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Article

Persistent self-supervised learning:
From stereo to monocular vision for
obstacle avoidance

Kevin van Hecke1, Guido de Croon1, Laurens van der Maaten2,
Daniel Hennes3 and Dario Izzo3

Abstract

Self-supervised learning is a reliable learning mechanism in which a robot uses an original, trusted sensor cue for training

to recognize an additional, complementary sensor cue. We study for the first time in self-supervised learning how a

robot’s learning behavior should be organized, so that the robot can keep performing its task in the case that the original

cue becomes unavailable. We study this persistent form of self-supervised learning in the context of a flying robot that

has to avoid obstacles based on distance estimates from the visual cue of stereo vision. Over time it will learn to also

estimate distances based on monocular appearance cues. A strategy is introduced that has the robot switch from flight

based on stereo to flight based on monocular vision, with stereo vision purely used as “training wheels” to avoid

imminent collisions. This strategy is shown to be an effective approach to the “feedback-induced data bias” problem as

also experienced in learning from demonstration. Both simulations and real-world experiments with a stereo vision

equipped ARDrone2 show the feasibility of this approach, with the robot successfully using monocular vision to avoid

obstacles in a 5� 5 m room. The experiments show the potential of persistent self-supervised learning as a robust

learning approach to enhance the capabilities of robots. Moreover, the abundant training data coming from the own

sensors allow to gather large data sets necessary for deep learning approaches.
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Introduction

It is generally acknowledged that robots operating in

the real world benefit greatly from learning mecha-

nisms. Learning allows robots to adapt to environ-

ments or circumstances not specifically foreseen at

design time. However, the outcome of learning and

its influence on the learning robot’s behavior can by

definition not be predicted completely. This is a

major reason for the delay in introducing successful

learning methods such as Reinforcement Learning

(RL) in the real world. For instance, with RL it is a

major challenge to ensure an exploratory behavior that

is safe for both the robot and its environment.1

Learning from demonstration (LfD) can in this

respect be regarded as more reliable. However, in the

case of a mobile robot, LfD faces a “feedback-induced

data bias” problem.2,3 If the robot executes its trained

policy on real sensory inputs, its actions will be slightly
different from the expert’s. As a result, the trajectory of
the robot will be different to when the human expert
was in control, leading to a test data distribution that is
different from the training distribution. This difference
worsens the performance of the learned policy, further
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increasing the discrepancy between the data distribu-
tions. The solution proposed in Ross et al.2,3 is to have
the human expert provide novel training data for the
sensory inputs experienced by the robot when being in
control itself. This leads to an iterative process that
requires quite a time investment of the human expert.

There is a relatively new learning mechanism for
robots that combines reliability with the advantage of
not needing any human supervision. Self-supervised
learning (SSL) does not learn a control policy as
LfD and RL, but rather focuses on improving the sen-
sory inputs used in control. Specifically, in SSL, the
robot uses the outputs of an original, trusted sensor
cue to learn recognizing an additional, complementary
sensor cue. The reliability comes from the fact that the
robot has access to the trusted cue during the entire
learning process, ensuring a baseline performance of
the system.

Until now, the purpose of SSL has mostly been the
exploitation of the complementarity between the sensor
cues. To illustrate, perhaps the most well-known exam-
ple is the use of SSL on Stanley, the car that won the
grand DARPA challenge.4 Stanley used a laser scanner
to detect the road ahead. The range of the laser scanner
was rather limited, which placed a considerable restric-
tion on the robot’s driving speed. SSL was used in
order to extend the road detection beyond the range
of the laser scanner. In particular, the laser scanner-
based road classifications were used to train a color
model of drivable terrain in the images from a
camera. This color model was then applied to image
regions not covered by the laser scanner. These image
regions higher up in the image allowed to detect the
road further away. The use of SSL permitted Stanley
to speed up considerably and was an important factor
in winning the competition.

A characterizing feature of many of the earlier SSL
studies,4–10 is that the complementary cue is always
used in combination with the original sensor cue.
More recent studies aim to replace the function of the
original cue with that of the complementary cue.11–14

For instance, in Baleia et al.,11 the sense of touch is
used to teach a vision process how to recognize travers-
able paths through vegetation with the goal of gradu-
ally reducing time-intensive haptic interaction. Hence,
the learning of recognizing the complementary cue will
have to persist in time. However, the consequences of
this persistent form of SSL on the robot’s behavior
when acting on the complementary cue have not been
addressed in the above-mentioned studies.

The main contribution of this article is that we per-
form an in-depth study of the behavioral aspects of
persistent SSL. We do so in the context of a scenario
in which the robot should keep performing its task even
when the supervisory cue becomes completely

unavailable. Importantly, when the robot relies only
on the complementary cue, it will encounter the
feedback-induced data bias problem known from
LfD. We suggest a novel behavior strategy during
learning to handle this problem in persistent SSL.
Specifically, we study a flying robot with a stereo
vision system that has to avoid obstacles in a global
positioning system (GPS)-denied environment. The
robot uses SSL to learn a mapping from monocular
appearance cues to stereo-based distance estimates.
We have chosen this context because it is relevant for
any stereo-based robot that needs to be robust to a
permanent failure of one of its cameras. In computer
vision, monocular distance estimation is also studied.
There, the main challenges are the gathering of suffi-
cient data (e.g., for deep neural networks) and the gen-
eralization of the learned distance estimation to an
unforeseen operation environment. Both of these chal-
lenges are addressed to some extent by SSL, as learning
data are abundant and the robot learns in the environ-
ment in which it operates. We regard SSL as an impor-
tant supplement to machine learning for robots.
Therefore, we end the study with a discussion on the
position of (persistent) SSL in the broader context of
robot and machine learning, comparing it among
others with RL, LfD, and supervised learning.

The remainder of the article is set up as follows.
First, we discuss related work. Then, we more formally
introduce persistent SSL and explain our implementa-
tion for the stereo-to-mono learning. We analyze the
similarity of the specific SSL case studied in this article
with LfD approaches. Subsequently, we perform offline
vision experiments in order to assess the performance
of various parameter settings. Thereafter, we compare
various learning strategies in simulation. The best
learning strategy is implemented for experiments with
a Parrot ARDrone2, and the results of these robotic
experiments are analyzed. Finally, the broader implica-
tions of the findings on persistent SSL are discussed,
and conclusions are drawn.

Related work

We study persistent SSL in the context of a stereo-
vision equipped robot that has to learn to navigate
with a single camera. In this section, we discuss the
state-of-the-art in the most relevant areas to the
study: monocular navigation and SSL.

Monocular navigation

The large majority of monocular navigation
approaches focuses on motion cues. The optical flow
of world points allows for the detection of obstacles15

or even the extraction of structure from motion, as in
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monocular simultaneous localization and mapping

(SLAM).16 The main issue of using monocular

motion cues for navigation is that optical flow only

conveys information on the ratio between distance

and the camera’s velocity. Additional information is

necessary for retrieving distance. This information is

typically provided by additional sensors,16 but can

also be retrieved by performing specific optical flow

maneuvers.17,18

In contrast, it is well known that the appearance of

objects in a single, still image does contain distance

information. Successfully estimating distances in a

single image allows robots to evaluate distances with-

out having to move. In addition, many appearance

extraction and evaluation methods are computationally

efficient. Both these factors can aid the robot in the

making of quick navigation decisions. Below, we give

an overview of work in the area of monocular

appearance-based distance estimation and navigation.

