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Abstract

Model order reduction (MOR) has been a field of active research in the past twenty years, more recently
also in fluid dynamics. The main advantage of MOR is computational cost reduction, which, along with
equally important accuracy, constitute main objective in the MOR community. A main ongoing issue is that
data volumes in fluid flow simulations (such as turbulent flows) are usually very large, hence processing is
costly. An example of a high-cost operation in MOR is the construction of reduced basis (RB) via singular
value decomposition (SVD) of snapshot data of turbulent flows. The present research, in its first objective,
aims at tackling this problem by applying and adapting an incremental SVD algorithm (iSVD). The procedure
does not require simultaneous access to the entire snapshot matrix, but the price to pay is that accurate ap-
proximations of RB via iSVD are obtained only for low-index. ROMs require exactly those, therefore applica-
tion of iSVD is plausible. The algorithm is tested on high-fidelity data representing transitional and turbulent
flow solutions, obtained with an energy-conserving code (INS3D). Important iSVD paramters are identified
and their influence on key properties of RB: orthogonality, zero-divergence and fidelity w.r.t. conventional
SVD basis is examined.

The second objective concerns closure modeling. MOR by definition neglects a part of information.
Hence inaccuracies and/or instabilities often develop in the reduced order model (ROM) solution. The ap-
plied ROM framework is energy-conserving (EC-ROM), thereby ensuring non-linear stability. Accuracy is not
guaranteed, therefore a correction is desirable. In ROM context several strategies exist. In the present research
one such strategy, dissipation via a closure term, is examined in an ‘a priori’ test. Based on the full order model
(FOM) data and projection of it onto the reduced space, exact expression for missing information (exact clo-
sure term) is derived. Subsequently, an eddy viscosity (EV) ansatz is applied, whereby also high-fidelity data
is used to compute EV. The turbulence model is of mixing-length type. The related turbulent diffusive term
with variable EV is regressed on the exact closure term.

It is concluded that iSVD is a feasible algorithm in MOR applications, particularly in combination with
EC-ROM, provided that parameters of iSVD: increment size, maximum dimension of RB and threshold are
far from their lower bounds. EV mixing length model is considered inadequate as a means of improving
accuracy of EC-ROM in periodic shear-layer.

iii





Preface

This thesis crowns two-year studies of reduced order modeling of fluid flows, that I had undertaken. It was
originally intended as a forward leap into the common area that machine learning and fluid-flow model order
reduction share. It is self-evident that computational time and memory efficiency are key factors in contem-
porary engineering and computational science, hence the field itself has enjoyed a high rate of development
in the last years.

My primordial ambition was to delve into artificial neural networks in order to tackle the problem of clo-
sure modeling in three-dimensional turbulent flows with reduced order representation. Complexity of such
phenomena and sheer volumes of involved data sets, necessitated the use of special techniques, which inex-
orably introduced complexity of its own. The research objectives had to be adjusted multiple times. Even-
tually, to achieve interpretable results within a reasonable time scale, I needed to settle for simple regression
techniques. The significance of this thesis lies in the use of energy-conserving model framework combined
with a special approximate basis construction algorithm as well as in the study of turbulence modeling in this
context.

When I came to TU Delft as an aerodynamics master student five years ago, I was not prepared for what
was coming. I took a long (6-month) internship at Airbus, which was poorly synchronized with my academic
year plan. On top of that, when the thesis project had begun, COVID-19 was not even heard of. Inherent
complexity of the topics, my own shortcomings and the pandemic, which separated me from the academic
community, had all affected the time span of the project and my studies at TU Delft in general.

This entire enterprise would have never succeeded had I not received support from people, whom I would
now like to thank. I owe the most to my parents, who have had enough patience to withstand my chronic
stress, remaining sane at the same time. Without their love and understanding I would not have even dreamt
of starting this project, let alone accomplishing it. I owe special thanks to my promoters: Richard Dwight
and Benjamin Sanderse. Their professionalism and can-do attitude had shown me, that endeavours such as
this project are not close to impossible, as I had primordially thought. I am particularly grateful to Ben, who
had the resilience and sheer good will to go through my thesis in detail, at a time when it was far from ready.
Further, the one person, who stood by me whenever possible, was my girlfriend Ewa, whom I also want to
thank with all my heart. Thank you for enduring my state of mind and letting me finish this. Moreover, I wish
everyone during their thesis projects had so supportive friends as I was lucky to have: Michał, Tosia, Wojtek -
I cannot express how much this meant to me. Lastly, even though we only had one short scientific discussion
on differential equations and Galerking methods, I would like to acknowledge the inspiration provided by dr.
Anna Karczewska and prof. Piotr Rozmej.

Gustaw Cegielski
Zielona Góra, September 2021

v





Contents

List of Figures 7

1 Introduction 9

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Research objective and questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review and ROM preliminaries 15

2.1 Basic notions and equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 ROM literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Eddy viscosity ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Reduced basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Closure in ROM context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Methodology 27

3.1 Energy-Conserving ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Closure modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Error estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Other investigated quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Setup of numerical experiments 39

4.1 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Estimation of some grid parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Basis computation 45

5.1 Basis quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Comparison of modes: shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Comparison of modes: spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Comparison of bases: singular values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 ROM simulation 63

6.1 Shear layer: main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Shear layer: additional results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Taylor-Green vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 A priori analysis 83

8 Conclusion and recommendations 91

8.1 Answers to research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Appendix 97

A.1 SV decay comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Selected fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.3 A priori eddy viscosity plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4 A priori absolute errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.5 A priori relative errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.6 Pressure Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.7 Optimal snapshot selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



viii Contents

A.8 LS regression - derivation of formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.9 Proposition of LS regression (more sophisticated) . . . . . . . . . . . . . . . . . . . . . . . . 109
A.10 Performed computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 113



Nomenclature

Acronyms

AD-ROM Approximate-Deconvolution Reduced Order Model

BC Boundary Condition(s)

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Levy

cSVD conventional Singular Value Decomposition

DEIM Discrete Empirical Interpolation Method

DMD Dynamic Mode Decomposition

DNS Direct Numerical Simulation

DoF Degree of Freedom

EC-ROM Energy-Conserving Reduced Order Model
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EV-ROM Eddy Viscosity Reduced Order Model

FE Finite Element

FFT Fast Fourier Transform

FOM Full Order Model

FV Finite Volume

GS Gram-Schmidt (orthogonalization)

HDD Hard Disk Drive

IC Initial Condition(s)

iSVD incremental Singular Value Decomposition

LES Large Eddy Simulation

LHS Left-Hand Side

LS Least Squares

ML Mixing Length or Machine Learning

MOR Model Order Reduction

MoS Method of Snapshots

NS Navier-Stokes (equations)

ODE Ordinary Differential Equation

PCA Principle Component Analysis
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2 Nomenclature

PDE Partial Differential Equation(s)

POD Proper Orthogonal Decomposition

RANS Reynolds-Averaged Navier-Stokes (equations)

RB Reduced Basis

RHS Right-Hand Side

RK Runge-Kutta

ROM Reduced Order Model

RST Reynolds Stress Tensor

SL Shear Layer

SV Singular Value

SVD Singular Value Decomposition

TG Taylor-Green (vortex)

TKE Turbulence Kinetic Energy

VMS Variational Multi-Scale

Symbols: Latin letters

u′ unresolved velocity (continuous)

u velocity (continuous)

X̂ , X̃ modified snapshot matrix

I Identity matrix

I identity matrix

R set of real numbers

P general projection operator

u resolved velocity (continuous)

p resolved pressure (continuous)

A averaging operator

A generic matrix

a ROM POD coefficient, generic matrix element

C convective operator

c Courant number

D diffusion operator

d Kolmogorov n-width

e error, vector of 0 and 1 with 1 corr. to a particular direction

F right-hand side of ROM equation

f generic function



Nomenclature 3

G gradient operator, orthogonal transformation

g POD coefficients for eddy viscosity basis

H Eddy-viscosity ROM diffusion operator

h filter kernel, cell width

I interpolation operator, imaginary unit

K subset in a Hilbert space, differencing operator

k total kinetic energy, increment size, generic function

k ′ fine scale (turbulence) kinetic energy

L Hilbert space, divergence operator, domain length

M dimension of reduced space, divergence operator

M divergence operator

M ′ difference btw. M used in ROM and largest possible M

N no. of cells / no.of time steps/ dimension (context-dependent)

N S Navier-Stokes operator

P linear momentum

p pressure, percentage

p ′ unresolved pressure (continuous)

Pe Peclet number

Q product element in diffusion operator decomposition, matrix Q of QR-decomposition, Q-criterion

q velocity magnitude

R target function in a priori analysis, matrix R of QR-decomposition, rotation matrix

Re Reynolds number

S sub-matrix of orthogonal matrix corr. to subordinate subspace, symmetricized gradient

T period of interest

T sub-matrix of orthogonal matrix corr. to dominant subspace

t time

u generic discretized velocity

V velocity (discretized)

W regressor in a priori analysis

X snapshot matrix

x, y, z system coordinates

Y random variable

Symbols: Greek letters

α coeff. of regression, coeff. in Robbin BC, rotation angle



4 Nomenclature

β coeff. in Robbin BC

ϕ ROM POD basis function (continuous)

ξ,ξ wavenumber vector, wavenumber

δ a constant in BCs

ε error, machine epsilon, a constant in BCs

η POD basis of eddy viscosity field

γ filter parameter

λ eigenvalue

µ parameter vector

ν viscosity

ω an element ofΩh matrix

Ω,Ωh computational domain (continuous,discrete)

∆ filter width

Φ reduced basis vector

∂Ω domain boundary

Φ ROM POD basis function (discrete)

Φ′ unresolved-scales basis vector

Ψ right singular vectors (of snapshot matrix)

Σ diagonal matrix of singular values

σ singular value

Subscripts

> corresponding to unresolved scales

ˆ corresponding to Fourier space

Ω measured in L2,Ω-weighted norm

add additive, added in increment

ansatz with a form assumed in advanced

avg averaged

div divergence

dom dominant

end in last instant

F Frobenius

h spatially discrete, corresponding to FOM

i,j,k context-appropriate indices

n index of time instant, dimensionality, integer



Nomenclature 5

p pressure

r corresponding to reduced space

start in first instant

true derived from FOM, reference

trunc truncated

t temporal, turbulent

u,v,w in u, v, w direction

V velocity

x,y,z corresponding to x, y, z coordinates
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1
Introduction

Some define engineering as the art of negligence. If there is one feature that all engineering disciplines
have in common, it is this. The surrounding reality is governed by inherently complex laws of physics. It
cannot be entirely and accurately described, at least the state-of-the-art does not allow that as of yet. Conse-
quently, the true art of engineering lies in the accurate choice of retained information.

In terms of physics involved, the present project concerns merely a small part of real phenomena: incom-
pressible single-phase flows of Newtonian fluids. As it turns out, even this small piece is incredibly complex,
to the point of eluding being understood by a single person. The underlying reason is the multi-scale phe-
nomenon of turbulence.

Engineering by definition aims at solving practical problems. Usually this requires finding the right bal-
ance between the accuracy of results and time needed to obtain them. Most often there is no need to precisely
describe the whole complexity of the involved physics, as long as the problem-relevant parts are considered.
For example, the model required to solve the problem of finding instantaneous aerodynamic loads on an
aircraft wing during take-off, would become computationally expensive, were it to include phenomena that
occur on all scales. This would render such model useless in solving the problem online, i.e. during the ma-
neuver. Similar examples of operations where fast computation constitutes an important factor may be easily
imagined.

Extraction of features of physics that are relevant to a particular problem is one of the main ideas of model
order reduction (MOR). In the fluid mechanics context, as will be described in section 1.1, a system of partial
differential equations (PDE) governs the evolution of the flow. As discussed, a computational model, the full
order model (FOM), is formed from the equations, that is typically of high dimensionality. A common way to
reduce order of FOM is by projection onto lower-dimensional subspace. The resultant model is called pro-
jection reduced order model (projection ROM or simply ROM). Part of the information is lost in the process,
which causes inaccuracies of such models. It so turns out that, when a particularly convenient subspace is
selected, a special structural relation between the retained and truncated information emerges. This allows
to draw some analogies with more conventional turbulence modeling techniques .

In the first part this thesis studies a particular method of finding subspaces. In the second part, the in-
vestigated method from previous part is applied in ROM simulation. The third part is focused on turbulence
modeling aspects. The remainder of this chapter draws a brief background of MOR (section 1.1), research
objective and questions are posed (section 1.2) and an overview of the further chapters (section 1.3) is given,
once some initial notions are introduced.

1.1. Background
This section will present a broader background but will not discuss ROM literature and ROMs in detail.

The following concepts and particular forms of the equations below will be expanded in further chapters.
Incompressible flows of Newtonian fluids are most accurately described by Navier-Stokes (NS) equations,
written in short as:

N S
(
u, p

)= 0, (1.1)

where u (x , t ) is a time-dependent vector field defined on a regular domain Ω ⊂ R3, u : Ω× [0,T ] → R3 and
p a scalar field, p : Ω× [0,T ] → R and N S is an operator defined on a function space. The full form will be

9
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given in latter chapters. It is a system of partial differential equations (PDE) for variables: u (velocity - 3
spatial time-dependent components) and p (pressure - 1 component). Laminar and turbulent flows, along
with all possible intermittent states, are all described by the same system. To an extent, turbulence exhibits
self-similar structure [25], which is to say that quantitatively similar phenomena appear on different scales.
As Richardson explains it in his famous energy cascade hypothesis [28], large-scale vortices transfer their
kinetic energy to progressively smaller scales. In this way, the majority of the small scale vortices are not
interdependent, but all do depend on the larger scales of motion, which they drain energy from.

Since there exists no closed-form solution, a way is needed to enable approximation numerically. On the
other hand, the PDE is defined at every point of continuous domainΩ and only a finite number of data points
may be represented. Discretization of equations in space and time is thus necessary, so as to consider only
a finite subset of the degrees of freedom (DoFs) of the continuous PDE. As Kolmogorov discovered, in every
turbulent flow there exist smallest possible (finite) scales of motion. A model with resolution sufficient to cap-
ture those scales would provide an approximate solution conforming to the exact one. In the context of fluid
mechanics, this could mean a considerable number of DoFs, enough to capture the smallest (Kolmogorov)
scales of turbulent motion [25]. This brute-force method is called Direct Numerical Simulation (DNS).

The cost of DNS scales with at least Re3, see [33] by various authors. This poses significant demands on
computational power for high-Re flows typical of aerospace engineering. To circumvent this, researchers
have attempted to approximate variables in NS equations with

(
u, p

)
, where the bars indicate scale separa-

tion operator [24], neglecting some information. With these variables, NS equations in general do not hold
(notation and reasoning based on [37] by Wilcox) :

N S
(
u, p

) 6= 0. (1.2)

There exist two main strategies of obtaining
(
u, p

)
and finding the term that would balance (non)-equality

eq. (1.2): Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). They both use the
coarse-fine scale (or ’Reynolds-’) decomposition:

u = u +u′, (1.3)

where u is the part of the velocity field that is being resolved, so structures up to a certain wavenumber (or
just ensemble-averaged in case of RANS). Inserting eq. (1.3) into NS operator and acting on it with the scale-
separation operator yields:

N S
(
u +u′, p +p ′)= 0.

Simplifying this reveals the shape of a so called closure term , leading to equality:

N S
(
u, p

)+ f
(
u,u′, p, p ′)= 0, (1.4)

here denoted by f and required to balance eq. (1.2). In RANS the scale separation operator is an idempotent

operator, u = u, while in LES in general it is not idempotent, u 6= u, (see [24] by Sagaut et al.). Rich, well-
grounded literature is available on RANS ([37] by Wilcox, [18] by Leschziner).

Both of the popular approaches require a closure term to balance the equations, which is the task of a fine-
scale model. Even though RANS is cheaper than LES and LES is cheaper than DNS, depending on a particular
application of the CFD code (purposes of design, optimization, uncertainty quantification, requiring multiple
runs), the need to save on computational cost persists.

Hence an idea of Model Order Reduction (MOR) emerged. First attempts of representing flow structures
by means of a reduced basis (RB) are attributed to Aubry et al. [4], who have used Proper Orthogonal De-
composition (POD) to extract dominant structures from wall region in an incompressible wall-bounded flow.
Although in the mentioned article no ROMs were constructed, the POD reduced basis that was considered is
currently frequently used in one of the most popular ROM types, projection ROM:

P N S
(
u, p

)=P g
(
u,u′, p, p ′) . (1.5)

Here, the bar denotes Galerkin truncation, P a Galerkin projection and the (projected) closure term g on the
right-hand is not the same as the one from RANS or LES, unless FOM is RANS- or LES-based.

It is imperative that NS equations are discretized, though in the very general eq. (1.4)-(1.5) this is omitted,
for the sake of giving an overview. In fact however, there have been ROM attempts, in which a continuous Full
Order Model (FOM) equations have been used directly to construct ROM (albeit for Burgers Equation [30] by
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San and Maulik). In more detailed terms, let {ϕi (x)}, i = 1, ...M , be functions forming a basis in some function
spaceW⊂ (L2 (Ω))3, used for approximation u ≈ u =∑M

i=1 a jϕ j . If the same space is used for projection, then
left hand side of eq. (1.5) is expressed as a collection of inner products (summation convention applied):(

ϕi , N S
(
a jϕ j , p

))
L2(Ω)

, (1.6)

where a j (t ) are time-dependent coefficients and where similar expansions/projections in general need also
be performed for p. The aforementioned discretization may be applied to such equations at ROM or FOM
level. The sequence, as will be explained in chapter 3, is of crucial importance.

The particular ROM/FOM framework used in the present research is non-linearly stable energy-conserving
ROM (EC-ROM) developed by Sanderse in [31]. It uses POD to obtain {Φi } ∈RN , discrete counterpart of {ϕi },
i.e. a certain basis. Semi-discrete FOM equations (and ODE system) are projected onto this basis. To achieve
ROM energy-conservation, the author firstly uses a discrete FOM that has this property, which is achieved by
retaining certain symmetries of the operators present in NS equations. Incidentally, one of those symmetries
renders ROM velocity-only, but puts stringent conditions on the basis, namely that allΦi are divergence-free.

A brief view of what is missing in literature and what is to be improved now follows. Singular Value De-
composition (SVD) happens to be equivalent to performing POD on FOM solution (which is the technique
used in EC-ROM to obtain ROM basis). Because in conventional version SVD requires input of the whole dis-
crete FOM solution {Vh (t1) , ...,Vh

(
tNt

)
} into operational memory (in form of snapshots at various instants), it

becomes imperative to approximate SVD when large data sets are considered. In EC-ROM papers published
so far (e.g.[31] by Sanderse) only 2D flow cases are considered and conventional SVD (cSVD) suffices. Since
true1 turbulence only occurs in 3D and at high Reynolds numbers, the involved data sets inevitably become
large (for DNS-based FOM). To alleviate this issue, an incremental algorithm of finding dominant singular
subspaces (iSVD), developed by Baker in [5], will be merged into EC-ROM. To the knowledge of the author,
the present thesis is the first time when EC-ROM (from [31]) is applied in 3D setting and also the first, in which
iSVD is applied.

Even though EC-ROM is non-linearly stable, it might still be inaccurate due to truncation of some infor-
mation in projection onto lower-dimensional subspace. This imbalance is expressed by right-hand side of
eq. (1.5), i.e. a closure term. The closure term depends on unresolved scales. Therefore, in an attempt to
improve accuracy, it could be modeled, s.t. g

(
u,u′, p, p ′) ≈ g

(
u, p

)
. One of such modeling techniques, of

eddy-viscosity (EV) type, will be investigated in an a priori test. In this technique, an additional diffusion
term is introduced.

1.2. Research objective and questions
The first objective is to investigate the effects of applying approximate method of obtaining reduced basis

(iSVD) on the accuracy of RB and ROM solution through error and spectral analysis. To achieve this, first
INS2D-EC-ROM2 implementation will be generalized to 3D. The present research will officially be the first
application of INS3D-EC-ROM. Subsequently Baker’s iSVD library [5] is to be incorporated into INS3D-EC-
ROM). To the author’s knowledge, so far Baker’s incremental SVD had not been applied to compute POD-ROM
basis in turbulent flow problems. RB obtained by means of iSVD will be tested before being used in ROM
simulation. The test will examine properties of the basis that are essential for the main equations to hold
(i.e. orthogonality, zero-divergence). It will also aim at establishing a source of possible deviations from these
sought properties of RB, using conventional SVD basis as reference. Furthermore, in simulations, velocity
error will be computed, along with energy spectrum. Iso-surfaces of modes will be presented. Global energy
and momentum evolution in time will also be plotted. Aiming at obtaining turbulent state of the flow, ROM
simulations will be performed mainly on a fine grid, where no reference SVD basis is available.

Additional tests include the following. It may be expected that iSVD will introduce errors or noise to RB.
It is prudent to examine the susceptibility of INS3D-EC-ROM accuracy to distortions of basis. Therefore, reg-
ular POD basis will be randomly distorted and/or rotated to find the effects on basis quality (section 5.1.5)
and ROM solution (section 6.2.1). Moreover, an additional EC-ROM capability: constrained SVD, invented by
Sanderse in [31], will be tested in the new 3D setting. This technique yields enforced momentum conserva-
tion, which will be an object of a comparative test (section 6.2.2). Next, ROMs with bases from three different
FOM integration periods will be compared (section 6.2.3). Finally, time extrapolation will be attempted to

1one to which energy cascade hypothesis refers
2ROM solver implemented by Sanderse in [31]
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find out the behavior of velocity error and other quantities past FOM integration time (section 6.2.4). The
second objective is to implement a mixing-length eddy viscosity (EV) closure model for ROM and perform
an a priori analysis to verify the validity of the modeling. This is different than a ROM simulation with an
added corrective term. Bases of different dimensions will be obtained via iSVD. FOM solution snapshots will
be projected onto the respectable subspaces. Projected FOM solutions will be used to compute EV. An exact
formula for discrete closure term will be derived (section 3.2.1). Finally, this term will be compared with the
term of EV closure term (chapter 7). The latter will be fit by basic least squares regression. Error to actual FOM
exact term will be measured and plotted. This is aimed at determining whether this paradigm of modeling
is feasible at all in the present context. Additionally, precomputation of EV term will be attempted, whereby
POD of EV will be used to achieve simplified form of the involved operator.

