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Abstract
Purpose –When simulating fluid-structure interaction (FSI), it is often essential that the no-slip condition is
accurately enforced at the wetted boundary of the structure. This paper aims to evaluate the relative strengths
and limitations of the penalty and Lagrange multiplier methods, within the context of modelling FSI, through
a comparative analysis.

Design/methodology/approach – In the immersed boundary method, the no-slip condition is
typically imposed by augmenting the governing equations of the fluid with an artificial body force. The
relative accuracy and computational time of the penalty and Lagrange multiplier formulations of this
body force are evaluated by using each to solve three test problems, namely, flow through a channel, the
harmonic motion of a cylinder through a stationary fluid and the vortex-induced vibration (VIV) of a
cylinder.

Findings – The Lagrange multiplier formulation provided an accurate solution, especially when
enforcing the no-slip condition, and was robust as it did not require “tuning” of problem specific
parameters. However, these benefits came at a higher computational cost relative to the penalty
formulation. The penalty formulation achieved similar levels of accuracy to the Lagrange multiplier
formulation, but only if the appropriate penalty factor was selected, which was difficult to determine a
priori.

Originality/value – Both the Lagrange multiplier and penalty formulations of the immersed boundary
method are prominent in the literature. A systematic quantitative comparison of these two methods is
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presented within the same computational environment. A novel application of the Lagrange multiplier
method to themodelling of VIV is also provided.

Keywords Penalty, Finite element, Fluid-structure interaction, Lagrange multiplier, Immersed boundary

Paper type Research paper

1. Introduction
Structures that operate under conditions in which their dynamics are strongly coupled to
that of the surrounding fluid are pervasive in engineering. Examples of such fluid-structure
interaction (FSI) include the aeroelastic deformations of propellers (Sodja et al., 2018), the
wave-induced motions of floating wind turbines (Yan et al., 2016) and floods caused by dam-
breaks (Amicarelli et al., 2017). For design purposes, numerical simulations are an attractive
option as a large number of different geometries, configurations and load cases can easily be
considered, while minimising expensive laboratory and field testing. A popular approach to
simulating FSI is to adopt a partitioned scheme, wherein the fluid and structural dynamics
are each calculated separately using two different solvers. The interaction between fluid and
structure is accounted for by letting the solvers exchange information about the deformation
of the wetted boundary of the structure and the traction exerted on this boundary by the
fluid.

The approaches for achieving a partitioned scheme can be divided into two different
groups. In the first group, which have been referred to as defined-body (DB) methods (Viré
et al., 2015) or body-conformal grid methods (Mittal and Iaccarino, 2005), the domain of the
fluid dynamics model conforms to the shape of the wetted boundary of the structure. The
wetted boundary is, therefore, an external boundary of the domain in the fluid dynamics
model and the structure is located entirely outside of this domain. The no-slip condition that
exists at the wetted boundary is imposed in the fluid dynamics model through Dirichlet
boundary conditions. DB methods have been used to investigate FSI in a wide variety of
applications such as the vibration of wind turbines (Bazilevs et al., 2011) and axial
compressor rotors (Brandsen et al., 2018), the deployment of spacecraft parachutes (Gao
et al., 2016) and the response of submersible hulls to underwater explosions (Gong, 2019).
The second group, called immersed boundary methods, are the focus of this article. In an
immersed boundary method, the shape of the domain of the fluid dynamics model does not
conform to that of the structure. Instead, it contains both the space occupied by the structure
and the space occupied by the fluid. Therefore, the wetted boundary is located entirely
within the domain and no longer constitutes an external boundary. Typically, the no-slip
condition at the wetted boundary is indirectly enforced by adding an artificial body force
term to the governing equations of the fluid. The artificial body force causes the velocity of
the fluid to approach that of the structure at this boundary.

The origin of immersed boundary methods can be traced back to the method of Peskin
(1972), who used it to simulate the motion of heart valve leaflets. Since then, the immersed
boundary method has been developed further by authors such as Taira and Colonius (2007),
who combined it with a predictor-corrector time integration scheme and L�acis et al. (2016),
who adapted it to particulate flows. The fictitious domain method, a variant of the immersed
boundary method, has also since been developed for simulating FSI. Two common
approaches that are actively being investigated in the literature are to use either a Lagrange
multiplier or a penalty formulation for the artificial body force. An example of a specific
Lagrange multiplier approach that is currently popular is the distributed Lagrange multiplier
(DLM) method. Authors who have applied the DLM method within the immersed boundary
or fictitious domain methods include Glowinski et al. (1995), Glowinski et al. (1997, 1998),
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Boffi et al. (2015), Boffi and Gastaldi (2017), Kadapa et al. (2016) and Sun (2019). Examples of
the penalty approach being used within the immersed boundary or fictitious domain
methods are Goldstein et al. (1993), Khadra et al. (2000), Viré et al. (2012, 2015), Viré et al.
(2016), Kim and Peskin (2016), Verma et al. (2017) and Specklin and Delauré (2018).

The purpose of this article is to conduct a systematic and quantitative comparative analysis
of the two popular methods of enforcing the no-slip condition for FSI within the context of the
immersed boundary or fictious domain methods, namely, the penalty and Lagrange multiplier.
To highlight the effects of the different formulations of these approaches, test problems with
relatively simple fluid and structural dynamics are selected for the analysis. This increases the
likelihood that any disparities in performance observed between the approaches are not caused
by difficulties in modelling the physics of the test problems, but are instead the result of the
formulations used. The test problems were, therefore, limited to ones involving laminar flow past
stationary or moving rigid structures. The article begins by presenting the continuous
formulation of both approaches in Section 2. The spatial and temporal discretisations are covered
in Sections 3 and 4, respectively. Section 5 presents the results of the comparative analysis using
a number of test problems. Finally, conclusions and recommendations are provided in Section 6.

2. Continuous formulation
2.1 Governing equations of the fluid
Consider the domain X of the FSI problem that is illustrated in Figure 1, which is set in a d-
dimensional space. The domain contains a moving solid body, Xs = Xs (t), surrounded by an
incompressible Newtonian fluid, Xf = Xf (t) so that the overall domain is X = Xs | Xf. Note
that in this case, X is not a function of time t. The boundaries of Xs and X are denoted by @Xs
and @X, respectively. In the immersed boundary and fictitious domain methods, the governing
equations of the fluid are solved throughout the entire domain X, with Xs being treated as
though it is filled with the same fluid as Xf. The domain boundary @X = @XD | @XN is
divided such that @XD denotes the portion of the boundary on which Dirichlet boundary

Figure 1.
DomainX =Xs|Xf

of a generic fluid-
structure interaction
problem, consisting
of a solid bodyXs

surrounded by an
incompressible

Newtonian fluidXf
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conditions are specified for the velocity field of the fluid, and @XN is the complementary portion
on which tractions are applied (Neumann boundary conditions). The unit vector n is normal to
@X and points out ofX. Similarly, the unit vectorns is normal to @Xs and points out ofXs.

