dynamical constraints of the vehicle, such that it is able to smoothly
follow the path.

The path planning algorithm is based on Dubin’s curves. A curved path is required because
the system is non-holonomic, i.e., it cannot move sideways. Assuming constant velocity and
maximum steering angle, the minimum radius of the curves can be determined. With this
radius, an optimal path can be found between the two waypoints, as shown in Figure 5-5.
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RoS,L, RoLsR,

Figure 5-5: The Path Planner uses Dubin's curves to plan a path between two waypoints with
given heading. In this figure two examples of Dubin’s curves are shown. [38]

A Dubin’s curve consists of curves and straight segments, denoted by R for a curve to the
right, L for a curve to the left and S for a straight path segment. Each path consists of a
sequence of three segments, which together is called a Dubin’s word. Dubin’s showed that
only these six words are possibly optimal [38]:

{LRL,RLR,LSL,LSR, RSL, RSR} (5-2)

These Dubin’s curves assume that the entire plane is the configuration space of the vehicle,
thus not considering obstacles. However, when planning with multiple vehicles, it might be
necessary to introduce no-go areas. These can be modelled as obstacles for the Path Planner.
Some attempts have been made to plan a path for non-holonomic robots in an environment
filled with obstacles [39, 40], which might be useful to implement.

When a plan is given by the Task Planner, the list of actions can be translated to a sequence
of waypoints with a heading. Both waypoints of a survey track need to have the same heading
such that the survey track will be a straight line. The same is done for revisit transits. This
is important, because straight paths will result in better sonar images. The transit paths are
planned such that the AUV will arrive with the right heading at the start of a survey leg or
revisit area.

The Path Planner will plan the paths for GPS-fixes as well. The GPS Planner only plans
GPS-fixes to predict the duration of a GPS-fix, while the Path Planner needs to define a path
in 3D that can be followed by the AUV. To do so, a Dubin’s path is planned between the two
waypoints (like a normal transit) and then adjusted such that it reaches the surface. When
a helix is required, the last turn of the Dubin’s path will be expanded to a helix.

As a result, the Path Planner is able to plan a path for each action of the Task Planner. An
example of a path is shown in Figure 5-6¢. The path is given to the Action Dispatcher, which
can send the path to the LAUV by means of a follow path message. This is the only type of
message needed, since all actions can be translated to a path that needs to be followed.
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5-3 lteration Process

To summarize, the planning system will start by generating a problem file in the Problem
Generator, based on the survey task that is given to the planning system. The Problem
Generator will generate all necessary numerical values for the Task Planner, to be able to
find a plan. Based on this initial problem, the Task Planner finds an initial plan.

However, in Chapter 3-2 it was explained that the planning system needs some form of
iteration due to the numerical inaccuracy of PDDL. When an uncertainty reducing action is
planned, the waypoint locations will change, making the plan after this uncertainty reducing
action invalid. Therefore, the plan after this uncertainty reducing action is re-planned in the
following way:

i. The planned actions after the first new uncertainty reducing action are discarded. Fig-
ure 5-6a shows an example plan which contains one GPS-fix between wp2 and wp4. The
red line is the part of the plan that is kept, and the black line represents the actions that
are discarded.

ii. Starting from the waypoint where the GPS-fix ends (wp4 in this example), a new sub-
plan is found that covers the area that is left (the teal rectangle). To compensate for
the numerical imprecision of the PDDL model, two alternative plans are produced with
a GPS-fix one transit earlier and one transit later (as shown in Figure 5-6b). In this
example, it means that the Task Planner will also start planning from wp3 and wp7
respectively.

iii. The costs (operation time), of the three plans are compared, and the plan with the lowest
cost is chosen. In this example, the second sub-plan turns out to be the best. This results
in the final plan as shown in Figure 5-6c.

If the chosen sub-plan appears to have a new uncertainty reducing action, the above three steps
are repeated until no new uncertainty reducing action is found. When no new uncertainty
reducing actions are planned, all survey legs of the plan are redistributed in such a way
that each survey leg has equal overlap. The waypoint locations are updated according to
the uncertainty model, to accurately account for location uncertainty. This is visible in the
example, where the cost of the final plan is slightly increased in comparison to the second
sub-plan due to this update of waypoint locations.

The example showed the iteration process of a plan with a GPS-fix. When a revisit is
planned, the waypoint locations will change as well. However, the cost of a revisit action
is highly dependent on the waypoint positions. For that reason it will not make sense to
consider planning the revisit action one transit earlier or one transit later. Hence, for revisits
these two alternative plans are not considered.

Finally, the waypoint locations together with the final plan is sent to the Path Planner. The
Path Planner will plan a path, as described in the previous section, and will send it to the
vehicle to be executed. In the next chapter, some scenarios are planned and sent to the
simulation environment to evaluate the plans.
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(b) Three sub-plans, starting from the GPS-fix of the initial plan, as well as one transit earlier and one transit later
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(c) The final plan

; Cost: 1496.05
(transit start wp0)
(survey wp0 wpl)
(transit wpl wp3)
(survey wp3 wp2)
(transit gps wp2 wp4)
(survey wp4 wpb)
(transit wpb wp7)
(survey wp7 wp6)

Figure 5-6: This figure shows an overview of the planning procedure, showing the plans graphi-
cally together with the PDDL-solver output. When an initial plan is found, the actions after the
first (new) GPS-fix are discarded (a), where the red line is the planned path and the black line
are the discarded actions. Then, three sub-plans are found (b) starting from the waypoint where
the GPS-fix was planned, as well as one transit earlier and one transit later. The plan with lowest
cost is selected (in this case the second one), which becomes the final plan (c). Notice that the
plan cost slightly increased due to the change of waypoint locations.
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Chapter 6

Evaluation

There is an important distinction between evaluation and walidation. Evaluation is the as-
sessment of the planning system on how well it behaves in terms of predefined metrics such
as operation time and coverage. Validation on the other hand, determines how well the plan-
ning domain describes the survey problem, and whether the plans are valid in real world
applications. Both topics will be discussed in this chapter, in Section 6-1 and Section 6-2
respectively.

6-1 Simulation Results

To evaluate the quality of the planning system, two main things are examined:

i. Whether the planning system is capable of finding suitable plans for different situations

ii. Whether the planning system reliably finds plans that cover the entire area

If this is the case, the requirements stated in Chapter 3-1 are satisfied. To evaluate the
coverage of the generated plans by the planning system, the simulation environment described
in Chapter 2 is used. A larger area is simulated to clearly show the difference made by
the planning system. Since SLAM and acoustic communication is not yet modelled in the
simulation environment, the transit_revisit and transit_comm could not be simulated
in the simulation environment. Nonetheless, the plans made by the planning system clearly
show how the planning system is able to make decisions in complex situations.

In the following subsection, a few scenarios are tested on the planning system in order to
highlight the decisions made by the planning system. Following, a larger scenario is simulated,
to show that the planning system is in fact capable of achieving full coverage in a consistent
way, in contrast to a basic lawnmower pattern.
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6-1-1 Planning Scenarios

To visualize the decisions made by the planning system, the survey area used in Chapter 5,
is given to the planning system. This area is approximately 300 by 350 metres, at a depth of
40 metres beneath the surface. When no GPS-fix is allowed, the planning system will only
compensate for the location uncertainty (see Figure 6-1a). When following the path, the grey
area is what is covered by the AUV, which means that in this scenario the planning system
is fully able to cover the entire area without the use of any uncertainty reducing action.

e ity i

wpo wpO 4
sta e WP5,b3 sta lﬁ 1

(a) Without GPS-fix (b) With GPS-fix
Figure 6-1: Scenario where (a) no uncertainty reducing action is allowed and (b) only GPS-fixes
are allowed.
GPS-fixes

When the planning system is allowed to plan a transit_gps, it will plan one halfway (see
Figure 6-1b). As a result, one survey leg less is required to cover the entire area. This clearly
reduces the operation time, although the GPS-fix in this case is a helix shaped path. When
the survey area is closer to the surface, more GPS-fixes will be planned, since they will cost
less time (and no helix shaped path is required to reach the surface).

