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Abstract—Machine learning techniques have been used in the
past using Monte Carlo samples to construct predictors of the
dynamic stability of power systems. In this paper we move
beyond the task of prediction and propose a comprehensive
approach to use predictors, such as Decision Trees (DT), within a
standard optimization framework for pre- and post-fault control
purposes. In particular, we present a generalizable method for
embedding rules derived from DTs in an operation decision-
making model. We begin by pointing out the specific challenges
entailed when moving from a prediction to a control framework.
We proceed with introducing the solution strategy based on
generalized disjunctive programming (GDP) as well as a two-
step search method for identifying optimal hyper-parameters
for balancing cost and control accuracy. We showcase how
the proposed approach constructs security proxies that cover
multiple contingencies while facing high-dimensional uncertainty
with respect to operating conditions with the use of a case study
on the IEEE 39-bus system. The method is shown to achieve
efficient system control at a marginal increase in system price
compared to an oracle model.

Index Terms—Decision Tree, Disjunctive Rules, Power Systems
Operation, Stability

I. INTRODUCTION

The increasing uncertainty that surrounds system opera-
tion renders the adoption of probabilistic security assessment
frameworks a high priority for many Transmission System
Operators (TSOs) worldwide. In the past, large-scale Monte
Carlo techniques that involve the high-density sampling of
operating points and post-fault stability assessment via time-
domain simulations have been proposed (e.g., [1], [2], [3]).
Consequently, machine learning can be applied to the Monte
Carlo samples to build rules that predict post-fault stability
for unseen operating points. For this predictive task, most
researchers have adopted decision trees (DT) or DT ensembles.

Beyond prediction of post-fault stability, such sample-
derived rules can also be used as a control method to delineate
the system’s pre-fault stable operating region. By embedding
appropriate constraints in a TSO’s operation and scheduling
tools, post-fault stability can, in theory, be achieved. In gen-
eral, two different approaches can be used to infer suitable
control actions from sample-derived rules; a heuristic search
strategy and an optimization-based approach. In the heuristic
followed by [4], [5], when a post-fault unstable operating point
is encountered, the DT’s decision path of generator power
bounds is followed upwards from the terminal node to the
corresponding parent node. Subsequently, the generators are

redispatched according to the threshold of this parent node
to shift the operation to the child node encapsulating mostly
post-fault stable operating points. The second approach, fol-
lowed by e.g., [6], [7], solves an Optimal Power Flow (OPF)
problem for each terminal node encapsulating mostly post-
fault stable points, where the corresponding decision path has
been added in the form of inequality constraints. After solving
all constrained OPFs, the solution with minimal operating cost
is selected. Recently, the authors of [8] published a Security-
Constrained-OPF (SCOPF) based on data considering line flow
limits as features. A slightly different approach, but one that
still considers the complete decision path, is proposed in [9].
Post-fault stable generation re-dispatch is achieved by first
finding the most effective generators and second restricting
the assumed post-fault stable region with adapted bounds for
the generator powers.

In practice two challenges arise: (i) the online computation
of current control approaches using rules from Monte Carlo
samples entails a high computational burden, (ii) the very
nature of cost optimality drives system operation right on the
limiting rule [6], thus potentially leading to post-fault unstable
operation even in cases of DTs with very high prediction
accuracy.

Apart from describing the challenges of using sample-
derived rules in a control setting, the contributions of this paper
are twofold:

• Introducing the disjunctive formulation of the control
approach to reduce computational complexity

• Proposing a procedure to select parameters that improve
the accuracy of rules in a control setting.

A novel approach to embedding disjunctive rules for feasi-
ble operation is introduced to address the issue of computa-
tional complexity. In particular, the standard corrective oper-
ation problem can be extended using generalized disjunctive
programming (GDP) [10], resulting in a mixed integer linear
problem (MILP) for the DC case or a mixed integer nonlinear
problem (MINLP) in the AC case. Convex-hull and Big-M
reformulations are considered to account for the disjunction
of learned convex regions. The computational benefit of the
proposed approach results from the GDP formulation that
enables solvers to make use of branch–and–bound search to
efficiently identify the global optimum with respect to the
implemented rules instead of evaluating the disjunctive convex
regions one by one.
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Moreover, a two-step parameter search is proposed to ad-
dress the challenge of rule inaccuracy: k-fold cross validation
is used to balance under and overfitting and a safety margin
is computed to finally ensure rule accuracy for the complete
uncertainty spectrum.