Appearance-based navigation without distance estimation.

There are some appearance-based navigation methods

that do not involve an explicit distance estimate. For

instance, in de Croon et al.,19 an appearance variation

cue is used to detect the proximity to obstacles, which is

shown to be successful at complementing optical flow-

based time-to-contact estimates. A threshold is set that

makes the flying robot turn if the variation drops too

much, which will lead to turns at different distances.
An alternative approach is to directly learn the map-

ping from visual inputs to control actions. In order to

fly a quad rotor through a forest, Ross et al.3 use a

variant of LfD20 to acquire training data on avoiding

trees in a forest. First a human pilot controls the drone,

creating a training data set of sensory inputs and

desired actions. Subsequently, a control policy is

trained to mimic the pilot’s commands as good as pos-

sible. This control policy is then implemented on the

drone.
A major problem of this approach is the feedback-

induced data bias: A robot has a feedback loop of

actions and sensory inputs, so its control policy deter-

mines the distribution of world states that it encounters

(with corresponding sensory inputs and optimal

actions). Small deviations between the trained control-

ler and the human may bring the robot in unknown

states for which it has received no training. Its control

policy may generalize badly to such situations. The

solution proposed in Ross et al.3 is a transitional

model called DAgger,2 in which actions from the

expert are mixed with actions from the trained control-

ler. In the real-world experiments in Ross et al.,3 sev-

eral iterations have been performed in which the robot

flies with the trained controller, and the captured

videos are labeled offline by a human. This approach
requires skilled pilots and significant human effort.

Many current studies focus on using deep RL21 to
learn a mapping from images to actions. One of the
most successful current attempts is the work in
Sadeghi and Levine,22 which learns a deep neural net-
work completely in simulation and then ports the net-
work to a real robot in a yet unseen environment. The
trained network performs quite admirably in the real
environment. Key to the success of learning is to ensure
a large variety of textures, lighting, and obstacle
arrangements in simulation. Of course, if the real envi-
ronment is still very different from the training envi-
ronments, performance can degrade considerably.

Offline monocular distance learning. Humans are able to
see distances in a single still image, and there is a grow-
ing body of work in computer vision utilizing machine
learning to do the same. Interest in single image depth
estimation was sparked by work from Hoiem et al.23

and Saxena et al.24,25 Hoiem’s automatic photo pop-up
tries to group parts of the image into segments that can
be popped up at different depths. Saxena’s Make-3D
uses a Markov random field (MRF) approach to clas-
sify a depth per image patch on different scales. These
studies focus on creating a dense depth map with a
machine learning computer vision approach. Both
methods use supervised learning on a large training
data set. Some work was done on adopting variants
of Saxena’s MRF work for driving rovers and even
for MAVs. Lenz et al.26 proposed a solution based
on a MRF to detect obstacles on board an MAV,
but it does not infer how far the objects are. Instead,
it is trained offline to recognize three different obstacle
class types. Any different objects could hence lead to
navigation problems.

Recently, again focusing on creating a dense depth
map from a single image, Eigen et al.27 propose a multi-
scale deep neural network approach trained on the
KITTI data set, making it more resilient for practical
robot data. Training deep neural networks require a
large data set, which is often obtained by deforming
training data or by artificially generating training
data. Michels et al.28 use artificial data to learn recog-
nizing obstacles on a rover, but in order to generalize
well it requires the use of a very realistic simulator. In
addition, the same work reports significant improve-
ment if the artificial data are augmented with labeled
real-world data.

Other groups acquire training data for supervised
learning by having another separate robot or system
acquire data. This data are then processed and learned
offline, after which the learned algorithm is deployed
on the target robot. Dey et al.29 use an RC car with a
stereo vision setup to acquire data from an
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environment, apply machine learning on this data off-
line, and navigate a similar but unseen environment
with an MAV based on the trained algorithm.
Creating and operating a secondary system designed
to acquire training data, however, is no free lunch.
Moreover, it introduces inconvenient biases in the
training data, because an RC car will not behave in a
similar way both in terms of dynamics, camera view-
point, and the path chosen through the environment.

None of the above methods have the robot gather
the data and learn while in operation.

Self-supervised learning

The idea of SSL has been around since the late 1990s,30

but the successful application of it to terrain classifica-
tion on the autonomously driving car Stanley31 dem-
onstrated its first major practical use. A similar
approach was taken by Hadsell et al.,9 but now using
a stereo vision system instead of a LIDAR system, and
complex convolutional filters instead of simple and
fixed color-based features. These approaches largely
forgo the need for manually labeled data as they are
designed to work in unseen environments.

In most studies on SSL for terrain classification, the
ground truth is always used during operation. In con-
trast, two very recent studies have as goal that the
robot takes some decisions based on the complementa-
ry sensor cue alone. Since the complementary cue then
has to persist in the absence of the original cue, this
form of SSL can be termed “persistent SSL.” Baleia
et al.11 study a rover with a haptic antenna sensor. In
their application of terrain mapping, they try to map
monocular cues to obstacles based on earlier events of
encountering similar situations that resulted in either a
hard obstacle, a traversable obstacle, or a clear path.
The monocular information is used in a path-planning
task, requiring a cost function for either exploring
unknown potential obstacles or driving through a ter-
rain on the current available information. Since check-
ing whether a potential obstacle is traversable is costly
(the rover needs to travel there in order for the antenna
to provide ground truth on that), the robot learns to
classify the terrain ahead with vision. On each sample
an analysis is performed to determine whether the
vision-based classifier is sufficiently confident: it either
decides the terrain is traversable, not traversable, or
unsure. In the unsure case, the sample is sensed using
the antenna. Gradually this will become necessary less
often, thus learning to navigate using its Kinect sensor
alone. In Ho et al.,12 a flying robot first uses optical
flow to select a landing site that is flat and free of
obstacles. In order for this to work, the robot has to
move sufficiently with respect to the objects on the
landing site. While flying, the robot uses SSL to learn

a regression function that maps an (appearance-based)
texton distribution to the values coming from the opti-
cal flow process. The learned function extends the
capabilities of the robot, as after learning it is also
able to select landing sites without moving (from
hover). The article shows that if the robot is uncertain
on its appearance-based estimates, it can switch back to
the original optical flow-based cue.

The main contribution of this article is that we focus
on the behavioral aspects of persistent SSL. We study
how to best set up the behavior during the learning
process, so that the robot will be able to keep perform-
ing its task when the original sensor cue becomes
completely unavailable. Furthermore, we use stereo
vision as the trusted, original cue, something which
has not been done before in SSL. Concerning a com-
parison with the largest body of work on SSL that
deals with terrain traversability classification, learning
depth estimates directly is likely more complex. To
illustrate, the robot would not only have to recognize
sand, but it also has to make the difference between
sand at 1-m distance and at 3-m distance. As men-
tioned above though, successful algorithms exist even
to estimate complete dense depth maps from single
images. In this article, since the emphasis is on behav-
ior, we will deal with simplified environments and the
estimation is restricted to the average depth in the field
of view of the camera.