The following list contains research questions with references to corresponding chapters with results. The
main questions correspond to chapters, however the sections do not necessarily reflect sub-questions. When
a sub-question has no referred section, then the chapter/section of the main question is to be referred to. This
is organized in such manner due to maintain balance between order and ’story line’. The research questions,
with numbers of corresponding chapters with results, are the following:

1. Is it possible and to what extent, to use Baker’s incremental SVD algorithm as an approximate, memory-
efficient method of computing ROM basis? (chapter 5)

(a) What influences the accuracy of basis computation and in what way?

(b) How useful are Gram-Schmidt (GS) orthonormalization and Helmholtz decomposition as means
of counteracting possible non-divergence-free or non-orthogonal output bases?

(c) What is the effect of downsampling on the basis accuracy?

(d) How susceptible is the 3D EC-ROM basis to distortions or rotations, in terms of basis quality?

2. How well does INS3D-EC-ROM code perform, in particular with iSVD-basis? (chapter 6)

(a) What is the accuracy in terms of errors in velocity, energy, momentum and divergence? (chapter 6
throughout)

(b) How do the ROM energy spectra compare to FOM? (section 6.1.3)

(c) How susceptible is 3D EC-ROM solution to distortions or rotations of basis in terms of the men-
tioned errors? (section 6.2.1)

(d) Is constrained SVD compatible with incremental algorithm? (section 6.2.2)

(e) How does the model behave when different FOM integration times are applied to construct basis
of the same dimension? (section 6.2.3)

(f) How does the model behave when computed past FOM integration time? (section 6.2.4)

3. Is EV modeling of mixing length type an appropriate technique to model unresolved scale terms in the
EC-ROM setting? (section 3.2, chapter 7)

(a) What is the exact form of the discrete closure term, i.e. what exactly is missing in ROM? (sec-
tion 3.2.1)

(b) What are the errors of closure term w.r. to the exact closure term?

(c) What is the behavior of regression coefficients for various dimensions of RB?

(d) Is POD a viable choice for EV field approximation in this type of modeling?

(e) Is precomputation of the EV diffusion operator in closure term possible?

RQ1 and RQ3 correspond to the first and second objective respectively. RQ2 has no corresponding self-
standing objective, but it is closely related to the first objective. 3D capability of EC-ROM was enabled in the
course of present research. RQ2 is merely a ‘sanity check’ of how the (approximate) basis performs in actual
3D-EC-ROM simulations.
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1.3. Overview
The following will give an overview of each chapter.
A literature review with a brief introduction to MOR is contained in chapter 2. Firstly, basic notions and

equations are stated to lay ground for the first glimpse of ROM literature in section 2.2 The concept of eddy
viscosity ansatz will be presented in section 2.3. Reduced basis (RB) will be introduced in section 2.4, with
particular focus on POD and SVD. The final section section 2.5 is a brief review of how the closure problem is
tackled in literature, with pressure put on eddy-viscosity ROM closure.

In chapter 3 a thorough description of the proposed research is given. Details of EC-ROM are provided in
section 3.1, where it shown how the ROM is conceived from PDEs by discretization and SVD. In section 3.2
the exact closure term is derived, eddy viscosity ansatz is proposed along with a precomputation procedure
of closure term. Finally, section 3.3 focuses on error measures, that will be used in the later chapters to
quantify errors in reduced basis and in ROM solution. In section 3.4 definitions of miscellaneous investigated
quantities are given.

Chapter 4 outlines the setup of numerical experiments that are performed in the research. Section 4.4
presents the software used and discusses some settings of the runs. Section 4.1 describes the two test cases
used: periodic shear layer and Taylor-Green vortex. Section 4.3 is an attempt to assess the stability of the used
discretization and time march combination. An estimate of Courant and Peclet numbers for either test case
is made. This allows to assess whether the method is operating within the limits of its stability region.

Reduced bases are analyzed in chapter 5. The quality of basis is investigated in section 5.1 in terms of or-
thogonality, zero-divergence, fidelity to conventional SVD and SV decay. Iso-surfaces of selected components
of several modes are examined in section 5.2 for either test case (SL and TG). Spectra of individual modes are
compared section 5.3. The singular value spectrum for selected test cases is presented and discussed in sec-
tion 5.4. Practical conclusions of iSVD investigations for further chapters are summarized in section 5.5.

ROM simulation results are reported in chapter 6. The main shear layer results are discussed in section 6.1,
while section 6.2 contains additional shear layer results. Finally Taylor-Green vortex results are presented in
section 6.3.

The capstone of the thesis lies in chapter 7. There, an a priori analysis of turbulence modeling is per-
formed, which includes computation of eddy viscosity, finding a least squares fit of the model constant and
computation of error w.r. to exact closure term derived in an earlier chapter.

The thesis is finalized with chapter 8, where answers to research questions are provided, conclusions are
made and recommendations for future research proposed.





2
Literature Review and ROM preliminaries

The purpose of this chapter is to lay out the basics of MOR. Governing equations and some basic notions
are first introduced. This is followed by a general review of related literature. Further part of the review is
focused on reduced basis and closure modeling.

2.1. Basic notions and equations
As a more detailed, but still introductory step, since all the discussed (and present) research concerns

incompressible flows, it makes sense to invoke the full form of the governing PDE system. This will be fol-
lowed by a general explanation of how to obtain projection ROM. By first writing discretized PDE with RB-
approximation of variables and then projecting the equations onto reduced basis, ROM is obtained. The
details of RB will later become relevant.

Let
(
u, p

)
be time- and space-dependent vector and scalar fields on the domainΩ⊂R3. Let L2 (Ω) denote

the space of square-integrable functions onΩ. Let the scalar product of two elements u, v ∈ L2 (Ω) be defined
by (u, v )Ω := ∫

Ωu · vdΩ, i.e. standard (real) Hilbert space inner product is used. The Navier-Stokes equations
read:

∇·u = 0 inΩ, (2.1)

∂u

∂t
+∇· (u ⊗u) =−∇p +∇·ν(∇u + (∇u)T )

inΩ, (2.2)

and are to be appended with proper boundary and initial conditions:

B
(
u,∇u, p,∇p

)= 0 on ∂Ω, (2.3)

u (0, x) = u0 (x) inΩ. (2.4)

Equation 2.1 expresses mass conservation. Linear momentum balance is represented by eq. (2.2). Let
Vh (t ) ∈RNV , ph (t ) ∈RNp denote spatially discretized velocity and pressure fields, where NV is the number of
velocity DoFs and Np is the number of pressure DoFs. Details of discretization will later become relevant,
the present considerations are valid for finite volume (FV) method. However, the ROM equation, that will
now be derived, is very similar to ones obtained via finite element (FE) method, e.g. in [39] by Xie et al.
Also, in the present case, only periodic boundary conditions will be considered from now on. This is to keep
considerations simple because the present research is also focused on other aspects of MOR. Discretized NS
equations may be written:

MhVh = 0, (2.5)

ΩhV̇h =−Gh ph −Ch (Vh)Vh +νDhVh︸ ︷︷ ︸
Fh(Vh ,ph)

. (2.6)
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These equations comprise an ODE system for Vh , ph . Since FV method is applied, the variables appear as
cell-integrated values, with

∫
Ωi

udΩ≈ [ΩhVh]i , whereΩh ∈RNV ×NV is a diagonal matrix with volumes of Vh-
cells and Ωi is the volume of i -th cell. On the right-hand side of eq. (2.6) no Ωh term appears, because the
integration is encoded in the operators Ch ,Dh ,Gh (discrete counterparts of convective, diffusive and gradient
operators respectively).

Now if an expansion of those variables in a certain basis is considered, e.g. Vh ≈ ∑M
i=1 ai (t )Φi , with ai ∈

R,Φi ∈ RNV the coefficients of this expansion may be found. A discrete scalar product needs to be defined
first. FV method is best accommodated with a product that is weighted with the positive-definite matrixΩh :
(Uh ,Wh)Ωh

:= V T
h ΩhUh for Uh ,Wh ∈ RNV . By solving the following system, expansion coefficients are found,

finalizing the widely known Galerkin procedure:

ΦTΩhΦȧ =ΦT Fh
(
Φa, ph

)
, (2.7)

whereΦ ∈RNV ×M is a matrix whose M columns are collectedΦi basis vectors. In some circumstances, when
pressure-velocity compatibility condition is respected by FOM and basis vectors are discretely divergence-
free (MhΦi = 0 for i = 1, ...M), the pressure term cancels. Further, some rearrangements allow to write pro-
jected convective operator as a third order tensor and when the basisΦ is orthogonal, i.e. ΦTΩΦ= IM , eq. (2.7)
becomes velocity-only:

ȧ = aT B a + Aa, (2.8)

where A ∈ RM×M ,B ∈ RM×M×M are diffusive and convective ROM operators. The gain in computational ef-
ficiency is immediately noticeable, as the number of equations reduces from NV +Np (sum of velocity and
pressure DoFs) to M .

2.2. ROM literature overview
Model Order Reduction (MOR) is a field of intensive research globally, combining many disciplines. For

the sake of conciseness the considerations will be limited to projection-ROMs, i.e. where ROM operators are
obtained by projecting FOM operators onto a certain subspace with a certain basis called Reduced Basis (RB).

Historically, one of the earliest papers on RB applied in incompressible flow computations was the paper
by Peterson [23]. As mentioned, POD-RB was earlier used by Aubry et al. [4], but only to describe the flow in
a particular part of the domain. In [23] full solutions to NS equations are being approximated.

Before POD was an RB technique, it was used 1 by statisticians in the early 20th century, as described by
Quarteroni et al. [27]. The mathematical foundations can be traced back to the beginning of 20th century.

As described in [11] by Fick et al., there are essentially two main types of ROM problems: reproduction and

parametric problem. In either case, FOM solution is required,
{
Vh

(
t i ,µ

)}Nt

i=1 which is conceived as a set of Nt

snapshots. These are obtained for a single parameter vector µ ∈ Rp , where p is the number of parameters in

the analysis. Snapshots are samples of solutions at time instants
{

t i
}Nt

i=1, 0 ≤ ti ≤ tend . Solution reproduction
problem is to find a reduced order solution that approximates FOM solution (for a single µ) at all ti . This
requires construction of a reduced basis {Φi }. An implicit assumption here is that FOM evolves within or in a
sense close to the subspace spanned by the basis vectors. It is to say that Vh (t ) ≈∑M

i=1Φi ai (t ), as mentioned
in the introduction to this chapter. There are two kinds of reproduction in the solution reproduction problem.
One is that in which the FOM solution data is simply compressed by projection onto RB. The other is actually
solving a new ODE system in the reduced space (ROM simulation), derived from projection of FOM equation
terms. Both kinds of solution reproduction will be investigated in this study. Parametric problem comprises
finding approximation to FOM solution for any parameter µ value in a certain range. The parameter values
may in general vary in range different from the training data. The scope of the present thesis is limited to the
former: solution reproduction problem, which is also crucial in parametric analysis.

Projection Galerkin-POD-ROMs for turbulent flows based on L2 inner product notoriously suffer from
stability issues (see e.g. [36] by Wells et al.) connected to the convective character of the flow, whereby spuri-
ous oscillations occur. It is widely believed that the underlying reasons are similar to the case of RANS/LES:
insufficient dissipation of turbulent kinetic energy (TKE) of fine scales present in the model. Fick et al. in [11]
provide a wide overview of strategies applied to stabilize ROM, which include: using different scalar prod-
ucts, enriching POD basis, using Dynamic Mode Decomposition (DMD) to compute the basis, and finally
providing dissipation via a closure term. The last approach will be investigated in the present project.

1In other fields POD is called Karhunen–Loève expansion or Principle Component Analysis (PCA)
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All of these aim at overcoming stability issues, which is necessary for accuracy but in general does not
guarantee it. As will be further explained, the code INS3D-EC-ROM (a 3D version of INS2D-EC-ROM by
Sanderse [31]) used in the present thesis is by construct non-linearly stable, in the sense that there exists an
upper bound on kinetic energy. This guarantees that L2 (Ω)-norm of the solution is bounded at all times, but
not that the solution conforms to that of FOM.

2.2.1. Mathematical perspective
The purpose of this section is to outline some fundamental aspects of MOR, and to relate the present and

existing research to those fundamentals.
There are several perspectives to look at ROM. Works of Benner et al. [7] or Lasilla et al. [26] are exam-

ples of papers focused entirely on mathematics of MOR. Such context is needed to solve the more general
parametric problem. In those articles the physical aspects of numerical modeling are rarely mentioned. The
complexity of parametric problem necessitates the choice of more primitive RB construction procedure via so
called greedy algorithms, rather than POD. Although parametric problem is outside the scope of the current
study, the above publications also put ROM in a broader context of dynamical systems and applied func-
tional analysis. The authors discuss constructing basis more generally, applying Petrov-Galerkin method. In
the present context however, only (Bubnov-)Galerkin projection is considered, i.e. the FOM solution is ex-
panded in a set of functions and the same set serves as basis to project onto. Strictly speaking, if the FOM
approximation Vh evolves in time in an N -dimensional manifold, then ROM approximation Vr (or rather the
reconstructed solution) evolves in an M-dimensional submanifold. Quarteroni in [27] writes that the approx-
imation is accurate when the two manifolds lie in a sense close together.

As formulated by e.g. Grimberg in [13], the problem of MOR in turbulent flows lies in Kolmogorov n-
width of the FOM manifold, which is large and slowly-decaying. This results in there being a high number
of modes required to accurately capture the dynamics of FOM. Due to already existing nomenclature, in the
present section n is identified with M . Kolmogorov n-width, in [27] denoted by dn (·, ·), determines limits of
accuracy of projection-based approximation. It is a meaningful quantity, as it takes into account all possible
n-dimensional approximation spaces and all possible functions to be represented in those spaces. It is es-
sentially a particular distance between the solution and its possible approximation for a given dimensionality
n.

Figure 2.1: Kolmogorov n-width, orientation of subspaceWn w.r. to K

It is useful to refer to the definition, as given by Quarteroni [27]. Let W denote a Hilbert space and K a set
within the space. LetWn be an n-dimensional linear subspace ofW. The quantity

dn (K ;W) = inf
Wn⊂W

sup
w∈K

inf
wn∈Wn

‖w −wn‖W, (2.9)

is called Kolmogorov n-width. Note that since Wn is not allowed to be an affine subspace (only linear), it
may be more complicated to find a plausible approximation space, as the offset influences the inf and sup in
eq. (2.9), see fig. 2.1. In this situation the generated linear subspace, even of arbitrarily high dimension might
not lie close to the actual solution space. This arises when K does not contain the zero-element. In several
articles, when snapshot-based POD is concerned, e.g. [38] by Xie et al.,[30] by San and Maulik, a centering
trajectory, Vh = 1

Nt

∑Nt
i=1 Vh (ti ), is first subtracted from all snapshots (solution field instants), to eliminate the

offset.
Kolmogorov length decays slowly with n in convection-dominated problems (see e.g. [11] by Fick et al.),

so that in general a high dimensionality of basis is required to solve long-term turbulent flow integration accu-
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rately. This shows that ROM accuracy is a fundamental mathematical problem of dimensionality of solution
set (see section 5.4 of [27]). Many authors from the projection-ROM field (e.g.Lasilla et al. [26]) observed
that ROMs tend to deviate from FOM trajectory, especially past the FOM integration time. The well known
problem of time-extrapolation is not directly connected to the property of slowly decaying dn . It is the result
of using a particular type of basis, which captures dynamics of the system only within the time period where
high-fidelity data is available.

The core message is that in convection-dominated problems dimensionality of the solution set is high,
which inevitably leads to either large computational burden or inaccuracy, and that framework outlined here
is limited to approximations of known spaces. Therefore time extrapolation is bound to fail when no addi-
tional information about the solution set is taken into account, e.g. through physics-informed corrections.

2.2.2. Phenomenological perspective
One could say that turbulent flow is not really random, only chaotic in a deterministic sense. That is, the

underlying dynamical system is sensitive to small perturbations in initial and boundary conditions. There
is also empirical evidence confirming that turbulence is not random: there exist spatial correlations of flow
variables. The solution varies erratically with IC and BC, always remaining deterministic for a particular IC
and BC. This happens due to non-linearity of convective term in NS equations. Examining the term in detail,
as done in e.g. [25] by Pope, reveals that in turbulent flows there may appear interactions between scales from
different ranges.

Typically, at high Reynolds number, the number of DoFs is very high, rendering DNS unsuitable. In clas-
sical approaches to limiting this complexity, RANS and LES, there appears a fundamental problem of closure.
In eq. (1.4) there is an unknown term f

(
u,u′, p, p ′), which requires modeling. Derivations may be found in

classic textbooks, e.g. by Pope [25], Wilcox [37] or Sagaut [29]. The reasoning is based on energy cascade
hypothesis, see fig. 2.2.

Figure 2.2: Energy cascade [24]. Here: κ-wavenumber, E (κ)-energy density spectrum

In essence, kinetic energy is carried mostly by large scales of motion. Most of energy dissipation occurs on
fine scales. There exists an intermediate range, according to famous Kolmogorov hypotheses [17], exhibiting
universal characteristics. Within this range energy is mostly being transferred from coarser to finer scales
at an approximately constant rate (w.r. to wavenumber). Truncation of fine scales could potentially lead
to a situation where energy is transferred from universal, inertial range, but is not destroyed in the viscous
range. Instead, it piles up right below the cut-off wavenumber. This in turn could lead to instabilities and/or
inaccuracy. This reasoning, according to Couplet et al. [10], is valid in the POD setting, as later explained.

As shown e.g. in [39], projection onto POD basis in ROM is filtering. It is therefore widely believed that
there is analogy to LES, i.e. that truncation of higher modes is bound to destabilize the solution. Grimberg et
al. however, in a recent paper [13] notice that supporters of the physics-argued explanation do not consider
numerical aspects of Galerkin projection framework, focusing only on Reduced Basis (RB) resolution. The
authors successfully apply a Petrov-Galerkin framework to stabilize the ROMs. This challenges the popular
claims that the absence of fine scales is the sole cause of instability.

The problem of instability of numerical schemes is frequently tackled through adding artificial dissipation
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thus changing the eigenvalue spectrum of the underlying ODE system, as described e.g. in [15]. This is not
exactly the same as adding eddy viscosity, which is derived through physics-based reasoning (assumption
of proportionality between Reynolds stress tensor and deviator of mean shear strain, see next section). In
section 3.2, a derivation of the exact shape of discrete closure term is presented.

2.3. Eddy viscosity ansatz
The concept of turbulent (eddy) viscosity, originally invented by Boussinesq, lies close to the foundation

of RANS methodology (see e.g. [37] by Wilcox or [33] by various authors). Maybe the most helpful explanation,
with listed limitations of models of this kind was given by Leschziner in [18]. Hence it is along the lines of this
textbook, that EV concept will be presented. In Reynolds decomposition u = u+u′ the bar denotes ensemble
averaging operator:

u (x , t ) = lim
N→∞

1

N

N∑
i=1

ui (x , t ) ,

where ui are realizations of the process. Inserting Reynolds decomposition into eq. (2.2) and applying aver-
aging to the entire equation yields Reynolds-Averaged Navier-Stokes (RANS) equations:

∇·u = 0 inΩ, (2.10)

∂u

∂t
+u ·∇u +u′ ·∇u′ =−∇p +ν∆u inΩ, (2.11)

where mass conservation of fine scales ∇·u′ = 0, and some basic properties of Reynolds averaging were used
to simplify multiple terms (see e.g.[37] by Wilcox for details).

Equations (2.1)-(2.2) for variables {u, p} are identical in form with equations (2.10)-(2.11) for variables

{u, p} except for the term u′ ·∇u′. The term represents a Reynolds stress tensor (RST), which is a surplus
unknown. Therefore the problem of closure arises.

As Leschziner (see [18]) recalls, Boussinesq in 19th century argued that action turbulence is the same
as action of viscous diffusion on the micro-level, i.e. transverse transmission of longitudinal momentum.
Simplification of this hypothesis lies in the assumption, that turbulence has no spatial coherence, as is the
case for viscous diffusion.

Mass conservation of fine scales permits rewriting RST as u′ ·∇u′ =∇· (u′⊗u′). Writing diffusion term as

ν∆u = ∇ ·
(
ν

(
∇u + (∇u

)T
))

enables to include (by linearity of divergence operator) to write diffusion under

common ∇· with RST moved from the left side of eq. (2.11) and state the approximation as:

∇·
(
ν

(
∇u + (∇u

)T
)
−u′⊗u′

)
≈∇· ((ν+νt )∇u

)
. (2.12)

So in fact RST is approximated as:

−u′⊗u′ ≈ νt

(
∇u + (∇u

)T
)

. (2.13)

Eddy viscosity in general is a function of u - the mean field: νt = νt
(
u (x , t )

)
. Upon inspection of eq. (2.12),

it can be clearly noticed, that an unknown 6-component tensor −u′⊗u′ is being substituted with a product

of an unknown scalar field (νt ) and a known2 6-component tensor
(
∇u + (∇u

)T
)
. This substitution essen-

tially introduces an approximation on the level of complexity of continuous operators. Namely, following
Leschziner [18], a single scalar field cannot possibly be selected such that the approximation eq. (2.12) is

accurate for all components of RST simultaneously in general case. The tensor
(
∇u + (∇u

)T
)

is sometimes

written ∇s u with ∇s denoting symmetrical gradient.
Boussinesq hypothesis in its primordial form requires a correction to account for non-zero turbulent

stress states in the absence of mean straining, a situation which may frequently occur in real-life situations.
By making the following modification to eq. (2.13) an augmented version of the hypothesis is obtained:

−u′⊗u′ ≈ νt

(
∇u + (∇u

)T
)
− 2

3
I k, (2.14)

2The tensor is mean strain rate tensor and it is only known so long as the equations for mean flow are solved
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where I is an identity element in the space of tensors to which RST belongs and k = 1
2

(
u′

1
2 +u′

2
2 +u′

3
2
)

is the

turbulence kinetic energy, defined as half the trace of RST. One might say (see e.g. [33]), that instead of RST,
the traceless part of RST is modeled now.

EV modeling has clear advantages of conceptual and simplicity and fairly low computational cost. How-
ever, they are also known to exhibit the following shortcomings:

1. Fail to compute normal stress in shear flow etc.

2. May produce unphysical, negative normal stresses in strong shear strain

3. Returns state of normal stress anisotropy in pure shear strain

2.4. Reduced basis
In this section the POD reduced basis concept are outlined. After some basic notions are introduced

(section 2.4.1), five methods of obtaining basis reduction are briefly presented (section 2.4.2). Two of them
(cSVD and iSVD) are given more attention (section 2.4.3-section 2.4.4), since those methods are used in this
thesis.

