
 
 

Delft University of Technology

A deep learning model for inter-fraction head and neck anatomical changes in proton
therapy

Burlacu, T.; Hoogeman, M.S.; Lathouwers, D.; Perko, Z.

DOI
10.1088/1361-6560/adba39
Publication date
2025
Document Version
Final published version
Published in
Physics in Medicine and Biology

Citation (APA)
Burlacu, T., Hoogeman, M. S., Lathouwers, D., & Perko, Z. (2025). A deep learning model for inter-fraction
head and neck anatomical changes in proton therapy. Physics in Medicine and Biology, 70(6), Article
065011. https://doi.org/10.1088/1361-6560/adba39

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1361-6560/adba39
https://doi.org/10.1088/1361-6560/adba39


Physics in Medicine &
Biology      

PAPER • OPEN ACCESS

A deep learning model for inter-fraction head and
neck anatomical changes in proton therapy
To cite this article: Tiberiu Burlacu et al 2025 Phys. Med. Biol. 70 065011

 

View the article online for updates and enhancements.

You may also like
Modelling systematic anatomical
uncertainties of head and neck cancer
patients during fractionated radiotherapy
treatment
Poppy Nikou, Anna Thompson, Andrew
Nisbet et al.

-

Exploring communities’ utilization of
Jatropha based biofuels to transition
towards cleaner energy sources
Mulualem G Gebreslassie, Solomon T
Bahta, Filmon Fissha et al.

-

DiffuseRT: predicting likely anatomical
deformations of patients undergoing
radiotherapy
A Smolders, L Rivetti, N Vatterodt et al.

-

This content was downloaded from IP address 131.180.131.136 on 11/03/2025 at 11:55

https://doi.org/10.1088/1361-6560/adba39
/article/10.1088/1361-6560/ad611b
/article/10.1088/1361-6560/ad611b
/article/10.1088/1361-6560/ad611b
/article/10.1088/1361-6560/ad611b
/article/10.1088/2634-4505/ad7888
/article/10.1088/2634-4505/ad7888
/article/10.1088/2634-4505/ad7888
/article/10.1088/1361-6560/ad61b7
/article/10.1088/1361-6560/ad61b7
/article/10.1088/1361-6560/ad61b7


Phys. Med. Biol. 70 (2025) 065011 https://doi.org/10.1088/1361-6560/adba39

Physics in Medicine & Biology

OPEN ACCESS

RECEIVED

12 November 2024

REVISED

6 February 2025

ACCEPTED FOR PUBLICATION

21 February 2025

PUBLISHED

10 March 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

A deep learning model for inter-fraction head and neck
anatomical changes in proton therapy
Tiberiu Burlacu1,3,∗, Mischa Hoogeman1,2,3, Danny Lathouwers1,3 and Zoltán Perkó1,3

1 Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
2 Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
3 HollandPTC Consortium4, Delft, The Netherlands
∗ Author to whom any correspondence should be addressed.

E-mail: t.burlacu@tudelft.nl

Keywords: proton therapy, deep learning, variational autoencoder, anatomy changes

Abstract
Objective. To assess the performance of a probabilistic deep learning based algorithm for predicting
inter-fraction anatomical changes in head and neck patients. Approach. A probabilistic daily
anatomy model (DAM) for head and neck patients DAM (DAMHN) is built on the variational
autoencoder architecture. The model approximates the generative joint conditional probability
distribution of the repeat computed tomography (rCT) images and their corresponding masks on
the planning CT images (pCT) and their masks. The model outputs deformation vector fields,
which are used to produce possible rCTs and associated masks. The dataset is composed of 93
patients (i.e. 315 pCT–rCT pairs), 9 (i.e. 27 pairs) of which were set aside for final testing. The
performance of the model is assessed based on the reconstruction accuracy and the generative
performance for the set aside patients.Main results. The model achieves a DICE score of 0.83 and
an image similarity score normalized cross-correlation of 0.60 on the test set. The generated
parotid glands, spinal cord and constrictor muscle volume change distributions and center of mass
shift distributions were also assessed. For all organs, the medians of the distributions are close to
the true ones, and the distributions are broad enough to encompass the real observed changes.
Moreover, the generated images display anatomical changes in line with the literature reported
ones, such as the medial shifts of the parotids glands. Significance. DAMHN is capable of generating
realistic anatomies observed during the course of the treatment and has applications in anatomical
robust optimization, treatment planning based on plan library approaches and robustness
evaluation against inter-fractional changes.

1. Synthetic CT uses in proton therapy (PT)

PT has desirable dose characteristics, such as similar target coverage and lower organs at risk (OAR) doses,
when compared to traditional photon based radiotherapy (RT) (Chen et al 2023). However, the increased
dose conformality implies an increased susceptibility to dose degradation by uncertainties such as setup
errors, range errors and anatomical changes over the course of the typically month long treatment duration
(van Kranen et al 2009). To diminish the dose degradation, robust optimization and evaluation (Unkelbach
and Paganetti 2018) with isotropic setup and range settings (Liu et al 2013) and offline adaptive replanning
(Deiter et al 2020) is performed in clinical practice. This results in a high dose region that surrounds the
target, which in the case of the head and neck (H&N) region where OARs are in close proximity to the target,
could result in high chances of side effects. Moreover, there are certain anatomical changes (e.g. tumor
shrinkage Cubillos-Mesías et al 2019) that are not effectively accounted for by robust optimization only

4 HollandPTC Consortium—Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden
University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands.

© 2025 The Author(s). Published on behalf of Institute of Physics and Engineering inMedicine by IOP Publishing Ltd

https://doi.org/10.1088/1361-6560/adba39
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/adba39&domain=pdf&date_stamp=2025-3-10
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5542-6971
https://orcid.org/0000-0002-4264-9903
https://orcid.org/0000-0003-3810-1926
https://orcid.org/0000-0002-0975-4226
mailto:t.burlacu@tudelft.nl


Phys. Med. Biol. 70 (2025) 065011 T Burlacu et al

taking setup and range errors into account. One proposed option (Van de Water et al 2018) is the inclusion
of additional (synthetic) CT images in the (anatomical) robust optimization process. While this provided
increased target coverage and lower OAR doses for the specific H&N patients in the cohort, compared to
conventional robust optimization, it still created a high dose region surrounding the target.