Revisits

In the next scenario a revisit area is added at the south of the survey area. In the first
case, the contacts need to be revisited from west to east. In Figure 6-2a it is visible that the
planning system switches the order of the legs to efficiently revisit the area. This does not
happen in the case where the contacts need to be revisited from east to west (see Figure 6-2b).
In both cases the number of legs is reduced by one, reducing the operation time compared
to the case where no uncertainty reducing actions are used. A small rectangular revisit area
was added to the scenario as well, but the planning system decided not to use this area as
this would involve long distances, making it unprofitable.

The planning system will change its plan depending on the depth. When the AUV needs to
operate at —12.5 m, the planning system will prefer GPS-fixes, while at a depth of —40 m,
the planning system will plan revisits (if available) instead. This confirms that the planning
system takes operation time into account.
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(@) Revisit area in east direction (b) Revisit area in west direction

Figure 6-2: Scenario with (a) an area where contacts need to be revisited in east direction and
(b) in west direction. The planning system decided not to use the revisit area northwest to the
survey area, since operation time will not be reduced by visiting that area.

Communication
Figure 6-3 shows plans for communicating at a communication area. As a consequence of

how the goal is formulated, the planner is forced to plan as the last action a transit_comm or
transit_gps. The plan in Figure 6-3a just ends with a transit_comm. In Figure 6-3b a data
threshold was added, such that the planning system needed to plan a second transit_comm
so that this threshold is not exceeded.

—Ey 8

wpo wpo
e W 8 sta Cw 3

sta

(a) Without threshold (b) With threshold

Figure 6-3: Scenario with a communication area, (a) without any data threshold and (b) with
data threshold. Communication while doing a GPS-fix was not allowed in this scenario.

From the figures it becomes clear that, if the uncertainty grows too large, the AUV might miss
the communication area. The PDDL domain should be improved by adding a precondition
which ensures that the uncertainty is not larger than the shortest distance from the centre of

the area to one of the area borders.
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Combined scenario

The planning system is able to deal with more complex situations as well. Figure 6-4
shows a scenario where the planning system plans a path, while having the freedom to plan
all available actions. The planning system can solve this without failing, although it takes
significantly more computation time. It also becomes clear that GPS-fixes are the most
preferred actions, unless the depth of the survey area is too large.

r®-, w 3 Wﬁﬂ wﬁ7
1

]

Lol

(a) Communication at the surface  (b) Communication at the surface
is allowed is not allowed

Figure 6-4: Scenario with two revisit areas and a communication area. In figure (a) it is allowed
to communicate at the surface (i.e., it needs to communicate with a surface vehicle) and in figure
(b) this was not allowed.

In Figure 6-4b, the AUV was not allowed to communicate above the surface. Due to the
depth of 40 metres, the planning system prefers to revisit the top-left revisit area. This
shows a limitation of how the planning domain is formulated. The AUV needs to visit the
communication area twice (due to a data threshold) and pass the larger revisit area while
sailing to the communication area. It probably would be more efficient to combine a revisit
at the bottom area together with a communication action. This however is not possible with
the current formulation of the planning domain, since the AUV is forced to alternate between
survey legs and single transit actions.

6-1-2 Coverage

The above results show that the planning system is capable of solving a variety of problems,
giving plans that are reasonable. However, this does not guarantee that it is capable to cover
the entire survey area, which was the first requirement of the planning system (as stated in
Chapter 3-1). To evaluate this, a scenario with a larger survey area (approximately 600 by
350 metres) is defined in order to visualize the difference between the plans made by the
planning system and a standard lawnmower pattern.

The path generated by the planning system is sent to the control interface, using a follow
path message. The LAUV is simulated to follow the path in the Gazebo simulation environ-
ment. However, the simulation environment lacks three important things: (i) SLAM is not
implemented as a localization method, (ii) acoustic communication is not modelled and (iii)
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the model of the side-scan sonar was not implemented yet. The latter shortage means that
coverage cannot directly be quantified using the sensor data. Hence, for these simulations,
the spatial information of the simulation is used to estimate the area that has been covered.

Recall that coverage was defined as the percentage of the area of which the POD is above a
certain threshold. Defined this way, having a 100% coverage does not mean that all objects
have a POD equal to 1. When this threshold is low, there is an increased chance that objects
remain undetected. The planning system should assure that the coverage, as defined, is 100%.
The risk for vessels to navigate through the area, is therefore dependent on the POD at which
the threshold is set.

Figure 6-5 visualizes how the coverage of the vehicle is derived from the path that the AUV
has travelled. It is based on the sonar range that was used for planning, and it is assumed that
this sonar range is constant. Only the coverage of the straight survey tracks is considered,
since the quality of sonar images is poor when making turns. The resulting coverage area is
the intersection of the survey area and the rectangular coverage areas of each leg.
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Figure 6-5: The grey rectangular shapes visualize the coverage of each survey leg. The teal
rectangle is the survey area and the solid black line is the trajectory followed by the AUV during
simulation.

The coverage of a simple lawnmower pattern is compared with a path planned by the planning
system. In Figure 6-6, the results of a simulation are shown. The integration drift is clearly
visible, resulting in gaps in the coverage. The grey area is the covered area and the red area
is the part of the survey area that was not covered. In the figure, only 90% of the area was
covered by a basic lawnmower pattern. The planning system planned two GPS-fixes and an
additional leg to ensure total coverage, successfully compensating the across-track uncertainty.
Still, some small fragments are not covered, which is the result of how the coverage per leg
is defined. Therefore, the coverage values only serve as an indication but do not resemble
the real coverage. To properly quantify the coverage, the simulation environment should be
improved, such that the side-scan sonar model can be utilized.
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Figure 6-6: Simulation of the LAUV, performing a survey task on a rectangular area (600 by 350
metres). The solid black line is the real trajectory of the LAUV, the dashed line is the planned
path and the solid green line is the area border. The covered area is marked grey and the area
that is not covered is marked red.

Simulating this scenario multiple times, gave varying results due to the randomness in the
growth of the location error, i.e., the difference between the real position and the estimated
position of the LAUV. In some cases the location error was even less than a metre over
the entire survey task, resulting in good coverage for a simple lawnmower pattern. The
Gazebo simulation environment uses a pseudorandom number generator to simulate the world,
resulting in varying IMU behaviour per simulation. The basic lawnmower pattern might give
good result when only small INS noise and bias is simulated. For the same reason the path of
the planning system might fail to cover the entire area due to extreme biases on the simulated
measurements.

Therefore, the simulation was repeated 100 times for both paths. Since the scenarios can only
be simulated real-time, the number of simulations that could be conducted was limited. These
simulations took about 200 hours, and give a better representation of how well the planning
system behaves, rather than a single simulation. The average results are shown in Table 6-1,
clearly showing that the planned path of the planning system achieves better coverage results
than a simple lawnmower pattern.

Table 6-1: Comparison of the coverage of the simple lawnmower pattern and the path of the
planning system for 100 simulations. It shows the average coverage percentage and average
operation time over the simulations. The last column gives the number of simulation at which at
least 99.5% coverage is achieved.

Coverage [%] Operation time[s] Full coverage

Lawnmower pattern 96.0 1790.63 12
Planning system 99.6 2458.02 82

The planning system was not able to achieve full coverage for each simulation. This might be
caused by a possible discrepancy between the uncertainty growth of the utilized uncertainty
model and the real uncertainty growth in the simulations. It turned out that each time the
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planning system failed to cover the entire area, this was caused by a large along-track position
error which was not sufficiently compensated. As was already discussed, the coverage is not
computed entirely correctly, often making the coverage per survey leg a bit too short.