If the body is rigid, the governing equations of the fluid can be formulated as:

r
@u
@t

þ r ruð Þu ¼ rrþ bþ fs; in X� 0; tð � (1a)

r ¼ �pIþ m ruþ ruð ÞT
� �

; in X� 0; tð � (1b)

div u ¼ 0; in X� 0; tð � (1c)

us x; tð Þ ¼ u tð Þ þ x tð Þ � x� x tð Þð Þ; in Xs � 0; tð � (1d)

u x; tð Þ ¼ û x; tð Þ; on @XD � 0; tð � (1e)

r x; tð Þn x; tð Þ ¼ t̂ x; tð Þ; on @XN � 0; tð � (1f)

u x; 0ð Þ ¼ u0 xð Þ; in X (1g)

p x; 0ð Þ ¼ p0 xð Þ; in X (1h)

fs ¼ fs x; tð Þ such that u ¼ us; in Xs � 0; tð � (1i)

where x signifies the coordinates of a point in X, r is the density of the fluid, m is its
dynamic viscosity, p is its pressure, u is its velocity, r is the Cauchy stress tensor, I is the
identity tensor and b is a gravity-like body force. The boundary conditions specified for u
and the traction are denoted, respectively, by û and t̂. The initial condition assigned to u is
represented by u0. Similarly, the initial condition assigned to p is signified by p0. The vectors
x and u denote the coordinates and velocity, respectively, of the centre of gravity of the solid
body and x is the body’s angular velocity. The resulting velocity field of the body is
represented by us. The term fs is an artificial body force that imposes the no-slip condition
by ensuring that u= us inXs.

Equation (1a) is the balance of linear momentum of the fluid and its weak form is given by:

ð
X
w � r @u

@t
dX ¼ r

ð
X
u � rwð Þu dX� r

ð
@X

u �wð Þ u � nð Þ dS

�
ð
X
w � rp dX� m

ð
X
rw � ru dX

þ m

ð
@X

ruð ÞTw � n dS þ
ð
X
w � b dX

þ
ð
X
w � fs dX;

(2)
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which is satisfied for all test functionsw. The functional space ofw is the same as that of u,
with the exception that w vanishes on the portion of @XD on which strong Dirichlet
boundary conditions for u are specified. Similarly, the weak form of the continuity equation
(equation (1c)) is: ð

X
q divu dX ¼ 0; (3)

which is satisfied for all test functions q that are from the same functional space as p.

2.2 Penalty approach
The immersed body (IB) method (Viré et al., 2016), from the open-source numerical tool
Fluidity, is selected to represent the penalty approach in the comparative analysis. Fluidity is
a finite-element (FE) code that is capable of solving the Navier–Stokes equations on
structured and unstructured meshes (Pain et al., 2005; Pain et al., 2001; Piggott et al., 2008). In
the IBmethod, the artificial body force term has the form:

fs ¼ bas us � uð Þ; (4)

where b is a constant penalty factor and as is the solid concentration field. The latter tracks
the volume fraction of solid material at each point inX at time t and is defined by:

as x; tð Þ ¼ 1 if x 2 Xs tð Þ;
0 if x 62 Xs tð Þ:

(
(5)

To satisfy the no-slip condition, the velocity of the fluid must be equal to the velocity of the
structure throughout Xs. This is achieved by selecting b to be large enough to allow fs to
become the dominant term in equation (1a) forx [Xs(t), hence forcing the difference between us
and u to be small in this region. An advantage of the penalty approach is that it is simple and
does not require any modifications to the governing equations of the fluid, apart from the
inclusion of the artificial body force. However, a limitation is that the difference between us and
u can never be exactly zero as this would result in fs also becoming zero. The penalty approach
is, therefore, incapable of imposing the no-slip condition exactly. Nonetheless, this limitation is
acceptable as long as the difference between us and u is small enough to accurately account for
the influence of the body on the surrounding fluid.

2.3 Distributed Lagrange multiplier approach
In the DLMmethod, the artificial body force is set equal to:

fs ¼ ask; (6)

where l is a Lagrange multiplier field whose vector components are functions in L2 (Xs). A
weak version of the no-slip condition is also introduced:ð

Xs

c � us � uð Þ dX ¼ 0; (7)

which is satisfied for all test functions c from the same functional space as k. The latter has
to be solved for during the time integration of the governing equations, together with the
fields u and p, while satisfying equation (7).
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Note that fs does not contain the quantity (us – u). Consequently, this quantity is allowed
to be equal to zero for x [Xs (t), while still ensuring a non-zero value for fs. Therefore, unlike
the penalty approach, the DLM approach is theoretically capable of enforcing the no-slip
condition exactly. However, this advantage comes at the cost of introducing an additional
solution variable and constraint equation.

2.4 Governing equations of the structure
The comparative analysis considers both one-way FSI test problems, in which the motion of
the structure is prescribed and two-way FSI test problems, where the structure responds
dynamically to the traction exerted on it by the fluid. For the two-way FSI problems, the
structure will be modelled as a rigid body of massm attached to a linear spring, with spring
constant k and a viscous damper, with damping coefficient c. The spring and damper
represent the stiffness and internal damping, respectively, that would be possessed by a
flexible structure. Furthermore, the motion of the rigid body is constrained so that it cannot
rotate and can only translate in the x1-direction. The response of the body, therefore obeys
the equation of motion of a single-degree-of-freedom oscillator:

ma1 þ cu1 þ kx1 ¼ t1: (8)

The subscript in equation (8) denotes the vector components of a, u; x and t, acting in the
x1-direction, where a ¼ du=dt is the linear acceleration at the centre of gravity of the
structure. The quantity t is the resultant traction exerted on the structure by the fluid:

t ¼
ð
@Xs

r x; tð Þns x; tð Þ dS: (9)

3. Spatial discretisation
In this section, the spatially discretised governing equations are discussed. Firstly, the
spatially discretised equations that are common to both the penalty and the Lagrange
multiplier approaches are presented. This is followed by the discretisation of the artificial
body force for each approach. Finally, the influence of this discretisation on the calculation
of the traction exerted on the structure by the fluid is addressed.

