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Abstract

Recent developments in applying reinforcement
learning to cooperative environments, like negoti-
ation, have brought forward an important question:
how well can a negotiating agent be trained through
self-play? Previous research has seen successful
application of self-play to other settings, like the
games of chess and Go. This paper explores the us-
age of self-play within the training of a negotiating
agent and determines if it is possible to success-
fully train an agent purely through self-play. The
results of the experimentation show that a training
stage using self-play can match or even exceed an
approach using a set of training opponents. By us-
ing multiple self-play opponents, the average utility
can be further improved by introducing more vari-
ance during training. In addition, using a combina-
tion of both self-play and training opponents leads
to a hybrid approach that performs better than ei-
ther of the two techniques separately.

1 Introduction
Negotiation is an interactive process through which different
parties aim to achieve their preferred result. Since the pref-
erences of the negotiating parties are likely to differ, to reach
an agreement, one or multiple sides must concede. However,
unlike purely competitive environments like chess or Go, ne-
gotiation rewards the cooperation between parties. Instead
of choosing to purely attempt to maximize their own utility,
agents can collaborate to receive a satisfactory result for all
parties involved.

To allow for large-scale practical applications of negoti-
ation, the process can be automated by using negotiating
agents, which cooperate with the opponent to come to a mu-
tual agreement. Negotiation in settings with incomplete infor-
mation is particularly important for real-world applications,
where the opponent preferences are unknown [3]. The us-
age of such a negotiating environment allows for an efficient
simulation of bilateral negotiations, which can be applied to
real-world problems like e-commerce and energy markets [7;
9]. Because of the high potential of using automated negotia-
tion within various commercial applications, the demand for

accurate negotiating agents is high and numerous approaches
and techniques have been thoroughly researched [2].

When training a negotiating agent, it is usually trained
against a set of default opponents. However, training can
also be done by putting the agent against itself. By train-
ing through self-play, it is not required to collect an initial
set of opponents. Because of this advantage, self-play can be
applied to problems without requiring extensive exploration
of various opponent strategies, gathering data, and evaluating
different approaches. However, similar to traditional meth-
ods with a set of default opponents, there is a challenge when
transitioning to a testing environment: although an agent de-
veloped using self-play will perform well against agents that
follow similar principles, it might struggle against others that
employ completely different strategies that were not thor-
oughly explored within training. For example, when playing
an opponent that is not willing to concede, the agents might
not be able to reach an agreement before the deadline of the
negotiation session.

There has been previous research on the application of
self-play in various competitive settings like chess, Go, and
shogi [11; 12]. Traditionally, most of the focus has been on
zero-sum domains, where multiple agents are competing for a
fixed reward. However, more recently, self-play has been suc-
cessfully applied to more cooperative settings [8]. Because of
this, the usage of self-play in negotiating agents has potential
for further research.

This paper aims to answer the research question: How well
can we train a negotiating agent without a default set of op-
ponents through self-play?

To answer this question, the research explores various
properties and applications of self-play, investigates the effec-
tiveness of training only using self-play, and compares vari-
ous conditions under which self-play yields the best results.
In particular, a new self-play opponent is added to the ne-
gotiating environment, which is then used to train the agent
through self-play. The performance of this agent is tested and
compared to the baseline, continuing with the exploration of
multiple self-play opponents during training to introduce ad-
ditional variance. Finally, a hybrid approach utilizing both
self-play and a default set of opponents is tested to evalu-
ate the potential of using self-play to further improve existing
agents.



2 Related Works
Traditionally, most research on machine learning and artifi-
cial intelligence has been based on interpreting and analyzing
baseline data provided to the model. However, the acquisi-
tion of effective data can be very resource-intensive, unreli-
able, or sometimes even impossible [12]. When looking at ap-
plications of machine learning within negotiating agents, the
agent is usually trained by performing numerous negotiations
against a set of training opponents. Nevertheless, extensive
training does not necessarily lead to good results, as for a ne-
gotiating agent to perform well, it must learn to play against
various agents that apply different strategies to achieve a good
performance. In particular, while a negotiating agent might
perform well during training, it does not necessarily translate
to a testing environment, with previously unknown opponents
[3]. The generalization ability of an agent depends on the
training conditions, and can also differ based on the underly-
ing techniques used within the agent. Reinforcement learning
in particular has been shown to require a large training data
set in other settings [5].