Methodology overview

In this section, we describe the persistent SSL learning
mechanism and describe our implementation of this
mechanism for our specific proof of concept case, mon-
ocular depth estimation in flying robots. Note that since
our interest is in the behavioral aspects of persistent SSL,
it is most important that the robot flies and learns in real
time. Moreover, for the applicability to small flying
robots, it is important that the processing for such SSL
can be performed onboard, even considering the signifi-
cant restrictions in onboard processing. The focus here is
not yet on dealing with complex environments or on the
accomplishment of missions like exploration or naviga-
tion. In this study, we investigate a very simple environ-
ment and obstacle avoidance behavior. We end this
section with a description of the three learning behaviors
that we compare with each other.

Persistent SSL principle

The persistent SSL principle is schematically depicted
in Figure 1. In persistent SSL, an original, pre-wired
sensory cue provides supervised outputs to a learning
process that takes a different, complementary sensory
cue as input. The goal is to be able to replace the
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pre-wired cue if necessary. When considering the

system as a whole, learning with persistent SSL can

be considered as unsupervised; it requires no manual

labeling or pre-training before deployment in the field.

Internally it uses a supervised learning method that in

fact needs ground truth labels to learn. This ground

truth is, however, assumed to be provided online and

autonomously without human or outside interference.
In the schematic, the input variable x represents the

sensory inputs available on board. The variables xg and

xf are possibly overlapping subsets of these sensory

inputs. In particular, function gðxgÞ extracts a trusted

ground truth sensory cue from the sensory inputs xg. In

classical systems, gðxgÞ provides the required function-

ality on its own:

g : xg ! y; xg � x (1)

The function fðxfÞ is learned with a supervised learn-

ing algorithm in order to approximate gðxgÞ based

on xf:

f : xf ! by; f 2 F; xf � x (2)

bf ¼ argmin
f2F

E lðfðxfÞ; gðxgÞÞ
� � (3)

where lðfðxfÞ; gðxgÞÞ is a suitable loss function that is to

be minimized. The system can either choose or be

forced to switch h, so that k is either set to gðxgÞ orbfðxfÞ for use in control. Future work may also include

fusing the two, but in this article, we focus on using the

complementary cue in a stand-alone fashion. It must be

noted that while both xg � x and xf � x, in general it

may be that xf does not contain all necessary informa-

tion to predict y. In addition, even if xg¼ xf, it is pos-

sible that F does not contain a function f that perfectly

models g. The information in xf and the function space

F may not allow for a perfect estimate of gðxgÞ. On the

other hand, there may be an fðxfÞ that handles certain
situations better than gðxgÞ (think of landing site selec-

tion from hover, as in Ho et al.12). In any case, funda-

mental differences between gðxgÞ and bfðxfÞ are to be

expected, which may significantly influence the

behavior when switching h. Handling these differences

is of central interest in this article.

Stereo-to-mono proof of concept

Figure 2 presents a block diagram of the proposed

proof of concept system in order to visualize how the

persistent SSL method is employed in our application:

estimating monocular depth with a flying robot. Input

is provided by a stereo vision camera, with either the

left or right camera image routed to the monocular

estimator. We use a Visual Bag of Words (VBoW)

method for this estimator. The ground truth for persis-

tent SSL in this context is provided by the output of a

stereo vision algorithm. In this case, the average value

of the disparity map is used, both for training the mon-

ocular estimator and as an input to the switch h. Based
on the switch, the system either delivers the monocular

or the stereo vision average disparity to the behavior

controller.

Stereo vision processing

The stereo camera delivers a synchronized gray-scale

stereo-pair image per time sample. A stereo vision algo-

rithm first computes a disparity map, but often this is a

far from perfect process. Especially in the context of an

MAV’s size, weight and computational constraints,

errors caused by imperfect stereo calibration, resolu-

tion limits, etc. can cause large pixel errors in the

results. Moreover, learning to estimate a dense dispar-

ity map, even when this is based on a high quality and

consistent data set, is already very challenging. Since

we use the stereo result as ground truth for learning, we

minimize the error by averaging the disparity map to a

single scalar. A single scalar is much easier to learn

than a full depth map and has been demonstrated

to provide elementary obstacle avoidance

capability.28,32,33

The disparity k relates to the depth d of the input

image:

d / 1

k
(4)

Using averaged disparity instead of averaged depth

fits the obstacle avoidance application better, because

small but close by objects are emphasized due to the

nonlinear relation of equation (4). However, linear

learning methods may have difficulty mapping this

relation. In our final design, we thus choose to learn

the disparity with a nonparametric approach, which is

resilient to nonlinearities.

Input x Error Output l

Estimate ŷ

g (xg)

f̂  (xf)

q

Groundtruth y

Figure 1. The persistent self-supervised learning principle.
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Monocular disparity estimation

The monocular disparity estimator forms a function
from the image’s pixel values to the average disparity
in the image. Since the main goal of the article is to
study SSL on board a drone in real time, efficiency of
both the learning and execution of this function is
very important. Hence, we converged to a computa-
tionally extremely efficient VBoW approach for the
robotic experiments. We have also explored a deep
neural network approach, but the hardware and
time available for learning did not allow for having
the deep neural learning on board the drone at this
stage.

The VBoW method uses small image patches of
w� h pixels, as successfully introduced in Varma and
Zisserman34 for a complex texture classification prob-
lem. First, a dictionary is created by clustering the
image patches with Kohonen clustering (as in De
Croon et al.33). The n cluster centroids are called
“textons.” In this work, two types of textons are
used: normal intensity textons and gradient textons
obtained similarly but based upon the gradient of the
images. Gradient textures have been shown in Wu
et al.35 to be an important depth cue. An example dic-
tionary of each is depicted in Figure 3. Gradient

textons are shown with a color range (from blue¼ low,

to red¼high). The intensity textons in Figure 3 are

based on grayscale intensity pixel values.
When an image is received, m patches are extracted

from the W�H pixel image. Each patch is compared

to the dictionary by means of a distance function, in

order to form a texton occurrence histogram for the

image; the texton bin with the smallest Euclidean dis-

tance to a given patch is increased by 1. The histogram

is normalized to sum to 1. Then, each normalized his-

togram is supplemented with its Shannon entropy,

resulting in a feature vector of size nþ 1. The idea

behind adding the entropy is that the variation of tex-

tures in an image decreases when the camera gets closer

to obstacles.33 To illustrate the change in texton histo-

grams when approaching an obstacle, a time series of

texton histograms can be seen in Figure 4. Note how

the entropy of the distribution indeed decreases over

time, and that especially the fourth bin is much higher

when close to the poster on the wall. A machine learn-

ing algorithm will have to learn to notice such relation-

ships itself for the robot’s environment, by learning a

mapping from the feature vector to a disparity scalar.

We have investigated different function representations

and learning methods to this end.

Monocular
es�mator

Stereo 
processing

Switch

Behavior 
rou�nes

Robot 
controller

Average 
disparity

Average disparity 
es�mate

Safety 
overide

Control  signal

Filter

PSSL
Camera

Le�

Camera
Right

Other
sensors

Figure 2. System overview. See the text for details.