On the other hand, the plans of the planning system never dropped below 96% coverage,
while the basic lawnmower pattern failed to achieve 96% coverage 36 times. This means that
the planning system is less sensible to unexpected large errors.

Thus, these simulation significantly show that the planning system improves the coverage
and is able to find suitable plans for different scenarios. However, the simulation environment
might need some improvements to give even better insights on the capabilities of the planning
system.

6-2 Domain Validation

The previously shown scenarios are good examples of situations where the planning system
behaves as expected. This is however not a guarantee that the PDDL domain description of
the survey problem is valid for every possible scenario. Therefore, it is important to validate
the PDDL description on whether the plans are valid and whether the domain describes the
survey problem properly.

An automatic plan validation tool called VAL, was developed during the third IPC, to test
a posteriori whether a plan is valid [41]. A plan is valid when, at every time instance, the
planning states do not violate any constraint. This is done by simulating the actions and
checking them on validity. VAL is also included in the ROSPlan framework, such that one
can be sure that the resulting plans are valid within the specified constraints of the planning
domain.

Although this is certainly useful, this does not say anything about the planning domain itself.
When the planning domain descriptions contains errors, which can easily happen, the plans
will be erroneous as well. Hence, an a priori validation of the planning domain is needed to
determine the validity of the domain itself. This form of validation is not an often treated
subject and, to the author’s knowledge, has only been attempted by [42], by means of the
modelling language Event-B.

6-2-1 Event-B

Event-B is a formal modelling language based on set theory. The purpose of the language
is to model software systems in such a way that they are correct by construction [43]. This
means that modelling a system in Event-B makes it possible to prove whether a system is
correct, i.e., whether the system by definition cannot violate any pre-stated constraints. Since
the language uses set theory, these strong properties can be proven mathematically.

Although Event-B is not a planning language, it can be used to check the correctness of the
PDDL-model. In [42] a conversion from PDDL to Event-B is proposed, using a custom tool
called PDDL2EventB . Since this tool was not accessible, the PDDL domain of the survey
problem is translated to Event-B manually in the same fashion as was done in [42]. This
entire Event-B description, together with a simple problem is shown in Appendix C.
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As the name suggests, Event-B is an event-based language. These events can change the
states of the system and are similar to PDDL-actions. Thus, the PDDL-actions of the PDDL
domain can easily be translated to Event-B events. Figure 6-7 shows how the survey action
is translated into Event-B.

survey: not extended ordinary

ANY
from
to
WHERE
grdl: from € Waypoints not theorem
grd2: to € Waypoints not theorem
grd3: to # from not theorem
grd4: auv_at(from) = TRUE not theorem
grds: can_survey = TRUE not theorem
qrd6: 1s_survey(from » to) = TRUE not theorem
grd7: sonar_range = 2+#total_uncertainty not theorem
grds: total_data + survey_data <= data_threshold not theorem
THEN
actl: auv_at = auv_at = {from » FALSE, to » TRUE}
act2: 1s_survey = 1s_survey = {from » to » FALSE, to » from » FALSE}
act3: can_transit = TRUE

actd: can_survey = FALSE
act5:  total_time = total_time + (leg_length + 2=total_uncertainty)+survey_speed
acth: total_uncertainty = total_uncertainty + uncertainty survey
act7: total _data = total data + survey data
acta: total_width = total width + sonar_range — total_uncertainty
END

Figure 6-7: This figure shows the survey action, modelled as an Event-B event!. The parameters
of the event are listed under the ANY keyword. The guards listed under the keyword WHERE
represent the preconditions of the event and the effects are listed as actions under the keyword
THEN.

First the parameters of the event need to be declared, which are the two waypoints from
and to. Then, guards are defined, which are similar to preconditions, except that some
extra guards are required to ensure that (i) the provided waypoints are not equal and (ii) the
waypoints are waypoint objects. Notice that sets can contain relations, such as from — to +—
TRUE. These relations can be checked and changed (such as in grd6), making it possible to
model predicates and functions with parameters as well. The effects of a PDDL-action can
be modelled as actions in an Event-B event. The actions of the survey event are similar to
the effects of the survey action in the PDDL domain, as shown in Figure 6-7.

A powerful way to validate a model in Event-B, is by the use of invariants. Invariants are
statements that need to be true in the entire reachable space of the system, i.e., invariants
should not be violated in any possible state of the system. To proof this, it is first checked
whether the initial states satisfy all the invariants. Then, for each event, it is checked whether
all invariants stay true after the event, assuming that all invariants were satisfied before the
event.

Most invariants come by definition of the types of each variable, e.g., the variable can_survey
should always have a boolean value. Besides that, using Event-B, one can check additional
invariants which are assumed to be true, but not explicitly modelled in the planning domain.

'The code snippets of Event-B are screen captures of the Rodin platform, which is free modelling software
for Event-B. It is freely available at www.event-b.org.
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Figure 6-8 shows two invariants that can be checked: inv1 states that the AUV is always at
a waypoint and inv2 ensures that the data threshold is never exceeded.

INVARIANTS
invl:  auv_at \ (Waypoints = {FALSE}) # @ not theorem
inv2:  total_data = data_threshold not theorem

Figure 6-8: Two invariants in Event-B

Event-B comes along with a powerful automatic tool called the ProB model checker, which
can mathematically prove whether any invariant is violated. This way, the model can easily be
checked on modelling errors. For the survey domain there were 40 proofs needed to prove all
invariants (see Appendix C to see a list of all the defined invariants). The only invariant that
could not be proven automatically was total_time > 0, due to the division by survey_speed
(see Figure 6-7). This was simply solved by adding the invariant survey_speed > 0 such that
a division by zero is excluded. It can be stated that the PDDL domain described in Chapter
4 is proven to be correct, assuming that the invariants of Figure 6-8 fully describe correctness.
Checking these invariants gives the guarantee that it is not possible for the PDDL-solver to
violate them, given that the initial states do not violate any invariant.

In PDDL, the initial states are defined in a problem file. Such a PDDL problem can be defined
as a refinement of the domain model in Event-B2. This refinement is a separate Event-B file
that defines all initial predicates and functions, as well as the goal. For each problem it needs
to be proven that the initial predicates and functions do not violate the invariants. If that is
the case, it is not possible to violate any invariant during planning.

Besides checking the invariants of an Event-B model, the ProB model checker is able to
identify whether a model is deadlock-free. A deadlock is a situation where no event can
happen, because the guards of all events are false. Therefore, the goal is defined as shown in
Figure 6-9, which is an event as well. The guards of this event are the goals that need to be
achieved, but it does not have any actions, i.e., it has no effects. This means that this event
can be repeated indefinitely as long as the goal conditions hold.

goal: not extended ordinary

WHERE
grdl: total width = area width not theorem
grd2: total_data = 0@ not theorem

END

Figure 6-9: The goal event in Event-B, where the guards correspond to the goals that are defined
in the PDDL domain

Having defined the goal as such, means that reaching the goal state will not result in a
deadlock situation. This makes it possible to detect other deadlocks in the domain model.
Avoiding deadlocks, i.e., states from which the goal state never can be reached, will improve
the efficiency of the PDDL-solver as this reduces its search space. The ProB model checker
was able to find a deadlock in the planning domain, as shown in Figure 6-10. When the AUV
decides to return to a waypoint where no survey action can be executed, the system is in a
deadlock since it is not allowed to do two transits directly after each other.

2The reader is referred to [42] and [43] to obtain a better understanding of the Event-B language.
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' Model Checking finished O P transitiwp2 wp0) transit
survey(wp3,wp2) SUrvey
A% [Deadlock found! transit(wpl,wp3) transit
|0| survey(wplwpl) sUrvey
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Figure 6-10: A deadlock situation was found by the ProB model checker.