3.1 Governing equations of the fluid
Amesh of finite elements is created fromX. The union of these elements form a new domain
Xh such that Xh � X. Discontinuous piece-wise linear shape functions (P1DG) are chosen to
represent u and continuous quadratic polynomials (P2) are selected to represent p. An
advantage of this combination of discretisations is that it is feasible to use the consistent
mass matrix, as opposed to the lumped mass matrix, for the time integration of the
governing equations of the fluid. This is because the inverse of the global consistent mass
matrix can easily be directly assembled from the inverted consistent mass matrices of the
elements, thus eliminating the need for lumping. This combination has also been shown to
be stable and have good balance preserving properties (Cotter et al., 2009). An upwind
scheme is selected for the discretisation of advective boundary terms at element faces that
are internal to Xh. The viscous boundary terms at these internal element faces are
discretised using a compact discontinuous Galerkin scheme. Under these assumptions, the
semi-discrete form of the balance of linear momentum can be written in matrix form as:
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M
du
dt

þ A uð Þ þKþD uð Þ� �
uþ Cp ¼ fs þ ft þ fw; (10)

where u, p and fs are column vectors containing the nodal values of the spatially
discretised velocity, pressure and artificial body force, respectively. The matrices
M;AðuÞ;K andC represent the mass matrix, the advection matrix evaluated at u, the
diffusion matrix and the pressure gradient matrix, respectively. Details about the
structure of these matrices can be found in Piggott et al. (2008). The coefficients
obtained from the discretisation of the advective and viscous boundary terms at the
internal element faces are stored in the matrix DðuÞ. The column vectors ft and fw are
associated with the traction and weak velocity boundary conditions, respectively. The
semi-discrete continuity equation has the form:

CTu ¼ c; (11)

where c contains the contributions from the weak boundary conditions specified for u.

3.2 Penalty term
In addition to the mesh of X, the IB method requires the creation of a FE mesh of Xs. The
union of these elements form the domain Xh

s such that Xs � Xh
s . All fields on Xh

s are
discretised using continuous piece-wise linear polynomials (P1). Furthermore, the penalty
method makes use of two different discretisations of as. The first discretisation uses the
same shape functions as u and will be denoted as as,u. The second discretisation uses the
shape functions of Xh

s and will be represented by as,s. If the structure is non-porous, as,s = 1
as Xh

s is filled entirely with solid material. Fluidity calculates as,u through a Galerkin
projection of as,s ontoX

h: ð
Xh
NI xð Þas;u dX ¼

ð
Xh

s

NI xð Þas;s dX; (12)

whereNI is the shape function of the node with global node number I from the discretisation
of u. The total number of nodes in this discretisation will be denoted by nu.

As with the solid concentration field, the velocity of the body us is first discretised on X
h
s

resulting in the field us,s. An alternative discretisation of us,u, which is expressed using the
same shape functions as u, is then obtained through the Galerkin projection of us,s onto X

h.
The column vector containing the nodal values of us,u will be denoted by us,u. Further
information about the Galerkin projection algorithm can be found in Farrell et al. (2009) and
Farrell andMaddison (2011).

Replacing the continuous fields in equation (4) with their discretised counterparts
leads to:

fs ¼ Qus;u �Pu; (13)

where P andQ are block-diagonal matrices that each consist of d� d blocks, where d is the
number of spatial dimensions. Each block is a sub-matrix of dimensions nu � nu. All of
the main diagonal blocks in P are identical, as are all of the main diagonal blocks ofQ. The
entries of each main diagonal block inP andQ are given by:
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PIJ ¼ b

ð
Xh
as;uNI xð ÞNJ xð Þ dX ; (14)

QIJ ¼ b

ð
Xh
NI xð ÞNJ xð Þ dX ; (15)

By defining B ¼ M d
dt þA uð Þ þKþD uð Þ

� �
, the semi-discrete governing equations of

the penalty method can be written compactly in block matrix form as:

BþP C

CT 0

" #
u

p

" #
¼ ft þ fw þQus;u

c

" #
: (16)

3.3 Lagrange multiplier term
The Lagrange multiplier field k can be discretised by either regularising it to a mesh of the
overall domain, such as Xh, (Peskin (1972), Taira and Colonius (2007) and L�acis et al. (2016))
or by representing it on a mesh ofXs, such asX

h
s (Glowinski et al. (1998), Kadapa et al. (2016)

and Boffi and Gastaldi (2017)). For definiteness, the latter approach is implemented in the
present work, a task that is facilitated because of the fact that Fluidity is already configured
to generate a mesh Xh

s of Xs for the IB method. The column vector containing the nodal
values of k will be denoted by l. Replacing each of the quantities in equation (6) with their
discretised versions and substituting in as,s = 1 results in:

fs ¼ Ll: (17)

Similarly, the discretised version of the weak form of the no-slip condition is:

LTu ¼ Sus;s: (18)

The matrices L and S are both block diagonal consisting of d � d blocks, with all of
the main diagonal blocks being identical. Each main diagonal block of L has dimensions
nu� ns, where ns is the total number of nodes inXh

s . The entries of each of these blocks ofL
are given by:

LIJ ¼
ð
Xh

s

NIMJ dX : (19)

whereMJ is the shape function associated with the node with global node number J fromXh
s .

Each main diagonal block of S has the dimensions of ns� ns and is simply the mass matrix
ofXh

s . The entries of each main diagonal block ofS are, therefore:

SIJ ¼
ð
Xh

s

MIMJ dX : (20)

The governing equations of the Lagrange multiplier method can be expressed in block
matrix form as:
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B C L

CT 0 0

LT 0 0

2
664

3
775

u

p

l

2
664

3
775 ¼

ft þ fw

c

Sus;s

2
664

3
775: (21)

3.4 Effect on traction calculation
As the discretised domain Xh does not conform to the shape of @Xs, it does not capture
@Xs as a sharp interface (Viré et al., 2015). As explained by Viré et al. (2015), this causes
the stagnation points of the flow field to not be located on @Xs as they should, but shifts
them a distance of approximately le away from it. During the post-processing of the
discretised flow field, selecting @Xs as the curve along, which to calculate the resultant
traction can, therefore cause significant errors as it may not adequately capture the
stagnation points. To compensate for this effect, a surrogate solid domain X*

s is
introduced. The boundary of this surrogate domain, @X*

s , is then used when post-
processing the traction resulting in:

t ¼
ð
@X*

s

r x; tð Þn*
s x; tð Þ dS; (22)

where n*
s x; tð Þ is a unit vector that is normal to @X*

s and points out of X*
s . The surrogate

domain is generated by displacing each point on @Xs perpendicularly outward by a distance
of le.

