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Stellingen

behorende bij het proefschrift

On the dynamics of non-planar thin liquid films

Maulik S. Shah

1. Het berekenen van de deterministische dunnefilmvergelijking met een aanvan-
kelijke witte ruisverstoring is een kosteneffectievere manier om de levensduur
van de film te bepalen dan een stochastische dunne-filmoplosser.

Hoofdstuk 3 van dit proefschrift

2. Het voorspellen van de filmlevensduur op basis van numerieke integratie van de
stochastische dunnefilmvergelijking is sterk afhankelijk van de tijdstapgrootte
wanneer de upwindingconcepten worden gebruikt in de convectieveruisterm.

Grün et al., 2006

3. Schalingswetten uit de literatuur die de levensduur van dunne films relateren
aan hun radii, zijn ongeldig voor films met grote radii.

Manev et al., 1997

4. De sterkte van ruis is belangrijker dan zijn functionele vorm bij het in kaart
brengen van een morfologisch fasediagram voor dunne films op substraten met
periodieke heterogeniteiten.

Thiele et al., 2003; Manu Vishal, MSc thesis, 2019

5. Meerdere oplossingsrealisaties van de deterministische dunnefilmvergelijking
met pseudo-witte ruis als initiële voorwaarde tonen aan dat het systeem chao-
tisch is.

Arvind Pari, MSc thesis, 2019

6. Een te grote nadruk op leiderschap verhult het belang van het spelen van tweede
de viool.

7. Vasthouden aan oma’s recepten levert meer op dan over stappen op superfoods.

8. Technische universiteiten zouden een minimum curriculum van geestesweten-
schappen, kunst en sociale wetenschappen moeten hanteren om gevoelige, in
plaats van koude ingenieurs de wereld in te sturen.

9. Het ongemak van analoog is esthetisch aantrekkelijker dan het gemak van digi-
taal.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren, prof. dr. ir. M.T. Kreutzer en prof. dr. ir. C.R. Kleijn.



Propositions

accompanying the thesis

On the dynamics of non-planar thin liquid films

Maulik S. Shah

1. Computation of the deterministic thin film equation with an initial white noise
perturbation is a more cost-effective way to determine the film lifetimes com-
pared to that by a stochastic thin film solver.

Chapter 3 of this thesis

2. Film lifetimes predicted on the basis of numerical integration of the stochastic
thin film equation strongly depend on the time step size when the upwinding
concepts are used in the convective noise term.

Grün et al., 2006

3. Scaling laws reported in the literature that relate the lifetime of thin films to
their radii are invalid for films with large radii.

Manev et al., 1997

4. The strength of noise is more important than its functional form in mapping a
morphological phase diagram for thin films on substrates with periodic hetero-
geneities.

Thiele et al., 2003; Manu Vishal, MSc thesis, 2019

5. Multiple solution realizations of the deterministic thin film equation with pseudo
white noise as an initial condition show that the system is chaotic.

Arvind Pari, MSc thesis, 2019

6. An over emphasis on leadership obscures the importance of playing second fid-
dle.

7. Sticking to grandma’s recipes has more return on investment than switching to
superfoods.

8. Technical universities should employ a minimum curriculum on humanities, art
and social sciences to send sensitized, rather than cold, engineers out into the
world.

9. The inconvenience of analog is aesthetically more appealing than the conve-
nience of digital.

These propositions are considered opposable and defendable and as such have been
approved by the promotors, prof. dr. ir. M.T. Kreutzer and prof. dr. ir. C.R. Kleijn.
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Summary

Thin liquid films are fluid structures with perpendicular length scale, typically of
the O(< 10 µm), being much smaller than the lateral length scale, typically of the
O(> 1 mm). From foams and emulsions to tear films on eyes, they widely occur in
industrial processes and natural phenomena. Depending on the wetting energies be-
tween its different interfaces, it is susceptible to developing an instability which can
lead to its subsequent rupture. It is a great example of how dynamics at microscopic
scale influence large scale physical behaviour, with instabilities at micron scale influ-
encing a foam collapse or the blinking action of an eye.

The subject of this thesis focuses on non-planar thin liquid films that are found, for
instance, in between two foam bubbles or in partial wetting systems in microfluidic
channels. The dynamics of such non-planar films is governed by two thinning mecha-
nisms. The first mechanism involves drainage due to curvature differences, and results
in a localized depression, commonly referred to as a dimple, at the connection between
the planar and curved regions. The second thinning mechanism involves growth of
a fluctuation originated instability arising from the competition between a stabiliz-
ing surface tension and destabilizing van der Waals forces. For this second thinning
mechanism to manifest, the film’s lateral length (radius) needs to be large enough to
accommodate unstable waves to fit within the film. We study thin film dynamics, by
performing numerical simulations that incorporate all these crucial physical processes
in the thin film equation.

In chapter 2, we address one of the open questions of how the lifetime, tr , of non-
planar films depend on the fluid properties of the film. We use a semi-infinite film
geometry with the planar part large enough so that it allows unstable waves to fit
within the film. Together with the addition of a curved portion to a planar portion of
the film, the semi-infiniteness of the planar portion, allows both the afore-mentioned
thinning mechanisms to play a role in determining the thinning dynamics and lifetime
of the film. Non-dimensionalizing the system yields one independent dimensionless
parameter, �, which is the ratio between the drainage pressure and the initial van der
Waals pressure. In our numerical simulations, we find tr � ��10=7, a result that is

xi



xii Summary

in fair agreement with our mechanistic model based on analytical solutions and also
with experimental results of lifetimes of non-planar films in partial wetting systems.

Having developed a framework to determine film lifetimes, in chapter 3 we add ther-
mal fluctuations that naturally occur at the gas-liquid interface into the framework
of the thin film equation. We do so to resolve a long standing debate on the rele-
vance of thermal fluctuations in determining the lifetime of a non-planar thin film.
Non-dimensionalizing the system yields two independent dimensionless parameters,
namely the strength of drainage, � and strength of thermal noise, � . Our stochastic
simulations show that there exists a temperature dependent transition value of � D �tr ,
where both the afore-mentioned film thinning mechanisms are equally dominant. For
large values of � � �tr , films predominantly thin due to a localized dimple and their
lifetimes are independent of � . In this dimple-dominated regime, film lifetimes scale
with the earlier reported scaling relation of tr � ��10=7. For small values of � � �tr ,
film thinning proceeds via growth of waves triggered by thermal fluctuations, and film
lifetimes become independent of �. In this fluctuation-dominated regime, film life-
times scale with the strength of the thermal noise as tr � ln.

p
2�/˛ , with ˛ D 1:15

explained based on a linear stability theory. Our simulations show, for the first time, if,
when and why are thermal fluctuations relevant in determining lifetimes of non-planar
thin liquid films.

After identifying the regime where thermal fluctuations are insignificant for the thin-
ning dynamics and lifetimes of non-planar films, we next focused on the influence of
initial film features, i.e. film radius and thickness on the lifetimes in the fluctuations-
free regime. We therefore relax the semi-infinite film geometry and allow for finite
film radius to be an independent parameter in our system. In this work, we resolve the
debate on the various reported dependencies of lifetimes on the film radii, discrepan-
cies that arise due to simplifying assumptions of the full thin film model. Our numer-
ical simulations show distinctly different thinning dynamics and scaling relations for
small and large radii films. For small radii films, film thinning occurs across the entire
film length with a dimple at the connection between the planar and the curved portion
of the film. The lifetimes scale with initial film features as, tr � h0oR

10=7

f ilm
. These nu-

merical results for small films are in fair agreement with our mechanistic model. For
large radii films, film thinning occurs as a localized dimple at the connection between
the flat and the curved portion, akin to the film thinning observed for semi-infinite thin
films. The lifetimes scale with initial film features as, tr � h

5=7
o R0

f ilm
, in line with

the scaling relations obtained for semi-infinite films in chapters 2 and 3. Our work
provides insight into the dynamics of film thinning and provides scaling rules on how
film lifetimes depend on the initial film features for small and large films.

Overall, in this thesis, we developed a numerical framework to study the thinning dy-
namics and lifetimes of non-planar films and corroborated our numerical results using
mechanistic models. We used this framework, firstly to determine how the film life-
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times depend on fluid properties, and secondly, to resolve, at least to a certain extent,
debates in the state-of-the-art literature. Although numerical simulations are often
limited by the extent of the parameter space it can cover, one of the key advantage
of them is that the many simplifications that are often necessary to provide analytical
results, do not have to be made anymore. Furthermore, numerical simulations allowed
us to systematically study and identify regimes, where one physical mechanism dom-
inated over the other. We conclude this thesis with potential research opportunities to
address other open questions in the literature, using our framework.





Samenvatting

Dunne vloeistoffilms zijn vloeistofstructuren waarbij de loodrechte lengteschaal, ty-
pisch van O(< 10 µm), veel kleiner is dan de laterale lengteschaal, typisch van
O(> 1 mm). Ze komen voor in industriële processen en in de natuur: van schui-
men en emulsies tot traanfilms op ogen. Afhankelijk van de bevochtigingsenergieën
tussen de verschillende grensvlakken is het mogelijk dat een instabiliteit ontstaat die
tot het barsten van de film kan leiden. Dit is een uitstekend voorbeeld van de invloed
van dynamica op microscopische schaal op fysisch gedrag op grote schaal, gezien in-
stabiliteiten op micrometerschaal het instorten van schuim of het knipperen van een
oog beïnvloeden.

Het onderwerp van dit proefschrift richt zich op niet-vlakke vloeistoffilms die zich
bijvoorbeeld voordoen tussen twee schuimbellen of in deels bevochtigde systemen
in microfluïdische kanalen. De dynamica van dergelijke niet-vlakke films wordt be-
paald door twee verdunningsmechanismen. Het eerste mechanisme omvat drainage
door krommingsverschillen en resulteert in een lokale indrukking, ook wel een kuiltje
genoemd, bij de verbinding tussen vlakke en gekromde delen. Het tweede verdun-
ningsmechanisme omvat de groei van een instabiliteit die uit een fluctuatie is voortge-
komen en die ontstaat uit de stabiliserende oppervlaktespanning aan de ene kant en de
destabiliserende vanderwaalskrachten aan de andere kant. Dit tweede verdunningsme-
chanisme doet zich slechts voor als de laterale lengte van de film (radius) zo groot is
dat onstabiele golven in de film passen. We bestuderen de dynamica van dunne films
door numerieke simulaties uit te voeren waarin alle cruciale fysische processen in de
dunnefilmvergelijking worden meegenomen.

In hoofdstuk 2 adresseren we de onbeantwoorde vraag hoe de levensduur, tr , van
niet-vlakke films afhangt van de vloeistofeigenschappen van de film. We beschouwen
een half-oneindige filmgeometrie met een vlak deel dat dusdanig groot is dat onsta-
biele golven in de film passen. Samen met de toevoeging van een gekromd deel aan
een vlak deel van de film zorgt de half-oneindigheid van het vlakke deel ervoor dat
beide eerder genoemde verdunningsmechanismen een rol spelen in het bepalen van de
verdunningsdynamica en de levensduur van de film. Het dimensieloos maken van het

xv



xvi Samenvatting

systeem levert een onafhankelijke dimensieloze parameter � op die gelijk is aan de ver-
houding tussen de drainagedruk en de initiële vanderwaalsdruk. Uit onze numerieke
simulaties bepalen we dat tr � ��10=7, wat redelijk overeenkomt met ons mecha-
nistische model dat gebaseerd is op zowel analytische oplossingen als experimentele
resultaten van de levensduur van niet-vlakke films in deels bevochtigde systemen.

Nu we een raamwerk hebben ontwikkeld om de levensduur van de film te bepalen,
voegen we in hoofdstuk 3 de thermische fluctuaties die natuurlijk voorkomen aan het
gas-vloeistofgrensvlak toe aan dit raamwerk van de dunnefilmvergelijking. We doen
dit om een langdurig debat over het belang van thermische fluctuaties voor de le-
vensduur van een niet-vlakke vloeistoffilm te beslechten. Het non-dimensionaliseren
van het systeem levert twee onafhankelijke dimensieloze parameters op: de drainage-
sterkte � en de thermischeruissterkte � . Onze stochastische simulaties tonen aan dat
er een temperatuurafhankelijke transitiewaarde � D �tr bestaat waar beide eerderge-
noemde filmverdunningsmechanismen even belangrijk zijn. Voor grote waarden van
� � �tr verdunnen films vooral door een plaatselijk kuiltje en is hun levensduur on-
afhankelijk van � . In dit kuitjes-gedomineerde regime schaalt de filmlevensduur met
de eerdergenoemde schalingsrelatie tr � ��10=7. Voor kleine waarden van � � �tr
verloopt filmverdunning door de groei van golven die worden veroorzaakt door ther-
mische fluctuaties en wordt de filmlevensduur onafhankelijk van �. In dit door fluc-
tuaties gedomineerde regime schaalt de levensduur van de film met de sterkte van de
thermische ruis als tr � ln.

p
2�/˛ , waar ˛ D 1:15 wordt verklaard met behulp van

een lineaire stabiliteitstheorie. Onze simulaties tonen voor het eerst aan of, wanneer
en waarom thermische fluctuaties relevant zijn voor de bepaling van de levensduur
van niet-vlakke, dunne vloeistoffilms.

Na identificatie van het regime waarin thermische fluctuaties niet significant zijn voor
de verdunningsdynamica en de levensduur van niet-vlakke films, richtten we ons op de
invloed van de initiële filmkenmerken, dat wil zeggen de filmradius en de filmdikte, op
de levensduur in het fluctuatieloze regime. Daartoe wijken we af van de half-oneindige
filmgeometrie en nemen we de filmradius als een onafhankelijke systeemparameter. In
dit onderzoek beslechten wij het debat tussen de verschillende gerapporteerde afhan-
kelijkheden van de levensduur op de filmradii, waar de verschillen ontstonden door
aannames ter versimpeling van het volledige dunnefilmmodel. Onze numerieke si-
mulaties tonen duidelijk verschillende verdunningsdynamica en schalingsrelaties aan
voor grote en kleine filmradii. Bij films met een kleine radius vindt verdunning over
de gehele filmlengte plaats met een kuiltje bij de verbinding tussen het vlakke en het
gekromde deel van de film. De levensduur schaalt met de initiële filmkenmerken als
tr � h0oR

10=7

f ilm
. Deze numerieke resultaten voor kleine films zijn in redelijke over-

eenstemming met ons mechanistische model. Bij films met een grote radius vind
verdunning lokaal plaats aan een kuiltje bij de verbinding tussen het vlakke en het
gekromde deel, zoals bij de filmverdunning van half-oneindige dunne films. De le-
vensduren schalen met de initiële filmeigenschappen als tr � h

5=7
o R0

f ilm
, wat in lijn
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ligt met de schalingsrelaties voor half-oneindige films uit hoofdstuk 2 en 3. Ons on-
derzoek schept inzicht in de filmverdunningsdynamica en levert schalingsregels op
voor de afhankelijkheid van de levensduur van de film op de initiële filmkenmerken
voor kleine en grote films.

Samenvattend hebben we in dit proefschrift een numeriek raamwerk ontwikkeld om
de verdunningsdynamica en de levensduur van niet-vlakke films te besturen. Daar-
bij hebben mechanistische modellen onze numerieke resultaten bevestigd. We heb-
ben dit raamwerk op de eerste plaats gebruikt om te bepalen hoe de filmlevensduur
afhangt van de vloeistofeigenschappen, en op de tweede plaats om, tot op zekere
hoogte, debatten in de huidige literatuur de beslechten. Hoewel numerieke simula-
ties vaak slechts een beperkte parameterruimte kunnen afdekken, hebben ze als groot
voordeel dat er geen noodzaak meer is voor de vele vereenvoudigingen die bij analyti-
sche methoden vaak moeten worden toegepast. Bovendien konden we met numerieke
simulaties systematisch regimes, waarin een bepaald fysisch mechanisme bepalend is,
onderscheiden en bestuderen. We sluiten dit proefschrift af door voorstellen te doen
voor vervolgonderzoek waarin met ons raamwerk andere open vragen in de literatuur
kunnen worden beantwoord.
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2 Chapter 1

1.1 Motivation

The presence of thin liquid films is ubiquitous in daily lives; be it in biological pro-
cesses such as the removal of aqueous humour by the blinking of an eye, or in various
industrial applications, such as in the production of foams and emulsions in food, and
paints and coatings in consumer goods. The lifetime of the thin liquid films is of
crucial importance, as it for example determines how the texture of food is preserved
or how the multiphase mixture produced in oil and gas industries can be effeciently
separated.

Research on the dynamics and stability of thin liquid films in natural and industrial
settings has spanned for more than a century1–5, including studies related to the co-
alescence of bubbles in foams6–10. Despite all research that has been performed, there
are still important gaps and inconsistencies in existing understanding and predictive
models. This was the reason for NWO, ISPT and various process technology compan-
ies to initiate a research project on the stability of liquid films, foams and emulsions
within the NWO program “Process Technology Fundamentals”, funded by ISPT as a
part of the water processing cluster.

The physics governing bubble coalescence occurs over a range of interconnected
length scales. The bulk motion of bubbles occurs at macroscale, the approach of
bubbles occurs at mesoscale and the evolution of the thin film that forms between the
bubbles upon close contact occurs at micro to nanoscale. Within the NWO/ISPT pro-
ject, the stability of foams and emulsions was studied at these three different scales in
the form of three separate PhD projects. The research described in this thesis aimed at
contributing towards the micro to nanoscale aspects of this particular area of scientific
research.

1.2 Field of research

A key question pertaining to the stability of foams is whether the thin liquid film
between bubbles is stable, and if not, a logical follow-up question is how the thinning
dynamics and lifetime of the film depend on fluid properties and process conditions.
This section introduces the basic physics that governs the stability and dynamics of
thin liquid films as a background to this thesis. The most well studied configuration
is a film of uniform thickness, referred to as a planar film (see left schematic in Fig.
1.1), such that we use this configuration as a starting point. Thereafter, we continue
with the configuration of interest in this thesis: non-planar films (see right schematic in
Fig. 1.1), that are thicker at the edges than in the center. Besides the basic physics, this
section also presents the state-of-the-art, revealing the gaps in current understanding.
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h h
r l

Figure 1.1 Two thin liquid film configurations commonly encountered in literature: (left) planar
film on a solid substrate and (right) non-planar film between two bubbles.

Dynamics of thin films: A distinctive feature of thin liquid films is that their per-
pendicular length scale, h (thickness), is much smaller than their lateral length scale, l
(length in Cartesian, radius in cylindrical coordinates, respectively). This slenderness
of the films makes it possible to describe the flow in them by simplifying the Navier-
Stokes equation using the lubrication approximation. On integrating the approximated
Navier-Stokes equation over the local film thickness, and on taking into account the
pressure contributions arising from surface tension and intermolecular van der Waals
forces, the well known ‘thin film equation’ is obtained that describes the evolution of
the free interface in time and space2,3. The thin film equation, for a two dimensional
Cartesian system, is given as
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where, �,  , A and P are fluid viscosity, interfacial tension, Hamaker constant and
pressure in the thin liquid film.

