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summary

Keywords: Digital twin, data-driven design, engine configuration, bunker delivery notes, rule-based
modeling

The shipping industry faces increasing pressure to reduce greenhouse gas emissions in line with in-
ternational regulations set by the International Maritime Organization (IMO). Traditional ship design
methods, however, rely primarily on static assumptions and generalized performance estimates, offer-
ing limited support for sustainable design decisions. At the same time, the industry is generating vast
amounts of operational data that remain underutilized in early-stage design.

This thesis addresses this gap by developing a Digital Twin (DT)-aided framework for ship design,
with the specific aim of integrating operational data into decision-making. The framework outlines the
process of data acquisition, modeling, verification, and knowledge management, ensuring that real-
world operational insights can inform and improve early design phases.

To demonstrate the framework, a case study is conducted on the optimization of engine room configu-
rations for a bulk carrier. Engine data from industrial databases and operational profiles derived from
Bunker Delivery Notes (BDN) are combined to construct a digital model of the vessel’s propulsion sys-
tem. A rule-based modeling approach is applied to generate feasible configurations, which are then
evaluated for fuel consumption and CO, emissions across multiple load profiles.

The case study highlights both the potential and the limitations of DT-aided design in current practice.
While the adapted framework produces a digital model rather than a fully validated digital twin, the
results demonstrate that operational data can substantially improve configuration selection and support
IMO decarbonization goals. The methodology also provides a scalable foundation for future research,
extending towards hybrid propulsion systems, alternative fuels, and full DT integration.
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Introduction

1.1. Research Background

The European Union has set an ambitious goal to achieve climate neutrality by 2050, aiming to elim-
inate 100% of its carbon emissions, with an interim target of a 55% reduction by 2030 [1]. In 2018,
the shipping industry was responsible for approximately 13% of all transport emissions within the EU
[2]. To address this, the International Maritime Organization (IMO), the UN’s specialized agency with
responsibility for the safety and security of shipping and the prevention of marine and atmospheric pol-
lution by ships, has introduced new initiatives to drive the maritime sector toward adopting sustainable
practices. These measures are designed to facilitate the industry’s transition to low-carbon operations,
paving the way for a greener and more environmentally friendly future for the shipping sector.

The shipping industry is one of the largest consumers of fossil fuels and, consequently, a significant
contributor to global air pollution. There are estimates that the shipping industry consumes approxi-
mately 330 million tons of fuel annually [3]. The most common fuel used by cargo vessels currently is
Heavy fuel oil (HFO), which is obtained from the residue left after oil refining. This type of fuel contains
high levels of sulfur and, during combustion, contributes directly to the emission of sulfur oxide(s) (SO,.).
Burning this fuel also releases Nitrogen oxides (NO,) emissions into the atmosphere. It is likely that
the demand for marine fuel will double by 2030, further increasing air pollution [4, 5].

To mitigate the amount of harmful exhaust gas emissions, the IMO has devised rules that existing and
new vessels have to adhere to. These rules intend to regulate and prevent pollution from ships [6, 7].
The first strategy, Annex VI of the MARPOL Convention (International Convention for the Prevention
of Pollution from Ships), adopted in 1997, already aimed to limit air pollution from ships. This was the
first step for a more comprehensive strategy of reducing emissions of the worldwide fleet (Figure 1.1).

Through the convention, a more comprehensive framework for ship design and management was es-
tablished [8]. A few regulations are discussed in the framework: the Energy Efficiency Design Index
(EEDI), the Energy Efficiency Existing Ship Index (EEXI), the Ship Energy Efficiency Management Plan
(SEEMP), and the Carbon Intensity Indicator (CII).

They all prevent and fix some limitations to the air-polluting emissions of marine vessels. However,
these regulations alone are insufficient. A fundamental shift in fuel sources and propulsion technologies
is required [9].

1.1.1. Recent technological developments

Recent advances in alternative marine fuels are accelerating the shift toward greener propulsion tech-
nologies in response to international decarbonization goals. Promising candidates include methanol,
biodiesel, ammonia, hydrogen, and liquified natural gas (LNG), each offering varying degrees of energy
density, infrastructure readiness, and emission reduction potential [6, 10, 11]. Fuels such as biodiesel
and LNG have already seen partial integration into existing ship operations, while others like ammo-
nia and hydrogen offer zero-carbon possibilities if produced from renewable sources. Their feasibility
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Figure 1.1: IMO initiatives for ship emissions reduction

depends not only on energy content and emissions but also on compatibility with propulsion systems.

The adoption of hybrid-electric engines for marine vessels as a propulsion and auxiliary power source is
another approach to reducing harmful emissions by lowering fuel consumption. To determine the most
effective way of configuring a hybrid-electric engine, the power generation and power storage systems
need to be analyzed. As sustainability is the primary reason for the switch to hybrid energy sources,
the literature generally focuses on batteries, supercapacitors, and flywheels as electric storage, in
combination with ICEs and fuel cells as the energy converters [12, 13, 14]. The use of a multi-source
energy system will also improve the possibility of optimization, further improving power generation.
Already, by only including a diesel-battery hybrid propulsion system, 2-3% reduction in fuel consumption
and 5-7% CO- and NO,, can be reached, increasing the efficiency of the system [15]. However, using
alternative fuels and power sources will increase the system’s costs, but the higher efficiency that is
attainable should be explored to assess its potential. As sea-going vessels have to operate in changing
conditions due to waves and wind constantly, the speed of the vessel and power requirements vary
continually. This results in the primary propulsion system not operating at its optimum point, leading
to an increase in specific fuel oil consumption (SFOC). These innovations come at a critical time, as
the maritime sector must transition to greener practices of operating and producing marine vessels to
reduce environmental impact.

1.1.2. Operational data

Data and its analysis have become the center of modern science and business [16]. There is an
abundance of data that is produced by every industry, including the marine industry. Operational data,
such as ship speed, location, and fuel consumption, is collected every minute. Along with this data,
there is also the data outside of the ship, such as business data, like fees and ship demands, or
production and lifetime data. The Automatic Identification System (AIS) has been in use since 2002.
But besides that, with new sensor technology and the option to store so much more data, there is much
more possible. This shipping information serves industry-specific purposes for a better understanding
of the port and the sector itself. The increasing capacity to measure and analyze vast amounts of data
helps quantify performance and cost issues in both port operations and marine vessel operations [17].
This data can be found in multiple forms, from operational data to ship databases and other voyage
data. Currently, this data is primarily used for the purpose it was collected. For example, Bunker
delivery notes are only used to measure the environmental impact of an individual ship. Such a variety
of data shouldn’t be used to serve one purpose; there is much more potential [18]. To overcome this
hurdle, new research is needed on innovations related to the digitalization of the shipping industry and
the utilization of the vast amount of ship data. Digitalization refers to the use of digital technologies to
optimize ship design, ship operation, and business processes [19].

Measurements from on-board monitoring are widely used in performance analysis and the study of ship
efficiency. New studies have also started to predict vessel propulsion power and energy consumption
[20]. This type of monitoring can also be applied in the health monitoring of equipment using either
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vibration analysis or machine learning techniques [21, 22]. Most data-driven techniques applied are
pattern recognition methodologies for classifying load profiles of electric ships [23, 24].

The transition to greener and retrofitted ships requires a gradual yet accelerated approach, supported
by an efficient production and design cycle. Improving the production cycle, and thereby decarbonizing
the industry, can be achieved through several methods.

With more data, more accurate decision-making can be achieved through the use of multiple methods.
When discussing data, the term Industry 4.0 is often mentioned in conjunction with it. This new ’4th
industrial revolution’ represents a shift toward more intelligent, automated, and interconnected systems
driven by real-time data, artificial intelligence (Al), and the internet of things (IoT) [25, 26]. Due to the
data explosion, an extensive examination of the impact on design practices is required.

1.1.3. Innovative design strategies

Traditional ship design methods rely heavily on fixed assumptions about vessel performance, fuel con-
sumption, and operational profiles. While such approaches provide structured procedures, they often
struggle to capture the variability and complexity of real-world operations. The growing availability of
high-frequency operational data opens new opportunities to address this gap by informing early-stage
design decisions with empirical evidence [27].

This shift is part of a broader movement toward data-driven design, in which actual operational con-
ditions guide the evaluation of technical options and trade-offs [28]. One promising concept in this
domain is the Digital Twin (DT), which establishes a dynamic connection between a physical object
and its virtual counterpart. While DTs are currently most mature in the operational phase of a vessel’s
lifecycle—supporting tasks such as performance monitoring, predictive maintenance, and emissions
tracking—the underlying principles demonstrate the potential of utilizing real-world data to enhance
design robustness.

For early-stage ship design, adopting data-driven approaches inspired by DT principles could provide a
structured way to link operational realities with early-stage design choices. By integrating empirical data
into design frameworks, it becomes possible to move beyond static assumptions and explore solutions
that are better aligned with decarbonization targets and evolving regulatory requirements. The need
to connect operational insights with design practice forms the foundation of the problem addressed in
this thesis.

Despite its potential, the use of operational data in data-driven ship design remains limited [29]. Further
research is therefore needed to establish how such data can be systematically integrated into design
methodologies before it can be applied in practice.

1.2. Problem definition

The shipping industry is a major contributor to global greenhouse gas emissions due to its reliance on
fossil fuels, primarily Heavy Fuel Oil (HFO). Despite international regulations aimed at reducing emis-
sions, the transition to sustainable propulsion technologies remains a slow process. A key challenge
in this transition is the lack of an efficient framework for early-stage design using operational data,
specifically in optimizing performance and emissions.

Current decision-making processes in ship design rely heavily on generalized estimations and static
regulations, rather than data-driven insights tailored to the abundance of data that is slowly becoming
available, like specific operational profiles.

This thesis addresses the gap between regulatory goals and practical implementation by exploring
how operational data can be integrated into early-stage ship design. While operational data is in-
creasingly available, its use in informing design decisions—such as propulsion selection and system
configuration—remains underdeveloped. Bridging this gap requires methods that can translate real-
world operational insights into design strategies, supporting the industry’s transition toward more effi-
cient and sustainable ships.
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1.3. Research goal and objectives

This research aims to develop a data-driven design framework that utilizes operational data to
support the early-stage decision-making process in ship design. The objectives of the thesis are
as follows:

» Analyze data-driven design methods according to traditional ship design

» Determine how ship design can be improved according to IMO standards and indexes

» Develop a data-driven design framework that incorporates real-world operational data

» Use the data-driven design framework in a case study, optimizing ship performance factors
+ Verify the data-driven model using operational data

1.4. Scope of the research

This thesis focuses specifically on the design of large marine bulk carriers. The product is a data-driven
design framework designed to enhance early-stage design decisions. The framework will be applied to
engine configuration selection, with the possibility of expanding to include additional propulsion systems
that may be introduced in the future. The study will consider both conventional internal combustion
engines (ICE) and possible hybrid-electric systems. It will not cover detailed hydrodynamic analyses of
ship hulls or a possible real-world implementation of propulsion system retrofits. The research primarily
relies on the operational and emissions data from bulk carriers, simple expandable simulation modeling
of propulsion systems, and the IMO regulations.

1.5. Research questions
The main research question this thesis wishes to answer is,

How can operational data be integrated into a data-driven design framework to sup-
port early-stage ship design?

To answer this central research question, the question is split up into sub-questions to answer the
central question:

RQ1: What is the potential of operational data to support current design methods?
RQ2: What data-driven methods can be used to improve early-stage ship design?
RQ3: How can an organized data-driven design method be applied to early-stage ship design?

RQ4: How can the data-driven framework be applied to the early-stage design to improve fuel con-
sumption and emissions?

RQ5: To what extent can the data-driven design approach inform early-stage ship design decisions?

1.6. Methodology

This thesis employs a quantitative, data-driven methodology to investigate how operational data can
inform early-stage ship design. The study first examines the principles of traditional ship design along-
side recent trends in data-driven methods, with a particular focus on integrating alternative propulsion
systems and fuels.

Building on this foundation, digital twin (DT) technology is evaluated as a potential means of incor-
porating operational data into design practices. To support this, a dedicated DT-aided framework is
developed, structured to integrate both component-level characteristics and operational datasets.

The framework is applied in a case study focused on optimizing engine configuration. Using real op-
erational data, multiple load profiles are generated and applied to simulate alternative engine config-
urations. For each configuration, fuel consumption and emissions are quantified, and the results are
validated against the same operational dataset. This case study demonstrates the potential of the
framework to enhance decision-making in early-stage ship design.
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1.7. Structure

Chapter 2 will discuss the ship design process and the research gap concerning the use of operational
data in design. Following this will be a discussion on the state-of-the-art of data-driven design, followed
by a review of the state-of-the-art of propulsion systems. The possible options and configurations will
then be explored. Chapter 3 examines how a data-driven design approach can enhance the ship
design process by utilizing operational data and establishes the requirements for implementation. In
Chapter 4, a framework is established for implementing a data-driven design method that integrates
operational data. In Chapter 5, the data-driven design framework is employed and applied to optimize
performance in a case study of a bunker vessel engine room. Chapter 6 will present the results of the
model. Chapter 7 will conclude the thesis and give answers to the research questions. Chapter 8 will
discuss the results and possible improvements of the implementation and of the framework.



Ship design phase and ship design
developments

This chapter reviews both traditional ship design methods and the current state of data-driven ap-
proaches, with a particular focus on opportunities for improving efficiency and reducing emissions.
Section 2.1 introduces the conventional ship design process, while Section 2.2 discusses the potential
of data-driven methods in the maritime sector. The regulatory context is outlined in Section 2.3, which
surveys the requirements set by the International Maritime Organization (IMO). Section 2.4 examines
optimization within traditional propulsion systems, followed by Section 2.5, which considers alternative
engine topologies. Finally, Section 2.6 identifies the research gap and defines the scope of this thesis.

2.1. General ship design

Every product designed follows the same production cycle. For ship design, this is the same. According
to Gale, the ship design cycle is as follows [30]:

» Conceptual design
* Preliminary design
+ Contract design
* Detailed design
These design phases (Figure 2.1) are based on ship design theories from the 80s; during these phases,

only new ships are considered. The coming section will discuss the different stages of the design
process.

Concept design Detail design

Figure 2.1: Ship design process as described by Gale [30]

2.1.1. Conceptual & preliminary design

These phases are often considered the feasibility study stage. The primary objective is to clarify the
shipowner’s requirements, including the vessel’s expected performance and intended missions. Key
factors such as cargo and passenger capacity, range, speed, and other operational requirements guide
the definition of the initial design concepts [30, 31]. These initial concepts will not necessarily include
the power needed for the ship to operate. After these first concepts are explored and their feasibility
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regarding the primary ship requirements has been studied, the design process seamlessly flows into
the preliminary design phase.

The next part in basic design (which consists of the conceptual and preliminary design) happens during
the preliminary design stage. The objectives during this phase are [30]:

+ validate the primary ship performance and requirements,
» establish ship size and overall configuration,

+ select the major ship systems,

+ quantify the ship performance,

+ estimate costs.

During this stage, the various ship design steps previously completed in the first phase are further
elaborated upon in greater detail. The ship’s main characteristics are more accurately determined and
aligned with the client’s requirements. The client’s feedback will then refine the design and incorporate
any necessary modifications and adjustments. The preliminary design has been finalized as the basis
for compiling the shipbuilding contract between the client and the shipbuilder. The design must conform
to regulatory standards and serve as the basis for the contract design [31].

This thesis aims to support the early-stage design phase by leveraging new advancements in the in-
dustry. With the early-stage design phase, specifically the conceptual design phase is meant. This
early-stage phase is crucial in determining the ship’s sizing and initial component designs, laying the
groundwork for its power and emissions characteristics. This first step will guide the selection of com-
ponents and the overall design in the subsequent steps.

2.1.2. Contract design
The principal objectives of the contract design are to: [30, 32]

+ confirm the ship capabilities and the cost with the shipowner,
+ captures all technical, commercial, and legal aspects in agreement with the shipowner,
« provides criteria for the shipowner to accept the ship.

This phase is completed with the completion of the necessary calculations and naval architectural
drawings, along with the technical specifications drawings. The phase includes a detailed description
of the ship’s hull form through the ship line plan and an exact estimation of the power required for the
specified speed based on model tests in a tow tank, as well as the theoretical or experimental analysis
of the ship’s behavior [31].

2.1.3. Detail design

In the final phase, the contract design is translated into a detailed design of all structural elements of the
ship, along with the establishment of technical specifications for ship construction and the installation of
equipment. This information is then given to the shipyard. The subsequent implementation, following
the outcomes of studies by expert naval and marine engineers, depends solely on the capabilities of
the shipyard’s production engineers, in terms of hardware infrastructure and human resources [31].

2.1.4. From traditional design to data integration in design

This thesis aims to address the limitations of traditional design by incorporating operational data into the
early-stage design phase (conceptual design). By integrating real-world performance insights at this
stage, it becomes possible to estimate propulsion and emission characteristics better, thereby guiding
engine room design choices with greater accuracy.

In doing so, the research aims to enhance decision-making processes in early design, resulting in ships
that are both operationally efficient and environmentally sustainable. The following section will explore
how data-driven design methods offer opportunities to realize this integration.
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2.2. Data-driven ship design

There are multiple ways in which data can enhance the design method of ships. This section will
describe the potential of operational data. With the digitalization of the industry, several data-driven
methods utilizing operational data have emerged, and their respective strengths, weaknesses, and
uses will be examined.

2.2.1. Requirements for Data-driven implementation
To implement a well-defined, data-driven approach, certain prerequisites should be explored. Anderson
has defined them as, [33]:

+ Data Collection
» Data Quality

» Data Access

» Data Analysis

For the shipping industry, this means the following [34].

Data Collection: Refers to all relevant data that can be gathered across the maritime sector, including
from ship designers, suppliers, testers, operators, and ports.

Data Quality: Is related to the reliability of the data. This can be observed through various aspects,
including accessibility, accuracy, coherence, completeness, consistency, and relevance. Separating
the unusable data from the usable data, as well as handling missing data, is one of the key challenges
for high data quality.

Data Access: Before even looking at the quality of the data, you first need to acquire it. When multiple
players in the industry share their data, different entries can be connected, and the quality of the data
can rise. Another important aspect is efficient access to data within an organization, enabling the data-
driven design process to progress smoothly.

Data Analysis: This aspect concerns the transformation of the data. How is the data used, and how
can it be used better or for another purpose? When different parts of the data are used, this may affect
the quality of the data. After the data is used, it is essential to record how the data was utilized and
what was achieved with it.

Once the data is approved and deemed correct against these pre-requisite criteria, it can be used to
inform designers using data-driven design methods.

2.2.2. Operational Data

Data used in ship design can broadly be divided into two categories: static data and operational data.
Static data refers to fixed characteristics such as ship dimensions, engine specifications, or regula-
tory requirements—information that remains unchanged once defined. In contrast, operational data
captures the dynamic behavior of vessels in service. Enabled by advances in sensor technology and
digital reporting, operational data reflects how ships are actually operated, offering detailed insights
into performance, efficiency, and environmental impact.

Operational data can be classified into these four types:

» Voyage data: Speed, draft, route

» Engine data: Load, power output, fuel usage

» Environmental conditions: Weather, state of the sea
* Logbook data: Shipper’s journal

Data is being used in research across an increasing number of industries. However, the applications
of operational data used in ship design are limited. This is due to limitations and challenges that come
with the abundance of operational data. For specific goals, the data can be too sparse or inconsistent,
which makes outcomes unreliable. All data that comes in needs to be cleaned and processed before
it can be used. Standardization would be required to make real-time fleet data more easily usable.
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Operational data can provide valuable insights into vessel behavior, which can be utilized for early-
stage ship design. Real-world operational profiles provide actual engine loading conditions, which
should help in sizing for future vessels. This should help avoid over-designing or under-designing both
main and auxiliary systems. Will also support evaluating whether alternative, more sustainable fuel
options or different topologies can be considered.

This study aims to address the gap in the utilization of operational data by developing a data-driven
design method that supports the use of operational data and enables the analysis and storage of this
data accordingly.

2.2.3. Product lifecycle management tools

The first data-driven design and production method to be discussed is Product Lifecycle Management
(PLM). In PLM, data is produced continuously using modern technology (i.e., radio frequency identifi-
cation (RFID) tags and smart sensors) to monitor the state of health of products [35]. Manufacturers
use these types of technologies for their daily production and management. The products, vehicles,
and plants are equipped with smart sensors and RFID tags, which collect massive amounts of data
about themselves and their surroundings. The overall goal of PLM is to provide more product-related
information and a shared platform for the creation, organization, and dissemination of product-related
knowledge [36]. To assist in the analysis of quality during the conceptual design phase, Zhang et al.
employed an Apriori-based data mining approach to extract knowledge from historical data [37]. For
ship design, PLM is utilized in all phases of the lifecycle. The part of interest for this thesis is the de-
sign phase, where virtual models are used instead of real prototypes to generate, analyze, and verify
product feasibility according to standards and requirements [38]. Most conceptual design relies on ini-
tial main component requirements and product management grounded in prior experience. However,
there remains significant potential for improvement in PLM through the integration of operational data.
PLM methods offer a solution for managing large amounts of data throughout the complex product life-
cycle. Multiple techniques address this data, including information indexing, database management,
product decomposition and analysis, and project management [34]. Generally, PLM can be divided
into six elements [34, 38]:

» Database, indexation of data and document management

* Modeling and simulation tools, all software used to design and virtual prototype the vessel

* Value Chain Processes, the management of the lifecycle processes

» Product Hierarchy management, classifies the diverse ship functions, systems and components
* Product Management, gather all information related to all the physical components

* Project Management, connects all processes among the vessel lifecycle

Using these elements, data is used in the design of products. Using PLM efficiently can promise an
integrated platform that merges these management aspects with virtual prototype concepts (i.e., 3D
libraries, computer-aided tools, and the knowledge bank of previous designs). This way, the platform
benefits from the management concepts of the PLM methodology, guiding the process from design
visualization to the construction phase.

If a PLM system is implemented effectively, it should be able to manage all product data and process-
related information in one system using software. This would provide all teams across an organization
with access to the data, including CAD models, standards, documents, manufacturing instructions,
requirements, and material needs. However, the implementation of such a broad structured system
proves to be difficult as it is necessary to have well-established requirements, compatibilities, and
expectations across the entire PLM system from the ship designers all the way to the shipyard [39, 34].
In the PLM industry, no software is one size fits all, capable of covering efficient data-driven design in
ship design. It only covers CAD model storage and lacks integration with operational data, which is
essential for modeling in data-driven design.

2.2.4. Machine learning models
With increased computing power, the applicability and simplicity of solving complex problems have
heightened interest in machine learning techniques, such as Artificial Neural Networks (ANN). Here,
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input data and the targeted reference values are connected via patterns that can be recognized and
learned from ANNs and a subset technique, Deep Neural Networks (DNN). These techniques can
process new input data and forecast outcomes after being taught by known datasets. An ANN can
process highly nonlinear and complicated data, even if noisy and imprecise [40, 41]. The technique
lends itself to marine vessel design as traditional methods rely on statistical and empirical correlations.
La Ferlita et al. have applied a DNN to predict fuel consumption for five different ship types. These
results were sufficiently accurate predictions for an oil tank, a bulk carrier, and a RoRo ship [42]. In a
later study, a simplified digital framework approach is used to predict a ship’s fuel consumption under
realistic operating conditions. The study employed a trained deep learning neural network to capture the
characteristics of energy systems effectively. The biggest issue is the limited amount of measured data
that is available on operating conditions. This leads to a still general approach with limited validation
possibilities [40]. The data and estimations produced by these machine learning approaches may be
beneficial for design, but more data is needed to reach that point.

2.2.5. Digital Twin-aided design

Digital Twin technology (DT) is quickly emerging as an efficient way of improving the production cycle
[43]. DTs are a technology that has been around for many decades. A DT is a digital replica of a physical
artifact that replicates the states and behaviors of the original object [44]. Although the concept was
only recently popularized, it dates back to the 1970s, during NASA’'s Apollo program, where digital
models of the spacecraft were used to simulate and monitor conditions remotely [45].