2.4.1. Basic notions
LetΩh be an positive-definite matrix, that induces a scalar product (·, ·)Ωh in RN :

(V ,W )Ωh :=V TΩhW, (2.15)

and thus a norm ‖ ·‖Ωh :

‖V ‖Ωh :=
√

(V ,V )Ωh . (2.16)

In the further part of the thesisΩh is not only positive-definite, but also diagonal. Let {Φi } be a system of
M orthogonal vectors, where Φi ∈ RN . Orthogonality condition reads ΦTΩhΦ= IM . The vectors form a basis
of an M-dimensional subspace of RN .

Let u ∈ RN and a ∈ RM . An orthogonal projection of u onto span(Φ) (the linear subspace spanned by all
theΦi ) is the solution to the minimization problem:

min
a∈RM

f (a) = 1

2

∥∥∥u −Φa
∥∥∥2

Ωh
, (2.17)

i.e. find coefficients of linear combination of vectors Φi such that it lies as close as possible (in the ‖ · ‖Ωh -
norm) to the original vector u. The factor 1

2 is to simplify computations, while the squared norm is used
to cast the problem into convex differentiable form. For such a problem, a∗ is the solution if and only if
∇ f (a∗) = 0. Writing f (a) as:

f (a) = 1

2
(u −Φa)T Ωh (u −Φa) , (2.18)

allows to write:
∇ f

(
a∗)=ΦTΩhΦa∗−ΦTΩhu = 0, (2.19)

whereΩh-induced scalar product was used. The (only) solution is:

a∗ =ΦTΩhu. (2.20)

Hence the projection of u onto span(Φ) is:

PspanΦ (u) =ΦΦTΩhu. (2.21)

2.4.2. Proper Orthogonal Decomposition
The textbook by Quarteroni et al. [27] or the paper by Sanderse [31] discuss what follows in more detail.
POD aims at finding dominant structures in a data set. The set may be of any kind, as long as it can

be cast into a matrix form. The problem is that of finding an orthonormal basis Φ ∈ RN×M , such that the
snapshots (columns) can be well approximated with combinations of these basis vectors. In other words,
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that the distance between snapshots and their projections onto the space spanned by POD modes must be
minimized in a certain norm. The problem is formulated as:

Φ= arg min
Φ∈RN×M

∥∥X −ΦΦTΩh X
∥∥

F under constraint: ΦTΩΦ= IM , (2.22)

where X is the matrix of snapshots X := [
X1, ..., XNt

]
and ‖·‖F stands for Frobenius norm, which for an N ×M

matrix A with entries ai j is ‖A‖F =
√∑N

i=1

∑M
j=1

∣∣ai j
∣∣2. Using this particular norm means that Φ is sought,

such that it minimizes the difference between snapshots and their projections globally, i.e. for all the snap-
shots. In comparison to Fourier modes, which are of fixed form, the POD basis is dependent on the data set
(snapshots). An important observation may be made at this point, also following [7] by Benner et al. or [27]
by Quarteroni et al., thatΦ is built based on available snapshots. Hence problems may arise when the actual
flow solution exemplifies structures that are not available in the snapshots used to construct reduced basis -
when time extrapolation is attempted. As succinctly formulated in [7]: If it’s not in the snapshots, it’s not in
the ROM.

The problem eq. (2.22) may be cast into a simpler form:

Φ̂= arg min
Φ̂∈RN×M

∥∥X̂ − Φ̂Φ̂T X̂
∥∥

F under constraint: Φ̂T Φ̂= IM , (2.23)

where X̂ =Ω
1
2
h X , which requires only minor treatment of the snapshots. The Frobenius norm in the two prob-

lems is not the same, in the former it is in fact a weighted Frobenius norm, i.e. ‖A‖F,Ωh =
√∑N

i=1

∑M
j=1ωi

∣∣ai j
∣∣2.

Note that ‖Ω
1
2
h A‖2

F =∑N
i=1

∑M
j=1

(
ω

1
2
i ai j

)2

=∑N
i=1ω

1
2
i

∑M
j=1

(
ai j

)2 = ‖A‖2
F,Ωh

. The relation between the solutions

to eq. (2.22) and eq. (2.23) isΦ=Ω− 1
2

h Φ̂. ClearlyΩ
1
2
h andΩ

− 1
2

h are positive definite whenΩh is positive definite.
Furthermore, from eq. (2.23) or its weighted version, it is not obvious that for bases with M1, M2 elements,

where M1 < M2 the first M1 vectors of both bases are the same. This is a feature of POD and it is implied by
the Schmidt-Eckart-Young theorem (see e.g. [27] by Quarteroni et al.).

The following methods of obtainingΦ, related to the present research, will be briefly described:

1. Direct method: solution of eq. (2.23). This necessitates high-dimensional optimization with equality
constraints. Typically this is very expensive. Obtaining RB for a high-dimensional solution in this way
is inefficient in the present context of turbulent flows.

2. Singular value decomposition (SVD, see [27] by Quarteroni): finding a special decomposition of snap-
shot matrix X =ΦΣΨ (to be described in section 2.4.3) in which one of the resultant matrices comprises
the basis vectors as columns. In principle the method provides an accurate POD basis. However, it is
not well suited for high N ×Nt , such as are typical in turbulent flows.

3. Method of snapshots (MoS, see [32] by Sirovich): finding right-singular vectors Ψ of SVD by solving a
cheaper eigenvalue problem X T XΨ=ΨΣTΣ, which is obtained with the use of Moore-Penrose inverse
Σ†. It is suitable only for Nt ¿ N . In the present case where Nt is of the order 103, it would require
solution of a large eigenvalue problem and access to all the snapshots at once. Hence MoS is not used,
although there is an additional insight that the framework of the method provides. Namely, that POD
modesΦi are all linear combinations of snapshots Xi . To summarize, the method is cheap but requires
Nt ¿ N and Nt small.

4. By solving an eigenvalue problem with snapshot-correlation matrix X X T (see e.g. [16] by Holmes et
al.) : similar to MoS in that there is also an eigenvalue problem to be solved. Here the solution directly
yieldsΦ, but the size of the problem matrix is as high as N×N . This is an even larger eigenvalue problem
than in MoS and additionally it is a dense matrix typically. This renders the method impractical for most
applications in turbulent flows, although Baker in [5] mentions that an iterative eigensolver could be
used to compute the largest eigenvalues of interest without the need to compute the full spectrum of
X X T .

5. Low-rank approximation of SVD: using an algorithm that approximates singular value decomposition
up to a specified number of singular values (and vectors). The advantage is that it is memory-efficient.
The drawback is the error w.r. to classical SVD, whose behaviour is not well known. A particular algo-
rithm (Baker’s iSVD from [5]) will be discussed in section 2.4.4.
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2.4.3. Singular Value Decomposition
Considering eq. (2.22) and eq. (2.23), mostlyΩh-weighted norm (and the related orthogonality condition)

will be used, as it better suits the finite volume method used in INS3D code. For simplicity however, the hat
sign will be omitted, unless confusion could arise. It must be kept in mind that it is actually the weighted prob-

lem that is being solved though. Thus whenever Φ is obtained it must be scaled by Ω
− 1

2
h , as it was explained

in section 2.4.2.
As shown by Quarteroni et al. in [27], the solution of the problem eq. (2.23) for M = N (best possible RB)

is equivalent to obtaining the left-singular vectors of the SVD of the (real) snapshot matrix X ∈RN×Nt :

X =ΦΣΨT , (2.24)

where columns of Φ ∈ RN×N are the left-singular vectors, Σ ∈ RN×Nt is a rectangular diagonal matrix and
Ψ ∈RNt×Nt are the right singular vectors. BothΦ andΨ are orthogonal matrices.

The full form SVD, in case N > Nt , reads:

X = [
Φ1 · · · ΦN

]


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σNt

...
...

...
...

0 0 · · · 0




ΨT

1
ΨT

2
...

ΨT
Nt

 , (2.25)

where σ1 ≥ σ2 ≥ ... ≥ σNt ≥ 0. Any real matrix may be decomposed in this fashion (see [12] by Golub et al.).
In many cases, as in the present project, the cost of full SVD is prohibitive, because the combined number of
spatial and temporal DoFs, N +Nt , usually exceeds operational memory limitations. However, SVD theoreti-
cal framework lays ground to other methods.

When N > Nt , Φi with i > Nt are redundant, as they are multiplied by zeroes of the Σ matrix, below row
Nt . So called thin SVD may then be computed, instead of full SVD, cost of which might still be prohibitive.

The properties of data set X might be such that for a certain M all σi with i > M are negligibly small.
When the purpose of this decomposition allows treating these as zeroes, one might speak of truncated SVD,
which at that point ceases to be exact (multiplying the matricesΦ,Σ,ΨT does not yield the primordial matrix
X ). All of these variations of SVD will be called conventional/classical SVD (cSVD).

A POD feature of key importance for this research is the way the basis is ordered. Namely, that the lowest-
index modes carry the most energy. Examining eq. (2.25) provides information, that singular values σi , i =
1, ..., Nt are somehow governing the magnitudes of snapshots Xi (Φi andΨi are normalized). As may be found
in e.g. [10] by Couplet et al., POD basis has similarities with Fourier basis. The intermodal energy transfer is
local, as in case of Fourier modes. Low-index Fourier modes also carry the most energy (when turbulent flow
data is considered). What is different is that diffusion term in POD case participates in intermodal energy
transfer, which does not occur when Fourier basis is considered [10]. It is concluded that the concept of
energy cascade is therefore valid in POD setting. Implications of this for individual modes energies will be
discussed in section 3.1.3.

An important conceptual analogy has been shown between LES and ROM by Xie et al. [39], such that
POD projection is also a type of spatial filter. Other comparison studies were made between Fourier and POD
basis, e.g. by San and Maulik [30] where Burgers equation analytical solution serves as FOM. Similarities have
also been found there between and Fourier- and POD-ROM basis results.

2.4.4. Incremental SVD
When σn for some n < M drops below machine precision, then there is practically no need to include

it in SVD. Sometimes even higher values of σi are of little interest, depending on the problem, and could
be neglected, set to 0, similarly as in truncated SVD. The POD-modes corresponding to those small singular
values are then also neglected, as multiplied by very small numbers. This threshold could be manually set
and then one could speak of dominant singular values. This is called low-rank approximation.

In the present research the point of interest is to obtain an accurate reduced basis and to make it effi-
ciently (memory- and time wise). Methods of SVD approximation that require access to all the snapshots
simultaneously are in the present context of limited use. What is needed is a method that allows not only to
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compute approximation to SVD, but also to do it in a sequential manner. Suppose that there exists a snap-
shot matrix X with SVD eq. (2.24) that is being updated with new snapshots. Instead of computing SVD anew
for the new X , one could attempt updating SVD that already exists. Combined with the considerations from
previous paragraph this enables to compute a low-rank updated SVD. This allows to reduce computational
cost as there is no need to upload all snapshots into operational memory. It also allows to construct reduced
basis online, during FOM simulation.

The ground for this type of methods was formed by Brand in [8]. His algorithm leads to error accumu-
lation, as described by Baker in [5], who in the same paper develops a better algorithm. Baker’s low-rank
single-pass incremental SVD is the algorithm that is applied in the present research. It will now be briefly
described, in all aspects based solely on [5].

The purpose is to find dominant singular values and the corresponding dominant subspace. This needs
to be done in a sequential manner, by updating SVD based on a part of data e.g. snapshot matrix:

X =

Vh (t1) , ...,Vh
(
tl1

)︸ ︷︷ ︸
1st increment

, ...,Vh

(
tl1+...+l j−1+1

)
, ...,Vh

(
tl1+...+l j

)
︸ ︷︷ ︸

j th increment

, ...,Vh
(
tNt

)
 , (2.26)

with a new set of columns at each step. Increment sizes l j , j = 1, ...p are such that l1 + l2 + ...l +p = Nt . The
updated decomposition is then truncated so that only dominant SVs and modes are kept. It is stressed, that it
is the SVD that is being updated, no actual snapshots are reconstructed in the process. The procedure runs in
loop until all the snapshots are processed. The subspaces that correspond to the dominant SVs are dominant
subspaces. The subspaces corresponding to the remaining SVs are called subordinate.

A method will now be described, which must be applied at each step to separate dominant and subordi-
nate subspaces. Let Y be an N × (k + l ) matrix. Its QR decomposition may be written as:

Y = [
Q1 Q2

][
R
0

]
=Q1R, (2.27)

where Q1 ∈RN×(k+l ), Q2 ∈RN×(N−k−l ) and R ∈R(k+l )×(k+l ). SVD of R itself may be written in a block form:

R =ΦΣΨT = [
Φ1 Φ2

][
Σ1 0
0 Σ2

][
ΨT

1
ΨT

2

]
. (2.28)

Here, Φ1,Φ2,Σ1,Σ2,Ψ1,Ψ2 denote generally blocks (matrices), instead of single columns, as in eq. (2.25).
Entities with index 1 correspond to singular values above an arbitrarily set threshold, while those with in-
dex 2 are below that threshold. Orthogonal transformations GΦ and GΨ may be defined, such that block-
diagonalize left and right singular vectors of R:

GT
ΦΦ=

[
TΦ 0
0 SΦ

]
and GT

ΨΨ=
[

TΨ 0
0 SΨ

]
, (2.29)

where TΦ and TΨ are k ×k, whereas SΦ and SΨ are l × l . When these transformations are applied to R, a new
matrix, with block-diagonal structure is obtained:

Rnew =GT
ΦRGΨ =

[
TΦΣ1T T

Ψ 0
0 SΦΣ2ST

Ψ

]
. (2.30)

This leads to a new factorization of Y , because, owing to orthogonality of GΦ and GΨ:

Y =Q1R = (Q1GΦ)
(
GT
ΦRGΨ

)
GT
Ψ

de f= Qnew RnewGT
Ψ =Qnew

[
TΦΣ1T T

Ψ 0
0 SΦΣ2ST

Ψ

]
GT
Ψ. (2.31)

After presenting this generic technique, proposed first by Brand in [8], Baker in [5] proceeds to the actual
algorithm. In an extreme case, the separation could be performed on the full snapshot matrix X , however
the purpose of memory saving would then be lost. Instead, X is divided into blocks X j to be uploaded in
each step. Each block contains l j columns. The first step is to QR-decompose the first block of snapshots
as X1 = Q1R1, while setting Ψ1 = Il1 . A new group of columns of X is used in each step j to update the
decomposition from previous step Q j−1R j−1Ψ j−1. The new factorization is truncated, so that only dominant
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singular values and vectors, found with eq. (2.31), are kept. Note that in this context, lower indices j denote
an incremental step number, not column number.

Algorithm 1: Incremental SVD

Input: N ×Nt matrix X = [
X1, X2, ..., X f

]
, where X j ∈RN×l j and l1 + l2 + ...+ l f = Nt

1. QR decomposition of the first block X1 =Q1R1;

SetΨ1 = Il1 , rank k1 = l1, width s1 = l1;

for j = 2, ..., f do

2. Compute rank
(
k j−1 + l j

)
QR decomposition of Q̂ j R̂ j =

[
Q j−1R j−1

∣∣X j
]
;

3. Block-reorthogonalize if needed ;

4. Set Ψ̂ j =
[
Ψ j−1 0

0 Il j

]
;

5. Set s j = s j−1 + l j ;

6. Choose k j ∈
(
0,k j−1 + l j

]
, set d j = k j−1 + l j −k j ;

7. Separate dominant and dominated subspaces in R̂ j by eq. (2.31) (construct GΦ and GΨ);

8. R̄ j =GT
ΦR̂ j GΨ;

9. Q̄ j = Q̂ j GΦ;

10. Ψ̄ j = Ψ̂ j GΨ;

11. Truncate last d j columns of Q̄ j , Ψ̄ j to obtainΦ j andΨ j . Truncate last d j rows and columns of R̄ j to
obtain Σ j ;

end
Output: Rank k f matrix decomposition asΦ f Σ f Ψ

T
f , approximating SVD of X

The algorithm was cited as found in [5] by Baker, but in the present research the parametric settings
have been simplified. The increment size l j , which normally varies within lmi n ≤ l j ≤ lmax remains fixed,
lmi n = lmax = l j := kadd for each increment3 j .

The parameter d j in the above algorithm is related to maximum dimension of dominant singular sub-
space/number of singular values sought, Mdom . The latter does not appear directly in the algorithm, but is
one of the basic input arguments of the implementation. Essentially this is the rank to which the SVD ap-
proximation is truncated after each increment, see points 6 and 11 in the algorithm. In this context setting
Mdom is regarded as enforcing a maximum value of the rank k j = Mdom at each step j . If other criteria do not
truncate the current matrix to lower rank, then this is the imposed rank.

Step 6 is where dimension of the identified dominant singular subspace is chosen (a priori). The choice is
affected by both Mdom and threshold. Mdom sets an upper bound on the number computed singular values
(and corresponding singular vectors). When the threshold is set very low, all SVs up to Mdom are computed.
With high threshold, that might not be the case, because the limit set by threshold is reached earlier and
decision at step 6 is then made based on that.

As will be shown, iSVD accuracy relies greatly on parameters: kadd , Mdom and threshold. The basis pro-
duced is different than that of cSVD, typically in that orthogonality of modes is violated and errors between
respective modes increase with mode index. The latter is expected, since iSVD is a low-rank method. There
also appear errors in divergence of modes and in SV decay w.r. to cSVD, which also affect lower-index SVs and
modes.

Since orthogonality and zero-divergence are important properties of RB in the present research, some of
the iSVD bases investigated in chapter 5 will also undergo Gram-Schmidt orthogonalization and Helmholtz
decomposition (to extract divergence-free parts of basis vetors). Effects of this treatment will also be exam-

3With the exception of the last increment, see section 4.4.2



2.5. Closure in ROM context 25

ined. The procedures are well known and grounded in literature, therefore their details will not be discussed.

2.5. Closure in ROM context
EC-ROM relies on high-fidelity data insofar as most ROMs do: to construct POD basis, the FOM snap-

shots are used. The closure problem in [31] is not addressed though. This section gives a brief review of ap-
proaches to closure modeling related to the present research. Particular model that is applied is described in
section 2.5.1. Two alternative approaches, which are not pursued in this thesis, are presented in section 2.5.2.

Typical Galerkin-ROM (see eq. (2.8)):
ȧ = Aa +aT B a, (2.32)

tends to be inaccurate and unstable. Hence frequently a closure (or correction) term dependent on ROM
variables a is simply added, so that:

ȧ = Aa +aT B a +τ (a) . (2.33)

An extensive review of ROM closure modeling techniques, with an outlook to applications of machine
learning, may be found in [2] by various authors.

2.5.1. Eddy viscosity ROM
A brief overview of eddy viscosity type closure modeling is considered of interest now. General features

of this paradigm of modeling were described in section 2.3. The model discussed in this section is chosen
specifically due to its simplicity.

The concept of EV hinges on Boussinesq hypothesis. All textbooks ([25],[37],[33] to mention the most
notable) on turbulence modeling contain description of this most popular type of approach. Perhaps the
most descriptive and intuitive is laid out by Leschziner in [18].

A review of closure models for POD-projection-ROMs is presented in the paper [35] by Wang et al., includ-
ing a mixing-length POD-ROM among others. This model is the least complex of all discussed models and it is
of interest in the present thesis. A variant of this model will be the object of examination in the a priori analy-
sis of turbulence modeling, see section 3.2 and chapter 7. The idea is to introduce additional dissipation, that
is supposed to fulfill the role of finest scales, which are not represented in ROM. In FOM dissipation of kinetic
energy into heat happens on those scales. The dissipation is introduced via modification of (symmetricized)
diffusion term ν∇·(∇u + (∇u)T

)=∇·ν(∇u + (∇u)T
)

by simply adding turbulent viscosity νt to the molecular
viscosity ν. The modified diffusion term is ∇· ((ν+νt )

(∇u + (∇u)T
))

.
Eddy viscosity νt is a constant in the mixing-length model. Wang et al. in [35] propose, following Aubry et

al. [4] to compute it based on:

νt := u>l> =
∫ X2

0 〈ui>ui>〉d x2(
X2

∫ X2
0

〈
∂ui>
∂x j

∂ui>
∂x j

〉
d x2

)1/2
, (2.34)

where 〈·〉 is averaging along x1, x3, the wall-normal direction is x2 and >-sign denotes unresolved scales,
ui> = u′

i . This quantity has dimensions of viscosity so in terms of dimensional analysis it makes sense. The
underlying assumptions in [4] (or rather experimental facts) were that the unresolved part of the flow ui> was
"(...) approximately homogeneous in streamwise (x1) and spanwise (x3) directions, stationary in time, inho-
mogeneous and of integrable energy in wall-normal x2 direction.". Note that this model is of little practical
use, as it always requires FOM solution. As such it would have to be regressed s.t. νt = νt (a), based on high
fidelity data to be useful in ROM past FOM integration time. This is outside the scope of this thesis, limited to
the solution reproduction problem. However, a priori analysis of a similar EV model is pursued in the present
research, only, by definition it is confined to FOM integration period.

The EV resulting from eq. (2.34) is a spatially-invariant scalar. In the present research the flow is not sta-
tionary, so νt = νt (t ). Instead of averaging over all spatial directions, one could imagine leaving out one of
them. This would be justified when there is a mean structure of the field expected in one particular direc-
tion, e.g. the cross-flow direction y in a periodic shear layer. Then EV would be a field, νt

(
y, t

)
, the model

could still be independent of u (except through eq. (2.34)). That is in contrast with e.g. Smagorinsky model,
where νt = νt (u (x , t )). It is worth mentioning, for reasons to be explained in the next chapter, that in case of
νt = νt (x , t ) special treatment must be made to arrive at ROM operators. Simply projecting the FOM (time-
varying) diffusion operator, is too costly. The authors of [35] propose a two-level scheme, described in [34],
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where EV interpolations on coarser mesh are applied to reduce the cost. An alternative would be to use dis-
crete empirical interpolation method (DEIM) [9]. A variant of EV models is one described by Hijazi et al.
[14]. Here the authors use RANS equations as FOM and thus EV-diffusion term arises naturally, being already
present in the full model equations. What distinguishes this article from others, and also the idea drawn from
it into the present research, is that proper orthogonal decomposition of eddy viscosity itself is performed:
νt ≈ ∑M

i=1 gi (t )η (x). The authors further develop the model by finding the relation gi (ai ) between EV-POD
coefficients and ROM variables, through the use of radial basis functions. The idea of eddy viscosity POD is
drawn from this paper for the purpose of performing precomputation of turbulent diffusion operator (the
closure term).