Planar films: Planar thin liquid films have been extensively studied in the context
of (de-)wetting of films on solid substrates2,5,11,12. Their stability is governed by the
competition between stabilizing surface tension forces that try to minimize the addi-
tional interfacial area created by thickness perturbations, and destabilizing attractive
van der Waals forces that bring the free gas-liquid interface closer to the solid sub-
strate, and thus enhances thickness perturbations. This competition may result in the
amplification of perturbations that are naturally present on the interface due to the
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Figure 1.2 (colour online) Schematic of an evolution of a planar thin liquid film. The leftmost
figure corresponds to a film of uniform thickness. When perturbed, the next schematic shows the
competition between stabilizing surface tension forces (yellow dashed arrows) and destabilizing
van der Waals forces (red dashed arrows, with different thicknesses of the arrows signifying that
van der Waals forces increase with decreasing film thickness). The rightmost schematics show
dampening (amplification) of perturbations for films with lateral length scale smaller (larger)
than the critical film length delineating the neutral stability of the film.

thermal motion of molecules13, resulting in the growth of waves, leading to an in-
stability, that induces rupture of the film. Whether a film is stable against such thermal
fluctuations has been studied in the literature using several approaches, including lin-
ear stability analysis6,14 and non-linear simulations15–17. As schematically shown in
Fig. 1.2, these studies teach us that if the length of the planar film is larger than the
length scale of the afore-mentioned instability, then the film is inherently unstable and
ruptures with patterns that are characterized by the length scale associated with the
fastest growing wave of the instability12,18,19.

Although morphological patterns found in experiments are well-described by linear
stability theory and simulations, there is a mismatch between the lifetimes of the films
found in experiments and in simulations that do not include the continuous presence
of thermal fluctuations at the interface of these films. Grün et al. 20 showed that the
lifetimes of planar films predicted by simulations that accounted for thermal fluc-
tuatons were an order of magnitude smaller than the ones without and were much
closer to those found in experiments12. Diez et al. 21 emphasized the relevance of spa-
tial correlations in thermal noise on determining the film lifetimes and morphology
in metallic planar films. Upon dewetting of a planar film, in the subsequent stages
of film evolution, Nesic et al. 22 showed that thermal fluctuations play an important
role in determining the time scales for coarsening of droplets. These first accounts
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Figure 1.3 Thinning mechanisms in non-planar thin liquid films. The thinning of the planar
portion of the film is governed by the competition between the surface tension and van der Waals
forces, as discussed in Fig. 1.2. The curved edges ensure an additional thinning mechanism due
to drainage from the planar portion of the film to the low pressure curved portions. The interplay
between these two thinning mechanisms governs the film dynamics and its lifetime.

on planar films point towards the importance of including thermal fluctuations in the
description of planar film evolution.

Non-planar films: Many industrial applications and natural phenomena involve
films that are not planar, but are curved near their edges. Typical examples include the
film that form between two bubbles, the wetting film between an elongated bubble and
the walls of non-circular capillaries23, the tear film on an eye lid24 and the soap film
held on a wire frame25. The presence of curved regions imposes a localized pressure
gradient that drains the fluid from the planar portion of the film towards this low pres-
sure curved portion, often leading to a localised depression called a dimple44,45. The
dynamics of such non-planar films is hence governed by two thinning mechanisms,
namely, (1) drainage due to curvature differences and (2) growth of a fluctuations-
originated instability, which arises from the competition between the stabilizing sur-
face tension forces and the destabilizing van der Waals forces. One of the unresolved
aspect pertaining to non-planar films lies in developing an approach to combine the
afore-mentioned two thinning mechanisms and subsequently determine the lifetime of
a non-planar film as a function of its fluid and geometrical properties.

A second unresolved aspect in the context of non-planar films lies in the relevance
of thermal fluctuations. Unlike for planar films, whether and when thermal fluctu-
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ations determine the film lifetime of non-planar films is debated. The classical pa-
per by Vrij 6 postulates that a non-planar film thins uniformly up to a certain critical
thickness. This critical thickness marks the neutral stability of the film against the
instability arising from the competition between stabilizing surface tension forces and
destabilizing van der Waals forces. On further thinning, long-wavelength pertubations
at the film interface amplify, and their growth outruns uniform thinning due to drain-
age. In addition to the seminal work by Vrij 6 , which highlights the role of thermal
fluctuations in determining film lifetime, more recent experiments26,27 and molecular
dynamic simulations28 emphasized the role of thermal fluctuations in droplet coales-
cence. In contrast, Vakarelski et al. 29 showed that their fluctuations-free theory was
sufficient to explain coalescence times for small microbubbles in AFM experiments.
In small radii films found in their experiments, the unstable waves (in addition to the
fastest growing wave) did not fit within the film radii. This has been identified in the
literature29,30 as one of the reasons for the lack of relevance of fluctuations. In or-
der to resolve whether or not the afore-mentioned results in the literature on the role
of thermal fluctuations in film thinning are conflicting, it therefore seems important
to take the lateral dimension of the film into account. We here distinguish between
small (finite) and large (semi-infinite) film radius, where the largeness and smallness
of the film radius signifies whether or not the film radius encompasses at least one
wavelength of the fastest growing wave. Furthermore, for films with finite radius,
the film dynamics do depend on the film radius, whereas the film dynamics become
independent of the film radius for a film with semi-infinite lateral length.

Apart from the debate on the role of thermal fluctuations in determining film lifetimes,
a third unresolved aspect of non-planar films lies in developing a simple theoretical
model that includes all relevant physical mechanisms, i.e. drainage due to dimple
formation and subsequent thinning due to van der Waals forces, in order to predict how
the film dynamics and lifetime depend on the film features. For films with finite-sized
radii found in Scheludko cell experiments31–33, a variety of conflicting scaling rules
for the film lifetime, tr , on the initial film radius, Rf ilm, have been reported1,34,35,

non-planar 
thin liquid films

large (semi-infinite)
film radius

without thermal fluctuations
tr = f(fluid properties, 

   process conditions)

with thermal fluctuations
tr = f(fluid properties, 

  process conditions, T)

small (finite sized)
film radius

without thermal fluctuations
tr = f(fluid properties, 

  process conditions, Rfilm)

Figure 1.4 Schematic representation of the research topics investigated in this thesis within an
overarching research field of non-planar thin liquid films.
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with tr � R˛f ilm, where ˛ has been found to be 21, 4=534 and 3=435. The underlying
assumptions in these works include the plane-parallel nature of the drainage1 and
some refinements that superimpose translatory35 or quasi-static34 oscillations on the
plane-parallel interface that sustain throughout the film evolution. These assumptions
have been challenged in the literature30 based on their esoteric nature and the lack of
applicability of these results to experimental systems other than those performed in
Scheludko-cells.

In the next section, we postulate research questions that this thesis addresses with
respect to the three unresolved aspects discussed above in the context of semi-infinite
non-planar films (sections §1.3.1, without thermal fluctuations and §1.3.2 with thermal
fluctuations) and finite-sized films (section §1.3.3). Fig. 1.4 shows the overarching
research topic that has been studied in this thesis. To keep the problem simple, we
first develop a framework to study the dynamics and lifetime of a non-planar film
in the absence of thermal fluctuations. Upon developing such a framework, we add
thermal fluctuations at the film interface in the problem description and identify when
they play a role. Based on these insights, we retrospectively justify our choice of
leaving out thermal fluctuations to answer the research questions in section §1.3.1.
For films with finite radius studied in section §1.3.3, we leave out thermal fluctuations
since the unstable waves do not fit within the radius of the film29,30.

1.3 Research questions

1.3.1 Lifetime of a semi-infinite non-planar film

To be able to appreciate why predicting lifetime of a semi-infinite non-planar thin
liquid film is important, we first highlight its significance in digital microfluidics, and
subsequently discuss the relevant state-of-the-art followed by postulating the research
question.

The understanding of the motion of elongated bubbles (or droplets) in microfluidic
channels is crucial for designing lab-on-a-chip devices36. In such multiphase flows, a
thin liquid film of the carrier fluid may surround the bubbles23,37,38. The physics be-
hind the (de-)wetting of these films is well understood for circular channels wherein
the films are conformal (of uniform thickness) with respect to the shape of the chan-
nels2,39,40 but not for non-circular channels41,42 as often encountered in the field of
microfluidics.

For rectangular (and in general: non-circular) channels, bubbles do not conform to the
underlying channel shape at the sharp corners of the channel. This results in the thin
liquid film being non-planar (i.e. of non-uniform thickness). The initial thickness (at
t D 0) of the film that gets formed depends on the speed of the bubble, the channel
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Figure 1.5 Top schematic: a regular multiphase flow pattern in a microfluidic channel is shown.
Bottom left schematic: three-dimensional isometric view of the bubble and the film at the chan-
nel walls is shown. The cross-sectional cutout in the x-y plane shows the film at the channel
walls. Bottom right: evolution of thin liquid film upon its (a) formation, (b) thinning due to
dimple formation and its subsequent rupture and (c) growth of the dewetting front (not studied
in this thesis) is shown. Figure adapted from Kreutzer et al. 43 .

dimensions and the capillary speed (ratio of interfacial tension and viscosity, i.e. =�)
of the carrier fluid23, and is typically less than O(1 µm). The lateral length scale of
the film is approximately the width of the microfluidic channel (typically O(100 µm)),
and is large enough for the fastest growing wave to feature within its length, thereby
forming a semi-infinite film. Predicting the lifetime of such non-planar films can
help in predicting the transition from a regular multiphase flow pattern of bubbles and
droplets within the carrier fluid, to more chaotic flow patterns resulting from partial
wetting of the two fluids with the channel walls41.

Film drainage in semi-infinite non-planar films has been shown to proceed via the
formation of a localised dimple44,45. Inspired by previous work44, Aradian et al. 25

calculated the shape of the dimple, and developed a scaling rule that captures how film
thinning due to dimpling proceeds in time. In the absence of any van der Waals forces,
this scaling rule, however, cannot be used to predict the lifetime of the film, because
the film thickness asymptotically approaches rupture in time. Zhang and Lister 46 , on
the other hand, developed scaling rules for film thinning in time in the presence of
surface tension and van der Waals forces, but in the absence of drainage.
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Thus, significant progress has been made to understand the film dynamics in the two
limiting cases, viz (i) drainage via the formation of a dimple, but in the absence of
van der Waals forces25 and (ii) film thinning in the presence of surface tension and
van der Waals forces, but in the absence of drainage46. However, a comprehensive
analysis that combines the afore-mentioned cases in order to predict film lifetime is
still lacking. To address this research gap, the questions that we ask ourselves are: how
can we predict the lifetime of a semi-infinite non-planar thin liquid film by combining
the dynamics of dimple formation during the drainage process and of rapid rupture in
the presence of van der Waals forces? What scaling rule governs the film lifetime as a
function of the fluid properties and the process conditions?

1.3.2 Influence of thermal fluctuations

Next, we study the relevance of thermal fluctuations on film lifetimes. In the last
decade, thermal fluctuations have been shown to be of relevance in planar thin film
rupture, bringing simulated film lifetimes20 closer to experiments12. However, their
role in the dynamics of non-planar thin liquid films has not yet been elucidated.

Important seminal works6,7 exploring the stability of thin films attributed a crucial role
to the presence of thermal fluctuations in determining the film lifetime. Vrij 6 postu-
lated that the film first drains uniformly with a thinning rate governed by the classical
Reynolds’ law1 (wherein drainage is assumed to proceed in a plane-parallel manner),
until a stage is reached when a fastest growing wave fits within the film radius, and
the growth of this wave outruns Reynolds’ thinning rate. However, experimental evid-
ences show a deviation from the Reynolds’ thinning rate due to significant fluctuations
(thermal31 or hydrodynamic34, in origin) in film thickness. Furthermore, as shown in
Fig. 1.6, Aarts and Lekkerkerker 27 reported illustrative experiments of interfaces with
ultra-low interfacial tension, and demonstrated the large role of thermal fluctuations
on inducing rupture47. In contrast, Vakarelski et al. 29 showed that thermal fluctuations
play no significant role in the rupture of small film radii films, and that film thinning
due to drainage is sufficient to explain their lifetimes. Therefore, the dominant rup-
ture mechanism has been a subject of debate in the literature, with some studies6,26–28

emphasizing the relevance of thermal fluctuations in film thinning, whereas other stud-
ies29,30 show no significant role of thermal fluctuations in determining film lifetimes.

The question we pose is: what role do thermal fluctuations play in determining the
dynamics and lifetimes of non-planar films? Are there any distinct regimes where
thermal fluctuations are relevant, and if so, what bounds those regimes? How do the
film evolution and lifetime depend on the strength of thermal fluctuations?
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(a)

(b)

Figure 1.6 (a) Confocal microscopy images of droplet coalescence in an ultra-low interfacial
tension system is shown, wherein the crucial role of thermal fluctuations leading to film breakup
on a random location can be observed. (b) Zoomed view of the interface, wherein experimental
evidence of thermal fluctuations can be seen. Figures taken from Aarts et al. 26 .

1.3.3 Dependence of film lifetimes on film radius and film thick-
ness

The questions in the previous two sections dealt with films that were sufficiently large
in the lateral dimension for it to not influence the film dynamics and its lifetimes.
We now consider films with finite radius (lateral dimensions), wherein the thinning
dynamics and hence the film lifetimes, tr depend on the initial film radius, Rf ilm and
film thickness, ho.

The evolution of small radii films has been studied using several approaches (see Fig.
1.7 for schematic representation of these approaches). Under a quasi-steady assump-
tion (in Eqs. 1.1 and 1.2), classical theory1 fixes the shape of the interface to be
plane-parallel during the entire film thinning process, and predicts tr � R2

f ilm
. Re-
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Figure 1.7 Schematic of different approaches used in the literature to describe thinning of a
non-planar thin liquid film. Reynolds 1 theory assumes drainage in a plane-parallel manner.
Frankel and Mysels 44 developed a theory on the film drainage that proceeds through the form-
ation of a dimple. Manev et al. 34 superimposed quasi-static fluctuations on plane-parallel film,
and developed a theory (commonly referred as MTR thinning law) assuming these fluctuations
are sustained throughout the film evolution.

laxing the quasi-steady assumption1, Sharma and Ruckenstein 48 included the stabil-
izing effect of film drainage on the growth of fluctuations in a plane-parallel film
to show that tr � R1

f ilm
. Hydrodynamic simulations that solved exclusively for the

flow in the Plateau border, while assuming the film to remain essentially plane-parallel
showed tr � R

4=5

f ilm
, independent of ho. However, experimental evidences have shown

that the film thinning is not necessarily plane-parallel31,34,45. To corroborate with this
finding, several other approaches were undertaken that included quasi-stationary non-
homogeneities34,49 or translatory oscillations35 superimposed over a plane-parallel in-
terface, leading to tr � R˛f ilm, where ˛ D 4=5 (commonly referred as MTR thinning
law) and 3=4 respectively.

However, the assumptions in the above approaches have been challenged in the lit-
erature30 as they fail to capture the pronounced dimple shape commonly observed in
experiments45,50,51. Frankel and Mysels 44 used a quasi-steady approach to calculated
the shape of the dimple and developed a scaling rule for the film thickness, hmin at the
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periphery, of the dimple (hmin � t�1=2) and hc at the centre of the film (hc � t�1=4).
Without including any van der Waals forces, their theory does not predict film rupture
in finite time. Taken altogether, it is not yet clear how the film lifetime depends on the
initial film radius and film thickness, when all relevant physics is accounted for in the
problem description.

Based on this research gap, the question pertaining to small radii films that we have
is: How do film lifetimes depend on the initial film radii and film thicknesses when all
the relevant physics, i.e. drainage due to dimple formation, surface tension and van
der Waals forces, is included in the problem description? Furthermore: Can a simple
model that accounts for the dynamics of dimpling and thinning due to van der Waals
forces explain this dependency of film lifetime on the initial features of the film?

1.4 Thesis outline

In the subsequent chapters, we address each of these open research questions, viz

� Chapter-2: What scaling rule governs the film lifetime as a function of the fluid
properties and the process conditions for semi-infinite non-planar films, as for
instance encountered around elongated bubbles and droplets traveling through
micro-channels with a rectangular cross section?

� Chapter-3: What role do thermal fluctuations play in determining lifetimes of
semi-infinite non-planar films? Are there any distinct regimes where thermal
fluctuations are relevant, and if so, what bounds those regimes? What are the
observable differences in film evolution and final rupture as thermal fluctuations
become relevant?

� Chapter-4: How do film lifetimes depend on the initial film radius and film
thickness for finite sized non-planar thin films, as for example encountered in
Scheludko cell experiments?

These are self-contained chapters that are either published in, or are submitted to,
peer-reviewed journals. We conclude the thesis with an epilogue where we discuss
the broader applicability of our findings and present opportunities for future research.
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2. Evolution of nonconformal
Landau-Levich-Bretherton
films of partially wetting flu-
ids†

We experimentally and theoretically describe the dynamics of evolution and eventual rupture of
Landau-Levich-Bretherton films of partially-wetting liquids in microchannels in terms of non-
planar interface curvatures and disjoining pressure. While both the early-stage dynamics of film
evolution and near-collapse dynamics of rupture are understood, we match these regimes and
find theoretically that the dimensionless rupture time, Tr , scales with ��10=7. Here, � is the di-
mensionless curvature given by the ratio of the Laplace-pressure discontinuity that initiates film
thinning to initial strength of the disjoining pressure that drives the rupture. We experimentally
verify the rupture times and highlight the crucial consequences of early film rupture in digital
microfluidic contexts: pressure drop in segmented flow and isolation of droplets from the walls.

†Published as: M. T. Kreutzer, M. S. Shah, P. Parthiban, S. A. Khan Evolution of nonconformal Landau-
Levich-Bretherton films of partially wetting fluids. Phys. Rev. Fluids 3, 014203, 2018, doi: 10.1103/Phys-
RevFluids.3.014203. While I contributed to this work mainly by performing numerical simulations, the
experimental details and theoretical model in this chapter is presented as they appeared in the journal for
the sake of completeness of the work.
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2.1 Introduction

Rain droplets running on windows or over surface of leaves are everyday examples
of the delicate interplay of forced wetting, stability and dewetting of thin liquid films
deposited on repelling surfaces. A crucial question is whether a film of uniform thick-
ness can coat the repelling surface without any gradients in film curvature. Such con-
formal films are found on flat plates, cylinders, spheres, and even on such simple
surfaces, interesting transitions between coating and non-wetting states emerge with
rich dynamics and transitions that typically involve careful analysis of the contact
line and stability analysis involving perturbations of both the contact line shape and
film curvature1. The general physics of what happens to coating conformal thin films
is now well understood. Briefly, for flat plates or cylindrical objects that are with-
drawn at sufficient speed from a liquid bath, the Landau-Levich-Bretherton (LLB)
theory2 teaches that conformal films are pulled along. The deposited film thickness
then scales as h � C 2=3, where the capillary number CD�U= , with viscosity �,
velocity U and surface tension  , signifies the ratio of viscous stress (��U=h) to ca-
pillary pressure (�=h). The eventual fate of these wetting films, on partially wetting
surfaces, is to form droplets. Small perturbations of film thickness grow and lead to
rupture of the film and dewetting to droplets, with a dramatic height dependence of
rupture time, t � h5, such that a 1 µm film ruptures in one week and a 1 nm film
ruptures in a second3. In contrast, on non-flat surfaces, e.g. near acute corners, in
channels with rectangular cross-sections or on topographically pre-patterned surfaces,
even the static case without external flow is attended by polymorphism and topological
bifurcations4. If, in addition, flow deposits non-conformal films, then sharp localized
curvature gradients cause fluid flow and even in a fully-wetting context profoundly
influence the final shape of the deposited film5,6. Non-conformal partially-wetting
films exhibit accelerated film thinning and rupture with dramatic consequences: while
moving elongated bubbles or drops in circular microchannels are surrounded by long-
lasting thin films of the carrier liquid on the confining walls, in square channels such
a well-behaved scenario is not observed for partially-wetting fluids: in contrast, the
flow is characterized by chaotic dynamics that are poorly understood7.