However, there are ways to avoid the need for extensive
baseline data. One such option is to train the machine learn-
ing model by putting an agent against itself. This concept is
commonly known as self-play and has been extensively ap-
plied in various competitive games with perfect information.
Excellent results were first achieved in the game of Go us-
ing an AlphaGo Zero algorithm, trained exclusively through
self-play [12]. Furthermore, the usage of self-play within
competitive games has further been explored with the intro-
duction of AlphaZero: a more generic version of AlphaGo
Zero, which can be applied to various domains, requiring no
domain-specific knowledge except the game rules [11]. In
particular, AlphaZero has been successfully applied to the
games of chess and shogi, resulting in outstanding perfor-
mance [11].

In addition to perfect-information games, self-play has
shown to be effective in settings with imperfect information.
In particular, research has found the usage of self-play to
approach state-of-the-art methods in Limit Texas Hold’em
poker [6], where players do not know the cards of their oppo-
nents. More cooperative settings have also seen the usage of
self-play. Liu et al. [8] introduce training through self-play
in a cooperative version of pong, where both players receive
equal punishment for either of them missing the ball. This
research shows that training through self-play can lead to an
improvement in performance [8], therefore, it also has the po-
tential to be used in the training stage of bilateral negotiation
agents.

3 Methodology
To answer the research question, we divide it into multiple
smaller sub-questions, starting with investigating the defini-
tion and previous applications of self-play. Then, the benefits
and potential drawbacks of self-play are explored, before re-
searching the specific ways of using self-play within the train-
ing stage and implementing a self-play opponent. Afterward,
an evaluation is performed to compare the usage of self-play
during training against a conventional training approach uti-

lizing a default set of opponents. Finally, the paper explores
the various training conditions, for which self-play provides
the best results.

In addition, the practical elements of the research are based
on a negotiating agent, which uses Proximal Policy Optimiza-
tion (PPO) to determine the next bid. The negotiations are
performed in a custom negotiation environment, which uti-
lizes the Stacked Alternating Offers Protocol (SAOP) [1] and
ranges over a variety of different domains. Additionally, the
default implementation trains the agent using a set of training
opponents, which is followed by an evaluation of the agent
to set a baseline result. To answer the research question, this
agent needs to be modified to support training using self-play,
so it can evaluate the effectiveness of self-play.

The modification of the baseline framework begins with
the implementation of a self-play opponent. This agent shares
many similarities with the original PPO agent, with slight dif-
ferences in the process of updating the policy. In addition,
the self-play opponent uses a separate policy, such that both
of the agents are not necessarily following a similar strategy.
Once the opponent is fully implemented and functional, a
full self-play approach simulation follows, where no training
agents are used. Then, this model will be evaluated in vari-
ous settings and compared to the result of the baseline. For
the comparison, a set of 10 negotiation agents from the TU
Delft course CSE3210 (Collaborative Artificial Intelligence)
will be used. Finally, a hybrid training approach and train-
ing against multiple self-play opponents will be explored, to
find the conditions where self-play results in the best perfor-
mance.

4 Experiment Setup
As self-play is a general approach that can be used in many
multiplayer environments and has previously been success-
fully applied to various settings like chess or go, it can be
easily transferred to new domains and problems. To deter-
mine the viability of exclusively using self-play during the
training of a negotiating agent, it is crucial to not only under-
stand previous usages and benefits of self-play but also work
on implementing it within the existing environment as a self-
play opponent that can be used during training. In addition,
the agent is further modified to be able to train against multi-
ple self-play opponents at the same time to analyze the exact
conditions, under which training using self-play leads to the
best utility.

4.1 Implementation of Self-Play
The initial agent is based on a reinforcement learning ap-
proach using Proximal Policy Optimization (PPO) to train
the bidding strategy. Similar to other reinforcement learn-
ing methods, the agent utilizes a policy to determine, which
action to take to achieve the highest reward. Then, this re-
ward is fed back into the policy, which is updated based on
the results of the action. However, where PPO differs from
traditional policy gradient methods is the technique used for
updating the policy: instead of performing a single gradient
update, PPO utilizes mini-batches to perform multiple epochs
of updates [10]. These changes allow PPO to be applied to



more general settings while matching or exceeding the per-
formance of other, more complex methods [10].

The PPO model is not the only factor that affects the
agent’s offers. As all of the domains used within the environ-
ment can differ in size, the reinforcement learning approach
cannot be used directly to select each bid, as PPO requires
fixed input and output dimensions that do not change between
negotiating sessions. Therefore, instead of choosing a bid di-
rectly, the model uses the utilities of recent offers and the
progress within the negotiation session to estimate the opti-
mal target utility of the next bid for both the agent itself and
its opponent. Finally, as its bidding strategy, the agent ran-
domly samples 1000 bids to select the one closest to the tar-
get in terms of not only its own utility but also the opponent
utility estimated from opponent modeling.