Figure 3. The texton library used in the experiments. The right set of textons is based on pixel intensities, the left set contains
(artificially colored) gradient textons (i.e., textons based on gradient images).
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Control behavior

The proposed system uses a straightforward behavior

heuristic to explore, navigate, and persistently learn a

room. The heuristic is depicted as a finite state machine

(FSM) in Figure 5. The FSM detects obstacles by

means of a threshold t applied to the average disparity

k. In state 0, the robot flies in the direction of the

camera’s principal axis. When an obstacle is detected

(k > t), the robot stops and goes to state 1 in which it

randomly chooses a new direction for the principal

axis. It immediately passes to state 2 in which the

robot rotates toward the new direction, reducing the

error e between the principal axis’ current and desired

direction. If in the new direction obstacles are far

enough away (k � t), the robot starts flying forward

again (state 0). Else, the robot continues to turn in the

same direction as before (clockwise or counter clock-

wise) until k � t. When this is the case, it starts flying

straight again (state 0). Choosing this rather straight-

forward behavior heuristic enables autonomous explo-

ration based on only one scalar obtained from a

distance sensor.

Performance

The average disparity k, coming either from stereo

vision or from the monocular distance estimation

Figure 4. Approaching a poster on the wall. Left: monocular input. Middle: overlaid textons annotated with the color used in the
histogram. Right: texton distribution histogram with the corresponding texton shown beneath it.
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function fðxfÞ, is thresholded for determining whether
to turn. This leads to a binary classification problem,
where all samples for which k > t are considered as
“positive” (c¼ 1) and all samples for which k � t are
considered as “negative” (c¼ 0). Hence, the quality ofbfðxfÞ can be characterized by a receiver operating char-
acteristic (ROC) curve. The ground truth for the ROC
curve is determined by the stereo vision. This means
that a true positive ratio (TPR) of 1 and false positive
ratio (FPR) of 0 lead to the same obstacle detection
performance as with the stereo vision system.
Generally, of course, this performance will not be
reached, and the robot has to determine what threshold
to set for a sufficiently high TPR and low FPR.

This leads to the question how to determine what a
“sufficient” TPR/FPR is. We evaluate this matter in
the context of the robot’s obstacle avoidance task. In
particular, we first look at the probability of a collision
with a given TPR and then at the probability of a
spurious turn with a given FPR.

In order to model the probability of a collision, con-
sider a constant velocity approach with input samples
(images) hx1; x2; . . . ; xni of n samples long, ending at an
obstacle. A minimum of u samples before actual
impact, an obstacle must be detected by at least one
TP or a FP in order to prevent a collision. Since the
range of samples hxðn�uþ1Þ; xðn�uþ2Þ; . . . ; xni does not
matter for the outcome, we redefine the approach
range to be hx1; x2; . . . ; xðn�uÞi. Consider that for each
sample xi holds:

1 ¼ pðTPjxiÞ þ pðFPjxiÞ þ pðTNjxiÞ þ pðFNjxiÞ;
(5)

since pðFNjxiÞ ¼ pðTPjxiÞ ¼ 0 if xi is a negative and
pðTNjxiÞ ¼ pðFPjxiÞ ¼ 0 if xi is a positive. Let us first

assume independent, identically distributed (i.i.d.) data.
Then, the probability of a collision pc can be written as:

pc ¼
Yn�u

i¼1

ðpðFNjxiÞ þ pðTNjxiÞÞ

¼
Yq
i¼1

pðTNjxiÞ
Yn�u

i¼qþ1

pðFNjxiÞ;
(6)

where q is a time step separating two phases in the
approach. In the first phase all xi are negative, so that
any false positive will lead to a turn, preventing the col-
lision. Only if all negative samples are correctly classified
as negatives (true negatives), will the robot enter the
second phase in which all xi are positive. Then only a
complete sequence of false negatives will lead to a colli-
sion, since any true positive will lead to a timely turn.

We can use equation (6) to choose an acceptable
TPR ¼ 1� FNR. Assuming a constant velocity and
frame rate, it gives us the probability of a collision.
For instance, let us assume that the robot flies forward
at 0.50 m/s with a frame rate of 30 Hz. To avoid colli-
sions, it has a minimal required detection distance of
1.0 m, while “positives” are defined to be closer than
1.5 m. This leads to 0.5 m of flight during which the
robot can detect an oncoming collision, corresponding
to s¼ 30 samples that all have to be classified as (false)
negatives for a collision to occur. In the case of i.i.d.
data, if we think a probability pc � 10�6 is acceptable,
then the desired TPR � 1� 2ðlog2ð10�6Þ=30Þ�0:369.

The analysis of the effect of false positives is
straightforward, as it can be expressed in the number
of spurious turns per second or, equivalently if assum-
ing a constant velocity, per meter traveled. With the
same scenario as above, an FPR¼ 0.05 will on average
lead to three spurious turns per traveled meter, which is
unacceptably high. An FPR¼ 0.0017 will approximate-
ly lead to 1 spurious turn per 10 m.

The above analysis seems to indicate that quite
many false negatives are acceptable, while there can
only be very few false positives. However, there are
two complicating factors. The first factor is that equa-
tion (6) only holds when X can be assumed i.i.d., which
is unlikely due to the nature of the consecutive samples
of an approach toward an obstacle. Some reasoning
about the nature of the dependence is, however, possi-
ble. Assuming a strong correlation between consecutive
samples results in a higher probability of xi being clas-
sified the same as xðiþ1Þ. In other words, if a sample in
the range hx1::xmi is an FN, the chance increases that
more samples are FNs. Hence, the expected dependen-
cies significantly impact performance of the system
making equation (6a) best case scenario for FNs and
a worst case scenario for FPs.

0:       Straight ahead

1:  Pick random direc�on

≤ t

2:              Rotate

≤ t & e ≤ te

e > te

> t & e ≤ te

> t

Figure 5. The behavior heuristic FSM. k is average disparity, e is
the attitude error (meaning the difference between the newly
picked direction and the current attitude), tn the respective
thresholds.
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The system can be more realistically modeled as a

Markov process as depicted in Figure 6. From this it

can be seen that the system can be split in a reducible

Markov process with an absorbing avoid state, and a

chain of states that leads to the absorbing collision
state. The values of the transition matrix X can be

determined from the data gathered during operation.

This would allow the robot to better predict the con-

sequences of a chosen TPR and FPR.
As an illustration of the effects of sample depen-

dence, let us suppose a model in which each classifica-
tion has a probability of being identical to the previous

classification, pðIðci�1; ciÞÞ. If not identical, the sample

is classified independently. This dependency model

allows us to calculate the transition X4;5 in Figure 6.

Given a previous negative classification, the transition

probability to another negative classification is: X4;5 ¼
pðIðci�1; ciÞÞ þ ð1� pðIðci�1; ciÞÞÞð1� TPRÞ. If pðIðci�1;
ciÞÞ ¼ 0:8 and TPR¼ 0.95, X4;5 ¼ 0:81. The probability
of a collision in such a model is pc ¼ Xðs�1Þ

4;5 ¼ 1:8 10�3,

no longer an inconceivably small number.
This leads us to the second complicating factor,

which is specific to our SSL setup. Since the robot
operates on the basis of the ground truth, it should

theoretically hardly ever encounter positive samples.