To reduce this region to its minimum and counter long and short-term inter-fraction occurring
anatomical variations, online adaptive PT (OAPT) has been proposed. In this workflow, a new CT is
acquired for each fraction and within a short time a new fully re-optimized plan is generated. The resulting
plan would only need minimal robustness settings to counter the effects of range uncertainties, machine
related setup uncertainties and remaining intra-fraction uncertainties. The short time available and the
limited computational resources imply that fully robust reoptimization in the online setting still requires
research (Oud et al 2024) and is not feasible clinically. The plan library (PL) approach was proposed as an
intermediate solution (van de Schoot et al 2016, Oud et al 2022). This approach used the planning CT image
(pCT) to generate multiple plans with varying robustness settings. On the given day, it administers an
appropriately chosen plan, therefore resulting in NTCP reductions or sometimes in increased robustness that
ensures adequate target coverage. In this approach, synthetic CT images could be used to expand the
pre-compiled library of plans, by generating optimal plans for the future patient anatomies predicted by the
model. An additional use case for synthetic CT images could be for plan QA, in the scenario in which an
adapted or refined (e.g. by using yesterday’s optimal plan) is generated with the patient on the table.
Specifically, several CT images with associated truly optimal plans, could be generated a priori. On the given
day, a fast dosimetric check can be performed between the adapted and refined plan and the truly optimal
pre-generated plan.

Thus, models of inter-fractional anatomical changes have applications in several PT related workflows
such as anatomical robust optimization, plan quality assurance in OAPT or expanding the PL approach.
Multiple approaches to synthetic CT generation have been employed, such as principal component analysis
(PCA) or deep learning. An overview of the different possible approaches is given by the work of Smolders
et al (2024). Deep learning models have been shown to outperform PCA based ones in the case of prostate
anatomies (Pastor-Serrano et al 2023) and denoising diffusion probabilistic models (DDPMs) (Smolders
et al 2024) were successfully applied for artificial CT generation for the H&N site where they were
additionally shown to increase robustness to anatomical changes. This work builds upon the previous
publication of Pastor-Serrano et al (2023) on a generative deep learning daily anatomy model (DAM) for
prostate inter-fractional anatomical changes. The model architecture and the data processing pipeline are
changed and thereafter applied to a H&N RT cohort. The model is referred to from here on as DAMHN.
Section 2 details the probabilistic framework of the model. Section 3 provides details on the dataset
generation and the specific architecture configuration used for training. Section 4 contains the results and
their discussion. The performance of the model was assessed via several tests. The results of a reconstruction
accuracy test are shown in section 4.1. The generative performance was assessed in terms of the model’s
capability to predict realistic anatomical changes. To this end, an overview of the typical changes in H&N
patients reported by literature studies is given in section 4.2. The anatomical changes present on the training
set are discussed in section 4.3. Section 4.4 presents and discusses the anatomical changes predicted by the
model. Section 4.5 compares these anatomical changes with the ones presented in the recently published
DDPMs DiffuseRT model (Smolders et al 2024). Lastly, a latent space analysis is presented in section 4.6.
Section 5 concludes this work and discusses some improvement points.

2. Model architecture

This section provides only the main details of this model’s architecture. An in-depth exposition can be found
in Pastor-Serrano et al (2023). The patient anatomy at a certain point in time is described by the CT image
and the associated RT structures (masks), which are both taken as random variables. On the pCT, an image
with N voxels is denoted by x ∈ RN (defined as floats due to the need to normalize the data prior to further
processing) and the corresponding structures (pM) are denoted by sx ∈ RN. On the repeat CT images (rCTs),
the image is denoted by y ∈ RN and the corresponding masks (rM) by sy ∈ RN. Generally, pCTs and rCTs do
not have the same dimensionality and to achieve this, the images are resampled and cropped.

The presence of anatomical deformations over the course of treatment, e.g. the systematic medial
translation of the lateral regions of the parotid glands, the shrinkage of the parotid and submandibular
glands (Fiorentino et al 2012), the change in the parotid shape from convex to flat or concave (dos Santos
et al 2020) and the center of mass (COM) shifts towards the medial side (Vásquez Osorio et al 2008)
motivates the existence of an unknown generative joint conditional probability distribution P∗(y,sy|x,sx) of
the voxel CT HU values y and the structure masks sy conditioned on the planning CT x and structures sx. If
such a distribution was known, given a new pCT and pM, it could be sampled to generate future possible
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Figure 1. The proposed variational autoencoder model. The Encoder represents the down-sampling part of a U-net that
computes the parameters of P(z|x, sx). The up-sampling part of the U-net, denoted by Generator, takes samples from P(z|x, sx)
together with a reduced representation of the inputs x, sx and computes artificial CT images y, sy. Figure reproduced from
Pastor-Serrano et al (2023). The Author(s). CC BY 4.0.

anatomies, denoted by y and sy. In general it is impossible to find such a distribution, and a good
approximation Pθ(y,sy|x,sx)≈ P∗(y,sy|x,sx) is sought instead. The distribution Pθ(y,sy|x,sx) is
parametrized by a vector of parameters θ that is learned during training.

The dataset D consists of elements si ∈ R4N, which are the concatenation of a given pCT and rCT and
their associated structures, i.e. D= {τ i = (xi,sxi ,yi,syi) | i = 1, . . . ,ND} with ND the number of elements in
the dataset. Moreover, the dataset D is assumed to be independent and identically distributed (i.i.d.). As the
dataset D is i.i.d. the log-probability assigned to the data is

logPθ (D) =
∑
τ∈D

logPθ (τ ) . (1)

The framework of maximum likelihood (ML) searches for the parameters θ that maximize the sum, or
equivalently the average, of the log-probabilities assigned to the data by the model in equation (1) (Kingma
and Welling 2019).