To evaluate the performance of using self-play within the
training stage, the environment requires the addition of a new
self-play opponent. Then, the training is performed without
the use of any other training opponents by exclusively per-
forming self-play. The self-play opponent is designed in a
similar way to the original agent – it uses PPO to estimate the
utility goals of both parties and chooses the closest of 1000
random bids to determine the best offer to make. The agent
follows the same architecture as the main agent, leading to
each agent interacting with a structurally identical agent, as
can be seen in Figure 1.

Figure 1: Schema showing the negotiation model for self-play.

The PPO model and other data used for the two agents is
completely separate—the changes to one have no direct way
of affecting the other. For example, as one agent learns a
strategy during training, it is not necessarily the case that
the opponent chooses its actions similarly. Therefore, one
agent may develop an optimal strategy significantly before

the other, leading to one party completely dominating the
training procedure. In such cases, the training results might
not transfer well to the testing environment.

4.2 Exploring optimal conditions
Another aspect that this research explores is the conditions
under which the usage of self-play results in the highest util-
ity. First off, this is explored by using multiple self-play op-
ponents during training to lower the possibility of converging
to a suboptimal solution. In addition, the usage of self-play
together with a training set of opponents is explored and com-
pared to using each technique separately.

When performing training using self-play, there is a possi-
bility of convergence to a suboptimal solution, where one of
the agents learns to always outperform the other. However,
in such cases, the specific solution that performs extremely
well against a self-play opponent does not necessarily trans-
fer well to real-world opponents that apply a variety of tech-
niques, which differ from the training environment. There-
fore, it might be beneficial to perform training against more
than one opponent, as competing against different opponents
can help mitigate this problem by introducing additional vari-
ance during training. Because of this, various amounts of
self-play opponents are compared to determine if the perfor-
mance can be increased by adding additional opponents, and
if so, what is the optimal amount of opponents.

Additionally, a hybrid approach is explored, where train-
ing uses a combination of self-play and a set of training op-
ponents. In particular, this approach is compared to both the
baseline and pure self-play to determine, if it is possible to
achieve a better result by combining the two techniques. Dur-
ing training, each negotiation is randomly performed either
against one of the training opponents or against the self-play
opponent. In addition, the two types of opponents are selected
with an equal probability, as the goal of this test is to sim-
ply determine the viability of combining the two approaches.
Therefore, it is possible that the two methods can be com-
bined more optimally, leading to further improvements in per-
formance.

5 Results
During the testing process, each agent is directly evaluated
against a set of test agents by simulating negotiation sessions.
Each negotiation ends with either an agreement, where each
agent receives some utility from the bid, or both parties fail to
come to a consensus, leading to both receiving a utility of 0.
The performance of an agent can be measured using various
metrics such as its own utility, social welfare, and the differ-
ence between the two utilities. However, since the main focus
of this research is to develop competitive agents, the best met-
ric for the evaluation of an agent is its utility. Therefore, to
evaluate two different agents that use reinforcement learning,
the most useful metric is the opponents own utility. In addi-
tion, the social welfare metric is also briefly considered.

To have a fair and non-biased evaluation, the testing stage
uses a fixed seed to choose the same predefined order of op-
ponents and domains that help eliminate randomness between
testing sessions. While testing, 50 negotiation sessions are



performed. To ensure an accurate comparison, all agents are
compared to a set of 10 different opponents created by stu-
dents during the TU Delft course CSE3210 – Collaborative
Artificial Intelligence.

In addition, each time the training is performed for a fixed
amount of 2500 iterations while updating the PPO model and
performing testing every 100 iterations. These parameters
are fixed for all tests and have been chosen in a way, as to
promote longer training sessions that converge to the optimal
results for a wide variety of agents. In addition, all testing
sessions are repeated 10 times to further reduce the effect of
randomness. Finally, the results are analyzed by calculating
the average utility and standard deviation over multiple repe-
titions of each evaluation.

5.1 Comparison against baseline
To evaluate the performance of self-play, it is compared to
the baseline agent, which uses a set of default opponents. For
self-play, a basic agent using only one self-play opponent is
used.

Comparing the average utilities over 10 repetitions, self-
play achieves a higher final utility of 0.704, while the base-
line approach only achieves a value of 0.671. This results in
self-play outperforming the conventional baseline. In addi-
tion, when using self-play, the opponent utility is significantly
lower, averaging as low as 0.242, while the baseline exceeds
this significantly with an opponent utility of 0.764 (Table 1).