4. Time discretisation
4.1 Penalty approach
The governing equations of the fluid are integrated in time using a predictor-corrector
method (Piggott et al., 2008; Viré et al., 2012). For the penalty approach, the time-discretised
balance of linear momentum (equation (10)) is:

M
~unþ1 � un

Dt
þ A ~unþuð Þ þKþD ~unþuð Þ� �

~unþu þPn~unþu ¼ f nþ1; (23a)

f nþ1 ¼ f nþ1
t þ f nþ1

w þQuns;u � C~pnþ1; (23b)

where the superscript denotes the time at which the variable is being evaluated, e.g. un = u
(nDt) or unþ1 = u ((n þ 1)Dt), with Dt being the integration time step. This superscript is
omitted for quantities that are constant with respect to time, e.g.M or C. The term ~unþu is
defined by:

~unþu ¼ u ~unþ1 þ 1� uð Þun; (24)

with u = 0.5 corresponding to the Crank-Nicolson scheme. The predictor step consists of
specifying a candidate value for the pressure field ~pnþ1and then solving equations (23a) and (23b)
to find a candidate velocity field ~unþ1. The corrector step consists of first solving the following
Poisson problem for the pressure correction (pnþ1 – ~pnþ1) so that the continuity equation
(equation (11)) is satisfied:
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DtCTM�1C pnþ1 � ~pnþ1
� �

¼ CT~unþ1 � cnþ1: (25)

The value of the pressure field pnþ1 is obtained by simply applying this correction to ~pnþ1.
Once the pressure correction is known, the velocity field unþ1 is calculated:

unþ1 ¼ ~unþ1 þ DtM�1C pnþ1 � ~pnþ1
� �

: (26)

At the beginning of each time-step, the value of ~pnþ1 is set equal to pn. The predictor-
corrector method is then executed and repeated, if necessary, until the changes in pnþ1 and
unþ1 between consecutive sub-iterations are sufficiently small.

4.2 Lagrange multiplier approach
To provide a fair comparative analysis, the time integration scheme used by the Lagrange
multiplier approach is simply an extension of the predictor-corrector method used by the
penalty approach. The time discretised version of equation (10) is thus, also similar:

M
~unþ1 � un

Dt
þ A ~unþuð Þ þKþD ~unþuð Þ� �

~unþu ¼ f nþ1 (27a)

f nþ1 ¼ f nþ1
t þ f nþ1

w � C~pnþ1 �Ln~l nþ1
: (27b)

The procedure for solving ~unþ1 is the same as that adopted in the penalty approach, except

that now candidate values have to be provided for both ~pnþ1 and ~l
nþ1

. Furthermore, in the

corrector step, the Lagrange multiplier field correction lnþ1 �~l
nþ1

� �
is first computed, such

that the no-slip condition (equation (18)) is enforced, by solving:

Dt LTð ÞnM�1Ln lnþ1 �~l
nþ1

� �
¼ LTð Þn~unþ1 � STuns;s: (28)

The value of lnþ1 is then obtained by applying this correction to~l
nþ1

. With lnþ1 known, the
pressure correction pnþ1 � ~pnþ1

� �
is then calculated, such that the continuity equation

(equation (11)) is satisfied, by solving:

DtCTM�1C pnþ1 � ~pnþ1
� �

¼ CT~unþ1 � cnþ1 � DtCTM�1Ln lnþ1 �~l
nþ1

� �
: (29)

Finally, unþ1 is computed using:

unþ1 ¼ ~unþ1 þ DtM�1C pnþ1 � ~pnþ1
� �

þ DtM�1Ln lnþ1 �~l
nþ1

� �
: (30)

At the start of each time-step, ~pnþ1 and~l
nþ1

are set equal to pn and ln, respectively. As in the
penalty approach, the predictor-corrector method is repeated, if necessary, until the changes
in pnþ1, lnþ1 and unþ1 are sufficiently small between consecutive sub-iterations.

4.3 Governing equations of the structure and fluid-structure interaction coupling
The trapezoidal rule is used to discretise equation (8) in time resulting in:
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manþ1
1 þ cunþ1

1 þ kxnþ1
1 ¼ tnþ1

1 ; (31a)

unþ1
1 ¼ un

1 þ
Dt
2

an1 þ anþ1
1

� �
; (31b)

xnþ1
1 ¼ xn1 þ Dtun

1 þ
Dtð Þ2
4

an1 þ anþ1
1

� �
: (31c)

Equations (31b) and (31c) are used to eliminate unþ1
1 and xnþ1

1 from equation (31a). A
Newton-Raphson method is then used to solve the resulting equation for anþ1

1 , after which
unþ1
1 and xnþ1

1 are calculated using equations (31b) and (31c), respectively, via back-
substitution. These operations are performed using a separate rigid body dynamics code.

During each time step of a simulation, the governing equations of the fluid are first
solved to obtain the updated velocity and pressure fields, unþ1 and pnþ1, respectively. From
this, the new traction tnþ1 is computed and applied to the structure. The rigid body
dynamics code then solves equation (31a) through equation (31c) for the updated position
xnþ1
1 and velocity unþ1

1 of the centre of gravity of the structure. Finally, from this, the new
velocity field us,s of the structure is calculated from the computational fluid dynamics (CFD)
code, and the position of its meshXh

s is updated, after which the next time step is initiated.

5. Comparative analysis
In this section, the results obtained using the penalty and the Lagrange multiplier approaches
are compared for three test problems, namely, the laminar flow through a channel, the harmonic
motion of cylinder through a stationary fluid, and the vortex-induced vibration of a cylinder.

5.1 Channel flow
Figure 2 presents the domain used to simulate the laminar flow of an incompressible
Newtonian fluid through a channel. The penalty and Lagrange multiplier approaches are
each used to create a channel, denoted by Xf, of width 2L. This is done by imposing the
constraint u = 0 within Xs = Xs,1 | Xs,r (the shaded regions). The walls of the resulting
channel, which should be located at x = 6L, are denoted by @Xs,1 and @Xs,r. An analytical
solution can be derived for fully developed steady flow with inlet and outlet pressures of pi
and po, respectively. The velocity field uss and pressure field pss from the steady-state
analytical solution, for a channel of width 2L and length 4L, are given by:

uss xð Þ ¼ pi � po
8mL

x21 � L2
� �

e2; (32a)

pss xð Þ ¼ pi � po
4L

x2 þ 2Lð Þ þ po: (32b)

As shown in Figure 2, an inlet velocity profile consisting of u = uss within the interval
jx1j # L and u=0 outside of it, is applied to the top domain boundary. A boundary
condition of rn = –pon is applied to the bottom boundary. Initially, u=0 and p = po
throughout the entire domain. After a sufficient amount of time has passed, the flow field
inside ofXf should reach a steady-state in which u = uss and p= pss.

The penalty and Lagrange multiplier approaches are used to simulate the case in which
pi= 400Pa, po = 0Pa, L= 1m, r = 1kg/m3 and m = 1kg/ms. This results in a Reynolds number
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of Re= r (pi – po)L
2/(4m 2) = 66.7. Each simulation is run for 300Dt atDt= 0.001 s. Four different

computational meshes are considered. The so-called “very coarse” and “coarse” meshes have
1,022 and 4,320 elements, respectively. For the “very coarse” mesh, le/L = 1/5 throughout the
entire domain, where le is the local element edge length. Similarly, le/L = 1/10 throughout the
entire domain for the “coarse” mesh. Two additional meshes, which will be referred to as
“intermediate” and “fine”, are generated by refining the coarse mesh near @Xs,1 and @Xs,r. For the
intermediate mesh, which is shown in Figure 3, zones of finer elements with le/L = 1/40 are
created on both sides of @Xs,1 and @Xs,r. The edge length increases with the distance from these
zones so that le/L = 1/10 at the channel centreline and at the side boundaries of the domain. This
results in amesh of 17,184 elements. The finemesh is constructed in the samemanner except that
le/L = 1/100 in the zones of finer elements near @Xs,1 and @Xs,r, producing a mesh of 53,411
elements. In addition, simulations with the penalty method are conducted for three values of the
penalty factor: b = b */10, b * and 10b *. The value of b * is determined using the following
formula that is recommended for the IBmethod:

b * ¼ max
r

Dt
;
m

l2e;min

� �
; (33)

where le,min is the minimum value of le for the mesh being used (Viré et al., 2012). Nine
simulations were therefore, executed using the penalty approach.