As most explicitly parametrized generative distributions are too simplistic to model inter-fractional
anatomical variations, implicitly parametrized distributions are considered instead. Therefore, a joint
conditional probability distribution Pθ(y,sy,z|x,sx) that also depends on latent variables z is constructed.
Latent variables are variables that are not observed, and therefore they are not part of the dataset of images
and associated structures. They are meant to encode (represent in a lower dimensional space) the
information between the pCT and the rCT. The marginal distribution Pθ(y,sy|x,sx) over the observed
variables y,sy is recovered by marginalizing, namely

Pθ
(
y,sy|x,sx

)
=

ˆ
dzPθ

(
y,sy,z|x,sx

)
=

ˆ
dzPθ

(
y,sy|z,x,sx

)
Pθ (z|x,sx) . (2)

This is also referred to as the (single datapoint) marginal likelihood, or model evidence, when taken as a
function of θ (Ghojogh et al 2022). The distribution Pθ(z|x,sx) is called the prior distribution, which in the
case of this work is taken as a multivariate Normal distribution with mean and variance that depend on the
pCT and pM and on the vector of learned parameters θ, namely

Pθ (z|x,sx) = N (z;µθ (x,sx) ,Σθ (x,sx)) . (3)

The dependence of the parameters of the prior distribution on the pCT and pM results in a different
distribution for each patient (insofar as a patient is identified with a single image). The mean µθ(x,sx) and
the covariance matrix Σθ(x,sx) are computed in the down-sampling part of a U-net neural network and the
parameters θ of the prior are the weights of the encoder, as illustrated in figure 1.

The up-sampling part of the U-net, denoted by Generator in figure 1, outputs a deformation vector field
(DVF) Φ : RN×3 → RN×3 used to map coordinates p ∈ R3 between images. The DVF Φ is used to obtain the
prediction of the model y=Φ ◦ x (Jaderberg et al 2016). Based on work by Krebs et al (2019), the
distribution Pθ(y,sy|z,x,sx) (referred to as the likelihood) is taken as a function of the normalized
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cross-correlation (NCC) between the ground truth image ŷ and the predicted image y with an additional
scaling factor wNCC ∈ R+, namely

Pθ
(
y,sy|z,x,sx

)
= exp(−wNCCCC(y, ŷ)) , (4)

where the CC term is defined as

CC(y, ŷ) =
∑
p∈Ω

 n3∑
i=1

(ŷ(pi)− ŵ(p))(y(pi)−w(p))

2

 n3∑
i=1

(ŷ(pi)− ŵ(p))

 n3∑
i=1

(y(pi)−w(p))

 , (5)

and w(p) and ŵ(p) are the local mean over a small cube Ω with side length n voxels of the generated and true
images, namely

w(p) =
1

n3

n3∑
j=1

y
(
pj

)
, and ŵ(p) =

1

n3

n3∑
j=1

ŷ
(
pj

)
.

The vector of parameters θ of the likelihood distribution Pθ(y,sy|z,x,sx), that stores in part of it the weights
of the Encoder network, also stores the weights of the Generator network.

The main difficulty of this proposed framework is that the marginal probability of the data, or the model
evidence, given in equation (2) is intractable due to not having an analytic solution or an efficient estimator.
In turn, this makes optimization of such a model computationally expensive.

2.1. Learning the optimal parameters
To overcome the previously mentioned intractability of the framework, the posterior distribution
Pθ(z|y,sy,x,sx) is approximated by a multivariate Normal distribution Qψ(z|y,sy,x,sx) parametrized by a
vector of parameters ψ with mean and variance that depend on both the planning and repeat images and
masks, namely

Qψ
(
z|y,sy,x,sx

)
= N

(
z;µψ

(
x,sx,y,sy

)
,Σψ

(
x,sx,y,sy

))
. (6)

The parametersψ are the weights of the down-sampling part of a U-net, referred to as Inference network
at the top of figure 2.

Regardless of the choice of the approximating posterior distribution Qψ , the log-likelihood of the data
can be written as

logPθ
(
y,sy|x,sx

)
= Ez∼Qψ

[
logPθ

(
y,sy|x,sx

)]
= Ez∼Qψ

[
log

Pθ
(
y,sy,z|x,sx

)
Pθ

(
z|y,sy,x,sx

)]

= Ez∼Qψ

[
log

Pθ
(
y,sy,z|x,sx

)
Qψ

(
z|y,sy,x,sx

) Qψ (
z|y,sy,x,sx

)
Pθ

(
z|y,sy,x,sx

) ]

= Ez∼Qψ

[
log

Pθ
(
y,sy,z|x,sx

)
Qψ

(
z|y,sy,x,sx

)] (7)

+DKL

(
Qψ

(
z|y,sy,x,sx

)
||Pθ

(
z|y,sy,x,sx

))
. (8)

The DKL term in equation (8) defines the Kullback–Leibler divergence between the approximated posterior
distribution and the true posterior distribution. The term is non-negative, measures the distance between the
shapes of the two distributions, and is zero if, and only if, the approximated posterior equals the true
posterior. The expectation term in equation (7), defines the evidence lower bound (ELBO) as

Lθ,ψ = Ez∼Qψ

[
logPθ

(
y,sy,z|x,sx

)
− logQψ

(
z|y,sy,x,sx

)]
,

which can also be re-written as

Lθ,ψ = Ez∼Qψ

[
logPθ

(
y,sy|z,x,sx

)]
−DKL

(
Qψ

(
z|y,sy,x,sx

)
||Pθ (z|x,sx)

)
. (9)
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Figure 2. Architecture for finding the optimal parameters θ,ψ of the network. Figure reproduced from Pastor-Serrano et al
(2023). The Author(s). CC BY 4.0.

As the DKL term is non-negative, it is clear that the ELBO is a lower bound on the log-likelihood of the data,
i.e.