The evolution of DTs has been accelerated by advancements in sensor technology, Internet of Things
(loT), Artificial Intelligence (Al), big data, and wireless connectivity. As a result of these developments,
DTs are now utilized in numerous aspects of the industry and help integrate and combine the digital
and physical worlds in real-time.

There is no general DT model, as the application changes the way the DT is defined. Grieves’ model
(Figure 2.2) provides a widely adopted conceptual framework; the model was present in a presentation
on PLM with the title '‘Conceptual Ideal for PLM’ [46]. It consists of three core elements: the physical
object, its virtual counterpart, and the data/information connection between them [46, 47]. The last
element distinguishes older models from newer ones; new information technology enables real-time
data exchange between the real and virtual spaces.

— Real Space — — Virtual Space —
[ ] |

-~

Data

Information
\ | process

Virtua Virtual Virtual
space | space 2 space n
- —

Figure 2.2: Digital Twin as defined by Grieves [47]

DTs are applied across multiple industries, including aerospace, manufacturing, and infrastructure. In
aerospace, they support life-cycle management and high-fidelity simulations [48], while in structural
monitoring, they integrate onboard diagnostics with fleet data [49].

Most applications can be found in the field of product design. Where, due to the introduction of data
science and information technology, data can be collected during the lifetime of a product and managed
using the technologies mentioned above [43, 50, 51, 52]. In the marine sector, the use of DTs remains
limited, especially in commercial ship design. While offshore and defense applications are increasing
[53], full integration of DTs into ship lifecycle design and operation is still in its infancy. Their potential,
however, is significant. By integrating operational data with design simulations, DTs could support
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decarbonization, retrofitting, and performance optimization in green ship design.

2.3. IMO requirements in design

The IMO is the specialized agency responsible for the safety and security of shipping. To prevent atmo-
spheric pollution by ships. The IMO’s work supports the UN Sustainable Development Goals (SDGs).
To minimize carbon emissions in international shipping, the IMO implements technical and operational
energy efficiency measures [7]. The Energy Efficiency Design Index (EEDI) was first introduced in
2013 and represents the first global mandatory greenhouse gas (GHG) reduction regime for an entire
international industry sector. In 2021, the IMO adopted a new set of technical and operational mea-
sures, the Energy Efficiency Existing Ship (EEXI) and the Carbon Intensity Indicator (Cll). When looking
at green alternatives for the gray engines being used right now, these tools can be used to compare
the environmental impact on society with the benefits to society, by looking at CO, emissions and the
transport work. These measurement tools will be discussed in the following sections.

EEDI

The EEDI aims at promoting the use of more energy-efficient equipment and engines for the design
of new ships to reduce their emissions. To pass the EEDI, ships require a minimum energy efficiency
level per capacity mile (transport work); the requirement differs per ship type and size segment. The
general formula for calculating the EEDI is given below (Equation 2.1)

EEDI = Designed CO; emissions  }(P; - SFOC; - CF;) + > (M; - DCFj) 2.1)
~ Designed Transport Work DWT - Vyes '

In this equation, P; is the Power of the main and auxiliary engines (in kW). The SFOC; is the Specific
Fuel Oil Consumption of the i-th engine (in G/kWh). The CF; is the Carbon conversion factor for the
fuel type used (in CO,/g of fuel burned). M; is the emissions from other energy sources, like waste
heat recovery systems. The DCF; is the Direct Conversion Factor for these additional energy sources.
The DWT is the Dead Weight Tonnage of the ship (in metric tons), and the V... is the reference speed
of the vessel at its design load (in knots or m/s). The model discussed in chapter 5 will explore only
a hybrid engine and won'’t discuss other energy sources, but does, however, discuss multiple engines.
So the equation that will be used in this thesis to compare emissions of different engine equipment is
found below (Equation 2.2) [54].

>(P; - SFOC; - CF)
DWT - Ve

EEDIattmined = (22)

This EEDI should be lower than the required EEDI, which is given by the IMO.

EEXI

For the new framework that was implemented in 2023, all existing ships of 400 gross tonnage and
above are required to calculate their attained EEXI. This index measures energy efficiency relative to
a baseline. This attained EEXI is then compared to a required EEXI, which is based on an applicable
reduction factor expressed as a percentage that is relative to the EEDI baseline. The calculated attained
EEXI value must be below the required EEXI to ensure the ship meets a minimum energy standard
[55]. The attained and required EEXI is calculated as follows 2.4 [56].

EEXIattained < EEXIrequired (23)

B _ Designed CO, emissions 3 (P; - SFOC; - CF;)
BEX Luttaines = EEDI = Designed Transport Work DWT - Vyey (2.4)

X
EEX I equireda = (1 — m) - EEDI, ¢ (2.5)
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Cll

The CIl is based on the operational energy efficiency of ships. It determines the annual reduction
factor required to ensure continuous improvements of a ship’s operational carbon intensity. The Cll is
a mandatory indicator for vessels of 5,000 gross tonnage and above. The attained annual operational
Cll is documented and verified against the required annual operational Cll (equation 2.6). Finding the
attained CllI is calculated by dividing the yearly CO, emissions, found by multiplying the fuel by the
carbon conversion factor, by the Annual Transport Work that is done by the ship (equation 2.7). The
CllI required by the industry is calculated by multiplying the reduction factor for the required annual
operational Cll Z, with a reference value Cll,..; (equation 2.8). This reference value is a general value
defined in 2019 that is based on the type of ship that is examined [57].

CIIattained

H=— 2.6
¢ CIITequired ( )
ClLouinog — Annual CO, Emissions _ Y (FC year - CF;) 2.7)

Annual Transport Work DWT - Dyeqr

S 1-2)

CIIrequzred - 100 CII’r‘ef (28)
Cllyey =a-DWT™¢ (2.9)

Based on this, a ClI rating is given to the ship; such a rating can be seen in Figure 2.3. The rating
scale is shown as A, B, C, D, or E, ranging from superior to inferior performance levels. When a ship
acquires a rating of D for three consecutive years or is rated E, it is required to develop a 'Plan of
corrective actions’.

. T Cll Reference line (for llustration)
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_ Py, AR L e
] 404, ] RaigR -
§ " toges /1 o N
] In {required GHE) i Rating D, a . .
& 30 L “...» inferior boundary
5 | Ratmng.C
‘ e20% | . > Upper boundary
5 ™ Ra:tlngB
2 i It Rl ~> lower boundary
1% 4 4~ > superior boundary
Ln (Capacity)

Figure 2.3: Operational energy efficiency performance rating scale [58]

2.4. Engine room design

The EEDI and EEXI are calculated using the power and efficiencies of the components in the ship. This
would create the notion that there is considerable potential in optimizing every component to improve
fuel consumption and reduce emissions. With this in mind, marine engineers are motivated to replace
the conventional power systems with more complex power systems to adjust to the new emission
legislation and to reduce operational costs. Hybridization has excellent potential with vessel types
that have a variant operational profile, and that are powered by a single prime mover, most commonly
an internal combustion engine (ICE) [59]. Along with the engine, there is also the fuel that can be
optimized. Different fuels have differing caloric value, but also energy density. With advances in other
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fuels, emissions can also be lowered when looking into optimizing fuel use. This section will explore
the various power system designs in marine vessels, focusing on different types of engines and fuels,
and ultimately examining the powertrain configurations, referred to as topologies.

2.4.1. Traditional propulsion system opportunities

Power and propulsion are essential aspects in green shipping. The type of propulsion that is considered
is linked to the kind of vessel that will be explored. In this thesis, the type of vessel that will be explored
is a bulker vessel of at least 300 meters in length.

Figure 2.4 shows that in typical shipboard propulsion systems, the most significant losses in the system
are thermodynamic and mechanical losses in the engine. These losses account for roughly 60% of the
losses in the system. Leaving only about 40% of the engine power (the Brake Horsepower). The
remaining losses are attributed to the gearbox and propeller, which account for approximately 16% of
the system’s losses.

Fuel energy
100%

Exhaust gas .
30% cooling
system
Friction & power Net 27%
take-off 3% energy
engine
40%

Transmission
& shaft losses
1%

Propeller
losses 15%

Net thrusting energy 24%

Figure 2.4: Efficiency of a typical engine

On larger vessels, the most common system is a slow-speed 2-stroke diesel engine serving as the
main engine. It generally has a maximum speed of 100-130 revolutions per minute and is connected
to a fixed-pitch propeller (FPP). Recent research has looked into ways to make ships’ power systems
greener. The following section will explore the measures that can be taken to improve this existing
system.

Component improvements

Component improvement can increase fuel and emission efficiency; propeller design can already con-
tribute to about 4-5% improvement in a vessel’s energy consumption [60, 61]. Hydrodynamics improve-
ments, including bow design, stern bulbs, stern flaps, and slender hulls that reduce wave resistance,
have been shown to lead to a reduction of fuel consumption by 5-20% [62]. Optimizing the transmission
system, the plant design, and reducing weight can also lead to an additional fuel reduction of between
1-5% [61, 62, 63].
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Emission efficiency systems

Introducing emissions efficiency systems can also improve the traditional diesel engine. These sys-
tems are included in the context of turbochargers and exhaust gas recirculation systems (EGR). Using
a turbocharger helps slow-speed two-stroke diesel engines be among the most efficient thermal power
plants, with thermal efficiencies approaching or exceeding 50% [64]. The turbocharger allows an in-
crease of engine power density through the downsizing concept, further reducing fuel consumption
[65]. The creation of a simulation of a turbocharger is essential for any engine model to be able to
provide accurate predictions and predict how to increase performance and emissions [64]. Especially
for slow-speed 2-stroke diesel engines, since the turbocharger has a crucial role in the gas exchange.
The development of such a model also paves the way for the development of transient air-to-fuel ratio
control and exhaust gas recirculation [66]. Exhaust gas recirculation (EGR) is another strategy that
improves emissions figures in marine diesel engines. Such an EGR system cuts down the amount
of air intended for fuel combustion, and consequently cuts down the amount of exhaust gases, which
return to the engine cylinder. With an EGR system, NO,. emissions drop by 37.9-53.5% depending on
the engine operating mode and degree of EGR [67].

Control systems

Another way to improve diesel engine efficiency is through the use of control systems. The paper by
Sinha proposes a mathematical model of a marine diesel engine speed control system. These kinds
of systems are still in their preliminary investigation phase, but do look promising, and their results are
consistent [66, 68].

Fuel

Alternative fuels can significantly improve the emissions performance of traditional marine diesel en-
gines. The introduction of biodiesel has been shown to reduce nitrogen oxide (NOy) emissions by up to
24.3%, according to multiple sources [69, 70, 71]. Dual-fuel systems, particularly those using liquefied
natural gas (LNG), have the potential to lower CO, emissions by 25-30%. Additionally, NO, emissions
can be reduced by up to 85% due to lower peak combustion temperatures in these systems [12].

2.4.2. Fuel options in the context of emissions reduction

The transition to low-carbon shipping depends heavily on the fuels that can realistically replace or sup-
plement traditional marine fuels. While many fuel candidates are being explored, they can broadly be
categorized into three types based on their production method and climate impact: blue fuels, biofuels,
and electrofuels. Each of these offers distinct advantages and limitations from an energy, infrastructure,
and emissions perspective [72]. This section will discuss each of them.

Blue Fuels

Blue fuels are derived from fossil sources such as natural gas but incorporate carbon capture and
storage (CCS) to reduce net emissions. An example is blue hydrogen produced via steam methane
reforming with CO- capture. While not fully renewable, blue fuels are seen as bridge solutions due to
their relatively established supply chains and the possibility of integrating with existing infrastructure.
Their well-to-tank emission factors are lower than conventional marine fuel oil, but they still depend on
effective CCS and methane leakage management [73].

Liquefied Natural Gas (LNG)

LNG is currently one of the most widely adopted alternative fuels in the maritime sector and is consid-
ered a transitional or “blue” fuel. It consists primarily of methane and is stored at around —162°C to
reduce its volume. Compared to heavy fuel oil (HFO), LNG combustion produces significantly lower
emissions of sulfur oxides (SO,,), nitrogen oxides (NO,), and particulate matter. CO, emissions are
also reduced by roughly 20—-30%, depending on engine type and operational conditions [74].

LNG can be used in dual-fuel or gas-only engines and is supported by a growing global bunkering
infrastructure. However, methane slip, which is the unburned release of methane, another potent GHG,
remains a significant concern, especially for older or less-optimized engine technologies [75]. Methane
has a global warming potential over 80 times that of CO, over a 20-year horizon, which can undermine
the climate benefits of LNG if not adequately controlled [76].
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Despite this drawback, LNG remains one of the most feasible near-term options for reducing emissions
in deep-sea shipping. Its maturity, availability, and regulatory compatibility make it a central component
in many fleet upgrade strategies, as seen in the case study of this study.

Biofuels

Biofuels are derived from biomass sources and include options like biodiesel, bio-methanol, and bio-
LNG. They are often drop-in compatible with existing engines, making them attractive for short-term
implementation. In modeling scenarios, biofuels could reduce lifecycle emissions significantly, espe-
cially when blended with fossil fuels like VLSFO. However, concerns around sustainable feedstocks,
land use, and indirect emissions remain barriers to large-scale adoption. In the context of this study,
biofuel blending is considered a discussion point for future optimization strategies.

Biodiesel

Biodiesel is derived from plant oils via the transesterification process [77, 78]. It shares many character-
istics with fossil diesel, including viscosity and density, though its calorific value is approximately 12%
lower [69]. The sulfur content of biodiesel is also very low, around ~0.01 wt% [79]. It can be used di-
rectly in compression-ignition engines or blended with fossil diesel, offering flexibility in implementation
[80, 81].

Studies show biodiesel can significantly reduce carbon monoxide (up to 41%) and unburned hydro-
carbons, especially at lower engine speeds [82, 83, 84]. However, it may increase NO, emissions by
10-45%, depending on engine tuning and operating conditions [69, 85, 86]. These trade-offs highlight
the need for emissions treatment systems or blending strategies in marine applications [87, 88, 89].

Other obstacles include fuel stability, feedstock availability, high production costs, engine compatibility,
and the lack of standardized marine-grade biodiesel specifications.

Bio-methanol

Bio-methanol is produced from biomass sources such as forestry residues, black liquor, or biogas
through gasification and synthesis. It is chemically identical to fossil methanol, but as it is produced
in a carbon-neutral way, it offers reduced lifecycle emissions, with the potential to be used in existing
methanol-compatible engines. Bio-methanol is considered a drop-in fuel for dual-fuel or methanol-
specific engine systems and benefits from being miscible in water. It is also easier to handle compared
to LNG or ammonia, as it is liquid at room temperature [90].

However, its environmental impact depends on the sustainability of the biomass feedstock and the
production method used. While bio-methanol has a lower volumetric energy density than diesel, it is
more energy-dense than ammonia and easier to store, as shown in Figure 2.5. Its main barriers to
adoption are production scale, supply chain maturity, and cost.

Electrofuels: Long-Term Renewable Solutions

Electrofuels, or e-fuels, are produced using renewable electricity and non-fossil carbon or nitrogen
sources. These include e-ammonia, e-methanol, and synthetic methane (SNG). Their appeal lies in
zero-carbon production pathways; however, their current limitations include low energy efficiency, high
costs, and limited availability. For long-term decarbonization, electrofuels are likely essential, but for
this model, they are not yet included in operational simulations due to their early stage of deployment.

e-Ammonia

Ammonia is an already commercially available fuel that has been numerously mentioned as a candi-
date to fulfill global decarbonisation strategies [91, 92]. Ammonia can be produced in multiple ways.
Blue Ammonia is produced with natural gas, which would not make the fuel carbon neutral. New devel-
opments offer the option for ammonia to be created using electrolysis powered by renewable energy,
making it a green e-ammonia —a zero-carbon fuel. This zero-carbon alternative would push the indus-
try quicker than the blue ammonia variant [72].

As shown in Figure 2.5, the volumetric energy density of liquid ammonia is significantly lower than
diesel—by a factor of approximately 2.85, which has implications for fuel storage and range [93].

One of the primary technical hurdles is ammonia’s poor ignitability due to its low volatility and high
ignition energy requirements [94]. This limits its standalone application in marine engines and makes
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fuel blending a more viable short-term strategy [95]. Studies have explored blends of ammonia with
fuels such as gasoline, ethanol, or hydrogen to improve combustion properties. For instance, ammonia-
hydrogen blends (5-20% hydrogen by volume) have shown promise in enhancing thermal efficiency,
but the ammonia blends also increase NO, emissions [96, 97, 98].

These emission trade-offs suggest that ammonia-fueled engines may require additional aftertreatment
technologies, such as selective catalytic reduction (SCR), to meet regulatory standards. Another chal-
lenge lies in unburned ammonia slip, which can occur due to incomplete combustion [99, 100, 101].

Despite these limitations, developments in 2-stroke marine engine technology are steadily advancing
toward the commercial use of ammonia as a marine fuel. Its zero-carbon potential makes it a strong
long-term candidate, provided the technical challenges around combustion and emissions can be ad-
dressed.

e-Methanol

E-methanol is synthesized using green hydrogen and captured carbon dioxide, making it a carbon-
neutral electrofuel when produced with renewable electricity [72]. Like bio-methanol, it is compatible
with existing methanol engines and offers a pathway for decarbonization without requiring completely
new propulsion systems. Its handling characteristics and infrastructure requirements are the same as
those for bio-methanol, which are less demanding compared to fuels like hydrogen or ammonia.

The main limitations of e-methanol are its low energy efficiency (due to the production method requiring
electricity) and high production cost. Nonetheless, it is considered one of the more promising long-term
options for long voyage shipping if scalable, green CO, and hydrogen sources become widely available.

Hydrogen

Hydrogen is a prominent zero-carbon fuel candidate due to its clean combustion profile and poten-
tial for complete decarbonization when produced via electrolysis using renewable energy. However, it
presents several challenges that currently limit its applicability for large-scale marine propulsion. Hydro-
gen has a low volumetric energy density (even when compressed or liquefied), resulting in significant
storage requirements, as shown in Figure 2.5.

Although hydrogen is volatile and highly flammable, these properties lead to operational safety con-
cerns, such as flashback and pre-ignition. Additionally, high-pressure or cryogenic storage systems
introduce complexity, cost, and space constraints on board ships. While hydrogen can be used directly
in internal combustion engines or in fuel cells, both pathways are still in early development for seagoing
vessels.

Given these limitations, hydrogen is not considered in the present simulations. Nonetheless, it remains
a controversial fuel with considerable potential for long-term decarbonization strategies, especially as
infrastructure and safety systems continue to mature.

Fuels used in this study

This thesis primarily simulates configurations using fuel oil and LNG, as they represent the most com-
mon and technically mature options in current shipping practice, and consequently also have the most
data available. Each engine in the simulation is linked to a specific fuel type and corresponding CO»
emission factor. While the model does not simulate direct fuel switching, modifying emission factors
enables comparative assessments across different fuel types. In this way, future scenarios—such as
biofuel blending can be explored through sensitivity analysis or discussed qualitatively in the discussion
section. As shown in Figure 2.5, ammonia and other zero-carbon fuels have significantly lower energy
densities than fossil fuels, which impacts fuel storage and engine performance. Table 2.1 summarizes
the main takeaways discussed in this section, highlighting the energy density, technological readiness,
and whether they are included in the case study.
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Figure 2.5: Volumetric energy density of selected fuels relevant to marine applications [4, 93].

Table 2.1: Comparison of alternative fuel types relevant to ship design

Fuel Type Category Energy Density Tech Readiness Modeled in Case Study
HFO Fossil (baseline) High Fully deployed Yes

LNG Blue High Mature Yes

Biodiesel Bio Medium Medium—High No (for now)
Bio-methanol Bio Medium Medium No

Ammonia Electro / Blue Low Experimental No
E-methanol Electro Medium Low No

Hydrogen Electro / Blue Very Low Low No

2.4.3. Alternative Propulsion options
This thesis will consider alternative engines that are already being used in large vessels or are compat-
ible for use in larger vessels. This subsection will be split up into three categories:

» Conventional Propulsion systems
* Emerging and alternative engine technology
* Renewable systems

Conventional Propulsion systems

The engines that have conventionally been used have been mentioned a few times in this chapter
already. The high-efficiency, fossil-fuel-using Diesel two-stroke engine is the most used engine for
large seagoing vessels. And the latter introduced a more environmentally friendly dual-fuel engine.

Diesel two-stroke engine

The diesel 2-stroke engine is the most widely used in large ocean-going vessels. The engine is highly
efficient compared to even other types of heat engines, and it burns a wide variety of hydrocarbon fuels,
which are easily obtainable. HFO, intermediate fuel oil, and marine diesel oil are the most common
hydrocarbon fuels. There are three types of diesel engines, namely the slow, medium, and high-speed
diesel engines. As the medium and high-speed diesel engines are commonly used in smaller vessels,
these will not be considered for the configuration. The slow-speed diesel engine (60—-300 RPM) is
widely used in large ocean-going vessels due to its ability to drive the propeller shaft without reduction
gearing directly. Operating in the optimal 200—300 RPM range, these engines also enable higher
propeller efficiency. Figure 2.6 shows the topology of such a slow rpm diesel two-stroke engine, where
the engine is directly connected to the shaft.
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Figure 2.6: Typical mechanical propulsion system [102]

Section 2.5 will go into more detail on the different engine topologies that are used for marine vessels.
These engines exhibit high thermal efficiency (up to 50%) and are capable of delivering power outputs
exceeding 70,000 kW, making them ideal for deep-sea faring and high-demand shipping. However,
their environmental footprint is the biggest concern, particularly concerning NO, and SOy emissions
when operating on HFO. Although emission control technologies such as exhaust gas scrubbers and
selective catalytic reduction (SCR) systems are increasingly adopted, the shift to lower-carbon or zero-
carbon fuels poses technical challenges. In this study, diesel two-stroke engines serve as the baseline
configuration, against which alternative engines are assessed in terms of fuel consumption, emissions,
and operational adaptability.

Dual Fuel Engine

In 1995, Wartsila introduced the first dual-fuel engine, with its first marine application following in 2003
[103]. As such, its use is relatively recent in maritime contexts. Dual fuel engines allow vessels to
operate on either LNG or conventional hydrocarbon fuels such as LFO, HFO, and even liquid biofuels.
Operating on LNG drastically reduces CO,, NOy, SOy, and particulate matter emissions [104]. The
degree of reduction depends on the secondary fuel used, but LNG operation typically results in a 15—
20% decrease in GHG emissions. Additionally, LNG is an established marine fuel with a growing global
infrastructure, mature regulatory frameworks, and widespread availability.

A key advantage of dual-fuel engines is their ability to switch seamlessly between fuel types without
loss of speed or power. This enables easier compliance with emission control area (ECA) regulations
and allows ship operators to adapt fuel use based on cost and availability.

However, these systems come with engineering and operational challenges. They require advanced
control units, double-walled fuel lines, and cryogenic storage, which increases both complexity and
capital costs. Methane slip—unburned methane released during LNG operation—remains a significant
concern for total GHG performance.

In the context of this thesis, dual-fuel engines are particularly relevant due to their being relatively new
technology in large vessel applications and their data availability due to their use in recent years. Their
compatibility with LNG, an increasingly available low-carbon fuel, aligns well with the decarbonization
goals set by the IMO. The ability to operate in both gas and diesel modes introduces operational flex-
ibility, which is advantageous when evaluating different engine configurations under varying voyage
conditions.
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Overview of propulsion technologies

Some engines should be considered or at least mentioned when discussing advancements in sus-
tainable propulsion systems for big vessels. Such as the gas turbine engine, fuel cells, and nuclear
energy.

Gas Turbine engine

Gas turbines have seen limited application in commercial shipping, though they are well-established
in naval vessels, fast ferries, and LNG carriers. Their high power-to-weight ratio and compactness
make them ideal for maritime applications and high-speed ferries, but less so for cargo vessels with
steady-state power demands. Their ability to start quickly and operate flexibly across power ranges
makes them attractive for specific vessel types requiring rapid maneuvering or reduced mechanical
complexity.

Despite these benefits, gas turbines are less efficient at part load and generally have higher fuel con-
sumption compared to slow-speed diesel engines, particularly under typical merchant vessel operating
profiles. They also require higher-grade fuels, contributing to elevated operational costs.