Excluding these deadlock situations beforehand will improve the efficiency of the solver signif-
icantly. Table 6-2 shows the decrease in computation time of the OPTIC solver, when exclud-
ing the deadlocks from the PDDL domain. To achieve this, a simple predicate (has_survey
?wp) was added to specify whether a survey action is possible from that waypoint. This is
initially true for each waypoint, and becomes false after a survey action has taken place. Each
transit action will check whether its ?to waypoint has still the possibility to survey from. For
most problems, this small addition approximately halved the computation time, which is a
significant improvement.

Table 6-2: Comparison of the computation time with and without the deadlock present in the
planning domain, for 7 problems (same as Table 4-1). Problem 4 (where only a transit_comm
was allowed) was not solvable using the deadlock-free PDDL domain. All values are in seconds.

1 2 3 4 5 6 7
With deadlock 0.80 6.32 29.82 14.82 74.83 29.76 553.21
Without deadlock 0.34 3.34 13.10 - 34.54 17.09 226.20

The way the planning domain is formulated even implies that if the system is deadlock-
free, the problem has a valid solution. This gives a prior: information of the problem being
solvable. However, since the translation to Event-B is not automated, this is an elaborate
task. Besides that, Event-B is limited with numeric expressions as well, as it only supports
integer values.

In summary, the Event-B method is a powerful way to validate the PDDL domain. However,
correctness is defined by the invariants that are chosen. For example, in Section 6-1 it was
discovered that when the uncertainty grows too large, the AUV might miss a communication
area entirely, when performing a transit_comm action. To find such a modelling error, an
invariant should be added to exclude these situations. Since this was not defined as an
invariant in Event-B, this modelling error was not found. Nonetheless, excluding deadlocks
from the planning model using the Event-B method did result in a significant reduction of
the computation time for solving the problems with a PDDL-solver.
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Chapter 7

Conclusion

7-1 Summary

A task planning system was developed for AUVs in survey missions, successfully covering
designated areas by planning a path for the AUV to follow. The planning system is based on
the generic planning language PDDL, to be able to plan higher level actions more conveniently
than domain specific planners. The planning system is able to make decisions regarding
location uncertainty and limited communication, while minimizing the operation time. This
fulfils the main objective of this thesis work.

To achieve this main objective, first a simulation environment was set up, to smoothly inte-
grate with the software architecture of the LAUV. The UUV Simulator has already provided
an underwater environment with underwater physics and AUV models. Two important things
were added: an INS for pose estimation and a position controller to successfully follow the
paths with the vehicle. This facilitated the evaluation of the planning system, in order to
examine the behaviour of the LAUV in the underwater environment when executing the plans.

Then, the planning problem was modelled in PDDL. The planning system needs to alternate
between two types of actions: a survey action and a transit action. The survey action is the
main type of action. This is where the AUV travels in a straight path, covering a part of
the survey area. The transit action enable the AUV to travel between the survey legs in four
ways: (i) without any special action, (ii) while doing a GPS-fix to get a location update, (iii)
while revisiting a specified area where SLAM can be applied and (iv) while travelling through
a communication area, transferring data to other vehicles.

Several problems were solved with four different PDDL-solvers, where OPTIC consequently
achieved the highest plan quality, i.e., the lowest operation time. Therefore, OPTIC is chosen
to be the PDDL-solver of the planning system. As a drawback, it takes the largest amount of
computation time, since in order to improve the plan quality, it repeats the planning procedure
several times. By translating the planning domain to Event-B, several deadlock situations
were removed, which halved the computation time. This shows that the way the planning
domain is formulated can significantly affect the computation time of the PDDL-solver.
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The planning system consists of three planners: a Task Planner, a Problem Generator and a
Path Planner, where the PDDL-solver is part of the Task Planner. PDDL turned out to be
limited regarding numerical expressions. Therefore, complex equations needed to be excluded
from the planning domain and were solved inside the Problem Generator. The Problem
Generator consists of five sub-planners, each providing the required numerical values for a
PDDL-action. Through iteration, a final plan is found, such that a path can be planned by
the Path Planner. This path, in turn, can be dispatched so that the path can be simulated,
or executed by the real vehicle.

For several scenarios the paths generated by the planning system were evaluated. The plan-
ning system is capable of planning all different actions in different situations, while taking
into account the operation time. Some inefficiencies might occur due to the restrictions in
the PDDL domain. More freedom in the PDDL domain might result in better plans, but will
make the planning procedure much more computationally expensive.

A plan for a larger survey area was compared with a standard lawnmower pattern by means
of simulation, which showed that the planning system is able to consistently achieve better
coverage. The coverage is estimated using the spatial information of the simulation environ-
ment, giving an approximation of the real coverage. It would certainly be valuable to simulate
sonar data to asses coverage in a better way.

7-2 Contribution

Using the results of this thesis, the research questions, as stated in Chapter 1, can be answered.
This addresses the new insights that are obtained during this project. The answers to the
research questions are listed below:

i. How can the complex survey problem be modelled into PDDL, and what as-
sumptions need to be made to achieve this?

The results show that it is feasible to model the survey problem in PDDL with sufficient
detail, to be able to generate valid problems for different scenarios. The main challenge
was to model location uncertainty using the deterministic PDDL language.

The first attempt was to model the survey problem in full detail, only using PDDL. It
soon turned out that this resulted in an explosion of the search space, making it impossible
for PDDL-solvers to solve the problem in reasonable time. Therefore, details needed to
be extracted from the planning domain, such that PDDL only describes the abstract
actions that can be planned, making the solving procedure much more efficient.

Modelling the survey problem was a constant trade-off between detail and efficiency,
because due to the limited numerical capabilities, several simplifications and assumptions
needed to be made. The main simplification is the linearisation of the uncertainty growth
and the assumption that the uncertainty growth is equal in all directions. Besides that,
it was assumed that the sonar performance is constant over the entire area. These
assumptions might have consequences on the real coverage when executing the plan.
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ii. What are the benefits of using a more generic planning system compared to
a domain specific planner?

The main motivation to use a more generic planning system is that it can efficiently handle
combinatorial problems and plan abstract actions, which was due to the complexity of
the problem a necessity. The usage of PDDL gives the opportunity to use state-of-the-art
solvers that are able to find valid plans efficiently through heuristic search.

Besides that, PDDL offers the flexibility to solve different types of problems, using the
same planning domain. The planning system is constructed in such a way that it is
modular and that it can be used in multiple ways. This thesis shows that a PDDL-based
planning system can fluently switch between different scenarios with different require-
ments. In a broader perspective, the planning system might even be applied for different
problems as well, such as the Identification task of an MCM operation.

A domain specific planner is more confined for the specific application and does not
offer the flexibility a more generic planning system has. On the other hand, a domain
specific planner might be able to describe the planning domain more accurately, since
when describing problems, PDDL has its limitations. This limitation of PDDL however
does force to concisely formulate the planning problem, making it more insightful and
well organized.

iii. How can the PDDL model be validated, to ensure that it is correct and brings
up valid plans in every possible scenario?

Validation of PDDL domain descriptions is rarely discussed in literature. Mostly, plan-
ning systems are evaluated through simulation, showing improvements with respect to
previous results. The planning system was evaluated in the same fashion, showing that
it indeed improves the coverage and that it is able to find plans in predefined scenarios.

The validation tool called VAL is developed to check whether the generated plans satisfy
the constraints of the planning problem at every time instance. However, this does not
give an a priori validation of the PDDL domain. By translating the PDDL domain to the
Event-B modelling language, the planning domain can be validated through mathematical
proofs. Omne can define statements that need to be invariably true for every possible
situation and check whether the planning domain suffices. In Event-B, one can also
check whether situations might occur where no actions are possible, i.e., whether there are
deadlock situations. Preventing these situations improves the efficiency of the planning
system, since this confines the search space for the PDDL-solver. Applying this to the
survey problem has improved the planning domain.

This thesis work is a step forward in the direction of achieving persistent autonomy for AUVs.
It is shown that generic planning methods, such as PDDL, can be used to make decisions
about high level actions without omitting important details of the planning problem. In this
thesis the focus was on location uncertainty, but environmental properties can also be taken
into account, considering the way that the planning system is constructed.