The specific challenges and the elements of the approach
are illustrated using an IEEE 39 bus case study. In this paper,
a steady state DC analysis is used instead of time domain AC
simulations. This allows to compare the proposed approach
against a globally cost-optimal reference point (obtained by
the SCOPF solution) thus simplifying the reproducibility. The
case study is used to compare both, the computational benefits
and the cost-effectiveness.

The rest of the paper is structured as follows. In Section II,
the objective of the control purpose and two specific challenges
are illustrated. Subsequently, in Section III, the disjunctive
approach is introduced including the parameter search for
correcting the inaccuracy of disjunctive rules. The case study
is carried out in Section IV and Section V concludes the paper.

II. EMBEDDING RULES IN CONTROL
A. Objective

In broad terms, the objective is to build a control approach
to finding an acceptable and cost-optimal operating point of
the power system given the training data (X,Y ) containing
n samples (xi, yi), i = 1, . . . n of operating points, each
with p features xi ∈ Rp and a class label yi ∈ {0, 1},
where yi = 1 and yi = 0 corresponds to acceptable and
unacceptable operating points, respectively. X is assumed to
be generated randomly using a Monte Carlo sampling process
and is representative for expected operating conditions. The
binary class label acceptable/unacceptable can be obtained
from simulations and correspond to a user-specified stability
criterion.

The objective of this paper is to find rules from (X,Y ) in
the form of inequality constraints kxy(x, z) ≤ 0 limiting a
control approach to acceptable operations. These rules will be
embedded in the OPF optimization

min
x,z

f(x)

s.t. h̃(x) = 0

g̃(x) ≤ 0

kxy(x, z) ≤ 0,

(1)

where x contain all power system variables, such as generator
powers, line flows, phase angles and bus voltages and z are any
other auxiliary variables. f(x) comprise the system’s operation
cost, h(x) are the typical equality constraints, such as node
balances, line flow equations and g(x) are the inequality
constraints for physical limitations of the system. Note, the
tilde symbol ∼ is denoted to the operational uncertainty
surrounding the system (e.g., load injections can vary from
sample to sample). In the ACOPF case, variables and con-
straints for active and reactive power are considered, whereas
in the DCOPF case only constraints involving active power
must be considered. We would like to emphasize: it is not
the objective to provide a full control approach involving real
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Fig. 1: Learning DT rules for two faults using (a) two single DTs (one per
fault) resulting in total in four rules (blue lines) and (b) one global DT resulting
in one rule. Acceptable and unacceptable operating points are indicated in blue
and red.

post-fault stability assessments and an AC setting, rather to
obtain kxy(x, z) from (X,Y ) in an efficient and accurate
way with respect to the purpose of controlling the system.
Through this purpose and through the fact of straddling both
domains, mathematical optimization and machine learning,
specific challenges arise.

B. Challenges
Current methods to learn Monte Carlo sample-derived rules

for control purposes face two particular challenges, which do
not arise when using rules solely for prediction: the online
computational complexity and the inaccuracy of rules.

1) Computational complexity: Current prediction-oriented
approaches typically comprise an offline training part, where
a group of classifiers is trained on the data and an online
part, where the current operating point of interest is evaluated
using the pre-trained classifiers. Usually, one DT is trained
per fault since each fault can have specific characteristics (e.g.
individual critical features and individual nonlinear boundary).
The complexity to evaluate one operating point in one fault-
specific tree is O(n) where n is the maximal tree depth;
consequently, to evaluate against c potential faults involves
computations with O(c n). This computational overhead of
evaluating an operating point is negligible since it consists of
evaluating simple algebraic equations. In the online part (as
in e.g. [6], [7]), the computations are more costly since many
optimizations (one per terminal node t) have to be solved and
achieving close to real-time performance can pose substantial
challenges. In particular, when learning multiple trees (one tree
per fault c) and combining the rules across all trees (e.g. as in
[5]) results in high computational complexity with an expo-
nential growth O(tc) in the number optimizations to be solved.
E.g, the example in Fig. 1a involves two unacceptable faults in
terms of pre-fault operation state variables x1 and x2 and the
final acceptable feasible operating region (shaded blue area)
is the conjunction of the areas {(r1,r3),(r1,r4),(r2,r3),(r2,r4)};
this requires to solve four optimization problems, one for each
conjunction. In contrast, the computational complexity gets
reduced to O(t) optimizations when using one global tree for
overall acceptability. In the example, the four linear rules from
Fig. 1a are reduced to a single linear rule for the blue shaded
area in Fig. 1b and resulting in solving a single optimization.
A single global DT is also used in [1] and [7], [9]. It resulted in
a rough reduction of 80% in total number of terminal nodes