Namely, the robot should turn when it detects a posi-

tive sample. This implies that the uncertainty on the

estimated TPR is rather high, while the FPR can be

estimated better. A potential solution to this problem
is to purposefully have the mono-estimation robot turn

earlier than the stereo vision-based one.

Similarity with LfD

The core of SSL is a supervised algorithm that

learns the function bfðxfÞ on the basis of supervised

outputs gðxgÞ. Normally, supervised learning assumes
that the training data are drawn from the same data

probability distribution D as the test data. However, in
persistent SSL, this assumption generally does not
hold. The problem is that by using control based onbf, the robot follows a control policy pbf 6¼ pg and hence
will induce a different state distribution, D

pbf 6¼ Dpg . On

these different states, no supervised outputs have been
observed yet, which typically implies an increasing dif-
ference between bf and g.

A similar problem of inducing a different state dis-
tribution is well known in the area of LfD.2,3 Actually,
we will show that under some mild assumptions, the
persistent SSL problem studied in this paper is equiv-
alent to an LfD problem. Hence, we can draw on sol-

utions in LfD such as DAgger.2

The goal of LfD is to find a policy bp that minimizes
a loss function l under its induced distribution of states,

from Ross et al.2:

bp ¼ argmin
p2P

Es�Dp lðs; pÞ½ � (7)

where an optimal, teacher policy p	 is available to pro-

vide training data for specific states s.
At first sight, SSL is quite different, as it focuses

only on the state information that serves as input

to the policy. Instead of optimizing a policy, the
supervised learning in persistent SSL can be defined
as finding the function f0 that best matches the
trusted function g0 under the distribution of states
induced by the use of the thresholded version f

for control:

argmin
f2F

Ex�Dpf
lðfðxÞ; gðxÞÞ½ � (8)

Figure 6. A Markov model of the probability of a collision. Due to the nature of the consecutive samples, state transition prob-
abilities Xð5þnÞð6þnþuÞ are not equal to Xð3Þð4Þ but are likely to be relatively high. (Once one frame was wrongly classified as no obstacle,
it is likely the upcoming frames will also be wrongly classified as they are similar.)
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meaning that we perform regression of f on states that
are induced by the control policy pf, which uses the
thresholded version of f.

To see the similarity to equation (7), first realize that
the stereo-based policy is in this case the teacher policy:
pg ¼ p	. For this analysis, we simplify the strategy to
flying straight when far enough away from an obstacle,
and turning otherwise:

pgðsÞ : pðstraightjs ¼ 0Þ ¼ 1

pðturnjs ¼ 1Þ ¼ 1
(9)

where s is the state, with s¼ 1 when gðxÞ > tg and s¼ 0
otherwise. Note that pg is a deterministic policy, which
is assumed to be optimal.

When we learn a function bf, it generally will not give
exactly the same outputs as g. Using bs :¼ bf > tbf will
result in the following stochastic policy:

pf̂ðsÞ : pðstraightjs ¼ 0Þ ¼ TNR

pðturnjs ¼ 0Þ ¼ FPR

pðturnjs ¼ 1Þ ¼ TPR

pðstraightjs ¼ 1Þ ¼ FNR

(10)

a stochastic policy which by definition is optimal,
pf̂ ¼ pg, if FPR ¼ FNR ¼ 0. In addition, then
Dpf̂ ¼ Dpg . Thus, if we make the assumption that min-
imizing lðfðxÞ; gðxÞÞ also minimizes FPR and FNR, cap-
turing any preference for one or the other in the cost
function for the behavior lðs; pÞ, then minimizing f in
equation (8) is equivalent to minimizing the loss in
equation (7).

Learning schemes

The interest of the above-mentioned similarity lies in
the use of proven techniques from the field of LfD for
training the persistent SSL system. In this article, we
study a well-known method from this field, named
DAgger,2 and compare it with two additional methods.
All three learning schemes start with an initial learning
period in which the drone is controlled purely by means
of stereo vision. The three methods are different
though as follows.

1. In the first learning scheme, the drone will continue
to fly based on stereo vision for the remainder of the
learning time. After learning, the drone immediately
switches to monocular vision. For this reason, the
first scheme is referred to as “cold turkey.”

2. In the second learning scheme, the drone will
perform a stochastic policy, selecting the stereo

vision-based actions with a probability bi and
monocular-based actions with a probability
ð1� biÞ, as was proposed in the original DAgger
article.2 In the experiments, bi ¼ 0:25.

3. In the third learning scheme, the drone will perform
monocular-based actions, with stereo vision only
used to override these actions when the drone gets
too close to an obstacle. Therefore, we refer to this
scheme as “training wheels.”

Offline vision experiments

In this section, we perform offline vision experiments.
The goal of these experiments is to determine how good
the proposed VBoW method is at estimating monocu-
lar depth, and to determine the best parameter settings.

To measure the performance, we use two main met-
rics: the mean square error (MSE) and the area under
the curve (AUC) of an ROC curve. MSE is an easy
metric that can be directly used as a loss function,
but in practice many situations exist in which a low
MSE can be achieved while inadequate performance
is reached for the basis of reliable MAV behavioral
control. The AUC captures the trade-off between
TPR and FPR and hence is a good indication of how
good the performance is in terms of obstacle detection.

We use two data sets in the experiments. The first
data set is a video made on a drone during an auton-
omous flight using an onboard 128� 96 pixels stereo
camera. The second data set is a video made by man-
ually walking with a higher quality 640� 480 pixel
stereo camera through an office cubicle in a similar
fashion as the robot should move in the later online
experiments. The data sets #1 and #2 used in this sec-
tion are made available for download publicly.36 An
example image from each data set is shown in Figure 7.

Our implementation of the VBoW method has six
main parameters, ranging from the number of intensity
and gradient textons to the number of samples used to
smooth the estimated disparity over time. An exhaustive
search of parameters being out of reach, we have per-
formed various investigations of parameter changes
along a single dimension. Table 1 presents a list of the
final tuned parameter values. Note that these parameter
values have not only been optimized for performance.
Whenever performance differences were marginal, we
have chosen the parameter values that saved on compu-
tational effort. This choice was guided by our goal to
perform the learning on board of a computationally lim-
ited drone. Below we will show a few of the results when
varying a single parameter, deviating from the settings in
Table 1 in the corresponding dimension.

Figure 8 shows the results for different numbers of
textons, 2 f4; 8; 12; 16; 20g, always consisting half out
of pixel intensity and half of gradient textons. From the
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results, we can see that the performance saturates

around 20 textons. Hence we selected this combination

of 10 intensity and 10 gradient textons for the

experiments.
The VBoW method involves choosing a regression

algorithm. In order to determine the best learning algo-

rithm, we have tested four regression algorithms, limiting

the choice mainly based on feasibility for implementing

the regression algorithm on board a constrained embed-

ded system. We have tested two non-parametric (kNN

and Gaussian process regression) and two parametric

(linear and shallow neural network regression) algo-

rithms. Figure 9 presents the learning curves for a com-

parison of these regressors. Clearly, in most cases the

kNN regression comes out best. A naive implementation

of kNN suffers from having a larger training set in terms

of CPU usage during test time, but after implementation

on the drone, this did not become a bottleneck.
The final offline results on the two data sets are quite

satisfactory. They can be viewed online (note 1). After

a training set of roughly 6000 samples, the kNN

approximates the stereo vision-based disparities in the

test set rather well. Given a desired TPR of 0.82, the

learner has an FPR of 0.26. Considering the high inter-

dependability of concurrent frames, this should be suf-

ficient for usage of the estimated disparities in control.