2.5.2. Examples of alternative approaches to closure modeling
In the article [20] by Mohebujjaman et al., data-driven is understood not in the sense that high-fidelity

data is used to construct the reduced basis (which is the common feature of virtually all ROMs). Instead,
FOM solution serves as reference to find an improved form of ROM operators via an error minimization pro-
cess. The optimization here is additionally constrained according to the known physics of the particular flow
reflected by the mathematical properties of the operators, such as those mentioned by Sanderse in [31]: skew-
symmetry of convection operator, and negative semi-definiteness of the diffusion operator.

The authors of [20] postulate a particular form (ansatz) of the correction term: τ= Ãa +aT B̃ a. This way,
the data-driven correction ROM (DDC-ROM) takes on the form:

ȧ = (
A+ Ã

)
a +aT (

B + B̃
)

a. (2.35)

It is important, that in the constrained CDDC-ROM, only the correction to the operators A and B , and not
the whole ROM equation, is a solution of an optimization problem. This problem is stated in [20] as:

min
Ã∈RM×M

B̃∈RM×M×M

aT Ãa≤0
aT (

aT B̃ a
)=0

Nt∑
i=1

∥∥τtr ue (ti )−τansat z (ti )
∥∥, (2.36)

where the constraints on Ã, B̃ stem from negative semi-definiteness of diffusion operator and skew-symmetry
of convective operator.

CDDC-ROM is a major improvement w.r. to DDC-ROM [20]. The authors of [20] provide evidence that
their physics-informed modeling is able to maintain energy error of the flow around a circular cylinder for
Re = 1000 in reasonable bounds, whereas DDC-ROM energy deviates much faster. The downside of CDDC
(and DDC as well), apart from complexity, is that there is an optimization problem involved, with equality
and inequality constraints, which is increasingly more expensive to solve with increasing M .

A different approach, drawing analogies from LES is presented by Xie et al. in [38]. Filtering NS equations
with a differential filter and using solutions to these spatially filtered equations, they construct a POD basis
as a preliminary step. They argue that, given a coarse mesh, this basis would be more accurate than a basis
obtained from the full NS equations.

The idea that is proposed is the following. Filtered velocity solution of continuous equation is u. Dis-

cretization must also include translating filtering (bar operator) to discrete setting, so that u ≈ Vh
h

. Then,

considering ROM approximation Vr
r

of the filtered discretized field Vh
h

, on finds approximation of the orig-
inal, non-filtered discretized field Vh by approximate deconvolution. Deconvolution is attempted, since fil-
tering is defined via convolution of the filtering operator G with u. However the exact procedure is ill condi-
tioned, and additional treatment is needed, such that instead of computing u AD = G−1u, the inversion of G
with regularization term is performed:

u AD = (
G +µI

)−1 u. (2.37)

u AD is needed precisely to model the closure term that arises while spatially filtering the NS equations:
u ·∇u. Both u and the filtering operation with kernel G denoted by the overbar, must be translated to dis-
crete setting. There are two possible choices of filter: ROM-filter and FE-filter. They result in two different
AD-ROMs. This modeling is promising, as it provides more accurate results (similar to EV-ROM) than stan-
dard Galerkin-ROM with comparable computational cost, all of this without explicit numerical dissipation
mechanisms [38]. However, AD-ROMs are more complex, requiring regularization due to ill-conditioning
of deconvolution. Moreover they are not yet thoroughly investigated for higher Reynolds number flows and
multiple test cases, and there are some issues known from LES that pertain in ROM setting.
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Methodology

This chapter is organized into the following sections. Key aspects of EC-ROM are discussed in (sec-
tion 3.1). Description of methodology used to assess EV model is given in section 3.2. Error estimators are
defined in section 3.3 and definitions of additional investigated quantities may be found in section 3.4

3.1. Energy-Conserving ROM
The ROM used throughout the thesis is a non-linearly stable ROM based on an energy-conserving FOM

with FV numerical scheme, by Sanderse [31]: EC-ROM. As the author mentions, the stability here is under-
stood as boundedness of a norm of solution (here: global kinetic energy). It is instructive to refer to a flowchart
from [31], which indicates the possible sequence of operations on the way to obtain ROM.

Figure 3.1: Possible ways of obtaining projection-ROM [31]. PDE, ODE, DDE - partial/ordinary/discretized differential equation.

Because spatial discretization and projection are operations that generally do not commute, it is impor-
tant to maintain the correct sequence, otherwise some FOM properties will not be inherited by ROM. The
energy conservation is one such property. It appears already on the continuous level, due to some operator
symmetry considerations, to be explained in the following section (see also appendix of [31]).

Although, FOM temporal discretization must be set in order to obtain snapshots for reduced basis con-
struction, it is the FOM semi-discrete equations that are to be projected in order for the energy-conservation
property to be inherited by ROM. One may also project fully discrete FOM equations and still maintain the
energy-conserving feature. In this case however, the choice of ROM time stepping scheme is limited by the
choice made for FOM.

Time marching will not be discussed in detail, however it is worth mentioning that (see section 6.2.1) FOM
and ROM temporal discretization schemes may be chosen independently. In the present project both FOM
and ROM are integrated in time using 4th order explicit Runge-Kutta method.

27
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3.1.1. Continuous domain
The Navier-Stokes equations on a periodic domainΩ are given in the form:

∇·u = 0 inΩ, (3.1)

∂u

∂t
+∇· (u ⊗u) =−∇p +ν∇· (∇u + (∇u)T )

inΩ, (3.2)

with initial condition:

u (x ,0) = u0 (x) . (3.3)

Kinetic energy serves as the norm of solution and is defined via L2 inner product

K := 1

2
‖u‖2 = 1

2
(u,u)Ω = 1

2

∫
Ω

u ·udΩ. (3.4)

In [31] the convective operator ∇· (u ⊗u) =C (u,u) is always skew-symmetric:

(C (u, v ) , w )Ω =− (v ,C (u, w ))Ω . (3.5)

Diffusion operator D in ν∇· (∇u + (∇u)T
)= νDu is symmetric, hence through integration by parts:

(Du,u)Ω =−ν (∇u,∇u)Ω . (3.6)

Furthermore, again integration by parts and mass conservation dictate that pressure gradient field is orthog-
onal to velocity field,

(∇p,u
)
Ω = (

p,∇·u
)
Ω = 0. Therefore, energy evolves according to:

2
dK

d t
= d

d t
(u,u)Ω = 2

(
du

d t
,u

)
Ω

=
���

���
��:0

−2(C (u,u) ,u)Ω︸ ︷︷ ︸
skew symmetry

���
���:

0
−2

(∇p,u
)
Ω +2ν (Du,u)Ω =−2ν (∇u,∇u)Ω , (3.7)

or simply:
dK

d t
=−ν‖∇u‖2, (3.8)

i.e. energy may only decrease and does so solely due to the action of diffusion operator, while in the inviscid
limit ν−→ 0 it is constant. It is reiterated that this property holds for periodic and no-slip boundary conditions.
With different types of BCs, integration by parts will result in additional terms that will affect energy evolution.

3.1.2. Discrete domain
The discretization chosen is such that follows the attractive property of the continuous equations, ex-

pressed by eq. (3.8). Periodic box is divided into Nx × Ny × Nz = Np cells, succinctly called pressure grid.
Staggered grid technique is used in which separate grids are constructed for each of the velocity components,
with total no. of DoFs NV = Nu +Nv +Nw = 3Np .

A 2nd order accurate finite volume (FV) scheme is used. FV means, that the equations (3.1)-(3.2) are to be
integrated upon discretization. The resulting (semi-discrete) FOM is:

MhVh = 0, (3.9)

Ωh
dVh

d t
=−Gh ph −Ch (Vh)Vh +νDhVh , (3.10)

where Mh is discrete divergence operator, Ωh is a diagonal matrix with volumes of FV-cells surrounding ap-
propriate variable location in the domain, and Ch (Vh) is the skew-symmetric convective operator and Dh is
discrete diffusion operator. The equation is similar to the general ROM equation eq. (2.6), only Ωh matrix is
new. In fact however the differences lie also in the operators Gh ,Ch ,Dh . In eq. (2.6) discussion is disconnected
from numerical method used, whereas in the present chapter FV method is applied, whereby variables are
computed in integrated form. The FV matrixΩh is already encoded in each of the operators in eq. (3.10).

Staggered grid setting, makes the property Gh =−M T
h easy to achieve. It also allows to avoid the checker-

board problem, as described by e.g. Patankar in [22].
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Now, after Sanderse [31] it is adequate here to define a discrete inner product, as it will serve to construct
discrete version of eq. (3.8), one particularly useful in the context of FV method. The definition, already stated
in eq. (2.15) reads:

(Vh ,Wh)Ωh
:=V T

h ΩhWh , (3.11)

for Vh ,Wh ∈ RNV . The definition will be used throughout the thesis to compute various errors and other
integral quantities as well as to define orthogonality condition for the reduced basis.

The energy equation again amounts to:

dKh

d t
=−ν∥∥QhVh

∥∥2, (3.12)

where −QT
h Qh = Dh , as Dh is a symmetric negative definite matrix. Convective term vanishes by skew-

symmetry of Ch and pressure term is canceled due to continuity equation 3.1.
Sanderse discusses in [31] that a careful choice of time discretization must be made, for the discrete model

to retain the above property.
To obtain snapshots, time marching scheme is applied and thus fully discrete FOM emerges. However, it is

the semi-discrete (only spatially discretized) FOM equations that will be projected to obtain ROM operators.
This allows to omit some difficulties with boundary conditions and eliminates pressure from ROM equations,
making ROM velocity-only. It also allows to select a separate time marching for ROM and FOM.

3.1.3. Projected domain
The framework used in this section is Bubnov-Galerkin projection. The space onto which the terms of

semi-discrete FOM eq. (3.9)-(3.10) are projected is generated via proper orthogonal decomposition of the
snapshot matrix X :

X = [
Vh

(
t 1) ,Vh

(
t 2) , ...,Vh

(
t Nt

)]
, (3.13)

containing the fully discrete FOM solution at Nt time instants t i (see section 2.4.2). Before projection though,
FOM variables are expanded into POD-series:

Vh (t ) ≈Φa (t ) , (3.14)

where columns of Φ ∈ RNV ×M are POD truncated basis vectors. For reasons explained in section 2.4.2, there
is no need to project eq. (3.9), because columns Φi are linear combinations of snapshots. Hence eq. (3.9) is
identically satisfied when eq. (3.14) is inserted and no information regarding a (t ) may be inferred.

When eq. (3.14) and the property Gh =−M T
h are inserted into momentum equation eq. (3.10), the equa-

tion becomes

Ωh
dΦa (t )

d t
= M T

h ph −Ch (Φa (t ))Φa (t )+νDhΦa (t ) . (3.15)

Projection with P =ΦT results in:

ΦTΩhΦ︸ ︷︷ ︸
I

d a (t )

d t
=ΦT M T

h ph −ΦT Ch (Φa (t ))Φa (t )+νΦT DhΦa (t ) , (3.16)

which, dropping explicit time-dependence, amounts to:

ȧ = aT B a + Aa, (3.17)

where A and B are diffusive and convective ROM operators respectively. It is important to notice here, that the
pressure term in eq. (3.16) vanishes, becauseΦT M T

h ph = (MhΦ)T ph = 0 andΦi are all discretely divergence-

free. Gradient-divergence compatibility Gh = −M T
h enables this but only for Φi satisfying zero-divergence

property. Clearly therefore it is a crucial feature of the basis for the equations to hold. Also in eq. (3.16),
orthogonality of Φ plays an important role. On the left-hand side it allows reduction of the matrix ΦTΩhΦ to
an identity.

Equation (3.17) is an ODE system for truncated POD coefficients a.The reconstructed field Vr = Φa ap-
proximates FOM solution Vh ≈Vr . Denote aFOM the POD coefficients that result from projecting FOM solu-
tion Vh onto full POD basis (with dim(Φ) = Nt ):

(Φ,Vh)Ωh
=ΦTΩhVh =: aFOM . (3.18)
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In this case Vh =ΦaFOM is an exact relation. Energy is given by:

K = 1

2
(Vh ,Vh)Ωh

= 1

2

(
ΦaFOM ,ΦaFOM )

Ωh
= 1

2

(
aFOM )T

ΦTΩhΦaFOM = 1

2

(
aFOM )T

aFOM . (3.19)

Similar to [10] by Couplet et al., snapshot-averaged energy of the i -th mode is related to i -th eigenvalue of
the matrix X T X (or singular value σi of the SVD X =ΦΣΨT ) through:

2Ki =
(
aFOM

i

)2 =λi =σ2
i , i = 1, ..., Nt , (3.20)

where orthogonality of snapshot-averaged coefficients a is used, ai a j = λiδi , j . So the mean energy of the

i -th mode is simply half the square of the corresponding singular value. In section 5.3 wavenumber spectra
of individual modes will be plotted to exemplify that indeed higher-index modes carry more energy in high
wavenumbers.

3.1.4. Enforced momentum conservation
This section is only a brief description of how conservation of momentum is enforced in [31] by Sanderse.

The method will be tested in combination with iSVD to check whether the two are compatible. In section 6.2.2
ROM simulation results with enforced momentum conservation are presented.

In NS equations on periodic domains global momentum is conserved, d
d t

∫
ΩudΩ = 0. Presently used

FOM with FV spatial discretization also has this property, e.g. for u-component:

eT
uΩh

dVh (t )

d t
= eT

u Fh(Vh , ph) = 0, (3.21)

where eu = [1, ...1,0, ...,0]T vector of zeroes and ones, with ones corresponding to u-cells. When POD-expansion
and projection is applied, and the resulting ROM terms are reconstructed in FOM space, ROM momentum
evolution is:

eT
uΩhΦ

d a (t )

d t
= eT

uΩhΦΦ
T Fh

(
Φa (t ) , ph

)
. (3.22)

As proven by Sanderse in [31], his EC-ROM conserves global momentum in periodic domains, when basis
vectors are enforced to satisfy eT

u = ΩhΦΦ
T = eT

u , and similar for ev ,ew . To describe how this is achieved,
denote E = [ eu

‖eu‖ , ev
‖ev‖ , ew

‖ew‖ ], i.e. a matrix consisting of columns of the three normalized vectors e. The steps
are now the following ([31]):

1. "Form adapted snapshot matrix X̃ = X −EE TΩh X ,

2. Transform to include weighted norm: X̂ =Ω
1
2
h X̃ ,

3. Perform SVD of X̂ : X̂ = Φ̂ΣΨT ,

4. Transform back to include weighted norm Φ̃=Ω− 1
2

h Φ̂,

5. Append E and truncate: Φ= [
EΦ̃

]
M ".

3.2. Closure modeling
The concept and application of EV-type modeling are described in section 2.3 and section 2.5.1. In the

present chapter the shape of exact closure terms will be derived. This will be done with the aid of division of

solution space into resolved and unresolved parts (similar to [3] by Akkerman et al.): span(Φ) = span
(
Φ

)
⊕

span
(
Φ′), where ⊕ denotes direct sum of spaces. Next, a methodology of assessing validity of EV modeling

will be presented.
In the present section the number of resolved modes, i.e. the dimension of reduced basis, is M and total

number of modes obtained is Nt (or close enough s.t. SV with higher indices are negligible). It must be
stressed that the symbols Φ,Φ′ are only used in this section and in chapter 7, everywhere else the resolved
modes are denotedΦ.
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3.2.1. Exact closure term
What is meant here by closure term is not strictly what is missing in ROM w.r.t. FOM. Instead, the part that

is disregarded due to using non-maximal dimension of RB is sought. This will become clear once matters
are put into symbols. The FOM solution Vh (t ) evolves in the space RNV . MOR attempts to approximate

this, Vr (t ) ≈ Vh (t ), by constructing a low-dimensional subspace span
(
Φ

)
⊂ RNV where Vr (t ) evolves. Note

that in the present notation time integration method has not yet been invoked. Therefore the discussion is
about two separate ODE systems, of different dimensions. The high-dimensional system (FOM) is solved by
a time-stepping scheme and the solution is given in snapshots, serving to construct RB. Low-dimensional
system (ROM) may be solved by a different scheme, with a different time step. Hence it may deviate from
FOM trajectory because it evolves autonomously starting from IC projected onto RB space. This evolution is
governed by ROM equations eq. (3.16). If the ROM solution is spanned by all Nt modes, then this is a full-rank
approximation. It is still only an approximation, because:

• time is limited to FOM integration time

• time is not discretized yet in ROM so continuous time between snapshots is not well defined

• ROM solutions ai (t ) are results of solving an ODE system, not projection of FOM

Recall eq. (3.16), with some terms already simplified:

d a (t )

d t
=−ΦT Ch (Φa (t ))Φa (t )+νΦT DhΦa (t ) , (3.23)

and FOM solution is given as Nt snapshots, ordered in the NV ×Nt snasphot matrix eq. (3.13), where typi-
cally NV À Nt . Acquisition of those requires selection of a time-marching scheme. As mentioned, different
scheme might be used for ROM solution, but the present research uses the same time march as in FOM.

Eq.(3.23) does not state the dimension of RB explicitly. LetΦ=
[
Φ

∣∣∣Φ′
]

be an NV ×Nt matrix containing all

left-singular vectors of the full-rank SVD of the snapshot matrix X . Φ contains the first M left-singular vectors

of this decomposition, while Φ′ the remaining Nt −M vectors. span
(
Φi

)
and span

(
Φ′

i

)
are orthogonal sub-

spaces ofΦ. By construction all columns ofΦ are orthogonal. POD approximation is the best approximation
within the set of snapshots. When continuous time is considered, and all Nt modes are taken as basis, then:

Vh (t ) ≈
Nt∑

i=1
Φi ai (t ) . (3.24)

The relation is exact when the following conditions are met

1. The time discretization is performed so that FOM solution is Vh
(
t j

)
2. Nt -dimensional reduced basis is constructed, and the ROM coefficients are found by projecting Vh

(
t j

)
onto this RB, a

(
t j

)= aFOM
(
t j

)=ΦTΩhVh
(
t j

)
3. The relation is confined to t ∈ [0, tend ].

The above explanation was made to stress that the present considerations concern only FOM integration
period at time instants dictated by FOM temporal discretization (except when downsampled set is considered
in one example) and that ROM variables are now in fact projected FOM variables. Then the relation may be
expressed:

Vh
(
t j

)= Nt∑
i=1
Φi ai

(
t j

)
, t j ∈ [0, tend ] , j = 1,2, ..., Nt . (3.25)

In the further part of this section the ROM coefficients will denote a = aFOM
(
t j

)
, i.e. the coefficients of FOM

projected solution in the ROM basis. Denote parts of the POD expansion eq. (3.25) in matrix notation as:

Vh = Φa︸︷︷︸
resolved part

+ Φ′a′︸︷︷︸
unresoved part

=
[
Φ

∣∣∣Φ′
]

NV ×(M+M ′)

[
a
a′

]
(M+M ′)×1

, (3.26)

where M ′ = Nt −M . For the sake of discussion ROM equations for maximum possible dimension of basis Φ
will be written out. Explicit expansion of convection operator Ch (Vh) (see appendix of [31] by Sanderse) is:
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Ch (Vh) (·) = Khdiag(Ih (Vh)) Ah (·) where Kh , Ih , Ah are well defined, grid-dependent: differencing, interpola-
tion and averaging matrix operators, respectively, Vh is the convecting velocity and diag(·) accepts a vector as
an argument and outputs a diagonal matrix, with the vector components ordered on the diagonal. Using the
block notation as in eq. (3.26), allows to write the ROM equation eq. (3.16) in a "scale-separated"1 form:[

Φ
T

Φ′T

]
Ωh

[
Φ

∣∣∣Φ′
][

ȧ
ȧ′

]
+

[
Φ

T

Φ′T

]
Ch

(
Φa +Φ′a′

)[
Φ

∣∣∣Φ′
][

a
a′

]
= ν

[
Φ

T

Φ′T

]
Dh

[
Φ

∣∣∣Φ′
][

a
a′

]
. (3.27)

Orthogonality conditionΦTΩhΦ= I implies that e.g. Φ′TΩhΦ= [O](Nt−M)×M , i.e. Φ andΦ′ span mutually
orthogonal subspaces. Convective operator Ch (·) (·) is actually linear in each of its arguments, meaning, that
for a fixed Wh ∈ RNV , Ch (Wh)Vh is linear in Vh and conversely. When the first argument is fixed, Ch (Vh) (·)
is represented as a matrix. Using linearity in the first argument, eq. (3.27) may be rewritten, keeping the
previous form of convective operator:

[
ȧ
ȧ′

]
=−

ΦT
Ch

(
Φa

)
Φ+ΦT

Ch
(
Φ′a′)Φ Φ

T
Ch

(
Φa

)
Φ′+ΦT

Ch
(
Φ′a′)Φ′

Φ′T Ch

(
Φa

)
Φ+Φ′T Ch

(
Φ′a′)Φ Φ′T Ch

(
Φa

)
Φ′+Φ′T Ch

(
Φ′a′)Φ′

[
a
a′

]

+ν
[
Φ

T
DhΦ Φ

T
DhΦ

′

Φ′T DhΦ Φ′T DhΦ
′

][
a
a′

]. (3.28)

Considering only equations originating from projection of FOM equations onto span{Φ}, is the same as
considering equations corresponding to the first row (upper blocks) of the matrices in eq. (3.28). The system
reads:

ȧ = −ΦT
Ch

(
Φa

)
Φa︸ ︷︷ ︸

coarse scale convective term

−����
���

Φ
T

Ch
(
Φ′a′)Φa −

��
���

��
Φ

T
Ch

(
Φa

)
Φ′a′︸ ︷︷ ︸

mixed convective terms

−����
��

��
Φ

T
Ch

(
Φ′a′)Φ′a′︸ ︷︷ ︸

fine scale convective term

+ Φ
T
νDhΦa︸ ︷︷ ︸

coarse scale diffusive term

+ ��
���

�
Φ

T
νDhΦ

′a′︸ ︷︷ ︸
fine scale diffusive term

,

(3.29)

where the crossed out terms are neglected in the Bubnov-Galerkin projection framework, and are the ones
for which a closure model typically needs to be formulated.

These crossed-out terms involve unresolved scales Φ′a′ and their relations to resolved scales Φa. The in-
teractions between the two subspaces are confined to the two mixed convective terms. In one of those terms
unresolved scale field is convecting the resolved scale field and in the other vice versa. The third (crossed-
out) convective term describes convection of unresolved scales by unresolved scales. Lastly, the (crossed-out)
remaining term describes diffusion of unresolved scales.