In this paper, we address the open question of predicting the rupture time from a
well-defined initial film shape, by studying a representative problem of confined long
bubbles flowing in channels of rectangular cross section, such that the distance from
the nose of the bubble directly relates to lifetime of the film. While significant pro-
gress has been made in understanding the evolution of such films in various limiting
cases8, a comprehensive analysis that encompasses all the stages of film evolution,
and which ultimately predicts the rupture time is still lacking. Briefly, the early stages
of thinning have been studied in the context of marginal soap pinching and ophthal-
mology6,9, while the main features of the final collapse are also understood10. We
analyze the full dynamic evolution of such thin films, from deposition to thinning to
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rupture, with theoretical rupture times that can be compared to experiment. These
rupture times find application beyond the time required to blink an eye to rewet it,
as mentioned above. We highlight the consequences of partial wetting in the context
of digital microfluidics, using the rupture time to delineate regimes with markedly
different behaviour.

2.2 Experimental

We recorded top-view micrographs of elongated bubbles coflowing with liquid
(Fig. 2.1(a)) in a microchannel (hc�wc D 127 µm�300 µm) that was manufactured
using standard lithographic techniques such that all walls consisted of smooth polydi-
methylsiloxane (PDMS). Speed U and length l of monodisperse bubbles were inde-
pendently varied by adjusting the gas and liquid feed rates into a T-junction11. The
channel was trans-illuminated by reflection from a white background and the micro-
scope objective was focussed on the bottom wall, such that droplets and film curvature
were visible in high contrast (Fig.2.1(b)). The partially wetting liquid was ethanol
(>99:9%) of viscosity � D 1:09 mPa s, surface tension  D 21:8 mN m�1, equi-
librium contact angle �0 D 8° with air, and PDMS-ethanol-air Hamaker constant
A D 2 � 10�21 J calculated from the literature12.

Flows at low speeds (C<2:5 � 10�5) showed no deposition of fluid on the wall
(Fig 2.1(c)). This image clearly shows the contact line between the liquid in the
corners of the channel (black) and the bare wall in the x � ´ plane. The ´-component
of the velocity of this contact line is given by U cos˛, where ˛ is the angle of the nor-
mal of the contact line with the ´-axis, as shown in Fig. 2.1(e). Increasing the bubble
speeds first resulted in a wetting film, first near the centerline of the channel where
cos˛ � 1. This film is so thin that it immediately ruptures into the small droplets
that are clearly visible in the image. Increasing the bubble velocity further increases
the distance from the centerline where a film is deposited. Analysis of the data in
Fig. 2.1(d-g) revealed that the highest value of ˛ for which a film was deposited was
given by ˛� cos�1.Cc=C / with the critical capillary number for the onset of forced
wetting Cc�3 � 10�5, which is in reasonable agreement, assuming a slip length of
1 nm, with13. At even higher bubble speeds when ˛ � �=2, a film was deposited
that spanned the entire cross section of the channel between the menisci at the sides
(Fig. 2.1(h-j)). This film ruptured, always at the edge where the deposited film met
the meniscus. We measured the distance ´r of unruptured film, as shown in Fig. 2.1(j)
at five different locations on the microchip. With increasing C , ´r increased from
´r � 100 µm at C D 1:8 � 10�4 to ´r � 7:5 mm at C D 2 � 10�3, provided the
bubble was long enough to observe any rupture at all. The standard deviation of the
measurements at the five locations was 20-25% for all experiments. At low speeds, the
main source of uncertainty was the location of film deposition, i.e. the point where the



20 Chapter 2

(c)

C =2.4x10-5 C =2.9x10-5 C =3.2x10-5 C =4.5x10-5 C =7.1x10-5

(d) (e) (f) (g)

(i)

C =2.9x10-4

(h)

C =1.8x10-4

(j)

C =4.2x10-4

Gas     Liquid meniscus

meniscus

U

A LLB-film deposition
B thinning & rupture

C dewetting

(a) (b)

(k)

zr

α

z
y

x
y

x

100µm

U

Figure 2.1 (a) Sketch of the experimental setup. (b) Top-view micrograph of a flowing bubble;
dark regions in the image indicate corner menisci. (c)-(g) Microscope observations of Landau-
Levich-Bretherton (LLB) film deposition dynamics; films are deposited at capillary numbers
C > 2:5 � 10�5. (h)-(j) Observations of dewetting dynamics - films rupture at the corners and
move along circular fronts; ´r is a speed-dependent length of unruptured film. (k) Schematic
3D cut-out near the nose of the bubble (left) and x � y cross-sections of the lubricating film
at increasing distance from the nose, depicting the important events, including film deposition,
rupture and dewetting (right).

curvature in the ´-direction has vanished, determined by fitting a circle and straight
line to the inner black shadow of the micrographs (Fig.2.1(i)). At higher speeds, the
main source of uncertainty was the interpolation between two frames to find the mo-
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ment of rupture. We did this interpolation as follows: after rupture of the film near the
meniscus, a dewetting front developed that spread out radially at 2:2 mm s�1, inde-
pendent of film thickness in agreement with theory14. We measured the radius of this
front in several frames after rupture, as shown by the black dotted circles in Fig.2.1(j).
Then, we extrapolated the time evolution of this front to zero to achieve sub-frame
resolution of the time and location of rupture. In turn, this sub-frame resolution of the
rupture time straightforwardly allowed interpolation of the location of the nose at the
rupture between two frames to find ´r .

The sequence of images in Fig. 2.1(c-j) shows that there are three distinct regimes:
a fully dewetted regime without a LLB film, (Fig. 2.1(c)), a partially wetted regime
where the LLB film ruptures, but such that the dewetting front cannot ‘catch-up’ with
the nose (Fig. 2.1(d-j)), and finally a fully wetted regime in which the lifetime of the
LLB film is longer than the convective time l=U of the bubble. Jose and Cubaud 8

observed this last regime as a ‘lubricated’ regime and observed droplets (bubbles) that
at least partially wet the walls in the other two regimes. Their experimental data for
different silicon oils with water droplets collapsed onto a regime boundary as l=w D
�U 1=3C 2=3, where � is a dimensional constant. In the following, we derive this regime
boundary from the evolution of the LLB film.

2.3 Rupture time from Thin Film Equation

A bubble moving through a rectangular microchannel, besides depositing thin films,
also leaves liquid ’gutters’ along the channel edges, with a meniscus of radius r�1 D
.2w�1c C 2h

�1
c / (Fig 2.1(b)). Axial flow in these gutters can be ignored, but a Laplace

pressure difference p D =r causes transverse flow, which is balanced by viscous
drag in the deposited film. Where the meniscus meets the flat part of the film, the
film thins out by liquid drainage into a localized dimple, where long-range forces
eventually induce a rapid collapse.

The evolution of the film thickness h.x; t/ in the dimple near the meniscus is described
by the thin-film equation1

@thC @x

�


3�
h3@xxxhC

A

6��h
@xh

�
D 0: (2.1)

in a region around xD0 where the meniscus meets the thin film. We use the disjoin-
ing pressure approximation, in which the long-range intermolecular forces between
the phases are replaced by a disjoining pressure … D A=6�h30 applied at the film
boundary15. For negative x, the dimple region will match onto the stagnant meniscus
of constant curvature, i.e.

h D h0 C
x2

2r
; @xxh D r

�1 for x � 0: (2.2)



22 Chapter 2

The film deposited by the nose is not flat and decreases in thickness from h0 � hcC 2=3

near the centerline to h0 � hcC near the menisci at the sides, where hc is the mi-
crochannel height6. Then, the initial slope and curvature for small and positive x are
@xh � C 2=3 and @xxh � C 2=3=wc respectively, and for small C we may use

h D h0; @xh D 0 for x � 0 (2.3)

to complete the boundary conditions. A suitable choice of scales for time, transverse
coordinate and height is

t� D
12�2�h50

A2
; x� D h20

p
2�=A; h� D h0: (2.4)

Scaling withHDh=h�; TDt=t�; XDx=x� removes all parameters from (2.1) to get

@TH C @X

�
H 3@XXXH C

1

H
@XH

�
D 0; (2.5)

H D 1C
1

2
�X2; @XXH D � for X � 0; and H D 1; @XH D 0 for X � 0

(2.6)
and leaves only a dimensionless curvature

� D
�h30

A
r�1 (2.7)

in the boundary conditions. This last remaining parameter, �, signifies the relative
strength of the initial Laplace pressure jump (=r) at x D 0 to the disjoining pressure
…0 at the initial film thickness.

Fig. 2.2(a) shows a numerical solution of (2.1) for � D 50, starting fromH D 1C�X2

(x < 0), H D 1 (x � 0). A depression in the film develops having a minimum film
thicknessHmin near x D 0. First, a self-similar film profile develops, up toHmin � 0:2

at T D 2:3 � 10�3, which marks the depth of the dimple region where long-range
forces become prominent. From that moment onwards, the film thins out in a region
jX j < 0:1, leading to rupture at T D 2:5 � 10�3. In this short time, the dimple profile
is hardly affected outside the fast-pinching region, indicating how fast the final pinch
is in comparison to the earlier thinning.

At early times, h is large and the dimple slope @xh is small, such that the disjoining
pressure term in (2.1) may be ignored. Variables associated with this early stage are
denoted by the symbol O. Characteristic scales for time, height and width of the dimple
are

Ot� D
3�r4

h30
; Oh� D h0; Ox� D

x

r
: (2.8)
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(a)
(b)
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Figure 2.2 (a) Dimensionless film height profiles H in the dimple region at various times
TD(0.01, 0.03, 0.08, 0.15, 0.27, 0.45, 0.75, 1.28, 2.0, 2:5/ � 10�3 from numerical solutions
of (2.1) for � D 50. The highlighted profile indicates a transition from an early drainage
dominated regime9 to a long range force induced rupture regime10. (b)-(c) Minimum film
height Hmin values extracted from numerical solutions of (2.1) for various � are well described
by the two self-similar expressions for minimum film height Hmin provided in (a) at early and
late times respectively.

Now rescaling allows a self-similar solution9, where the width of the dimple grows as
OW � h0=r OT

1=4 and the height of film decreases as OHmin � h0=r OT
1=2. Fig. 2.2(b)

shows that the evolution of the minimum in film thickness for 0:25<�<2:5 � 103 all
collapse onto a single master-curve of OHmin�0:6 OT

�1=2 of a monotonically decreasing
thinning rate. This master-curve describes the evolution of films that are still so thick
that the disjoining pressure need not be taken into account. Films that are initally
already so thin that the disjoining pressure is relevant from the start, such as that of � D
0:25, never fully experience this regime. As soon as the long-range intermolecular
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term becomes dominant, however, the thinning rate increases, rapidly, as the early and
late time scales are related as OT D �2T : for large � the time scale of the problem
changes by orders of magnitude as the dimple moves through progressive stages of
thinning. Close to the time of rupture Tr , the evolution of the minimum film thickness
is also amenable to a self-similar analysis10, which predicts that HminD0:7681.T �

Tr /
1=5, independent of �. We find indeed that for all �, the final evolution of the

minimum film height collapse onto this curve (Fig 2.2(c)). Here too, note that for
� D 0:25, the film is initially so thin that its entire evolution collapses onto this curve.

-10/7

Figure 2.3 (colour online) Film rupture time versus dimensionless meniscus curvature �. The
red markers are numerical calculations. The dotted line is the theoretical prediction Tr D
3:92Œ1C 3:74�10=7��1 obtained by matching the two self-similar solutions from Fig. 2.2. The
blue markers represent experimental data of rupture times of ethanol films deposited around
long bubbles on a PDMS surface.

We now explore whether we can match these two asymptotic descriptions to describe
the entire evolution. The crudest matching is using the early curve for the minimal
film heightHmin up to a givenH 0 at T 0 and then instantaneously switching to the other
curve. This matching amounts to requiring thatHmin and @THmin are continuous at T 0

and is, in fact, identical to calculating the value of H 0 for which the rupture is fastest,
@H 0Tr D 0, as proposed by Vrij 16 . After some algebra, one finds that the cross-over
occurs at T 0 D 0:913��10=7, with H 0 D 0:627��2=7, and the film ruptures at Tr D
1:278��10=7. Of course, when the film is initially so thin that rupture is dominated
by van der Waals forces from the beginning, only the last asymptotic description is
needed. One expects this to happen for � � 1 and, indeed, we find Tr D 13:0 for
all � < 0:196. We find that this matching systematically overestimates the numerical
rupture times, because at the cross-over both capillary thinning and long-range forces
are important. Following the structure of equation (2.1), in which the capillary term
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@X .H
3@XXXH/ and long-range term @X .H

�1@XH/ contribute additively to the rate
of thinning @TH , it is better to add the thinning rates of both regimes. We begin by
rewriting the rate of thinning @TH in terms of H . For the early regime with @TH D
�0:3�2.�2T /�3=2 we use the H D 0:6.�T /�1=2 to eliminate T , to obtain @TH D
�1:388�2H 3. Likewise for the late regime, we recast @TH D �0:1536.Tr � T /�4=5

into @TH D �0:053H�4. We then add these contributions to obtain the overall @TH
and integrate the resulting @HT D .@TH/

�1 from initial to final height to obtain the
rupture time. The rupture time is then given by

Tr D

Z 1

0

�
1:38�2H 3

C 0:053H�4
��1

dH � 3:92Œ1C 3:74�10=7��1: (2.9)

The integral can be evaluated analytically to an impractically long expression, and the
approximate solution is compact and captures the relevant physics, as it is based on
the limiting values Tr ! 3:92 for � ! 0 and Tr ! 1:048��10=7 for � ! 1 of
the full analytical solution. Fig. 2.3 shows how well this prediction of rupture time
agrees with the numerical simulations. For large �, the analytical result tends to the
numerical value. As can be seen in Fig. 2.2(b), for � � 1 the two thinning regimes
are well separated and the evolution of Hmin runs closely along the asymptotic master
curves. For smaller values of �, the separation of the regimes is less pronounced
and Hmin does not evolve on the capillary master curve, which accounts for the small
difference in analytical and numerical result. Nevertheless, the matching of the two
regimes does identify the proper scaling of the rupture time with the only parameter of
the problem, and the numerical results corroborate the�10=7 exponent derived above.

Returning to our experiments, we could easily vary the deposited film thickness by
adjusting the bubble speed, with negligible impact on the meniscus curvature. We
measured the time of rupture accurately as tr D ´r=U . With experimental Capil-
lary numbers in the range 10�4<C<3 � 10�3, we used h0 � 0:5hcC 6 to estim-
ate the initial film thickness in the range h0 in Œ6 � 180� nm, such that our exper-
iments spanned three orders of magnitude of � and four decades of rupture time,
Tr D tr=t

� D .8´rA
2/=.3�22h5cC

6/. Fig.2.3 shows that the time needed to rup-
ture elongated bubbles in microchannels agrees very well with theory. In dimensional
quantities, the large-� limit of the rupture length, as measured from the nose of the
bubble, is given by

´r D 1:73

�
h3cw

2
c

.hc C wc/2

�5=7 �
�3U 3

A2

�4=7
(2.10)

where for clarity we have isolated the geometric parameters from the flow parameters.
The distance from the nose where dewetted patches of the lubricating film begin to
grow is proportional to U 12=7, which is larger than the linear scaling ´r / U that
Jose and Cubaud 8 found. In our analysis, the time needed to rupture tr increases with
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initial film thickness, which requires that ´r D Utr increases more than linearly with
velocity.
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Figure 2.4 Map of observed topological regimes, for PDMS-ethanol-air, arising from the dy-
namics of film deposition and rupture: (I) no film deposition below a threshold C , (II) sim-
ultaneous film deposition and dewetting - a speed dependent unruptured length of film exists
in all cases, and (III) completely lubricated bubbles encapsulated in intact thin films. (Inset)
Measured pressure drop across bubbles depends strongly on the topological regime.

2.4 Flow regimes and pressure drop

In the context of digital microfluidics, droplets contain analytes and reagents that
should remain isolated from each other and have no interaction, chemical or other-
wise, with the wall. We consolidate our experimental observations in a topological
map of dimensionless bubble length versus capillary number (Fig. 2.4), featuring two
boundaries. The first, corresponding to a critical capillary number Cc � 3 �10�5 indic-
ates the minimum speed to observe films at all. The second boundary shows how short
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the bubble must be to ensure complete surrounding by wetting films. This boundary
is well predicted by our analysis of rupture times (Fig. 2.3) with ´r � C 12=7 as
shown in Fig 2.4. The preceding analysis neglects the fluid above the lubricating film
in the fluid-mechanical problem, which is appropriate for the bubbles we analyzed
experimentally. For liquid droplets, however, this may not be the case, and effects on
Hamaker constant and viscous drag need to be accounted for. However, we note that
the latter effect may not be dominant, especially when droplet viscosity is lower than
that of the carrier fluid, as is typically the case in microfluidic experiments.

To highlight the importance of partial wetting for the overall fluid mechanics of di-
gital microflows, even at small contact angles, we now examine the implications of
differences in film topologies on the frictional drag of bubble motion. We calculate
the friction experienced by a flowing bubble, expressed as the pressure jump across
the bubble, as �pB D .�p � RUwh/=n, where n is the total number of bubbles in
the device. The hydrodynamic resistance, R, in the liquid segments, is equivalent to
flow without bubbles, and given by R D �Œ12=.1 � 0:63 hw�1/�.Lliq=h

3w/. In ex-
periments using fully-wetting silicone oil (�D10 mPa s, D20:1 mN m�1, �0D0°) at
C D O.10�3/, we find indeed that the pressure jump per bubble is a few percent of
.=r/, and scales as predicted, finding �p D 2:1C 2=3.=r/ within 25% of the theor-
etical value6,17. In the second regime in Fig. 2.4, the front of the bubble is lubricated
by a wetting film that ruptures, and the rear is an advancing contact line. In this case,
the net pressure jump over the bubble can be written in terms of curvature differences
�C as �pB � �C . The curvature at the (lubricated) nose is r�1 cos �e+ˇC 2=3 6,
and that at the rear can be written as r�1 cos �a in terms of an advancing dynamic con-
tact angle �3a D �3e C 9 ln.r=`m/C , where `m is a microscopic slip length18. In the
inset of Fig. 2.4, we calculate the pressure drop for the partially-lubricated bubbles.
Interestingly, for C>10�3, the pressure drop scales again as �pB � C 2=3 (which
follows from expanding 1 � cos C 1=3�

1
2
C 2=3), but the pressure drop per bubble is a

factor 2-3 higher, even at the small contact angle �e D 8° of ethanol on PDMS. Recent
experiments of pressure drop of bubbles in rectangular PDMS channels19 did obey the
�p � C 2=3 scaling, but also exhibited higher proportionality constants for aqueous
surfactant solutions than those predicted by theory6, which may well have been caused
by partial wetting with small contact angles, in agreement with our experiments.

2.5 Conclusions

In conclusion, in this paper we explain the full evolution of nonconformal thin films
under the action of surface-tension and intermolecular forces. These nonconformal
films exhibit LLB flat films connected to gutters that are akin to Plateau borders. The
films first thin out due to capillary suction at the boundary between gutter and flat film
to create a dimple, until intermolecular forces take over to rapidly thin out this dimple.
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The ratio of capillary and intermolecular forces, as expressed in a dimensionless para-
meter �, determines how much of the thinning occurs in the first regime and how
much in the second. We predict and experimentally verify the dimensionless moment
of rupture as Tr � ��10=7. The present analysis offers a glimpse into the phenomena
that mark the transition from regular droplet and pearl-type flows to chaotic flows in
partially wetting channels7,8.
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3. Thermal fluctuations in capil-
lary thinning of thin liquid
films§

Thermal fluctuations have been shown to influence the thinning dynamics of planar thin liquid
films, bringing predicted rupture times closer to experiments. Most liquid films in nature and
industry are, however, non-planar. Thinning of such films not just results from the interplay
between stabilizing surface tension forces and destabilizing van der Waals forces, but also from
drainage due to curvature differences. This work explores the influence of thermal fluctuations
on the dynamics of thin non-planar films subjected to drainage, with their dynamics governed
by two parameters: the strength of thermal fluctuations, � , and the strength of drainage, �.
For strong drainage (� � �tr ), we find that the film ruptures due to the formation of a local
depression called a dimple that appears at the connection between the curved and flat parts of
the film. For this dimple-dominated regime, the rupture time, tr , solely depends on �, according
to the earlier reported scaling, tr � ��10=7. By contrast, for weak drainage (� � �tr ), the film
ruptures at a random location due to the spontaneous growth of fluctuations originating from
thermal fluctuations. In this fluctuations-dominated regime, the rupture time solely depends
on � as tr � �.1=!max/ ln.

p
2�/˛ , with ˛ D 1:15. This scaling is rationalized using linear

stability theory, which yields !max as the growth rate of the fastest-growing wave and ˛ D
1. These insights on if, when and how thermal fluctuations play a role are instrumental in
predicting the dynamics and rupture time of non-flat draining thin films.