V1 V2

V3
V4

V5 V6

V7 V8

r1

r2

𝑥2
𝑈
𝑥2

𝑥1
𝑈𝑥1

𝐿
𝑥2
𝐿

𝑥1

Fig. 2: Candidate points at the vertices (shown in yellow) of the inequality
constraints.

to be considered in [1, p. 205]. Despite the computational
reduction to solve O(t) optimizations, this still represents a
significant computational burden for the online workflow.

2) Accuracy of rules for control: The goal of using rules
for control is to minimize the operating points obtained by
the control model and falsely classified as acceptable - let’s
call this control error. Without unnecessarily restricting the
operating region When learning a tree, the algorithm aims
to minimize the test error for the given training population
(X,Y ) by using e.g. the Gini impurity. However, it is very
unlikely that this test error equals the control error (as assumed
e.g. in [4]) since both metrics refer to radically different
populations. In fact, the operating points in the control problem
are the result of the optimization stated in Section II-A where
the rules are implemented as linear inequality constraints
kxy(x, z) ≤ 0. As such, these operating points are locally
concentrated in specific areas of the state-space since the
optimal point in a convex linear problem always lies on one
of the vertices of the feasible region or on the line segment
between two vertices if both are optimal (fundamental theorem
of linear programming). For instance, let us consider Fig. 2.
Even if the test error is low, e.g. for region r1 (enveloped by
vertices V1-V4) the test error is 7.7% (since 2 out of 26 points
are wrongly labelled by the rules as acceptable), the local error
for vertex V1 is at 100%.

To deal with this challenge, [4] proposed to heuristically
determine a new unit commitment without cost considerations
after the re-dispatched point is assessed as unacceptable. [8],
[9] proposed to address this issue in the DT learning process
by asymmetrically adjusting the weights of observations’ prior
probabilities resulting in a conservative shift of the rules
towards the acceptable region; this might lead to over or
underfitting the data (in particular DTs are known to need
tuning to avoid overfitting [11]). In fact, large factors (e.g.,
0.99 and 0.01 in [9] for unacceptable and acceptable classes
respectively) were used and no methodology for deriving this
numbers has been presented. As in [5], the challenge of rule
inaccuracy can also be addressed in the online work-flow by
incrementally scanning along a margin to the offline-learned
rule until an acceptable operating point is identified. This
online scan requires evaluating the label of the operating points
for all faults and would result in a prohibitively high compu-
tational burden for online control applications in the case of
considering post-fault stability as acceptability criterion.
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Fig. 3: (a) Schematic tree structure and (b) corresponding splits in the feature
space as blue lines. Acceptable and unacceptable regions/nodes are indicated
in dashed blue and light red, respectively.

III. DISJUNCTIVE APPROACH FOR CONTROL
A. Obtaining rules using machine learning

For binary classification, the CART learning algorithm [12]
successively splits the feature space in two half-spaces in each
iteration based on the training data (X,Y ). Considering a
univariate DT, let an ∈ {0, 1}p be the single-entry vector of
each branch node n corresponding to the split position in the
feature vector x ∈ Rp and bn ∈ R be the split threshold
of n. The example of Fig. 3 illustrates the splitting scheme
using p = 2. The algorithm starts by finding the first best
split aᵀn1 = (1, 0) for the initial branch node n1 with threshold
bn1. Consequently, the regions aᵀn1x ≤ bn1 and aᵀn1x > bn1
contain the unacceptable and acceptable classes, respectively.
The algorithm terminates in the region aᵀn1x > bn1 since the
purity criterion (e.g. gini impurity is less than a user-defined
threshold) is met leading to a terminal node t1. In contrast,
aᵀn1x ≤ bn1 is not pure enough thus the algorithm continues
in this branch to split in the same way until a stopping criterion
holds (e.g., limit of tree depth, pureness of nodes, etc.). In total,
this example tree has two branch nodes n1, n2, two acceptable
terminal nodes t1, t3 and one unacceptable terminal node n2
corresponding to the three regions in Fig. 3b.