Figure 2: Comparison of the utility evolution per training type.

5.2 Multiple self-play opponents
An agent’s ability to generalize to different opponents is
extremely important to achieve a good result when testing
against unknown opponents. However, an agent can some-
times struggle with learning a general strategy [4]. Because
of this, it can be beneficial to train against a broader set of
opponents to increase the variance during training.

A similar approach can also be applied to training through
self-play: instead of playing against one opponent, the agent
can train against multiple self-play opponents. Because of
this, training using self-play has been performed with a var-
ied amount of self-play opponents, starting with the baseline

of only one opponent, and up to 5 simultaneous self-play op-
ponents. To accommodate these changes, the frequency of
policy updates and the decay of action std for each self-play
opponent has been applied inverse linear scaling depending
on the number of opponents. Therefore, if for one opponent
the policy was updated every 100 iterations, for 5 opponents
this update frequency increases to once every 20 iterations.
This has been done to make sure that both the agent and its
self-play opponents are always at a similar stage of training.

By evaluating the performance depending on the number
of self-play opponents, the average utility with multiple self-
play opponents outperforms a basic self-play approach. In
particular, the peak utility can be observed when using two
self-play opponents. An even greater number of opponents
does not seem to improve the results, and can even result in
a slight decrease in performance compared to using just one
opponent (Figure 3).

Figure 3: Average utility for various number of self-play opponents.

Training type Average utility Average opponent utility
Baseline 0.671 ± 0.078 0.764 ± 0.161
Self-play, 1 opponent 0.704 ± 0.047 0.242 ± 0.053
Self-play, 2 opponents 0.743 ± 0.057 0.425 ± 0.167
Self-play, 3 opponents 0.729 ± 0.046 0.363 ± 0.189
Self-play, 4 opponents 0.712 ± 0.055 0.332 ± 0.208
Self-play, 5 opponents 0.691 ± 0.042 0.273 ± 0.181
Hybrid 0.734 ± 0.037 0.445 ± 0.221

Table 1: Average utility and opponent utility for each training type.

5.3 Hybrid approach
Combining the baseline approach of utilizing a set of training
opponents together with using self-play leads to an improved
agent that outperforms both of the approaches. The testing
finds the hybrid approach to have an average utility of 0.734,
while the baseline results in a utility of only 0.671, and self-
play offers a slight improvement at 0.704. As can be seen
in Figure 4, the hybrid approach takes slightly longer to con-
verge than training purely through self-play. However, once
it starts to outperform self-play at around 1200 iterations, the
hybrid approach continues to perform the best throughout the
remaining iterations.



Figure 4: Utility evolution for the baseline, self-play, and hybrid
training types.

6 Analysis
The evaluation of exclusively using self-play within the train-
ing of an agent has shown a slight increase in the overall util-
ity compared to the baseline agent. The utility increase is
not insignificant, reaching 0.704 with self-play while aver-
aging at only 0.671 for the baseline agent. In addition, the
variance in utility is smaller when training the agent through
self-play. Because of the higher variance, the performance of
the baseline model during testing cannot be predicted as con-
sistently, leading to significant differences between multiple
repetitions.

As self-play has previously been successfully used not only
in settings like chess, Go, and shogi, but also in an imperfect
information game like poker, it has proven to often provide
performance that approaches or even exceeds state-of-the-
art approaches [11; 12; 6]. The results of this research also
show similar results, with self-play outperforming the base-
line agent. Therefore, self-play has a high potential to be used
during the training of a negotiating agent.

Figure 5: Percentage of agreements for the baseline and self-play
agent.

As can be seen from the results, training through self-play
leads to a significantly lower opponent utility. However, the

increase in own utility compared to the baseline is not as pro-
nounced. This can be explained by self-play adopting an ap-
proach similar to a hardliner agent, which is often unwilling
to concede, leading to a significant amount of negotiations
ending without an agreement. While the baseline agent re-
sulted in an agreement 98.8% of the time, the agent trained
through self-play reached an agreement in only 81.2% of the
testing negotiations. This result shows that the self-play agent
can successfully exploit its opponents but might not reach its
target utility before the deadline, resulting in no agreement.
However, as can be seen in Figure 5, the percentage of agree-
ments looks to slightly increase over the last 700 iterations.
Therefore, it is possible that with more training the agent
could reach more agreements and further improve its utility.