§Published as: M. .S. Shah, V. van Steijn, C. R. Kleijn, M. T. Kreutzer, Thermal fluctuations in capillary
thinning of thin liquid films. Journal of Fluid Mechanics 876, 1090-1107, 2019, doi: 10.1017/jfm.2019.595.

31

http://dx.doi.org/10.1017/jfm.2019.595


32 Chapter 3

3.1 Introduction

The dynamics of thin planar liquid films on solid surfaces has been extensively studied
in the context of free-surface instabilities1,2. The stability of such films depends on
the interplay between surface tension on the one hand, that always stabilizes the film,
and intermolecular forces on the other hand, that may destabilize it. The evolution
of unstable planar films starts from minute corrugations on the free interface origin-
ating from stochastic thermal motion of molecules. In the absence of destabilizing
intermolecular forces, the film is stable and dynamically perturbed by corrugations
of amplitude �

p
kBT= , with kB the Boltzmann constant, T the absolute temper-

ature and  the interfacial tension3. For unstable films, these corrugations spontan-
eously grow until the film ruptures. In the last decade, thermal fluctuations have been
explicitly incorporated into the thin film equation using a stochastic term, bringing
simulations4 closer to experiments for planar films5.

Many films encountered in natural and industrial settings are, however, not planar.
Typically, highly curved regions exist at the edges immediately after film formation,
examples being the film between two foam bubbles, the wetting film between an
elongated bubble and the walls of a non-circular capillary, the curved edges of a soap
film supported on a wire frame, and the tear film on eye lids. These curved regions
impose a localized pressure gradient that drains the film towards the curved edges.
The dynamics of non-planar films is hence governed by two thinning mechanisms:
(1) capillary thinning, i.e. drainage due to curvature differences and (2) spontaneous
growth of fluctuations originating from thermal fluctuations. The interplay of these
two thinning mechanisms is the subject of this paper.

Theory on the dynamics of films solely governed by drainage (and not by the spon-
taneous growth of fluctuations) goes back to Reynolds 6 , who modelled the drainage
of a planar film as spatially uniform thinning caused by a prescribed pressure jump
at the edge of the film. It is, by now, known that non-planar films do not thin out
uniformly, unless they are, in some sense, small7–9. Larger films develop a local de-
pression called a dimple near the film edge that eventually leads to rupture10. Joye
et al. 11 determined a criterion for the thinning predominantly due to the formation of
a dimple by comparing the curvature of the dimple with that of the meniscus. For
many practical systems, this criterion teaches that films with a radius larger than about
50 �m have dimples12,13. For such large films, our recent work14 provides a scaling
rule for the rupture times of unstable films with the relative strength of drainage and
intermolecular forces as the key governing parameter. Here, we focus on this large-
film limit, where thinning is non-uniform and confined to a dimple at the edge of the
film.

How the dynamics of non-planar films alters when, on top of drainage, thinning also
occurs through the spontaneous growth of fluctuations is not yet fully understood.
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Vrij 15 and Scheludko 16 attribute a crucial role to thermal fluctuations in the spontan-
eous growth of unstable waves leading to rupture. One of the seminal papers by Vrij 15

postulates that a film initially thins uniformly while all fluctuations are dampened
until the stability flips as predicted from linear stability analysis. After this flip, a
wave with growing amplitude fits within the length of the film such that the film
ruptures at the trough of the wave. However, experimental observations have noted
significant fluctuations in film thickness already from the onset of drainage, whether
thermal17 or hydrodynamic13 in origin. Manev et al. 13 show in their experiments that
these fluctuations do not dampen out if they are large enough, and attribute this to the
large nonlinearities in the thin film equation. To account for the observed deviations
between experiments and Reynolds’ theory, several theories have been developed that
semi-empirically incorporate non-uniform thinning together with fluctuations in the
description of planar film thinning13,18–20. Although these theories are in reasonable
agreement with experiments, they do not teach if and when rupture occurs through
the formation of a dimple or due to the spontaneous growth of waves originating from
thermal fluctuations, or are due to both. This lack of clarity is also reflected in the more
recent literature; some studies emphasize the relevance of thermal fluctuations result-
ing in stochasticity in film rupture21–23, whereas other studies argue that the influence
of this stochastic phenomenon is insignificant24,25. Aarts and Lekkerkerker 21 repor-
ted illustrative experiments of interfaces with ultra-low interfacial tension, which visu-
ally reveal the role of thermal fluctuations in inducing rupture. Rio and Biance 22 in
their review compare the order of magnitude of the time scales of drainage and of the
spontaneous growth of thermal fluctuations, and suggest that stochastic rupture due to
thermal fluctuations is relevant in determining film rupture times. Perumanath et al. 23

show using molecular dynamics simulations that, in the absence of film drainage, the
onset of coalescence is a stochastic phenomenon triggered by thermal fluctuations. In
contrast, Vakarelski et al. 24 and Chan et al. 25 argue that thermal fluctuations play no
significant role in the rupture of films in parameter ranges typical for the coalescence
of droplets and bubbles.

The aim of this work is to systematically study the dynamics of thin liquid films sub-
jected to curvature-induced drainage for a wide parameter space in terms of drain-
age strength and thermal noise strength and to resolve when one of the two above-
mentioned thinning mechanisms is dominant. The model geometry considered in this
numerical study is a semi-infinite planar film connected to a curved film of constant
curvature, known as a Plateau border. We incorporate thermal fluctuations at the gas-
liquid interface using a stochastic term in the thin film equation4,26, which allows us
to study the effect of different strengths of thermal noise. Contrary to large films of fi-
nite size, as for the example found in Scheludko-cell experiments e.g.17,27,28 in which
dimple formation and thinning of the planar part of the film occur simultaneously
leading to a complex dependency of rupture time on film size, we consider this semi-
infinite geometry which evolves in the limit of full dimple formation, also known as
marginal pinching29. The selected geometry and a wide parameter space in terms of
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Figure 3.1 Schematic of a non-flat draining thin film subjected to thermal fluctuations, with the
film thickness parameterized by h.x; t/. (left) The initial film shows a curved part extending
from �l1 � x < 0 with the pressure given by the Laplace pressure, p D �=r , with 1=r as the
curvature imposed at the edge. This curved part is connected to a flat part extending from 0 �

x � l2 with the pressure given by the van der Waals component of the disjoining pressure, p D
A=6�h3. Besides curvature-induced drainage, the film is also subjected to thermal fluctuations
of the free interface, resulting in thickness variations of amplitude�

p
kBT= . The dashed line

at x D l2 signifies the symmetry in the system. (right) Shape upon rupture, highlighting that
film thinning stems from two competing mechanisms: (1) the formation of a localised dimple
due to curvature-induced drainage and (2) the spontaneous growth of waves originating from
thermal fluctuations.

drainage strength and thermal noise strength defines the problem in its simplest form
and allows us to resolve when, if and how thermal fluctuations are relevant in dimpled
film rupture.

3.2 Problem Formulation

We study the evolution of non-flat thin liquid films with viscosity � and surface ten-
sion  , with the spatio-temporal film thickness parameterized by h.x; t/, as shown in
figure 3.1. The film is comprised of a curved part (�l1 � x < 0), with a curvature 1=r
corresponding to a Plateau border, connected to a flat part (0 � x � l2). Considering
the pressure in the gas phase to be uniform and setting it equal to zero, the pressure p
in the curved part of the liquid film, where intermolecular forces play an insignificant
role, is dictated primarily by the Laplace pressure and is equal to p D �=r . Con-
versely, the pressure in the thin flat part is dictated by intermolecular forces, which in
this paper, are considered as attractive van der Waals forces, such that p D A=6�h3,
with A < 0 being the Hamaker constant. The difference in pressure drains the li-
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quid from the flatter part of the film to the more curved part. On top of this capillary
thinning mechanism arising from curvature differences, a second thinning mechanism
arises from the interplay between stabilizing surface tension forces and destabiliz-
ing van der Waals forces leading to the spontaneous growth of perturbations. These
perturbations originate from thermal fluctuations at the gas-liquid interface causing
corrugations of amplitude �

p
kBT= . Depending on the relative strength between

these two thinning mechanisms, the former may result in the formation of a dimple
at the connection between the flat and curved part, while the later may result in the
growth of unstable waves on the film interface.

The stochastic thin film equation that describes the evolution of non-planar thin films
subjected to thermal fluctuations can be derived by applying a long-wave approxima-
tion on the incompressible Navier-Stokes equations with thermal noise4. This yields

@h

@t
D �

@

@x

�


3�
h3
@3h

@x3
C

A

6��h

@h

@x

�
C

@

@x

�
1

3�

p

3h3�.x; t/

�
; (3.1)

with the first term on the right-hand side arising from surface tension forces and the
second term from long-ranged attractive van der Waals forces. Together with the tran-
sient term on the left-hand side, they comprise the well known deterministic thin film
equation1,30. The functional form of the noise term, i.e. the third term on the right-
hand side, has been independently derived by Davidovitch et al. 26 and Grün et al. 4

using different approaches, with �.x; t/ constituting spatio-temporal Gaussian white
noise consistent with the fluctuation-dissipation theorem. It possesses the following
properties

h�.x; t/i D 0;

h�.x; t/�.x0; t 0/i D 2�kBT ı.x � x
0/ı.t � t 0/;

)
(3.2)

with ı.x � x0/ in units 1=m2, resulting from the reduction of the two-dimensional
fluctuating hydrodynamics equations to one dimension4,31.

The initial film profile consists of a flat film connected to a parabola with constant
curvature (1=r), akin to a Plateau border. This yields the following initial condition

h.x < 0; t D 0/ D ho C
x2

2r
; and, h.x � 0; t D 0/ D ho: (3.3)

As left far-field boundary conditions, we impose an interface shape with a constant
curvature similar to the system studied by Aradian et al. 29 . We impose the boundary
conditions at x D �l1, with l1 chosen such that the profile remains essentially constant
in time for x � 0, ensuring that the region of interest is connected to a practically
static far-field profile. Note that, as usually tacitly assumed for thin-film dynamics
between two far-field static profiles, the lubrication approximation needs to only hold
in the transition region in-between the far-field limits31. As right far-field boundary
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condition, we have zero gradients in thickness and pressure (at x D l2), such that the
problem is mirror symmetric around x D l2. The boundary conditions hence read

h.x D �l1; t / D ho C
x2

2r
;
@2h

@x2
.x D �l1; t / D

1

r
;

@h

@x
.x D l2; t / D 0;

@3h

@x3
.x D l2; t / D 0:

9>>=>>; (3.4)

Using a height scale h� D ho, an axial length scale x� D h20
p
2�=A and a time scale

t� D 12�2�h50=A
2, we obtain the dimensionless variables Qh D h=h�, Qx D x=x�

and Qt D t=t� together with the following dimensionless equations
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D �
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C
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C
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�
; (3.5)

h Q�. Qx; Qt /i D 0;

h Q�. Qx; Qt / Q�. Qx0; Qt 0/i D ı. Qx � Qx0/ı.Qt � Qt 0/;

9=; (3.6)

Qh. Qx < 0; Qt D 0/ D 1C � Qx2; and, Qh. Qx � 0; Qt D 0/ D 1; (3.7)

Qh. Qx D � Ql1; Qt / D 1C � Qx
2;

@2 Qh

@ Qx2
. Qx D � Ql1; Qt / D 2�;

@ Qh

@ Qx
. Qx D Ql2; Qt / D 0;

@3 Qh

@ Qx3
. Qx D Ql2; Qt / D 0;

9>>=>>; (3.8)

where � was made dimensionless using Q� D �=Œ.ho=x
�/3
p
2�=3ho� and l1 and l2

using x�. This analysis shows that, besides the two parameters characterizing the
domain length ( Ql1 and Ql2), the problem is fully governed by two dimensionless control
parameters, the strength of drainage, � D �h3o=Ar , and the strength of thermal noise,
� D kBT=h

2
o. The former describes the ratio between the imposed Laplace pressure

that induces drainage and the initial disjoining pressure arising from attractive van
der Waals forces. The latter describes the square of the ratio between the amplitude
of interface corrugations due to thermal fluctuations (

p
kBT= ) and the initial film

thickness (h0). We scan a wide range of values for � (10�5 � 103) and � (4 � 10�5 �
4 � 10�2) with corresponding corrugations in thickness of O.

p
2�/. While typical

experimental values for � are � � 10�1 and for � are 10�5 � 10�3, we do not restrict
ourselves to this parameter space but perform a full parametric study.

Having formulated the problem, we describe the domain considerations to capture
the relevant physics. The extent of l1 needs to be larger than the transition region in
which the curvature changes from practically zero at the flat part of the film to 1=r
in the Plateau border. The dimensional length of this transition region is estimated
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to be �
p
hor

32,33, where ho is the initial film thickness. This gives the lower limit,
l1 �

p
hor . The upper limit to the extent of l1 is dictated by the geometric constraint

of the long-wave approximation, i.e., @xh � 1. More specifically, the curvature as
defined by @2xh=.1 C .@xh/

2/3=2 D 1=r in the parabolic description of the Plateau
border should be approximately equal to @2xh � 1=r as assumed in the boundary
condition, Eq. (3.4). Estimating @xh as x=r from Eq. (3.3) and setting x D l1, this
directly gives the upper limit, l1 � r . Taken together,

p
1=2� � l1 �

p
r=2ho�

gives the lower and upper limit to l1 in dimensionless form. The extent of l2 is chosen
such that at least one fastest-growing wave, arising from the interplay between the
stabilizing surface tension forces and destabilizing van der Waals forces, fits within
the film, i.e. l2 � �max , with the wavelength of the fastest-growing wave (�max)
estimated in the next section. All parameters and variables are made dimensionless
from this point on and we therefore drop the tilde in the rest of the paper.

We conclude this section by noting that the chosen geometry allows us to study two
types of systems: (1) the film between two two-dimensional bubbles with rigid inter-
faces (as may be encountered in surfactant-rich systems) � and (2) the film between a
surfactant-free bubble and a solid wall, as for example encountered between an elong-
ated bubble and the walls of a non-circular microchannel. In that case, a nearly flat
film in the central part of the channel connects to a meniscus at the corners of the
channel, with the curvature of the meniscus primarily imposed by the dimensions of
the channel34,35. In the first system, the free interface at y D h.x; t/ is described by
the commonly encountered tangentially immobile boundary condition25, i.e. no-slip,
while a symmetry boundary condition, i.e. no-shear, is used at y D 0. In the second
system, the free interface is described by a no-shear condition and the wall by a no-slip
condition. Although the boundary conditions for the velocity at the top and bottom of
the domain are reversed for these two systems, their dynamics is described by one and
the same thin film equation and the results presented throughout this paper are equally
valid for both types of system.

3.3 Linear stability analysis

As an input to our numerical implementation in choosing a film large enough to ac-
commodate a fastest-growing wave, we study how small perturbations develop on a
planar thin film using linear stability theory. We consider a film of initially uniform
thickness h.x; t D 0/ D 1, subjected to perturbation of amplitude � � 1. Its response
to these perturbations, represented by waves of wavelength �, wave number k D 2�=�
�For this problem description to be strictly applicable to the case of thin films between two two-dimensional

bubbles, one needs to use the thickness, 2h, between the two gas-liquid interfaces instead of the currently
used h in the disjoining pressure in the current problem formulation. This introduces an extra factor 8 in the
denominator of the second term of Eq. 3.1.
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and growth rate !, is found by substituting h.x; t/ D h.x; t D 0/C �eikxC!t in the
noise-free equivalent of Eq. (3.5). In this analysis, h.x; t/ was made dimensionless
using h�, � using x�, k using 1=x�, and ! using 1=t�. Linearizing the resulting
expression to O.�/ yields the dimensionless dispersion relation

! D �k2
�
k2 � 1

�
: (3.9)

The film is unstable for all ks corresponding to ! > 0, and stable otherwise. The wave
that grows fastest and dominates the other waves has a wavenumber kmax D 1=

p
2,

with corresponding wavelength �max D 2�=kmax D 2
p
2� � 8:8 and growth rate

!max D 1=4. The time, tr required for the film to rupture due to the spontaneous
growth of the perturbations is hence of order of magnitude, tr � 1=!max D 4. How
this time depends on the magnitude of the initial perturbations is estimated by con-
sidering when the magnitude of the perturbation due to the fastest-growing wave, i.e.
�e!max tr , is of the order of h.x; t D 0/ D 1. As the initial perturbations origin-
ate from thermal noise, such that � can be approximated with the amplitude

p
2� in

Eq. (3.5), the time tr required for the film to rupture due to the spontaneous growth of
thermal fluctuations is hence of order of magnitude

tr � .1=!max/ ln.
p
2�/�1 D �4 ln.

p
2�/: (3.10)

3.4 Numerical implementation

We numerically solved the one-dimensional stochastic thin film equation (Eq. 3.5)
along with its initial and boundary conditions (Eq. 3.7-3.8) using a finite difference
method. We discretized the domain into an equidistant mesh of size, �x, using a
second-order central differencing scheme for spatial discretization and an implicit-
explicit time differencing scheme of a constant time step size, �t , with a theoretical
order of accuracy of O(�t0:5)36. The curved part extends from �l1 � x < 0 and the
flat part from 0 � x � l2, resulting in N D .l1 C l2/=�x C 1 grid points.

We discuss the domain considerations based on the constraints described in §2. For
the parabolic film profile at �l1�x<0, we require

p
1=2� � l1 �

p
r=2ho� . We

confirm that rupture times and rupture locations are insensitive to the chosen value
when chosen within this range. For � � 0:1, we used l1 D 300, while smaller values
were used for larger �. For the flat part, we used l2 D 240, which is much larger
compared to the wavelength of the fastest-growing wave (�max D 8:8), as determined
using a linear stability analysis. We note that, for large � � 1, shorter l2 captures the
relevant physics as well, so long as at least one fastest-growing wave can be expressed
in it. For small � � 1, we will show later that the results weakly depend on l2, even
though l2 � �max .
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Time discretization of the stochastic thin film equation (Eq. 3.5) is performed using
an implicit-explicit scheme, wherein the fourth-order term describing the capillary
forces is discretized implicitly. The terms describing the nonlinear van der Waals
forces and the stochastic noise are discretized explicitly. The mobility term in the
deterministic part (h3) is discretized as per the positivity-preserving scheme described
by Diez et al. 37 . Such a scheme is not required in discretizing the square root of
the mobility term in the stochastic part (h3=2)4, and therefore we discretize it using a
standard central differencing scheme.