Lθ,ψ = logPθ
(
y,sy|x,sx

)
−DKL

(
Qψ

(
z|y,sy,x,sx

)
||Pθ

(
z|y,sy,x,sx

))
⩽ logPθ

(
y,sy|x,sx

)
.

Thus, by maximizing the ELBO Lθ,ψ from equation (9) with respect to the parameters of the model θ,ψ,
the marginal likelihood Pθ is approximately maximized resulting in a better generative model and the KL
divergence between the approximated posterior and the true posterior is lowered.

To improve model performance, the ELBO is expanded with two additional terms which are included via
multiplication to the likelihood from equation (9) (Pastor-Serrano et al 2023). The first is a spatial
regularization term,

R(Φ) =−wREG

∑
p∈Ω

∥∇Φ(p)∥2 , (10)

where wREG is a multiplication constant. This term penalizes large and unrealistic gradients in the
deformation and encourages neighboring voxels to deform somewhat similarly.

The second is a segmentation regularization term using the DICE score is added, which is also multiplied
by a constant wDICE. This aims to improve the overlap between the propagated and ground truth structures,
and is written as

DICE
(
sky, ŝ

k
y

)
= 2wDICE

∣∣∣sky ∩ ŝky∣∣∣∣∣∣sky∣∣∣+ ∣∣∣̂sky∣∣∣ , (11)

where k denotes the index of the structure present in the CT image, k= 1, . . . ,K, with K the total number of
structures present, and sky and ŝ

k
y are the kth generated and ground truth structures respectively.

Including these two additional terms, and minimizing the negative ELBO instead, results in the following
optimization problem

min
θ,ψ

Ez∼Qψ

−wNCCNCC(y, ŷ)−wDICE
1

K

k∑
k=1

DICE
(
sky, ŝ

k
y

)
+wREG

∑
p∈Ω

∥∇Φ(p)∥2


+wKLDKL

(
Qψ

(
z|y,sy,x,sx

)
||Pθ (z|x,sx)

)
.
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3. Dataset generation and training details

This retrospective dataset was acquired from the Holland PT Center and came from 93H&N patients with
planning, rCTs and associated RT structures for each image. This resulted in 342 pCT–rCT pairs from which
10%, corresponding to 9 patients, were set aside for final testing. The remaining part was divided into 5% for
validation and 95% for training. The training dataset consisted of patients with a number of rCTs ranging
from 1 to 6, with most patients having 3 (24 patients) and 4 (25 patients) rCTs taken. This creates a bias in
the dataset for the anatomical changes present in patients that are more likely to be re-imaged. All the rCTs
were rigidly registered to the pCTs using the Simple ITK library (Beare et al 2018) with the resulting
deformation vector fields used to register the RT masks. After this, all scans were interpolated to a
2× 2× 2 mm grid and cropped around the COM of the present RT masks (the left and right parotid glands,
the spinal cord and the constrictor muscle) into a shape of 96× 96× 64 voxels. This resulted in volumes of
192× 192× 128 mm3 which were found to adequately cover the anatomical regions of interest.

The model was implemented in PyTorch (Paszke et al 2017). The down-sampling path of the U-net
(Encoder) and the Inference network were identical, and consisted of 4 blocks, where each block is composed
of a 3D convolution layer, a Group Normalization layer, a rectified linear activation and a max pooling
down-sampling operation. All convolution layers had a kernel of dimensions 3× 3× 3. The convolution
layer in the first block had 16 channels while the remaining blocks had 32. At the lowest level, a last
convolution with 4 channels results in the encoded volume r ∈ R4×4×4×3. This volume is mapped to the
means and variances via two different fully-connected layers. The up-sampling part of the U-net (Generator)
concatenates the sampled latent variables to the volume r after a linear layer. Next, 7 blocks (with
up-sampling as opposed to down-sampling max pooling operations) are applied, where for the first 5 the
convolutional layer has 32 channels and for the last 2, the convolutional layer has 16 channels. This is
followed by a last convolution with 3 channels. The model was trained using a batch size of 32, on a A40
NVIDIA GPU, for 1500 epochs with an early stopping patience of 300 epochs and the Adam optimizer with a
learning rate of 1.0× 10−4.

The constants wNCC,wDICE,wREG together with the constant wKL that multiplied the DKL loss term were
considered as hyparparameters to be optimized. These hyperparameters were optimized on the validation set
using a grid search method with the validation loss defined as the sum of the NCC from equation (4) and
DICE from equation (11) with unity weights. Thus, for a given latent space dimension, ranges of allowed
values were defined for each hyperparameter (wNCC and wDICE from 1000 to 5000 in steps of 1000, wREG from
1.0× 10−5 to 1.0× 10−1 in multiples of 10 and wKL from 1.0× 10−3 to 1.0× 101 in multiples of 10). After
each combination was tested, the model with the lowest validation loss was chosen. This resulted in the
model with wNCC = 5000, wDICE = 3000,wREG = 1.0× 10−4 and wKL = 1.

4. Results and discussion

This section presents and discusses the performance of the model in a series of tests. The section starts by
presenting and discussing in section 4.1 the performance of the model on the test set (a reconstruction
accuracy test). Next, a baseline is set through a literature study for the expected anatomical changes in H&N
patients in section 4.2. The anatomical changes displayed by the training set are compared to the
expectations set out by literature, in section 4.3, in order to assess the degree to which the dataset used by this
model is representative of the broader population. Given this framework, the generative performance of the
model is presented and discussed in section 4.4. To gain insight into the model, a latent space analysis is
presented and discussed in section 4.6. Lastly, a comparison to the recent diffusion model proposed by
Smolders et al (2024) is given in section 4.5.