The data sets used in this study include gas turbine information and fuel consumption. Due to their
nature, the Specified Fuel Consumption is relatively high, signaling that they will mostly not be consid-
ered for configurations. They do, however, remain a candidate for hybrid systems or as supplementary
propulsion in specialized applications. Future work may explore their role in DT frameworks where
other types of vessels are examined and compact high-power engines become more attractive.

Fuel cell propulsion

Fuel cells have emerged as a promising zero-emission propulsion option in the maritime sector, partic-
ularly for short-sea shipping and auxiliary power applications. They convert chemical energy directly
into electrical energy, typically using hydrogen or ammonia as fuel, and produce only water and heat
as by-products when using pure hydrogen. In addition to zero or low greenhouse gas emissions, fuel
cells offer several operational advantages:

» Noise and vibration reductions
» Reduced infra-red signatures
* Reduced maintenance

» Modular and flexible design

» Improved part load efficiency

» Water generation

Among the various types, Solid Oxide Fuel Cells (SOFCs) show strong potential for marine applications
due to their high efficiency and fuel flexibility [105]. However, challenges remain in scaling the technol-
ogy for high-power, long-duration use. These include system durability, hydrogen infrastructure, and
integration with existing propulsion systems.

In the context of this thesis, fuel cell systems are acknowledged as a long-term alternative but are
not modeled due to limited large-scale deployment and insufficient operational data in current vessel
configurations.

Nuclear power propulsion

Nuclear propulsion is primarily used in military and specialized high-power vessels such as aircraft
carriers, submarines, and a few civilian icebreakers. It operates by using nuclear reactors to generate
heat, which then drives steam turbines for propulsion and electricity generation.

While nuclear power offers virtually unlimited range and zero operational emissions, its application
in commercial shipping is limited due to high regulatory, safety, and public acceptance challenges—
additionally, cost, crew training, and nuclear waste handling present significant barriers to widespread
adoption.

Given these constraints and the lack of commercial deployment, nuclear propulsion is not included in
the modeling scope of this study. While not modeled, nuclear propulsion is included here for complete-
ness as a theoretical zero-emission option for high-endurance operations.
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Renewable-assisted propulsion

Renewable-assisted propulsion refers to technologies that utilize naturally occurring forms of energy,
such as wind and solar, to reduce reliance on fossil fuels and hopefully improve vessel efficiency.
While not primary propulsion methods for most commercial ships, these technologies are increasingly
considered as auxiliary systems to reduce emissions and fuel consumption, especially in long-haul or
retrofitted vessels.

Wind Propulsion

Wind propulsion is one of the oldest forms of marine propulsion and has recently experienced renewed
interest due to environmental pressures. Modern implementations include rotor sails (Flettner rotors),
rigid sails, kites, and suction wings, which can help reduce engine load and fuel consumption. They
are especially suitable for retrofitting on large cargo vessels where available deck space allows for
installation without significant design changes. A study by Hermans explores the potential of wind-
assisted propulsion systems for reducing emissions in commercial fleets through retrofit strategies
[106].

Solar propulsion

Solar-assisted propulsion involves using photovoltaic (PV) panels to generate electricity onboard, which
can be used to support auxiliary systems or, in limited cases, propulsion [107]. While power output
remains relatively low, especially for large vessels, solar panels can contribute to hybrid systems or
support electric drive systems in small craft. Though not yet widely adopted in commercial shipping,
solar energy remains a promising supplementary energy source and is included here due to its potential
in future low-emission vessel designs.

In summary, while a range of propulsion technologies is emerging, only those with sufficient data and
applicability to large vessel types are considered for modeling in this study. The following section
discusses how these technologies map onto feasible powertrain topologies.

2.5. Hybrid engine design

To create a model of a hybrid powertrain, the definition of a hybrid engine and its requirements have to
be explored. To model hybrid powertrains in this study, a hybrid system is defined as a propulsion or
auxiliary configuration that combines multiple types of energy sources, such as ICEs, batteries, or fuel
cells. This includes configurations where ICEs provide direct mechanical power or generate electricity
for propulsion. The feasibility of these systems depends on the integration of their power management
and control, as well as their ability to meet operational demands. This thesis models only hybrid systems
for which sufficient data exists—primarily diesel and dual-fuel configurations.

A key modeling question is how hybrid systems can and have effectively replaced traditional single-
engine configurations, particularly in delivering sufficient and stable propulsion power. As section 2.4.3
mentioned, the conventional engine topology does not include a secondary power supply that drives
the propeller. The diesel engine is isolated to power the propeller (Figure 2.6).

2.5.1. Typical hybrid engine

When looking at possible hybrid engine topologies, some have already been established by Geertsma.
To understand how these topologies differ and what they mean for the engine configuration selection,
a simple, typical hybrid configuration is shown in Figure 2.7.
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Figure 2.7: Typical hybrid propulsion system [102]

In this setup, the main propulsion is provided by a large diesel engine directly connected to the shaft,
while auxiliary engines (via converters) can contribute additional power. This also allows for some gen-
erating capacity, either through the electric generator or the generator sets, which provides operational
flexibility. This topology benefits from a combination of electrical and mechanical propulsion. The pri-
mary benefit of this system lies in combining mechanical propulsion with electrical support for varying
loads, though the system lacks integration of alternative or renewable energy sources. The generating
capacity of the propeller is also a significant benefit. Typically, however, a large diesel engine is still
required to drive the entire propulsion system.

2.5.2. Electrical propulsion with hybrid power supply

This topology combines conventional combustion engines (e.g., diesel or gas turbines) with energy
storage systems such as batteries or supercapacitors to power an electric drive. As shown in Figure 2.8,
the combined sources generate electricity used for propulsion and auxiliary systems.
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Figure 2.8: Electrical propulsion with hybrid power supply [102]

In this topology, power is generated evenly by multiple energy sources that generate the electricity,
which drives the propellers. Most applications of this type of topology are in tugs and ferries [108]. While
promising, especially for short-sea shipping and ferries, this topology is not included in the simulation
of the current study due to limited operational data on energy storage systems and their energy sharing
behavior.

2.5.3. Hybrid propulsion with hybrid power supply
Combining these systems is the hybrid propulsion with hybrid power supply topology (Figure 2.9.
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Figure 2.9: Typical Hybrid propulsion system with hybrid power supply [102]

This propulsion system is currently used in tugs and yachts, such as the Savannah, built in Aalsmeer.
[109].

While this setup allows for maximum flexibility and redundancy by combining mechanical drives, electric
motors, and diverse energy sources, it also introduces significant complexity in terms of control systems,
power management, and integration. Applications have been limited to smaller vessels like tugs and
yachts due to these challenges. In the context of DT-aided design, such systems would benefit from
real-time optimization and predictive maintenance strategies, but are not modeled in this thesis due to
insufficient performance and integration data for large vessels.

2.5.4. Electrical propulsion with DC hybrid power supply
Another topology is also using fully electrical propulsion, but with a DC power supply (Figure 2.10). All
generator sets are converted to DC power to power both the auxiliaries and the propeller.
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Figure 2.10: Typical Electrical propulsion system with DC hybrid power supply [102]

This DC-based topology enhances efficiency by minimizing energy losses during the conversion pro-
cess. It simplifies integration with renewable energy systems and energy storage devices (e.g., batter-
ies and fuel cells), which naturally operate on DC. It is particularly suited for vessels with fluctuating
load profiles, such as cruise ships and offshore support vessels. However, the complexity of onboard
energy management systems and the current scarcity of operational data for DC distribution networks
limit their inclusion in the present simulation model.
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2.6. Engine room optimization and gap in research

While hybrid propulsion systems can encompass a wide array of possible configurations, including fully
electric, fuel cell-based, and DC-powered systems, this thesis focuses solely on systems that are both
technologically mature and data-accessible. The data-driven design approach presented in this study
is explicitly applied to configurations involving diesel and dual-fuel internal combustion engines in the
case study, which can be arranged in hybrid topologies where auxiliary engines contribute to propulsion
or onboard energy supply. This focus reflects current industry trends in large vessel design, ensuring
realistic modeling grounded in operational data.

Most studies in this domain focus on modeling specific engines rather than comparing and optimizing
different engine configurations for design. There is limited research on integrating Data-driven design
into early-phase powertrain design, particularly for selecting hybrid configurations that reduce emis-
sions and improve lifecycle performance.

Fully electric and alternative systems remain outside the scope due to limited implementation and
scarce operational data. By centering the study on hybrid ICE-based propulsion, the framework re-
mains robust, practical, and directly applicable to contemporary ship design challenges. The goal is
that future research can extend the model capabilities by using this framework as their baseline as data
availability and technology maturity increase.

2.6.1. Scope and modeling focus

This review has examined the progression from traditional ship design methods to emerging data-driven
approaches, highlighting both the opportunities and limitations of digital technologies. Conventional
frameworks remain valuable for structuring design work, but they rely heavily on generalized assump-
tions made early in the process. In contrast, operational data offers a means to capture the complexity
of real-world vessel behavior, enabling design decisions that are both more efficient and more aligned
with regulatory and environmental demands.

Despite the promise of data-driven methods, applications in early-stage ship design remain scarce.
Most research and industry practice have focused either on operational optimization or on high-level
regulatory compliance, leaving a gap in how operational data can systematically inform component-
level design choices—particularly in the engine room. This gap is critical, as propulsion and auxiliary
systems are major drivers of both fuel consumption and emissions.

The scope of this thesis is therefore to develop and test a data-driven framework for early-stage design
decision-making using operational data as a basis for modeling and optimization. The framework aims
to demonstrate how such data can be structured, analyzed, and integrated into a digital model that
supports early-stage decision-making. The next chapter introduces the modeling approach and details
how operational data and performance metrics are integrated within the proposed data-driven method.



Data-driven approach

The growing availability of operational data in the maritime industry presents a valuable opportunity to
enhance early-stage ship design. As discussed in the previous chapter, traditional methods often rely
on assumptions that may not fully capture the complexity of real-world vessel performance. To address
this gap, various data-driven approaches have emerged, including simulation-based optimization, ma-
chine learning, and statistical modeling. However, these methods differ in their ability to support the
continuous integration of operational feedback and system-level understanding.

After evaluating these alternatives, this thesis adopts the Digital Twin (DT) approach as the most suit-
able framework for supporting data-informed design decisions. The core strength of Digital Twins lies in
their ability to synchronize real-time or historical operational data with virtual models, allowing for more
adaptive and context-aware design decisions. In contrast to one-off simulations or black-box models,
DTs provide a dynamic representation of the physical system throughout its lifecycle—making them
especially well-suited for optimizing engine configurations under realistic operational conditions.

The remainder of this chapter explores the background, capabilities, and applications of Digital Twins,
particularly in the context of engine room and powertrain optimization. Section 3.1 introduces the
concept and historical development of DTs. This is followed by an examination of the role of operational
data in enabling DT models, and finally, a review of existing DT-aided design applications in the maritime
sector and related industries.

3.1. Digital twins in design and production
The term Digital twin, given by Grieves, was described initially as 'a digital informational construct about
a physical system, created as an entity on its own and linked with the physical system in question’ [47,

110]. A DT is, in its origin, something that mirrors a product. This was shown by Grieves in the Figure
2.2.

Digital twins in production offer numerous advantages that can enhance the entire design process,
boosting competitiveness, productivity, and efficiency. Toa et al. investigated the different application
methods and frameworks of digital twin-driven product design, manufacturing, and service in their 2018
paper. Most applications of DTs were found in the design of a product, before the product is sold to
a customer. A product’s quality is improved through multiple iterations while data is gathered, before
it is put on the market [43]. The paper also suggests that, as of right now, the abundance of data
that is generated by the different phases of a product’s lifecycle is not efficiently used, and a lot of
resources are wasted. To solve this problem, DT technology has potential due to its characteristics
of high synchronization and fidelity, as well as convergence between the physical and virtual products
[18].

DTs have been implemented using multiple concepts and solutions across various industries. Before
diving into these, a more general understanding can be gained from the different levels of integration of
DTs. The gradation of data integration can be split up into three subcategories. These subcategories

24
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contain the Digital model, Digital shadow, and Digital twin [110]. A description of the characteristics is
given in the sections below; their difference has been depicted in Figure 3.1 [111, 112, 113, 114].

Digital Model

The differentiation between the subcategories is the difference in the way the automatic exchange of
data is integrated. For a digital model, automatic exchange of data is not integrated, neither from the
physical object to the virtual model nor from the digital model to the physical object. Such a model
can be a mathematical model, simulation model, or vice versa of a physical object, but without any
automatic exchange of data. A digital model is a comprehensive description of a physical object. In a
digital model, a transformation of the state of the physical object will not result in an automatic change
in the virtual model.

Digital Shadow

The difference between a digital model and a digital shadow is the way data flows from the physical
object to the virtual model. For a digital shadow, this is done automatically. It does, however, still not
have an automatic data flow in the other direction. A transformation of the state in the physical object
will affect the state of the virtual model, but not the other way around. A depiction of a digital shadow
can be seen in Figure 3.1

Digital Twin

The final evolution is the step toward the digital twin. In this stadium, there is an automated flow of data
from the physical object to the virtual model and vice versa. As described by Grieves’ DT model, a
digital twin serves, in some applications, as a controller of the physical object. As described in Grieves’
model, other virtual, digital, or physical objects may also influence the state of the Digital Twin or its
underlying virtual model. In a digital twin, a transformation in the state of the physical object will affect
the state of the virtual model, and vice versa.

3.2. DT-aided Design

DT technology has been widely used for design in multiple different industries, as was mentioned in
chapter 2.2. Multiple advancements have been made in the shipping industry using life-cycle data,
mainly in the Product life-cycle management sector. However, the use of operational data is still in its
infancy. Primarily due to the lack of data or the lack of shared data. This section will explore the usage
of operational data in DT-aided design, both in shipping and in related industries.

3.2.1. Ship design
DT technology in ship design has seen only a limited number of applications since the boom in infor-
mation technology. The different types of data have slowly been expanding and growing.

A paper by Maura et al. examined the use and the grade of implementation of DTs in the maritime
industry. The division of the use in the ship’s phase can be seen in Figure 3.2.
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Ofthe 10 papers found in design, only three concepts, concerning general descriptions, definitions, and
capabilities of DTs, were in ship design. Not a single framework of how a DT could be implemented in
ship design is produced according to this study [29].

In the paper by Semeraro et al., the main features of Digital Twins are explored; here, most applications
for maritime and shipping are used as support for design. Most time and money are invested into the
preparation of analytical models for simulations. The DTs allow visualization of all the key components,
perform analyses and calculations, and improve the control of the effects of the operations on the ship’s
structural and functional components [115, 116].

Sapkota proposes a framework for benchmarking validation data and metrics during model validation
in different domains. This data involves operational data and other validating data from physical assets
that would require operational validation. The approach focuses on addressing the problem of param-
eter uncertainty of a predictive model. The goal is to enable the online availability of operational data
from the physical asset required for operational validation in Digital Twins. The approach is not asso-
ciated with the design of the whole ship, but the design of single subsystems, in this case, structural
components [29, 117].

Other papers addressing the design phase primarily focus on CAD modeling and ship design. While the
term ’Digital Twin’ is frequently used in this context, the mere adoption of a virtual 3D CAD environment
during the advanced and detailed design stages does not fully align with the core principles of the Digital
Twin concept [118, 119]. As there is no direct communication with a hypothetical physical space.

A paper by Nikolopoulus and Boulougouris from 2020 explores an example of a holistic design opti-
mization approach [31] for a merchant vessel to potentially use design points that are derived from
onboard measurements on existing ships. The approach is a novel data-driven design method that uti-
lizes DT principles to optimize ship design [120]. This approach was proposed earlier by Papanikolaou
and focuses on the way ship design can be approached, considering the entire vessel as an integrated
system. The subsystems and components vary for a cargo ship from cargo storage and handling to the
energy/power generation and ship propulsion to accommodation of crew/passengers to the navigation
of the vessel [121].

There is limited research on embedding vessel operation simulation into the early design process, de-
spite its significant potential. Tillig et al. propose a generic energy system model capable of predicting
a ship’s energy consumption under various operational conditions. However, the model does not ac-
count for variations in the vessel’s engine characteristic limits [122]. The paper by Sandvik et al. in
2018 proposed a quasi-static discrete-event simulation model that replicates and assesses the voyage
of a cargo vessel. It uses a prescribed route based on real-time data and a constant speed assump-
tion. The goal was to compare and evaluate the results in relation to performance monitoring system
measurements [123]. The interesting novelty of the newer research is that the methodologies of the
simulation-driven research have the goals of deriving the key design attributes after the simulation is
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done, instead of using prescribed loading conditions and operating speeds [120, 124].

This research aims to leverage operational data to account for the real-world conditions under which
ships operate—conditions that are often volatile and uncertain. By incorporating this data into the as-
sessment of engine room configurations, the goal is to ensure that design decisions lead to robust
solutions. These solutions should maintain strong performance across a wide range of operating envi-
ronments throughout the vessel’s entire life cycle.

3.2.2. Modeling Approaches from Related Industries

As research in DTs advances across multiple industries, various modeling approaches and data frame-
works have emerged. These implementations, while industry-specific, offer valuable insights for struc-
turing potential DT systems and frameworks in the maritime sector. This section highlights relevant
case studies from industries such as automotive and consumer products, where real-time data, system
interdependencies, and simulation-driven design have already been successfully applied. By examin-
ing these precedents, key building blocks can be identified to inform the development of a DT-aided
design approach for ship engine room configurations.

DT-aided design is actively explored across many industries. Traditional design methods alone are
often inadequate for supporting emerging data-driven approaches [125]. Insights from these industries
can inform how operational data can be leveraged within the shipping sector. The automotive industry
has been the focus of significant research on DT technology. With the rise of electric and autonomous
vehicles, the concept of the digital twin is gaining traction in automotive applications. While electric
vehicles (EVs) lend themselves well to visual representation, the real challenge lies in managing the
complex interdependencies between their many subsystems [126]. For a digital twin of an EV to be
effective, its surrounding environment must also be dynamically modeled, including all parameters that
influence performance. Thanks to extensive real-time sensor feedback, EVs are well-suited for digital
twin replication.

When breaking down the essential aspects of a DT for EVs, there are six significant aspects. The
project data, construction data, sensor data, as-built data, data insight, and artificial intelligence [126].
The model is first founded on the existing project data to create data-driven simulations of the physical
entity. To expand the simulations to a functional DT, construction data and as-built data are incorporated
through horizontal and vertical integration topologies. These 3 data aspects form the contemporary
framework of the DT. To include the real-time data that will enable a vital data stream for a proper DT,
sensory elements are added that attain an abundance of raw data. Here, big data comes into play to
extract the pertinent data insights that the system can use for feedback to the DT. In this concept, Al
or deep learning is used to provide insight into the system’s performance or to inform future decision-
making based on the physical model’s use. These interconnected data aspects form the foundation of
the DT framework, as illustrated in Figure 3.3.
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Figure 3.3: Digital Twin conceptual overview for electric vehicles [126].

Tao et al. present a case study where traditional bike design is redefined [125]. In conventional bike
design, the methods are primarily based on designers’ knowledge and experience. When breaking
down a DT of a bicycle, there are three parts: The virtual bicycle in the virtual space, the real bicycle
in the physical space, and the interactive data between virtual and real bicycles, which is, for instance,
the speed, acceleration, wheel pressure, user comments, relevant environment data, etc. This data
establishes a virtual model within the virtual space, a mapping and reflection of the physical object. In
this setup, the virtual space continuously collects, analyzes, and accumulates data from the physical
space, which can then be used to inform the design or redesign of next-generation bicycles. This
process is illustrated in Figure 3.4.

Bike model data. Production process data <
\ Performance data. Wear data, Repair dam_‘,N
S
<

Designer N‘

Bicycle redesign

\ ,:f;‘m:m lock The
connected
data that tie
physical and
virtual world

Last generation bicycle

Physical space
- ” ___rFeedback

Performance

Verification of
functions

Verification of manufacturing process
= prediction

DT-facilitated Virtual Verification

Figure 3.4: DT-driven bicycle design process [125].
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Designers obtain all their data from the DT, which will be used to design the newer generation. At the
underside of the figure, three steps are included: the performance prediction, the verification of the
manufacturing process, and the verification of functions. Performance prediction is self-explanatory:
through simulation and data-driven mapping, structural fractures can be reduced, assuming the sim-
ulations are sufficiently accurate. Verification is performed using real-world data from the customer,
enabling the identification of design issues early on. Verification can also be achieved by integrating
various environmental data and applying functions under different circumstances. Brake distance, tyre
wear, etc., are tested under different weather conditions through the digital model. This approach illus-
trates how even relatively simple physical systems can benefit from digital twin modeling. By creating
a continuous loop between physical measurements and virtual simulations, designers can iterate more
quickly and with greater confidence. These principles are equally relevant for complex systems, such
as ship engine rooms. During the virtual verification process, problems are identified, and the design is
refined through iterations. This conceptual DT framework is adaptable across industries and can sup-
port businesses in developing DT-aided design strategies tailored to their products. Reducing costs
and increasing efficiency, security, and satisfaction [125].

These examples illustrate how other industries have integrated physical systems with virtual models
to facilitate continuous feedback, simulation, and design improvement. Common elements such as
sensor-based data acquisition, real-time feedback loops, environment-aware modeling, and iterative
validation provide a strong foundation for developing a similar approach in ship design. In the context
of this research, these case studies serve as conceptual references from which a DT-aided framework
for robust, operationally-informed ship design can be constructed.

3.3. Goal of DT-aided design process

Building on the modeling principles from other industries, this section defines the specific goals and
structure of the DT-aided design process as applied to engine room configurations in green marine
vessels.

The objective of a DT is context-dependent and shaped by the system or process it supports. The
aim of a DT is context-dependent and shaped by the system or process it supports. In this case, the
goal is to improve the component design process—particularly engine selection and configuration—
through better integration of operational data and predictive modeling. Ultimately, this should support
the adoption of more energy-efficient technologies and the reduction of greenhouse gas emissions.

At the core of the DT-aided design process is the creation of a virtual model that simulates fuel con-
sumption under realistic operating conditions. Fuel consumption serves as a proxy for emissions and
efficiency, making it a critical performance metric for green ship design [127].

These models are built on two key data sources: real-world operational data and engine-specific char-
acteristics. Together, they form the foundation of the virtual space, where various configurations can
be tested and optimized before real-world deployment. A comprehensive framework illustrating this
process will be introduced in the next chapter (in section 4.5).

A successful DT-aided design depends not only on the modeling approach, but also on the quality and
quantity of the input data. Therefore, the design method must include a structured way to assess data
reliability, model feasibility, and integration between the virtual and physical domains [128, 106].

This thesis aims to address this gap by proposing a Digital Twin-aided design framework that integrates
the use of operational data. The following chapter presents this framework and its constituent blocks,
detailing how operational data, component modeling, and optimization logic can be combined to support
low-emission, data-informed early-stage ship component design.



DT-aided design framework

This chapter will use the theory and applications that were explored in chapter 3 to build the framework
for an application using operational data in ship design.

First, the operational data will be examined and assessed. After which, the data should be processed
to serve the needs of the proposed model.

Next, the modeling approach will be explained, along with how the operational data will be utilized
within this approach. Different optimization strategies will be explored and examined for the chosen
approach.

After this, the data management system required for a DT-aided design model is explained. Then the
verification & validation process will be examined. Afterwards, the total framework of the DT-aided
design method will be described, and with it, the interaction between physical and virtual space.

4.1. Operational Data

As was briefly introduced in section 2.2.2, data can come in many forms. For a marine ship, especially,
a vast amount of information is collected. With such large volumes, it becomes easy to lose sight
of the various data types and the specific roles they can play in supporting design, operation, and
decision-making. This data is required to establish the DT-aided design method. In section 2.2, some
prerequisites of the collection and processing of data were listed; this section will go over these steps in
the context of operational data used for the DT-aided ship framework, improving performance indexes.
The four requirements are:

+ Data collection
» Data quality

» Data access

» Data analysis

This section will first go over the data collection/acquisition and the quality of that data. The section will
then discuss how the data is accessed and what the analysis should look like.

4.1.1. Data Collection and Quality
Quality data collection is a fundamental part of DT-aided design. The ability to transfer data between
the physical and virtual spaces is what defines the process as DT-aided in the first place.