The stochastic term, �.x; t/, is expanded as per separation of variables in the Q-Wiener
process, and further based on the lemmas given in Grün et al. 4 , as follows

�.x; t/ D
@W.x; t/

@t
D

q!1X
q!�1

�q P̌q.t/gq.x/ �

qDN�1
2X

qD�N�1
2

�q P̌q.t/gq.x/; (3.11)

P̌
q �

�ˇq

�t
D
ˇq.tnC1/ � ˇq.tn/

tnC1 � tn
D

N n
q

p
�t

�t
D

N n
q

p
�t
: (3.12)

where �q is a measure of spatial correlation (with �q D 1 for spatially uncorrelated
systems, as considered in this paper). P̌q corresponds to white-noise processes in
time, where the term ˇq.tnC1/ � ˇq.tn/ is normally distributed with variance given
by the time increment, �t 4,36. N n

q are computer-generated normally distributed ran-
dom numbers (using the randn MATLAB routine), which are approximately distrib-
uted with a mean of 0 and standard deviation of 1. gq.x/ corresponds to the set of
orthonormal eigenfunctions 4,31 according to

gq.x/ D

8̂̂̂<̂
ˆ̂:
q

2
L
sin

�
2�qx
L

�
; for q < 0q

1
L
; for q D 0q

2
L
cos

�
2�qx
L

�
; for q > 0

(3.13)

with L the dimensionless domain size equal to l1 C l2. The resulting discrete noise
term equals

�.x; t/ D
1
p
�t

qDN�1
2X

qD�N�1
2

N n
q gq.x/: (3.14)

We note here that in our finding an upwind discretization of the noise term, as proposed
in Grün et al. 4 , led to time step size dependent results of the rupture times. Therefore
we used a central differencing scheme to discretize the stochastic term. Using �x D
0:05 and �t D �x2:75 for � � 10�1, and �x D 0:005 and �t D �x3:25 for
� > 10�1, the presented simulation results for rupture times are grid and time step size
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independent within 5%, as can be seen from figure 3.7 in the appendix for the smallest
and the largest value of � considered in this work. The number of realizations for
noise-inclusive simulations obtained for different values of the governing parameters
� and � is 400, with different seeds for every realization. This yields a sampling
error in mean and standard deviation of reported rupture times below 1=

p
400 , 5%,

see figure. 3.8 in the appendix. Error bars in figures 3.5 - 3.7 represent one standard
deviation.

3.5 Results

3.5.1 Transition between thinning mechanisms

A signifying feature of draining thin films as compared to their non-draining counter-
parts is the formation of a local depression. This so-called dimple11,29 results from
the localized non-zero pressure gradient at the location where the flat part of the film
connects to the curved part (in this study, at x D 0). We start with an estimate of
the dimensionless curvature, �tr at which the time scale for film rupture as a result
of curvature-induced drainage is comparable to the time scale for film rupture as a
result of the growth of fluctuations due to the interplay between surface tension and
van der Waals forces. An estimate for �tr is obtained by comparing the time scale for
the dimple formation and that for the growth of fluctuations. The former is calculated
as tr � 1:05��10=7 for � � �tr in Kreutzer et al. 14 and the latter is calculated as
tr � �4 ln.

p
2�/ (see §3.3), independent of �. Matching these two time scales, for

realistic noise strengths of � D 10�5 � 10�3, gives �tr � 0:1 at which the transition
between the two thinning mechanisms occurs.

We first analyse film rupture at � � �tr . Figure 3.2a shows the film evolution for
a (noise-free) deterministic simulation (� D 0). The film profiles h.x; t/ illustrate
the formation of a dimple at x � 0, while the film remains flat far from the dimple.
Further characterizing the film dynamics based on the minimum film height, hmin.t/,
as shown in the inset, we observe that its evolution consists of two stages: (i) an
early stage primarily governed by drainage, roughly between 1 � hmin & 0:8, with
a thinning rate that decreases in time as discussed in Aradian et al. 29 , and (ii) a late
stage governed by the disjoining pressure, for hmin . 0:8, with the thinning rate
rapidly increasing prior to rupture as discussed in Zhang and Lister 38 .

How the addition of thermal noise alters the film dynamics is shown in figure 3.2b for
a single realization of a noise-inclusive simulation with a noise strength � D 0:001.
The film evolves with the formation of a dimple at x � 0, similar to what is seen in
figure 3.2a for the deterministic counterpart. However, it also illustrates the growth of
fluctuations, resulting in the formation of a wave in the flat portion of the film, thereby
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a b

c d

Figure 3.2 Film dynamics for � D 0:1, i.e. close to the transition curvature where the time scale
for rupture due to drainage is comparable to the time scale for rupture due to the spontaneous
growth of fluctuations. (a) Film evolution in space (zoomed here close to x � 0) and time (for
t D 0, 1.37, 3.00, 3.14) for noise-free (deterministic) simulation (� D 0). (b) Single realisation
of the noise-inclusive counterpart of (a) for � D 0:001. The insets in (a) and (b) show the time
evolution of the minimum film height, hmin. (c) Film evolution for 400 realizations of the same
simulations as in (b), with the minimum film heights being extrapolated from their last recorded
(hmin . 0:05) values to 0. The insets represent the distributions of times required to reach
the three indicated heights, one in early drainage-governed stage, a second at the late disjoining
pressure-governed stage, and a third at the crossover of these stages. (d) Standard deviation in
the time required to reach a given minimum height as obtained from the 400 realizations of (c).
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indicating a competition between the two thinning mechanisms. The minimum film
height shown in the inset decreases similarly to the deterministic counterpart, but with
the noise superimposed over it. An additional consequence of the inclusion of noise
is the spread in film evolution as shown for 400 realizations in figure 3.2c. The curves
show that most of the spread occurs in the early drainage stage. This is more clearly
seen from the three insets, which show histograms of the time required to reach the
three indicated minimum heights. These distributions appear normal and were used
to further characterize the spread in evolution by computing the standard deviation as
a function of hmin, as shown in figure 3.2d. The rupture times, tr , of all realizations
were calculated as the time at which the minimum film height first reaches hmin.t D
tr / D 0:05. We note that the reported results for tr are insensitive to our chosen
value of 0.05, because of the rapid evolution prior to rupture. For the presented case
with � D 0:1, we find tr D 3:11 ˙ 0:32 (mean ˙ standard deviation) for the noise-
inclusive simulation with � D 0:001, with the mean value close to the noise-free
(� D 0) rupture time, tr D 3:14.

3.5.2 Influence of thermal fluctuations on film rupture at far limits
of �

Having analysed film rupture for � � �tr , we now proceed to understand how thermal
fluctuations influence the film break-up in the limit of high (� �tr ) and low (� �tr )
�, comparing these limits without (� D 0) and with realistic (� D 0:001) thermal
noise. For strong drainage (� D 50), we find that the film ruptures due to the formation
of a dimple, with the spatio-temporal film profiles being almost indistinguishable for
the noise-inclusive and noise-free case, see figure 3.3a and 3.3b, respectively. This
negligible influence of thermal fluctuations is as expected, because the time scale for
dimple formation is much smaller compared to the time scale for the spontaneous
growth of fluctuations for � � �tr , as explained before. In this dimple-dominated
regime, the resulting rupture time is insensitive to the addition of noise, with rupture
times tr D 2:5 � 10�3˙ 8:7 � 10�5 for the noise-inclusive case and tr D 2:5 � 10�3 for
the noise-free counterpart. Further characterization of the thinning dynamics in terms
of hmin shows that the height of the dimple initially decreases as hmin � t�1=2 for
both the noise-free and noise-inclusive case, see the insets in figure 3.3a and 3.3b, in
agreement with earlier theoretical work29.

For weak drainage (� D 0:001), rather than through the formation of a dimple, film
rupture is initiated by the growth of unstable waves on the planar portion of the film,
akin to what is observed for de-wetting of thin planar films4,31. In this fluctuations-
dominated regime, the film evolution exhibits the growth of a dominant unstable wave,
which grows fastest close to x D 0 due to the small dimple that still forms there
which triggers the accelerated growth of the wave at that location. For the noise-
free case, rupture occurs at x � �2:5 (figure 3.3c), i.e. within half a wavelength
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Figure 3.3 Comparison between films with high (� � �tr , dimple-dominated) and low
(� � �tr , fluctuations-dominated) curvature, without (� D 0) and with realistic (� D 0:001)
noise. (a) Evolution of film heights in the dimple region for � D 50 for a deterministic simula-
tion, at various dimensionless times t D .0:01; 0:03; 0:08; 0:16; 0:28; 0:45; 0:75; 1:3; 2:1; 2:5/ �
10�3 (also reported in 14); (b) Evolution of film heights in the dimple region for � D 50

for a single realization of a stochastic simulation, at various dimensionless times t D
.0:01; 0:02; 0:07; 0:14; 0:28; 0:5; 0:87; 1:4; 2:0; 2:3/ � 10�3. (c) Evolution of film heights
for � D 0:001 for deterministic simulations, at various dimensionless times, t D

.7; 10; 13:6; 14:7; 15:2; 15:5; 15:55; 15:58; 15:6/; (d) Evolution of film heights for � D 0:001

for a single realization of a stochastic simulation at various dimensionless times, t D
.1:6; 3; 5:04; 5:7; 6:16; 6:27; 6:37/. The insets in (a-d) show the corresponding time evolutions
of the minimum film height.
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Figure 3.4 Comparison of rupture location between noise-free (� D 0) and noise-inclusive
(� D 0:001) evolutions as a function of curvature. The rupture locations for the noise-inclusive
evolutions are illustrated as individual data points for 100 out of 400 realizations. The rupture
locations for � D 0 and � D 0:001 are shifted horizontally for better visibility.

of the fastest-growing wave (�max D 8:8) from x D 0. The inset shows an almost
dormant initial evolution of the film, with little decrease in film height due to drainage
for .tr � t / > 5, followed by a rapid decrease in film height due to the van der
Waals forces. In this stage, the film height evolves with the earlier reported theoretical
scaling, hmin � .tr � t /1=5 38, see the inset of figure 3.3c. Interestingly, the addition
of thermal noise to films exhibiting weak drainage results in rupture locations away
from x D 0, see figure 3.3d. The film instability is initiated due to the growth of an
unstable dominant wave, like the noise-free evolution. However, due to the presence
of noise everywhere along the film, rupture can occur at any of the valleys of the
wave that grows fastest. Comparing the dynamics of the film evolution for the noise-
inclusive case with that of the noise-free case, we see no dormant initial phase in
the inset of figure 3.3d. This is because the amplitude of the corrugations resulting
from thermal noise is orders of magnitude larger compared to the initial perturbation
in the noise-free case, where spontaneous growth of unstable waves originates from
the non-uniform initial shape of the film. This leads to shorter rupture times for the
noise-inclusive case yielding tr D 6:95˙ 0:68 versus tr D 15:6 for noise-free case.
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3.5.3 Influence of thermal fluctuations on rupture locations

Having established that the film ruptures through the formation of a dimple at x � 0
for strong drainage (� � �tr ) and through the spontaneous growth of fluctuations at
a random location for weak drainage (� � �tr ), we now further detail the influence
of thermal fluctuations on rupture location for the whole range of curvatures. Without
noise, the film ruptures through the formation of a dimple at xr � 0 within one grid
point, see the crosses in figure 3.4. With noise, the film also ruptures at xr � 0 for
strong drainage, while rupture occurs at a random location for weak drainage, with
xr being uniformly distributed over the flat portion of the film without any preference
for the location where the dimple would otherwise grow. The differences in rupture
locations between films with strong and weak drainage can be used to explain the ex-
perimental observations of films being ruptured always at the rim10 or at random loc-
ations21. As expected based on the earlier presented analysis of time scales, figure 3.4
clearly illustrates that �tr � 0:1 marks the transition between the dimple-dominated
regime (� � �tr ) and the fluctuations-dominated regime (� � �tr ). We note that for
the lowest values of �, the film not only ruptures at the flat portion of the film, but also
occasionally at the curved portion (x < 0) in the Plateau border.

3.5.4 Influence of thermal fluctuations on rupture time

We now study how thermal fluctuations influence the rupture time for different
strengths of drainage. Figure 3.5a shows that the presence of noise does not signi-
ficantly affect the rupture time and its earlier reported scaling with curvature14 for
� � �tr . By contrast, rupture times for � � �tr depend strongly on noise strength
and not on drainage strength, with higher noise strength resulting in shorter rupture
times. Since the dominant thinning mechanism for low � is through the spontaneous
growth of fluctuations and not through the formation of a dimple, there is no funda-
mental mechanistic difference between non-planar films with weak drainage � � 1

and flat films without drainage � D 0, with the rupture times for low � approaching
those of flat films (with periodic boundary conditions). We note here that the rupture
times in the fluctuations-dominated regime depend weakly on the choice of l2, see
figure 3.6 in Appendix. This is easily understood from the fact that, with increasing
l2, the number of valleys of the dominant wave increases, thereby increasing the prob-
ability for the fastest possible rupture. An estimate for the rupture time for a truly
semi-infinite film, i.e., l2 !1, is hence obtained by considering the minima of rup-
ture times in a sufficiently large ensemble of evolutions for the fluctuations-dominated
regime.

How rupture times depend on noise strength for a given value of � is next ex-
amined. We rationalized that the rupture time scales with noise strength according
to !maxtr � ln.

p
2�/�1, see Eq. (3.10). This prediction agrees well with sim-
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Figure 3.5 (a) Dependence of rupture time on drainage (�) and noise strength (� ). Two clearly
separated regimes are visible wherein film thinning is dominated by dimple formation for high
curvatures (� � �tr ) or by the growth of fluctuations for low curvatures (� � �tr ). Inset:
rupture times rescaled with 1=!max at � D 1 � 10�5 (highlighted by the ellipse) for different
noise strengths. The observed slope is close to -1 as indicated by the triangle. We excluded the
rupture time for the noise strength of � D 0:04 in the fit, because the fluctuations of the interface
�
p
2� are approximately 30% of the initial film thickness and the time for them to develop into

the fastest growing wave with !max D 1=4 is significantly longer than the film rupture time
itself. (b) Transition curvature, �tr , from dimple-dominated rupture to fluctuations-dominated
rupture versus noise strength, with the inset showing how �tr is calculated based on the film
rupture times.

ulation results for which we obtain !maxtr � ln.
p
2�/�1:15˙0:04 for � D 10�5,

see the inset of figure 3.5a. We attribute this small difference primarily to the over-
prediction of the rupture time by applying linear theory to a full nonlinear problem.
Finally, figure 3.5b shows how the transition curvature �tr , marking the transition
from the dimple-dominated regime to the fluctuations-dominated regime depends on
noise strength, with �tr calculated as shown in the inset. For realistic � between
10�5 � 10�3, this transition only weakly depends on � , and the earlier estimated
transition �tr D 0:1 provides a good estimate for most experimentally relevant condi-
tions.

3.6 Conclusions

We studied the evolution of draining non-planar thin films under the influence of
thermal fluctuations for the large-film limit, where drainage is confined to a dimple.
The central question answered in this paper is what role thermal fluctuations play in
determining lifetimes of such films. The two key parameters governing this prob-
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lem are the strength of drainage (�) and the strength of thermal noise (� ). For strong
drainage, � � �tr , our simulations show that the film ruptures deterministically due
to rupture in the thinnest part of the dimple, regardless of � and � . The rupture time
then is as reported earlier14, leaving no room for thermal fluctuations to grow and
moderate the rupture process, in contrast to the concept of thermally induced rupture
from some critical moment onwards. By contrast, for weak drainage, � � �tr , the
film ruptures through the spontaneous growth of waves originating from thermal fluc-
tuations. Rupture occurs at one of the valleys of the dominant wave, anywhere along
the planar portion of the film. The mean rupture times are found to be independent
of � and are well predicted by linear stability analysis as tr � 1=!max ln.

p
2�/�1.

The transition between the dimple-dominated regime (� � �tr ) and the fluctuations-
dominated regime (� � �tr ) is around �tr D 0:1, with a weak dependence on noise
strength.

Our work explains if, when and why it is important to include thermal fluctuations
in the dynamics of draining thin films to predict where and when they rupture. We
reiterate that our work focuses on the large film limit. Experimental data sets obtained
in Scheludko cells e.g.17,20,27 are for films in which drainage in the planar portion
of the film occurs simultaneously with dimpled thinning. A direct comparison to
those experiments requires including the film size as an additional parameter, which
is beyond the scope of the present paper.
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Appendix

Figure 3.6 shows how rupture times for the fluctuations-dominated (low �) regime
depend on the extent of flat portion of the film, l2, with its mean and standard deviation
decreasing by about 22% and 84%, respectively, when l2 is increased from 60 to
960. Figure 3.7 shows a grid and time step size dependency study, for � D 10�5

and � D 103. In the spirit of Grün et al. 4 , we used a time step �t D �x˛ , for
which we determined the values of ˛ empirically, varying ˛ between 2.25 and 3 for
the fluctuations-dominated regime and between 3.25 and 4 for the dimple-dominated
regime. In the fluctuations-dominated regime, i.e. at low �, the analysis shows that
a combination of a grid size of �x D 0:05 and a time step size of �t D �x2:75
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Figure 3.6 Dependence of rupture time on the extent of flat portion of the film, l2 for � D 0:001
and � D 10�5.

provides a rupture time within 5% of the smallest grid and time step size used. For the
dimple-dominated (high �) regime, a similar accuracy is obtained for�x D 0:005 and
�t D �x3:25. Figure 3.8 shows how the mean and standard deviation of the rupture
time depend on the number of realisations, again for � D 10�5 and � D 103. It shows
that after about 300 realizations, the mean and the standard deviation are within 2%
and 5%, respectively, of the values obtained for all 400 realizations.

= =

Figure 3.7 (colour online) Dependence of rupture time on grid and time step size for noise-
inclusive simulations (� D 0:001) for (left) � D 10�5 and (right) � D 103. Error bars were
horizontally shifted for better visibility.



Thermal fluctuations in capillary thinning of thin liquid films 49

= =

Figure 3.8 (colour online) Statistical significance based on the number of realizations. Mean
rupture times (�tr ) (top) and corresponding standard deviation (�tr ) (bottom) as a function
of the number of realizations randomly picked from a pool of 400 noise-inclusive simulations
(� D 0:001) for � D 10�5 (left) and � D 103 (right). The dashed red lines indicate 5%
deviation from the values of mean and standard deviation for the entire pool.
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4. Influence of initial film radius
and film thickness on the rup-
ture of foam films¶

The initial thickness and radius of the film that forms upon close contact of two foam bubbles are
known to influence the thinning dynamics and lifetime of the film. Various scalings of lifetime,
tr , with initial radius, Rf ilm, and thickness, ho, have been proposed in literature. In this paper,
we present a hydrodynamic thin film model that includes both surface tension, van der Waals
forces and drainage and that clarifies the various proposed scalings of lifetime. Our model
equations were solved numerically for a range of Rf ilm and ho as direct input parameters.
Films with a large radius are found to thin locally at a dimple, while films with a small radius
thin across the entire film. The observed dynamics and lifetime were interpreted by developing
a simplified model that describes the early stage dimpled drainage and the late stage van der
Waals thinning, using known similarity solutions. For large radii films, our simulations confirm
earlier theoretical work on semi-infinite films that predicts tr � R0

f ilm
h
5=7
0 . For small radii

films, our numerical simulations show the opposite trend with lifetime being solely dependent
on Rf ilm, in fair agreement with the simplified model that predicts tr � R

10=7
f ilm

h00.

¶Under review: M. .S. Shah, C. R. Kleijn, M. T. Kreutzer, V. van Steijn, Influence of initial film radius and
film thickness on the rupture of foam films. Physical Review Fluids.
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4.1 Introduction

The stability of foams and emulsions is largely determined by the lifetime of the thin
liquid film that forms between two bubbles or droplets upon close contact. Thinning
of this film is mediated by drainage induced by the pressure difference between the
film and the Plateau border. Once the film gets thinner than O(100 nm), destabil-
izing van der Waals forces overtake the thinning process and induce rupture of the
film. Together, the early stage drainage and late stage rupture, which partially overlap,
determine the lifetime of the film.