3.2.2. A priori turbulence modeling test
The present discussion is limited to the solution reproduction problem. The aim is to compensate for

the absence of the crossed out terms of eq. (3.29). In the context of RANS-FOM with EV-type turbulence
model (see section 2.3), the νt -appended diffusion term appears naturally in ROM as a projection of the
FOM corresponding term. In the present context the term does not appear in FOM. Nevertheless, it is being
postulated and its potential in ROM accuracy improvement investigated.

Using eddy viscosity ansatz to model the influence of the missing fine scales amounts to adding another

diffusion term to eq. (3.29): Φ
T

Lh

[
ανt

h ¯
(
Sh

(
Φa

))]
. The term expresses the discretized and projected term

∇· (νt∇s u
)
. Here Lh : R3NV → RNV is a divergence operator (different than Mh), α is a constant, νt

h ∈ R3NV is
the discretized EV at points where Sh (·) returns values, Sh (·) is a symmetricized gradient (straining) operator

Sh : RNV → R3NV and ¯ is elementwise product. Projection is performed via Φ
T

and the inner operator Sh

acts on resolved scales.

For the turbulence model to be assessed properly, the question that should be answered is whether the

1"Mode separated" would be a more accurate term, although as mentioned in section 3.1.3 there is an equivalence (to a degree) between
Fourier and POD modes. Also: the separation is only symbolic, so that there is a distinction between resolved (Φ) and unresolved (Φ′)
modes.
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following holds:

−ΦT
Ch

(
Φ′a′)Φa −ΦT

Ch

(
Φa

)
Φ′a′−ΦT

Ch
(
Φ′a′)Φ′a′+ΦT

νDhΦ
′a′︸ ︷︷ ︸

Φ
T

R

?=ΦT
Lh

[
α1ν

t
h ¯

(
Sh

(
Φa

))]
︸ ︷︷ ︸

α1Φ
T

W1

+β1,

(3.30)
which has more physical meaning when no projection is applied2:

−Ch
(
Φ′a′)Φa −Ch

(
Φa

)
Φ′a′−Ch

(
Φ′a′)Φ′a′+νDhΦ

′a′︸ ︷︷ ︸
R

?= Lh

[
α1ν

t
h ¯

(
Sh

(
Φa

))]
︸ ︷︷ ︸

α1W1

+β̃1, (3.31)

where α is the model constant and β is an offset parameter, expected to vanish with increasing M .
To avoid the question mark, eq. (3.30) will be put into a form with explicit closure modeling error εE V :

Φ
T

R =ΦT
Lh

[
α1ν

t
h ¯

(
Sh

(
Φa

))]
+εEV +β1. (3.32)

When POD expansion of EV is used (see section 2.5.1 and [14] by Hijazi et.al), νh
t ≈ ηg , where η ∈R3NV ×M ,

g ∈RM the problem eq. (3.30) becomes:

Φ
T

R =ΦT
Lh

[
α2

(
ηg

)¯ (
Sh

(
Φa

))]
+β2 +εEVPOD, (3.33)

now with a different error term. In either of equations eq. (3.32), eq. (3.33) α denotes a constant of the model,
to be fit through least squares regression. In further discussion the dimensions of POD bases for velocity and
eddy viscosity fields will be taken the same, i.e. M .

Consider just the projection onto k-th basis vector Φk , k = 1, ..., M . Consider i -th element of linear com-
bination in POD expansion of FOM solution: Φi ai (t ) and only j -th element of POD expansion of EV field
η j g j (t ), i , j = 1, ...M . Then the i -th component of turbulent ROM diffusion term in eq. (3.33) is:

ΦT
k Lh

[(
η j g j (t )

)¯ (ShΦi ) ai (t )
]=ΦT

k

[(
Lhη j

)¯ (ShΦi )
]︸ ︷︷ ︸

Hi j k

ai (t ) g j (t ) , (3.34)

in which the time dependence has been made explicit for clarity. H ∈ RM×M×M is a third order tensor. Pre-

computation of diffusion operator is achieved by reshaping H into H mat ∈RM×M 2
:

H mat = [H1, ..., HM ] , (3.35)

where each Hi is a M ×M matrix with elements [Hi ] j k = ΦT
k Lh

(
η j ¯Φi

)
. This yields the following precom-

puted form:

Φ
T

R =α2 H mat [
a (t )⊗ g (t )

]︸ ︷︷ ︸
Φ

T
W2

+β2 +εEV POD , (3.36)

where ⊗ is the Kronecker product.
Precomputation involves H being ’matricized’ (see analogous convection precomputed operator in [31]

by Sanderse). Only right-hand side (RHS) of eq. (3.32) and eq. (3.33) contains νt . This eddy viscosity is based
on eq. (2.34), with some alterations. Eddy viscosity eq. (2.34) was originally used by Aubry et al. [4], but for
different type of flow: wall-bounded, where a special dependence was anticipated between of νt on wall-
normal coordinate y . Here this model was only selected as it is a simple model. As the currently considered
flow is not wall-bounded, for the purpose of the present research the integral along x2 = y in eq. (2.34) is
omitted. Additionally filtering is applied with Gaussian filter kernel h, to aid in smoothing of the otherwise
noisy field:

νt
(
y, t

)= h ∗ 〈u> ·u>〉x,z√〈
∇u> : ∇u>

〉
x,z

, (3.37)

2Before projection the terms have a clear physical interpretation, e.g. Ch

(
Φa

)
Φ′a′ is a term expressing convection of truncated scales

by resolved scales, νDhΦ
′a′ is diffusion of truncated scales and Lhνt ShΦa is a term representing diffusion of resolved scales, with

spatially varying (eddy) viscosity . After projection withΦ
T

some data is filtered out, since projection is filtering [39].
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h
(
y,ξ

)= (
γ

π∆
2

) 1
2

exp

(
−γ|y −ξ|2

∆
2

)
, (3.38)

using always γ= 6, ∆= 8π
ξN yq

. Symbols used above denote:

(∗) - convolution: f (x)∗ g (x) := ∫ +∞
−∞ f (x − y)g (y)d y ,

(:) - double-dot product (for tensors): T : T =∑
i
∑

j Ti j Ti j ,

〈·〉x,z - x, z-averaging: 〈·〉x,z := 1
Lx Lz

∫ Lx
0

∫ Lz
0 (·)d xd z.

Clearly therefore, what distinguishes EV used here, eq. (3.37) from eq. (2.34) is that the latter is constant,
while the former varies in time and shear one coordinate direction. The discrete EV: νt

h is arrived at by in-

serting discretized unresolved scale velocities
(
Vh −Φa

)
for u> and appropriate discrete operators for < · >x,z

and ∇ (·). The filtering is performed in wavenumber space, with F F T and F F T −1. Since staggered grids are
used, velocity components have separate locations in space (e.g.u-component is computed at different spa-
tial points than v-component etc.). This necessitates interpolation to common grid. The pressure grid is
chosen fo that, so that velocity is interpolated from cell walls onto cell centers. So computed EV has to be
interpolated back to cell walls, so that it may be used in eq. (3.32) or eq. (3.33). So prepared eddy viscosity is
ready for being tested in an ’a priori’ analysis. The analysis will consist of plotting various terms of equations
(3.30-3.31) separately and summed, as well as their magnitudes and also projections onto fine-scale subspace
Φ′. In order to enable visualization, the terms will be averaged in xz plane (regardless of whether 1D or 3D
EV was used).

3.2.3. LS regression
Least squares fit is performed ofα, a multiplicative constant of νt , and an additive constantβ . Regression

is done on xz-averaged versions of eq. (3.30) and eq. (3.36). Such fit is done at each time step and resultant
time-varying regression coefficients for various M are plotted.

The snapshots of discrete 1D eddy viscosity are given at each instant ti , i = 1, ..., Nt . The EV diffusion

term in eq. (3.32), averaged over xz plane, is 〈ΦΦT
Lhα1ν

t
hShΦa〉xz = 〈ΦΦW1〉xz ∈ R3Ny . The dimension

is 3Ny , because although the term had been averaged over two directions, it still has three components in

each discrete point along y . Constants α1,β1 are regression coefficients and the functions 〈ΦΦT
W1〉xz and 1

(constant function) are the corresponding basis functions. Least squares fit is performed with target function

being the entire averaged reconstructed LHS of eq. (3.30), 〈ΦΦT
R〉xz ∈ R3Ny . Since eq. (3.30) is in ROM space

and the x y-averaging takes place in physical space, a left-multiplication by Φ is needed to reconstruct the
ROM projection in physical space. The least squares problem is posed:

arg min
α1,β1∈R

1

2

∥∥∥〈ΦΦT
R〉xz −α1〈ΦΦT

W1〉xz −β1

∥∥∥2
. (3.39)

At each time instant the coefficients are to be computed from (see appendix for detailed derivation):

α1 =
〈ΦΦT

W1〉xz · 〈ΦΦT
R〉xz − 1

3Ny

(
13Ny · 〈ΦΦ

T
R〉xz

)(
13Ny · 〈ΦΦ

T
W1〉xz

)
∥∥∥〈ΦΦT

W1〉xz

∥∥∥2 − 1
3Ny

(
13Ny · 〈ΦΦ

T
R〉xz

)2 , (3.40)

and

β1 = 1

3Ny

(
13Ny · 〈ΦΦ

T
R〉xz −α113Ny · 〈ΦΦ

T
W1〉xz

)
, (3.41)

where 1N is a vector of ones of length N , so that for any vector V ∈ RN , V ·1 = ∑N
i Vi i.e. scalar product

of 1 and a vector yields sum of elements of this vector. With POD of EV the expressions (for α2,β2) are anal-
ogous. Since u-component is dominant in this flow, it is better to perform LS fit only on u-component of

target function, i.e. 〈Φu Φ
T
u Ru〉xz =

[
〈ΦΦT

R〉xz

]
u
∈ RNy , because matching all three radically different and

oscillating velocity components would result in unstable coefficient behaviour (concerning particularly β).
This simplified problem is
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arg min
α1,β1∈R

1

2

∥∥∥〈ΦuΦ
T
u Ru〉xz −α1〈ΦuΦ

T
u W1,u〉xz −β1

∥∥∥2
. (3.42)

In this case the constants for EV term are:

α1 =
〈ΦuΦ

T
u W1,u〉xz · 〈ΦuΦ

T
u Ru〉xz − 1

Ny

(
1Ny · 〈ΦuΦ

T
u Ru〉xz

)(
1Ny · 〈ΦuΦ

T
u W1,u〉xz

)
∥∥∥〈ΦuΦ

T
u W1,u〉xz

∥∥∥2 − 1
Ny

(
1Ny · 〈ΦuΦ

T
u Ru〉xz

)2 , (3.43)

and

β1 = 1

Ny

(
1Ny · 〈ΦuΦ

T
u Ru〉xz −α11Ny · 〈ΦuΦ

T
u W1,u〉xz

)
, (3.44)

and for α2,β2 in EV-POD analogously. This is the actual regression that is being performed in the course
of a priori analysis, chapter 7. The above expressions may be found as solutions to a certain optimization
problem, appendix A.8 in the appendix contains more details.

3.3. Error estimators
Here several measures of error are discussed. There are errors in the basis construction, but not in terms

of how well the RB approximates the manifold of FOM, only how well cSVD is reproduced by iSVD. The ROM
velocity error measure is the same as in [31] by Sanderse. There are some differences in energy error defini-
tion.

3.3.1. Errors in basis construction
Because ROM construction hinges on divergence-free property of each mode Φi , and (to a lesser extent)

on orthogonality, these properties are in focus.
Firstly, orthogonality condition is ΦTΩhΦ = IM . Therefore, a reasonable orthogonality error L2 measure

would be ε j
or t =

∥∥(
ΦTΩhΦ

)
j − (IM ) j

∥∥
Ωh

, j = 1, ...M . Each column j contains the difference between scalar
products of j -th vector with all others and a column of identity matrix with 1 in j -th row. It is therefore a
pairwise quantity. It is somewhat problematic to interpret, however when vectors are exactly orthogonal, this
quantity will be zero. Thus it may be treated as a sort of binary indicator.

Secondly, divergence error is defined:

εi
di v = ∥∥MhΦi

∥∥
Ωh

, (3.45)

here with simpler interpretation. Namely, it is an integral measure of divergence in each mode i = 1, ...M .
Both of these errors will be tested against two iSVD parameters: kadd and Mdom , see algorithm 1 and

section 4.4.2). To further reduce data, to make the measures even more concise, Frobenius weighted norm is
applied:

εF
or t =

∥∥ΦTΩhΦ− IM︸ ︷︷ ︸
ε

∥∥F
Ωh

=
√√√√ M∑

i=1

M∑
j=1

(
[ε]i j

)2. (3.46)

This is similar to εor t , only characterizes the orthogonality error over the whole set of vectors with a single
number. The quantity will be computed for dim(Φ) = Mdom and divided by no. of columns/modes, so that

eventually
εF

or t
Mdom

will be plotted and compared with reference quantity of this error (for modes constructed via
classical SVD (cSVD)). Similar error may be constructed for divergence in an analogous way, only i = 1, ...N .

Finally, mode-to-mode point-wise L2 error w.r. to cSVD is computed:

εi
mod al =

∥∥Φi SV D
i −ΦcSV D

i

∥∥
Ωh

. (3.47)

Baker et al. in [5] use different criteria than eq. (3.47) to assess the fidelity of iSVD left-singular basis.
Instead of looking at the differences between modes of the same index, they measure difference between two
subspaces. This is performed through computation of canonical angles between spaces. The procedure was
found too complex for the present research, hence mode-to-mode pointwise error is the basic tool to assess
accuracy of iSVD basis w.r. to cSVD.
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3.3.2. Errors in the solution
The main variable of interest is the field that is being approximated: velocity field. The approximation

is Vh ≈ Vr = Φa. Apart from direct examination of the difference between FOM and ROM-reconstructed
solutions

εROM (ti ) =

∥∥∥Vh (ti )−Vr (ti )
∥∥∥
Ωh∥∥∥Vh (ti )

∥∥∥
Ωh

=

∥∥∥Vh (ti )−Φa (ti )
∥∥∥
Ωh∥∥∥Vh (ti )

∥∥∥
Ωh

, (3.48)

the ROM is compared to the best possible ROM solution on that basis (Vbest ), i.e. FOM solution Vh (ti ) pro-
jected at each time step onto M-dimensional reduced space span(Φ):

εbest (ti ) =

∥∥∥Vh (ti )−Vbest (ti )
∥∥∥
Ωh∥∥∥Vh (ti )

∥∥∥
Ωh

=

∥∥∥Vh (ti )−ΦΦTΩhVh (ti )
∥∥∥
Ωh∥∥∥Vh (ti )

∥∥∥
Ωh

. (3.49)

Both of these errors are normalized by theΩh-norm of the FOM solution.
Errors in integral quantities like global kinetic energy k (t ) = 1

2 (u,u)Ω and momentum P (t ) = ∫
ΩudΩ are

also of interest. The following error measures are proposed:

εK (ti ) = K ROM (ti )−K FOM (ti )

K FOM (ti )
, (3.50)

εPu (ti ) = P ROM
u (ti )−P FOM

u (0)

P FOM
u (0)

. (3.51)

Both of these error measures are allowed to change sign, so that relation to reference quantity is better
visualized (whether it is under- or over-estimated). Reference for kinetic energy error is FOM solution at time
ti while for the u-momentum it is the FOM solution at initial instant. While the former is a reasonable choice
for non-equilibrium systems the latter does not always make sense when no distinct mean flow exists (see TG
vortex solutions).

Finally, an error that is particularly important in incompressible flows - divergence error - is being mea-
sured as simply εdi v (ti ) = ∥∥MhVh (ti )

∥∥∞, where
∥∥ ·∥∥∞ is maximum norm. It is not normalized, because ∇·u

should be as small (or as close to 0) as possible.

3.4. Other investigated quantities
3.4.1. Energy spectrum

Instantaneous spectra of FOM and ROM solutions, Vh ,Vr will be considered. These will be computed
from snapshots. To simplify, an approach usually used in homogeneous isotropic turbulence (HIT) will be
applied here. Namely, spectral energies corresponding to different wavenumbers but with magnitudes from
the same discrete interval (discretized sphere) are summed.

K̂ (ξm , t ) := ∑
ξ0

(
m− 1

2

)≤|ξ|<ξ0
(
m+ 1

2

) 1

2
û (ξ, t ) · û∗ (ξ, t ) , (3.52)

where û is a spatial Fourier transform of the velocity field u and û∗ is its complex conjugate, ξ0,x = L
2π is

the base wavenumber associated to x, ξ0 =
√
ξ2

0,x +ξ2
0,y +ξ2

0,z - magnitude of base wavenumber vector and

ξ ∈ R3 is the wavenumber vector ξ := ξ0n = (e1n1 +e2n2 +e3n3) with ei - unit coordinate vectors, n - vector
of wavenumber indices, m - index of the integer wavenumber ξm = ξ0m. With these symbols the relation
between velocity field and its Fourier transform is

u =∑
ξ

e Iξ·x û, (3.53)

where I -imaginary unit, x is the spatial coordinate and both x ,ξ ∈ R3.
Those spectra are not full spectra of energy, but projections onto integer-wavenumber space. In vector-

wavenumber space each wavenumber vector has its associated energy. The projection is performed, such
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that energy associated to all wavenumber vectors of a particular magnitude (i.e. lying on a sphere) is summed
and assigned to an ’integer wavenumber’ corresponding to that magnitude.

On finite mesh, there exists maximum representable wavenumber: the Nyquist wavenumber. It is esti-
mated as ξN yqui st ≈ π

hx
for domain length L = 2π. In actual numerical computations Fourier transform is

performed via FFT and Vh ,Vr snapshot vectors are considered instead of the continuous fields u.





4
Setup of numerical experiments

This chapter is a description of numerical experiments performed in the study. Information on test cases,
is found in section 4.1. Throughout this research explicit 4th order Runge-Kutta time stepping scheme is used
with ∆t = 0.01. Consequences of this choice are briefly discussed in section 4.3. Key part with descriptions of
experiments is contained in section 4.2. Section 4.4 summarizes the software packages and settings used in
the research.

In all experiments equidistant uniform cartesian grids are used, i.e. all cells are identical. Spatial dis-
cretization is performed with FV second order scheme on staggered grids. ROMs are velocity-only, but it is
more convenient to state mesh size using pressure nodes, which are centered at cells, whose walls corre-
spond to velocity fluxes. For FOM total number of variables is NV +Np , but Np cells constitute primordial
mesh, out of which (by translations along x, y, z) three staggered grids (with a total of NV cells) are derived.
For simplicity, mesh size will be given using Np , e.g. coarse grid is Np = 1503, but its total number of DoF is
Np +NV = 1503 +3 ·1503.

4.1. Test cases
Two test cases are investigated: periodic shear layer (SL) and periodic Taylor-Green vortex (TG). In either

case the domain is a periodic box L×L×L with L = 2π (SL) and L = 2 (TG). Reynolds number is Re = 1000.
Initial condition for shear layer is given by:

u0 = 1+εsin z +
tanh

y− π
2

δ if y ≤π
tanh

3π
2 −y
δ if y >π

, (4.1)

v0 = w0 = εsin x, (4.2)

with ε= 0.05 and δ= π
15 .
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Figure 4.1: Shear layer: Initial conditions for u, v, w-velocities.
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Initial velocity field has an additional small disturbance along x in v, w components, see fig. 4.1 and along
z in u component.

Initial condition for Taylor-Green vortex is given by:

u0 =−sin(πx)cos
(
πy

)
cos(πz) , (4.3)

v0 = 2cos(πx)sin
(
πy

)
cos(πz) , (4.4)

w0 =−cos(πx)cos
(
πy

)
sin(πz) . (4.5)
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Figure 4.2: Taylor-Green Vortex: Initial condition for u-velocity, sections in 3 midplanes.

4.2. Experiments
This section provides an overview of numerical experiments performed during the research: reduced

basis quality check (section 4.2.1), ROM simulations (section 4.2.2) and a priori analysis section 4.2.3.

4.2.1. RB quality tests
In this section plan of assessing the quality of iSVD basis is laid out.
Testing basis quality is performed on SL test case, using coarse-grid FOM, Np = 1503 with tend = 20, ∆t =

0.01 Nt = 2001. Three parameters considered crucial for iSVD are varied separately: increment size (kadd =
1,10,100), maximum number of singular values sought Mdom = 50,100,200, and threshold= 10−10,10−8,10−6.
The resultant bases are then either: left untreated, orthogonalized by Gram-Schmidt procedure or made
divergence-free through Helmholtz decomposition or both. A separate case is also examined: using 50%
downsampled snapshot set, i.e. every 2nd snapshot is taken for SVD. These tests are aimed at measuring the
influence of the three iSVD parameters: kadd , Mdom and threshold, on the two important properties of RB:
orthogonality and solenoidity (zero-divergence) and on the fidelity to cSVD basis. Wavenumber and singular
value spectra are also examined. In order to measure the combined influence of pairs of iSVD parameters on
quality of the basis, Frobenius norm is applied to compute errors in orthogonality and divergence. This way
no information on error distribution over modes is known, but it is possible to assess the combined influence
of Mdom , kadd and threshold on the whole reduced basis quality.

An auxiliary experiment is planned, aimed at checking how robust ROM is w.r. to basis accuracy in gen-
eral. The first step is to obtain a basis from cSVD, then modify it (description in the present section), and
finally, test it in a ROM simulation (described in section 4.2.2). The two distinct modifications performed are
the following.

• Distortion according to:
Φ̃i j =Φi j + ci X , (4.6)

where X ∼N (0,1) is a random variable with standard normal distribution and ci = p · 1
M

∑
j |Φi j | is an

l1 norm, with p = 5%,10% - percentage, multiplicative/scaling factor. This is simply white noise.

• Rotation in such way that each pair of subsequent modes (Φ1 −Φ2,Φ2 −Φ3, ...) is rotated about (M −2)-
dimensional subspace of the reduced space span(Φ), spanned by the ’remaining’ vectors (ones not
rotated at a given rotation stage). All such rotations are comprised in an orthogonal full-rank transfor-
mation matrix R1 ·R2... ·RM = R ∈RM×M , where rotation 2×2 ’mini-matrix’ at each stage is:

ri =
[

cosαi −sinαi

sinαi cosαi

]
, (4.7)
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and is to be installed into an all-zeroes M×M matrix Ri on row positions (i , i +1) and column positions
(i , i +1).