Traditionally, ship performance data was gathered through noon reports, submitted daily by the captain
or chief officer. These reports included key operational details such as the vessel’s position, speed, fuel
consumption, and weather conditions over the last 24 hours. While initially intended for compliance and
operational monitoring, they also supported fuel optimization efforts [129].

Since 2016, the IMO’s Data Collection System (DCS) has made data reporting mandatory, requiring
ships to log fuel oil consumption to support future greenhouse gas (GHG) reduction measures. From
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2019 onward, vessels over 5,000 gross tonnage are required to report fuel consumption of all fuels
used. The data is also used to compute the performance indexes discussed in Section 2.3.

Modern vessels are equipped with a range of onboard sensors that continuously collect operational
data. A key example is the Automatic Identification System (AIS), which provides information such as
[130]:

* Vessel Type [-]

* Beam [m]

» Speed [knots]

» Longitude and Latitude [degrees]

With advances in loT and smart sensors, data is now collected more frequently, transmitted wirelessly,
and processed automatically. In a case study by Coraddu et al., data such as propeller speed, fuel
consumption, and fuel properties were collected in abundance every 15 seconds and averaged into
15-minute intervals by a data handler for analysis [131].

Leveraging systems like the DCS is promising for DT applications, as they provide a standardized and
continuous source of operational data over the vessel’s lifetime. This aligns with a key DT requirement:
the automatic, ongoing exchange of data between the physical and digital environments.

However, the reliability of this data depends heavily on the accuracy of onboard equipment. While some
data types—such as ship speed from AlS—have been reliably collected and can be cross-verified,
others like speed through water (LOG speed) can be inaccurate due to hull effects and environmental
conditions [131].

The effectiveness of any DT-based model relies on the quality of its input data. Challenges such as
noise, missing values, and inconsistent formats can affect model performance [34]. Therefore, auto-
mated data validation and fault detection systems are critical for ensuring reliable digital twin operation
[132, 133].

4.1.2. Data Access and Analysis

Before data collection begins, it is essential to define both the source and the method of acquisition.
Equally important is understanding how data from different sources will be integrated, as this signifi-
cantly affects the success of any data-driven approach. Establishing systems such as databases of
prior models, methodologies, and project records can significantly enhance the implementation of a
DT, particularly if they are accessible for future use and shared across stakeholders.

Efficient access to this information is critical for supporting iterative and collaborative development.
Ideally, relevant data should be available to all actors involved—from designers and engineers to ship
operators and customers. However, access may be restricted by legal considerations, proprietary
ownership, and risk management policies [34].

Despite the growing importance of digital infrastructure in DT applications, challenges remain. High-
performance data systems often require significant investment in hardware and integration, and with
the rise of cloud-based solutions, security concerns are becoming increasingly central [134].

Once data is collected and its quality verified, it can be analyzed for specific purposes. While datasets
may support multiple use cases, quickly extracting the relevant information for a particular analysis or
design task is key to an efficient DT workflow. For example, a reported figure of 2,500 project hours
is only meaningful when compared to similar projects. If previous designs required fewer hours, this
could indicate opportunities for efficiency gains or reveal hidden trade-offs, such as the need for more
time in the construction phase due to earlier design shortcuts [34].

It's crucial to interpret such metrics carefully and record how the data was used, what insights were
gained, and what outcomes were achieved. This process supports long-term learning and can be
institutionalized through centralized knowledge repositories or digital project archives.

A key component of this workflow is data pre-processing. This step involves cleaning, filtering, reducing,
and transforming raw data—whether sourced from the physical space or virtual simulated models—into
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Figure 4.1: Data Processing method as proposed by Zheng et al. [137]

structured formats suitable for analysis [135, 136]. The level of detail and techniques used can vary
depending on the application; however, a consistent, well-defined pre-processing framework is essen-
tial for developing a DT. A study by Zheng et al. proposes a four-stage data processing architecture
for digital twins, visualized in Figure 4.1 [137]. It consists of:

» Data acquisition — collecting real-time data from various sources such as programmable logic
controllers (PLCs),

+ Data pre-processing — rule-based cleaning, data structuring, and primary clustering to reduce
noise and improve consistency [138],

+ Data analysis and mining — using techniques like pattern recognition, classification, clustering,
and outlier detection,

» Data fusion — combining processed datasets to enhance overall quality and reliability.

This layered approach not only improves data quality but also supports real-time DT integration by
enabling consistent, synchronized information flow between the physical and virtual environments.

4.2. Modeling approach

The modeling approach in a DT-aided design method can vary widely depending on the application.
The intended purpose of the digital twin or digital model strongly influences the choice of modeling
strategy. At this stage, the focus is on determining how the acquired and analyzed data will be applied
within the model. Once the data has been processed through the chosen model, the corresponding
virtual representation is theoretically created within the virtual space. According to a literature review
by Tao et al., the most common modeling approaches in DTs include geometric models, physics-based
models, behavioral models, and rule-based models [139]. This section briefly discusses each of these
modeling types.

4.21. Geometric model construction

In geometric model construction, the geometry of the object is modeled; it covers the shape, size,
internal structure, spatial position, and attitude, and assembly interfaces are modeled. For this type of
modeling, model fidelity and the potential for simplification are crucial. A geometric model is not only
for shaping, but also for structural integrity and data accuracy, which support the analysis of motion,
design optimization, virtual interaction, and so on. Because of the detail in modeling, the true-to-life
modeling possibility is crucial [139].

This type of modeling is mainly used for structural analysis. Simplification is of high importance to
create a fast geometric model transfer, loading, and browsing. This uses less data and can still make
a good, true-to-life model of the physical object. In a study by Zhang et al., geometric modeling was
employed to indicate tool wear in an online monitoring tool, simulating the high-fidelity, real-time be-
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havior of the tool [140]. The most important aspect of this type of modeling is that it creates a realistic
visual representation of the physical entity, which can be monitored in real-time. It can be used as a
data-driven tool to estimate responses to real-world simulated actions. It leaves room for the possibility
of simplification while still keeping a high-fidelity model, as was shown by Li and Nan, who proposed a
generic model simplification of a mesh structure [141].

4.2.2. Physical model approach
Physical model construction primarily focuses on quality control and the analysis and prediction of
physical properties. This type of modeling can be split up into static and dynamic model construction.

These static models include quantitative modeling of physical properties, states, and behaviors. These
models are based solely on the characteristics of physical entities, without considering the interactions
between different physical analysis methods. However, contemporary engineering challenges increas-
ingly require models that account for such interactions and incorporate diverse analytical approaches.
In static models, this is still possible using multi-physics coupling analysis. With this, a more accurate
and realistic simulation can be done. In a floating wind turbine example, this would be done through
structural mechanics, aerodynamics, and the sensor readings of the power output, pitch, rotor speed,
etc. The DT would run these models in parallel to simulate real-world operations [142].

In a dynamic, variable physical model, multiple nodes must be created and computed to determine the
physical state distribution across the entire system. This approach is essential in scenarios such as
modeling thermal conduction in mechanical components [139]. A finite element model used for real-
time wear prediction is an example of this type of model, enabling dynamic assessments of an object’s
performance over time.

4.2.3. Behavior model approach

A behavior model should represent the sequential, concurrent, linked, periodic, and random behaviors
of a physical object. If the model is created accurately, it should be able to determine the motion and
the control of the DT model. Due to uncertainties of physical objects in the real world, these types of
models tend to be inconsistent as a result.

If the input data contains a high number of anomalies, this will directly impact the accuracy of the be-
havioral model. It can also result in a consistently deviating DT model when compared to the physical
object. For this reason, the data should be thoroughly analyzed and cleaned to remove any abnormal
data from the dataset. A study by Boulfani et al. created such a behavioral model. It improved it sig-
nificantly by extracting and analyzing the abnormal temperature variations from the physical generator,
and with it removing the anomalous behavior of the DT model of the generator [143].

Iteratively adjusting the algorithm parameters of a behavior model to identify the optimal value of each
parameter in relation to the operational data can also enhance model accuracy. But before this iterative
tuning becomes possible, the designer must have a deep insight into the behavior of the physical object
and the meaning of the parameters that tune it. This is not always possible.

4.2.4. Rule-based model approach

In a rule-based model approach, the physical entity is created via implicit knowledge of the patterns
in its behavior. In rule-based model construction, there are two primary ways of model construction:
through data mining and analysis of the life cycle data, and a formal representation of experience and
knowledge.

A rule-based model tries to estimate the whole life-cycle of a product/physical object as the upper limit.
For this reason, a good data processing procedure is required to map the entire life cycle of the object.

Its limitations are that it cannot learn from new data yet, so a complete encompassing model needs to
be created beforehand. The system needs to have well-understood behavior. Through data mining,
advancements in information processing, knowledge measurement, and graphical mapping enable
the leveraging of more complex experiences and knowledge in rule-based modeling. Over time, this
approach may evolve into dynamic knowledge domains that will allow DT models to understand and
adapt to these rules [139].
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4.3. Model Verification & validation

To reach the correct and desired results and to meet a certain amount of consistency in those results,
model verification is required. This ensures that the virtual space mirrors the physical space. The
goal of model verifications is to evaluate whether the output of both the digital model and the digital
twin is consistent under the same conditions. The verification process should ensure that the model is
implemented correctly and is working as intended.

Model verification should review all relevant information related to the DT implementation to determine
how the model’s credibility can be further enhanced. Every time the model is improved or changed, the
verification should be done again, making the design and verification of the model an iterative process.

One way to verify a design is by examining historical designs or similar applications, and comparing
their approaches to see if they are in a similar vein as the potential application. Another approach
is to examine the application from multiple angles to verify the assumptions made beforehand and to
determine what would change if these assumptions weren’t made.

During the validation process, instead of the question, ’Is the model right?’ The question becomes,
Is it the right model?’ During validation, the model is checked to see whether it reflects reality well
enough to be trusted for decisions and predictions. This process looks at the output with more detail
than the verification process, beyond just the consistency of the production. Validation focuses on the
evaluation of whether the desired output is produced according to the initial expectations and objectives.
The validation step can be done using real-world data to assess whether the objective is reached and
the output is realistic. A case study can also be conducted to verify and validate the model. The output
of the model is then compared to the pre-defined objectives to ensure they meet the intended goals
[117]. The steps of validation and verification lead to the actual creation of the physical space, so this
element is of high importance. This step should ensure that the DT implementation provides accurate
insights into the design process and should inform decision-making.

4.4. Data management

To complete the loop of the DT-aided design process—or any other DT implementation—information
from the physical system must flow back into the data acquisition phase of the virtual space. The data
generated from both the physical and virtual environments must be managed. This can be achieved
through a knowledge bank that is indexed correctly, allowing the data to be easily accessible and
utilized. Through this, certain authorities, designers, and other stakeholders may face limitations in ac-
cessibility. A well-managed DT model should be able to provide extra functionality, reliability, efficiency,
maintainability, usability, and portability of the technologies and tools produced by the DT. It will also
facilitate the utilization of the data and empirical knowledge that is gathered during the creation of the
DT [139].

4.5. DT-aided design framework

Now that the background for the creation of a functional DT-aided design framework has been estab-
lished, the framework can be created. The framework is built based on the established framework that
was described in section 3.2.2. The steps for the creation of a DT-aided design process, as explained
in this chapter, are:

1. Establish DT-aided design goal

Data collection, assessing, and processing

Determine the modeling approach

Optimize key parameters according to the modeling approach

A

Verify and validate the model
6. Knowledge management and virtual-physical integration

The framework that is produced can be seen in 4.2. In the framework, four different types of blocks are
described. They are:

+ Virtual modeling
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» Physical space
» Data Sources
* Feedback

Each of these colors represents a phase in the creation of the digital twin. The next chapter will apply
this framework to a case study, where engine configurations are optimized based on fuel consumption
performance using the operational data of a bulker vessel. A new framework will be presented that
utilizes the framework in Figure 4.2 to establish the steps that are taken in the context of the case
study.
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Digital Twin Modeling

This chapter applies the proposed DT-aided design framework to a case study focused on engine con-
figuration for low-emission ship design. The first section outlines the overall structure of the framework,
defining its scope and relevance to the modeling approach. The remainder of the chapter illustrates
how each step of the framework contributes to a structured, data-driven design process for an engine
room.

Figure 4.2 serves as the conceptual backbone for this modeling effort. It connects the physical and
virtual spaces through operational data, modeling tools, and verification steps, guiding the integration
of real-world constraints with simulation-based design decisions.

5.1. The Case-study

To evaluate and verify the proposed framework, it is applied to a case study focused on engine room
design. The objective is to optimize engine selection for a seagoing vessel to support the International
Maritime Organization’s (IMO) decarbonization targets. Specifically, the case study aims to identify
engine configurations that minimize fuel consumption and CO, emissions by utilizing operational data.

5.1.1. DT-Framework application

The generic DT-aided design framework is adapted for this case study to reflect its specific design goal:
reducing emissions and fuel consumption. Figure 5.1 highlights the adjustments made with respect to
the original framework.
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Figure 5.1: Changes in the DT-aided framework

The key changes in the application are as follows:

» Data sources are specified and will use Bunker Delivery Notes (BDN) and an engine data de-
scribed in Section 5.3.

* Modeling approach is specified to be a rule-based modeling strategy that will be examined in
section 5.4. The emission and fuel consumption models are described in Section 5.5.

* Model verification and validation is changed by excluding the validation step, as it requires
experimental or cross-model comparison beyond the scope of this thesis. Verification remains
and is explained in Section 5.6.

* Virtual Space becomes an engine room model.
» Physical Object becomes the physical engine room configuration.

Because no feedback is provided to the physical system, data flows only from the physical to the virtual.
Following Kritzinger’s definitions [110], the outcome is therefore a Digital Model, as seen in Figure 3.1.
All these changes are applied in the framework shown in Figure 5.2.

In using the framework in this case study, the following steps that were proposed in Section 4.5 were
taken and are repeated below but for this specific approach:

1. Establish DT-aided design goal

Data collection and processing
Selection of the modeling approach
Optimization of engine configurations

A S

Model verification and sensitivity
6. Knowledge management and virtual-physical integration

The adapted framework provides a structured path for applying operational data to engine room con-
figuration. By organizing the case study into clear phases—from goal definition to optimization and
verification—it ensures that the design process remains both systematic and transparent. At the same
time, the reliance on available datasets (BDN records and engine specifications) reflects the practical
limitations of data in early-stage ship design. Together, this approach highlights both the opportunities
and the constraints of the data-driven methods. Each step in the approach will include the blocks in
the framework that are relevant to that step.
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5.2. DT-aided design goal

Virtual modeling

Physical space

Data Sources

Feedback

Block: Emission and Fuel consumption reduction

The goal of this case study is to apply the DT-aided framework to support the configuration and selec-
tion of ship engines in a way that enables more sustainable vessel design. By modeling and comparing
different engine setups under realistic operational profiles, the framework aims to improve design ro-
bustness and support emissions reduction targets. The case study utilizes operational data generated
by a large bunker vessel, the type of vessel being examined. The data will be further explored in section

5.3.
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To achieve a robust model that supports emission reduction, the virtual space must simulate the per-
formance of various internal combustion engine (ICE) configurations—primarily diesel and dual-fuel
types—based on the completeness of available data. While this limits the fuel and engine diversity
explored, the framework remains flexible and scalable for future data expansion.

In the following sections, each part of the DT-aided design framework presented in the last section
(Figure 5.2) is translated into a modeling task, supporting a structured and repeatable workflow for
early-stage engine room design.

5.3. Data Collection and Processing
Blocks: Shipping Companies, Engine Model Knowledgebank, Engine Database, Operational
Data, Data Analysis

The first step in the DT-aided design process is the acquisition and processing of data. For the improve-
ment of the design and choice of the ship engine, ship engine data is required, and ship operation data
is needed. The gathering and processing of this data will be achieved through the method of Zheng et
al., which was discussed in section 4.1 in Figure 4.1. Because the case study uses both ship engine
data and operational data, the section will be split into a ship engine data subsection and an operational
data subsection.

5.3.1. Engine data

One of the essential building blocks for this model is data on different ships and the engines they use.
While many engine manufacturers publish information on their products, no comprehensive database
covering all manufacturers exists. Instead, this information is compiled and made available through
external organizations that provide dedicated shipping and engine datasets.

Data acquisition

To acquire the data of different engines that are used to generate the different engine configurations,
the database of Clarksons Research is used [144]. This database contains data and insights on all
aspects of shipping and trade. The database contains a comprehensive overview of different ships
and the engines being used in these ships. Varying in size and power.

The data is acquired from two different data sets, ship data and engine data. The data is combined into
a single, larger dataset to gather as much information as possible per engine. The ship data contains
information on both the auxiliary engines and the main engine. The data gathered from the main engine
from this set is the following:

+ Ship type

« DWT

* Power Type

» Main Engine Model

* Main Engine Fuel Type

* Main Engine Number

» Engine Derived Total Main Engine Mechanical kW
» Main Engine SFOC g/kWh

This data is not always complete and must be processed to achieve a high enough quality for use. It
will also be filled out with data from the engine data set, which contains some extra info on the main
engines of ships. This data is the following:

* Main Engine Model

» Main Engine Model kW Total max Value
» Main Engine Model SFOC (g/kWh)

» Main Engine Fuel Type

» Main Engine Model IMO NOx Tier Rating



5.3. Data Collection and Processing 41

The required information for auxiliary engines is similar, but it is available only through the ship dataset.
This includes:

» Ship Type

» Main Engine Power Type

* Auxiliary Engine Model

+ Auxiliary Engine i Fuel Type

* Auxiliary Engine i SFOC g/kWh

* Auxiliary Engine i (mkW)
Since most vessels are equipped with multiple auxiliary engines, each engine entry is indexed (i) to
distinguish between them. Including all auxiliary engines is essential to capture the full operational

redundancy and power availability of a vessel, ensuring that the dataset accurately reflects realistic
engine room configurations.

Data pre-processing

The raw data that is gathered here contains several flaws that would not give satisfactory results. After
the data pre-processing steps, combining the engine data set and ship data set to acquire the total
main engine data set, the gathered data will have the following form:

Engine Model | Ship Type | Power Type | Fuel Types | Number of Engines | Power Generated (kW) | SFOC (g/kWh) | NOx Tier Rating

The auxiliary data gathered from the ship data set has a similar shape and is of the following form:
Engine Model | Power Type | Fuel Types | Number of Engines | Power Generated (kW) | SFOC (g/kWh)

The auxiliary engine dataset contains slightly less information than the main engine dataset. This is
likely because most ships are equipped with multiple auxiliary engines, making it more challenging for
data collection organizations to track and record each engine individually. One crucial type of data that
is listed but is empty in a lot of the entries is the 'SFOC (g/kWh)'. This is a critical piece of information
that when missing, the entire engine entry will have to be removed, for the auxiliary engines some of
this data is imputed

The data pre-processing steps taken to obtain these final datasets include data cleaning, data restruc-
turing, and handling missing data.

Data cleaning: As was mentioned, the different data sets were combined from the two sets to include
all other types of engines. After this step, some main and auxiliary engines were listed multiple times,
due to multiple ships using the same engines. These entries are taken out, and the ones with the most
complete data are kept. In some cases, important data that cannot be imputed is missing, such as the
power of the engine; these entries are also removed. When fuels are used that do not fit the specific
engine type dataset, they are also removed.

How the data changes quantitatively for both the main and auxiliary dataset will be explained in Section
6.1. The steps for cleaning the main engine dataset were as follows

» Split engine model

» Remove when data is missing
* Merge data

* Duplicate removal

* Fuel Filter

* SFOC cleaning

The steps for the auxiliary dataset were marginally different. These steps are listed below:

+ Split engine model
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* Remove missing data
* Duplicate removal

Data restructuring: Following this, the auxiliary engine summary data was restructured, as they included
all engines as a group entry, so all auxiliary engines were considered and listed individually. Then, the
total power of the engines is divided by the number of engines; this was done for both the main engine
and the auxiliary engines. The rule that was followed for both types of engines can be seen in Equations
5.1a and 5.1b:

Protain
Piap = — 20 LME (5.1a)
ME
PO a
P ag = 7:;A;AE (5.1b)

Handling missing data: The auxiliary engine data initially missed a lot of SFOC data, which is essential
for the emission calculation. For 80% of engines not being taken into account, data is imputed in three
different ways to make the database more complete. These three strategies are:

+ Engine model-based, this strategy uses the median SFOC from comparable engine models
* Power-based regression, which estimates SFOC based on power within fuel types

+ Using Industry standards, which applies conservative typical values as a fallback if the first two
strategies do not give satisfactory results

The first strategy yields little bonus data; the algorithm searches for models with the same name and
assigns the same SFOC to those entries. These data entries have mostly been filtered out by this step,
as there is no use for double engine entries. This strategy serves more of a validation check.

The second strategy uses linear regression to fit the power to the SFOC per fuel type using Equation
5.2

Where j, is the intercept (baseline SFOC), 3, is the slope (how SFOC changes with power), P equals
the power of the auxiliary engine, and ¢ is the error term. The power is related to the SFOC (bigger
engines often have lower SFOC and vice versa). The regression model is trained where:

QZ‘ZPE

y=SFOC

Then, the SFOC value is predicted based on the power value for entries where the SFOC is missing.
This is done for each fuel, only if there are at least five values to create the estimation.

The final imputation strategy utilizes the industry standard tofill in 'obvious’ SFOC if the linear regression
did not yet fill them in. This strategy is only used for diesel oil engines, so if the fuel includes HFO, MDO,
MGO, or Diesel. The SFOC is filled in based on the size of the engine, categorized from small to large:

* Small: <1000 kW
* Medium: 1000 - 3000 kW
» Large: >3000 kW

With the SFOC being filled in for the fuels in the following way (As using this final strategy is an estima-
tion, the values are taken conservatively).

* HFO : Small = 225, Medium = 215, Large = 205
+ MDO/MGO/Diesel: Small =200 - 205, Medium = 195 - 200, Large = 190 - 195
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The linear regression is done before the industry standard because the engines that are taken into
account are from ships with similar power profiles and length, thus with comparable power to the SFOC
range.

The data is validated to exclude unrealistic values, lower than 150 g/kWh and higher than 300 g/kWh.

Data analysis and mining A significant portion of data analysis occurs during the modeling phase,
where pre-processed data is used to evaluate system behavior. More advanced data mining techniques—
such as clustering, outlier detection, and classification—offer further potential for pattern discovery and
deeper insights. However, the application of these methods lies beyond the scope of this case study.

5.3.2. Operational data used in case study
This case study utilizes operational data to simulate actual shipping operations, supporting decision-
makers in early-stage design. The data will be explored and processed in this section.

Data acquisition

The operational data is gathered from Bunker Delivery Notes (BDN). This dataset comprises 129,174
data points collected over five distinct periods between January 7, 2022, and September 30, 2023.
The data has been collected at 5-minute intervals, encompassing 107 different data types. The source
of the data is the European Horizon project, aiming to create Digital Twins for green shipping [145].
The data is gathered through a multitude of sensors that give direction, speed, engine use, and fuel
efficiency.

Data pre-processing
The data contains an abundance of different types of data that need to be processed for the specific
application. For this case study, the data that needs to be retrieved from the dataset are:

» Time

» Main engine power
 Auxiliary engine power
* Location

» Speed

By gathering this data, a model can be created that predicts fuel consumption (and thus emission
output) for different power profiles. To collect these data entries, some of the raw data have to be
restructured.

Time

The time is taken directly from the TimeStamp entry. The time is registered in intervals of 5 minutes.
The dataset records voyages of approximately 3 months. The model uses periods of about 1-2 weeks
of this period to simulate specific moments of the voyage, including: Constant load at sea, in-port
movement, and special operations.

Main engine power

The most important piece of data that is provided by the dataset is the shaft power. As a bulk carrier
commonly does not have a gearbox, the shaft power is taken directly as the brake power required by
the engine. This is given by the equation 5.4.

P; =ngp - Pp (5.4)

To calculate the fuel consumption of the ship, typically the engine load (in %) is used. This case study
is no different; the shaft power will be divided by the specified continuous mechanical propulsion power
of the engine used in the data (equation 5.5). When configuring the engine design, the engine load %
would change per configuration.