Figure 2.
Domain for
simulating the
laminar flow of an
incompressible
Newtonian fluid
through a channel
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The component u2, in the x2-direction, of u computed at the bottom boundary using the
intermediate mesh is plotted in Figure 4(a) at t = 150Dt. This value of t is selected for the
plots as it was found that all of the solutions had reached steady-state by this time.
Figure 4(b) shows the steady-state pressure at the centreline of the channel. Both the penalty
method with b = 10b * and the Lagrange multiplier method predict profiles for the velocity
and the pressure that agree very closely with the analytical solution. The velocity profiles
calculated by the penalty method with b = b */10 and b = b * overpredict the minimum
velocity and exhibit a non-zero velocity at walls of the channel. Therefore, in these two
cases, a significant amount of fluid is leaking into Xs. This is confirmed by the pressure
profiles for these two cases, which both underpredict the pressure drop across the channel.
The solution obtained by the penalty method is therefore, more accurate with b = 10b *

than with the recommended value of b *, which shows that the appropriate value for b can
be difficult to determine a priori.

To examine the numerical solutions in more detail, the quantity r*ss is defined as the L2-
norm of the error in u relative to uss, calculated over a region X* and non-dimensionalised
using the L2-norm of uss over this region:

r*ss X*ð Þ ¼ 100%�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
X*

jju� ussjj2
� �2 dXð
X*

jjussjj2
� �2 dX

vuuuuut : (34)

Similarly, r*p;ss is the L
2-norm of the error in p relative to pss, calculated over X* and non-

dimensionalised using the L2-norm of pss over this region:

Figure 3.
The intermediate

version of the
computational mesh

Xh of the overall
domainX, used to

simulate the steady
laminar flow of an

incompressible
Newtonian fluid

through a channel
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r*p;ss X*ð Þ ¼ 100%�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
X*

jjp� pssjj2
� �2 dXð
X*

jjpssjj2
� �2 dX

vuuuuut : (35)

The values of r*ss Xfð Þ and r*ss Xsð Þ are plotted in Figures 5(a) and 5(b), respectively, for the
very coarse, coarse, intermediate and fine meshes. The value of r*ss Xsð Þ is calculated by
letting uss = 0 in Xs, and therefore, represents the error with which the no-slip condition is
imposed. Likewise, r*p;ss Xfð Þ is plotted for each of these meshes in Figure 6. According to
Figure 5(a), the velocity field from the Lagrange multiplier method exhibits the least error
inside of Xf on all four meshes. Out of the penalty factors tested, b = b * results in the
lowest error inside of Xf on the very coarse and coarse meshes. However, it is surpassed by
b = 10b * on the medium and fine meshes. Figure 5(b) shows that the Lagrange multiplier
method also enforces the no-slip condition the most accurately on the coarse, medium and

Figure 4.
Shown in (a) is the
component u2, in the
x2-direction, of the
velocity at the outlet
of the channel and (b)
presents the pressure
p along the channel
centreline
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fine meshes, but is actually surpassed slightly on the very coarse mesh by the penalty
method with b = b *. Similarly, when looking at r*p;ss Xfð Þ, the Lagrange multiplier method
is surpassed narrowly by the penalty method with b = b * on the very coarse mesh and
again with b = 10b * on the fine mesh. As expected, r*ss Xfð Þ, r*ss Xsð Þ and r*p;ss Xfð Þ from the
Lagrange multiplier method all decrease monotonically as the mesh is refined. For both
r*ss Xfð Þ and r*p;ss Xfð Þ, the Lagrange multiplier method shows approximately linear
convergence with respect to the number of elements. For r*ss Xsð Þ, the rate of convergence of
the Lagrange multiplier method is greater than linear from the very coarse mesh to the
coarse mesh, but then also becomes approximately linear as the mesh is successively
refined. However, the penalty method does not necessarily exhibit this monotonic decrease
in these quantities. This behaviour is possibly because of the max (·, ·) operator in equation
(33). For the very coarse and coarse meshes, the term r /Dt is the largest, and is thus, used to
define b *. However, when moving to the intermediate mesh, the term m=l2e;min becomes the
largest, hence changing this definition. Nevertheless, for the Lagrange multiplier method,
and for the penalty method with b = b * and b = 10b *, the values of r*ss Xfð Þ, r*ss Xsð Þ and
r*p;ss Xfð Þ all only change a small amount, less than 2%, 1% and 1%, respectively, between
the intermediate and fine meshes indicating convergence with respect to mesh refinement.
As with the Lagrange multiplier method, the penalty method with

Figure 5.
The non-

dimensionalised error
r*ss X*ð Þ in the steady-
state velocity, with

respect to the
analytical solution
and calculated over

the regionX*, is
shown for the

Lagrange multiplier
method and the

penalty method for
penalty factors b =
b */10,b * and 10b *,

where b * is the
recommended
penalty factor
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b = 10b * exhibits approximately linear convergence in r*ss Xfð Þ and r*p;ss Xfð Þ as the mesh is
refined. However, for r*ss Xsð Þ, the rate of convergence for b = 10b * drops dramatically with
refinement beyond the coarse mesh. Furthermore, for the intermediate and fine meshes,
r*ss Xfð Þ, r*ss Xsð Þ and r*p;ss Xfð Þ all decrease as b is increased. This indicates that it is difficult
to find a priori a suitable value for the penalty factor b .

Finally, Figure 7 presents the computational times required by the Lagrange multiplier
and penalty methods to reach various thresholds in r*ss Xfð Þ, i.e. to get to within a certain
error of steady-state, when using the intermediate mesh. The thresholds selected for this
comparison were r*ss Xfð Þ ¼ 0:1 %; 0:5 %; 1 %; 5 % and 10 %. For the penalty method,
the crosses indicate the lowest threshold that could be achieved using that value of b .