4.1. Test set accuracy
The reconstruction accuracy of the model on the test set was assessed. The accuracy was defined by two
metrics, namely the normalized cross correlation (NCC) loss from equation (4) and the DICE loss from
equation (11). Thus, each record in the test set (i.e. pair of pCT and rCT with associated masks) was used to
generate through the inference network latent variables, which ultimately result in generated CTs and
associated structures. The results were averaged over all records in the test set and the dimension of the latent
space was varied between 2 and 256 in multiples of 2. The results of the two scores can be seen in figure 3,
which shows the mean of the individual scores and a band of one standard deviation (SD) around the mean.
Both figures show considerable improvement in both metrics as the latent space is increased from 2 to 32,
and thereafter a plateau occurring between 64 and 256. The same behavior is observed in both metrics (a rise
in accuracy up to≈32 latent variables and thereafter a plateau). It should be noted that the metrics are
sensitive to different features (as the NCC metric is computed based on the HU values of the voxels while the
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Figure 3. Reconstruction accuracy versus latent space dimensionality. The figure displays on the first row the DICE score and on
the second row the NCC evaluated on the test set for models with the same hyperparameters and varying latent space dimensions.

DICE score is computed based on the overlap of the binary masks). Thus, the similar behavior that is
observed is likely due to the chosen loss functions that include both the NCC and the DICE score. The model
performs particularly well with regard to the DICE score, where it achieves a score of 0.82 with just 2 latent
variables. The reconstruction accuracy values obtained were not directly comparable with the ones
previously published in the work of Pastor-Serrano et al (2023), but exhibit the same behavior. The increased
input size of this model (96× 96× 64 versus 64× 64× 48), the more complex anatomical site (H&N versus
prostate) and a different configuration of the layers in the Inference, Encoder and Generator networks likely
explain the need for additional latent variables to achieve good performance.

4.2. Expected anatomical changes of parotid glands
This subsection details the anatomical changes in H&N RT patients that literature studies report on. An
overview of these changes can be seen in table 1. This overview is used in section 4.3 to assess the degree to
which the changes observed in the training set, and therefore the changes that the DAMHN learns to predict,
correspond to the ones in the broader population.

The work of Bhide et al (2010) used repeat CT scans at weeks 2, 3, 4, and 5 during RT and compared the
parotids and the target at succesive time points, i.e. pretreatment with week 2, week 2 with week 3, and so on.
The greatest absolute and percent reduction in the volume of the parotid glands was 4200mm3 or 14.7%,
and occurred between week 0 and week 2. The absolute and percent reduction in the next two-week period
was 4000mm3 or 16%. The study found a significant medial shift of the parotid glands through the course of
treatment, starting at week 2, with the highest mean movement of the COM being 2.3mm at week 4. No
significant movements of the COM in the anteroposterior and the inferosuperior directions were found.

In the work of Vásquez Osorio et al (2008) the impact of 46Gy delivered to the tumor was assessed based
on the planning and rCTs. They report that the parotids shrunk on average by 14% and that the shrinkage
occurred by keeping the regions nearby to bony anatomy as an anchor. Moreover, the parotids exhibited a
tendency to move inward (right parotid leftward and left parotid rightward) with the largest displacements
being in the lateral and inferior regions. The region that moved the least was the medial region (partially
adjacent to the bony structure). The study of Barker et al (2004) found a median medial shift of 3.1mm for
the COM of the parotid glands. They observed asymmetric shifts in parotid gland surfaces, with average
displacements of 1± 3 mm and 3± 3 mm for the medial and lateral regions of the irradiated glands,
respectively.
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Table 1.Overview of documented quantitative and qualitative anatomical changes in the parotid glands. The table displays the study, the
number of CTs used, the reported volumetric change (absolute, relative or both), the absolute shifts in the COM and its direction and
qualitative notes on the reported changes.

Study CT number Volumetric loss COM shift
Morphological
alterations and notes

Barker et al (2004) ⩾2 Median 190mm3 per
day

Median 3.1mm Shrinkage correlated
with patient weight
lossRange of 40–840 mm3

per day
Range 0–9.9 mm in
medial direction

Vásquez Osorio et al (2008) 2 Average 14% 1 or 3 mm Bony anatomy kept as
anchor during
shrinkage

Bhide et al (2010) ⩾2 14% or 4200mm3

between week 0 and 2
16% or 4000mm3

between week 2 and 4
35% over the course
of chemoradiotherapy

2.3mm by week 4 in
the medial direction

COM shift
insignificant in the
anteroposterior and
inferosuperior
directions

dos Santos et al (2020) 2 Average 20.5% or

6560mm3 between
CTs

N.A. Shape shift from
convex to concave
COM shift towards
the medial and cranial
directions

Table 2. Training set statistics. The table displays for both parotid glands the mean, standard deviation, minimum, median and
maximum of the volume on the planning and repeat CT images, the difference between these volumes (absolute and relative) and the
center of mass shifts.

Statistic

Organ Metric Mean SD Min. Median Max.

Parotid L Planning volume (mm3) 35 878 11 290 16 984 33 280 83 520
Repeat volume (mm3) 31 571 10 161 12 976 29 816 76 632
Difference (mm3) −4307 3880 −30 456 −3548 4256
Relative difference (%) −12 9 −41 −11 10
COM shift (mm) 3 2 0.2 2 13

Parotid R Planning volume (mm3) 35 447 12 568 11 344 33 024 87 352
Repeat volume (mm3) 31 507 11 160 7496 29 896 79 136
Difference (mm3) −3941 3955 −29 112 −3320 4584
Relative difference (%) −11 8 −41 −10 10
COM shift (mm) 3 2 0.4 3 12

4.3. Training set anatomical changes of parotid glands
The generative performance of the model is tied to the data provided during training in the training set.
Therefore, the anatomical changes in the training set and the literature reported changes from table 1 were
compared to assess the degree to which the training set is representative of the broader PT H&N patients
population. The anatomical changes presented in section 4.2 come from studies in which uni or bilateral
photon-based RT or a combination of chemotherapy and RT was delivered. In contrast, the dataset of this
work comes exclusively from PT patients treated with mostly bilateral fields. The training set contained
anonymized data and was composed of pairs of pCTs and consecutive rCTs (pCT–rCT1, pCT–rCT2, and so
on). For each such pair and patient, the volume loss and COM shift in each parotid was computed and
averaged over both parotid glands. Figure 4 displays, for each patient in the training set, boxplots of the
distributions of percentage parotid glands volume changes and parotids COM shifts.