SMCR

load% = Py

(5.5)
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Auxiliary engine power
To find the Auxiliary engine power, the ’diesel generator power total’ is used. This variable includes the
total power required by the auxiliary engines.

Location

The vessel’s location is obtained by converting the recorded degrees, minutes, and lateral indicators
into decimal degree coordinates, enabling accurate mapping of the ship’s trajectory. This positional
data serves two primary purposes. First, it supports the identification of distinct operational phases
(e.g., port stays, voyages, or loitering), which form the basis for constructing representative load profiles
used in the engine simulations. Second, in combination with time data, it allows the calculation of the
total distance sailed, which is required for the Carbon Intensity Indicator (Cll) assessment.

Speed

Speed is included as one of the entries in the raw dataset and is recorded as speed through water.
This occasionally results in negative values, particularly when the vessel is stationary in port and water
continues to move past the hull. While this could be corrected, speed in this case is primarily used to
distinguish between operational profiles and is therefore not directly used in the modeling process.

Data analysis and mining

As the data is gathered from 5 separate voyages, it is of value to see which voyages contain the most
accurate and defined operation profiles. This is done by plotting the voyages on an Open Street Map
and looking for distinct load profiles. The power data should then show differences in value during hotel
load and port operation. The data can be utilized for a multitude of applications when further mined
and analyzed. Finding outliers in the speed, for instance, would improve the data and make it more
accurate. In this case study, the power data is the most important and should be correct, and this data
does not show any outliers.

5.4. Modeling approach and assumptions
Blocks: Engine Model Framework, Stakeholder requirements, DT-aided Rule-based modeling

To determine the appropriate modeling approach, the objective of the DT-aided design process must be
clearly defined—specifically, the type of ship and the system being modeled. From this, a suitable fuel
consumption model can be developed, which in this case will follow a rule-based modeling approach.
This block can be found in the virtual modeling space.

5.4.1. Rule-Based modeling approach

The rule-based modeling approach is chosen because it offers a controllable method for constructing
and evaluating engine room configurations. In the early stages of ship design, where full-scale simu-
lations and data-driven optimization may not yet be feasible or available, rule-based systems allow a
structured way of applying domain-specific knowledge.

In this context, rules serve as encoded logic that governs the behavior of the configuration process.
These rules define acceptable engine types, fuel constraints, redundancy requirements, and power
balance conditions. For instance, a rule may ensure that the total auxiliary power must exceed a
minimum threshold based on operational peak load, or that no more than two distinct fuel types are
used in a given setup. These constraints are critical for ensuring that resulting configurations are not
only efficient but also practical and aligned with real-world design standards.

The rule-based approach is also modular and easily adaptable. As new technologies (e.g., hybrid-
electric systems, fuel cells) become more prominent, additional rules can be incorporated without hav-
ing to redesign the entire modeling framework. This makes the method future-proof and scalable.

Moreover, it aligns well with a DT-aided design process, where the configuration system reflects a set
of "virtual design constraints” that can evolve as new operational insights are gathered. Instead of re-
lying purely on black-box optimization or exhaustive brute-force search, rule-based modeling provides
a tractable, interpretable, and engineering-aligned strategy for narrowing down feasible and environ-
mentally friendly propulsion configurations.
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The engine and operational data feed the Rule-based modeling approach block, which incorporates
different modeling frameworks (the fuel consumption model and engine configuration rules), as well
as stakeholder requirements. First, the reference vessel will be discussed. Then the stakeholder
requirement block will be explained, and afterwards the data and rules of the rule-based model will be
explored.

5.4.2. Case Study Vessel

The configurations will be selected and modeled for a ship of about 300 meters in length overall (LOA).
This is because the data from the BDN corresponds to that of a bigger bulk carrier. The ship utilizes a
two-stroke diesel engine; some extra relevant characteristics are listed in Table 5.1.

Ship/engine Characteristic \ Value

DWT [mt] 209,472

LOA [m] 300

Main Engine Power Type Diesel 2-stroke
Specified Continuous Mechanical Propulsion [kW] 15,131
Maximum Continuous Rating [kW] 21,840

Main engine SFOC [g/kWh] 168
Auxiliary Power 3x Aux Diesel Gen.
Auxiliary power generated (per unit) [kKW] 4,110

Table 5.1: Characteristics of 300 meter Bulker

To ensure relevance to larger vessels, engine data is filtered by selecting ships with a LOA of at least
100 meters. This approach captures a range of engines suitable for large ship applications, while still
including smaller engines that may offer promising alternative configurations. The resulting dataset pro-
vides a comprehensive list of potential engine candidates. From this list, possible engine combinations
are identified and evaluated as viable replacements for the reference vessel described in Table 5.1.

5.4.3. Stakeholder requirements

One of the blocks going into the rule-based model is the stakeholder requirements. This block is
from outside stakeholders who order the type of ship they want to design or specify the performance
characteristics the vessel must have. These extra 'rules’ also add to the rule-based model. In this case
study, the stakeholder requirements are simulated by the request to generate an optimized engine room
for a bulk carrier.

5.4.4. Configuration rules

This section describes the modeling rules and constraints used to generate propulsion configurations.
The configuration logic consists of three key parts: main engine selection, auxiliary engine combination
strategy, and fuel constraints.

Main Engine selection

The ship is assumed to operate with a mechanical propulsion system, where the main engine directly
drives the propeller. In the case of hybrid configurations, auxiliary engines may support or partially
drive the propulsion shaft, depending on the topology selected (see Section 2.5).

Each candidate’s main engine is sourced from the engine dataset and filtered based on:
+ Available model and fuel type
* Available Specific Fuel Oil Consumption (SFOC) data

Main engines are categorized by their Power Type (€.9., diesel 2-stroke, dual-fuel, gas turbine, or diesel
4-stroke), as labeled in the dataset. Each category is sorted based on an efficiency score defined as:

Pucr

Efficiency Score = SFOC

(5.6)
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where Pycr is the maximum continuous rating of the engine.

For each category, a limited number of top-performing engines are selected. The selected engine must
have a suitable SMCR (Service MCR), defined as:

0.5- Prequired < PSMCR <2 Prequired (5-7)

This ensures the selected main engine provides sufficient but not excessive power compared to the
total propulsion requirement; the range of engines that can be chosen in this way is still quite broad.
This will ensure that multiple types of main engines are considered, even if, in a hybrid topology, the
auxiliary engine can also provide extra power to the shaft.

Auxiliary Engines selection

A single auxiliary engine should at least be able to generate the at-sea constant auxiliary power that is
required. The general fluctuation of auxiliary load in the data is between 400 kW and peaks of up to
1000 kW.

For ships with a total propulsion power of 10,000 kW or higher, the minimal power of the auxiliary engine
(Pag) is defined as follows:

ety S Perry
PAE,vm‘,n = | 0.025 x Z MCR]\,{E@) + T + 250 (58)
i=1 ’

To attain redundancy, some extra power will be required by the auxiliary engines beyond just the con-
stant power that needs to be provided. To achieve this redundancy, the choice is made that the total
auxiliary power should be greater than the peak auxiliary load by multiplying it by a safety factor (SF)
of at least 1.15:

Z Paux,i > Paux, peak ° SF (59)
i=1

To ensure redundancy and operational flexibility, auxiliary engine power per unit is limited to a maximum
of 30% of the main engine’s MCR. This is aligned with industry practices and ensures compliance with
redundancy requirements, which are also typically observed in larger cargo vessels.

PAE maz = 30% - Pucr (5.10)

Auxiliary combinations are generated using four strategic rules:
1. Single Engine: A high-power auxiliary engine that alone meets the power requirement
2. Twin Identical: Two identical engines offering redundancy
3. Twin Diverse: Two different engines to explore fuel diversity

4. Triple Redundant: Three engines with different ratings but limited to two fuel types

Only engines that have valid entries for model, SFOC, power, and fuel type are considered. Each
combination includes metadata such as total power, fuel types used, and the number of engines.

Fuel Constraints and Configuration filtering
Configurations are constrained to use no more than two different fuel types across both main and
auxiliary engines:

Fuel Types Used < 2 (5.11)

This ensures realistic fuel storage logistics for vessels. Configurations that exceed this threshold are
discarded.
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Finally, the total installed power must be within a 20% deviation of the required design power, to ensure
not too many configurations are created:

|Ptotal - Prequired| S 0.2- Prequired (512)

Configuration creation
Each configuration includes:

» Main engine type, model, fuel, power, and SFOC

+ A list of auxiliary engines with type, model, power, SFOC, and fuel
* Auxiliary selection strategy

+ Total installed power

* Fuel diversity and count

These configurations are stored as dictionaries and later converted into tabular format (see Section ?7?)
for analysis and emissions simulation.

5.4.5. Power allocation of Hybrid configuration

To further improve the optimization capabilities of the model, a hybrid configuration model is imple-
mented. In this setup, auxiliary engines are not only used to cover hotel loads but can also contribute
propulsion power, supplementing or partially replacing the load on the main engine when this results
in improved efficiency, as is the case for a hybrid topology (section 2.5).

The hybrid mode is modeled using a power distribution optimization algorithm that allocates required
propulsion and auxiliary power between the main engines and auxiliary engines at each timestep. The
optimization seeks to minimize total fuel consumption based on load-dependent SFOC curves of the
engines. This reflects the way engine efficiency varies significantly with load, and suboptimal loading
can lead to disproportionately higher emissions.

The strategy works in the following way:

1. Total power demand is calculated as the sum of the shaft power and auxiliary power required
2. Different power splits are performed between the main and auxiliary engine (in 10% increments)

3. When a feasible distribution is found, the corresponding fuel consumption is calculated with the
load-adjusted SFOC calculator.

4. The distribution that minimizes fuel consumption is selected

This method enables the simulation of scenarios where the main engine is lightly loaded, allowing
auxiliary engines to run at a more optimal load and provide additional propulsion power. Using this
system does require some extra processing time or computational power. With this added feature, a
conventional system can be compared to a hybrid system. In the model and the results, this hybrid
functionality will be referred to as using hybrid mode. Either on or off:

» Hybrid Mode: ON - Hybrid functionality is active, the ideal power distribution between main and
auxiliary engine is calculated and used.

» Hybrid Mode: OFF - Hybrid functionality is inactive, and the main engine only powers the pro-
peller.

5.5. Emissions & Fuel Consumption Modeling
Block:DT-aided Rule-based modeling

This section explains how fuel consumption and CO, emissions are estimated for each configuration.
The approach combines operational load profiles with engine-specific efficiency characteristics and
emission factors to simulate engine performance. This enables a realistic, data-driven ranking of con-
figurations based on their environmental performance. The configurations will be ranked and assessed
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according to a few key performance indicators (KPIs) that will be discussed in this section. They are
the:

» Total CO, emissions

» Total Fuel consumption
* Emission Intensity

* Cll index

First, the logic for calculating emissions will be explained.

5.5.1. Engine Load and SFC modeling

Accurately estimating emissions requires modeling how engine efficiency varies under different opera-
tional conditions. The key factor in this is the Specific Fuel Oil Consumption (SFOC), which depends
on the engine load. Most engines are rated at a base SFOC value at optimal load conditions (typically
75-85% load), but this value changes significantly at lower or fluctuating loads.

Jalkenen et al. have studied the specific fuel oil consumption (SFOC) of marine diesel engines and, via
a regression analysis of comprehensive SFOC measurements from Wartsila, derived a second-degree
polynomial equation 5.13 for the relative SFOC [146].

SFChe = 0.455- L% — 0.71- L +1.28 (5.13)

Where L € [0, 1] is the engine load expressed as a fraction of the engine’s SMCR (Service Maximum
Continuous Rating). The actual SFOC is then computed as:

SFCactuaI = SFCbase ' SFCreI (5-14)
This load-dependent SFC is calculated at each 5-minute interval of the ship’s operation using histor-
ical load profile data, for both main and auxiliary engines. These values are then used to estimate
instantaneous fuel consumption and emissions. The polynomial can be seen in Figure 5.3.

Literature SFOC Curve (Base SFOC = 167 g/kWh)
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Figure 5.3: SFOC polynomial gathered from Jalkenen [146].

5.5.2. Emission estimation

Emission factors

To estimate CO, emissions from fuel consumption, standard emission factors are used. Each fuel type
has an associated emission factor E'F' expressed in tonnes of CO, per tonne of fuel. These values
are sourced from literature and public databases such as the IMO’s GHG studies and EMEP/EEA
emissions inventory [147].

» Marine Diesel Oil (MDO): 3.206 tCOx/t fuel
» Heavy Fuel Oil (HFO): 3.114 tCO/t fuel
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* LNG: 2.750 tCOy/t fuel
* Biofuel: 3.2 tCO,/t fuel

When systems use both LNG and a heavy fuel, in a dual-fuel engine, for instance, the emission factors
are averaged.

Emissions calculation logic
Fuel consumption is calculated for each interval At based on the following formula:

Boag - SF' -L
Fuel,, — Ho2d "5 Claggua' OSSeS At (5.15)

Where:
* Poag is engine power at load [kW]
* SFCyetual is load-adjusted SFOC [g/kWh]

* Losses include mechanical, thermal, and auxiliary system factors (typically 38—40% total system
efficiency)

» At is the time interval in hours (e.g., 5 min = 1/12 h)

Total CO, emissions are computed as:

Emissionscos = Fué€lita - EF (5.16)

Emissions are tracked separately for main and auxiliary engines, and by fuel type in the case of dual-
fuel or hybrid configurations.

5.5.3. Emissions Intensity and Performance Metrics
In addition to total CO, output, the model calculates emissions intensity to allow fair comparison across
configurations. This is defined as:

Emissions Intensity — Total CO2 Emissions - 10°
Y= Total Energy Output (kWh)

[g CO, /kWh] (5.17)

This intensity metric is used as one of the main criteria for ranking and selecting the optimal configura-
tions. While not identical, it is conceptually similar to the IMO’s Carbon Intensity Indicator (Cll), as both
express emissions relative to transport performance. The difference is that this thesis applies a simpli-
fied energy-based measure (g CO,/kWh), whereas the IMO’s Cll is defined in terms of g CO,/dwt-nm.
Nonetheless, both indicators provide a way to benchmark environmental performance beyond absolute
emission totals.

5.5.4. Carbon Index Indicator (CII)

The Cll calculation was also implemented in the model to evaluate engine room configurations against
the IMO’s Carbon Intensity Indicator (Cll) framework, as described in section 2.3. The CIlI calculator
follows IMO’s MEPC.354(78) and MEPC.355(78), which incorporates vessel-specific baseline coeffi-
cients for various ship types. First, the reference CIl value is calculated for the vessel based on its
deadweight tonnage (DWT) and the ship type, using the reference function. Then the Cll is computed
using total CO,, DWT, and distance sailed based on the BDN. This produces a value in grams of CO,
per tonne nautical mile.

Then, a rating from A to E is assigned by comparing the actual ship value to the reference ClI, applying
the reduction factor that responds to the IMO’s performance category, and the 2025 reduction is taken.
The CII rating chart is also visualized, plotting the A-E rating boundaries and the reference line. This
allows the configuration to be positioned against the regulatory thresholds.
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5.6. Model Verification and sensitivity analysis
(Blocks:Verification)

Verification of the model was carried out both during the data analysis phase and after calculating emis-
sions. This process involved systematically checking that all loaded operational data and computed
outputs fell within realistic operational margins, based on known vessel performance ranges and engine
manufacturer specifications. Any anomalies, such as unrealistically high power loads or negative con-
sumption values, were inspected and corrected before further analysis. This ensured that subsequent
results were more credible and valid.

In addition to verification, a sensitivity analysis was included to assess the influence of key input param-
eters (e.g., SFOC, emission factors, and auxiliary load) on the model’s outcomes. This ensures that the
robustness of the results can be evaluated, highlighting which assumptions have the most significant
impact on emissions performance. The results of this analysis are presented in Chapter 6.5.

The sensitivity analysis of this model was performed using both one-at-a-time (OAT) and Monte Carlo
sampling to assess the impact of key input parameters, such as SFOC, emission factors, and auxiliary
load, on total CO[ emissions. The correlation and variation in outputs were used to identify the most
influential parameters. This analysis can be found in section 6.5.

5.7. Knowledge Management and DT-feedback
(Blocks: Manufacturing, Physical space, Engine Model Knowledgebank, Engine Database, Op-
erational Data)

Knowledge management and the DT-feedback to the physical entity are out of the scope of this thesis.
It is an important aspect to consider when the model is expanded for industry purposes. In this case
study, all results are locally stored in Excel sheets. Future applications should utilize a databank and
inform existing databases as the framework suggests. The feedback blocks in the framework serve
this purpose. How the knowledge management and DT-feedback can be further expanded will be
discussed in 8.



Results and Analysis

This chapter presents the results of applying the DT-aided design framework to reduce fuel consumption
and emissions of a bulk carrier by implementing the rule-based model created in chapter 5. Due to the
complexity of operational conditions, data limitations, and model sensitivity, results vary depending on
engine types, fuel assumptions, and optimization parameters.

The analysis begins with an examination of the data and its potential impact on the results. Afterwards,
the outputs of different engine configurations are compared, followed by emission estimates and per-
formance trade-offs. Where possible, sensitivity to data uncertainty or modeling choices is discussed.
The goal is not to identify a single “optimal” configuration, but to explore how the framework supports
informed decision-making through data-driven simulation.

6.1. Engine Dataset Overview

To acquire the data used in the model, several data processing steps were taken. First, the main engine
data processing steps are shown, then the auxiliary engine data steps are shown. The steps taken and
the data point modifications are shown for the main engine in Table 6.1.

| Data intergration | Data processing

. Split Engine Remove Duplicate Fuel SFOC
Engine Type LOA >50m Model missing data ‘ Merge data removal Filter cleaning
Diesel 2-Stroke 14,158 14,159 (+1) 14,157 (-2) 14,157 (0) | 597 (-13,560) 538 (-59) 463 (-75)
Diesel 4-Stoke 166 178 (+12) 178 (0) 178 (0) 66 (-112) 60 (-6) 27 (-33)
Dual-Fuel 259 430 (+171) 429 (-1) 429 (0) 21 (-408) 21 (0) 13 (-8)
Gas Turbine 16 16 (0) 13 (-3) 13 5(-8) 5(0) 4 (-1)
Steam Turbine 264 264 (0) 222 (-42) 222 (0) 17 (-205) 17 (0) 0(-17)
Nuclear 10 10 (0) 5(-5) 5 (0) 3(-2) 3(0) 0(-3)
Total \ 14,885 \ 15,069 (+1.24%) \ 15,004 (-0.43%) \ 15,004 (0) \ 707 (-95.29%) \ 642 (-9.19%) \ 507 (-21.03%)

Table 6.1: Data pre-processing of main engine dataset

The auxiliary dataset was also filtered and processed. Fewer steps were taken in this process as the
data set was less broad. The data processing for the auxiliary engines can be seen in Table 6.2.
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| Data integration | Data processing

Endine Tvpe Aux. Engine Split Engine Remove Duplicate
9 yp dataset Model missing data removal
Diesel 2-Stroke 13,272 18,428 (+5,156) 14,736 (-3,692) 355 (-14,381)
Diesel 4-Stoke 181 264 (+83) 121 (-143) 35 (-86)
Dual-Fuel 298 590 (+292) 290 (-300) ( 290)
Gas Turbine 11 70 (+59) 42 (-28) 5 (-27)
Steam Turbine 323 742 (+419) 294 (-448) ( 289)
Nuclear 2 4 (+2) 0 (-4) 0(0)
Total \ 14,087 | 20,098 (+42.67%) | 15,483 (+22.96%) | 410 (-97.35%)

Table 6.2: Data pre-processing of auxiliary engine dataset

The final processed datasets used in this case study contain 507 main engines and 410 auxiliary en-
gines.

The amount of data that is available for each type of engine is divided. As the number of diesel engines
in bigger transport vessels is significantly more than that of newer, potentially greener but smaller
engines, they have an abundance of information on them. The final different types of engines for which
there is information are also shown in the Figure 6.1.

Engine Type Distributions
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Figure 6.1: Distribution of engines in the main and auxiliary engine dataset

As was predicted, the number of diesel 2-stroke engines and diesel generators far exceeds the number
of other engines.

As with the engines, there is also data on the types of fuel used, both in the main and the auxiliary
engines. This distribution is shown in Figure 6.2. The fuel correlates to the engine type used, and the
main type of fuel used is indeed the type of fuel oil that is used by diesel engines/generators.

An important variable for the fuel consumption model used in this case study is the Specified Fuel
Consumption (SFC) of each engine. This SFC value is used to calculate how much fuel is consumed
by the engine. The companies often provide this value, but it is also imputed by the model, as discussed
in 5.3.1. Figure 6.3 shows the distribution of the SFC of the main and auxiliary engines. In line with
industry norms, larger main engines typically achieve lower SFC values than smaller auxiliary engines,
due to their higher thermal efficiency and optimized operation at sustained loads. Next to this figure is
the distribution of the power range of both the main and auxiliary engines, where indeed it is clear that
there are more powerful main engines than auxiliary engines (Figure 6.4).
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Fuel Type Distributions
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Figure 6.2: Distribution of fuels used in the main and auxiliary engine dataset.
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engines dataset.

To get some extra insights into what types of ships these engines are gathered from, the distribution
of vessels is given in Figure 6.5. This distribution suggests what types of ships would be easier to
simulate or configure based on the data set. The most common ship listed in this engine set, or the
ship type that has the most data on it, is cellular container vessels. The operational data studied and
used in this case study are of a bulker vessel, which is the second most common ship type.
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Ship Type Distribution
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Figure 6.5: Distribution of ship types in the engine dataset.

Figure 6.6 shows the relation between the different fuels and their respective SFOC vs the power the
engine using it produces. A clear relation can be seen that the lower SFOC engines mostly use the
heavier fuels. But the fuels with a lower emission factor can be found at a higher SFOC. Lower SFOC
engines ( 165 g/kWh) typically use HFO, whereas higher SFOC engines (260-280 g/kWh) use lower
carbon fuels such as methanol. For auxiliary engines, this distribution is a little more spread out.

Power vs SFOC Analysis
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Figure 6.6: Scatter plot of different engines with their SFOC vs their power

6.1.1. Operation dataset Overview

The operation data set is gathered from Bunker Delivery Notes (BDN) and has data from 3 different
periods, as was discussed in 5.3.2. For this case study, several different load profiles are used as the
simulation input. These load profiles will be used to assess the engine configurations quantitatively.
The load profiles include:

» 2 week voyage
 Port operation (entering, operating, and leaving)
* Loitering in port
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Each of these load profiles is shown in the following figures. The data confirms the predicted results,
with clear load profiles corresponding to the type of operations performed during the specific operation.
A fluctuating load profile during the port operations, a steady non-fluctuating load profile during the voy-
age, and a more auxiliary heavy load profile during loitering. The first figure (Figure 6.7) showcases a
voyage of two weeks where a steady main engine and constant fluctuating auxiliary power are required.

Engine Load Profiles - Operation Duration: 336.0 hours
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Figure 6.7: 2-week voyage load profile.

The following load profile is for port operations. Here, there is a long pause in the use of the main
engine with only two small spikes, while the auxiliary engines have a constant fluctuation with some
peaks during the operations, with peaks of up to 800 - 1000 kW.
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Engine Load Profiles - Operation Duration: 239.8 hours
Main Engine Load Profile

(Mean: 1144 kW | Max: 9413 kW | Min: -8 kW)

2 8000
<
8§

2 6000
°
[
Pl

£ 4000
o
€
w

£ 2000
I}
=

0

0 50 100 150 200
Auxiliary Engine Load Profile
(Mean: 447 kW | Max: 1093 kW | Min: 274 kW]

1000
H

X 800
s
H

3 600
[

E 400
E

I 200

0

0 50 100 150 200
Combined Power Profile (Main + Auxiliary)
100001 (Mean Total: 1590 kW | Max Total: 10010 kW) —— Total Power
= Main Engine
_ 8000 = Auxiliary

g

L 6000
[
H
°

2 4000
[
k]
F

N
3
3
3

o

Time (hours)

Figure 6.8: Port operation load profile.