Figure 6.
The non-
dimensionalised error
r*p;ss X*ð Þ in the
steady-state pressure,
with respect to the
analytical solution
and calculated over
the regionXf (inside
of the channel), is
shown for the
Lagrange multiplier
method and the
penalty method for
penalty factors b =
b */10, b * and 10b *,
where b * is the
recommended
penalty factor

Figure 7.
Computational times
for the Lagrange
multiplier method
and the penalty
method for penalty
factors b = b */10,
b * and 10b *, where
b * is the
recommended
penalty factor,
obtained using the
intermediate mesh
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The computational time for the penalty method is that which is needed to solve the balance
of linear momentum and the pressure correction equation, summed over all non-linear
iterations per time step, and all time steps up until r*ss Xfð Þ reaches the specified threshold.
The computational time is calculated in the same manner for the Lagrange multiplier
method, except that the time needed to solve the Lagrange multiplier correction equation
(equation (28)) is also included. The results in Figure 7, which shows that the Lagrange
multiplier method is computationally more expensive than the penalty method for all of the
cases simulated. This is explained by the fact that, unlike the penalty method, the Lagrange
multiplier method executes additional operations when solving the Lagrange multiplier
field. However, Figure 7 does show that computational time spent by the penalty method
increases as the penalty factor is raised. This is caused by the penalty term deteriorating the
convergence rate of both the solver of the pressure correction and the non-linear iterations.
Consequently, these results indicate that, for the same accuracy, the Lagrange multiplier
method generally requires similar or additional computational time compared to the penalty
method, but it is more robust in the sense that it does not require calibration (i.e. it does not
use a penalty parameter). Furthermore, only the Lagrange multiplier method is able to reach
the threshold of r*ss Xfð Þ ¼ 0:1 %. This agrees with the errors plotted in Figures 5(a) and 5(b)
that demonstrated that the Lagrange multiplier method is able to get closer to the analytical
solution than the penalty method.

5.2 Harmonic motion of a cylinder through a stationary fluid
This test problem considers the harmonic motion of a cylinder that is immersed in a
stationary incompressible fluid (Dütsch et al., 1998). The computational domain is illustrated
in Figure 8 and has dimensions of 55D � 35D, where D is the diameter of the cylinder. The
cylinder executes the prescribed translational motion of period T defined by x1(t) = –A sin
(2p t/T). As indicated in Figure 8, the computational mesh featured a rectangular region of
finer elements of dimension 7D� 4D, centred about the origin. “Coarse”, “intermediate” and
“fine” versions of this mesh are created that have values of le/D = 1/20, 1/40 and 1/80,

Figure 8.
Computational

domain to simulate
the harmonic motion

of a cylinder of
diameterD that is

immersed in a
stationary,

incompressible
Newtonian fluid
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respectively, in the finer region. The finer region is surrounded by a zone of coarser
elements, in which le/D gradually increases to a value of 1 at the domain boundary. The
“intermediate”mesh is illustrated in Figure 9.

The penalty and Lagrange multiplier approaches are used to simulate a Reynolds number
of Re = r (2pA/T)D/m = 100 and a Keulegan-Carpenter number of KC = 2pA/D = 5.
Simulations on the intermediate mesh are conducted for Dt = T/50, T/100 and T/250. A time-
step of Dt = T/100 is used for simulations on the coarse and fine meshes. For each
combination of mesh resolution and time-step, the simulations with the penalty method are
executed for b = b */10, b * and 10b *, with b * being calculated from equation (33). In total,
15 simulations were, therefore, performed using the penalty method. In all of the simulations,
the flow field becomes periodic after approximately t= 4T.

Figure 10 shows the component t*1 of the non-dimensionalised traction t*, which is
defined by:

t* ¼ 1
rD

T
2pA

� �2

t; (36)

Also shown is a reference solution from Dütsch et al. (1998) that was calculated using a DB
method. The curves calculated for t*1 by the penalty method with b = 10b * and Lagrange
multiplier method are very similar and are closest to the reference solution. In contrast, the
curve for b = b * (the recommended penalty factor) deviates appreciably from the reference
solution. Contours of the non-dimensionalised component r*, of the fluid velocity in the x1-
direction relative to that of the cylinder, are plotted in Figure 11 and show why t* obtained
with b = b * does not match that from the reference solution. The value of r* is defined by:

r* x; tð Þ ¼ 100%� u1 x; tð Þ � u1 tð Þ
u1 tð Þ : (37)

The white circles in Figures 11(a) and 11(b) each represent the wetted boundary of the
cylinder @Xs. The white elements are from the solid mesh Xh

s . For the no-slip condition to be
enforced exactly, r* should be zero throughout Xh

s . Figure 11(a) shows that the Lagrange
multiplier method almost achieves this condition, however, r* does exhibit small oscillations
about zero in this region. In contrast, when b = b * an appreciable amount of fluid is able to
cross @Xs causing a large error in t

*.

Figure 9.
Presented in (a) is the
intermediate version
of the computational
meshXh of the
overall domainX,
used to simulate the
harmonic motion of a
cylinder immersed in
a stationary,
incompressible
Newtonian fluid. The
meshXh has a finer
region of elements at
its center, denoted in
green. A closeup of
the region enclosed
by the pink rectangle
is shown in (b)
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To study t* in more detail, the following ratio between the root mean square (RMS) of

t*1 �~t
*
1

� �
and the RMS of ~t

*
1 is defined:

r*t ¼ 100%�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið kþ1ð ÞT

kT
t*1 �~t

*
1

� �2

dtð kþ1ð ÞT

kT

~t
*
1

� �2

dt

vuuuuuut ; k � 4; (38)

where ~t
*
1 is the component, acting in the x1-direction, of t

* from the reference solution. The
quantity r*t is, therefore, an aggregate of the difference between t*1 and~t

*
1. Figure 12(a) plots

r*t for the coarse, intermediate and fine meshes and Dt = T/100. Similarly, Figure 12(b)
depicts r*t as a function ofDt/T, as calculated on the intermediate mesh. In both Figures 12(a)
and 12(b), r*t from the Lagrange multiplier method is the lowest, except for when the fine
mesh is used together with Dt = T/100. For the fine mesh and Dt = T/100, r*t for b = 10b *

actually drops below that of the Lagrange multiplier method by approximately 1.5%.
Similarly, when Dt = T/250 and Dt = T/100 are used together with the intermediate mesh,
the values of r*t for b = b * and b = 10b * both approach those of the Lagrange multiplier
method within about 1%. This corresponds with the findings of the channel flow test
problem in Section 5.1, which suggested that the penalty method could approach the
accuracy of the Lagrange multiplier method, when using the appropriate value of b .