Figure 4 shows that the median of the volumetric loss in the parotids is≈11% and the median of the
COM shift is≈3mm. While the many patients have relatively unskewed volumetric change and COM shifts
distributions, there are also patients (e.g. 3, 10, 60 and 72) that display skewed distributions with outliers. To
facilitate comparison to previous publications, the data presented in figure 4 is summarized in table 2 where
statistics on an individual parotid level are displayed. Specifically, the absolute volumes on the planning and
rCTs, their difference (absolute and relative) and the COM shifts are characterized through their mean, SD,
minimum, median and maximum.
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Figure 4. Training set characterization. The figures display median sorted boxplots (with the whiskers extending up to 1.5 · IQR,
IQR= Q3 −Q1) with the x axis giving the patient identifying number and the y axis giving either the relative volumetric changes
or the COM shifts distributions in both the parotid glands.

The absolute volumes of the parotids on the pCT images are a mean of 35 878mm3 with a range of
16 984–83 520 mm3 for the left parotid and a mean of 35 447mm3 with a range of 11 344–87 352 mm3 for the
right parotid. Both mean parotid volumes are roughly 23% larger than the volumes reported by dos Santos
et al (2020), namely 28 477mm3 for the left parotid and 29 274mm3 for the right parotid.

The differences between the parotid volumes in the training set are, a mean of−4307mm3 with a range
of−30 456–4256mm3 corresponding to a mean of−12% with a range of−41%–10% for the left parotid
and a mean of−3941mm3 with a range of−29 112–4584mm3 corresponding to a mean of−11% with a
range of−41%–10% for the right parotid. This is slightly smaller but in line with previous studies,
considering the averaging effect caused by the pCT–rCT pairings from the training set.

The COM shifts observed in the dataset are a median of 2mm with a range of 0.2–13mm for the left
parotid and a median of 3mm with a range of 0.4–12mm for the right parotid. These values are in
agreement with the median of 3.1mm in a range of 0–9.9mm reported by Barker et al (2004).

To conclude, the distributions from the training set are deemed in line with the expectations set out by
previous studies. Differences between the data presented here and the one from previous studies, such as
Medbery et al (2000) and dos Santos et al (2020) can be attributed to several factors. First, the pCT–rCT
composition of the training set is bound to underestimate the changes when compared to studies based on
only pCT-final CT pairs. Second, differences are expected due to the anonymization of the training set and
the differences between the compared cohorts. Previous studies such as the ones of Ericson (1970), Vásquez
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Figure 5. Organ specific generative performance. The figures display boxplots (with the whiskers extending up to 1.5 · IQR,
IQR= Q3 −Q1) for the training, test and generated sets with the x axis showing the organ and the y axis giving either the
absolute volume change or the COM shift distribution for the given organ. The median of the distributions is displayed with the
continuous orange line while the mean is displayed with the dotted green line.

Osorio et al (2008), dos Santos et al (2020)showed differences in parotid volumes depending on age, sex,
weight, smoker status, planned doses, degree of parotid sparing and treatment modality, which are
impossible to study in our current case. Third, a small effect could be expected due to inter-observer
variability and systematic errors introduced by interpolating the original images on a new, coarser grid could
also influence the observed absolute volumes.

4.4. Generative performance
To assess the generative performance of the model, the test set, that contained 9 patients, was input into the
final trained model and 100 samples were drawn for each record (pair of pCT–rCT) in the test set.
Figure 5(a) displays for all present organs (left and right parotids, the spinal cord and the constrictor muscle)
boxplots of the volume changes on the training, test and generated sets. Figure 5(b) displays for all present
organs boxplots of the COM shifts on the training, test and generated sets. In terms of volumetric change
distributions, shown in figure 5(a), the figure shows that the parotid distributions on the training and test set
are different. For example, the mean (indicated by the dotted green line) of the left parotid volume change
distribution is below its median (indicated by the continuous orange line), while it is above it on the test set.
A similar situation occurs for the right parotid. The same figure shows that the model generates volume
change ranges that are broad enough to encompass the training and test sets, with means and medians in
reasonable agreement (defined as a value within 20% of either the training or test set value) to the training or
test set ones. The COM shift distributions, shown in figure 5(b), also display differences between the training
and test sets. For example, the distribution of the constrictor muscle COM shifts on the test set has a
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Figure 6. Example of generated images. The figure displays, for 5 randomly selected patients from the test set, in the first column
the true pCT, in the second column one of the true rCTs and in the remaining columns generated CT images. Overlaid on all
images are the left parotid (red), the right parotid (orange), the spinal cord (green) and the constrictor muscle (blue). Noteworthy
anatomical changes are indicated with yellow arrows.

considerably smaller range of values, with smaller mean and median values. As was the case for figure 5(a),
figure 5(b) also shows that the model predicts distributions of COM shifts that are broad enough to
encompass the test set ones, with means and medians in reasonable agreement. Some discrepancies can also
be observed, for example in the difference between the median of the distribution of COM shifts of the
constrictor muscle on the test and generated sets. Given the overall good agreement presented by both
figures 5(a) and (b), it can be concluded that DAMHN is capable of modelling volume and COM shift
distributions present in the training and test set.