Classical theory by Reynolds 1 describes the thinning of the film between the two
bubbles by considering a fluid between two plane-parallel rigid discs subjected to
drainage. It teaches that the approaching velocity of the discs is constant in time
and depends on the imposed suction pressure and disc radius. Vrij 2 extended Reyn-
olds’ theory by postulating that the film thins uniformly with the velocity predicted by
Reynolds’ theory down to a critical thickness. This critical thickness marks the neutral
stability of waves on the film due to the interplay between stabilizing surface tension
forces and destabilizing van der Waals forces. Upon further thinning, these waves,
which originate from thermal fluctuations, exhibit an exponential growth that outruns
the Reynolds’ velocity, perturbing the interface until rupture occurs randomly at one
of the troughs on the surface of the film. However, earliest experiments in so-called
Scheludko cells are at odds with this picture: instead of uniform initial thinning, a local
depression immediately develops near the Plateau border, and this so-called ‘dimple’
thins out more rapidly than the central part of the film3–5. The formation of a dimple
was first studied theoretically by Frankel and Mysels 6 , who developed scaling rules
for film thinning at the center and at the periphery of the film. A criterion that de-
scribes whether and when a film primarily thins uniformly or locally through a dimple
was developed by Joye et al. 7 and Singh et al. 8 based on a comparison between the
curvature in the dimple and in the Plateau border. For many practical systems, this
criterion teaches us that films with a radius larger that about 50 µm develop dimples
in the film thinning process. Taken altogether, the film thinning process comprises of
an early drainage stage, that has been found to proceed via the formation of a dimple,
and a late rupture stage, where destabilizing van der Waals forces induce rupture that
may be enhanced through the amplification of perturbations on the interface.

A well-established theoretical description of film thinning is rooted in the thin film
equation, which has been shown to accurately describe spatio-temporal profiles of
the film and its lifetime as reported for controlled drainage experiments between two
bubbles or two droplets9–12 and between a bubble or droplet and a solid substrate13–17.
Being a fourth order non-linear partial differential equation, it is commonly solved nu-
merically. An important aspect to be considered is how to incorporate the approach
of two initially spherical bubbles, and the resulting shape of the thin film that sub-
sequently forms between the flattened bubbles18–20, into the thin film description.
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More specifically, the extent over which the film is flattened, referred to as the film
radius, has been shown to depend on the approach velocity in AFM measurements19

and on the rate at which liquid is withdrawn between two bubbles in Scheludko cell ex-
periments7,18. A common way to incorporate these effects in the thin film description
is to introduce an external force that drives the initially spherical interfaces together,
which is switched off once a flattened film has formed in order to study the thinning
dynamics in the absence of this external force9. In order to single out the effect of the
initial features of the flattened film, i.e. its radius and its thickness, we developed a
simplified description that allows to immediately start from a flattened film with pre-
specified radius and thickness. We use this approach to resolve the debated question
how initial film radius and thickness influence thinning dynamics and film lifetime.
This debate stems from the various simplifications to the classical thin film equation
that have been used to answer the question using analytical techniques.

Assuming the film to be planar and to thin quasi-statistically, Reynolds’ theory and
later refinements to the same analytically predict the lifetime to scale with film radius
as tr � R2f ilm

1,21. Relaxing the quasi-steady assumption to include the influence of
drainage on the growth of waves in a plane-parallel film, and using experimentally
observed thinning rates, Sharma and Ruckenstein 22 predicted tr � R1

f ilm
. Malho-

tra and Wasan 23 performed numerical simulations using the thin film equation that
solved exclusively for the flow in the Plateau border, while assuming that the film
remains essentially plane-parallel, to find tr � R

4=5

f ilm
. Although this model is in reas-

onable agreement with experimentally observed lifetimes, photographic techniques
have shown that draining films are not plane-parallel5,24,25. This finding inspired the
development of several theories that either take into account quasi-stationary non-
homogeneities on a plane-parallel interface resulting in tr � R

4=5

f ilm
24–26, or assume

the translatory and oscillatory motion of hydrodynamic waves on a plane-parallel in-
terface resulting in tr � R

3=4

f ilm
27. With the inclusion of the afore-mentioned non-

homogeneities, these theories address the notion that film thinning is not strictly plane-
parallel in nature. However, they fail to capture the pronounced dimple shapes ob-
served in the experiments5,11,12,28. Besides the development of steady and non-steady
plane-parallel models, with and without non-homogeneities, models have been de-
veloped on quasi-steady non-planar films featuring dimples. With the interface shape
no longer fixed, but freely deformable, an analysis of the spatio-temporal film pro-
files is significantly simplified when assuming that the flow at the periphery of the
film is independent of its radial location. Using such a quasi-steady approach, Frankel
and Mysels 6 calculated the shape of a dimple close to rupture. Aradian et al. 29 de-
veloped a comprehensive model for dimpling that extended the model of Frankel and
Mysels 6 for infinitely large films. However, both of these works do not include van
der Waals forces. Without their inclusion, films do not rupture (i.e. reach a zero
thickness asymptotically) such that the lifetime of the film and its dependency on film
radius and thickness cannot be predicted by these models.
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In the present work, we clarify the variety of scaling rules in the literature, stemming
from various applied simplifications, by numerically solving the thin film equation
without such simplifications, using initial film radius and thickness as direct input
parameters. To mechanistically explain the numerically obtained dependency of the
lifetime of the film on its initial radius and thickness, we combined earlier-reported
analytical models for dimpling in the early stage6 and rupture through van der Waals
forces in the late stage30. While these models were obtained through simplification of
the full thin film equation, the combined model presented here does corroborate the
dependency found in our simulations of the full thin film equation.

4.2 Problem formulation

Rc

Rfilmr = 0 Rpb

Figure 4.1 Schematic of an axisymmetric non-planar thin liquid film between two gas bubbles
with the film thickness parameterized by h.r; t/. Since the geometry is mirror symmetric, we
here display the upper half. The initial film shows a flat part extending from 0 < r � Rf ilm
with the pressure primarily given by the van der Waals component of the disjoining pressure,
p � A=6�h3. This flat part is connected to a curved part extending from Rf ilm < r �

Rf ilm C Rpb with the pressure primarily given by the Laplace pressure, p � �2=Rc , with
2=Rc as the curvature imposed at the edge. The dashed line at r D 0 signifies the second
symmetry of the problem, viz. the axisymmetry in the system.

We study the evolution of an axisymmetric non-planar thin liquid film with viscosity
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� and surface tension  between two gas bubbles. The spatio-temporal thickness
of the film is parameterized by h.r; t/. Since the geometry of the problem is mirror-
symmetric, we consider only one half of the film as shown in Fig. 4.1. Throughout this
work, the term ‘thickness’ is used to refer to the full film thickness, h.r; t/. The film
comprises of a flat part between 0 < r � Rf ilm of initial thickness ho, connected to a
curved part betweenRf ilm � r � Rf ilmCRpb , with a curvature 2=Rc corresponding
to a Plateau border. Considering the pressure in the gas phase to be uniform and
setting it equal to zero, the pressure p in the curved part of the liquid film, where
intermolecular forces play an insignificant role, is dictated primarily by the Laplace
pressure and of order p D �2=Rc . Conversely, the pressure in the thin flat part is
dictated by intermolecular forces, which in this paper are considered as attractive van
der Waals forces, such that it is of order p D A=6�h3, with A being the Hamaker
constant. The difference in pressure drains the liquid from the flatter part of the film
to the more curved part.

The axisymmetric thin film equation that describes the evolution of non-planar thin
films can be derived by applying a long-wave approximation to the incompress-
ible Navier-Stokes equations31,32. Considering rigid interfaces characteristic for a
surfactant-laden system, which are described by commonly encountered tangentially
immobile boundary conditions19, this yields
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12�
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�
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with the first term on the right side arising from long-ranged attractive van der Waals
forces and the second term from surface tension forces. Since the problem we con-
sider is axisymmetric around r D 0, at the left boundary of our domain, gradients in
thickness and pressure are zero, i.e.

@h

@r
.r D 0/ D 0;

@p

@r
.r D 0/ D 0 (4.2)

Using p D A=6�h3 � =2r .@=@r .r@h=@r//, the boundary condition for pressure
becomes A

2�h4
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r
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@r
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@2h
@r2

�
D 0 at r D 0, which simplifies to @3h=@r3.r D

0/ D 0 when using the first boundary condition @h=@r.r D 0/ D 0 together with the
notion that the two principal curvatures are the same at r D 0 due to axisymmetry. A
Plateau border of constant curvature is obtained by imposing its shape, i.e. curvature
(2=Rc) and corresponding height, at the other domain boundary (r D Rf ilm CRpb),
i.e.
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This height is obtained by integrating the expression for constant curvature in the
curved meniscus and imposing that the height and its first derivative match the planar
part of the film at r D Rf ilm, i.e. h.r D Rf ilm/ D ho and @h=@r.r D Rf ilm/ D 0.

The initial film profile is described by a flat film connected to a Plateau border of
constant curvature, i.e.

h.0 < r � Rf ilm; t D 0/ D ho;

h.Rf ilm < r � Rf ilm CRpb; t D 0/ D ho C
.r2 �R2

f ilm
/

Rc
:::

C
2R2

f ilm

Rc
ln
�
Rf ilm

r

�
:

9>>>>>>=>>>>>>;
(4.4)

While the height and its first derivative smoothly connect the flat and the curved parts,
we note that the second derivative is discontinuous. Although the corresponding pres-
sure profile is discontinuous at the connection, we confirm from checking the pressure
profiles that this discontinuity equilibrates very quickly, i.e. in less than 0.01 % of
the lifetime. Additionally, eliminating the pressure discontinuity by using an initial
condition that connects the flat part to the curved part using a transition region, we
see that the resulting profiles (see Fig. 4.2) overlap those without the transition region
soon after the start (for t ' tr=8). Furthermore, the addition of a significant per-
turbation representative of hydrodynamic non-homogeneities in the initial condition,
as indicated by the red dashed curves in Fig. 4.2, also proves to be inconsequential
in determining the lifetime and the film profile at the instant of rupture. This initial
condition independency study ensures that the film dynamics during almost the entire
process and the resulting lifetime are not affected by the choice of our initial condition.

The governing equation, boundary and initial conditions are provided in dimen-
sional form and show that the problem is governed by six parameters, which in-
clude three material properties, i.e., �,  and A, and three geometric parameters,
i.e., ho, Rc and Rf ilm. The solution is insensitive to the chosen value of Rpb
(see Fig. 4.1) as long as it lies between an upper and a lower bound. The up-
per bound is dictated by the validity of lubrication approximation, i.e., Rpb �

Rc=4
�
1C

q
.1C 16R2

f ilm
=R2c /

�
�Rf ilm, while the lower bound is dictated by the

region where curvature goes from practically zero in the flat part to 2=Rc in the curved
part. This leads to Rpb �

p
hoRc , as discussed in more detail in Shah et al. [18].

We now perform a scaling analysis to demonstrate that the problem is governed
by two dimensionless parameters. Using a height scale h� D ho, a radial scale
r� D

p
hoRc=4 (obtained from the constant curvature boundary condition at far right,

i.e., Eq. 4.3) and a time scale t� D 3�R2c=2ho, we obtain the dimensionless vari-
ables Qh D h=h�, Qr D r=r� and Qt D t=t� together with the following dimensionless
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µ

Figure 4.2 Evolution of a film with initial thickness, ho D 300 nm, and radius, Rf ilm D
50 µm, with three different initial conditions. Blue solid lines correspond to the initial condition
prescribed in Eq. 4.4. Red dashed lines correspond to an initial condition where a small sinus-
oidal perturbation with an amplitude of 25 nm and a wavelength of 16:7 µm is added to the flat
part of the initial condition in Eq. 4.4. Yellow dashed-dot lines correspond to a film that has a
transition region from the flat portion of the film to the curved portion, with transition region as
determined in Eq. 1 in the supplementary material. Besides the initial profiles at t D 0, profiles
are shown for tr=2n with n D 5 ::: 0, with the rupture times, tr being 15.74 s, 15.74 s and 15.69
s for these three initial conditions respectively.
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where � D �h3o=ARc is the relative strength of drainage. It signifies the ratio of the
Laplace pressure and the initial van der Waals pressure. Additionally, we obtain the
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dimensionless boundary conditions

@ Qh

@ Qr
. Qr D 0/ D 0;

@3 Qh

@ Qr3
. Qr D 0/ D 0;

1

Qr

@

@ Qr

 
Qr
@ Qh

@ Qr

!
. Qr D QRf ilm C QRpb/ D 1;

Qh. Qr D QRf ilm C QRpb/ D 1C
. Qr2 � QR2

f ilm
/

4
C

QR2
f ilm

2
ln

 
QRf ilm

Qr

!
;

9>>>>>>>>=>>>>>>>>;
(4.6)

and dimensionless initial condition

Qh.0 < Qr � QRf ilm; Qt D 0/ D 1;

Qh. QRf ilm < Qr � QRf ilm C QRpb; Qt D 0/ D 1C
. Qr2 � QR2

f ilm
/

4
:::

C

QR2
f ilm

2
ln

 
QRf ilm

Qr

!
;

9>>>>>>>=>>>>>>>;
(4.7)

with Rf ilm and Rpb made dimensionless using r�. With QRpb chosen such that the
solution is insensitive to its value, this scaling analysis shows that the problem is
fully governed by two dimensionless control parameters, i.e., the relative strength of
drainage, � and the film radius, QRf ilm. We explore the parameter space by varying
these two dimensionless parameters. As the main aim of this work is to understand
how film dynamics depend on the initial features of the film, i.e. the film radius and its
thickness, we translate the dimensionless representation back to the dimensional one.
This is done by fixing �,  , A and Rc , as is for example the case when performing
experiments with a given set of working fluids in a capillary of given radius in a so-
called Scheludko cell. Motivated by the experiments from Manev et al. 25 , we use
� D 0:00089 Pa s,  D 0:0445 N/m, A D 1:5 � 10�20 J and Rc D 1:8 mm. The
dimensional parameter space is then spanned by the initial film thickness h0 from
300 nm - 2000 nm and the film radius Rf ilm from 40 µm - 4000 µm. Note that in
our simulations, we are able to control these parameters independently, while they are
coupled in experiments through the flow rate at which liquid is withdrawn between
two bubbles prior to the start of the film rupture experiments7.

We conclude our problem formulation with a note on thermal fluctuations at the gas-
liquid interface. These fluctuations do significantly influence film dynamics and rup-
ture time in case of weak drainage (� � 1), as shown in our previous work [18].
The focal point in this work is on cases with � � 1, such that we have not included
thermal fluctuations in our problem description. This is also further corroborated with
the notion that films with a small radius are stable against waves, because the unstable
ones have wavelengths that exceed the radius of the film9,19.
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4.3 Numerical implementation

We numerically solve � the axisymmetric thin film equation (Eq. 4.5) along with its
boundary and initial conditions (Eqs. 4.6 - 4.7) using a finite difference scheme. We
discretize the domain into an equidistant mesh of size, � Qr , using a second-order cent-
ral differencing scheme for spatial discretization. Time discretization is performed
using an implicit-explicit scheme of a constant time step size, �Qt , wherein the fourth-
order term describing capillary forces is discretized implicitly and the second-order
term describing the nonlinear van der Waals forces is discretized explicitly. The mo-
bility term ( Qr Qh3) is discretized as per the positivity-preserving scheme discussed in
Diez et al. 33 . Based on our previous work34, we use � Qr D 0:05 and �Qt D � Qr2:25,
and confirm that the presented simulation results for lifetimes are grid and time step
size independent.

4.4 Results

4.4.1 Characterisation of the film evolution for the governing
parameter space

We start by characterising the thinning dynamics for the governing parameter space.
As explained, we fix �,  , A and Rc such that the parameter space is spanned by
the initial film thickness h0 and film radius Rf ilm. The lower limit of the film radius
(40 µm) was chosen based on the experimentally observed values25,35, while the upper
limit (4000 µm) was chosen to approach the semi-infinite film asymptote29,34,36. The
range of initial film thicknesses studied in this work is representative of the drainage
experiments reported in the literature7,35.

We start with a description of films with the largest radius (Rf ilm D 4000 µm) con-
sidered in this work, connecting their behaviour to the well-known behaviour of semi-
infinite films29,34,36. The features of thinning of large films are the same for thin
(h0 D 300 nm) and thick (h0 D 2000 nm) films. They are characterized by the form-
ation of a local depression, called a dimple, near the connection between the flat and
curved part of the film, while the film at the center, i.e. at r D 0, remains unaffected,
see Figs. 4.3a, 4.3b. With the thinning being a localised phenomenon, the evolution of
the film is insensitive to the film radius itself, given it is sufficiently large. Later in this
paper, we quantitatively show that the large film radius limit considered in this work
indeed approaches the behaviour observed for semi-infinite films sometimes referred
to as marginal pinching29. Having confirmed the behaviour for such large films, we
�MATLAB files used for simulations available at github.com/mss01
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Figure 4.3 Film evolution in space and time at the boundaries of our parameter space. Large
films Rf ilm D 4000 µm of h0 D 300 nm (a) and ho D 2000 nm (b) initial thickness. The
abscissa were made discontinuous to better illustrate the localized dimple for large film radius.
Small films Rf ilm D 40 µm of h0 D 300 nm (c) and ho D 2000 nm (d) initial thickness. (c)
and (d): Film evolution in space and time for Rf ilm D 40 µm at ho D 300 nm in (c) and ho D
2000 nm in (d). Inset in (d): Zoomed view of the film evolution at t D tr=2

n with n D 5 ::: 0.
Besides the initial profiles at t D 0, profiles are shown for tr=2n, with n D 6 ::: 0 in (a) and (c)
and n D 11 ::: 0 in (b) and (d), with tr D 22:87 s, 150:48 s, 12:91 s and 11:12 s for (a), (b), (c)
and (d) respectively.

now continue with the focal point of the paper: the behaviour of films with small radii.

The thinning behaviour for the smallest film radius considered in this work (Rf ilm D
40 µm) is deliberately different from that for the largest films: film thinning initially
occurs across the entire film as evident for thin and thick films in Figs. 3c and 3d,
respectively. Shortly prior to rupture, the films do develop a dimple. A prediction
for the transition from uniform thinning to dimpled thinning was first developed by
Joye et al [7], who evaluated the ratio between the order of magnitude of the curvature
at the center of the film, 2h.t/=R2

f ilm
, and at the bubble, 1=Rc . Using numerical
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simulations, they found that films develop a dimple when this ratio decreases below a
value of 0.7. For the here considered case with Rc D 1:8 mm and Rf ilm at the time of
rupture † being 38 µm and 30 µm for ho D 300 nm and 2000 nm respectively, Joye’s
criterion predicts a transition around h.t/ D 286 nm and h.t/ D 175 nm, respectively,
which is in good agreement with those found in Figs. 4.3c and 4.3d.

µ

Figure 4.4 Lifetime of the film as a function of the initial film radius, for different initial
film thicknesses. Green and blue dashed line corresponds to the lifetimes calculated based
on Reynolds’ 1 and MTR theory 26, respectively. The red dashed line corresponds to lifetime
calculated based on Eq. 4.19. The horizontal solid lines at the right of the figure signify the
plateauing values of film lifetimes at large radius. These values are further used in Fig. 4.9 to
compare with the mechanistic model developed for large films in Appendix 4.5.