To balance under- and overfitting, a hyper–parameter grid-
search is proposed by using an n-fold cross-validation learning
procedure (Fig. 4a). Many DTs (DT1 . . .DTn) are trained
through CART for many hyper-parameter combinations using
the given training population (X,Y ). These may include
the maximal tree depth, the minimal number of samples in
one terminal node, the terminal node’s Gini impurity and/or
a maximal number of terminal nodes. The best performing
DTbest is selected through out-of-sample testing by the use
of a user-specified criterion (e.g, typically the ’f1’ score or
alternatively the classical test error).

B. Accounting for disjunctive rules in the optimization
To reduce the online computations, the necessity of solving

multiple optimizations is avoided (e.g., [6], [7] solves one op-
timization for each terminal node encapsulating the acceptable
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Fig. 4: Procedure of (a) the offline and (b) the online part.

class). Here, the rules are accounted in a single optimization
as a disjunction. The mutually exclusive disjunction contains
one rule for each terminal node t ∈ TA of the acceptable
class. Each rule corresponds to all inequality constraints of
all branch nodes from the initial node to the terminal node.
Consequently, in the example in Fig. 3, two optimizations
that take into account either the rule aᵀn1x > bn1 for t1
or the rule aᵀn1x ≤ bn1 ∧ aᵀn2x > bn2 for t3 is replaced
by one optimization accounting for the disjunction (aᵀn1x >
bn1) ∨ (aᵀn1x ≤ bn1 ∧ a

ᵀ
n2x > bn2).

To reformulate disjunctions for optimizations, two different
approaches from GDP can be adopted involving binary vari-
ables. Whereas the so-called Big-M reformulation results in
fewer variables and constraints, the convex-hull reformulation
[13] results in a relaxed linear problem with a feasible region
at least as tight as the one from Big-M reformulation [10].
Since in this univariate DT case the disjunctions are all simple
and all variables are bounded, the Big-M formulation results
in the same tight relaxation. Let us define AL(t) as the set of
ancestor branch nodes whose left branch has been followed
on the path from initial node to the terminal node t. Similarly,
AR(t) is the set of right-branch ancestors. The sets of the
example of Fig. 3 would be AR(t1) = {n1}, AL(t1) = {},
AR(t3) = {n2} and AL(t3) = {n1}. The reformulation is
presented below:

aᵀnx ≤ bnzt + aᵀnM1(1− zt) ∀t ∈ TA, ∀n ∈ AL(t) (2a)
aᵀnx > bnzt + aᵀnM2(1− zt), ∀t ∈ TA, ∀n ∈ AR(t) (2b)

where zt ∈ {0, 1} is a binary optimization variable for all
terminal nodes encapsulating the acceptable class ∀t ∈ TA.
Further, the optimization is enforced to assign exactly one
accepted terminal node by∑

t∈TA

zt = 1. (3)

Since the use of a strict inequality in Equation (2b) is not
possible in mixed integer optimizations, we propose to add a
small value γ ∈ R>0 to change to a non-strict inequality:

aᵀnx ≥ bnzt+aᵀnM2(1−zt)+γ ∀t ∈ TA, ∀n ∈ AR(t). (4)
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Fig. 5: Rules for control purpose: original DT rules as blue lines and rules
with safety margin αl as yellow lines.

Note, γ ∈ R>0 should be selected in accordance with the
solver sensitivities since selecting it too small could cause
numerical instabilities in the solver. The vectors of big-M
constants M1 ∈ Rp and M2 ∈ Rp have to be selected smallest
as possible that the relaxed problem has a small feasible region
in order to speed-up computations. The smallest possible big-
M constants are obtained by

M1 = max{anbn + anx
L : n ∪

t∈TA

AL(t)} (5a)

M2 = min{anbn + anx
U : n ∪

t∈TA

AR(t)}, (5b)

where an = 1 − an is the negation of an, max and min
are element-wise comparison operators and all considered
variables were assumed to be bounded xL ≤ x ≤ xU .