An illustration of the generative capabilities of the model is shown in figure 6. The figure displays for 5
patients in the test set, in the first column the pCT, in the second column one of the rCTs and in the following
3 columns three patient specific generated CT images with corresponding contours (the left parotid colored
in red and the right parotid colored in orange, the spinal cord in green and the constrictor muscle in blue).
As already mentioned in table 1, the flattening and medial movement of the parotids is expected. This feature
is illustrated for patient 4 through the yellow arrows in the planning and generated images shown in columns
3–5. Patient 2 displays shrinking in the right parotid (in orange) and flattening of the left parotid (in red) as
illustrated by the yellow arrows. The model also appears to predict neck pose shifts, as illustrated by the
changing air gap in the oral cavity of patient 1 in the second generated image or by the change in the shown
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Figure 7. Patient specific generative performance. The figures display boxplots (with the whiskers extending up to 1.5 · IQR,
IQR= Q3 −Q1) with the x axis showing the organ and the y axis giving either the absolute volumetric changes or the COM shifts
for the given organ. The median of the distributions is plotted using the continuous orange line while the mean is plotted using
the dotted green line.

dentition of patient 5 in the generated image 1. Weight loss, which is usually observed in RT patients, is
prominent in the comparison between the pCT and the generated images for patient 4. Minimal overlap
between the parotid glands and the mandible bone is visible for patient 1 on the pCT and the rCT. The
generated images also display this feature, which illustrates the anatomical coherence of the generated
anatomies. While it is difficult to definitively assert the feasibility of the generated image, the figure supports
the conclusion that the model is capable of generating realistic anatomies that are coherent and involve
posture shifts, shifting air gaps, weight loss and the typical expected anatomical changes in the parotid glands.

To further test the population based model, figure 7 shows patient-specific boxplots of the anatomical
changes in the parotid glands. Figure 7(a) displays for each patient in the test set, the true volumetric change
(denoted by the patient number and -T) and the generated volumetric changes by drawing 100 samples
(denoted by the patient number and -G). In terms of the volume change distributions illustrated in
figure 7(a), the model largely predicts broad enough distributions that encompass the true ones. This is the
case for patients 1, 3, 4, 6, 7, 8 and 9. Moreover, the means and medians are in reasonable agreement for
patients 1, 6, 7 and 8. Discrepancies in the means and medians can be observed for patients 2, 4 and 9. In
terms of COM shift distributions, the model produces distributions with large enough ranges to encompass
the test set ones, except for patient 5. The means and medians are in reasonable agreement for most patients,
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with the exception of 5, 6 and 9. The discepancies on a per-patient level could be explained by an insufficient
number of recorded rCTs for those patients but also by the non-patient specific nature of the model. While
the model attempts to provide patient specificity by allowing the parameters of the prior distribution to
depend on the pCT and associated masks, the model optimizes the log likelihood of the full dataset, therefore
resulting in a sample (or population) based model.

4.5. Comparison to DiffuseRT
The generative performance of DAM with respect to PCA based models has already been documented in the
previous work of Pastor-Serrano et al (2023), where it was shown to outperform them. Thus, the generative
performance of this model was compared with the recently published DDPM of Smolders et al (2024).
DDPM is also a generative deep learning model that approximates a data distribution, by inverting a gradual
multi-step noise addition process. Similarly to the results shown by DDPM, figure 8 displays for all organs,
the true (training set) and generated volume change distributions (in figures 8(a), (b), (e) and (f)) and COM
shift distribution (in figures 8(c), (d), (g) and (h)) together with a kernel density estimate for each. The
kernel density estimate was computed using the Scikit library (Pedregosa et al 2011) and a kernel bandwidth
defined as one tenth of the range of values in the distribution. Both volume change and COM shift
distributions that the DAMHN training set exhibits are qualitatively different than the ones reported by
DDPM, displaying less bimodality. This difference is likely attributable to the differences in the patient
cohort and the specifics of treatment delivery (e.g. the chosen number and direction of beams). The kernel
density estimates for the training and generated sets are generally in agreement, with disagreement occurring
at the ends of the distributions, as is visible in figures 8(g) and (h).

DAMHN and DDPM were also compared in terms of the Wasserstein distance (WD) between the true
(training set) and generated anatomical changes distributions. The WD is a metric for probability
distribution similarity, with a value of zero occurring when the distributions are the same and larger values
indicating more different distributions. To compute it, the volume changes and COM shifts in the organs for
both training and generated sets were normalized by the mean and SD of the true (training set) values (to
counter the scaling effect of the WD based on the range of the data) and thereafter input into the SciPy
implementation (Virtanen et al 2020). Table 3 shows the comparison between DDPM and DAMHN. The
qualitative agreement observed in figure 8 is also illustrated by the low WDs achieved by DAMHN, which is
comparable to the ones obtained by DDPM for all metrics.

4.6. Latent space analysis
Given that DAMHN encodes the information between the planning and rCTs into the latent space, the effect
of varying individual latent variables while keeping the others fixed on organ volume changes and COM
shifts was investigated. Figure 9 illustrates the volume changes for each organ (left parotid, right parotid,
spinal cord and the constrictor muscle) that occur when an individual latent variable is varied from−5σ to
5σ, while the others are kept fixed to 0. Similarly, figure 10 displays the effect of varying individual latent
variables on the COM shift.

Figure 9 shows consistently larger volumetric lossess in the parotid glands in comparison to spinal cord
and constrictor muscle. This is expected, given that the spinal cord is smaller in volume than the parotid
glands and is usually avoided during irradiation. Figure 9 also shows the relatively smooth latent space that
the model learns and that the parotid glands volume changes are comparable, indicated the largely bilateral
nature of the patient cohort. Variables that induce larger volumetric losses in one of the two parotids, could
point to the presence of patients with unilateral fields, as non-irradiated parotids were shown to shrink less
during treatment than radiated ones (Vásquez Osorio et al 2008). Figure 10 shows that for both parotids, the
COM deformations are roughly similar in absolute value. This is in line with the expectation, set by the work
of Vásquez Osorio et al (2008), that both parotids move in the medial direction with similar amplitudes.
Moreover, figure 10 also shows that the learned latent space is smooth.