To obtain a rotated basis Φ̂ one must transform Φ according to Φ̂ =ΦR, where the multiplication with R
is on the right side, because it is the columns of Φ that are being rotated. Angles of rotation are also random,
between 0 and π

2 , as inαi = Yi · π2 , where Yi ∼U (0,1) is a random variable with uniform distribution. A simple
explanation of why the rotated basis must provide the same ROM solution (down to roundoff errors) is the
following. ROM is an approximation to FOM given by:

Vh ≈Vr =Φa. (4.8)

Another approximation (with different basis and coefficient, but of the same dimension) is:

Vh ≈ V̂r = Φ̂â. (4.9)

Given any orthogonal matrix R (RRT = RT R = I), we may write:

Vr =Φa =ΦIa =ΦRRT a, (4.10)

which shows that when the rotated ROM is defined via:

Φ̂=ΦR, (4.11)

and

â = RT a, (4.12)

it holds that Vr = V̂r . It is therefore obvious that there is no sense in performing analysis of rotated-basis ROM
simulations, because the results will be the same as in case of non-rotated basis. However, basis quality itself
will be checked for rotated basis.

4.2.2. ROM simulations
Simulations are performed mainly on the grid, Np = 2503. An exception are simulations with distorted

basis, which were run on coarse grid Np = 1503. FOM data is available up until tend = 20 (tend = 10 in TG).
Time step is set to ∆t = 0.01. Dimension of FOM snapshot matrix is NV × Nt , where Nt is the number of
snapshots , including IC-snapshot. The following ROM simulations are performed:

1. SL with tend = 20 (referred to as long period), on fine grid, using iSVD non-treated basis with kadd = 100,
Mdom = 100, threshold 10−6, M = 8,16,32,48

2. SL exact as above, with 50% downsampling

3. SL exact as item 1. only with Helmholtz and Gram-Schmidt treatment

4. SL with tend = 10 on coarse grid, using cSVD-basis with 5−10% distortion M = 8,16

5. SL with tend = 10 on fine grid, with enfored momentum conservation, using iSVD-basis with kadd =
100, Mdom = 100, threshold 10−6, M = 11,19,35

6. SL with extrapolation from FOM tend = 10 to ROM tend = 15 on fine grid, using iSVD-basis with kadd =
100, Mdom = 100, threshold 10−6, M = 8,16,32,48

7. TG with tend = 10 on fine grid, using iSVD-basis with Helmholtz and GS treatment, with kadd = 100,
Mdom = 100, threshold 10−6, M = 8,16,32,48

4.2.3. A priori test
A priori turbulence modeling test (results in chapter 7) is limited to the SL case. Basis used to simulate

ROM (item 3 on the list in section 4.2.2)is selected for the investigation. Tests follow the exact methodology
of section 3.2.
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4.3. Estimation of some grid parameters
Let L be the length of a side of the discrete periodic domainΩh : a periodic box L×L×L. Let Nx , Ny , Nz be

the numbers of pressure grid cells in x, y, z- directions, and Np = Nx ×Ny ×Nz total number of pressure cells.
To capture a vortex in 3D, at least 3 nodes (cells) are needed in each direction, a total of 7 nodes (center node
is shared). That is, assuming that the vortex is aligned with the grid, with axis along one of the coordinate di-
rections. With a mesh uniform in all directions, of cell size hx = L

Nx
this means that the smallest represented

scales are of the size ≈ 2 L
Nx

= h. Domain sizes differ for the investigated cases and also two grids are investi-

gated (coarse and fine), thus different values are obtained for different scenarios. A 4th order explicit Runge-
Kutta time march (RK4) is used. In this case the scheme is stable for Courant number c ≤ cmax = 2

p
2 ≈ 2.8,

following [15] by Hirsch. This dimensionless parameter reflects the fraction of a single cell that a disturbance
travels within ∆t interval (after LeVeque [19]). A rough estimate on Courant number in the present scenario
(with nonlinear convective term) is made based on 2-norm and linear advection equation:

c =
√(

u0∆t

hx

)2

+
(

v0∆t

hy

)2

+
(

w0∆t

hz

)2

=
√

u2
0 + v2

0 +w2
0︸ ︷︷ ︸

q

∆t

h
. (4.13)

Following Hirsch [15], when 2nd order central scheme is applied to linear advection equation with peri-
odic BCs and advection velocity q , the resulting system of ODEs has only imaginary eigenvalues:

λ∆t =−I
q∆t

h︸ ︷︷ ︸
c

sinφ, (4.14)

where I denotes the imaginary unit, λ ∈ C is a eigenvalue of the system of ODEs to be solved and φ ∈ (−π,π)
is a so called phase angle. An estimate on magnitude of largest/smallest eigenvalues is:

|λmax |∆t = q∆t

h
= c. (4.15)

RK4 method includes a part of imaginary axis as a border line of its stability region, however it is more
prudent to remain further inside the region. This is aided by viscosity term, naturally present in the analyzed
NS equation. Positive viscosity pulls the eigenvalue spectrum in negative real axis direction. On the other
hand, when diffusion equation is considered, all eigenvalues lie on the negative real axis and CFL condition
is then 4

Re
∆t
h2 < cmax . This condition for low Reynolds number can be difficult to satisfy by explicit schemes,

requiring very small ∆t . The region of stability of RK4 on purely real axis extends also to λmi n∆t = −2
p

2,
which leads to cmax ≈ 2.8. Using either SL or TG test case grid size and time step, this condition would be
met.

The research did not concern stability of numerical schemes, it was assumed that, albeit non-optimally,
the time step was selected such that guaranteed stability, ∆t = 0.01. It was used on all simulations on all
grids, but perhaps was excessively small for Np = 1503. For shear layer case, on the fine uniform grid with
Np = 2503 pressure cells and domain length L = 2π, the length of cell is h = 2π

250 ≈ 0.025. Based on initial
condition, arguing that the velocity components will not substantially increase all at once in the investigated
period (as they only evolve from IC and no energy is put into the system), the rough estimate of CFL may be
stated c ≈

p
22 +2 ·0.052 0.01

0.025 ≈ 0.8 ≤ cmax . This condition is thus met on the fine mesh, an even more so, on
the coarse mesh, in shear layer case.

For the Taylor-Green case, the estimates are less optimistic. Domain length is L = 2, which gives h = 0.008,
so smaller vortex size is achievable, but IC results in higher values of v, w velocity components, and such h
means division by smaller number resulting in estimate c ≈

p
12 +12 +12 0.01

0.008 ≈ 2.17 < cmax . The risk of
instability at the present time step size is therefore higher here than in SL test case. Looking at stability regions
of RK4 method (fig. 4.3), this sentence should be refined. The risk of instability due to excessive viscosity is
higher than in S-L case, as the method is now operating on imaginary axis values varying in range ±2.17. On
higher levels on imaginary axis, the stability region does not reach as far in negative real axis values as in SL
case with c ≈ 0.8. Hence there is a risk that for an excessively high viscosity some eigenvalues would be drawn
to the left of RK4 stability region.
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Figure 4.3: Stability regions of Runge-Kutta methods [15]. Here abscissa and ordinates are real and imaginary axes respectively,
Re (λ) , Im (λ)

.

Nevertheless, an educated guess is that for both test cases and on either mesh, given the spatial and tem-
poral discretization, the CFL stability condition is met.

A sufficient (but not necessary) condition, for spatial stability, is the condition on mesh Peclet number:

Pex = u ·hx

1/Re
< 2. (4.16)

It is more stringent than CFL condition in case of temporal stability analysis and actually is not met on either
mesh. For example in SL case, fine mesh has Pe ≈ 50, while the coarse mesh Peclet number is Pe ≈ 83. Nev-
ertheless, wiggles do not appear in the FOM solution until almost the end of simulation, thus this condition
was ignored.

The research was focused on reproduction of FOM solution, which was assumed accurate enough to re-
main relevant for turbulent flow problems.

4.4. Software
4.4.1. FOM/ROM solver

The Matlab code INS3D (compare with [31] by Sanderse where INS2D was used) is used to perform all
the computations. Essentially INS3D had been tested and verified as FOM solver (see [31] by Sanderse), but
the ROM functionality was only available in 2D version. Some generalization was performed on the INS2D-
ROM code in the preliminary stage of the present project. The process included adding additional code to
precompute 3D-ROM operators.

4.4.2. iSVD package
Baker et al. in [5] use a software package of their invention, IMTSL. The package contains more than just

the incremental SVD algorithm, but it is the implementation of this algorithm, contained within a subpackage
incPACK2 that is the focus of the present section.

The algorithm itself is described in the previous chapter, Algorithm 1. Although incPACK2 has multi-pass
functionality (constructing basis incrementally by several passes through snapshot matrix), only single-pass
method is used at present. The primary goal of iSVD in the present project is to save operational memory
by performing SVD in sequence (or incremental fashion). The authors of [5] and incPACK2 made it possible
(which is not the case for later versions of this software) to load snapshots from HDD in parts. After an update
of SVD by each new group, the group is removed from operational memory, the decomposition is truncated
and a new group is loaded. A single feature of the code allowed this: the main argument of iSVD main function
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seqkl - the snapshot matrix - may be defined as a function handle. The only arguments that this handle is
’interested in’, are the initial column and the number of columns (starting from the initial) that will be taken
as input.

X j = @(st ar t ,num)getFromHDD
(
Ω

1
2
h , pathFOM , st ar t ,num

)
. (4.17)

As seen from the above user-definition, calling X j with two arguments results in uploading appropriate

groups of columns into operational memory from the pre-defined path, with prescribed weights Ω
1
2
h . Once

the whole pass is complete, the resultant left-singular vectors Φ are transformed back by Ω
− 1

2
h (see modified

problem eq. (2.23)).
The number of dominant singular subspaces sought, Mdom , is set beforehand. It regulates the size of the

final output dimension of RB and is related to the transformation matrices G in Algorithm 1 in section 2.4.4
pt.7. It may be influenced by threshold, also set a priori. Threshold, treated as an absolute quantity after
each increment eliminates all singular values (and their corresponding singular vectors) below its value, σi <
thr . The relative threshold does essentially the same, only the value of cut-off may vary, depending on the
maximum (in current incremental step) singular value, σi

maxσi
< thr .

It is possible to set maximum and minimum increment size, as well as the size of first increment. For
simplicity in this research the increment size in each incremental step is taken the same and denoted kadd =
lmax = lmi n = l1 (see Algorithm 1 in section 2.4.4 and Baker’s manual to iSVD [1]). An exception is found in
the last increment (in present research) due to the fact, that the no. of snapshots Nt is generally not an integer
multiple of kadd . For example when tend = 10, ∆t = 0.01, then Nt = 1001. Hence with kadd = 10,100 the last
increment is always a single snapshot.



5
Basis computation

In the present chapter, results of iSVD analysis are presented. FOM is obtained on coarse grid Np = 150,
∆t = 0.01 and tend = 20. The data from FOM is contained in Nt = 2001 snapshots and serves to compute basis
via either conventional or incremental SVD. Flow test case considered in section 5.1 is shear layer (SL). Three
main types of basis are investigated: basis without treatment; basis with treatment and non-treated down-
sampled basis. The treatment is either Gram-Schmidt orthogonalization or extraction of divergence-free part
via Helmholtz decomposition, or both of those. Additionally, distorted and rotated bases are checked. The
results are described in section 5.1. In section 5.2 iso-surfaces of selected modes are displayed for both flow
test cases (SL and TG). Comparison of spectra of selected modes is performed in section 5.3, while section 5.4
compares singular value decay of SL and TG cases. The brief section 5.5 explains applications of the findings
to further analysis.

5.1. Basis quality
Only SL test case is considered in this section. Orthogonality, zero-divergence property and deviation

from reference (cSVD) shapes of modes are examined by measures explained in section 3.3.
Bases in the present section are constructed from FOM with grid size Np = 1503 and tend = 20. The fol-

lowing bases are constructed with iSVD:

• Full set of snapshots, no additional treatment of the basis,

• Full set of snapshots, Gram-Schmidt orthogonalization applied to the basis,

• Full set of snapshots, Helmholtz decomposition applied to the basis,

• 50% downsampled set of snapshots, no additional treatment of basis.

The analysis is primarily done on the basis constructed with full set of snapshots and no additional treat-
ment. The aim is to identify iSVD settings that provide satisfactory basis quality. The influence of three iSVD
parameters is investigated: size of a single increment (kadd ), maximum number of singular values sought
(Mdom) and threshold, see section 2.4.4. The various types of treatments from the above list are compared in
each subsection as well, for selected fixed iSVD parameters. Typically three values are used for each of those
parameters, which will be sometimes referred to as low, middle and high.

Frobenius norm is used to compare orthogonality (section 5.1.1) and divergence (section 5.1.2) errors for
varying two iSVD parameters with the third one fixed. In the latter section, divergence error is plotted also
per-mode. Section 5.1.3 contains plots of errors between modes of the same indices of iSVD and cSVD, for
various settings of iSVD parameters. Singular value decay is presented in section 5.1.4 for selected cases.
Finally, cSVD (reference) basis (with Np = 1503) is randomly distorted or rotated. The resultant basis is also
checked for orthogonality and zero-divergence and compared with reference basis (section 5.1.5).

5.1.1. Orthogonality
In this section various settings iSVD are presented with their influence on the orthogonality of the basis.

Frobenius norm is used as a tool to enable overall comparison of all basis approximations obtained with

45



46 5. Basis computation

various kadd , Mdom and threshold. The value of the Frobenius-norm error is divided by the number of modes
in the analyzed set, to obtain a per-mode value. The effect of downsampling is also included. Furthermore,
the influence of treatment (Helmholtz and GS) is analyzed.
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Figure 5.1: Frobenius L2 orthogonality error, ‖I−ΦTΩhΦ‖F
Ωh

. Influence of threshold, kadd and Mdom
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Figure 5.2: Frobenius L2 orthogonality error, ‖I−ΦTΩhΦ‖F
Ωh

. Influence of kadd and downsampling.

The test, whose results are displayed in fig. 5.1a, is performed with kadd = 100. The figure indicates, that
threshold has detrimental influence on orthogonality error, namely the error decreases with rising threshold.
Moreover, with high threshold, Mdom does not influence the error. This may be explained by the following
reasoning. In SL case there is a slow development of flow in the beginning phase, hence the snapshots are
highly correlated in that period which makes them close linear dependent. The increment size is fixed. With a
low threshold and high Mdom many singular values vectors must be computed in an incremental step. Since
in any added block during the first phase, t ∈ [0,5], the snapshots are correlated, the intermediate Gram-
Schmidt orthogonalization (see section 2.4.4) does not output a well orthogonalized set of vectors. Also, at
one such incremental step, errors in computation of small singular values appear, which are transferred to
the next incremental step. Those errors appear because there is only a limited number of large singular values
of a matrix with highly correlated columns. The decay is rapid and thus most of the singular values that are
computed during a step are prone to numerical (iSVD) and roundoff errors.

The next test, fig. 5.1b, is performed at Mdom = 100. It appears that the increment size kadd influences
orthogonality error, in such way that at low threshold lower error is produced with smaller increments than
with larger. At higher threshold the differences between errors for different kadd are smaller. For single-
snapshot incrementation and for kadd = 10 the error is maintained low and is rather insensitive to threshold.
With kadd = 100 the strong influence of threshold is observable. The explanation is similar as before, low
threshold and still fairly high Mdom = 100 necessitate error-generating computation of small singular values
in the initial increments. For low kadd this is avoided in the presented threshold range.
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Influence of kadd and temporal downsampling of snapshot set is presented in fig. 5.2, where Mdom = 100
and threshold 10−6 were applied. Every 2nd snapshot was skipped in construction of basis. Influence of
downsampling seems insignificant.
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Figure 5.3: L2 orthogonality error, ‖I−ΦTΩhΦ‖Ωh
. Influence of Gram-Schmidt and Helmholtz procedures.

As depicted in fig. 5.3, there is practically no influence of Helmholtz deomposition on basis orthogo-
nality, that is if only this treatment is applied. The data points coincide with those of non-treated basis for
both thresholds. GS process essentially performs as desired. Interestingly, after orthogonalization, Helmholtz
procedure does change the orthogonality error. It occurs possibly because Helmholtz procedure makes al-
terations of the order ∼ 10−14 to the modes. It cannot be therefore ruled out that if stronger violation of
zero-divergence condition had occured the treated modes would have been affected in terms of their orthog-
onality.

5.1.2. Zero-Divergence
This section is focused on divergence error and uses similar tools as the previous section, i.e. Frobenius

norm. However, the error in divergence is differently defined, εi
di v := ‖MhΦi‖L2 , i.e. it is not pairwise as

the error in orthogonality. Therefore it is easier to draw conclusions regarding error in particular modes
separately.

From fig. 5.4 it seems that threshold does not affect the error in divergence. The influence of Mdom , as
will become clear from the more detailed plots, is due to larger divergence error in higher index modes, which
increases the Frobenius error also in cSVD. This error is averaged (divided by given Mdom , see section 3.3),
therefore any effect of cumulation of error due to larger number of modes is already ruled out. Increment
size kadd is more decisive. It is noted, that for single snapshot incrementation, error in divergence is lower
than for reference cSVD. In fact the error for kadd = 10 is two orders of magnitude larger. Further increase of
increment size yields only minor increase in error.
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Figure 5.4: Frobenius L2 divergence error, ‖MhΦ‖F
Ωh

.

As observed in fig. 5.5, downsampling has little to no effect on the error in divergence, at Mdom = 100 and
threshold 10−6. It should be noted that the downsampled snapshot set is processed in half the number of
incremental steps needed for the full set. This means that if an incremental block of the full set ends with the
snapshot Vh (t ) then the incremental block of downsampled set ends with the snapshot Vh (2t ). This allows
to suspect that divergence error generated by iSVD does not depend much on particular relations between
snapshots (e.g. how correlated they are).
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Figure 5.5: Frobenius L2 divergence error, ‖MhΦ‖F
Ωh

. Influence of downsampling.

Mdom seems to be having only marginal influence on divergence error. Threshold also has little effect.
Plots fig. 5.6 and fig. 5.7 display a more detailed information about the errors, in particular that there is a
tendency that only low-index modes are satisfactorily divergence-free. Thus the increment size dictates the
quality of the basis in this aspect.



5.1. Basis quality 49

0 20 40 60 80 100
10

-17

10
-16

10
-15

10
-14

10
-13

(a) full set

0 20 40 60 80 100
10

-17

10
-16

10
-15

10
-14

10
-13

(b) downsampled set

Figure 5.6: L2 Divergence error ‖MhΦi ‖Ωh
of individual modes. Full and downsampled sets, threshold 10−6 Mdom = 100, varying kadd
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Figure 5.7: L2 Divergence error ‖MhΦi ‖Ωh
of individual modes.

As the threshold affects divergence of the modes in no visible way, only the plot at high threshold is pre-
sented in the comparison of treatments (GS, Helmholtz), fig. 5.3. Gram-Schmidt orthogonalization has prac-
tically no effect on diveregence error, while Helmholtz decomposition yields the expected divergence-free
basis.
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Figure 5.8: L2 Divergence error ‖MhΦi ‖Ωh
of individual modes. Influence of Gram-Schmidt and Helmholtz procedures. Threshold

10−6, kadd = 100, Mdom = 100

5.1.3. Quality of approximation to cSVD basis
In this section, mode-to-mode error between modes from iSVD and cSVD is examined. Errors are pre-

sented for the same iSVD settings as in previous section.
Figure 5.9 - 5.10 contain plots for non-treated bases; fig. 5.11 gives a comparison of treatment effects. On

all the plots there appear data points with high error values > 100, some of which are indeed showing actual
error. Most of those however correspond to modes with reverse-sign w.r. to the modes of the same index from
cSVD. Incremental algorithm tends to return modes with opposite sign for high indices of modes. Therefore,
for pure consistency, such modes should to be accordingly modified prior to comparing them with reference
modes. One way to do that would be to use the fact, that all modes are normalized so ‖ΦcSV D

i −Φi SV D
i ‖ ≤ 2.

One could then make the conditional statement, that if for a given mode the mode-to-mode error ‖ΦcSV D
i −

Φi SV D
i ‖ exceeds a pre-set value εswi tch ∈ (p

2,2
)

then it is to be re-computed on the same mode only with the

opposite sign. This is a simple workaround, but it is not universal, e.g. a hypothetical mode Φi SV D
i that is so

distorted that it is almost orthogonal to the reference mode ΦcSV D will produce an error around
p

2. Then
it could be problematic to distinguish the error caused by different sign from numerical error introduced by
iSVD. This is actually the case at low kadd in this section. The proposed workaround was not applied, because
the discussed effect, obscures the interpretation of results to a lesser extent than the workaround itself would
have.

Figure 5.9 shows how bases constructed with iSVD operating on full set of snapshots compare to cSVD.
Increment size is varied. For all investigated kadd there is a tendency of rapid error increase in the first ∼ 20
modes. Clearly, lowest kadd results in Φ with lowest degree of resemblance to reference basis. There is only
small difference for lower indices between kadd = 10 and 100, but it is increasing with index. Additionally,
there appear ’oscillations’ in error at kadd = 100. It is observed, that the number of reverse-sign modes de-
creases with increasing kadd .

Next, fig. 5.9b indicates that the basis obtained from downsampled set has on average much worse fidelity
w.r. to cSVD basis (based on full set). Furthermore, the degree of accuracy starts depending on kadd at mode
index i = 25, where single-snapshot incrementation generally becomes unreliable faster than kadd = 10,100.
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(a) Mdom = 100, threshold 10−6, full set.
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(b) Mdom = 100, threshold 10−6, downsampled set.

Figure 5.9: L2 mode-to-mode error ‖Φi ,cSVD −Φi ,iSVD‖Ωh
.

Influence of the threshold at fixed Mdom = 200, kadd = 100 is shown in fig. 5.10a, where differences appear
mostly for modes with i < 15. In that range lowest threshold results in highest error. The difference between
errors for thresholds 10−6,10−8 is very small. In fig. 5.10b the error is ploted for varying Mdom . Clearly, high
Mdom is desirable for higher fidelity of the basis. At the particular settings of kadd and threshold used here, it
is observed that the rate of increase of error with mode index is more diverse for varying Mdom than it was for
varying kadd (with other parameters fixed), fig. 5.9a. I.e. Mdom = 200 has a much slower growing error than
Mdom = 50.
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(a) Mdom = 200, kadd = 100.
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(b) kadd = 10, threshold 10−8

Figure 5.10: L2 mode-to-mode error ‖Φi ,cSVD −Φi ,iSVD‖Ωh
.

An important observation concerning Mdom is the following. Although for higher fidelity w.r.t. cSVD basis
high Mdom is preferable (see fig. 5.10b), there is a conflict with kadd . The latter parameter should be set low
in order to obtain good orthogonal quality and zero-divergence of modes, as figures fig. 5.1 and 5.4 suggest.
There are other reasons why low kadd is preferable, e.g. online computation of basis. However with low kadd

a high total number of increments is performed. In each update, the approximate SVD must be computed,
with number of SV bounded by (high) Mdom . If the smallest singular value in a particular update is well above
the threshold (i.e. the threshold does not truncate any information at that incremental update), then all SVs
up to Mdom are computed and this is costly. It also generates errors when SV are very small.