The final load profile examined is the loitering condition of the vessel. In this operating mode, the main
engine remains idle, and only the auxiliary engines are engaged at low load to cover essential onboard
power demand. The resulting profile is shown in Figure 6.9.
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Engine Load Profiles - Operation Duration: 263.9 hours
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Figure 6.9: Loitering near port load profile.

6.2. Configuration modeling results

Now that the data sets have been explored and processed, a more detailed analysis of different types
of configurations can be done. The goal of the case study is to see if entirely different configurations
show logical changes when different load profiles are applied to them.

6.2.1. Configurations generation

The first step is to clarify how engine configurations are generated within the framework. The rules and
constraints that govern engine selection and configuration building were outlined in Chapter 5.4.4. This
section illustrates what such a generated configuration looks like in practice.

The algorithm begins by selecting the most efficient main engines from the filtered dataset, ensuring
that different engine categories are represented (e.g., two-stroke, four-stroke, dual-fuel, and gas tur-
bines). Once a suitable main engine is chosen, auxiliary engines are selected within the minimum
and maximum power ranges defined by regulatory requirements and industry practice. These auxiliary
candidates are then ranked by performance, after which viable combinations are assembled to form
complete configurations. An example of such a configuration is shown in Figure 6.10. In this illustra-
tion, different engine categories are represented by color, while the auxiliary system consists of diesel
generators. In the specific configuration shown, two auxiliary engines are included.
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ENGINE ROOM

Main engine categories Auxiliary engines

Figure 6.10: Diagram of how engines are selected from a range of different engines

In the model, such a configuration will look like the table below (Table 6.3)

Aux. models
6H32/40

Configuration No. | Main engine model | Main engine power | No. of Aux. engines
Configuration 1 7S80MC Mk3 23.478 kW 1

Aux. power
2.880 kW

Total power
26.358

Table 6.3: Example of a configuration using a diesel 2-stroke engine.

All configurations have a configuration number. This number is used in subsequent mentions of con-
figuration to identify the type of configuration and its specific details. This also helps with finding con-
figurations in a high number that can be generated. To have a reasonable simulation time of about 1
hour, 350 configurations are generated. They are split up into the categories as can be seen in 6.4.

Main engine type \ Amount of configs

Diesel 4-Stroke 100
Diesel 2-Stroke 100
Dual-Fuel engine 100
Gas Turbine 50

Table 6.4: Configuration split

The number of configurations can be scaled up further, but the resulting improvements in emissions
would be marginal. The engine dataset is filtered by SFOC to remove the highest percentile. So, since
the best-performing, lowest-emitting engines are already included within the current set, adding more
options would primarily introduce engines with higher SFOC values. For example, while the most ef-
ficient engines in the selection operate around 165-175 g/kWh, additional engines typically exceed
190-200 g/kWh. Including these would increase the average fuel consumption per configuration, mak-
ing the relative emission reduction potential negligible compared to the already optimized set.

6.2.2. Engine Load example

Now that the method in which configurations are created has been shown, the configurations can be
simulated. As mentioned in the modeling section, the load percentage is based on the load percentage
of the main engine of the modeled vessel in table 5.1 and the shaft generator power of the data set.
Due to the model simulating different configurations that have different control of the main engine, there
is a case for using the main power of the created configuration to generate the new load percentage.
When these differences are simulated over the 2-week voyage, as seen in Figure 6.7, the following
load percentage differences can be seen (Figure 6.11).
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Main Engine Load Profiles Over Time
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Figure 6.11: The Load % of the selected modeled after ship and the least emitting configurations analysis

In this example, the load percentage for the modeled vessel (benchmark) averages around 80%, which
falls within the optimal efficiency range for most engines. Operating within this margin is associated
with favorable specific fuel oil consumption (SFOC) and reduced emissions.

This highlights the importance of using actual operational load profiles when selecting or validating en-
gine configurations. The load distribution of a vessel that has operated provides realistic conditions for
assessing performance, as these will likely reflect the operational range of any proposed configuration.

It is worth noting that configurations involving larger engines might maintain similar load percentages
while delivering higher absolute power output, potentially resulting in increased vessel speed. While
this is outside the scope of the current model, it presents an interesting direction for future research.

The emission results and the most favorable configuration in the different load configurations will be
examined in section 6.4.

The following section will go into how the use of a hybrid functionality in the model can change the way
in which loads are divided over the main and auxiliary engines.

6.3. Hybrid topology results

By using the mode discussed in section 5.4.5, some different engine load choices are made. However,
due to the efficiency of the main engines compared to the auxiliary engines, the hybrid mode most often
chooses the full use of the main engine instead of sharing the load in all instances. For ’less efficient’,
mostly high-power main engines where the load profile is not always favorable, the mode is used, and
the auxiliary engine takes some of the load of the main engine. When using one of the more efficient
configurations, which uses a more efficient main engine that performs mainly in the optimal range, the
load distribution is shown in Figure 6.12.
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Figure 6.12: Load distribution of an efficient engine using hybrid mode.

When using the less favorable configuration, the hybrid mode activates more frequently during opera-
tion. This load distribution is shown in Figure 6.13.
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Figure 6.13: Load distribution of less efficient engine using hybrid mode.

How much fuel and emissions are saved by using this mode will be explored in the following section.

6.4. Emission and Performance evaluation

This section will first compare the different configurations and then present quantitative results that
showcase how the case study examines various uses of operational data and differences in modeling.

6.4.1. Emissions Estimation

In Section 5.5, the way emissions are calculated was explained. Before calculating the emissions of
different configurations, a benchmark must be established to compare the configurations. This bench-
mark is gathered from operational data. By interpolating the SFOC data from the BDN, an estimated
polynomial can be drawn that can be used to verify the model’s use of the polynomial found by Jalkenen
et al. This curve can be seen in the last chapter in Figure 5.3. The polynomial produced by the data is
shown in Figure 6.14.



6.4. Emission and Performance evaluation 61

SFOC vs Load: Polynomial Fit
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Figure 6.14: Polynomial deduced from operational data of the SFOC vs Engine Load

The curves are similar in form, but the operational data polynomial consistently yields higher SFOC
values compared to the literature curve from Jalkanen et al. The difference at the minimum point is
approximately 20 g/kwWh (189 g/kWh compared to 167 g/kWh), indicating that the operational data
predicts less efficient fuel consumption across the load range. The results in the following section will
show how this difference propagates into emission estimates.

6.4.2. Emissions Results specific configurations
When comparing the simulated results with the operational data, some interesting results can be found.
This section will explore the differences and similarities.

A benchmark is calculated using the polynomial as explained in the last section. This benchmark is
compared to the emission calculated by the simulation; the results of the load profile of a voyage of
2 weeks can be seen in Table 6.5. The top entry is the benchmark, which is calculated using the
same method as for the configurations, but with the SFOC derived from the data measured by the
sensors on the vessel. During the simulation, 350 configurations are generated. The benchmark is
then compared against the two best-performing configurations for each engine type, with two auxiliary
engines. Here, best-performing refers to the configurations that result in the lowest total CO, emissions
over the operational profile. The first table presents the differences in both fuel consumption and CO,
emissions.

Configuration Main Engine No. of Aux. | Total Fuel | Total CO2 | vs Benchmark
Type Engines (tonnes) (tonnes) CO2 (%)

Benchmark Diesel 2-Stroke (Benchmark) | 3 641.51 2002.79 0

Config 1 Diesel 4-Stroke 2 506.2542 | 1576.476

Config 2 Diesel 4-Stroke 2 506.9777 | 1578.728

Config 71 Dual-fuel 2 679.4693 | 2020.433

Config 72 Dual-fuel 2 680.3307 | 2023.116

Config 121 Diesel 2-Stroke 2 832.0442 | 2590.985

Config 122 Diesel 2-Stroke 2 841.2629 | 2619.693

Config 231 Gas Turbine 2 1367.856 | 4380.188

Config 232 Gas Turbine 2 1368.674 | 4382.737

Table 6.5: Comparison of engine configurations with benchmark by CO\textsubscript{2} emissions and fuel consumption.

Figure 6.15 shows the table visualized using two bar charts, which show the absolute difference and
the percentage difference between the best-performing configurations and the benchmark.
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Figure 6.15: Comparison of CO, emissions between configurations and benchmark (left), Percentile improvement of CO,
emissions vs Benchmark (right)

A comparison of emission intensity provides additional insight into how efficiently each engine config-
uration performs over a given voyage, relative to its installed capacity. This metric accounts not only
for total emissions but also for the effect of engine sizing and operational loading. The results for the
best-performing configurations are summarized in Table 6.6. In contrast, Figure 6.16 illustrates the
percentage difference between the benchmark vessel and the alternative configurations. These differ-
ences primarily reflect variations in how efficiently engines operate under the load conditions observed
in the operational profiles.

Configuration Main Engine No. of Aux. | Total Fuel | Emissions Intensity | vs Benchmark
Type Engines (tonnes) (g CO2/kWh) Intensity (%)

Benchmark Diesel 2-Stroke (Benchmark) | 3 641.51 604.64 0

Config 1 Diesel 4-Stroke 2 506.2542 | 759.4543

Config 2 Diesel 4-Stroke 2 506.9777 | 760.5396

Config 71 Dual-fuel 2 679.4693 | 778.4957

Config 72 Dual-fuel 2 680.3307 | 779.5292

Config 121 Diesel 2-Stroke 2 832.0442 | 755.2807

Config 122 Diesel 2-Stroke 2 841.2629 | 756.2809

Config 231 Gas Turbine 2 1367.856 | 965.9085

Config 232 Gas Turbine 2 1368.674 | 966.4705

Table 6.6: Comparison of Engine Configurations with benchmark for fuel consumption and emission intensity.
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Figure 6.16: Comparison of emission Intensity between configurations and benchmark (left), Percentile improvement of
emission intensity vs Benchmark (right)
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6.4.3. Load profile configuration results

The previous section examined the emission outputs of the reference vessel and benchmarked them
against alternative configurations. Building on this, this section evaluates how different engine room
setups perform under the operational load profiles discussed in Section 6.1.1. By simulating each
configuration under realistic operating conditions, including a 2-week voyage, port operations, and
loitering in port, the analysis identifies which setups minimize fuel consumption and emissions most
effectively. The following results present the highest-performing configurations for each load profile.

Results for a 2-week voyage load profile

The top results for the different engine types can be seen in Table 6.7. For each load profile presented
in the following section, the top-performing configurations are ranked using gold, silver, and bronze to
indicate the three best results. There is a clear pattern for fuel consumption and CO, emissions where
the diesel 4-stroke engine ranks highest, followed by the dual-fuel engine and then the Diesel 2-stroke.
But for the emission intensity, the diesel 2-stroke scores highest, followed by the diesel 4-stroke.

Main Engine Main Engine Auxiliary Auxiliary Engines | Total Power | Total Fuel Total CO2 Emissions Intensity
Type Model Engine Types Model kW in tonnes | Emissions tonnes gCO2/ kWh

Diesel 4-Stroke | 12V46 Diesel Gen. 2x 9H21/32 13,590 462.8673  1441.369 772.754

Diesel 4-Stroke | 12V46 Diesel Gen. 2x 7L21/31 13,790 463.158 1,442.274 773.2393

Dual-fuel 12V51/60DF Diesel Gen. 2x 7TH25/33 1,5090 531.098 1,5679.188 778.80

Dual-fuel 12V51/60DF Diesel Gen. 2x 7L21/31 14,810 531.77 1,581.28 779.83

Diesel 2-Stroke | 6S70ME-C7.1 | Diesel Gen. 2x 7L27/38 20,449.55 650.40 2,025.36 755.52

Diesel 2-Stroke | 6RT-flex68D Diesel Gen. 2x 6L32/44CR 20,316.27 657.64 2,047.896 756.56

Gas Turbine LM2500+® Diesel Gen. 2x 7L21/31 22,790 1,069.63 3,425.23 966.44

Gas Turbine LM2500+® Diesel Gen. 2x 4L20 22,770 1,070.263 | 3,427.20 966.998

Table 6.7: Best performing configurations during a 2-week voyage

Results for port operation load profile

The top-ranked configurations for port operations are presented in Table 6.8. The results highlight
that the best-performing engine type differs between the port and voyage load profiles. The difference
in power demand essentially drives this variation: while the 2-week voyage requires sustained main
engine operation, port operations involve long periods where only auxiliary engines are active. In this
context, a smaller main engine proves sufficient for the limited propulsion required. The auxiliary engine
choice also shifts to the best 4-stroke configuration. In contrast, the dual-fuel setup remains unchanged
across both profiles, reflecting the efficiency of this configuration under the applied case study rules.

Main Engine | Main Engine | Auxiliary Engine | Auxiliary Engines | Total Power | Total Fuel Total CO2 Emissions Intensity
Type Model Types Details kW in tonnes | Emissions tonnes gCO2 / kWh

Diesel 4-Stroke | 9L46F Diesel Gen. 2x 8H32/40 11,846.67 72.09159 | 224.4932 821.8727

Diesel 4-Stroke | 9L46F Diesel Gen. 2x 9H25/33 11,880 72.48151 | 225.7074 826.3179

Dual-fuel 12V51/60DF | Diesel Gen. 2x 7H25/33 15,090 88.05744 | 267.7061 838.514

Dual-fuel 12V51/60DF | Diesel Gen. 2x 7L21/31 14,810 88.86 269.35 843.67

Diesel 2-Stroke | 6RT-flex68D | Diesel Gen. 2x 6L32/44CR 20,316.27 103.55 322.444 813.503

Diesel 2-Stroke | 6RT-flex68D | Steam Turb Gen. | 2x 8L32/40 19,853.6 103.71 322.9478 814.77

Gas Turbine LM2500+® Diesel Gen. 2x 7L21/31 22,790 149.468 475.75 968.11

Gas Turbine LM2500+® Diesel Gen. 2x 4120 22,770 150.09 477.76 972.21

Table 6.8: Best performing configurations during port operations

Results for the loitering in port load profile

The results for the loitering load profile are shown in Table 6.9. In this operational mode, the main
engine is inactive, unlike in the previous load profiles, and therefore does not influence performance.
Only the auxiliary engines contribute to fuel consumption and emissions. The table presents the eight
best-performing auxiliary engine configurations, ranked according to their ability to minimize emissions
and fuel consumption.
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Main Engine | Auxiliary Engine | Auxiliary Engines | Total Power | Total Fuel Total CO2 Emissions Intensity
Type Types Details kW in tonnes | Emissions tonnes gCO02/ kWh

Diesel 2-Stroke | Diesel Gen. 2x 5L21/31 22,391.33 29.49964 | 91.86188 811.13

Diesel 2-Stroke | Diesel Gen. 2x 5L21/31 50Hz 22,391.33 30.46151 | 94.85713 837.5799

Diesel 2-Stroke | Diesel Gen. 2x 8L21/31 22,772.67 31.00083 | 96.53658 852.4093

Diesel 2-Stroke | Diesel Gen. 2x 5L27/38 22,658 31.24 97.28479 859.016

Diesel 2-Stroke | Diesel Gen. 2x 6L23/30A 22,618 31.41165 97.81587 863.71

Diesel 2-Stroke | Diesel Gen. 2x 5H17/28 22,808 31.80024 | 99.02594 874.3901

Diesel 2-Stroke | Diesel Gen. 2x 6N18AL-HV 22,548 31.93885 99.45759 878.2016

Diesel 2-Stroke | Diesel Gen. 2x 7L21/31 22,688 32.24252 | 100.4032 886.5549

Table 6.9: Best performing configurations during loitering at port

Comparison of the best configurations

The top-performing configurations for each load profile were analyzed in the previous sections. Table
6.10 compares these configurations across all load profiles, ranking them from best to worst in each
scenario. Notably, the configuration using the main engine 9L46F does not appear in the 2-week
voyage results, as other engines outperformed it under that operational profile.

An important observation is that no single configuration dominates across all load profiles. Instead,
three different configurations emerge as optimal depending on the operational context. This highlights
the sensitivity of performance to load profile characteristics and underlines the importance of tailoring
engine room design to realistic operational data. The best-performing configurations even outperform
the benchmark vessel.

Main Engine | Main Engine | Auxiliary Engine | Auxiliary Engines | Total Power | 2-week Port Loitering
Type Model Types Details kW Voyage | Operations in Port
Diesel 2-Stroke | Benchmark Diesel Gen. - 27,461 641.52 | 89.46 42
Diesel 4-Stroke | 12V46 Diesel Gen. 2x 9H21/32 13,590 462.87 | 94.86 34.17
Diesel 4-Stroke | 9L46F Diesel Gen. 2x 8H32/40 11,846.67 N/A 72.09 33.05
Diesel 2-Stroke | 7S80MC6.2 Diesel Gen. 2x 5L21/31 22,658 887.21 127.03 29.50

Table 6.10: Comparison of fuel consumption of best performing configurations with benchmark

6.4.4. Hybrid mode emission results

For this analysis, the most efficient configuration for each engine category is taken. The hybrid mode
is turned ON and OFF for these configurations and compared. As was explained in section 6.3, the
difference in fuel consumption (Figure 6.11) and in CO2 emissions (Figure 6.12) for the diesel 2-stroke,
diesel 4-stroke, and the dual-fuel engine is zero. The gain using the hybrid system for the Gas Turbine
is positive.

The comparison of fuel consumption can be seen in Table 6.11. By using the hybrid system, 3.1% fuel
can be saved, only when using the gas turbine. The gas turbine is one of the least efficient engines; in
this case, the SFOC of the gas turbine is close to or higher than that of the other engines.

Main engine type No. of Aux. | Fuel consumed | Fuel consumed | Fuel consumed
Engines Hybrid OFF Hybrid ON difference

Dual-fuel 2 737,1161 737,1161 0%

Diesel 4-Stroke 2 885,3098 885,3098 0%

Diesel 2-Stroke 1 1037,443 1037,443 0%

Gas Turbine 2 1279,558 1239,875

Table 6.11: Comparison of Fuel consumed between configurations when Hybrid mode is ON and OFF

The comparison in CO, emissions is shown in Table 6.12. When the hybrid mode is ON, 2.17% emis-
sions can be saved. This is also only the case for the gas turbine configuration, due to the same reason
as the difference in the fuel consumed.
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Main engine type No. of Aux. | Total CO, Total CO, | Total CO,
Engines Hybrid OFF | Hybrid ON | difference

Dual-fuel 2 2172,281 2172,281 0%

Diesel 4-Stroke 2 2756,855 2756,855 0%

Diesel 2-Stroke 1 3230,598 3230,598 0%

Gas Turbine 2 3796,847 3714,392

Table 6.12: Comparison of CO, production between configurations when Hybrid mode is ON and OFF

6.4.5. CII Index

Using the IMO’s CII calculator, the Cll of different configurations can also be estimated. The Cll is
calculated over an annual period of time to evaluate a ship for a whole year. Because this thesis
examines shorter periods in the operational data, data from a yearly period is not used. To still use this
metric, the results are scaled to the period it is measured in, instead of using annual emissions.

A configuration using a diesel 4-stroke engine and two auxiliary engines during port operations gives
the ClIlI rating shown in Figure 6.17.

Carbon Intensity Indicator (Cll) Rating Chart
Bulk carrier - DWT: 209,472 tonnes

I Rating A (Superior)
[0 Rating B (Minor)
Rating C (Moderate)
Rating D (Major)
I Rating E (Inferior)
== = |MO Reference Line
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Ln (grams CO2 per tonne-nm)

ClI Actual: 2.8763 gCO2/t:nm
ClI Reference: 2.3254 gCO2/t:-nm
Rating: E (23.7% above reference)

Reference line: 2019 median performance curve

Ln (Capacity) [Deadweight Tonnage]

Figure 6.17: ClI rating of a specific configuration

The rating of this specific configuration results in an E rating. This can be due to the high emission
factor or some inefficiencies of the load profile being operated by a relatively big engine.

To test how sensitive the Cll rating is to different operating conditions, the three profiles were simulated
using the three best-performing configurations. The results are shown in Table 6.13. The configuration
using 9L46F does not give any results for the 2-week voyage, as was the case in the comparison
between configurations (Table 6.10). For port operations and the two-week voyage, the ratings fall
within a realistic and expected range. However, the loitering case shows a rating that is about ten
times worse. This can be explained by how the Cll is calculated: it is designed to reflect performance
over a whole year of operations, not short outlier periods. Loitering is therefore not representative of
the vessel’s typical operational profile. Another possible reason could be the accuracy of the dataset
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itself, as the limited scope and sensor precision may have influenced the outcome. With a larger or

more accurate dataset, this discrepancy would likely be reduced.

Main Engine | Aux Engines | Total Emissions (tonnes) | Cll Actual | Cll Reference | Cll Rating | vs Reference (%)
12V46 2x 9H21/32 | 1844.23 2.83927 2.32539 E 22.10%

2-Week voyage | 9L46F 2x 8H32/40 | N/A 2.427049 | 2.32539 N/A N/A
7S80MC6.2 | 2x 5L21/31 3533.67 5.440236 | 2.32539 E 133.90%
12V46 2x 9H21/32 251.74 2.876299 | 2.32539 E 23.70%

Port Operations | 9L46F 2x 8H32/40 | 224.49 2.565006 | 2.32539 E 10.30%
7S80MC6.2 | 2x 5L21/31 395.57 4.519735 | 2.32539 E 94.40%
12V46 2x 9H21/32 106.42 27.38339 | 2.32539 E 1077.60%

Loiter 9L46F 2x 8H32/40 102.93 26.48542 | 2.32539 E 1039.00%
7S80MC6.2 | 2x 5L21/31 91.86 23.63785 | 2.32539 E 916.50%

Table 6.13: Cll rating of the three best performing configurations for each load profile

To better reflect how the IMO’s Cll is typically applied on an annual basis, the three configurations were
also simulated over 3 months instead of just the shorter load profiles. This provides a more accurate
representation of their long-term performance. The results are shown in Table 6.14 and Figure 6.18.
Interestingly, the configuration that performed best under port operations now receives a D rating, while
the other two still fall into the E category.

Main Engine | Aux Engines | Total Emissions (tonnes) | Cll Actual | Cll Reference | Cll Rating | vs Reference (%)

12V46 2x 9H21/32 | 7166.74 2.74866 2.325390 E +18.2%

9L46F 2x 8H32/40 | 6177.05 2.36909 2.325390 D +1.9%

7S80MC6.2 | 2x 5L21/31 13255.71 5.08397 2.325390 E +118.6%
Table 6.14: Cll rating of the three best performing configurations in the three load operations.
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Figure 6.18: Cll analysis of the three best performing configurations in each load profile during 3 months of operations

The differences between results highlight one of the key limitations of applying Cll ratings to short-term
load profiles: results can shift significantly depending on the time horizon used. A more extended
dataset smooths out outliers from specific operations, making the ratings more realistic and aligned

with how the IMO intends the metric to be applied.
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6.5. Sensitivity Analysis

To understand how different parameters influence the overall emission output in the engine room model,
a local sensitivity analysis was performed. This analysis explores how changes in key variables such
as specific fuel oil consumption (SFOC), engine load profiles, emission factors, and auxiliary power
affect the total estimated CO, emissions.

6.5.1. Methodology
Four parameters were varied independently using both One-At-a-Time (OAT) and Monte Carlo (MC)
methods:

» Emission factor multiplier: accounts for uncertainty in fuel-specific CO, conversion factors.
+ SFOC multiplier: simulates deviations from rated SFOC due to varying operating conditions.
» Load multiplier: scales the load profile, simulating under/overestimation of power demand.

 Auxiliary power multiplier: adjusts the base auxiliary power to account for system variance or
unknown loads.

Each parameter was sampled from a uniform distribution within plausible bounds (e.g., £15% for SFOC
and load). A total of 1,000 emission simulations were performed, and outputs were aggregated.

6.5.2. Results and Observations
Figure 6.19 summarizes the overall distribution of total emissions, correlation relationships between
parameters, and the cumulative emissions curve.
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Figure 6.19: Overview of sensitivity results including emissions distributions, correlation matrix, and cumulative emissions
probability.
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Emission Distribution. The histogram shows a relatively normal distribution centered around 400
tonnes CO,, suggesting most configurations are stable and fall within a predictable range. The relative
change histogram indicates that model uncertainty introduces a +20% range around the mean, but
most results remain clustered.