Volume and COM shifts are just one measure of latent space variations. Figure 11 shows, for a patient in
the test set, a cut of the images produced when latent variables with numbers 1, 7, 20, 21 and 32 are varied.
The particular latent variables were chosen due to the large changes they induce, as visible in figures 9 and 10.
The first column of figure 11 displays the pCT, while the remaining columns display the image, the associated
contours (as before the left parotid in red, the right parotid in orange, the spinal cord in green and the
constrictor muscle in blue) and the overlaid deformation vector field that is created by the individual latent
variables (with the value it was set to given in the title of the figure). As was already visible in figures 9 and 10,
latent variable 7 induces large changes in the right parotid for extreme values of the latent variable. This
effect is also observed through the deformation vector field around this structure. Latent variable 21 displays
a similar behavior, for both the left and right parotids. Figures 9 and 10 also show that latent variable 1 and
32 generate deformation fields in the oral cavity, perhaps pointing to shifting patient poses. A limitation of
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Figure 8. Comparison of true and generated anatomical change distributions. The figures display for all organs (left and right
parotid, constrictor muscle and spinal cord) the true and generated anatomical change (volume change and COM shift)
distributions, their corresponding kernel density estimates and the WD between the true and generated distributions in the title.

Table 3.Wasserstein distance comparison between the best performing DDPMmodel of Smolders et al (2024) and DAMHN. The table
displays the Wasserstein distance between the true (training set) and generated volume loss and COM shift distributions in the left and
right parotids.

Metric Structure

Model

DDPM DAMHN

∆ Volume Left parotid 0.60 0.12
Right parotid 0.28 0.38

COM shift Left parotid 0.31 0.37
Right parotid 0.22 0.19
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Figure 9. Latent space variations. The figure displays the organ (left parotid in red, right parotid in orange, spinal cord in green
and constrictor muscle in blue) volume change that individual latent variables cause. The latent variables were varied from−5σ
to 5σ while the remaining variables were set to 0.

the framework, is that the latent variables are not encouraged to generate non-correlated deformations and
therefore, it is difficult to relate specific latent variables to specific induced anatomical changes.

5. Conclusion

This work presented a probabilistic deep learning model for generating future anatomical changes in H&N
RT patients. The model was trained on a training set coming from 83 PT H&N patients and was assessed on
test set coming from 9 patients. On the test set the model achieved a DICE score of 0.83 and an NCC score of
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Figure 10. Latent space variations. The figure displays the organ (left parotid in red, right parotid in orange, spinal cord in green
and constrictor muscle in blue) COM shift that individual latent variables cause. The latent variables were varied from−5σ to 5σ
while the remaining variables were set to 0.

0.60 using 32 latent variables. The model produces volumetric changes and COM shift distributions that are
broad enough to capture the real, observed ones, with the predicted means being close to the real ones.
DAMHN was compared to the state of the art DDPM for H&N anatomical changes presented by Smolders
et al (2024). For both parotid glands, DAMHN achieved similar WDs to the ones obtained by the DDPM
model between the true and generated volume loss distributions (0.12 versus 0.60 and 0.38 versus 0.28) and
between the COM shift distributions (0.37 versus 0.31 and 0.19 versus 0.22). The latent space analysis
showed that the model learns a smooth latent space, that displays some correlation between the latent
variables (which was not discouraged in the model framework). Although this work focused on data coming
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Figure 11. Latent space visualization. The figures display in the first column for a given patient, the pCT and associated organs
(left parotid in red, right parotid in orange, spinal cord in green and constrictor muscle in blue). In the following columns the
figure displays in the title the chosen latent variable number (and the value it was set to), the generated image and its organs.
Overlaid is plotted the deformation vector field that the model learns, where the color represents the magnitude of the field.

from a PT patient cohort, the methodology is valid for a wider range of problems in adaptive RT, including
adaptive photon RT.

There are several limitations of the current methodology and model framework and points for future
improvement and studies. First, the dataset contained a different number of rCTs for each patient and is
therefore biased towards patients with larger anatomical changes (as those patients are more likely to be
re-imaged). This bias was not accounted for in this model and likely leads to the model predicting larger than
observed anatomical changes for patients with small ones. However, given that a dataset with larger
anatomical changes is more difficult to encode in the latent space, a dataset that contains rCTs from patients
with small anatomical changes should not significantly decrease the overall population accuracy of DAMHN.
Second, a limitation of the model is that, despite allowing the parameters of the prior distribution to vary on
an individual patient level, the model is intrinsically a population based one, as it optimizes the log
likelihood of observing the full dataset. This, coupled to a limited number of repeat CTs in the dataset, leads
to degraded accuracy for some patients. Third, if the large number of structures present in the H&N area
would be included in the dataset, it is expected that the model would require a change in architecture
(specifically an increase in the number and size of layers and latent space dimensionality) to correctly model
those datasets. More generally, the necessary minimal architecture and the optimal weights of the different
loss terms should be further investigated. Moreover, the inclusion of the regularization term that penalizes
large gradients in the deformation could be detrimental for anatomical regions where such changes do occur

17



Phys. Med. Biol. 70 (2025) 065011 T Burlacu et al

(e.g. tongue position). Fourth, the comparison between DAMHN and the model of Smolders et al (2024), is
ultimately difficult due to the different datasets that the models were trained and evaluated on. Thus, both
models should be trained and evaluated on the same sets that contain more structures than they presently do
(e.g. additional useful structures could be the submandibular glands and the oral cavity). Fifth, the structure
of the dataset could be changed from pCT–rCT1, pCT–rCT2, and so on to pCT–rCT1, rCT1-rCT2 and so on.
In doing so, a model that predicts changes on the time scales on which patients are re-imaged (weekly or
daily depending on the workflow) could be obtained. Such a model would be applicable to an adaptive PL
approach or for plan quality assurance. Moreover, a time variable could be included in the architecture to
encode information in addition to the rCTs. Sixth, as anatomy change predictions has applications in dose
change predictions, an analysis of the effect on dose characteristics (including a robustness analysis) of
delivering treatment plans to the generated images is a natural next step for this model. Next to such a study,
work on additional standards (beyond volume changes and COM shifts) for assessing the degree to which
generated CT images are realistic should be established.

Overall, DAMHN was capable of quickly generating hundreds of realistic images of inter-fractional
anatomies. As already mentioned, such a model has a number of applications in the RT workflow, such as
improving robust optimization, as a component in plan quality assurance in OAPT or in expanding the PL
approach.
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