Simulation experiments

We argued that a persistent form of SSL is similar to

LfD. The relevance of this similarity lies in the

behavioral schemes used for learning. In this section,
we compare the three learning schemes, as introduced
in the section Learning Schemes, in simulation.

Setup

We simulate a “flying” drone with stereo vision camera
in SmartUAV,37 an in-house developed simulator that
allows for 3D rendering and simulation of the sensors
and algorithms used on board the real drone. Figure 10
shows the simulated “office room.” The room has a size
of 10� 10 m, and the drone has an average forward
speed of 0.5 m/s. All the vision and learning algorithms
are exactly the same as the ones that run on board of
the drone in the real experiments.

We compare the three learning schemes, cold turkey,
DAgger, and training wheels, in simulation. As men-
tioned, these schemes all have the same initial training
period with stereo vision being in control, but they
differ in the remaining learning period. After all learn-
ing, the drone will use its monocular disparity estimates
for control. The stereo vision remains active only for
overriding the control if the drone gets too close to a
wall. During this testing period, we register the number
of turns and the number of overrides. The number of
overrides is a measure of the number of potential colli-
sions. The performed number of turns during testing is
compared to the number of turns performed when
solely using stereo vision, to evaluate the number of
spurious turns. The initial learning period is 1 min,
the remaining learning period is 4 min, and the test
time is 5 min. These times have been selected to allow
a full experiment on a single battery of the real drone.

Results

Table 2 contains the results of 30 experiments with the
three learning schemes and a purely stereo-vision-
controlled drone. The first observation is that “cold
turkey” gives the worst results. This result was to be
expected on the basis of the similarity between persis-
tent SSL and LfD: the learned monocular distance esti-
mates do not generalize well to the test distribution

Table 1. Parameter settings.

Parameter Value

Number of intensity textons 10

Number of gradient textons 10

Patch size 5� 5

Subsampling samples 500

kNN K¼ 5

Smooth size 4

Figure 7. Example from data set #1 (left, 128� 96 pixels) and data set #2 (right, 640� 480).
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when the monocular vision is in control. The originally

proposed DAgger scheme performs better, while the

third learning scheme termed “training wheels” seems

most effective. The third scheme has the lowest number

of overrides of all learning schemes, with a similar total
number of turns as a pure stereo vision run. The intu-

ition behind this method being best is that it allows the

drone to best learn from samples when the drone is

beyond the normal stereo vision turning threshold.

The original DAgger scheme has a larger probability

to turn earlier, exploring these samples to a lesser

extent. Double-sided statistical bootstrap tests38 indi-
cate that all differences between the learning methods

are significant with p< 0.05.
The differences between the learning schemes are

well illustrated by the positions the drone visits in the

room during the test phase. Figure 11 contains “heat

maps” that show the drone positions during turning
(top row) and during straight flight (bottom row).

The position distribution has been obtained by binning

the positions during the test phase of all 30 runs. The

results for each scheme are shown per column in

Figure 11. Right is the pure stereo vision scheme,

which shows a clear border around the straight flight

trajectories. It can be observed that this border is best

approximated by the “training wheels” scheme (second

from the right).

Robotic experiments

The simulation experiments showed that the “training

wheels” setup resulted in the fewest stereo vision over-

rides when switching to monocular disparity estimation

control. In this section, we test this online learning

setup with a flying robot.
The experiment is set up in the same manner as the

simulation. The robot, a Parrot ARDrone2, first

explores the room with the help of stereo vision.

After 1 min of learning, the drone switches to using

the monocular disparity estimates with stereo vision

running in the background for performing potential

safety overrides. In this phase, the drone still continues

to learn. After learning 4 to 5 min, the drone stops

learning and enters the test phase. Again, also for the

real robot the main performance measure consists of

the number of safety overrides performed by the stereo

vision during the testing phase.
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The ARDrone2 is standard not equipped with a
stereo vision system. Therefore, an in-house-developed
4 g stereo vision system is used,39 which sends the raw
images over USB to the ARDrone2 (see figure 12). The
grayscale stereo camera has a resolution of 128� 96 px
and is limited to 10 fps. The ARDrone2 comes with a 1
GHz ARM cortex A8 processor and 128 MBRAM, and

Figure 10. SmartUAV simulation environment.
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Table 2. Test results for the three learning schemes.

Method Overrides Turns

Pure stereo N/A 45.6 (r ¼ 3:0)
1. Cold turkey 25.1 (r ¼ 8:2) 42.8 (r ¼ 3:7)
2. DAgger 10.7 (r ¼ 5:3) 41.4 (r ¼ 3:2)
3. Training wheels 4:3 (r ¼ 2:6) 40.4 (r ¼ 2:6)

The average and standard deviation are given for the number of overrides

and turns during the testing period. A lower number of overrides is

better. In the table, the best results are shown in boldface.

Figure 11. Simulation heatmaps, from left to right: cold turkey,
DAgger, training wheels, stereo only. Top images are turn loca-
tions, lower images are the approaches.
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normally runs the Parrot firmware as an autopilot. For
the experiments, we replace this firmware with the the
open source Paparazzi autopilot software.39,40 This
allowed us to implement all vision and learning algo-
rithms on board the drone. The length of each test is
dependent on the battery, which due to wear has con-
siderable variation, in the range of 8–15 min.

The tests are performed in an artificial room that has
been constructed within a motion-tracking arena. This
allows us to track the trajectory of the drone and facil-
itates post-experiment analysis. The room is approxi-
mately 5� 5 m, as delimited by plywood walls. In order
to ensure that the stereo vision algorithm gave reliable
results, we added texture in the form of duct-tape to the
walls. In five tests, we had a textured carpet hanging
over one of the walls (Figure 13 left, referred to as

“room 1”), in the other five tests it was on the floor

(Figure 13 right, referred to as “room 2”).

Results

Table 3 shows the summarized results obtained from the

monocular test flights. Two main observations can be

made from this table. First, the average number of

stereo overrides during the test phase is 3, which is

very close to the number of overrides in simulation.

The monocular behavior also has a similar heat map

to simulation. Figure 14 shows a heat map of the

drone’s position during the approaches and the avoid-

ance maneuvers (the turns). Again, the stereo-based

flight performs better in the sense that the drone

explores the room much more thoroughly and the

turns happen consistently just before an obstacle is

detected. On the other hand, especially in room 2, the

monocular performance is quite good in the sense that

the system is able to explore most of the room.
Second, the selected TPR and FPR are on average

0.47 and 0.11. The TPR is rather low compared to the

offline tests. However, this number is heavily influenced

by the monocular estimator-based behavior. Due to the

goal of the robot, avoiding obstacles slightly before the

stereo ground truth recognizes them as positives, positives

should hardly occur at al. Only in cases of FNs where the

estimator is slower or wrong, positives will be registered

Figure 12. The used multicopter.