Parameter Influence. The correlation matrix reveals that the emission factor multiplier (0.64), SFOC
multiplier (0.50), and load multiplier (0.59) have the highest influence on total emissions. The auxil-
iary power multiplier has a relatively minor correlation of 0.14, confirming it has less impact on total
emissions for the scenarios tested.

Cumulative Probability. The cumulative distribution function (CDF) further supports that over 90%
of the simulated emissions lie between 300 and 500 tonnes, reinforcing model robustness.

6.5.3. Detailed Parameter Sensitivities
Figure 6.20 highlights OAT results for each parameter and the associated change in emissions.
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Figure 6.20: One-at-a-time (OAT) sensitivity plots and Monte Carlo scatter for key parameters. Bottom right: Sensitivity indices
(R?) based on correlation squared.

Emission Factors
This parameter exhibits the strongest linear relationship with emissions. A 20% increase in the emission
factor results in an approximate 20% increase in total emissions, confirming a proportional relationship.

SFOC and Load

Both show substantial, nearly linear impacts on emission changes. A +15% change in SFOC or engine
load results in a comparable +15% swing in emissions. This emphasizes the importance of accurate
operational data and engine performance modeling.

Auxiliary Power

The effect of the auxiliary power multiplier is relatively small—only producing about a +6% change when
varied +30%. This is consistent with expectations since auxiliary power accounts for a smaller portion
of total fuel consumption.

Sensitivity Indices
The bar chart shows R? values indicating relative importance:
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» Emission factor multiplier: £0.40
* Load multiplier: 0.25

SFOC multiplier: 0.25
 Auxiliary power multiplier: £0.07

6.5.4. Discussion and Implications
The sensitivity analysis demonstrates that:

1. Fuel choice (emission factor) is the most critical factor influencing total CO, emissions.

2. Operational behavior—reflected through SFOC and load profile assumptions—also plays a sig-
nificant role.

3. Auxiliary engine behavior has a relatively minor influence unless operating in full-electric or hoteling-
dominated scenarios.

This highlights where to focus data gathering and refinement efforts in future implementations. Improv-
ing the fidelity of emission factor databases and operational load profiles will yield the most significant
gains in model accuracy. Additionally, for design optimization, fuel switching remains the most effective
lever for emissions reduction.

Future work could explore global sensitivity methods (e.g., Sobol analysis) to validate these findings
under broader uncertainty distributions further.

6.6. Conclusion on case study

The case study demonstrated how the proposed DT-aided framework can be applied to optimize engine
room configurations using operational data. Each step of the framework was tested in practice, showing
both its strengths and its limitations.

First, the design goal of reducing emissions and fuel consumption was successfully implemented: the
model consistently identified configurations with lower fuel consumption and CO, output compared
to the benchmark vessel. Secondly, the data collection and processing proved feasible, although
incomplete datasets required pre-processing and imputation. Despite some data loss, the available
operational and engine data were sufficient to produce meaningful simulations.

The chosen rule-based modeling approach yielded realistic results that aligned closely with bench-
mark operational data, showing that even with simplified assumptions, operational insights can guide
early-stage design choices. The sensitivity analysis further highlighted the critical influence of emis-
sion factors and SFOC on the overall outcome, underscoring where design decisions or regulatory
changes would have the most impact.

Overall, the case study shows that the data-driven framework can inform early-stage ship design de-
cisions by quantifying the trade-offs between different engine configurations and operational profiles.
While the model does not yet constitute a complete digital twin, it demonstrates the potential of DT-aided
design as a decision-support tool, offering more transparency than traditional methods.



Conclusion

This thesis aimed to develop a data-driven design framework that integrates operational data into the
early-stage ship design process, with a focus on reducing emissions and fuel consumption. With the
use of a Digital twin (DT)-aided, rule-based modeling approach as the modeling strategy, the frame-
work enables designers to evaluate multiple propulsion and auxiliary configurations under realistic load
conditions, quantifying emissions, fuel consumption, and performance trade-offs. This work addresses
the gap in integrating operational data into early-stage design, enabling more accurate, efficient, and
environmentally aligned decision-making.

7.1. Conclusions on research questions
To answer the main research question of this thesis, the following sub-questions were addressed:

RQ1: What is the potential of operational data to support current design methods?

Traditional ship design relies on sequential, assumption-heavy methodologies. While these approaches
provide structure, they often overlook variability in real operating conditions, resulting in inefficiencies
in fuel consumption and equipment sizing. Operational data offers the potential to inform design de-
cisions based on actual vessel usage patterns, thereby reducing uncertainty and enhancing lifecycle
performance.

Operational data also supports a realistic evaluation of topology and fuel choices, providing a data
foundation for regulatory and lifecycle metrics (CII/EEXI). In short, operational data augments each
design phase with evidence-based inputs and validation checks, improving both decision quality and
the likelihood that a design will meet in-service performance targets.

RQ2: What data-driven methods can be used to improve early-stage ship design?

In this thesis, a range of data-driven approaches were examined, including statistical modeling, Al-
based prediction, and physics-based simulation. Among these, DT technology emerged as the most
promising due to its ability to combine data-driven modeling with continuous data integration. DTs
enable the virtual testing of configurations under operationally realistic conditions, supporting iterative
improvement during the design process. Another aspect that makes DT the most promising is its
expandability and modularity.

RQ3: How can an organized data-driven design method be applied to early-stage ship design?

This thesis has established that the use of DT technology is not widespread in design, particularly
when integrating operational data. Some DT-aided design approaches have been proposed, but rarely
applied as was studied in Section 3.2.1. To fill this knowledge gap, it was established that a framework
was required to implement operational data in the use of DT-aided design.

This thesis addressed this gap by proposing a Digital Twin-aided design framework that integrates
the use of operational data. The framework includes constituent blocks that detail how operational
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data, performance and component modeling, and optimization logic can be combined to support low-
emission, data-informed early-stage ship component design.

RQ4: How can the data-driven framework be applied to the early-stage design to improve fuel con-
sumption and emissions?

In this research, the framework is applied to assess fuel consumption and emissions by modeling
engine configurations and simulating realistic load profiles, incorporating SFOC—-load relationships.

The applied framework yielded an operational data-informed, rule-based modeling strategy that opti-
mized engine configuration selection, thereby minimizing fuel consumption and emissions. This mod-
eling strategy creates the virtual engine configuration that runs the simulation.

Verification is performed by comparing the results to a benchmark generated from real operational
data. Like this, emissions and fuel consumption are realistically modeled for each configuration. These
optimized engine configuration results should inform early-stage decision-makers on which physical
engine configurations should be considered.

RQ5: To what extent can the data-driven design approach inform early-stage ship design decisions?

This research demonstrates that a data-driven framework can offer meaningful guidance in early-stage
ship design by enabling the quantitative evaluation of alternative configurations under realistic operating
conditions. In the case study, engine configurations were assessed not only on fuel consumption and
emissions but also against regulatory metrics such as the CIl. Configurations tailored to specific load
profiles with redundancy-aware auxiliary sizing consistently outperformed the benchmark in absolute
terms, though their emission intensity remained higher. The addition of hybrid load distribution further
demonstrated how rule-based, data-informed logic can capture operational complexity and improve
efficiency.

Overall, the framework demonstrates that operational data can make early-stage decisions more robust
by demonstrating that optimization strategies may achieve gains in absolute performance but still fall
short on regulatory metrics. It also reduces the risk of over- or under-dimensioning engines by ground-
ing assumptions in real operational profiles. However, the reliability of such insights depends on data
availability, accuracy, and validation against existing ship models. With these conditions met, a data-
driven design approach can substantially enhance decision-making in the conceptual stages, providing
designers with additional insight into which systems are promising and which should be avoided.

7.2. Conclusion on main question
The main research question to be answered was:

How can operational data be integrated into a data-driven design framework to sup-
port early-stage ship design?

Operational data can be effectively integrated into a data-driven design method. This thesis proposed
a modular, DT-aided design framework that can be applied in the early design stage of marine vessels.
In a case study, the framework is used to create context-aware optimization of engine room configura-
tions. By embedding real load profiles from IMO’s Bunker Delivery Notes into the configuration logic,
it was demonstrated that the applied framework can produce realistic performance forecasts, select
engine configurations that can be utilized and verified by operational data, and align environmental
performance with decarbonization targets.

In conclusion, operational data can effectively inform early-stage ship design when structured within
a data-driven framework. A DT-aided approach enables design goals—such as minimizing emissions
and fuel consumption—to be directly encoded into the modeling process. The resulting digital represen-
tation of the physical system bridges the gap between design intent and operational reality, while laying
the foundation for future extensions into complete DT ecosystems and lifecycle-wide optimization.



Discussion

In this chapter, the contributions of this research, the methodology, limitations, and recommendations
are discussed. First, the scientific contributions to the industry are presented. Then the scientific
method is evaluated. Thereafter, the data sources are discussed and evaluated. Then, the model-
ing strategy and the model are evaluated together with their limitations. Next, the requirements for
transforming a digital model into a digital twin will be explored. And finally, the possibilities for further
research will be examined.

8.1. Scientific Contributions

8.1.1. Operational data integration in DT-aided design framework

This thesis demonstrates the potential of integrating operational data into the early-stage design phase
through the creation of a Digital Twin (DT)-aided framework. Rather than relying solely on design
assumptions or aggregated metrics, this method uses time-series data to simulate engine loads, fuel
consumption, and emissions for thousands of configurations.

The creation of this framework is informed by applications of operational data in other industries and
in later phases of the product lifecycle. By studying these existing approaches, the most essential
goals and building blocks for early-stage ship design were identified. To demonstrate its functionality,
the framework was applied in a case study on engine configuration. This application highlights the
framework’s potential to support data-driven decision-making in early-stage design.

However, this does not imply that the framework can be universally applied to all ship components
without modification. Further research is needed to adapt the building blocks—or introduce additional
ones—for broader use. In this case study, a rule-based modeling approach was selected, guided
by external factors such as the engine model characteristics, stakeholder requirements, design goals,
available data, and the verification process. In practice, data analysis consists of multiple smaller pro-
cesses that interact with the model. In more complex implementations, several physical-object models
(e.g., emissions models, wave—ship interaction models) can feed into the framework simultaneously.

While the present application consolidates all required functionalities within the existing blocks, a more
comprehensive version of the framework should integrate additional models and feedback loops, mak-
ing it capable of addressing the full range of complexities in ship design.

Currently, the DT-aided design framework enables an iterative, data-informed process for selecting
configurations. By linking engine and fuel type databases with operational load profiles, the framework
bridges the gap between theoretical design and actual operational behavior. Although the DT in this
thesis is not yet bi-directional or real-time, it showcases how digital models informed by real data can
significantly elevate traditional ship design.

The implementation applies voyage-based emission calculations, where emissions are quantified over
the duration of a single voyage. In contrast, most indices of the IMO evaluate vessels based on yearly
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emission figures, which provide a valuable overview of overall performance across a variety of opera-
tional profiles. While this annual perspective is beneficial for benchmarking, it does not reveal which
specific operations or voyage types contribute most to total emissions. For design purposes, however,
such a detailed view is crucial. By analyzing emissions at the level of distinct operations or voyage
segments, such as port operations, long voyages, and loitering, designers can identify where a vessel
performs most efficiently and where targeted improvements are possible. This operational perspective
also benefits ship operators by highlighting high-emission scenarios and informing strategies for more
sustainable operations. During research, it was found that the Cll would require a different scaling to
be used for shorter load profiles, as the rating scale is currently based on yearly emissions.

8.1.2. Environmental and Operational Implications

The emissions analysis revealed that even among engines of the same type, operational emissions
vary considerably depending on fuel type, load efficiency, and auxiliary engine sizing. Using Dual-fuel
engines as the main engine showed potential in reducing emissions under realistic load conditions,
especially when auxiliary engines were sized and selected based on actual load distributions. Another
reason for dual-fuel engines to perform well, even with high power, is that Dual-fuel engines utilize a
different type of fuel, producing fewer emissions. This was also an outcome of the sensitivity analysis,
where the emission factor had the most impact on the results.

Furthermore, the choice of fuel type has a significant impact on emissions. Switching to low-carbon
or green fuels can substantially reduce overall emissions, as lowering the emission factor generally
results in an almost proportional decrease in output. However, when assessing fuels, it is essential
to consider the whole lifecycle perspective—whether on a well-to-tank or well-to-wake basis. This ap-
proach accounts not only for combustion emissions but also for those generated during fuel production,
processing, and distribution, thereby providing a more accurate measure of the fuel’s total environmen-
tal impact.

The study also imposed constraints such as limiting fuel type diversity (max two) and maximum auxiliary
engine power, reflecting practical operational limitations and vessel design norms. These constraints
can contribute to producing feasible, not just theoretical, configurations.

The inclusion of the International Maritime Organization’s (IMO) indexes to see, based on the industry
standard, how well a vessel or configuration would perform, also elevates the speed at which a model
like this could be implemented in the ship design process.

8.1.3. Contributions to ship design

This DT-aided approach introduces a significant enhancement to the current ship design process by
embedding real-world operational variability into early-stage ship design decision-making. The rule-
based model’s scalable structure enables it to be applied across various vessel types, allowing for
comparative analyses of design options based on actual load profiles rather than generic operational
assumptions.

In practice, this means designers can avoid over-dimensioning systems, reduce excess fuel consump-
tion, and align designs more closely with both operational and environmental goals. While the present
study focused on emissions and fuel use, the same methodology could be extended to include CAPEX/OPEX
considerations, enabling cost-performance optimization in parallel with reducing environmental impact.

8.2. Data source analysis

During the case study, a variety of data sources are used. The engine data was gathered from Clark-
son’s dataset, a fleet dataset that collects information from shipping companies and makes it available
for research. Clarkson’s provides as much information as it can gather per vessel, so not all vessels
have the same amount of information. Virtually identical sister vessels do not always share the same
information when used by different shipping companies, and one vessel sometimes has more infor-
mation than the other. During analysis, this is filled out to make sure identical ships have the same
power output. Some of the engine data, however, is still missing after being filled out from either similar
engines or similar-sized vessels. Due to this fact, the method includes an imputation step where the
fuel consumption of the engines is calculated based on their size. Even if an engine is identified as the
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most efficient and installed, its actual fuel consumption will inevitably deviate from the predicted values,
introducing inaccuracies into the system.

The operational data is a single type of data set gathered from the bunker delivery notes (BDN). This
data is not fully available for all parties to use and is also limited to a single type of data. If inaccuracies
are found in the data, this will bleed into the system, and the results will also be inaccurate. To prevent
this, the data must be verified or the model must be validated against other data or models. The sensor
data acquired from the BDN is as accurate as the sensors are. In the model, the sensor accuracy is
unknown, which can lead to potential inaccuracies in the data.

8.3. Case study modeling strategy evaluation

The modeling strategy chosen in the case study is rule-based modeling. There are a few shortcomings
with the use of this modeling strategy. For the intended purpose of proving the framework, the strategy
was able to mimic the workings of an ICE engine sufficiently. It could utilize the set rules to find adequate
configurations that optimize fuel consumption and emissions.

Rule-based modeling does have its limitations, however. The biggest issue in the context of DT-aided
design is that it cannot yet adapt to new data. It is a static model that is not yet capable of learning
from new information or new outcomes. It would require manual changes to improve. Flexibility has to
be inflexibly modeled to deal with dynamic conditions. This would require excellent knowledge of the
physical object to model it as accurately as possible in the first instance. Just as with the data, rule-
based modeling has difficulty dealing with bias. If present, they will be inherent to their programming,
resulting in unfair or inaccurate assessments.

8.3.1. Model implementation limitations

Due to the inherent complexity of ship systems, the model has certain limitations in its current form. The
case study is intended primarily as a proof of concept to evaluate the DT-aided framework, rather than
an entirely accurate representation of reality. Achieving a perfect digital mirror of the physical system
is not yet feasible; therefore, several assumptions were required to make the modeling process man-
ageable and the results interpretable. This model utilizes engine-specific fuel consumption to generate
a fuel consumption model, enabling the calculation of fuel consumption and emissions. This limits the
realistic features of engine characteristics, such as possible shutdowns, faults, and irregularities in fuel
consumption. The model aligns reasonably well with theoretical expectations, as the overall shape of
the SFOC curve derived from the BDN data closely matches the reference curve reported by Jalkanen
[146]. However, the operational data indicate consistently higher SFOC values, with a minimum of
around 188-189 g/kWh compared to the 167 g/kWh reported in literature, reflecting more conservative
(i.e., less efficient) performance estimates under real-world conditions.

Research on engine-related digital twins has so far focused primarily on fault prediction, real-time mon-
itoring, and component-level simulation [148, 149].

Another limitation is the static nature of the CO, emission factors. This approach enables a straight-
forward comparison between configurations; however, it fails to capture the variability of real-world
operating environments. In practice, CO, emission factors vary depending on factors such as engine
load, ambient temperature, maintenance condition, and fuel quality [60].

By using static values, the model assumes constant operating conditions over time, which limits the
ability to simulate the environmental impacts of the configurations under changing scenarios. Although
the operator attempts to operate the vessel in the most optimal state for most of the time, during specific
port operations, this optimal load cannot be maintained at all times.

8.3.2. CII assessment

One of the key evaluation metrics applied in this study was the IMO Carbon Intensity Indicator (CII).
This index is widely used in the maritime industry to assess the operational efficiency of vessels and
to identify ships that require corrective action or reevaluation. The Cll is highly sensitive to changes
in key parameters such as distance travelled and fuel consumption; therefore, the accuracy of the
input data is critical to the reliability of the resulting score. In practice, these inputs may be affected by
sensor inaccuracies, reporting errors, or incomplete datasets, which can introduce uncertainty into the
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assessment.

In this study, Cll calculations were based on data from smaller periods of time instead of a single
operational year. While this provides an initial indication of configuration feasibility, it limits the ability
to validate results across varying operational conditions and periods. Nonetheless, the use of the
CIlI within the framework demonstrated that the modeled configurations are not only feasible but also
aligned with an established industry benchmark, even though they were rated in the E category. With
access to a larger and more diverse dataset, future work could enhance the robustness of the Cll-based
evaluation, enabling more accurate predictions of long-term performance.

8.4. Digital Twin potential

The implementation presented here does not constitute a fully realized Digital Twin. Instead, it rep-
resents an early-stage design tool inspired by DT concepts, without the continuous, two-way data
synchronization between the physical and virtual object that defines a true DT [47].

Realizing a full Digital Twin for early-stage ship design will require advancements beyond the current
state of this work, including greater computational resources, more detailed physical modeling of engine
systems, and significantly expanded data acquisition and data management capabilities. To date, the
most mature DT implementations in the maritime sector have been deployed in the operational phase of
a vessel’s life cycle, where abundant real-time data streams are available and can be used to optimize
ongoing performance and maintenance strategies [150].

Within this framework, an attempt was made to create a circle that transitions from virtual to physical,
in the form of feedback and data. While the data stream is established through sensors feeding into a
databank that can be accessed at any point, the reverse, from the virtual model back to the physical
system, is currently still limited. In this study, the feedback loop is implemented manually by designers
and early-stage decision-makers, rather than through automated control or real-time synchronization.
The adaptation to a complete real-time DT framework will therefore require not only enhanced compu-
tational infrastructure and a better interconnected system between data sources, but also automated
mechanisms for translating simulation insights directly into actionable design or model synchroniza-
tion. Such capabilities would enable a self-updating, continuously learning model, fulfilling the defining
characteristic of a Digital Twin and moving beyond a decision-support tool toward an integrated design
ecosystem.

In the case study, the framework was applied to an engine configuration application. In the application,
however, not all blocks were fully utilized. As was discussed in the scope (Section 5.7) The physical
integration was missing, but the direct sensor data capture was also not fully realized. That is as far as
the case study could reach. The feedback from the verification phase would also further improve the
design choices.

8.5. Future Developments and Research

The current framework supports diesel, dual-fuel, and gas turbine configurations but does not yet im-
plement hybrid-electric systems or energy storage solutions. Incorporating these — especially for peak
shaving and part-load optimization — would expand the model’s relevance to emerging hybrid designs.

In this model, the costs of fuels or expenses in general are not taken into account. Future work could
incorporate route-specific emissions regulations, ECA zones, or economic indicators such as fuel price
or carbon taxes.

Additionally, spatial considerations have not yet been integrated. Future developments could include
optimizing physical engine room layouts and spatial allocation for fuel storage, taking into account both
operational safety requirements and fuel capacity needs. Incorporating these constraints would en-
able the generation of more realistic and practically implementable configurations, aligning the model’s
outputs more closely with actual ship design processes.

In addition to fuel modeling, the way in which configurations are created is now based on the model
vessel. When more operational data becomes available, it would be a good strategy to use power
envelopes of more extended periods of time to decide the engine power requirement. If a specific ship
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type undergoes specific loads more often than others, this can be analyzed when data is available.
This would improve the selection of engine power requirements.

The dual-fuel engine in this study was modeled as a regular engine, where the emission factors of LNG
and the heavier fuel were averaged. For a more accurate representation, fuel switching should be
implemented. Another factor that will need to be taken into account is the fuel availability constraints
at various ports. This is also the case for a multitude of other topologies.

Retrofitting existing vessels to improve efficiency or meet new regulatory standards is a complex and
costly process, which must be factored into future applications of this framework. Previous studies have
quantified the capital expenditures associated with retrofitting, along with operational implications such
as downtime and integration challenges [151]. Incorporating such cost and feasibility assessments
into the Digital Twin-aided design process using operational data would enable more involvement in
the challenges the industry is facing, making the framework more relevant and actionable for industry
stakeholders considering both new builds and upgrades to existing fleets.

A significant gap in many data-driven design applications is the absence of a historic, standardized
databank of vessel operational and design data. Such a databank should capture all relevant research,
modeling, and real-world performance information for each physical asset throughout its lifecycle. The
management of this data is essential and should ideally be openly available. Some common maritime
data standards have already been introduced (such as the ISO 19848 for shipboard data), but man-
aging this data is still a critical gap. Through this data management, more advanced data mining and
information processing become possible. This information can be leveraged for more advanced mod-
eling strategies, including rule-based modeling. Over time, this approach may evolve into dynamic
knowledge domains that enable DT models to understand and adapt these rules.
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An operational data-driven digital twin framework for marine

engine configuration design

M. Windmeijer, B. Noble, Y. Pang

The maritime industry faces increasing pressure to cut greenhouse gas emissions, yet
traditional ship design methods rely on static assumptions and rarely exploit the growing
availability of operational data. This paper proposes a Digital Twin (DT)-aided design
framework to integrate such data into early-stage ship design. The framework covers
data acquisition, modeling, and verification, ensuring that operational insights inform
decision-making. A case study on bulk carrier engine room configurations demonstrates
the approach. Using industrial engine datasets and operational profiles derived from
Bunker Delivery Notes, a rule-based model generates feasible configurations that are
assessed for fuel consumption and CO; emissions. Results indicate that operational
data enables insights into performance forecasts and more informed configuration
selection compared to traditional methods. While the application remains a digital
model rather than a full twin, the study shows the potential of DT-aided frameworks to

support IMO decarbonization goals and guide future ship design.

I. Introduction

The shipping industry is a major contributor to global
greenhouse gas emissions due to its dependence on
fossil fuels. Meeting international decarbonization
targets requires more than incremental improvements
in ship efficiency: it calls for innovation in both
technology and design methodology. Traditional ship
design often relies on generic operational assumptions,
which can lead to oversized or inefficient systems that
perform poorly under real-world conditions. This
creates a gap between design intent and operational
reality.

With the increasing availability of operational data
from ships, new opportunities arise to integrate data-
driven methods into the design process. Such methods
can improve early-stage decision-making by aligning
design choices with realistic operating conditions,
thereby reducing inefficiencies in both fuel consump-
tion and emissions. This aligns with broader Industry
4.0 developments, where real-time data, artificial
intelligence, and interconnected digital systems are
transforming industrial practice [[1} 2[].

Digital Twin (DT) technology offers a promising
foundation for this shift. DTs provide a virtual rep-
resentation of a physical asset, dynamically updated
with real-time data, and are increasingly applied in

manufacturing and operations to improve performance
and maintenance strategies [3]]. In the maritime sec-
tor, DTs have primarily been implemented during the
operational phase, where abundant real-time data is
available. However, their application to early-stage
ship design remains limited, despite the potential to
bridge the gap between regulatory targets and practical
implementation.