Besides that, this thesis extends the work of [1] and [21] in using PDDL for real world
problems, rather than fictional benchmark problems. It is an attempt to bridge the gap
between abstract planning and real-world complex problems, making use of abstract and
state-of-the-art planning methods for relevant applications. Validation methods, such as the
Event-B method, will become more meaningful as well, when it applies to real-world problems.
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7-3 Recommendations

The developed planning system is able to show the capabilities of the proposed planning
method and is able to plan a path for several interesting scenarios. In order to increase the
robustness, accuracy and applicability of the planning system, it is certainly recommended
to improve the different planners of the planning system. A few suggestions for improvement
are:

e First of all, the Problem Generator could make better use of SPMs. As explained in
Chapter 3, the sonar range is assumed to be constant. In environments with complex
seafloor structures, the planning system will fail to cover the entire area due to this
assumption. When the seafloor structure is known a priori, one might split up the area,
based on the seafloor type and define a constant sonar range per area. Another approach
might be to include this seafloor structure in the survey planner (which is a sub-planner
of the Problem Generator), to adjust the leg spacing according to this seafloor type.
However, this implies that the PDDL domain needs to be adjusted accordingly.

e The revisit planner currently serves as a place-holder rather than providing realistic
numeric values. A proper SLAM model needs to be implemented in order to predict
the location uncertainty after transiting via a revisit area.

e The survey planner currently ignores the negative effects of the Nadir gap on coverage.
Considering different patterns such as paired-tracks would be a valuable addition.

o More detail, such as battery level, might be worth adding to the planning domain.

e The Path Planner currently assumes that the entire area is free of obstacles. Especially
when multiple vehicles are involved, it might be necessary to introduce no-go areas to
prevent collisions. In that case, the Path Planner needs to be able to plan paths that
avoid traversing these areas.

Besides improving the planning system, the following topics are suggested for future research:

e The planning system still provides offline plans before executing the survey task. It
would be interesting to make the planning system adaptive if during the execution of
a plan unexpected things happen. For instance, when the sonar range turns out to be
lower than expected (due to environmental properties), or when the location error turns
out to be larger than was predicted after an uncertainty reducing action.

e Instead of trying to cover the entire area in the least amount of time, it might give
insightful results to try to maximize its coverage within a specified time limit.

e The PDDL domain can be extended such that it can be used for the Identification
phase of an MCM operation as well. This would demonstrate the power and flexibility
of PDDL.

e Finally, it might be worth to explore more methods to validate the PDDL domain. An
interesting method would be to translate the planning domain into a Mixed Integer
Linear Programming (MILP) problem, trying to solve the survey problem analytically.
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Appendix A

Pose Estimation

Pose estimation is needed for position control. The vehicle (the LAUV in this case) needs
to know its position with respect to the world in order to successfully execute its tasks and
move between waypoints at specified locations. Since AUVs have no access to GPS signals
underwater, the vehicle has no absolute position measurement.

Hence, several different sensor measurements need to be combined to estimate the position
as good as possible. The sensors available on the LAUV are: (a) an Inertial Measurement
Unit (IMU) measuring all accelerations and the orientation of the vehicle, (b) a pressure sensor
measuring the depth of the vehicle and (c) a Doppler Velocity Logger (DVL) measuring the
velocity of the vehicle with respect to the seafloor. The data of these sensors can be fused,
using a Kalman filter, which is called sensor fusion in literature. To do so, the following
state-space system can be defined:

Qk+1 = Agi + Bwy, (A-1a)
my = Cqi + v (A-1Db)

Here, q; is the state vector at time-step k£ and comprises the position, velocity, acceleration,
orientation and angular rate of the vehicle respectively:
. . . . . .. . . . T
Q= [wk Yo 2k Tk Uk Zx Ik Uk Ek Tk Dk Pk Yk Tk Dk ’Yk} (A-2)

Here z, y and z are the cartesian coordinates in the world frame, and r, p and -~y is the roll,
pitch and yaw respectively of the vehicle in world frame as well. The vector my in (A-1b) is
the measurement vector, which reads as:

my = {«’fIMU,k UrmMuk ZIMUK TIMUE PIMUK YIMUk Zpressk
. . . T
TGpSk YGPSk <2GPSk <ITDVLE YDVLk ZDVL,k} (A-3)
T
:{mIMU,k Mpress,k  TMGPS,k mDVL,k}
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Here myprpx represents the IMU measurements, mypyess 1 represents the pressure sensor mea-
surements, mgpg, represents the GPS measurements and mpry, represents the DVL mea-
surements. Notice that the GPS measurements are included here. The values of mgpg are
only available if the vehicle is at the surface at time-step k, otherwise the size of m; and C
will be reduced. Another important thing to mention is, that all measurements are initially
with respect to the body frame of the vehicle. Hence, a transformation is needed from body
frame B to world frame W:

- 2 W - . B

= J1 (A'4)
_Z_ _Z_
- W - - B
r T
p| =J2|p (A-5)
LY L7V

These transformation matrices J; and Jo are respectively given by [44]:

cosycosp —sinycosr 4 cosysinpsinr sinysinr 4 cosysinpcosr
Ji = |sinycosp cosycosr+sinysinpsinr —cosysinr 4 sinysinpcosr (A-6)

—sinp cospsinr cosSpcosT

1 sinrtanp cosytanp
Joy= |0 cosT —sinr (A-7)

0 sinr/cosp cosr/cosp

Furthermore, in (A-1) two noise vectors wy and v are defined, representing the process noise
and measurement noise respectively. These noise signals are assumed to be Gaussian white
noise. Due to the fact that the external forces on the body are not modelled in this state
space representation, the process noise is the noise on each acceleration:

T
wy, = [wa&,k Wik Wik Wik Wik ka} (A-8)

The measurement noise is simply the noise on each measurement signal individually:

T
vy = [UIMU,k Upress,k  VGPS,k vDVL,k} (A-9)

Finally, only the system matrices need to be defined. The transition matrix A simply inte-
grates over the time-difference At to get the states of time-step k + 1:

Iy LAt AE 03 0
03 I3 I3At 03 O
A=103 03 Iy 03 O3 (A-10)
03 03 03 Iy I3At

03 03 03 03 I3
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The matrix B transforms the covariances of the accelerations wy to the states g by integration
as well:

_I3ATt2 05 ]
I3At 03
B=| I3 03 (A-11)
03 1'3%2
i O3 I3At_

The measurement matrix C' simply maps the state values g to the measurement values my,
and is defined as follows:

03 03 I3 03 03
03 03 03 I3 03
c=0 01 000 OOO OOO 0©O0@O 0 (A-12)
I3 03 03 03 03
03 I3 03 03 O3

In order to construct a Kalman filter, two additional matrices are required: Q and Rj. Qy is
the covariance matrix of the process noise and Ry, is the covariance matrix of the measurement
noise. These matrices are simply the diagonal matrices of the covariances of the signals:

kadiag(%,k Ok O:ik Oik Opk Uay,k) (A-13)
Rj, = diag (UIMU,k Opressk  TGPS,k UDVL,k) (A-14)

The covariances of the process noise are chosen to be relatively small numbers, order of
magnitude 1072, Note that it is assumed that the covariance of the noise on the measurement
signal equals the covariance of the noise on the transformed signal, which in reality is not
true due to the covariances imposed by the orientation. The resulting covariance estimation
might therefore be slightly optimistic.