†The dimple does not necessarily remain at the location determined by the initial film radius during the film
evolution. Once the interface relaxes from the discontinuous initial condition, the dimple initially moves
towards the center, and then moves outward, with the final film radius at the instant of rupture in Figs. 4.3c
and 4.3d being 38:34 µm and 30:22 µm respectively, as compared to the initial film radiusRf ilm D 40 µm.
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4.4.2 Influence of initial film radius and film thickness on film life-
time

Having studied the film evolution at the boundaries of our parameter space, we now
study how film lifetime depends on the initial film radius and film thickness. As
anticipated, we observe two regimes with distinctly different behaviour for small and
large radii films as shown in Fig. 4.4.

For large radii films, the lifetime of a film is independent of the initial film radius
and depends solely on the initial film thickness, confirming what is well established
for semi-infinite films36. Briefly, the independence on film radius is explained by the
thinning process being a localized phenomena, such that the radius of the film plays
no role. Lifetimes are well described by our earlier developed model for semi-infinite
2D films36, after modification to account for the radial geometry considered in this
work leading to tr � R0f ilmh

5=7
o , as detailed in Appendix 4.5.

For small radii films, film lifetime solely depends on the initial film radius and not
on the initial film thickness, in qualitative agreement with the work by Malhotra and
Wasan 23 . Our numerical data show tr to scale with Rn

f ilm
, with the power n being

smaller than 2 from classical Reynolds’ theory1 and greater than 4=5 from MTR the-
ory23,25. The thin film simulations as done in this work with ho andRf ilm being direct
input parameters hence clarify the variety of different exponents reported in literature
that were obtained under various simplifying assumptions. In order to develop a bet-
ter understanding on key simplifying assumptions and provide mechanistic insights in
the numerically obtained scaling relation between tr , Rf ilm and ho, we combine two
known analytical solutions6,30. Full details on this model are provided in the next sec-
tion §4.4.3. For the reader mainly interested in the outcome, the analytical description
yields tr � h0oR

10=7

f ilm
, in fair agreement with the numerical data, as shown in Fig. 4.4.

We close the discussion on Fig. 4.4 by briefly commenting on the observation that film
lifetime does not monotonically reach the plateauing value observed for large radii
film. We observe that the thinning behaviour in the transition region is qualitatively
different from that for the large radii films, with the dimple shifting to the centre of
the film and growing beyond the initial film thickness (see Appendix 4.5, Fig. 4.10).
Since the focal point of this paper has been to study small films, a deeper analysis of
this behavior is beyond the scope of the present study.

4.4.3 Analytical model for dynamics of films with small radius

In this section, we develop a mechanistic model that combines two known analytical
solution that were obtained for the early and late stage dynamics through simplifica-
tions of the thin film equation. We start our analysis by (re)examining the two mechan-
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Figure 4.5 (colour online) Film dynamics for a prototypical small film (Rf ilm D 100 µm),
with initial thickness ho D 1000 nm illustrating how the dimensionless minimum film thickness
extracted from the numerical simulations evolves in time. The film evolution shows an early and
a late stage, both governed by power law dynamics (further detailed in §4.4.3 and §4.4.3). The
inset shows the same data in a log-lin plot. The red dashed line shows an exponential fit from
0:03 < Qhmin.t/ < 0:08 as used in Manev et al. 25 . When we recast the fitting parameters Qa and
Qb to their dimensional equivalents we find these parameters as a D 133 nm and b D 0:046 Hz.
While the value of a is not available to compare with in the paper by Manev et al. 25 , the value
of b is within 15% of their experimentally determined values.

isms in these two stages. In the early stage, thinning is primarily governed by capillary
drainage, while van der Waals forces govern the late stage. These stages are clearly
evident from a plot of the minimum film thickness as a function of time, as shown for
a prototypical small film (Rf ilm D 100 µm) in Fig. 4.5. Some previous works [12,13]
captured the dynamics using a single exponential function, fitted to, (and currently
found to describe,) only a part of the evolution (0:03 < Qhmin < 0:08) as shown in
the inset of Fig. 4.5. Other works studied the early and late stage separately6,30. In
the subsequent sections §4.4.3 and §4.4.3, we characterize these two stages. In sec-
tion §4.4.3, we combine them to develop a theoretical model that describes how the
lifetime of films depend on their initial features.
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Scaling rule for the early stage

a b

Figure 4.6 Dimensionless thinning rate as a function of the rescaled time axis (based on Eq.
4.12) illustrating early stage film dynamics for a fixed initial film thickness of ho D 2000 nm
and different Rf ilm D 50 µm, 100 µm, 200 µm and 400 µm in (a); and for a fixed film radius of
Rf ilm D 100 µm and different h0 D 300 nm, 500 nm, 1000 nm and 2000 nm in (b). The black
solid lines correspond to Eq. 4.12.

Frankel and Mysels 6 developed scaling rules for the evolution of the film thickness at
the center, hc , and at the minimum of the dimple, hmin. They arrived at these rules
by first determining the shape of a dimple close to rupture based on a self-similar
solution of Eqs. 4.1-4.4 after applying the following simplifying assumptions: (i)
a quasi-steady flow, (ii) hmin � hc

5, (iii) negligible influence of van der Waals
forces (iv) inner far-field constant slope and (v) outer far-field constant curvature.
They then connect the dimple to the central part of the film by assuming it to be
described by a parabola, h.r; t/ D ar2 C br C c, and infer the dynamics of hc
and hmin by solving the continuity equation. On substituting the boundary condi-
tions, h.r D 0; t/ D hc , @h=@r.r D 0; t/ D 0 and h.r D Rf ilm; t / D hmin
in the afore-mentioned parabola, along with the assumption of hmin � hc , res-
ults into a film profile, h.t/ D hc.1 � r

2=R2
f ilm

/. Using the two-dimensional flow

rate
�
Q D 1

2�Rf ilm

@
@t

�
2�
R Rf ilm

0 hrdr
��

through the dimple, an inner far-field con-
stant slope, �2hc=Rf ilm and a constant far-field outer curvature 2=Rc , Frankel and
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Mysels 6 show ‡ that hc and hmin scale as

hc D

 
3�R6

f ilm

c124Rct

!1=4
(4.8)

and

hmin D
2c1c2h

2
cRc

R2
f ilm

(4.9)

respectively. Here c1 D 1:22 and c2 D 1:25 as determined by Frankel and Mysels 6

are the numerical solution for the asymptotic curvature at the far-right boundary of the
dimple and the minimum value of the film thickness at the dimple, respectively. On
substituting for hc from Eq. 4.8, in Eq. 4.9, we obtain

hmin D

 
3�c1c

2
2R

2
f ilm

Rc

24 t

!1=2
: (4.10)

Non-dimensionalizing Eq. 4.10, using QRf ilm D Rf ilm=
p
hoRc=4, Qt D

t=.3�R2c=2ho/ and Qhmin D hmin=ho as discussed in section §4.2, we obtain

Qhmin D

 
c1c

2
2

25

QR2
f ilm

Qt

!1=2
: (4.11)

We note that the starting point in the model derived by Frankel and Mysels 6 is the
occurrence of a dimple, such that this equation holds near rupture. We hence expect
this relation to describe the simulations, which start from a finite value of Qhmin at Qt D
0, after an initial transient. As commonly done in literature7,24, rather than considering
Qhmin in a comparison between theory and simulations, we compare the thinning rate

@ Qhmin

@Qt
D �

1

2

�
c1c

2
2

25

�1=2  QR2
f ilm

Qt3

!1=2
: (4.12)

This expression shows that the dimensionless thinning rate scales with time as Qt�3=2,
with film radius as QR1

f ilm
, and with film thickness as h0o. Comparing our simulations

for differentRf ilm and fixed ho, we see a reasonable collapse of the curves when plot-
ting the dimensionless rate against Qt3= QR2

f ilm
(Fig. 4.6a). Furthermore, for different

ho and fixed QRf ilm, we see that the early stage dynamics indeed does not depend on
the initial film thickness (Fig. 4.6b).

‡The numerical factors in Eqs. 4.8 and 4.9 are adjusted to account for the difference in the definition of film
thicknesses between our work (see, section §4.2) and Frankel and Mysels 6 . More specifically, the constant
24 instead of 28 in Eq. 4.8, and the constant 20 instead of 21 in Eq. 4.9 stems from considering the
upper half of an axisymmetric film between two bubbles in our work as compared to the full film thickness
considered between the gas-liquid interface and the solid substrate in Frankel and Mysels 6 .
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a b

Figure 4.7 Dimensionless thinning rate as a function of the rescaled time axis (based on Eq.
4.14) illustrating late stage film dynamics for a fixed initial film thickness of ho D 2000 nm
and different Rf ilm D 50 µm, 100 µm, 200 µm and 400 µm in (a); and for a fixed film radius of
Rf ilm D 100 µm and different h0 D 300 nm, 500 nm, 1000 nm and 2000 nm in (b). The black
solid lines correspond to Eq. 4.14.

As mentioned earlier, van der Waals forces are not included in the model by Frankel
and Mysels 6 . Consequently, the film approaches rupture asymptotically, i.e. Qhmin D
0 does not occur in a finite time. Thus Eq. 4.12 on its own, could not be used to
predict the lifetime of the film. In the next section, we therefore consider the late stage
governed by van der Waals forces separately.

Scaling rule for the late stage

Van der Waals forces induce a rapid rupture once the film is thinned sufficiently to a
certain critical thickness, hcr . Considering the evolution of the dimple close to rupture
where it is known to be independent of initial and boundary conditions37, Zhang and
Lister 30 developed a similarity solution for Eq. 4.1 to arrive at the following scaling

Qhmin D av

�
Qtr � Qt

144�2

�1=5
; (4.13)

where av is an O(1) constant. Here, 144�2 is a factor that relates Qtr and Qt to a dimen-
sionless time relevant for this late stage30 §. The thinning rate is then given by

@ Qhmin

@Qt
D �

av

5

�
1

144�2.Qtr � Qt /4

�1=5
: (4.14)

§Note that the ratio .1=144�2/ arises from the translation from the time scale based on the growth of un-
stable waves to the time scale based on drainage as used throughout this paper. More specifically, the length
scale pertaining to the unstable waves is h2

o

p
3�=A, which translates into a time scale 216�2�h5

o=A
2.
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Notably, the thinning rate in the late stage neither depends on the initial film thickness
nor on the initial film radius. Replotting the data set shown in Figs. 4.6a and 4.6b,
now using the rescaled time axis 1=.144�2.Qtr � Qt /4/ all curves indeed collapse close
to rupture as shown on the right hand sides of Figs. 4.7a and 4.7b ¶. The O(1) constant
is obtained by fitting the data to obtain av D 1:18.

Estimate of the film lifetime

To arrive at the total thinning rate, we consider the contribution of the early and the
late stage (Eqs. 4.12 and 4.14) as additive36, to arrive at 

@ Qhmin

@Qt

!
total

D �
1

2

�
c1c

2
2

25

�1=2  QR2
f ilm

Qt3

!1=2
�
av

5

�
1

144�2.Qtr � Qt /4

�1=5
:

(4.15)
On recasting Qt and .Qtr � Qt / in the first and the second term on the right hand side in
terms of Qhmin using Eq. 4.11 and 4.13, respectively, we obtain the total thinning rate
as,  

@ Qhmin

@Qt

!
total

D

 
�24

c1c
2
2
QR2
f ilm

!
Qh3min �

a5v

720 Qh4min�
2
; (4.16)

which is independent of time. An estimate for the lifetime can then be obtained as

Qtr D

Z Qtr
0

@Qt D

Z 0

1

@ Qhmin�
�24

c1c
2
2
QR2
f ilm

�
Qh3min �

a5
v

720 Qh4
min

�2

(4.17)

The solution of the above integral || at the limit QRf ilm ! 0, for any value of �, gives

Qtr D 0:65 QR
10=7

f ilm
�4=7; (4.18)

On substituting back the relevant length and time scales from section §4.2, we get

tr D 0:65

�
Rf ilm

r�

�10=7 �
�h3o

ARc

�4=7
t� D 5:05R

10=7

f ilm
�3=7A�4=7R5=7c : (4.19)

This analysis shows that the dimensional lifetime is independent of the initial thick-
ness, ho and scales with the radius, Rf ilm with an exponent of 10=7. This result is

¶We note that the non-smooth connection between the early and late stage arises from a shift in the location
of the dimple (as for instance seen in Fig. 3). In our simulations, this shift occurs by one grid point such
that it appears as a non-continuous jump.

||The exact solution is an impractically long solution and hence we solve it at limit Rf ilm ! 0 and
Rf ilm ! 1 to arrive at an approximate, but compact solution. The relative difference between the
actual solution and the approximate solution Eq. 4.18 is approximately 1%.
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plotted in Fig. 4.4 as the dashed red line. Given the simplifying assumptions used
to derive the similarity solutions for the early and late stage, Eq. 19 fairly well de-
scribes the numerical data, as shown in Fig. 4.4. The here presented analytical model
hence provides mechanistic insights on the numerically established scaling relation,
and the comparison shows the extent to which film thinning of small radii films can
be described through the used simplifications.

4.5 Conclusions

The aim of this work is to understand how the thinning dynamics and lifetime of films
between two bubbles depend on the extent to which the bubbles have deformed upon
close contact, as characterized by the initial radius and thickness of the flattened film.
Numerical solutions of a hydrodynamic thin film model show that the thinning dy-
namics are distinctly different for films of large and small initial radius. Large films
thin locally through the formation of a dimple at the edge of the film29, while small
films initially thin across the entire film, then develop a dimple, and eventually rupture
at the minimum of this dimple. For large films, our simulations confirm earlier the-
oretical work on films of semi-infinite radius36 that predicts that the lifetime tr scales
with initial film radius Rf ilm and thickness h0 as: tr � R0

f ilm
h
5=7
0 . As opposed to

this scaling for large films, we found the lifetime of small films, which was the focus
of the current work, to be independent of the initial film thickness and dependent on
film radius. To understand the scaling for small films, we combined earlier-reported
analytical solutions for dimpled thinning in the early stage6 and van der Waals rupture
in the late stage30. While these analytical solutions were obtained through simplific-
ation of the full thin film equation, the predicted scaling tr � h0R

10=7

f ilm
captures the

trend in the numerical data reasonably well.
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Appendix

Theoretical model for large axisymmetric films

In this section, we adapt our earlier model developed for semi-infinite films in a 2D
Cartesian geometry to the axisymmetric geometry considered in the present paper.
We begin the model description by studying the early stage dynamics that follows the
scaling rule developed by Aradian et al. 29 ,

Qhmin D ar Qt
�1=2; (4.20)

c d

a b

Figure 4.8 Dimensionless film thickness and thinning rate as a function of time illustrating the
early stage in (a) and (b) respectively and the late stage film dynamics in (c) and (d) respectively
for a fixed film radius of Rf ilm D 4000 µm and different initial film thicknesses of ho D 300,
500, 1000 and 2000 nm. The black solid lines in (a), (b), (c) and (d) correspond to Eqs. 4.20,
4.21, 4.13 and 4.14, respectively.
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which on taking the time derivative leads to,

@ Qhmin

@Qt
D �

ar

2Qt3=2
: (4.21)

Figs. 4.8a and 4.8b show how the early stage film dynamics from numerical simu-
lations for these large films compare for different initial film thicknesses for a fixed
large Rf ilm D 4000 µm. The data is well described by the model, after a first initial
transient. The O(1) constant obtained from a fit of the data is ar D 1:2.

The late stage evolution for these large axisymmetric films follows the model by
Zhang and Lister 30 presented in Eqs. 4.13 and 4.14, with the earlier reported O(1)
constant av D 1:18. Figs. 4.8c and 4.8d show how our numerical simulations follow
the late stage dynamics for different ho and for Rf ilm D 4000 µm.

Considering the contribution of the early and the late stages as additive and using
the same approach as presented in the main body of the paper, we arrive at the total
thinning rate  

@ Qhmin

@Qt

!
total

D �
ar

2Qt3=2
�
av

5

�
1

144�2.Qtr � Qt /4

�1=5
; (4.22)

which, when represented in terms of Qhmin, reads 
@ Qhmin

@Qt

!
total

D �

Qh3min
2a2r

�
a5v

720 Qh4min�
2
: (4.23)

An estimate for the film rupture time can then be obtained as

Qtr D

Z Qtr
0

@Qt D �

Z 0

1

@ Qhmin
Qh3

min

2a2
r

C
a5

v

720 Qh4
min

�2

: (4.24)

The solution of the above integral at the limit � !1 gives

Qtr D 6:32�
4=7: (4.25)

Fig. 4.9 shows how large film asymptotes from Fig. 4.4 agrees well with the the-
oretical model Eq. 4.25. On substituting the scales in Eq. 4.25 to determine the
dimensional lifetime, we obtain

tr D 18:2�R
10=7
c �3=7A�4=7h5=7o R0f ilm: (4.26)

For large film radii, we hence find that the dimensional lifetime of the film depends on
the initial film thickness and is independent of the film radius.
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Figure 4.9 (colour online) Dimensionless film rupture times as a function of dimensionless
curvature for the large film asymptotes at the extreme right in Fig. 4.4. The blue circles corres-
pond to the numerical simulations whereas the red line corresponds to the theoretical expression
as described in Eq. 4.25.

Film evolution at the transition region

The thinning behaviour at the transition region is illustrated for a thin (ho D 300 nm)
and thick (ho D 2000 nm) film in Fig. 4.10, for which the transition occurs around
Rf ilm D 80 µm and Rf ilm D 600 µm, respectively. As expected, the film thinning is
observed to proceed via the formation of a dimple at the connection between the planar
and the curved portion of the film. Qualitatively, the difference in the film thinning at
this transition region from that at the large radii films is that the film thickness at the
centre of the film increases beyond the initial film thickness. The physics behind film
dynamics for films in this transition region is beyond the scope of this work.
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ba

µ µ

µµ

Figure 4.10 Film evolution in the transition regime for two examples: (a) a thin film (h0 D
300 nm), which has the transition around Rf ilm D 80 µm and (b) a thick film (h0 D 2000 nm),
with the transition around Rf ilm D 600 µm. Besides the initial profiles at t D 0, profiles are
shown for tr=2n, with n D 7 ::: 0 in (a) and n D 11 ::: 0 in (b), with tr D 11:0 s and 220:4 s for
(a) and (b) respectively.
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Supplementary Material

Initial condition with a transition region

The pressure discontinuity arising in the initial film profile at the connection between
the flat and curved part is eliminated by adding a transition region between QRf ilm �
QRtr < Qr < QRf ilm C QRtr and connecting the flat and the curved part by including a

third order polynomial. Adjusting Eq. 4.7 in this way, we obtain

h D

8̂<̂
:
1; for Qr < QRf ilm � QRtr
1C ˛1 Qr

3 C ˛2 Qr
2 C ˛3 ln. Qr/C ˛4; for QRf ilm � QRtr < Qr < QRf ilm C QRtr

1C Qr
2

4
C ˛5 ln. Qr/C ˛6; for Qr > QRf ilm C QRtr

(4.27)
The constants ˛1, ˛2, ˛3, ˛4, ˛5 and ˛6, are obtained by matching the height, its first
and its second derivative at the two boundaries of the transition region. This gives

˛1 D
1

18 QRtr
I ˛2 D

1

4
�
. QRf ilm C QRtr /

8 QRtr
(4.28)

˛3 D �. QRf ilm � QRtr /
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Derivation of scaling rules from Frankel and Mysels6

paper

Assume a parabolic profile of the film, i.e., h D ar2 C br C c, with the boundary
conditions at the time of the rupture being r D 0; h D hc ; at r D 0; @h=@r D 0 and at
r D Rf ilm; @h=@r D �k, where k > 0 is a constant. The first condition gives c D hc ,
the second one gives b D 0 and the third one gives a D �k=2Rf ilm. The film profile
then is given by h D hc � kr2=2Rf ilm. Assuming h.r D Rf ilm/ D hmin � hc , we
get k D 2hc=Rf ilm.