Figure 13. Two test flight rooms.

Table 3. Test flight summary.

Room 1 Room 2

Description #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Avg.

Stereo flight time m:ss 6:48 7:53 2:13 3:30 4:45 4:39 4:56 5:12 4:58 5:01 4:59

Mono flight time m:ss 3:44 8:17 6:45 7:25 4:54 10:07 4:46 9:51 5:23 5:12 6:39

Mean square error 0.7 1.96 1.12 0.95 0.83 0.95 0.87 1.32 1.16 1.06 1.09

False positive rate 0.16 0.18 0.13 0.11 0.11 0.08 0.13 0.08 0.1 0.08 0.11

True positive rate 0.9 0.44 0.57 0.38 0.38 0.4 0.35 0.35 0.6 0.39 0.47

Stereo approaches 29 31 8 14 19 22 22 19 20 21 20.5

Mono approaches 10 21 20 25 14 33 15 28 18 15 19.9

Auto-overrides 0 6 2 2 1 5 2 7 3 2 3

Overrides ratio 0 0.72 0.3 0.27 0.2 0.49 0.42 0.71 0.56 0.38 0.41
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by the ground truth. Similarly, the FPR is also lower in
the context of the monocular-based behavior.

ROC curves of the 10 flights are shown in Figure 15.
A comparison based on the numbers between the first

five flights (room 1) and the last five flights (room 2) does
not show any significant differences, leading to the sug-
gestion that the system is able to learn both rooms equal-
ly well. However, when comparing the heat maps of the

Figure 14. Room 1 (plain texture) position heat map. Top row is the binned position during the avoidance turns, bottom row during
the obstacle approaches, right column during stereo ground truth based operation, left column during learned monocular operation.

Figure 15. Room 2 (carpet natural texture) position heat map. Top row is the binned position during the avoidance turns, bottom
row during the obstacle approaches, right column during stereo ground truth based operation, left column during learned monocular
operation.
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two situations in the monocular system in Figures 14 and
16, it seems that the system shows slightly different

behavior. The monocular system appears to explore
room 2 better, getting closer to copying the behavior of

the stereo-based system. This is also pointed out by the
peak in the heat map in the bottom row, left column of

Figure 14; the binned position occurrence of the monoc-
ular behavior during the straights. It shows the behavior

was affected by false positives, it sometimes turned too
soon and too far from the walls, resulting in a peak in the

middle of the room. Similarly, this is also visible when

comparing the monocular turn locations (Figure 14, top
row) to the stereo turn locations (Figure 14 top right).

The stereo algorithm turns consistently close to the walls,
while the monocular behavior shows a lot of spread and

turns often quite far away from the walls. Interestingly,
this problem partly disappears when more varied and

natural texture is applied to the same room as shown
by the results in Figure 16.

The experimental setup with the room in the motion
tracking arena allows for a more in-depth analysis of

the performance of both stereo and monocular vision.
Figure 17 shows the spatial view of the flight trajectory

of test #10 (note 2). The flight is segmented into
approaches and turns which are numbered accordingly

in these figures. The color scale in Figure 17(a) is cre-
ated by calculating the theoretically visible closest wall

based on the tracking the systems measured heading
and position of the drone, the known position of the

walls, and the FOV angle of the camera. It is clearly

visible that the stereo ground truth in Figure 17(b)
does not capture this theoretical disparity perfectly.
Especially in the middle of the room, the disparity
remains high compared to the theoretical ground
truth due to noise in the stereo disparity map. The
results of the monocular estimator in Figure 17(c)
show another decrease in quality compared to the
stereo ground truth.

Discussion

We start the discussion with an interpretation of the
results from the simulation and real-world experiments,
after which we proceed by discussing persistent SSL in
general and provide a comparison to other machine
learning techniques.

Interpretation of the results

Using persistent SSL, we were able to autonomously
navigate our multicopter on the basis of a stereo vision
camera, while training a monocular estimator on board
and online. Although the monocular estimator allows
the drone to continue flying and avoiding obstacles, the
performance during the approximately 10-min flights is
not perfect. During monocular flight, a fairly limited
amount of (autonomous) stereo overrides was needed
while at the same time the robot was not fully exploring
the room like when using stereo.

Several improvements can be suggested. First, we
can simply have the drone learn for a longer time,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
2
3
4
5
6
7
8
9
10

Figure 16. ROC curves of the 10 test flights. Dashed/solid lines refer to results on room #1/#2.
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accumulating training data over multiple flights. In

an extended offline test, our VBoW method shows

saturation at around 6000 samples. Using additional

features and more advanced learning methods may

result in improved performance if training set sizes

increase.
During our tests in different environments, it proved

unnecessary to tune the VBoW learning algorithm

parameters to a new environment as similar perfor-

mance was obtained. The learned results on the robot

itself may or may not generalize to different environ-

ments; however, this is of less concern as the robot can

detect a new environment and then decide to continue

the learning process if the original cue is still available.

In order to detect an inadequacy of the learned regres-

sion function, the robot can occasionally check the esti-

mation error against the stereo ground truth. In fact

our system already does so autonomously using its

safety override. Methods on checking the performance

without using the ground truth, e.g. by employing a

learner that gives an estimate of uncertainty, are left

for future work.

Deep learning

At the time of our robotic experiments, implementing

state-of-the-art deep learning methods on-board a

flying drone was deemed infeasible due to hardware

restrictions. One of the major advantages of persistent

SSL is the unprecedented amount of available training

data. This amount of data will be more useful to more

complex learning methods such as deep learning meth-

ods than to less complex, but computationally efficient

methods such as the VBoW method used in our experi-

ments. Today, with the availability of strongly

improved hardware such as the NVidia Jetson TX1,

close-to state-of-the-art models can be trained and

run on-board a drone, which may significantly improve

the learning results.

Persistent SSL in relation to other machine

learning techniques

In order to place persistent SSL in the general frame-

work of machine learning, we compare it with several

Figure 17. Flight path of test 10 in room 2. Monocular flight starts form approach 23. The meaning of the color of the flightpath
differs per image; (a): the approximated disparity based on the external tracking system. (b): the measured stereo average disparity,
(c): the monocular estimated disparity, (d): the error between the stereo disparity and monocular estimated disparity with dark blue
meaning zero error, (e): error during FP, (f): error during FN. (e and f) only show the monocular part of the flight.
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techniques. An overview of this comparison is pre-
sented in Figure 18.

Un-/semi-/supervised learning. Unsupervised learning does
not require labeled data, semi-supervised learning
requires only an initial set of labeled data,41 and super-
vised learning requires all the data to be labeled.
Internally, persistent SSL uses a standard supervised
learning scheme, which greatly facilitates and speeds
up learning. The typical downside of supervised learn-
ing—acquiring the labels—does not apply to SSL, since
the robot continuously provides these labels itself.

A major difference between the typical use of super-
vised learning and its use in persistent SSL, is that the
data for learning are generally assumed to be i.i.d.
However, persistent SSL controls a behavioral compo-
nent which, in turn, affects both the data set obtained
during training as well as during testing time. Operation
based on ground truth induces a certain behavior that
differs significantly from behavior induced from a trained
estimator, even more so for an undertrained estimator.