Having the entire model, a conventional Kalman filter can be used to fuse the sensor infor-
mation into one pose estimation ¢. The Kalman filter process consist of a prediction step
and an update step. In the prediction step, a first prediction of the state is made using the
information of the previous state and the state-space model:

Qrlk—1 = AQr—1k—1 (A-15)
Pyi—1 = APy 1 AT + BQy BT (A-16)

This initial prediction can be updated using the Kalman gain K, which can be computed by
the following equation:
Ky, = Py AT (R + C Py, CT) 7! (A-17)
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The final pose estimation ¢, and covariance matrix Py are given by:

Qi = Grj—1 + Kr(me — Cqppi—) (A-18)
Py = (I — K A) Py (A-19)

The estimated state ¢ is used to control the AUV, and the covariance matrix Py gives the
uncertainty of the states and consequently the location uncertainty. These values are of main
importance for controlling the AUV, and is essential for online planning. This Kalman filter,
as described, was implemented into the simulation environment, and reads in the simulated
sensor data. This way, the control of the LAUV is simulated in a more realistic fashion.
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Appendix B

Problem and Domain Description

This appendix gives the full PDDL domain description of the survey task. Also an example
problem file is given as an indication of what this looks like. This problem file corresponds
to the combined problem of Figure 6-4a, although much of it is left out. The entire problem

file uses 1115 lines of code and would fill over 20 pages.

B-1 Domain File

Listing B.1: PDDL domain file - AUV Survey

(define (domain auv_survey)

(:requirements :strips :typing :fluents)
(:types
waypoint Waypoints to move between

area ; Revisit or communication area

(:predicates

(auv_at ?wp — waypoint) ; The location of the AUV

; What the AUV is supposed to do at this point

(can_survey) ;o It

should follow a survey track

(can_transit) ; It should do a transit—type action

Whether it is permitted to survey or transit between waypoints

(is_survey 7?from 7to — waypoint)
(is_transit ?from 7to — waypoint)
(is_gps ?from 7to — waypoint)
(is_revisit 7from ?to — waypoint ?via — area)
(is_comm ?from 7to — waypoint ?via — area)
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(:functions
Planning variables

(total_time) ; Operation time (optimization metric) [s]
(total_uncertainty) ; Total location uncertainty of the vehicle [m]
(total_data) ; Total data that needs to be communicated [byte]
(total_width) ; Total width that the vehicle has covered [m]

Survey functions

(sonar_range) ; Range of the sonar (both sides) [m]
(survey_speed) ; Velocity the AUV is surveying [m/s]
(area_width) ; Width of the area that needs to be covered [m]
(leg_length) ; Length of one survey leg [m]

Communication functions
(bit_rate ?a — area) ; Bit rate at a communication area [byte/s]
(survey_data) ; Data obtained after a survey leg [byte]
(data_threshold) ; Maximum total data that is permitted [byte]

Time [s] and uncertainty growth [m] for surveying and each transit

type
(time_transit ?from 7to — waypoint)
(time_gps ?from 7to — waypoint)
(time_revisit ?from 7to — waypoint ?via — area)
(time_comm ?from 7to — waypoint 7via — area)
(uncertainty_survey)
(uncertainty_transit 7from ?7to — waypoint)
(uncertainty_gps ?from 7to — waypoint)
(uncertainty_revisit 7from ?to — waypoint 7via — area)
(uncertainty_comm ?from 7to — waypoint ?via — area)

; Survey action

; Travel a survey—leg between two waypoints
(:action survey
:parameters (?from ?to — waypoint)
:precondition (and
(auv_at ?from)
(can_survey)
(is_survey ?from ?to)
; The uncertainty should not exceed the sonar range
(> (sonar_range) (total_uncertainty) )
: The data threshold should not be exeeded
(< (+ (total_data) (survey_data)) (data_threshold) )
)
:effect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
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(auv_at ?to)
Prevent doing a survey task twice
(not (is_survey 7from 7to) )
(not (is_survey 7to 7from) )
After the survey a transit needs to be done
(can_transit)
(not (can_survey))

Increase the total time by adding the time for surveying
between the waypoints, taking into account the along—track
uncertainty: total time += (142u)/v_s

(increase (total_time) (/ (+ (leg_length) (* 2 (total_uncertainty
))) (survey_speed)) )
; Increase the total uncertainty
(increase (total_uncertainty) (uncertainty_survey) )
Increase the accumulated data
(increase (total_data) (survey_data) )

Increase the covered width, taking into account the across—

track uncertainty: total width += 1 — u
(increase (total_width) (— (sonar_range) (total_uncertainty)) )

Transit actions

Transit between two waypoints
(:action transit
:parameters (7from 7to — waypoint)
:precondition (and
(auv_at ?from)
(can_transit)
(is_transit ?from 7to)

:effect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
(auv_at ?to)
After the transit a survey needs to be done
(not (can_transit))
(can_survey)
; Increase the total time by the transit duration
(increase (total_time) (time_transit 7from 7to) )
Increase the total uncertainty
(increase (total_uncertainty) (uncertainty_transit ?from 7to) )

; Transit between two waypoints and perform a GPS—fix
(:action transit_gps
:parameters (?from 7to — waypoint)
:precondition (and
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(auv_at ?from)
(can_transit)
(is_gps ?from ?to)

:effect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
(auv_at ?to)
After the transit a survey needs to be done
(not (can_transit))
(can_survey)
Increase the total time by adding the time for travelling
between the waypoints and performing a GPS-fix
(increase (total_time) (time_gps 7from ?7to) )
; Reset the total uncertainty
(assign (total_uncertainty) (uncertainty_gps 7from 7to) )
; Reset the accumulated data
(assign (total_data) 0)

; Transit between two waypoints and perform a revisit
(:action transit_revisit
:parameters (?from ?to — waypoint ?via — area)
:precondition (and
(auv_at ?from)
(can_transit)
(is_revisit 7from ?7to 7via)
)
:effect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
(auv_at ?to)
After the transit a survey needs to be done
(not (can_transit))
(can_survey)
Increase the total time by adding the time for travelling
between the waypoints and revisiting an area
(increase (total_time) (time_revisit ?from ?to ?via) )
Reset the total uncertainty
(assign (total_uncertainty) (uncertainty_revisit ?from ?to ?via)

Transit between two waypoints and communcate data
(:action transit_comm
:parameters (7from 7to — waypoint ?via — area)
:precondition (and
(auv_at ?from)
(can_transit)
(is_comm ?from 7to ?via)

)

Lukas Steenstra Master of Science Thesis




B-2 Problem File Example 71

reffect (and
Change AUV position to the new waypoint
(not (auv_at ?from) )
(auv_at ?to)
After the transit a survey needs to be done
(not (can_transit))
(can_survey)
Increase the total time by adding the time for travelling
between the waypoints and communcating at a communication area

; t 4= t_comm + d/b_r
(increase (total_time) (+ (time_comm ?from ?to ?via) (/ (
total_data) (bit_rate ?via))) )
Increase the total uncertainty
(increase (total_uncertainty) (uncertainty_comm ?from 7to ?via) )
: Reset the accumulated data wvariable
(assign (total_data) 0)

B-2 Problem File Example

Listing B.2: Example PDDL problem file - AUV Survey (partially)

(define (problem survey_task)
(:domain auv_survey)

(:objects
start wpO wpl wp2 wp3 wp4 wpb wp6 wp7 wp8 wp9 — waypoint
r0 r1 cO — area

(:init
Initialize AUV location
(auv_at start)
(can_transit)

; Survey and transit connections (partially)

(is_survey wpO wpl) (is_survey wpl wpO) ; et cetera
(is_transit wp0 wp2) (is_transit wp2 wpO) :; et cetera

(is_gps wpO wp2) (is_gps wp2 wpO) (is_gps wpl wp3) ; et cetera
(is_revisit wpO wpl rO) (is_revisit wpl wpO r0) ; et cetera
(is_comm start wpO cO) (is_comm wpO start cO0) ; et cetera

Planning variables

(= (total_time) 0) [s]
(= (total_uncertainty) 0) i [m]
(= (total_data) 0) [byte]
(= (total_width) 0) [m]
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Survey functions
(sonar_range) 100) [m]
(survey_speed) 1.2) ; [m/s]|
(area_width) 310.79) [m]
(leg_length) 356.27) [m]