One should keep in mind, comparing the data sets in fig. 5.10b, that there is an underlying reason for such
results. Mdom is only the upper bound for the number of SVs. It is not necessary that at every incremental step
all SVs up to Mdom are computed. This is decided at step 6 of the algorithm in section 2.4.4. If snapshots in a
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particular block are strongly correlated, then there exist many very small singular values. Those are clipped
by the threshold. In a block where larger SVs start to dominate the spectrum, so that more SVs are above the
threshold, the limit is set by Mdom . Hence increasing this parameter in combination with properly selected
threshold may only improve the quality. It would not be so if the the threshold was very low. Then it would
also be only Mdom limiting the number of singular values sought. Only this time it would be desirable to have
this limit set lower, so that the blocks with more correlated snapshots are processed accurately.

The treatment by Helmholtz and GS process does not affect mode to mode-error, regardless of the thresh-
old set. Hence plots for different thresholds are omitted. The error to cSVD is plotted in fig. 5.11. This is a
useful piece of information. Combined with the plots from two previous sections, it allows to conclude that
the significant differences between bases (iSVD and cSVD) do not lie in the lack of orthogonality or zero-
divergence property.
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Figure 5.11: L2 mode-to-mode error ‖Φi ,cSVD −Φi ,iSVD‖Ωh
with Mdom = 100, kadd = 100, threshold 10−6. Influence of GS and

Helmholtz procedures.

5.1.4. Singular value decay
In this section singular value spectra will be compared for the same settings as in previous sections. The

treatment by GS and Helmholtz procedures are not considered, as those only concern correction to singular
vectors, not values.

Comparing SV decay for bases from full and downsampled snapshot sets, fig. 5.12, that at Mdom = 100 and
threshold 10−6 the data is most accurate for highest kadd . Single-snapshot incrementation results in under-
estimation of higher-index singular values. Although SVs are not used directly, their over or under-estimation
could mean that there is already an inaccurate energy relation captured in the modes. Furthermore, on the
scale of the plots it cannot be noticed, if the deficit in higher-indexed SVs had not moved as an energy surplus
on some higher SVs. The effect occurs in singular values from both full and downsampled sets. Interestingly,
downsampling itself did not cause any further errors in SV computation w.r. to cSVD, see fig. 5.12b.

The SV spectra remain unaffected by threshold at either Mdom = 50,100,200 and at either kadd = 1,10,100,
hence only selected data is presented, fig. 5.12-5.13. For kadd = 100, neither threshold nor Mdom affect SV de-
cay, where only the latter is shown, fig. 5.13a. At lower kadd (= 10) the effect of Mdom is more pronounced,
fig. 5.13b, which possibly also depends on threshold. When the bound on total number of singular values
computed in a step is low, the ones with the highest indices are underestimated by iSVD. Data for lower
threshold and kadd was not acquired, because the elapsed computation time exceeded the hardware limita-
tions.
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Figure 5.12: Singular value decay, Mdom = 100, threshold 10−6.
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(a) Mdom = 200, kadd = 100.
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(b) kadd = 10, threshold 10−8

Figure 5.13: Singular value decay

Accuracy of SV computation is important for accuracy of basis vectors, because at j -th update, the matri-
cesΦ j −1, Σ j−1 are re-multiplied to reconstruct the QR-decomposition from previous update and append to
it the j -th block. Therefore errrors in singular values propagate eventually to singular vectors.

5.1.5. Distorted bases
As a reminder (see section 4.2.1), in this section all modes are being either randomly distorted or rotated.

These will be used to build a ROM, whose accuracy will be assessed in section 6.2.1. Distortion is according
to:

Φ̃i j =Φi j + ci X , (5.1)

where X ∼ N (0,1) is a random variable with standard normal distribution and ci = p · 1
M

∑
j |Φi j | is an l1

norm, with p = 5%,10% - percentage.
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Figure 5.14: L2 orthogonality error, ‖I−ΦTΩhΦ‖Ωh
, for various distortions of the reference basis.

Clearly the random distortions greatly deteriorated orthogonal quality. Rotation on the other hand, as an
orthogonal transformation, maintained the proper quality.
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Figure 5.15: L2 divergence and mode-to-mode errors , for various distortions of the reference basis.

After distortion the modes suffer also from divergence issues, fig. 5.15. As in the case of orthogonality
error, random rotations do not affect divergence error. As mentioned, rotation is an orthogonal transforma-
tion and as such does not change the relations between components of a vector. It may change the change
components themselves however, which is why the rotations also produced high mode-to-mode error. The
distorted bases constructed here will be used in the next chapter to perform simulations.

5.2. Comparison of modes: shapes
In this section iso-surface plots of selected modes Φi and selected components will be presented. The

cascade hypothesis is the foundation of EV modeling, so it is prudent to visually inspect the shapes of modes,
in order to find out whether indeed fine scales are confined to high-index modes. This is to check whether
the modes are segregated according to structure sizes (POD segregates w.r. to energy which is claimed to be
similar e.g. by Couplet et al. in [10]). Furthermore, visual inspection allows a rough assessment of quality,
scale sizes captured by various modes or dominating directions of flow, etc. This section contains plots for
both shear layer and Taylor-Green vortex, with more focus still on the former.

5.2.1. Shear layer
Modes 1,2 and 8 are presented in the first part, also with modifications applied: distortion and rotation.

Here the treatment (Helmholtz or GS procedures) is not discussed, as it makes changes that are not visible on
the scale of the presently discussed iso-surfaces. The mesh size used is Np = 1503, tend = 10. In the second
part, the same index modes are presented but three FOM snapshot set sizes used to obtain the basis are
compared. Here the mesh size is NV = 2503, because the results were available for the fine grid only.
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(a) Reference (cSVD) (b) 5% distorted (c) Random rotation

Figure 5.16: Isosurfaces ofΦu
1 , Np = 1503 for various settings

Mode 1, fig. 5.16 according to theory represents the highest-energy structures, containing highest or one
of the highest amounts of kinetic energy in the whole POD set. The figure also show the distorted mode (here
with opposite sign). The rotated mode does not look similar, it rather represents some higher-frequency
content of the spectrum. Thus after rotation the ordering of modes from lowest to highest, which supposedly
reflects the lowest and highest wavenumbers, is generally lost. However, it may still be the case that the mode
carries the most energy.

(a) Reference (cSVD) (b) 5% distorted (c) Random rotation

Figure 5.17: Isosurfaces ofΦu
2 , Np = 1503 for various settings

(a) Reference (cSVD) (b) Random rotation

Figure 5.18: Isosurfaces ofΦu
8 , Np = 1503 for various settings

As i increases, higher wavenumbers start appearing, fig. 5.17. On fig. 5.18 even more high wavenumber
structures appear. Iso-surfaces form noticeable tubes of moderate diameter. These are clearly aligned with
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z-axis. The rotated basis does not lose this alignment.

(a) tend = 10 (b) tend = 15 (c) tend = 20

Figure 5.19: Isosurfaces ofΦu
1 , Np = 2503 for FOMs with various end times, tend = 10,15,20

(a) tend = 10 (b) tend = 15 (c) tend = 20

Figure 5.20: Isosurfaces ofΦu
2 , Np = 2503 for FOMs with various end times, tend = 10,15,20

(a) tend = 10 (b) tend = 15 (c) tend = 20

Figure 5.21: Isosurfaces ofΦu
8 , Np = 2503 for FOMs with various end times, tend = 10,15,20

With increasing tend , lower modes of the same index capture progressively more three-dimensional struc-
ture, which is apparent from examining fig. 5.19-5.21. The fine scale content there could also partially contain
numerical noise (from iSVD) but most likely the appearance of small 3D structures is dictated by the POD
ordering: high-energy structures first. I probably so turns out that those motions, which are fare from coarse-
scale, indeed contain a significant portion or energy. This undermines the concept of equivalence/similarity
between fine-scale and low-energy scale.

5.2.2. Taylor-Green vortex
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(a) Φu (b) Φv

Figure 5.22: Isosurfaces ofΦu
1 ,Φv

1 on grid Np = 2503

The lower modes in this test case, fig. 5.22 are already strongly 3D, since the FOM is 3D from the ini-
tial instant. There is no quantitative difference between u and v components for higher modes, hence only
u-component is shown in fig. 5.23. Here, as in SL case, higher-index modes, as expected, carry higher-
wavenumber structures, than the low-index modes.

(a) Φu (b) Φu

Figure 5.23: Isosurfaces ofΦu
2 ,Φu

16 on grid Np = 2503

5.3. Comparison of modes: spectra
In this section wavenumber spectra of selected modes are analyzed. Influence of iSVD parameters and

treatment is examined.

5.3.1. Non-modified modes
In this section integer wavenumber spectra of modes are compared. Visual differences start appearing at

higher indices, therefore the mode index selected for this analysis is i = 100. Spectra of modes with indices
∼ 50 and lower seem unaffected by GS or Helmholtz treatment. They are also not sensitive to iSVD settings.
The higher modes display more dependence on iSVD parameters, but still very little response to treatment.

As a rule, iSVD overestimates energy at low wavenumbers and underestimates that of high wavenumbers,
see fig. 5.24-5.26. The effect is stronger with lower kadd , fig. 5.24 and more so, when downsampling is applied,
fig. 5.24b.
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Figure 5.24: Energy spectra of mode 100, threshold 10−6, Mdom = 100, varying kadd . Full and 50% downsampled set of snasphots used.

At kadd = 100 threshold does not affect the spectrum at Mdom = 100: there is a mismatch between iSVD
and reference increases but it is independent of threshold fig. 5.25a. For Mdom = 200 the spectrum is well
aligned with reference. fig. 5.25b.
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Figure 5.25: Energy spectra of mode 100 varying threshold, kadd = 100. Full set of snasphots used.

Finally, it is found that the treatment by Helmholtz and GS procedures does not alter the spectrum, which
is another useful piece of information enabling safe recommendation for such treatment.
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Figure 5.26: Energy spectra of mode 100 threshold 10−6 , kadd = 100. GS and Helmholtz procedures applied.

5.3.2. Random distortions and rotations
In this section effects of distortion on modes spectra are compared for selected modes.
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Figure 5.27: Energy spectra of randomly distorted/rotated basis

Random distortion, as is clear from the plots above, affects only higher wavenumbers. Spectra of the
rotated modes in general case vary from reference (depending on the angle of rotation). However, in this
case, the sum of spectral energies of all modes Φ̂must essentially be the same as for modesΦ. This is because
energy1 defines a norm in Hilbert space and orthogonal transformations (such as rotation, eq. (4.11)) do not
alter the norm.
1Total (kinetic) energy of the system is the same regardless of whether it is computed in spectral or physical space (Parseval’s Theorem).
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5.4. Comparison of bases: singular values
In this section a comparison of SV decays is made. It is analogous to the one made in section 5.1.4, only

there it was aimed only at measuring the influence of iSVD parameters. Presently, bases obtained using fixed
iSVD settings but varying input data, are compared. SV decay allows to estimate the magnitude of best attain-
able ROM error. The comparison is made between SL and TG test cases for fine and coarse grid snapshots but
also for various tend of SL. Shear layer cases have mostly tend = 20 (except where various tend are compared)
while the Taylor-Green vortex cases run with tend = 10. Different Mdom ≤ 200 were applied, resulting in vary-
ing number of available SVs. The basis constructed with cSVD (SL with Np = 1503) has n = 2001 singular
values, which are not all plotted here (full plot may be found in the appendix appendix A.1).
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(b) SL with Np = 2503, tend = 10,15,20.

Figure 5.28: Comparison of singular value decay.

TG vortex has a faster SV decay than shear layer, fig. 5.28a. This is reasonable, since the case runs with
tend = 10 while in SL the simulation time is 20. In fact however, when SL case with tend = 10 fig. 5.28b is
compared with this TG singular value spectrum, it becomes apparent that TG decays slower. This is caused
by there being more complex and three-dimensional fields involved, requiring more modes to describe. For
example, to reach σn

σ1
= 10−4, shear layer requires ∼ 70 singular values, while TG vortex ∼ 120. As observed in

fig. 5.28a, TG on fine grid corresponds to more rapid decay than that of coarse grid. In case of SL the situation
is opposite. Based on section 5.1.4, it is suspected that this is the effect of lower Mdom applied. Figure 5.28b
presents SV spectra corresponding to FOM with various simulation lengths. As expected in a transient case,
longer simulation time yields slower decay of singular values.

It was mentioned that SV decay might be used to estimate the error of ROM. For example for M = 48
shear layer case best error should lie at best somewhere below ∼ 10−2, whereas M = 8 it will not get much
better than 10−1. As will be revealed by comparing with fig. 6.1 in the next chapter, these rough estimates are
surprisingly accurate.

5.5. Summary
The interplay between the three investigated iSVD parameters: kadd , Mdom and threshold, is an essential

element to consider while constructing a basis that approximates the cSVD basis. The approximate basis
should not only have a degree of fidelity to cSVD, but also retain the important properties: orthogonality and
zero-divergence.

It is obvious that the increment size kadd affects orthogonality strongly (negatively) for low values of
threshold and less so for high values. To a lesser extent the same is also true for relation of Mdom with the
threshold. From this viewpoint it would be beneficial to apply high values of kadd and Mdom and threshold.

Divergence of the modes is on average not affected by the threshold and only mildly influenced by Mdom -
the error increases with increasing Mdom . Threshold does not alter the error on average, but it can change dis-
tribution of error over the modes. Lastly, low kadd results in low divergence error, iSVD with single-snapshot
increments performs better than cSVD in this regard.

Fidelity to reference basis depends most strongly on Mdom , as assessed from the gathered data. However,
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as mentioned in section 5.1.4, this also depends on threshold. Increment size also influences the fidelity,
which is also mentioned by Baker et al. in [5], where it is claimed that as kadd → Nt , iSVD → cSVD. As also
mentioned there, this is supported by intuition: with large increment size, the algorithm has access to a larger
part of the matrix, whose SVD is being approximated. This feature of kadd is independent of the threshold.

Neither of the discussed properties of the approximate basis is affected negatively by the treatment with
Gram-Schmidt and Helmholtz decomposition.

Singular values are most accurately computed at high kadd and high Mdom , see section 5.1.4. Threshold
has little significance.

It is concluded that for high quality basis one should pursue computation with highest possible kadd

and Mdom and set the threshold only as low as the desired accuracy of ROM solution (dictated by the ratio
of smallest and largest singular value). Treatment by Helmholtz and GS procedures should be applied in
all cases, because it does not harm and improves zero-diveregence and orthogonality of the modes. These
preferences must now be properly matched with other constraints. This is not pursued in this thesis, but
online basis computation (during FOM) would require low kadd . This lowers the quality of basis and increases
the time requirements. On the other hand, too high value of that parameter poses infeasible requirements on
the operational memory (too large block updates). With such limitations it is decided that the standard used
parameters for the computation of the full-scale basis (i.e. based on FOM Np = 2503) will be Mdom = 100,
kadd = 100 and threshold 10−6.

Observations from the present chapter also help in the a priori analysis (chapter 7) in the following way.
Because of large errors in higher modes i > M , in the a priori tests the unresolved part is simply taken as the
difference between FOM solution and resolved part:

Φ′a′︸︷︷︸
unresoved part

=Vh − Φa︸︷︷︸
resolved part

. (5.2)

That applies also to computation of eddy viscosity, for which unresolved scales are required.





6
ROM simulation

In this chapter the results of actual ROM simulations are presented. No closure model is applied in this
chapter. Mostly iSVD bases are used, with some exceptions, all briefly discussed at the beginning of each
section. Shear layer is the primary flow test case that is investigated. Taylor-Green vortex is only presented to
document that 3D ROM is working and is compatible with iSVD. The chapter is organized into three sections.
Section 6.1 contains the results of two simulations of SL case on fine grid, with long and short integration pe-
riod. Section 6.2 presents additional simulation result data for: distorted bases; bases enforcing momentum
conservation; comparison of three bases with three different FOM and ROM integration periods; and time
extrapolation. The first item in that section is obtained on coarse grid, and the rest on fine grid. Finally, TG
results are discussed in section 6.3, where simulations were done on fine grid and in short integration time.

The most important types of results include (see also section 3.3):

• errors of ROMΦa and projected FOM solution w.r. to FOM: εROM and εbest

• error in ROM kinetic energy w.r. to FOM: εK

• error of ROM u-momentum w.r. to FOM IC: εPu

• kinetic energy spectrum in integer wavenumber space: E (ξn)

• error in divergence: εdi v

6.1. Shear layer: main results
This section contains results of three (sets of) simulations:

• SL with basis without treatment, section 6.1.1

• SL with basis from downsampled snapshots, section 6.1.2

• SL with basis orthogonalized and made divergence-free through Gram-Schmidt and Helmholtz pro-
cesses, section 6.1.3,

all of which where run with bases of dimensions M = 8,16,32,48. Spectra and contours are presented in
section 6.1.3 only, as those are the most accurate. Since most errors remain unaffected on the (scale of the
plots) by the GS-Helmholtz treatment, they are skipped, as they would duplicate of those in section 6.1.1.

6.1.1. Non-treated basis
In this section results of simulation using basis without GS/Helmholtz treatment are discussed.
Error in velocity for bases M = 8,16,32,48 is presented in fig. 6.1. ROM simulation accuracy (errors with

solid lines) is progressively improving with increasing M . The difference between M = 8 and M = 16 is small.
M = 32 behaves slightly better, but in the end error of all three is ∼ 1. M = 48 is much more accurate and able
to retain that feature until tend , where the error is 10−1. The gap between M = 48 and the lower-dimension
models increases, especially in the second half of the simulation. The flow develops into a more turbulent

63
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state, and during that development some lower-energy information is missing in the model M = 32, because
the difference to M = 48 is much larger than in case of εbest . So the basis M = 32 is theoretically capable of
attaining error < 10−1 but the low-order dynamical system (ROM) does not naturally evolve in such direction.
It seems that there is crucial physics information in modes 33−48, since appending those modes to the basis
enabled lowering the ROM error by an order of magnitude. In comparison doubling the number of modes
from M = 8 to 16 and then again to 32 in the end resulted in a rather small improvement at the end frame.
Furthermore, there is a clear oscillatory tendency of εbest , particularly visible for higher M . The frequency of
error oscillations increases and their amplitude decreases with increasing M . The amplitude effect is univer-
sal and connected to POD basis property, that bases with increasing dimension span increasingly (or at least
non-decreasingly) more accurate approximation of the true solution space. Moreover, a rapid change in εbest

appears near the beginning and end of simulation. Currently the origin is not clear, but the phenomenon was
observed before, e.g. in [31] by Sanderse. Finally, the link should be recalled to SV decay, fig. 5.28. Value of
the ratio σn

σ0
for i = 48 in the fine-grid shear layer case lies somewhere below 10−2. In fig. 6.1 εbest is at best

slightly below 10−2. Similar estimates remain fairly accurate for lower M as well.
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Figure 6.1: L2 velocity error: basis w/o treatment.

Plots fig. 6.2a express evolution of kinetic energy in time. With increasing M , the estimate is increasingly
more accurate. An exception is the lowest M = 8 case, which incidentally follows the end decay of FOM energy
better than M = 16,32. This is attributed to there being insufficient part of dissipation range resolved by ROM
with such low dimension basis. Certainly it is not byproduct of an accurate solution, compare with fig. 6.1.
Similar remarks apply to fig. 6.2b, which depicts evolution of u-component of global momentum in time.

Figure 6.3 presents the same data differently: in the form of error w.r. to FOM. Figure 6.3a shows error
w.r. to FOM at current time, which is mostly a deficit of energy. From fig. 6.3b it appears that, especially for
t ∈ [10,20], there appears a deficit in momentum. In the worst case M = 16 at the end of simulation there is a
loss of almost ∼ 25% of momentum, while the loss of energy is roughly an order of magnitude smaller.



6.1. Shear layer: main results 65

0 5 10 15 20

210

215

220

225

230

235

(a) kinetic energy

0 5 10 15 20

180

200

220

240

260

(b) u-momentum

Figure 6.2: Total kinetic energy K and u-momentum temporal evolution, basis w/o treatment.
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Figure 6.3: Error in total kinetic energy K and u-momentum, basis w/o treatment.

Error in divergence is plotted in fig. 6.4. For ROM it is significantly higher than for FOM. On average it is
the same for all M , only the frequency increases with RB dimension.
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Figure 6.4: Divergence error ‖∇·u (t )‖ ≈ ‖MhVh (t )‖∞ in maximum norm.
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6.1.2. Basis obtained from downsampled snapshots
In this section influence of downsampling on errors of solution and derived quantities is investigated.

Snapshots are downsampled by 50%, i.e. every 2nd snapshot is used in computing iSVD (see section 5.1.3 for
the effect of downsampling on quality of approximation to cSVD). Rather than plotting the same results as in
previous section, which are similar, the new results are now compared with those from the previous section
for M = 32,48. For lower M there are no noticeable differences.
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Figure 6.5: L2 velocity error. Full and downsampled snapshot sets used to obtain basis - comparison.

Differences between errors for bases with and without downsampling are very small on the scale of the
plots, fig. 6.5. At initial instant, downsampled-set errors in accordance with inutition are higher than those
corresponding to full set. However, near tend the downsampled-set yields a slightly lower error εbest than the
full set. This draws suspicion, because POD yields a basis that is supposed to be the best possible approxi-
mation within a given set. Here yet a different basis performes better (albeit for a brief instant). This could be
due to error in orthogonality and/or divergence of the modes (see section 5.1.1 and section 5.1.2). For exam-
ple, when per-mode error in divergence for full and downsampled sets is compared (see fig. 5.6) one observes
that for downsampled set at indices ∼ 32, error in divergence differs by an order of magnitude w.r. to full set.
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Figure 6.6: Total kinetic energy K and u-momentum. Full and downsampled snapshot sets used to obtain basis - comparison.
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Figure 6.6 shows, that downsampling of snapshots performed in basis construction had very little effect
on ROM energy and momentum estimates.

Divergence error, fig. 6.7, appears similar in each case. It is measured in maximum norm, therefore this
result does not rule out the possible influence of L2 divergence error in modes on the final errors (εbest ) in
fig. 6.1.
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Figure 6.7: Divergence error ‖∇·u (t )‖ ≈ ‖MhVh (t )‖∞ in maximum norm.