The transition to greener and retrofitted ships requires
a gradual yet accelerated approach, supported by an
efficient production and design cycle. Improving
the production cycle, and thereby decarbonizing the
industry, can be achieved through several methods.

This study addresses this gap by developing a data-
driven design framework for early-stage ship design.
The framework integrates operational data into a rule-
based model, enabling systematic evaluation of design
alternatives under realistic load conditions. To demon-
strate and validate the framework, it is applied to the
case of marine engine room configuration for bulk
carriers. The case study illustrates how the framework
can support design decisions that improve efficiency
and emissions performance, while remaining extend-
able to other ship types and subsystems.



A. Scope of the research

The focus of this paper is the development of a design
framework aided by the DT concept. This frame-
work will be applied to a case study on bulk carrier
engine configurations, serving as a proof-of-concept
to illustrate the framework’s capabilities. The case
study currently considers conventional internal com-
bustion and dual-fuel engines, with the potential to
be expanded to hybrid-electric systems and additional
ship types. Hydrodynamic design and retrofit im-
plementation are outside of the scope of this work.
The adapted framework in the case study produces a
digital model rather than a fully validated digital twin,
as incorporating a complete bi-directional data flow
is outside the scope of this work.

The main research question this paper wishes to answer
is:

How can operational data be integrated
into a data-driven design framework to
support early-stage ship design?

B. Research approach

This study adopts a quantitative, data-driven research
approach to investigate how operational data can in-
form early-stage ship design. The research comprises
three main steps: a literature review, framework de-
velopment, and a case study application.

First, the traditional ship design cycle and its limita-
tions were reviewed, with particular attention to the
underutilization of operational data in conceptual and
preliminary phases. Parallel to this, the state-of-the-
art in data-driven design was analyzed to establish
requirements for integrating real-world operational
profiles into ship design.

Second, a Digital Twin (DT)-aided design framework
was developed. The framework is modular, consisting
of four phases: (1) acquisition and pre-processing
of data, (2) selection and creation of an appropriate
modeling approach, (3) verification and validation of
model outcomes, and (4) systematic data management.
Third, the framework was demonstrated in a case
study of a bulk carrier engine room. Real opera-
tional data from Bunker Delivery Notes (BDN) was
combined with industrial engine datasets to construct
realistic load profiles. These profiles were then used
to simulate main and auxiliary engine configurations,

quantifying fuel consumption, CO; emissions, and
compliance with regulatory metrics such as the Carbon
Intensity Indicator (CII). Verification was performed
by benchmarking results against operational data from
the reference vessel.

This approach enables a structured evaluation of how
operational data can bridge the gap between design
assumptions and actual performance. While the case
study constitutes a digital model rather than a full
twin, it demonstrates the feasibility of DT-inspired
methods for early-stage ship design.

II. Literature Review

A. Traditional Ship Design Methods

Every product designed follows the same production
cycle. For ship design, this is the same. According to
Gale, the ship design cycle is as follows [4]:

* Conceptual design: The primary objective is to
clarify the shipowner’s requirements, including
the vessel’s expected performance and intended
missions.

* Preliminary design: During this stage, the var-
ious ship design steps previously completed in
the first phase are further elaborated upon in
greater detail. The ship’s main characteristics are
more accurately determined and aligned with the
client’s requirements.

* Contract design: This phase is completed with
the completion of the necessary calculations and
naval architectural drawings, along with the tech-
nical specifications drawings.

* Detailed design: The contract design is trans-
lated into a detailed design of all structural ele-
ments of the ship, along with the establishment
of technical specifications for ship construction
and the installation of equipment.

This paper aims to support the early-stage design,
specifically the conceptual design phase. By leverag-
ing new advancements in the maritime industry, this
paper identifies potential opportunities for utilizing
data, particularly operational data, in ship design. By
integrating real-world performance insights at this
early stage, it becomes possible to estimate propulsion
and emission characteristics more accurately, thereby
guiding engine room design choices with greater pre-
cision.



1. Operational data in ship design
Data used in ship design can broadly be divided into
two categories: static data and operational data. Static
data refers to fixed characteristics such as ship di-
mensions, engine specifications, or regulatory require-
ments—information that remains unchanged once
defined. In contrast, operational data captures the
dynamic behavior of vessels in service. Enabled by
advances in sensor technology and digital reporting,
operational data reflects how ships are actually op-
erated, offering detailed insights into performance,
efficiency, and environmental impact.
Operational data can be classified into these four types:

* Voyage data: Speed, draft, route

* Engine data: Load, power output, fuel usage

¢ Environmental conditions: Weather, state of

the sea

* Logbook data: Shipper’s journal
Data is being used in research across more and more
industries; however, the applications of operational
data in ship design are limited. This is due to limi-
tations and challenges that come with the abundance
of operational data. For specific goals, the data can
be too sparse or inconsistent, which makes outcomes
unreliable. All data that comes in needs to be cleaned
and processed before it can be used. Standardization
would be required to make real-time fleet data more
easily usable.
Operational data can give great insights into vessel
behavior, which can be used for early-stage ship design.
Real-world operational profiles provide actual engine
loading conditions, which should help in sizing for
future vessels. This approach helps prevent both
over-dimensioning and under-dimensioning of main
and auxiliary systems. It also provides a basis for
evaluating different types of fuel options and different
powertrain topologies.
This study aims to address the gap in the utilization of
operational data in design by utilizing a data-driven
method that supports the use of operational data. The
data-driven design method will be discussed in the
following section.

B. Data-Driven design and Digital twin-aided Ap-
proach

Industry 4.0 has brought increased attention to data-

driven methods in design and production. Among

these, the Digital Twin (DT) has emerged as a central
concept. Grieves defines the DT as consisting of a
physical object, its virtual counterpart, and the data
connection between them [5 6]]. This continuous ex-
change of information distinguishes DTs from earlier
static models.

To distinguish maturity levels of DTs, Kritzinger et
al. [[7] differentiate between a digital model, digital
shadow, and full digital twin, depending on whether
data exchange is manual, one-way, or bi-directional
(Figure [I). This framework illustrates that current
ship design practices rarely progress beyond digital
models, leaving significant potential untapped.

—
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Figure 1. Integration level of data exchange

DT technology has been applied in sectors such as
aerospace [8] and infrastructure monitoring [9]], where
it supports predictive maintenance, system optimiza-
tion, and life-cycle management. In the maritime
domain, applications are mostly limited to the opera-
tional phase, where real-time sensor data can optimize
fleet performance and maintenance. A paper by Maura
et al. examined the use and the grade of implementa-
tion of DTs in the maritime industry. The division of
the use in the ship’s phase can be seen in Figure[2]
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Figure 2. Division of filtered papers on Digital
Twins of the phase [10]

Of the 10 papers found in design, only three concepts,
concerning general descriptions, definitions, and ca-
pabilities of DTs, were in ship design. Not a single
framework of how a DT could be implemented in ship
design is produced according to this study [[10].

C. Regulatory drivers for alternative design meth-
ods

Regulatory measures introduced by the International
Maritime Organization (IMO) further highlight the
need for data-informed design. Initial frameworks,
such as the Energy Efficiency Design Index (EEDI)
and the Energy Efficiency Existing Ship Index (EEXT),
focused on technical efficiency. More recently, the
Carbon Intensity Indicator (CII) evaluates ships on
their operational performance, assigning annual rat-
ings from A (superior) to E (inferior) [11]. Ships
rated D for three consecutive years, or E once, must
submit corrective action plans.

1. Carbon intensity indicator

The CII is calculated based on annual CO; emissions
per transport work (Equations[TH4), linking emissions
directly to ship operations. This operational focus
highlights the potential for integrating real operational
data into design frameworks to ensure that future
vessels meet increasingly stringent targets.

The Carbon Intensity Indicator (CII) is based on the
operational energy efficiency of ships. It determines
the annual reduction factor required to ensure con-
tinuous improvements of a ship’s operational carbon

intensity. The CII is a mandatory indicator for vessels
of 5,000 gross tonnage and above. The attained annual
operational CII is documented and verified against the
required annual operational CII (Equation[I). Finding
the attained CII is calculated by dividing the yearly
CO; emissions, found by multiplying the fuel by the
carbon conversion factor, by the Annual Transport
Work that is done by the ship (Equation[2)). The CII
required by the industry is calculated by multiplying
the reduction factor for the necessary annual opera-
tional CII: Z, with a reference value CII,. ¢ (equation
[B). This reference value is a general value defined in
2019 that is based on the type of ship that is examined
(Equation [][12]).
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Figure 3. Operational energy efficiency perfor-
mance rating scale [13]]

D. Engine configuration optimization potential

Given the pressure of regulatory requirements, ma-
rine engineers are exploring both alternative fuels and
hybridized propulsion systems. Hybrid-electric solu-
tions show particular promise for ships with variable
operational profiles, while dual-fuel engines allow



flexibility in emissions and costs depending on fuel
availability [14]. Operational data can help determine
realistic engine loads, fuel switching strategies, and
hybrid functionality strategies, making it central to
the optimization of engine room topologies.

E. Purpose of Data-driven models

Conventional frameworks provide structured pro-
cesses but fail to utilize the abundance of operational
data that is now becoming available. According to
the literature, a method for integrating operational
data into a DT-aided design approach has not yet been
established. This paper wishes to bridge that gap
by proposing a DT-aided framework for early-stage
ship design that can integrate operational data. The
framework aims to demonstrate how such data can
be structured, analyzed, and integrated into a digital
model that supports early-stage decision-making.

III. DT-aided design framework

This section outlines the building blocks required for
the DT-aided design framework developed in this study.
The goal is to demonstrate how operational data can be
systematically integrated into early-stage ship design.
The section will begin with operational data and
progress from the modeling approach to verification
and validation, concluding with data management.

A. Operational Data

Quality data is a fundamental part of DT-aided design,
as it forms the link between the physical and virtual
domains. Modern vessels generate large volumes
of data through reporting systems (e.g., IMO’s Data
Collection System, AIS) and onboard sensors, which
provide continuous information on ship performance,
position, and fuel use [[15]. While this creates opportu-
nities for design optimization, data reliability remains
a challenge due to sensor inaccuracies, missing values,
and inconsistent formats. Automated validation and
fault-detection are therefore critical [16,|17]].
Equally important are issues of data access and
management. Effective use requires integration
across sources, stakeholder access, and secure digi-
tal infrastructure, often relying on cloud-based solu-
tions [18]]. Once acquired, raw data must be pre-
processed—through cleaning, filtering, and struc-

turing—before it can support analysis and decision-
making. Frameworks such as Zheng et al.’s four-stage
architecture (acquisition, pre-processing, analysis, and
fusion) provide structured approaches to ensure data
quality and usability [19].

B. Modeling approach

The modeling approach in a DT-aided design frame-
work depends on the application and design goals,
since it determines how operational and static data
are translated into the virtual space. Tao et al. iden-
tify four main categories of modeling strategies for
DTs: geometric, physical, behavioral, and rule-based
models [20].

* Geometric models focus on the physical form
of the system, including structure and spatial
properties. They are commonly used in structural
analysis, allowing for simplified yet high-fidelity
representations for visualization and monitoring
[21]].

¢ Physical models simulate physical properties
and processes, either through static analysis (e.g.,
material states, multi-physics coupling) or dy-
namic models (e.g., thermal conduction, wear
prediction) for real-time performance monitoring
[22].

* Behavioral models represent system dynamics
and control, but are highly sensitive to anoma-
lies in input data. Accurate pre-processing and
parameter tuning are essential for reliable predic-
tions.

* Rule-based models encode expert knowledge
and operational rules to guide configuration and
lifecycle assessment. While currently limited
by their static nature, they offer transparent and
modular logic for early-stage design decisions.

C. Model Verification & validation

Ensuring credibility in DT-aided models requires both
verification and validation. Verification focuses on
whether the model has been implemented correctly and
whether its assumptions and outputs remain consistent
across updates. Because models evolve, verification
must be repeated regularly, making it an iterative
process.

Validation instead emphasizes whether the model’s
outputs are sufficiently realistic and reliable for their



intended purpose. This typically involves comparing
simulated results against real-world data, benchmarks,
or case studies to confirm that the model achieves the
defined objectives.

Together, these processes ensure that a DT-aided
framework not only functions correctly but also pro-
vides trustworthy insights for supporting design deci-
sions [23]].

D. Data management

To complete the loop of the DT-aided design pro-
cess, information from both the physical system and
the virtual model must be stored and managed sys-
tematically. For ship design, this means building a
structured knowledge bank of operational data, en-
gine parameters, and modeling results, which can be
reused across projects. Proper management not only
improves accessibility for stakeholders but also en-
hances reliability, efficiency, and long-term learning
within the design process [20]].

E. DT-aided design goal and framework
Based on these building blocks, the DT-aided design
framework follows six steps:

1) Determine the goal of the DT-aided design pro-
cess
Process and assess collected operational data
Determine the modeling approach
Optimize key parameters according to the mod-
eling approach

5) Verify and validate the model

6) Link the virtual and physical spaces through

structured data management

The resulting framework is shown in Figure 4 where
four main elements are represented: virtual modeling,
physical space, data sources, and feedback. Each
corresponds to a phase in the DT-aided process. The
following section applies this framework to a case
study, where engine configurations are optimized
based on fuel consumption performance using the
operational data of a bulk carrier vessel.

2)
3)
4)

IV. Case Study
The goal of this case study is to apply the DT-aided
framework to engine configuration design, demon-
strating how operational data can support early-stage
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Figure 4. Proposed DT-aided design framework
for ship design

decision-making in the development of more sustain-
able vessels. By modeling and comparing different
engine setups under realistic load profiles, the frame-
work aims to enhance design robustness and support
emissions reduction targets. The case study draws
on operational data from a large bulk carrier, which
serves as the reference vessel.

The applied framework, shown in Figure 5] follows
the same logic as the generic framework presented
earlier, but adapted to the specific requirements of
engine configuration modeling. A notable adjustment
is the absence of a feedback-based validation loop:
direct comparison with physical test data or alternative
models is outside the scope of this study. As such, the
case study constitutes a Digital Model.

A. Data Collection and Processing

Operational and engine data were gathered from in-
dustry databases and Bunker Delivery Notes (BDNGs).
The dataset includes main and auxiliary engine specifi-
cations, fuel types, and Specific Fuel Oil Consumption
(SFOC) values. Pre-processing steps included clean-
ing incomplete records, harmonizing formats, and
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converting location data (degrees/minutes) into deci-
mal coordinates for integration with voyage profiles.

B. Reference vessel

The case study vessel is a bulk carrier of approximately
300 m length overall (LOA), equipped with a two-
stroke diesel main engine. The specifications of this
vessel provide the baseline against which alternative
configurations are assessed.

To ensure relevance to larger vessels, engine data is
filtered by selecting ships with a LOA of at least 100
meters. This approach captures a range of engines suit-
able for large ship applications, while still including
smaller engines that may offer promising alternative
configurations. The resulting dataset provides a com-
prehensive list of potential engine candidates.

C. Modeling approach and assumptions

A rule-based modeling approach was adopted to mimic
such a 300-meter bulk carrier, encoding technical
constraints and industry norms. Main engines were
selected first based on efficiency and feasibility, fol-
lowed by auxiliary engines sized within IMO regula-

tory ranges. The design constraints consist of things
such as:
* minimum auxiliary power thresholds based on
industry standards,
* restriction to a maximum of two distinct fuel
types, and
» redundancy requirements for critical power sys-
tems.
Some simplifications were made, such as excluding
wave interactions and assuming steady-state engine
behavior at given load levels.

D. Emissions & Fuel Consumption Modeling
Fuel consumption and CO, emissions were computed
on a voyage basis. SFOC-load relationships were
applied for each engine type, with results aggregated
over simulated operational profiles. While IMO’s
CII typically relies on annual emissions, this study
applied voyage-based calculations to identify which
operations contribute most to total emissions. The
configurations will be ranked and assessed according
to a few key performance indicators (KPIs) listed
below:

¢ Total CO; emissions in tonnes

 Total Fuel consumption in tonnes

* Emission Intensity in g CO, / kWh

e CII index
In addition to total CO; output, the model calculates
emissions intensity (EI) to allow fair comparison
across configurations. It is defined as:

_ Total CO2 Emissions - 10°
~ Total Energy Output (kWh)

[& CO,/KWh]
)

This intensity metric is used as one of the main criteria
for ranking and selecting the optimal configurations.

1. Engine Load and SFOC modeling

To accurately model emissions, engine efficiency is
modeled according to engine load. In this case study,
the Specific Fuel Oil Consumption (SFOC) is depen-
dent on engine load. Jalkenen et al. have studied
the SFOC of marine diesel engines and, via a regres-
sion analysis of comprehensive SFOC measurements
from Wartsild, derived a second-degree polynomial
equation [0] for the relative SFOC [24]].



SFCpe = 0.455-L* - 0.71 - L+ 1.28 6)
Where L € [0, 1] is the engine load expressed as a
fraction of the engine’s SMCR (Service Maximum
Continuous Rating). The actual SFOC is then com-
puted as:

SFCactual = SFCpase * SFCrel (7
This load-dependent SFOC is measured at each 5-
minute interval of the ship’s operation in the BDN
data, for both main and auxiliary engines. These
values are then used to estimate instantaneous fuel
consumption and emissions. The polynomial can be
seen in Figure [6]

Literature SFOC Curve (Base SFOC = 167 g/kWh)

—— Polynomial SFOC Model

SFOC (g/kwh)
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Figure 6. SFOC polynomial gathered from Jalke-
nen [24]].

E. Load profiles
Three representative load profiles were derived from
the operational dataset to capture distinct modes of
vessel activity:
* Voyage (two weeks) — steady main engine de-
mand with fluctuating auxiliary loads.
* Port operations — minimal main engine activity,
highly variable auxiliary loads.
* Loitering near port — negligible main engine
activity and light auxiliary use.
An example of one of the load profiles is provided
below. The two-week voyage is shown in Figure
It showcases a voyage of two weeks where a steady
main engine and constant fluctuating auxiliary power
are required.

Engine Load Profiles - Operation Duration: 336.0 hours
Main Engine Load Profile

Auxliary Engine Load Prof
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Figure 7. 2 week voyage load profile.

V. Results

This section presents the results of applying the DT-
aided design framework to reduce fuel consumption
and emissions by implementing the rule-based model.

A. Configuration emission comparison capabilities

When comparing the simulated results with the bench-
mark data, some interesting results can be found. This
section will explore the differences and similarities.

A benchmark is calculated using the SFOC polynomial
(Equation [f) from Section with the engine load
and SFOC data from the BDN. This benchmark is
compared to the emission calculated by the simulation;
the results of the load profile of a voyage of two weeks
can be seen in Table[I] The top entry is the benchmark,
which is the SFOC calculated in the same way as for
the configurations, but using the SFOC measured by
the sensors on the vessel.

Another comparison can be seen in Figure [§] In this
figure, the emission intensity is compared with the
benchmark. The big difference can be due to the
engines not performing at exactly the engine load that
they would be used to if they were operated.



. Main Engine No. of Aux. | Total Fuel | Total CO, | vs Benchmark
Configuration
Type Engines (tonnes) (tonnes) CO;, (%)

Benchmark Diesel 2-Stroke (Benchmark) | 3 641.51 2002.79 0

Config 1 Diesel 4-Stroke 2 506.2542 1576.476

Config 2 Diesel 4-Stroke 2 506.9777 1578.728

Config 71 Dual-fuel 2 679.4693 | 2020.433

Config 72 Dual-fuel 2 680.3307 | 2023.116

Config 121 Diesel 2-Stroke 2 832.0442 | 2590.985

Config 122 Diesel 2-Stroke 2 841.2629 | 2619.693

Config 231 Gas Turbine 2 1367.856 | 4380.188

Config 232 Gas Turbine 2 1368.674 | 4382.737

Table 1. Comparison of engine configurations with benchmark by CO, emissions and fuel consumption.
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The config numbers and what their type of configura-
tion is can be found in table [Tl

B. IMO’s CII Index

Using the IMO’s CII calculator, the CII of different
configurations can also be estimated. In Table 2] a
summary is given of the CII index ratings given to
the three best performing (lowest CO, emissions)
configurations in the different load profiles.

For port operations and the two-week voyage, the
ratings fall within a realistic and expected range. How-
ever, the loitering case shows a rating that is about
ten times worse. This can be explained by how the
CIl is calculated: it is designed to reflect performance
over a whole year of operations, not short outlier peri-
ods. To better reflect how the IMO’s ClI is typically
applied on an annual basis, the three configurations

were also simulated over 3 months instead of just the
shorter load profiles. This provides a more accurate
representation of their long-term performance. The
results are shown in Figure [0}

Deadweight Tonnage [tonnes] 1

Figure 9. CII analysis of the three best performing
configurations in each load profile during 3 months
of operations

The differences between results highlight one of the
key limitations of applying CII ratings to short-term
load profiles: results can shift significantly depending
on the time horizon used.

VI. Conclusion and discussion
This research set out to answer the question:

How can operational data be integrated
into a data-driven design framework to
support early-stage ship design?

The findings show that operational data can meaning-
fully strengthen early-stage ship design when struc-



Main Engine | Aux Engines | Total Emissions (tonnes) | CII Actual | CII Reference | CII Rating | vs Reference (%)
12V46 2x 9H21/32 | 1844.23 2.83927 2.32539 E 22.10%
2-Week voyage 9L46F 2x 8H32/40 | N/A 2427049 | 2.32539 N/A N/A
7S80MC6.2 | 2x 5L.21/31 3533.67 5.440236 | 2.32539 E 133.90%
12V46 2x 9H21/32 | 251.74 2.876299 | 2.32539 E 23.70%
Port Operations | 9L46F 2x 8H32/40 | 224.49 2.565006 | 2.32539 E 10.30%
7S80MC6.2 | 2x 5L.21/31 395.57 4.519735 | 2.32539 E 94.40%
12V46 2x 9H21/32 | 106.42 27.38339 | 2.32539 E 1077.60%
Loiter 9L46F 2x 8H32/40 | 102.93 26.48542 | 2.32539 E 1039.00%
7S80MC6.2 | 2x 5L.21/31 91.86 23.63785 | 2.32539 E 916.50%

Table 2. CII rating of the three best performing configurations for each load profile

tured within a Digital Twin (DT)-aided framework.
Traditional methods rely on generalized assumptions,
often missing the variability of real operations. By
contrast, embedding time-series operational data into
the framework allows for the evaluation of engine
configurations under realistic load profiles, capturing
both absolute fuel consumption and emissions.

The framework developed in this thesis combines op-
erational data, rule-based modeling, and verification
steps into a modular process. In a case study on engine
room configuration, the framework produced realistic
performance forecasts and enabled the comparison
of alternative configurations against both benchmarks
and regulatory metrics. While the optimized config-
urations reduced overall fuel use and emissions in
specific load profiles, they still highlighted trade-offs
such as higher emission intensity under certain con-
ditions. This demonstrates that operational data not
only confirms design choices but also reveals where
assumptions fall short, thereby supporting more robust
and transparent decision-making.

VII. Further research and outlook

First, the framework that is applied here is a digi-
tal model. Realizing a complete DT would require
bi-directional, real-time data exchange between the
virtual and physical systems. This would enable the
framework not only to inform early-stage design but
also to update predictions as operational data evolves
continuously.

Second, the case study focused on engine room config-
uration. Expanding the framework to include hybrid-
electric systems, alternative fuels, and spatial layout
considerations would broaden its applicability to holis-
tic ship design. Integration with lifecycle perspec-

tives—such as cost modeling, retrofitting strategies,
and fuel availability in different ports—would also
improve its practical relevance.

Ultimately, the scalability of the framework relies heav-
ily on the availability and quality of the data. Wider
adoption will require standardized, high-resolution
datasets across the industry, along with methods for
automated validation and error detection. Building
such shared knowledge repositories could significantly
accelerate data-driven design in the shipping industry.
Taken together, these developments suggest that DT-
aided frameworks have potential. As access to oper-
ational data improves, the approach presented here
could evolve into a fully integrated ecosystem, linking
design intent, operational performance, and sustain-
ability targets in a continuous loop.
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