(
(
(
(

Communication functions

(

= (bit_rate c0) 10) i [byte/s]
= (survey_data) 31.08 ; | byte

y
(= (data_threshold) 100) ; [byte]

; Time for transit actions [s]
(= (time_transit wp7 wp9) 37.34) (= (time_transit start wpl) 289.5)
(= (time_transit start wp0) 47.22) ; et cetera
Time for GPS actions [s]
(= (time_gps wp9 wp7) 113.05) (= (time_gps wpO start) 122.93)
(= (time_gps start wpl) 303.79) ; et cetera
; Time for revisit actions [s]
(= (time_revisit wp8 start r0) 90.35) (= (time_revisit wp4 wp8 r0)
79.27) (= (time_revisit wpO wpl r0) 197.74) ; et cetera
Time for communication actions [s]
(= (time_comm wp2 wpO c0) 217.24) (= (time_comm wpO wp3 c0) 419.62)
(= (time_comm wp3 wp0 c0) 419.62) ; et cetera

Uncertainty growth of one survey leg

(= (uncertainty_survey) 6.31)
Uncertainty growth for transit actions [m]

(= (uncertainty_transit wp9 wp7) 0.95)

(= (uncertainty_transit start wpO) 1.2) ; et cetera
Uncertainty growth for GPS actions [m]

(= (uncertainty_gps wp9 wp7) 0.34)

(= (uncertainty_gps start wpl) 1.36) ; et cetera
Uncertainty growth for revisit actions [m]

(= (uncertainty_revisit wp9 start r0) 0.82)

(= (uncertainty_revisit wpO wpl r0) 3.68) ; et cetera

; Uncertainty growth for communiation actions [m]

(= (uncertainty_comm wpl wpO cO) 11.01)

(= (uncertainty_comm wpO wp2 cO0) 5.54) ; et cetera

(:goal (and
; Cover the entire area
(>= (total_width) (area_width))
: Communicate all data
(<= (total_data) 0)

)

(: metric
Minimize operation time
minimize (total_time))
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Appendix C

Event-B Model

This appendix gives the full Event-B model of the PDDL domain, and a simple problem.
This entails two Contexts and two Machines. The first Context simply represent the types
in the PDDL domain, and the first Machine describes all predicates, functions and actions of
the PDDL domain.

The second Context declares all objects in a problem and the second Machine initializes all
predicates and functions and states a goal ’action’ as well. To fully understand what this
notation means, the reader is referred to [42] and [43].

CONTEXT
C_Survey

SETS
Waypolnts
Areas

END

Figure C-1: Event-B Context of the PDDL domain

CONTEXT
C_Surveyl
EXTENDS
C_Survey
CONSTANTS
wpl
wpl
wp2
wp3
wpd
wp3
AXIOMS
axml:  partition(Waypoints, {wpe}, {wpll}, {wp2}, {wp3}, {wpa}, {wp5}) not theorem
END

Figure C-2: Event-B Context of a simple PDDL problem
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MACHINE

M _Survey
SEES
@ C_Survey
VARIABLES
a auv_at
- Can_survey
- can_transit
- 1s_survey
- 1s_transit
- 1s_gps
- 1s_revisit
- 1s_comm
- total_time
- total_uncertainty
- total_data
- total_width
. sonar_range
- survey_speed
- area_width
. bit_rate
- survey data
- data_threshold
- leg_length
a uncertainty_survey
- time_transit
- time_gps
- time_revisit
- time_comm
- uncertainty_transit
- uncertalnty_gps
- uncertainty revisit

uncertainty_comm
INVARIANTS
- inv_auv_at: auv_at = Waypoints — BOOL not theorem
o inv_can_survey: can_survey € BOOL not theorem
- inv_can_transit: can_transit € BOOL not theorem
- inv_1is _survey: is _survey € wayp01nts * Hayp01nts — BOOL not theorem
@ 1nv 15 tran51t 1s_transit e Waypoints x Waypoints — BOOL not theorem
a inv_1s_gps: 1s _gps & Hayp01nts x Hayp01nts — BOOL not theorem
. inv_is_revisit: is_revisit € Waypoints x Waypoints x Areas — BOOL not theorem
- inv_1s_comm: 1s_comm € Waypolnts = Waypoilnts x Areas — BOOL not theorem
- inv_total_time: total_time = MW not theorem
- inv_total_uncertainty: total_uncertainty & N not theorem
- inv_total_data: total_data © MW not theorem

. 1inv_total_width: total_width & M not theorem

- 1nv_sonar_range: sonar_range € M not theorem

- inv_survey speed: survey_speed € M1 not theorem
- inv_area_width: area_width = W1 not theorem

- inv_ “bit_rate: bit_rate € Areas — N not theorem
- 1nv_survey_data: survey_data & M not theorem

- inv_data_threshold: data threshold & N not theorem
- inv leg Tength: leg_ length € M1 not theorem

@ 1nv time_transit: time_transit € Waypoints = Waypoints — M not theorem
a inv_time_gps: ) time _gps € Hayp01nts x Wayp01nts — M not theorem
o 1nv_t1me_rev151t time_revisit € Waypolnts x Waypoints x Areas — M not theorem

- inv_time_comm: time_comm € Waypoints x Waypoints x Areas — N not theorem
- inv_uncertainty survey: uncertainty survey € N1 not theorem

- inv_uncertainty transit: uncertainty_transit e Waypoints = Waypoints — M not theorem

- 1nv_uncertainty gps: uncertainty gps € Waypolnts = Waypoints — N not theorem

- 1nv_uncertalnty revisit: uncertainty_revisit € Waypoints x Waypolnts x Areas — N not theorem
- inv_uncertainty _comm:  uncertalnty comm € Waypolnts x Waypoints x Areas — M not theorem

Figure C-3: Event-B Machine of the PDDL domain, showing all variables and invariants (part I)
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EVENTS
- INITIALISATION: not extended ordinary
END
- survey: not extended ordinary
ANY
- from
a to
WHERE
a grdl: from e Waypoints not theorem
a grd2: to € Waypolnts not theorem
- grd3: to # from not theorem

a grd4:  auv_at(from) = TRUE not thecrem
s grd5:  can_survey = TRUE not theorem

a grd6:  1s_survey(from » to) = TRUE not theorem

s grd7:  sonar_range = 2+total_uncertainty not theorem

- grds:  total_data + survey_data = data_threshold not theorem

THEN

s actl: auv_at = auv_at = {from » FALSE, to » TRUE}

a act2:  1s_survey = 1s_survey = {from » to » FALSE, to » from » FALSE}

s act3: can_transit = TRUE
B act4: can_survey = FALSE » )
B act5:  total_time = total_time + (leg_length + 2+total_uncertainty)+survey_speed

s acté:  total_uncertainty = total_uncertainty + uncertainty_survey
a act7:  total_data = total_data + survey_data
s act8:  total_width = total_width + sonar_range - total_uncertainty
END
- transit: not extended ordinary
ANY
& from
a to
WHERE
s grdl: from & Waypoints not theorem

a grd2:  to e Waypoints not theorem

a grd3:  auv_at(from) = TRUE not theorem

- grd4:  to # from not theorem

B grds: can_transit = TRUE not theorem

s grd6:  1s_transit(from » to) = TRUE not theorem

grd7:  1s_survey n ({to} x Waypoints x {TRUE}) # & not theorem

- actl: auv_at = auv_at = {from » FALSE, to » TRUE}
B act2: can_transit = FALSE
a act3: can_survey = TRUE

a act4:  total_time = total_time + time_transit(from » to)
s acts:  total_uncertainty = total_uncertainty + uncertainty transit(from » to)
END
- transit_gps: not extended ordinary
ANY
& from
a to
WHERE
s grdl: from & Waypoints not theorem
a grd2:  to e Waypoints not theorem
s grd3: to # from not theorem

a grd4:  auv_at(from) = TRUE not theorem

B grdS:  can_transit = TRUE not theorem

s grd6:  1s_gps(from » to) = TRUE not theorem

grd7:  1s_survey n ({to} x Waypoints x {TRUE}) # & not theorem

- actl: auv_at = auv_at = {from » FALSE, to » TRUE}

B act2: can_transit = FALSE

a act3: can_survey = TRUE

a act4: total_time = total_time + time_gps(from » to)
B act5:  total_uncertalnty = uncertainty_gps(from » to)
- act6:  total _data =0