SSL. The persistent form of SSL is set apart in the figure
from “normal” SSL, because the persistence property
introduces a much more significant behavioral compo-
nent to the learning. While normal SSL expects the
trusted cue to remain available, persistent SSL assumes
that the robot may sometimes act in the absence of the
trusted cue. This introduces the feedback-induced data
bias problem, which, as we have seen, requires specific
behavior strategies for best learning the robot’s task.

Learning from demonstration. Imitation learning, or LfD,
is a close relative to persistent SSL. Consider for
instance teleoperation, an LfD scheme in which a
(human or robot) teacher remotely operates a robot

in order for it to learn demonstrated actions in its envi-
ronment.20 This can be compared to persistent SSL if
we consider the teacher to be the ground truth function
gðxgÞ in the persistent SSL scheme. In most cases
described in literature, the teacher shows actions from
a control policy taken on the basis of a state instead of
just the results from a sensory cue (i.e., the state).
However, LfD does contain exceptions in which the
learner only records the states during demonstration,
e.g. when drawing a map through a 2D representation
of the world in case of a path planning mission in an
outdoor robot.42 Like persistent SSL, test time deci-
sions taken in LfD schemes influence future observa-
tions which may or may not be contained in known
demonstrated territory. However, one key difference
between LfD and persistent SSL arguably sets them
apart. All LfD theory known to the authors implicitly
assumes the teacher is never the same entity as the
learner. It may be that all relevant sensors are on the
learner, and even that the learners body is used to exe-
cute teacher commands (like in teleoperation), but the
teachers intelligence is always an external entity.

Reinforcement learning. Lastly, we compare persistent
SSL with RL, which is a distinctively different tech-
nique.43 In RL, a policy is learned using a reward func-
tion. Due to the evaluative feedback provided in RL,
defining a good reward function is one of fundamental
difficulties of RL known as reward shaping.43,44 Since
persistent SSL uses supervised feedback, reward shap-
ing is less of an issue in persistent SSL, only requiring a
choice of a loss function between gðxgÞ and fðxfÞ.
Secondly, the initial exploration phase of RL often
infers a lot of trial-and-error, making it a dangerous
time in which a physical system may crash and be dam-
aged. Although this particular problem is often solved
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Figure 18. Lay of the machine learning land.
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by better initialization, e.g. by using for instance LfD

or using policy search instead of value function-based

approaches, persistent SSL does not require an

untrained initialization phase at all as a reliable

ground truth function guarantees a certain minimal

correct behavior.
Persistent SSL differs from other learning techni-

ques in the sense that no complete training data set is

needed to train the algorithm beforehand. Instead it

requires a ground truth gðxgÞ, which must be available

online in real time while training bfðxfÞ, but can be

switched off when bfðxfÞ is learned to satisfaction. This

implies that learning needs to be persistent and that the

switch h must be included in the model. Note that in

cases where the environment of the robot may change,

measures can be put in place to detect the output uncer-

tainty of bfðxfÞ. If the uncertainty goes up, the robot can

switch back to using the ground truth function and

learning can then be activated again. Developing such

measures is, however, left for future work.

Feedback-induced data bias

The robot induces how its environment is perceived,

meaning it influences the acquired training samples

based on its behavior. The problems arising from this

feedback-induced data bias are known from other

machine-learning disciplines, such as RL and LfD.43

In particular, Ross et al. have proposed DAgger2 to

solve a similar problem in the LfD domain, which iter-

atively aggregates the data set with induced training

samples and the experts reaction to it. However, in

the case of LfD, obtaining the induced training samples

requires a careful engineered and often additional

setup, while in persistent SSL, this functionality is

inherently available. Secondly, the performance of the

LfD expert (i.e., in many cases, a human) is not easy to

control, often reacting too late or too early. The con-

trol policy of the persistent SSL ground truth override

system can, on the other hand, be very deterministic. In

the case of a DAgger application with drones flying

through a forest,3 it proved infeasible to reliably

sample the expert in an online fashion. Acquired

videos had to be processed offline by the expert,

hence the need for (offline $ online) iterations.

Moreover an additional online human safety override

interface was still necessary to prevent damage to the

drone while learning. Thirdly, due to the cost of (and

need for) iterative demonstration sessions, the empha-

sis of DAgger is on converging fast with needing as

little expert sessions as possible. In persistent SSL,

there are no costs for using the teacher signals

coming from the original sensor cue. With persistent

SSL, we can directly focus on effectively using the

available amount of training samples instead of mini-
mizing the number of iterations like in DAgger.

Another reason why persistent SSL handles the
induced training sample issue better than other state
of the art robot learning methods, is that in persistent
SSL part of the learning problem itself can be easily
separated and tested from the behavior; i.e. in a tradi-
tional supervised learning setting. In our proof of con-
cept, this has allowed us to test the learning algorithms
and thoroughly investigate its limits before
deployment.

Conclusion

We have investigated the behavioral aspects of an SSL
scheme, in which the supervisory signal is switched off
after an initial learning period. In particular, we have
studied an instance of such “persistent SSL” for the
task of obstacle avoidance, in which the robot uses
trusted stereo vision distance estimates in order to
learn appearance-based monocular distance estima-
tion. We have shown that this particular setup is very
similar to LfD. This similarity has been corroborated
by experiments in simulation, which showed that the
worst learning strategy is to make a hard switch from
stereo vision flight to mono vision flight. It is best to
have the robot fly based on mono vision and using
stereo vision only as “training wheels,” to take over
when the robot would otherwise collide with an obsta-
cle. The real-world robot experiments show the feasi-
bility of the approach, giving acceptable results already
with just 4–5 min of learning.

The findings also indicate interesting future venues
of investigation. First, and perhaps most importantly,
in the 4–5 min of the real-world experiments, the robot
already experiences roughly 7000–9000 supervised
learning samples. It is clear that longer learning times
can lead to very large supervised data sets, which are
suitable for deep learning approaches. Such approaches
likely allow the learning to extend to much larger and
more varied environments, such as outdoor forests or
multiple rooms inside larger buildings. In addition,
they could allow the learning to improve the resolution
of disparity estimates from a single value to a full image
size disparity map. Second, in the current experiments,
the robot stayed in a single environment. We men-
tioned that a different environment can make the
learned mapping invalid, and that this can be detected
by means of the ground truth. Another venue, as stud-
ied in Ho et al.,12 is to use a machine learning method
with an associated uncertainty value. For instance, one
could obtain uncertainty estimates by using a learning
method such as a Gaussian Process or by using drop-
out with deep neural networks. This can help with a
further integration of the behavior with learning, for
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instance by tuning the forward velocity based on the

certainty. These venues together could allow for persis-

tent SSL to reach its full potential, significantly enhanc-

ing the robustness of robots operating in real-world

environments.
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Notes

a. A video of VBoW visualizations on data set #1 and #2 can

be viewed online: https://www.youtube.com/playlist?

list¼PL_KSX9GOn2P9v0rtjSGonDC0V0T3DXYf6
b. Onboard, external a visualization video of flight #10 can

be viewed at: https://www.youtube.com/playlist?list¼PL_

KSX9GOn2P9v0rtjSGonDC0V0T3DXYf6
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