The computational benefit of this formulation results from
the following: (i) only one model must be initialized, (ii)
only one pre-solve step is required, (iii) the solver can make
use of branch–and–bound search, (iv) the solver still can
further accommodate speed-up methods (e.g. decomposition
or batch methods). In addition, reduction in computation is
achieved by learning a single tree for global acceptability
instead of learning multiple fault–specific trees to reduce the
total number of terminal nodes.
C. Correction of control-oriented rules

To address the issue of rule accuracy in a control setting
(as discussed in Section II-B2), a safety margin αl is used to
shift the rule towards the acceptable region as illustrated in
Fig. 5. For increasing αl, the two regions r1 and r2 of the
figure are narrowed and therefore the adapted rules provide
more reliability since the edges lie further inside the acceptable
region. To account for the safety margins, the two inequality
constraints Equations (2a), (4) are adapted to
aᵀnx ≤ (bn − αl)zt + aᵀnM1(1−zt)

∀t ∈ TA, ∀n ∈ AL(t) (6a)
aᵀnx ≥ (bn + αl)zt + aᵀnM2(1−zt) + γ.

∀t ∈ TA ∀n ∈ AR(t) (6b)

The safety margin αl > 0 that guarantees acceptable operation
for the complete range of uncertainty is searched offline
(Fig. 4a). Hence, the critical computations of evaluating the
acceptability label of an operating point are shifted from online
(e.g., as in [5]) to offline. For this parameter search, L different
constrained optimization models ml with varying αl ∀l ∈ L
are initialized and each ml is assessed by the use of a set of
samples drawn from the distribution of uncertain operation.



TABLE I: Generator data of the IEEE 39 bus system.

g G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

pUg [MW] 1040 725 652 508 687 580 564 865 1100 4000
εg [$MWh−1] 30 24 26 32 34 42 44 46 48 35
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Fig. 6: IEEE 39 bus New England system.

For those samples, the dispatch decisions are computed by
solving all created ml. For each of the dispatch decisions
(samples × ml), the acceptability label is assessed. Finally,
the best mbest with the respective αl is selected by the TSO
in consideration of the minimization of total operating cost
(e.g., lost load and generation cost). Note, mbest is the only
model used in the online computations and the scale of the
search for mbest (and αbest) depends on the user’s experience
of the specific accuracy of the learning algorithm. In this paper,
an exhaustive search is used for the purpose of studying the
effects of αl in the case study.

IV. CASE STUDY

A. Test system and solution strategy
The objective of this study is to demonstrate the method-

ology presented in this paper. The focus laid on the relevant
aspects corresponding to the challenges caused by striving both
domains, machine learning and mathematical optimization.
Consequently, a DC power flow approximation were used and
an operating point was considered to be acceptable if no post-
fault loss of load occurs following any of the possible faults,
while the list of faults analyzed included all N−1 line outages
(similar assumptions have been made by several authors e.g.
[6]). These assumptions allowed a comparison with a reference
solution (a global cost minimum among acceptable points)
obtained using a direct solution of the SCOPF problem.

The IEEE 39 bus system was used in this case study. The
network connectivity is shown in Fig. 6 and data such as
nominal loads and line reactances were taken from [14]. The
system was modified in some aspects: to ensure the feasibility
of N-1 secure solutions for the complete uncertainty spectrum,
all generators allowed for post-fault corrective redispatches of
±100MW and all line flow limits were set to 2000MW.

To generate a training set, operational uncertainty was
considered in all loads with a deviation of ±25% from the
nominal loads. Load samples were generated from a multivari-
ate Gaussian distribution with Pearson’s correlation coefficient
of 0.75 between each load pair. The inverse transformation

method was used to convert sampled values to a marginal Ku-
maraswamy distribution with the probability density function

f(x) = abxa−1 (1− xa)b−1 ,

where a = 1.6, b = 2.8 and x ∈ [0, 1]. Finally, the
sampled values were scaled to the desired range of load
variation. The generator power levels were randomly sampled
from an uncorrelated uniform distribution within their specific
operating range (lower bound was pLg = 0 for all generators g
and upper bounds pUg are shown in Table I). Since no power
losses were assumed, the total power of loads must equal the
total power generation. Any mismatch was distributed over
all generators (positive as negative) by weighting based on
the capacity of the generators pUg . All samples that led to a
physical inconsistency were disregarded.

In the hyper–parameter grid-search under- and overfitting
were balanced for the DT (Fig. 4) via 5-fold cross validation.
500000 samples were used in the training set and the 65
features consisted of all generator, loads and line flow power
levels. Each indivual DT for the global acceptability was
learned using the CART algorithm [12] (as implemented in the
package scikit-klearn 0.18.1 [15] with Python 3.5.2). The best
split was selected successively based on minimizing the Gini
impurity and the selected non–default settings were to balance
different population sizes in two classes and the parameters
involved in the hyper–parameter grid-search: the maximal DT
depth [5, 6, · · · 20] and the maximal number of terminal nodes
[20, 40, · · · 100, 200, · · · 500]. The best DTbest was selected
using the ’f1’ score; the optimal parameters found were a
maximal tree depth of 14 and a maximal number of terminal
nodes of 200. The final resulting classifier had 82 acceptable
and 118 unacceptable terminal nodes.