Now, volume of fluid in a cylindrical film is given by V D 2�
R Rf ilm

o
hrdr , which

gives V D 2�hcR
2
f ilm

=4. The two dimensional flow rate, Q, can be given by the
following balance,

2�Rf ilmQ D �
@V

@t
(4.32)

which leads to

Q D �
Rf ilm

4

@hc

@t
(4.33)

We now focus in the vicinity of the dimple. We start with the governing equation for
the flow through the film, i.e.,

1

�

@p

@r
D
@2ur

@´2
(4.34)

Applying no-slip boundary condition (i.e. ur D 0) at the surfactant-rich gas-liquid
interface (at ´ D h=2) and symmetry boundary condition (i.e. @ur=@r D 0) at ´ D 0
(geometry described in schematic Fig. 1 in the main text), we obtain,

ur D
1

2�

@p

@r

�
´2 �

h2

4

�
(4.35)

The two-dimensional flow rate through the dimple is given by the continuity as, Z h=2

0

ur@´

!
D
Q

2
; (4.36)

which simplifies to
h3

12�

@p

@r
D Q (4.37)
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With the pressure contribution solely from the surface tension forces, we obtain��,



24�
h3
@3h

@r3
D Q (4.38)

The governing equation 4.38 has a different numerical pre-factor than that found in the
work of Frankel and Mysels 6 due to the difference in the geometry under considera-
tion. In our work, we consider an axisymmetric film with the film thickness between
the rigid gas-liquid interface (no-slip) and the axis of symmetry (no-shear) being h=2,
as shown in the schematic Fig. 1 in the main text, whereas in the work of Frankel and
Mysels 6 , the film thickness between the free gas-liquid interface (no-shear) and the
solid subtrate (no-slip) is h.

Frankel and Mysels 6 show that the inner far-field of the dimple is represented by
a constant slope. We derive the slope of the film at r D Rf ilm from the above-
derived parabolic profile of the film, thereby leading to the inner far-field slope given
by .@h=@r/j.r�Rf ilm/!�1 D �2hc=Rf ilm (also shown in Hartland et al. 38 ). Frankel
and Mysels 6 also show that the curvature at the outer far-field can be expressed as a
constant curvature, thereby leading to, 1=2r.@2h=@r2/j.rCRf ilm/!1 D 2=Rc .

Applying O(1) scaling for the governing Eq. 4.38 and the afore-mentioned inner far-
field slope, using Qh D h=Œh� and Qr D .r �Rf ilm/=Œr�, gives,

Œh� D 2

�
hc

Rf ilm

�
Œr�I Œr� D

 
3�QR4

f ilm

2h4c

!
: (4.39)

Here the scale of [h] is the same as that found in Frankel and Mysels 6 , whereas [r] is a
factor 23 larger and is due to the difference in choice of the geometry that is considered
in our work and in that of Frankel and Mysels 6 .

On substituting these scales in the outer far-field curvature, i.e..,

Œh�

Œr�2
@2 Qh

@ Qr2
D

4

Rc
(4.40)

we obtain,
@2 Qh

@ Qr2
D
3�QR5

f ilm

Rch5c
D c1 (4.41)

Here, c1 D 1:22 is a constant determined numerically. Altogether, we have the fol-
lowing set of dimensionless equations

Qh3
@3 Qh

@ Qr3
D 1 (4.42)

��More accurate approach would to use axisymmetric set of equations for the curvature and hence the gov-
erning equation. Here, we use the Cartesian equivalents to keep the analysis simple, in line with the work
of Frankel and Mysels 6 .
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@ Qh

@ Qr

!
Qr!�1

D �1 (4.43)

and
@2 Qh

@ Qr2 Qr!1
D c1 (4.44)

Using Eq. 4.33 to substitute for Q in Eq. 4.41, we get,

3�.�Rf ilm/R
5
f ilm

4Rch5c

@hc

@t
D c1 (4.45)

�

Z hc

1

@hc

h5c
D

Z t
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c12
2Rc@t

3�R6
f ilm

(4.46)

which upon integration gives

hc D

 
3�R6

f ilm

c124Rct

!1=4
(4.47)

which is a factor 2 larger than what we find in the paper by Frankel and Mysels 6 .

Having determined hc , we set out to determine the scaling rule for hmin. Substituting
for Q in Eq. 4.39 from Eq. 4.41, we get,

Œr� D
c1hcRc

2Rf ilm
(4.48)

This gives the scale of film thickness as

Œh� D
c1h

2
cRc

R2
f ilm

(4.49)

Using Œh� D hmin=c2, where c2 is the minimum value of the film thickness obtained
numerically, we get,

hmin D
c1c2h

2
cRc

R2
f ilm

(4.50)

The above Eq. for hmin is a factor 2 smaller than that obtained in Frankel and
Mysels 6 , with c1 D 1:22 and c2 D 1:25††. On substituting for hc from Eq. 4.47,
in Eq. 4.50, we obtain,

hmin D

 
3�c1c

2
2R

2
f ilm

Rc

24 t

!1=2
(4.51)

††These constants c1 D 1:22 and c2 D 1:25 are also obtained in Wong et al. 39 .







5. Epilogue

The purpose of this chapter is (i) to provide a brief summary of the work discussed in this
thesis, (ii) to briefly discuss the extensibility of the current work and (iii) to discuss future re-
search opportunities. We first start with providing conclusions from the previous three chapters.
Thereafter, we discuss the extensibility of the results obtained in this thesis when we allow for
different functional forms of the disjoining pressure between the two interfaces. We conclude
by discussing further research opportunities in the context of (a) using the theoretical and nu-
merical framework developed in this thesis to study metastable thin films between foam bubbles
and (b) developing a theoretical framework to study chaos in planar thin liquid films.
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5.1 Conclusions

The overall goal of this thesis was to (i) develop scaling rules to predict lifetimes of
semi-infinite, non-planar thin liquid films as a function of the fluid properties and the
process conditions, (ii) reveal whether and when thermal fluctuations are relevant in
determining film lifetimes and (iii) characterize how lifetimes of finite size thin films
depend on the initial geometrical features of the film, i.e. radius and thickness. In the
following three paragraphs, we briefly discuss the conclusions of the three research
questions that were outlined in the Introduction chapter, and answered in the previous
three chapters.

Research question 1: We started our work by developing scaling rules for films that
are semi-infinite in their lateral dimension, through the development of a model that
combines the dynamics of dimple formation due to drainage and of the rapid collapse
due to van der Waals forces in order to answer the question: What scaling rule govern
the lifetime of semi-infinite non-planar films as a function of the fluid properties and
the process conditions?

To this end, we simulated the dynamics of a non-planar film geometry by numerically
integrating the well-known thin film equation1, in which we included both surface
tension and van der Waals forces. We amended the commonly used initial condition of
a planar film by adding a curved portion of constant curvature, akin to a Plateau border,
to the planar film. Furthermore, we amended the commonly used periodic boundary
conditions by using a constant curvature and film height at the far-field curved portion
and a constant film thickness and zero gradient of the film height and pressure on the
far-field planar portion of the film.

Upon non-dimensionalization of the governing thin film equation, and its initial and
boundary conditions, we found that the entire problem was governed by a single di-
mensionless parameter, �. Here, � signifies the relative strength of drainage, resulting
from the non-planar nature of the films, to the strength of van der Waals forces that
drive the rupture. For all �’s studied, we observed that the film evolution consists of
two stages, viz. the early and the late stages. In the early stage of film evolution, these
films drain due to lower pressure in the curved portion of the film, which results in the
formation of a well-known dimple at the connection between the planar and the curved
portion of the film. Once the film is thinned sufficiently, we observed a crossover from
the early stage dynamics due to dimpling to the late stage dynamics, wherein a rapid
collapse due to van der Waals forces occurs. We described the early and the late stages
with self-similar solutions, which were studied earlier in the literature in the limiting
cases of only drainage (no van der Waals forces)2 and only surface tension forces and
van der Waals forces (no drainage)3 in the literature. Furthermore, we developed a
theoretical framework by matching these two self-similar solutions for the early and
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the late stage dynamics. This yielded a scaling rule that relates dimensionless film
lifetimes, tr to � as tr � ��10=7, which was in good agreement with our numerical
results.

Research question 2: What role do thermal fluctuations play in determining life-
times of non-planar films? Are there any distinct regimes where thermal fluctuations
are relevant, and if so, what are the bounds of those regimes? What are the observable
differences in film evolution and final rupture as thermal fluctuations become more
relevant?

We answered this question using the stochastic thin film equation originally developed
in the literature to study film dewetting4 and droplet spreading5 on solid substrates.
We modified the problem description used in these works by changing the initial and
boundary conditions. For the initial conditions, we used a semi-infinite non-planar
film geometry (i.e. a large planar film connected to a curved film of constant curvature)
as considered in chapters 2 and 3. We used the far-field boundary conditions discussed
in detail in chapters 2 and 3. Upon non-dimensionalization of the governing stochastic
thin film equation and its initial and boundary conditions, we found that its dynamics
is then governed by two key dimensionless parameters: the strength of drainage, � and
the strength of thermal noise, � . For strong drainage (� � �tr ), with �tr being a tem-
perature dependent dimensionless parameter (for which we provide an estimate), our
simulations indicated the following: (a) the film ruptures deterministically due to rup-
ture in the thinnest part of the dimple, and (b) film lifetimes depend solely on �, based
on the earlier predicted scaling rule6, regardless of the noise strength. By contrast, for
weak drainage (� � �tr ), the film ruptures through the spontaneous growth of waves
originating from thermal fluctuations. Our work in this chapter explains whether it
is important to include thermal fluctuations in the dynamics of draining thin films to
predict when they rupture, and if so, when and why to include them.

Research question 3: How do film lifetimes depend on the initial film radii and
film thicknesses when all the relevant physics, i.e. drainage due to dimple formation,
surface tension and van der Waals forces, is included in the problem description?

We demonstrated that a simple hydrodynamic thin film model that includes surface
tension and van der Waals forces and that allows for film drainage by incorporating
a curvature at the edge of the film, is sufficient to predict the dependency of the film
dynamics and lifetime dependencies on the initial geometric features of the film. Our
simulations revealed that the dynamics are distinctly different for films of small and
large initial radii. The thinning dynamics of the latter are akin to that of semi-infinite
films, evolving with a characteristic localized dimple. The film lifetimes for such
films solely depend on the initial film thickness as per the scaling rule developed in
chapter 2. For small radii films, which were the focal point of study in chapter 4,
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the film initially thins uniformly across the entire film radius, before developing a
dimple, with the lifetime depending solely on the initial film radius. For such small
radii films, we combined the early-stage dimple formation based on the self-similar
scaling rules proposed by Frankel and Mysels 7 and a late-stage accelerated thinning
that leads to rupture through van der Waals forces based on the self-similar scaling
rules of Zhang and Lister 3 . We developed a theoretical model that describes the film
lifetime as a function of initial radius, being independent of the initial film thickness.
Our work in chapter 4 shows the drainage behaviour for a given initial film radius and
film thickness, and relates these features to its lifetime.

5.2 Extensibility

In this section, we briefly discuss the extensibility of our work in a broader context.
We mainly discuss how the current framework can be extended to include additional
(repulsive) disjoining pressures in the film.

Inclusion of multiple disjoining pressures

For the discussion that follows, we re-iterate the central thin film equation that we
have used in this thesis (for simplicity, we consider Cartesian coordinates):

@h

@t
D �

1

3�

�
@

@x

�
h3
@P

@x

��
(5.1)

with,

P D Pst � PvdW D 
@2h

@x2
�

A

6�h3
; (5.2)

with �,  and A the fluid viscosity, interfacial tension and Hamaker constant, respect-
ively. P , Pst and PvdW correspond to total pressure, pressure due to surface tension
forces and due to van der Waals forces in the thin liquid film, respectively. In this
thesis, we have only used an attractive van der Waals component of the disjoining
pressure in the theoretical and numerical description. We have used a power law to
describe the dependency of the intermolecular forces between the two interfaces of
the film on the film thickness. Other than this commonly used power law8,9, several
other functional forms of van der Waals pressure exist that consist of an exponential
dependency10,11, or a combination of power-law and exponential dependency on film
thickness12–14. It is relatively straightforward to include one or a combination of these
functional forms in the thin film equation in the pressure term. It would then lead to a
different definition of � than the one we have found (i.e. � D �h3o=Ar) in this thesis.
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Furthermore, in addition to van der Waals attraction forces, other interaction forces
that include electrostatic repulsion and steric repulsion forces also exist when electro-
lytes and surfactants are present in the film and at the film interface. The contribution
of these forces can also be added in the thin film equation, with their respective func-
tional forms (exponential and power-law) that are available in the literature15–17. The
pressure in the film is then given by

P D Pst � PvdW C Pel C Psteric D 
@2h

@x2
�

A

6�h3
C c1e

�c2h
C
c3

h9
(5.3)

where Pel and Psteric correspond to the repulsive contribution to the disjoining pres-
sure, arising from electrostatic and steric repulsion, respectively, with c1, c2 and c3
being constants that depend on the surface charge and electrolyte concentration, and
for which closed form expressions are available in the literature17,18. The addition of
these two new disjoining pressures, followed by subsequent non-dimensionalization
(using the scales used in chapters 2 and 3), results in the following two dimensionless
parameters,

˛1 D
c1

A=2�h3o
I ˛2 D

c3

Ah6o=2�
(5.4)

in addition to the dimensionless parameter � introduced earlier in this thesis. These
new dimensionless parameters, ˛1 and ˛2 signify the relative contribution of these
individual repulsion forces with respect to the attractive van der Waals forces, thereby
making it possible to study this system for different process conditions.

5.3 Research opportunities

We conclude this chapter by discussing further research opportunities in (both planar
and non-planar) thin liquid films.

5.3.1 Thermal nucleation in metastable films

As discussed in section §5.2, we can, in a relatively straightforward manner, add the
contribution of electrostatic and steric repulsions in the pressure term in the thin film
equation. Due to repulsive forces, these films do not rupture, but instead have equi-
librium states. The balance between attractive van der Waals forces and repulsive
electrostatic forces results in the formation of a thicker (� 30 nm) equilibrium state of
the film. This equilibrium state is metastable. If sufficient energy is provided to over-
come the energy barrier associated with this metastable state, the film thins further
to an even thinner equilibrium state of the film (� 5 nm). These thicker and thinner
equilibrium films are referred to as ‘Common black film’ (CBF) and ‘Newton black
film’ (NBF), respectively in the literature19,20.
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Figure 5.1 Disjoining pressure as a function of film thickness when only van der Waals forces
(blue line) are included as the disjoining pressure and when all three contributions, viz., at-
tractive van der Waals, repulsive electrostatic and repulsive steric forces are included in the
disjoining pressure. Red dashed lines correspond to different values of suction pressure, �. For
three different suction pressures, there are three different set of film thicknesses where Common
black films (crosses) and Newton black films (circles), respectively, are formed.

One of the common experimental techniques used to study the transition between
CBF and NBF is a thin film balance technique, wherein an external suction pressure
is applied to a film in CBF state16. This external pressure can be casted into the capil-
lary pressure in the curved portion of the film that enables drainage of the film from
the planar portion. This capillary pressure can in turn be expressed in dimensionless
form as �. The intersection of a certain value of � with the disjoining pressure iso-
therm shown in Fig. 5.1� corresponds to equilibrium states of the film with CBF and
NBF forming at larger and smaller film thickness, respectively. Increasing the external
suction pressure, increases �, and in turn decreases the energy barrier required to over-
come the transition from CBF to NBF. The stochastic thin film framework developed
in chapter 3 can be used to study how thermal fluctuations can cause nucleation events
to enable this transition from CBF to NBF for different values of external pressure, �.
These findings could then be compared21 to the experimental data-set from Casteletto
et al. 16 , and thereby provide a theoretical framework to describe these transitions from
�The equilibrium stable states are formed at the negative slopes of the disjoining pressure isotherm, i.e. when

d(Disjoining pressure)/dh < 0. The third intersection which is at a positive slope of disjoining pressure
isotherm is an unstable equilibrium state, and has, in fact, a higher energy state than either of the other two
stable equilibrium states.
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CBF to NBF.

5.3.2 Fundamental topics in planar thin liquid films

Here we discuss some of the interesting research opportunities in the context of planar
thin liquid films that have not been covered in this thesis.

Planar thin films as a chaotic systems

Chaos is a certain behaviour of a system wherein infinitesimally small changes in the
initial conditions lead to finite (significant) changes in the output23. Recent simula-
tions22 of planar thin liquid films (Eqs. 5.1 and 5.2, subjected to an initial condition of
uniform thickness and to periodic boundary conditions) show conclusive evidence of
such a chaotic behaviour. Multiple realizations of the film evolutions in which a planar
film is perturbed with a white noise (of amplitude O(10�10ho)), show that infinitesim-
ally small changes in the initial condition can lead to finite significant changes in the
final output (rupture time and morphology) at the instant of rupture. Fig. 5.2a shows
different morphologies resulting from two such realisations of a planar film evolution.
Although conclusive, this first study on the chaotic nature of planar thin film system
is qualitative in nature. A quantitative analysis (for instance, using bifurcation theory
and period-doubling analysis) that further substantiates chaotic nature of planar thin
liquid films is yet to be conducted and seems to be an exciting research opportunity.

External forcing: facilitating order in chaos

Significant research24 has been done to study planar thin film evolution in the presence
of an external forcing in the last decade with an intent to better control the dynamics
of planar thin films. Pattern formation, in the presence of periodic oscillations in
lateral and vertical direction on the free interface of a planar thin film, has been a
subject of study, albeit, for relatively thicker films (O (0.1 mm))25,26. For such thick
films, van der Waals forces were neglected. Shklyaev et al. 27 demonstrated that the
instability in the planar film can be controlled by the vertical oscillations on the film,
when the time scale of oscillations is small in comparison to the time scale of the
system. Additionally, many recent studies28–30 have further substantiated the notion
that an external forcing can be used to control the morphology of the planar films on
solid substrates.

In order to evaluate whether an external forcing brings order to the chaotic behaviour
of planar thin film system, a controlled external forcing term was added to the thin
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Figure 5.2 (a) and (b) Non-dimensional film thickness, Qh as a function of the axial position
Qx for two different realisations of a planar film subjected to a (pseudo-)white noise (amplitude
10�10 smaller than the initial film thickness) as an initial condition. Evidence of (a) chaos in
planar thin film systems without any external forcing and (b) deterministic morphology in planar
thin films subjected to an external forcing. (c) Chaos elimination map delineating chaotic and
deterministic regime for a particular choice of dimensionless forcing parameters. Figure from
Pari 22 .

film equation (Eq. 5.1 and 5.2). The resulting thin film equation is given by22
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with,
Fext DPcos.Kx C�t C �/; (5.6)

where Fext, P , K, � and � are external forcing, amplitude, wavenumber, frequency
and the original phase of the forcing, respectively. It was found (see Figs. 5.2b and
5.2c) that with the addition of an external forcing, the system became deterministic
for a certain range of parameter space22. Determining such a parameter space enables
better control of the film morphology for the same initial amplitude of a (pseudo-
)random perturbation, thereby making the film evolution truly deterministic. Pari 22

studied the influence of the afore-mentioned forcing parameters in further eliminating
chaos. To substantiate these results, the mathematical treatment of the elimination of
chaos using dynamical systems and chaos theory23 would be an interesting research
opportunity.

Lastly, it would be interesting to explore whether it is possible to bring different cases
of thin film systems subjected to external forcing, such as, chemically patterned sub-
strates with periodic variation of heterogeneity on the solid substrate31,32, or even films
subjected to drainage (the subject of this thesis), under one broad generalized problem
description and show equivalence between these specific cases.
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