The use of multiple self-play opponents during training
shows an improvement in average utility – while the best
overall performance is found with two self-play opponents,
values from two to four lead to an increase when compared
to just one opponent. However, after reaching the peak utility
at two opponents, selecting any additional opponents results
in a slight decrease in utility. Therefore, it can be concluded,
that further increasing the self-play opponent amount does
not lead to better performance. This observation can be ex-
plained by the inverse linear scaling of the policy update fre-
quency, which is decreased for a higher amount of opponents.
Therefore, the policy is updated more frequently, leading to a
higher vulnerability to the effects of random factors.

The combination of using a training set of opponents to-
gether with self-play to refine the agent results in an average
utility of 0.734, which is higher than using either of the ap-
proaches separately. These results show that self-play can be
a great addition to the training stage of existing agents, in or-
der to improve their performance. By combining a traditional
approach with self-play, the baseline agent can be further re-
fined by introducing additional variance in strategies encoun-
tered during training.

7 Responsible Research
In order to uphold high standards in academic integrity, an
effort has been made to perform the research in a responsible
manner. Responsible research dictates that all research data
must be valid, reproducible, and must not be manipulated or
trimmed. To adhere to these principles, all results collected
as part of the research have been made public as part of a
repository1. In addition, all raw results also include notes re-
garding the parameters and conditions under which they were
collected and how they are used. All collected results have
been utilized, and no manipulations have been performed in
order to avoid bias within the research. Reproducibility is
further improved by performing all testing against a prede-
fined order of opponents and domains to eliminate most of
the randomness. The training stage has also been modified in
such a way, where a significant amount of randomness can be
eliminated by providing a set seed, which is constant for all
collected data. Together, all of these measures ensure that the
results have been obtained responsibly and are reproducible.

1The raw results obtained during the research can be accessed at
https://github.com/brenting/negotiation PPO/tree/testing-self-play

https://github.com/brenting/negotiation_PPO/tree/testing-self-play


In addition, the research practices must adhere to the ethos
of science and must be wary of plagiarism and conflicts of
interest. To follow best scientific practices, all sources viewed
during the research have been documented and all citations or
quotes are clearly and accurately accompanied by a reference
to the original source. In addition, all of the research has been
completed by the author with assistance from the supervisors.
None of the parties involved in the completion of the research
have any conflicts of interest and have not been influenced by
outside parties.

Additionally, the training and testing of the agents use op-
ponents created by students of the TU Delft course CSE3210
(Collaborative Artificial Intelligence). Although these agents
were originally created as part of an assignment, the students
were informed that their submissions would be made publicly
available. Because of this, the research is permitted to make
use of the agents for training and evaluation, and does not
make any claims regarding their ownership.

8 Conclusions and Future Work
Traditionally, the training of a negotiating agent requires a set
of default opponents. However, it can be difficult to find a rep-
resentative set of opponents that offers good performance and
a high variance in strategy types. Since an agent must learn to
perform well against a variety of opponents to achieve good
results, a subpar training set can significantly limit the perfor-
mance of an agent. However, it is also possible to perform
training without requiring any opponents – the agent can be
put against itself to perform self-play.

This paper has investigated the feasibility of using self-
play in the training of a negotiating agent by answering
the research question: How well can we train a negotiat-
ing agent without a default set of opponents through self-
play? The results have shown the exclusive usage of self-
play during training to be viable and lead to comparable,
or sometimes even better results than the baseline agent,
which utilizes a set of training opponents. These results
share similarities with previous research on the usage of
self-play in other settings, like chess, Go, and shogi [11;
12].

Furthermore, self-play results in a slightly higher utility
when introducing additional variance in training by playing
against multiple self-play opponents. The usage of multiple
self-play opponents during training shows a slight improve-
ment over an agent that trains against only one self-play op-
ponent. In particular, the best average utility is achieved by
having two self-play opponents. Any further increase in the
opponent count leads to a slight decrease in utility, as more
opponents result in more frequent updates to the underlying
policy.

As the usage of self-play has shown good results, it can fur-
ther be explored in more refined agents that utilize advanced
techniques for selecting bids and modeling opponents. In ad-
dition, the results of using self-play in combination to a more
conventional approach, which utilizes a set of training op-
ponents, show that the addition of a self-play stage together
with an existing training setup can further improve the agent
to achieve a higher utility. Because of this, research can fur-

ther explore the usage of self-play to refine existing agents
that only train against a set of training opponents. In par-
ticular, this technique could be explored in negotiation com-
petitions, where a very extensive and diverse training using
self-play could be simulated using a large amount of compu-
tational power. Additionally, the usage of self-play together
with a traditional approach in a hybrid training session could
be further explored in more detail to investigate the different
ways of combining the two approaches.
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