The safety margin αl was searched to balance acceptability
and cost (Fig. 4). Here, an exhaustive search was undertaken
by varying the safety margin in αl ∈ [0, 60MW] with a step-
size of 1MW to study its effect and resulted in L = 61
models modell for l = 0, 1 . . . 60. Note, this search scale is
not required in a realistic control scenario. To convert the strict
inequality Equation (2b) into a non-strict inequality Equation
(4), γ = 0.001 has been used. In each model the objective
function to be minimized was the linear cost function of power
generation, where εg in Table I were the cost coefficients.
Apart from the disjunctive constraints, the objective function
was subject to all node balances and line flow constraints of the
DC approximation. For this second offline parameter search,
100 operating points were sampled from the correlated load
distribution and for all 60 models, 100 MILPs (in total 6000)
were solved to compute the output of the control approach
(dispatch decisions). Finally, the true label was evaluated based
on the dispatch decisions. All MILPs were implemented using
Pyomo 5.1.1 [16] and Gurobi 7.02 [17] was used as a solver.
B. Computational complexity

For the online computational complexity, the computation
time of solving one single MILP with the proposed disjunctive
approach was on average 26% lower than to solve all 82 LPs
with separate constraints from the terminal nodes. The main



computational benefit results from training the safety margin
α offline and avoiding the online computation of the labels
(e.g., with dynamic simulations as in [5]).

C. Rule accuracy
For the rule accuracy, Fig. 7 shows the mismatch of control

error and the test error based on the training population. For
instance for α1 = 0, the average test error was ≤ 0.02%,
thus the DT was almost perfect as predictor. However, when
the rules are used for control, the actual average control error
was ≥ 70%. The figure also shows the ability of the proposed
method to reach 100% operating points corresponding to the
acceptable class by increasing α. Specifically, by adding α ≥
48MW to the rule, acceptable operation could be guaranteed
for correlated ±25% uncertainty in all loads.

D. Cost-effectiveness
For all 100 samples, the cost of the proposed sample-

derived disjunctive approach was compared against the SCOPF
solution. The average relative cost difference (in blue) is
presented in Fig. 7. Note that only operating points that lead
to an acceptable solution are used for this comparison. It
can be seen that the economic cost difference to the SCOPF
solution was generally small (relative difference is ≤ 0.003%
for α0 = 0MW and roughly 1% for α = 48MW). This was
because all cost coefficients are in a very narrow range (Table
I). The discontinuous jump around α = 23MW resulted from
a particular cost-effective terminal node that was excluded
for α ≥ 23MW. For α = 48, where the operator could
guarantee acceptable operation under all potential faults for the
complete uncertainty spectrum, the average Euclidean distance
of the generator powers to the SCOPF dispatch solution was
229MW that was 3.8% of the average total power.

V. CONCLUSION

We presented the specific challenges when sample-derived
rules are embedded in optimal decision–making for control of
a power system. Particularly challenging are the computational
performance and accuracy of rules. We have introduced a
novel disjunctive approach to deal with the computational
challenge and a grid search strategy using a safety margin
to deal with the computational challenge and the inaccuracy
of rules. We studied the challenges and the solution strategies
by using the IEEE 39 bus network. The proposed disjunctive
approach is able to secure system’s dispatch decision against a
user-specified (stability-) criterion for a wide range of opera-
tional uncertainty. In a steady-state comparison, the approach
resulted in 1% higher costs than an oracle model and the
online-computational cost is low since online simulations are
avoided. Moreover, the proposed sample-derived disjunctive
approach provides a framework capable of accommodating
a wide variety of linear and ensemble classifiers. In future
works, the implementation of ensembles could be studied and
reduction in operational and online computational cost could
be achieved by learning safety margins individually for the
terminal nodes instead of a generalized margin. Further offline
computations could be reduced by using importance sampling
techniques.
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Fig. 7: Exhaustive search to study the safety margin α. The DT average test
error and the average control error are shown as a red dashed and a green
dotted line, respectively. The average relative cost difference to the SCOPF
solution and the 10th and 90th percentiles are shown in blue.
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