END

Figure C-4: Event-B Machine of the PDDL domain, showing the survey, transit and
transit_gps event (part )
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Event-B Model

- transit_revisit: not extended ordinary
ANY
- from
a to
- via
WHERE
- grdl:  from & Waypoints not theorem
- grd2:  to € Waypoints not theorem
- grd3: to # from not theorem
- grd4: via € Areas not theorem
- grds: auv_at(from) = TRUE not thearem
- grdé:  can_transit = TRUE not theorem
- grd7:  1s_revisiti{from » to » via) = TRUE not theorem
- grda: 1is_survey n ({to} x waypoints x {TRUE}) # @ not theorem
THEN
N actl: auv_at = auv_at = {from » FALSE, to » TRUE}
- act2: can_transit = FALSE
- acta: can_survey = TRUE
- act4: total_time = total time + time_revisit(from » to » via)
s act5:  total_uncertainty = uncertainty_revisit(from » to » via)
END

- transit_comm: not extended ordinary

ANY

- from
a to

- via
WHERE

- grdl:
- grd2:
- grd3:
- grd4:
- grds:
- grd6:
- grd7:
- grds:
- grdg:
THEN

a actl:
a act2:
a acta:
a act4:
a acts:
a act6:
END

END

from € Waypoints not theorem

to & Waypoints not theorem

to # from not theorem

via € Areas not theorem

auv_at(frem) = TRUE not theorem

can_transit = TRUE not theorem

1s_comm(from » to » via) = TRUE not theorem

is_survey n ({to} x Waypoints x {TRUE}) # & not theorem
bit rate(via) = 0 not theorem

auv_at = auv_at = {from » FALSE, to » TRUE}
can_transit = FALSE
can_survey = TRUE

total_time = total_time + time_comm(from » to » via) + total_datatbhit_rate(via)
total_uncertainty = total_uncertainty + uncertainty_comm(from » to » via)

total_data = 0

Figure C-5: Event-B Machine of the PDDL domain, showing the transit_revisit and
transit_comm event (part I)
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MACHINE
M Surveyl
REFINES
2 M_Survey
SEES
= C_Surveyl
VARIABLES
2 auv_at
can_survey
can_transit
1s_survey
1s_transit
1s_gps
1s_revisit
1s_comm
total_time
total_uncertainty
total_data
total_width
sonar_range
survey_speed
area_width
bit_rate
survey_data
data_threshold
leg_length
uncertainty_survey
time_transit
time_gps
time_revisit
time_comm
uncertainty_transit
uncertainty_gps
uncertainty_revisit
. uncertainty_comm
INVARIANTS

invl: auv_at \ (Waypoints x {FALSE}) # @ not theorem

inv2:  total_data = data_threshold not theorem

Figure C-6: Event-B Machine of a simple PDDL problem, showing all variables and invariants

(part I)
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EVENTS
- INITIALISATION: not extended ordinary

THEN

B actl: auv_at = [Naypoints x {FALSE}) = {wp@ » TRUE}

B act2: can_survey = TRUE

- act3: can_transit = FALSE

a act4:  1s_survey = (Waypoints x Waypoints x {FALSE}) = {wp® » wpl » TRUE, wpl » wp® » TRUE,
wp2 #» wp3 » TRUE, wp3 » wp2 » TRUE, wpd » wpS » TRUE, wp5 » wpd4 » TRUE}

B acts:  1s_transit = EWayp01nts % Waypoints x {FALSE}) = {wpl » wp3 » TRUE, wpl » wp5 » TRUE,
wp3 » wp5 » TRUE, wp@ " wp2 » TRUE, wp® » wp4 » TRUE, wp2 » wpd4 » TRUE, wp3 » wpl » TRUE, wp5 » wpl » TRUE,
wpS » wp3 » TRUE, wp2 » wp® » TRUE, wp4 » wp@ » TRUE, wpd » wp2 » TRUE}

a acté: 1s_gps = EWayp01nts x Waypoints = {FALSE}) = {wpl » wp3 » TRUE, wpl » wp5 » TRUE, wp3 »
wpS » TRUE, wp@ » wp2 » TRUE, wp® » wp4 » TRUE, wp2 » wp4 » TRUE, wp3 » wpl » TRUE, wp5 » wpl » TRUE, wp5 »
wp3 » TRUE, wp2 » wp@ » TRUE, wp4 » wp® » TRUE, wp4 » wp2 » TRUE}

a act7:  1s_revisit = (Waypoints x Waypoints x Areas x {FALSE})

a act8:  1s_comm = (Waypoints x Waypolnts x Areas x {FALSE})

s act9: total_time =9

a actl0: total_uncertainty = 0

s actll: total_data =8

- actl2: total_width

- actl3: sonar_range -

a actl4: survey speed =

a actls: area_width = 12

- actlé: bit_rate = (Areas x {o})

- actl7: survey data = 0

B actls: data threshold = 108

s act19: leg_ Tength =

a act20: time_transit = (Waypoilnts x Waypoints x {8}) = {wpl » wp3 » 1, wpl » wp5 » 2, wp3 » wpS
1, wp@ » wp2 » 1, wplO » wpd » 2, wp2 » wpd » 1, wp3 » wpl » 1, wpS » wpl » 2, wp3 » wp3 » 1, wWp2 B wWpd »
1, wpd » wpd » 2, wpd » wp2 » 1}

a act21: time_gps = (Waypoints = Waypoints x {0}) = {wpl » wp3 » 2, wpl » wp5 » 3, wp3 » wp5S »
2, wpO » wp2 » 2, wpB » wpd » 3, wp2 b wpd » 2, wp3 » wpl » 2, wp5 » wpl » 3, wWp5 » wp3 B 2, wp2 » wpb » 2,
wpd v wpd » 3, wpd B wp2 » 2}

- act22: time_revisit = (Waypoints x Waypolnts x Areas x {0})

- act23: time_comm = (Waypolnts x Waypoints x Areas x {0})

a act24: uncertainty survey = 1

B act25: uncertainty_transit = (Waypoints x Waypoints x {0})

a act26: uncertainty_gps = (Waypoints = Waypoints x {0})

¢}
6

B act27: uncertainty_revisit = (Waypolnts x Waypolnts x Areas x {0})
B act28: uncertainty_comm = (Waypoints x Waypolnts x Areas » {0})
END

- goal: not extended ordinary
WHERE

a grdl:  total_width = area width not theorem
a ard2: total_data = © not theorem
END

END

Figure C-7: Event-B Machine of a simple PDDL problem, showing the initialization and goal
events. The actions of the domain Machine are not shown, but are obviously also present in this
machine as refined actions. (part II)
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AUV
DVL
EHC
FD

FF
GPS
INS
IMC
IMU
IPC
LAUV
MCM
MILP
OPTIC
PDDL
POD
ROS
SLAM
SPM

Autonomous Underwater Vehicle
Doppler Velocity Logger

Enforced Hill Climbing

Fast Downward

Fast Forward

Global Positioning System

Inertial Navigation System
Inter-Module Communications

Inertial Measurement Unit
International Planning Competition
Light Autonomous Underwater Vehicle
Mine Countermeasure

Mixed Integer Linear Programming
Optimizing Preferences and TIme-dependent Costs
Planning Domain Definition Language
Probability of Detection

Robot Operating System

Simultaneous Localization and Mapping

Sonar Performance Model
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SSS Side-Scan Sonar
TNO the Netherlands Organisation for applied scientific research
uuv Unmanned Underwater Vehicle
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