In Figure 12(a), the curve from the Lagrange multiplier method only drops a maximum of
approximately 2% between consecutive meshes as Xh is refined. The solutions from the
Lagrange multiplier method are, therefore, similar on all three meshes. The curve for b =
10b * decreases by about 3% when progressing from the coarse mesh to the medium mesh,
and a further 9% when moving to the fine mesh. These decreases are larger than those

Figure 10.
The component, t*1, of

the resultant non-
dimensionalised

traction, exerted on
the cylinder in the x1-
direction by the fluid
and calculated by the
Lagrange multiplier
and penalty methods

using the
intermediate mesh

and a time step of
Dt=T/100, plotted as

a function of non-
dimensionalised time
(t� kT)/T, where k is
a whole number and

k� 4
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observed for the Lagrange multiplier method, but are still considered small enough for the
solutions for b = 10b * to be deemed converged with respect to mesh spacing. In contrast,
the curves for b = b */10 and b = b * remaining almost constant when moving from the
coarse mesh to the intermediate mesh, and the drop sharply when moving on to the fine
mesh. In Figure 12(b), as expected r*t from the penalty method for b = b */10 and b = b *

decrease monotonically as D t is reduced. However, in both of these cases this decrease is at
least 10% between consecutive time steps and shows that the solutions obtained are not
time step independent. The curve for b = 10b * actually increases slightly, by less than 5%
when comparing the value of r*t at Dt = T/50 to that at Dt = T/250, as D t is reduced. The
rate of increase of the curve is relatively small and it may be caused by the surrogate
boundary under – or overcompensating for the smearing of @Xs. The solutions for
b = 10b * are, therefore, considered to be converged with respect to time step refinement.

Figure 11.
Contours of the
normalised
component, r*(x,t),
that acts in the x1-
direction, of the
velocity of the fluid
relative to that of the
cylinder is shown in
(a) for the Lagrange
multiplier approach
and in (b) for the
penalty approach
with b = b *
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Similarly, the curve for the Lagrange multiplier method decreases by 2% from Dt = T/50 to
Dt = T/100, but then increases by 5% from Dt = T/100 to Dt = T/250. Once again, as this
increase is small, it may be caused by the surrogate boundary. The solutions from the
Lagrange multiplier method are, therefore also deemed to be converged with respect to time
step refinement. Furthermore, as was the case for the error in the velocity field of the channel
flow test problem, the value of r*t diminishes as b is raised in both Figures 12(a) and 12(b),
except when the intermediate mesh is used together withDt=T/250.

Computational times are plotted in Figure 13(a) as a function of the number of mesh
elements for Dt/T = 1/100. They are also plotted in Figure 13(b) as a function of Dt/T for the
intermediate mesh. The computational times are calculated in the manner described in

Figure 12.
Shown is the non-

dimensionalised root
mean square, r*t , of

the difference
between the x1-

component of the
traction, exerted on
the cylinder by the

fluid, from the
Lagrange multiplier
and penalty methods
and the value of this
component from the
reference solution
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Section 5.1 for one period of motion of the cylinder after the flow field has reached steady-
state. Both figures show that the computational times needed by the Lagrange multiplier
method are again larger than those required by the penalty method. Also, the computational
times of the penalty method again escalate as the value of b is increased. As before, this is
because of an increase in the number of solver and non-linear iterations required to reach
convergence. Although this test problem does not have an analytical solution, the
conclusions based on the reference numerical solution indicate a similar pattern as for the
channel flow test problem, namely, that the Lagrange multiplier method provides a robust
and accurate method that does not require calibration. These advantages come at the cost of
increased computation time compared to the penalty method.

5.3 Vortex-induced vibration of a cylinder
The final test problem examines the vortex-induced vibration of a cylinder in the presence of
an oncoming flow. The vibration of the cylinder is expected to be similar to the motion

Figure 13.
Computational times
for the Lagrange
multiplier method
and the penalty
method for penalty
factors b = b */10,b *

and 10b *, where b *

is the recommended
penalty factor
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observed in the harmonic motion test problem in Section 5.2. The computational domain
used is, therefore, identical to that from the harmonic motion problem and is illustrated in
Figure 8. The “intermediatemesh”, described in Section 5.2 and shown in Figure 9, is also selected
as the computational mesh as both the Lagrange multiplier and penalty methods were able to
produce solutions that were sufficiently converged in terms ofmesh refinement. Correspondingly,
a time step of Dt = T/100 was chosen, where T is the prescribed period of motion of the cylinder
in Section 5.2, as both methods were able to provide sufficiently converged solutions with respect
to time step refinement. The boundary conditions at the sides of the domain are kept the same. At
the top and bottom boundaries, the boundary conditions are replaced with u=u1e2 and rn=0,
respectively. The value of the inlet speed u1 is selected to obtain a Reynolds number of ReD =
ru1D/m = 150, withD being the diameter of the cylinder.

The response of the cylinder is governed by equation (8), withm (its mass) being selected
to provide a mass ratio of m* = 4m/rpD2 = 2. The values of k and c are set such that the
appropriate damping ratio z ¼ c=2

ffiffiffiffiffiffi
mk

p
and reduced velocity u*r ¼ DTnu1 are obtained,

where Tn ¼ 2p
ffiffiffiffiffiffiffiffiffi
m=k

p
and is the undamped natural period of motion of the single-degree-

of-freedom system. The penalty and Lagrange multiplier methods are each used to simulate
the scenarios u*r ¼ 6 (resonance) and u*r ¼ 10. In each scenario, the penalty method
simulations are conducted for three different penalty factors: b = b */10, b * and 10b *.

The motion of the cylinder in the x1-direction is depicted in Figure 14 as a function of t/Td

for u*r ¼ 6, where Td ¼ Tn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z 2

p
and is the damped natural period of the system. For

each simulation, the cylinder was first held stationary for 2,000 time steps. The cylinder is
then released at t/Td = 0 and allowed to vibrate under the influence of the fluid. Also plotted
is the amplitude of motion from the solution of Carmo et al. (2011), which was calculated
using a DB method and is used here as a reference. Despite b = 10b * generally yielding the
most accurate calculations of the traction from the penalty method in Section 5.2, this
penalty factor now causes the method to diverge before the cylinder completes a single

Figure 14.
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oscillation. This again demonstrates a major drawback of the penalty method, which is that
the optimal penalty factor is difficult to determine a priori, and is highly problem dependent.
The Lagrange multiplier method calculates an amplitude that is only slightly larger than
that from the reference solution. During the interval 0# t/Td # 2, the penalty method with
b = b * predicts a transient behaviour that is roughly similar to that from the Lagrange
multiplier method. However, once the cylinder settles into its steady-state motion, it is
apparent that it exhibits a much lower amplitude, as well as a different period and phase.
When b = b */10, the no-slip condition is not enforced strongly enough to create the
vorticity required to excite the cylinder.

The differences observed for u*r ¼ 6 between the vibration of the cylinder predicted for
b = b * and that from the Lagrange multiplier method are clarified by the snapshots in
Figure 15. The snapshots show streamlines of the non-dimensionalised fluid velocity u* =
DTnu at twomoments, namely, t/Td = 9.475 and t/Td = 9.725. At each of these moments, the
location of the cylinder is roughly the same in both solutions. In each snapshot, the colours

Figure 15.
Shown are
streamlines of the
non-dimensionalised
fluid velocity u*
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of the streamlines reflect the values of ku*k2 and the white circle represents @Xs. Also
shown is the direction of the free stream flow, which approaches the cylinder from the top,
and the non-dimensionalised cylinder velocity u*

s ¼ DTnus. For the no-slip condition to be
imposed correctly, it is required that u* ¼ u*

s inside of Xs. Furthermore, as the cylinder is
experiencing pure translation in the x1-direction, the streamlines should be horizontal in this
region. The Lagrange multiplier method comes very close to meeting these requirements at
both t/Td = 9.475 and t/Td = 9.725. In contrast, the streamlines for b = b * are not
horizontal, and the magnitude of u* varies greatly inside of Xs. A large amount of the
oncoming flow is, therefore, passing through this region, instead of being directed around it
as theoretically required by the penalty method.

The steady-state amplitude A and actual period of motion T of the cylinder, non-
dimensionalised with respect to D and Td, respectively, are presented in Table 1 for u*r ¼ 6
and u*r ¼ 10. Also shown are the corresponding values of A/D and T/Td from the reference
solution (Carmo et al., 2011). The results for b = b */10 are omitted as in both scenarios the
cylinder exhibits no oscillations in the steady-state solution. As already seen in Figure 14,
A/D from the Lagrange multiplier method is closest to that from the reference solution for
u*r ¼ 6, with a difference of 3%. However, it is also nearest to the A/D of the reference
solution for u*r ¼ 10, with the difference being 5%. For u*r ¼ 6, the penalty method diverges
with b = 10b * and with b = b * it underpredicts the reference A/D by 30%. The penalty
method does converge with b = 10b * for u*r ¼ 10, and gets much closer to the reference
A/D than with b = b *, but still overpredicts it by 13%. The value of T/Td from the
Lagrange multiplier method also shows the best agreement with that of the reference
solution for both u*r ¼ 6 and u*r ¼ 10, being 2% lower and 18% higher, respectively. Despite
having difficulty in predicting theA/D for u*r ¼ 6, the penalty method with b = b * actually
yields a value for T/Td that is quite similar to that of the reference for this case, as it comes
within 12% of it. However, as with the Lagrange multiplier method, the penalty method
significantly overpredictsT/Td by 19% for u*r ¼ 10, both with b = b * and b = 10b *. As in
the previous two test problems, the Lagrange multiplier method delivered an accurate
solution without the need to calibrate parameters. In contrast to the two previous problems,
a larger value of the penalty factor did not improve the solution. The best value from the
penalty method was obtained using the recommended penalty factor, but the accuracy of the
solution was in general still lower than that from the Lagrange multiplier method.

Table 1.
Amplitude A and

period T of the
motion of the
cylinder, non-

dimensionalised with
respect to its

diameter D and its
natural period of

motion Td,

respectively, as
calculated by the

Lagrange multiplier
and penalty methods

Case Method A/D T/Td

u*r ¼ 6 Reference 0.478 1.00
b = b * 0.337 0.887
b = 10b * Diverged
DLM 0.492 0.984

u*r ¼ 10 Reference 0.0790 0.599
b = b * 0.118 0.709
b = 10b * 0.0920 0.709
DLM 0.0752 0.704

Notes: The values are presented for the case u*r ¼ 6 (resonance) and u*r ¼ 10, where u*r is the reduced
velocity. Also shown as reference are the values from the solution of Carmo et al. (2011), which were
calculated using a defined-body method. The values from the penalty method are provided for two penalty
factors: b = b * and 10b *, where b * is the recommended penalty factor. For u*r ¼ 6, the penalty method
diverges when b = 10b *
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6. Conclusions
A detailed comparative analysis has been conducted to evaluate the performance of the
penalty and Lagrange multiplier approaches. For each approach, the analysis investigated
the accuracy with which the no-slip condition is enforced and the effect this has on the
overall solution, as well as the associated computational cost. Three different test problems
were considered, namely, laminar flow through a channel, the harmonic motion of a cylinder
through a stationary fluid and the vortex-induced vibration of a cylinder.

The findings indicated that the Lagrange multiplier approach is able to enforce the no-
slip condition much more accurately than the penalty approach. Correspondingly, the
Lagrange multiplier approach provided better predictions of both the steady-state flow field
in the channel flow problem, and the response of the cylinder in the vortex-induced vibration
problem. In the channel flow problem, both the Lagrange multiplier method and penalty
method exhibited linear convergence of the velocity and pressure fields with respect to mesh
refinement. However, when it came to the error in enforcing the no-slip condition, the
convergence rate of the penalty method dropped far below linear. In the harmonic motion
problem, the Lagrange multiplier and penalty methods were both able to predict the
resultant tractions with similar levels of accuracy. Therefore, imposing the no-slip condition
with less error resulted in the Lagrange multiplier method providing solutions that were of
either equivalent or superior accuracy relative to those from the penalty method. For each
test problem in which it was measured, the Lagrange multiplier method also required more
computational time than the penalty method to arrive at a solution.

For the penalty approach, the error incurred in the imposition of the no-slip condition and
in the overall solution, and the computational time needed were observed to be dependent on
the value of the penalty factor. In the channel flow and harmonic motion test problems, both
the accuracy of the enforcement of the no-slip condition and the overall solution improved in
general as the penalty factor was increased. However, as shown by the vortex-induced
vibration problem, the penalty approach will actually diverge if the penalty factor is pushed
too high. The appropriate value to assign to the penalty factor is, therefore, difficult to
determine a priori as it depends on the problem being considered, as well as the
computational mesh and time step. Furthermore, the computational time needed by the
penalty approach increased as the penalty factor was increased. Thus, when the penalty
factor was raised to improve the accuracy of the solution to a similar level as that provided
by the Lagrange multiplier approach in the channel flow test problem, the computational
times of the two approaches also became roughly similar, although those from the penalty
approach were still the shortest.

In summary, this study shows that the primary advantages of the Lagrange multiplier
approach were that it provides an accurate solution, especially when enforcing the no-slip
condition, while being robust as it does not require the “tuning” of any problem specific
parameters. However, these benefits came at a relatively high computational cost when
compared to the penalty approach. In contrast, the penalty approach featured a simpler
formulation and shorter computational times, but it required that the appropriate value be
assigned to the penalty factor for it to yield accurate results. Furthermore, the appropriate
value of the penalty factor was difficult to determine ahead of time, and if too large of a value
was selected the penalty approach diverged. It is noteworthy to point out that the bodies
considered in this study were thick or bluff. Both the Lagrange multiplier and penalty
approaches of the immersed boundary method have also already been applied to thin bodies
in the literature such as in Taira and Colonius (2007), Viré et al. (2015) and Kadapa et al.
(2016). However, it would be useful to carry out a similar comparative analysis of these
approaches for thin bodes.
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