6.1.3. Basis with Helmholtz and Gram-Schmidt treatment
This section discusses the results of simulations in which modified bases were used. It is found that all the

quantities of interest except divergence error remain almost unchanged w.r. to the cases using non-treated
basis. Hence, only divergence error is plotted, fig. 6.8, with other errors and quantities (velocity, energy, mo-
mentum) omitted. Next, flow spectra and 2D contours of solutions are presented at selected time instants for
FOM and investigated ROMs. Those are displayed exclusively in this section, as the present group of results
is considered the most accurate.
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Figure 6.8: Divergence error ‖∇·u (t )‖ ≈ ‖MhVh (t )‖∞ in maximum norm.

Energy and momentum errors are very similar to those of non-treated-basis case. Error in divergence
is lower by 8−10 orders of magnitude, see fig. 6.4. On the other hand, ROM errors themselves (see fig. 6.1)
are at best ∼ 10−2 −10−3. It is possible that, with longer integration time, differences would start appearing
in solution errors between the treated and non-treated case due to incomplete elimination of pressure from
equations (as mentioned in section 3.1.2). Here it is not the case, even though the model with non-treated
basis does not fully respect mass conservation, see fig. 6.4.
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magnitude of velocity in x-y midplane @ t = 5.00000
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Figure 6.9: Velocity magnitude at t = 5: FOM and ROMs. Contours in x y plane.

Figure 6.9 and fig. A.3 show contours of velocity magnitude
p

u2 + v2 +w2. At t = 5 it is observed that ROM
with M = 16 struggles to capture the roll-up of shear layer. With increasing M the contours become more
similar to FOM contours. In the present case, the highest M (= 48) still displays visually traceable distortions,
e.g. see vicinity of the saddle point, fig. 6.9 near x = 4. This may be caused by distortions in the iSVD basis
(increasing with mode index, see fig. 5.11). As the flow develops, there appear more fine-scale structures, as
shown by contours, fig. A.3. It is observed that only ROM M = 48 resembles FOM, in that most small vortices
are captured, however distortions persist.

Kinetic energy spectra are presented in fig. 6.11. Those are in the form per integer wavenumber (based
on wavenumber magnitude). This ’contraction’ makes most sense for homogeneous isotropic turbulence,
where no mean flow is present. This somewhat obscures the interpretation in the present (shear layer) case,
which must be kept in mind. Certainly, for t ∈ [15,20] the flow has a more turbulent character, which makes
the analysis concerning that period more credible.
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(a) FOM (b) ROM M = 16

(c) ROM M = 32 (d) ROM M = 48

Figure 6.10: Velocity magnitude at t = 20: FOM and ROMs. Contours in x y plane.

It may be said that at t = 5,10 (fig. 6.11a-6.11b)only the energy at lowest wavenumber is captured correctly
by ROMs. M = 8 struggles with low wavenumbers ξn ∈ [0,6], but strangely, M = 16 underestimates even more.
There could be several reasons behind this: distortions in modes increasing with mode index, inaccuracy
of the hypothesis of equivalence between Fourier and POD modes, the fact that POD modes capture high-
energy structures on the mean and not instantaneously.

At t = 15, fig. 6.11c, intertial range starts to appear, observed as three nodes parallel to reference −5/3
spectrum, approximately in the range ξn ∈ [6,10] and develops to four nodes at t = 20, fig. 6.11d. Is is only
predicted by ROM with M = 48. In all figures ROM with M = 48 follows FOM the most closely and it departs
from FOM spectrum as the last, i.e. at higher wavenumber than for lower basis dimension. ROMs with lower
M behave in a less straightforward manner. Again, this could be caused by distortions in basis or lack of full
equivalence between high-energy and large-scale structures.

ROM performance in terms of spectrum, is increasingly better with increasing M . The fact that M = 8 at
times seems to be more accurate than M = 16,32 is regarded as a coincidence in integral quantities, similarly
to energy error considerations, fig. 6.6a. Intuitively, following the hypothesis of equivalence of Fourier and
POD modes, good agreement between spectra at low wavenumbers for M = 8 would be expected. Figure 6.11
show that it is not always the case. Recalling that POD modes are energy-optimal in time-averaged sense,
perhaps it would have been more prudent to investigate time-averaged spectra. However in the present re-
search, where periodic BCs are considered, with no energy inflow, the underlying process is not stationary.
Statistics then depend on time, which makes it difficult to draw conclusions.
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Figure 6.11: Instantaneous energy spectra of FOM and ROMs with M = 8,16,32,48.
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At all times there is a knee-effect present in all ROMs: at a specific wavenumber the rate of decay of
energy plummets. In FOM it is rather soft. This phenomenon is likely associated with grid resolution. Base
wavenumber1 is ξ0 = 2π

L = 1, number of cells in x-direction (or any other) Nx = 250, hence maximum wavenum-
ber index is nmax = 125 and maximum describable wavenumber is ξnmax = ξ0nmax ≈ 125. The knee occurs
close to that number.

Of course, the spectral measure of energy that is used, defined on integer wavenumber space, is meant for
homogeneous isotropic turbulence. However such simplification was here necessary to make observations
regarding comparisons of different M ROM. It is also somewhat justified in the second half of simulation,
where 3D effects and vortex breakdown start to take place.

6.2. Shear layer: additional results
In this section additional analyses are performed based on shear layer test case. Section 6.2.1 is focused

on distorted bases. Section 6.2.2 contains results of simulations with enforced momentum conservation. In
section 6.2.3 FOM integration periods with tend = 10,15,20 serve to construct three bases of the same dimen-
sion and results of corresponding ROM simulations are compared. Section 6.2.4 discusses time-extrapolation
results: with t FOM

end < t ROM
end .

6.2.1. Randomly distorted/rotated bases
In this section ROM simulation is performed with the same basis as examined in section 5.1.5. Influence

of white-noise distortion basis (see section 4.2.1) will be investigated. This it to check how EC-ROM operates
with corrupt input data.
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Figure 6.12: L2 velocity error, cSVD-basis with 5% distortion

For 5% distortion (see eq. (4.6)) fig. 6.12 shows how ROMs with distorted and clean bases evolve in time
in terms of errors. This distortion mildly affected εROM . The log scale obscures this, but the distance between
clean and distorted ROMs best errors, for either M is roughly the same, i.e. ∼ 0.01. In either case clean and
distorted results are increasingly closer together as time evolves. For M = 8 best achievable error at tend is
almost identical in the clean and distorted case. For M = 16 there is a gap.

1In section 3.4.1 ξ0 is taken based on diagonal of the periodic cube, hence it is
p

3. Energy spectrum plotted in the present section is
based on ξ0 = p

3, but it behaves practically the same as with ξ0 = 1, because the energy is simply being integrated within different
intervals (bounded by spheres in wavenumber space). Still, the correct highest representable wavenumber (Nyquist) is based on ξ0 = 1
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Figure 6.13: Error in kinetic energy (to FOM at time t ): cSVD basis with 5,10% distortion

The discrepancy in global energy of clean M8, M16-ROM w.r. to FOM is < 1%, fig. 6.13. With 5% distortion
the model loses 4.5 ∼ 5% of energy w.r. to FOM at tend . When 10% distortion is applied to basis, the energy
loss rises to 17% at the end of simulation.
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Figure 6.14: L2 velocity error, cSVD-basis with 10% distortion

On fig. 6.14 M16 distorted starts off at higher error than M8. For best achievable error it matters more
when M = 16 is used, as at the and frame, difference εM16

best −εM16di st .
best ≈ 0.03 and εM8

best −εM8di st .
best < 0.01. When

M = 16 distortion by 10% almost eliminates εbest oscillations (raising the error as well).
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Figure 6.15: Error in u-momentum (to FOM IC) : cSVD basis with distortion.

It is observed on fig. 6.15 that stronger distortion causes faster and eventually larger momentum loss. At
tend M8 with 5% distortion loses ∼ 5% momentum. With 10% distortion, 9% of momentum is lost.
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Figure 6.16: Max divergence error ‖MhVh (t )‖∞ temporal evolution: cSVD basis with 5- and 10% distortion

Both 5 and 10% distortions raise the error to ∼ 10−3. No significant difference between divergence errors
of either distorted bases was observed. Original clean ROMs had errors of the order ∼ 10−11 so it had risen 8
orders of magnitude due to distortion.

magnitude of velocity in x-y midplane @ t = 10.00000

1 2 3 4 5 6

x

1

2

3

4

5

6

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) ROM M16 cSVD
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Figure 6.17: Velocity magnitude at t = 10: ROM M = 16, tend = 10, cSVD reference basis and distorted bases. Contours in x y-plane.

10% distortion of RB obscures the formation of oblique structures oriented at ∼ 45° angle to x, see fig. 6.17.
This could be the action of diffusion operator which smooths steep gradients and dissipates energy on high
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wavenumbers.
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Figure 6.18: ROM trajectories for clean, distorted and rotated ROM. Variables in primary and rotated space.

From fig. 6.18 it may be observed that using distorted bases results in correspondingly distorted trajec-
tory (here of coefficients a1, a2) in the phase plane. As expected, the higher the distortion, the further away
the trajectory if ROM from reference ROM trajectory. When rotated basis is applied, relations between the
respectable rotated ROM space coefficients are different than in the primary example. However, when the
variables are transformed back, the identity relation (see section 4.2.1) with primary ROM variables becomes
clear.

6.2.2. Enforced momentum conservation
In this section constrained SVD will be used to enforce momentum conservation in ROM (see section 3.1.4).

The experiment is aimed at examining the compatibility of this technique with iSVD and comparing the re-
sults with ROM in which momentum conservation was not enforced.
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Figure 6.19: L2 velocity error, enforced momentum conservation.
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Figure 6.20: L2 velocity error, enforced momentum conservation and iSVD reference simulation.

M = 35 basis is able to maintain at most 2% error in velocity, fig. 6.19. A comparison is made for the same
FOM and ROMs with and without enforced momentum conservation in fig. 6.20.

0 2 4 6 8 10

-5

-4

-3

-2

-1

0

1
10

-3

(a) Enforced momentum conservation

0 2 4 6 8 10

-3

-2

-1

0

1

2
10

-5

(b) Comparison with reference cSVD case

Figure 6.21: Error in kinetic energy (to FOM at time t ) temporal evolution, with and w/o enforced momentum conservation.

Energy behaviour is similar to the case where momentum conservation is not enforced, yet slightly im-
proved. ROM with M = 35 with enforced momentum conservation is mostly closer to FOM than M = 32
without the modification applied, as may be seen in fig. 6.21.
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Figure 6.22: Error in u-momentum (to FOM IC) temporal evolution, with and w/o enforced momentum conservation.

The conservation of momentum holds in all ROMs to within 10−11 w.r. to FOM, fig. 6.22. Comparison
with reference shows, that enforced momentum conservation works well with iSVD.
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Figure 6.23: Divergence error ‖MhVh (t )‖∞ in maximum norm.

As depicted on fig. 6.23, the order of error in divergence ∼ 10−10, which is more, compared to the case
without enforcing momentum conservation, with cSVD, fig. 6.16. On average divergence maximum error is
of the order ∼ 10−11 with M = 16,32. Compared to clean cSVD fig. 6.16, the errors in divergence for M = 16
bases on either figure are roughly the same (∼ 10−11).

Compared the primordial and modified bases: enforced momentum conservation slightly improves L2

velocity error w.r. to ROM w/o this treatment and to a lesser degree εbest . At tend the errors become approxi-
mately equal (for the same M).

6.2.3. Varying integration period
In this section ROM SL solutions are compared. Three separate sets of snapshots {Vh (ti )}t10 ⊂ {Vh (ti )}t15 ⊂

{Vh (ti )}t20 are considered in basis construction. These sets are FOM SL solutions with tend = 10,15,20. In all
cases M = 32 was used. Standard iSVD settings were set: kadd = 100, Mdom = 100 and threshold 10−6.
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Figure 6.24: L2 velocity error for tend = 10,15,20 and fixed M = 32.

As anticipated, with increasing tend the ROM solution accuracy deteriorates. That is as more distinct and
complex structures appear in FOM as time passes, they influence POD outcome and with the same dimen-
sion of RB, when tend rises, the basis becomes increasingly inaccurate. This is because for as tend increases,
singular values decay less rapidly. Complexity of solution space increases, more energy-carrying structures
become relevant. It is worth recalling that turbulent flow, which develops during t ∈ [15,20] is typically char-
acterized by slowly-decaying Kolmogorov n-width (see section 2.2.1). It seems though in the present com-
parison, fig. 6.24, that when tend = 20, the quality of approximation εbest does not deteriorate w.r. to tend = 15
more than when tend = 15 is compared to tend = 10. It is also not apparent that frequency of error oscillations
should decrease for longer integration period. It happens when tend = 10 and 15 are compared but differ-
ences between tend = 15 and 20 are not that clear, possibly due to flow specifics. In all cases there appears the
typically observable jump of error near tend , sharpest for the shortest period. What clearly distinguishes the
case with tend = 20 from the other two is much larger difference between εbest and εROM at end frame.

0 5 10 15 20

-15

-10

-5

0

10
-3

0 5 10 15 20

-0.15

-0.1

-0.05

0

Figure 6.25: Error in total kinetic energy and momentum with M = 32 and tend = 10,15,20.

In fig. 6.25 it is observed that errors in momentum and kinetic energy at t = tend differ by roughly an order
of magnitude between each of tend = 10,15,20.
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Figure 6.26: Divergence error ‖MhVh (t )‖∞. Comparison of tend = 10,15,20 cases.

Divergence error gradually increases on the mean with tend for the same M , fig. 6.26. This could be a
manifestation of iSVD errors. For longer tend there are more snapshots to process. More incremental steps
means that SVD must be reproduced more times, leading to a mild but apparent error accumulation. Inci-
dentally, more complex fields appear in the snasphots with higher Nt , which also may have influenced basis
computation in the aspect of zero-divergence property.

6.2.4. Time extrapolation
This section presents results of ROM simulations with bases constructed from FOM with tend = 10, but

ROMs are integrated to tend = 15.
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Figure 6.27: L2 velocity error, time-extrapolated case.

Clearly, past tend of FOM, error grows rapidly, fig. 6.27, except in the case where it was already high to
begin with (M = 8). By t = 15 the dimension of RB ceases to matter, as all εbest fall into single value ∼ 0.27.
If εbest of all bases drops to the same order (or even number), and the bases with highest M are the most
accurate, then it follows that steeper increase of error is expected for higher M near tend .
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Figure 6.28: Energy and error (to FOM at time t ). Time-extrapolated cases.

Energy is noticed to drop rapidly past FOM integration time, fig. 6.28. The drop is the more abrupt, the
higher M is used. In the end total energy loss is ∼ 3− 3.5% for all ROMs. In fig. 6.29, momentum error is
presented, indicating that momentum loss progresses at the same rate for all M . Eventually all ROMs lose
∼ 30% of momentum.
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Figure 6.29: Divergence error ‖MhVh (t )‖∞ and u-momentum error (to FOM IC). Time-extrapolated cases.

There is an observable increase in mean (time-wise) divergence error past t FOM
end for M = 16,32 fig. 6.29.

For M = 8 the effect is not articulated. For M = 32 oscillations in error, prevailing almost throughout t ∈ [0,10],
become less regular and somewhat damped. At tend divergence maximum error is of the order ∼ 10−10. So
the ROM struggles not only with keeping FOM trajectory, but also the feature of the solution which is zero-
divergence. For t ∈ [0,10] the relations between ROM variables ai are expected to be such that ai decreases
on average with increasing i . Past FOM integration time, those relations could be disturbed due to lack of
information, resulting in higher values of ROM coefficients for higher i . Those coefficients correspond to
higher-index modes, which have typically higher divergence errors, fig. 5.6-5.7.

6.3. Taylor-Green vortex
In this brief section, results are also shown for TG case, to provide evidence that iSVD is also capable

of producing reduced basis for this test case. Taylor-Green vortex FOM (fine grid) snapshots with tend = 10
serve to build a basis with iSVD parameters Mdom = 100 , kadd = 100, threshold 10−6. The basis is not treated
further. ROM simulation then follow, with M = 8,16,32,48.
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Figure 6.30: L2 velocity error, tend = 10.

Clearly with the same M , εbest in TG case, fig. 6.30 is higher than in the shear layer case, fig. 6.27 with
the same number of elements, time step and tend . Even ROM with M = 32 struggles to reach εROM ≈ 10−1 at
the end of the simulation, with εbest only slightly below. The reason behind that is most likely that TG case
is strongly 3D from the beginning, see eq. (4.5). More basis functions are needed to capture this complexity.
Indeed, SV decay is slower in this case, see fig. 5.28 and compare TG with SL for tend = 10.

(a) FOM (b) ROM M8

(c) ROM M16 (d) ROM M32

Figure 6.31: Velocity magnitude at t = 5: FOM and ROM with M = 8,16,32, tend = 10, . Contours in x y-plane.

Case with M = 48 is by far the only one in this thesis where εbest and εROM are that close together, touching
at tend . It seems that even though TG is a more complex than SL in the beginning phase, this complexity does
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not further evolve. Diffusion appears quite quickly and it is possible that there are not very many modes
needed to have a ROM solution that is best possible.
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Figure 6.32: Total kinetic energy k and error (to FOM at time t ) temporal evolution: GS-orthogonalized and Helmholtz-decomposed
basis.

As seen from fig. 6.32, energy drops fast in all ROMs and FOM. There are moments for M = 8 when energy
overestimate w.r.to FOM is ∼ 30%. Still energy is identically non-increasing, as dictated by EC-ROM frame-
work.
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Figure 6.33: u-momentum and error (to FOM IC) temporal evolution: GS orthogonalized and Helmholtz-decomposed basis.

Global momentum is nearly zero in the TG case, as there is no mean flow, fig. 6.33. This feature is well fol-
lowed by FOM, whose u-momentum is never further away from FOM (or zero) than 5εmachi ne . Interestingly,
the first outburst of imbalance of u-momentum, near t = 1 is stronger with increasing M , which should not
be the case. It is of little concern however, because values of the order ∼ 10−15 are considered here, fig. 6.33,
while ROM errors is still many orders of magnitude higher.
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Figure 6.34: ‖MhVh (t )‖∞ temporal evolution

Divergence error is kept fairly low, fig. 6.34, even though the basis was not treated with Helmholtz decom-
position. A clearer tendency than in shear layer case (fig. 6.4) is noticeable: error in divergence considerably
decreases when more modes are applied.
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Figure 6.35: Spectra at three selected instants. On the first figure excessive accumulation of energy in FOM on highest resolved wave
numbers is clearly noticable.

In the spectrum fig. 6.35 at t = 1.4 there is a clearly noticeable accumulation of energy on the highest
grid-resolved ξn . This phenomenon does not lead to instability, as it quickly passes. It may be caused by
high degree of symmetry in the initial condition, which is an unstable state, tending to change erratically into
a more stable configuration. Due to symmetries there might appear doubling/quadrupling/ etc. of kinetic
energy associated to a particular wavenumber, as many vortices are in coherent motions.

TG is a flow case that behaves differently that SL, in that there is no mean direction flow. Thus the investi-
gation of integer wavenumber spectra makes more sense, as the flow evolves towards homogeneous isotropic
turbulence. However intertial range has not been identified in FOM. Moreover, due to 3D complexity of TG
flow case, eddy viscosity could not be conceived by averaging gradients in xz plane, rendering EV computa-
tion expensive. Hence TG is left out of a priori modeling.
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A priori analysis

The present chapter discusses the results of a priori turbulence modeling analysis. Methodology of this
test was presented in section 3.2. Considerations are limited to the SL case with tend = 20 and grid Np = 2503.
RB constructed from this FOM is conceived from Nt = 2001 snapshots, with iSVD increment size kadd = 100
and numbers of dominant singular values Mdom = 100. Helmholtz and Gram-Schmidt treatment is applied
to the basis. It is reiterated, that in the whole a priori analysis the ROM equations are not solved. Instead,

FOM solution projected onto span
{
Φ

}
or appropriate subspaces is used, so in this chapter a = aFOM at all

times. As a reminder, the least squares problem for α1,β1 eq. (3.42) was:

min
α1,β1∈R

1

2

∥∥∥〈ΦuΦ
T
u Ru〉xz −α1〈ΦuΦ

T
u W1,u〉xz −β1

∥∥∥2
, (7.1)

for α2,β2 analogously.

The constant α1 corresponds to projected diffusive term α1Φ
T

W1 = ΦT
Lh

[
α1ν

t
h ¯

(
Sh

(
Φa

))]
. The con-

stant α2 is of the projected diffusive term with EV-POD α2Φ
T

W2 =ΦT
Lh

[
α2

(
ηg

)¯ (
Sh

(
Φa

))]
. All functions

are averaged in xz plane using 〈·〉xz (first reconstructed via left multiplication of the projected terms by Φ).
Relative error plots (normalized by norm of target function) are given, for M = 8,16,32,48, along with plots
of regression coefficients α,β for all M . The plots of actual target and regressor are presented for two time
instants, t = 5,20.

The closure model is deemed suitable when there is no need to adjust the closure termΦ
T

W (see eq. (3.30))
by either regulating the magnitude of diffusion term or by offset. This translates to regression coefficients tak-
ing on the values α= 1,β= 0. In fig. 7.1 the coefficients are shown. Plots of each α and each β are scaled the
same for on respective subfigures.

Upon comparison of different M it is clearly noticeable, that amplitudes of multiplicative constant α are
rather steady, while that of additive constant β is diminishing with increasing basis dimension. The sec-
ond observation states an obvious result: lower offset is required with increasing basis dimension because

the magnitude of Φ
T
u Ru becomes smaller. The first observation seemingly comes as a surprise for several

reasons. Firstly it was expected, that νt would be vanishing with increasing M , since its computation (see
eq. (3.37)) would be based upon low-energy motions. This is actually the case, see plots of EV in appendix A.3.
There are always some finite gradients expected in very-low-energy motions, which means that the quotient
of eq. (3.37) is likely to be vanishing for those u> due to the square root in denominator. The EV (turbulent)
diffusion operator acts on resolved field Φa, which has opposite tendency, i.e. its magnitude increases with
increasing M . The latter effect is mild, as over 99% of energy (a squared norm of the solution) is contained in

the first 8 modes already. Therefore the whole turbulent diffusive term is expected to vanish. But sinceΦ
T
u Ru

also decays with increasing M , α must adapt accordingly, to maintain optimum in the least squares sense.
And since α oscillates with about the same amplitude for all M , it might be inferred that that the magnitudes

of Φ
T
u Ru and Φ

T
u W1,u (or Φ

T
u W2,u) are decaying at the same rate (w.r. to M) as RB is appended with subse-

quent modes. It is still surprising that α is not decaying, because the closure term should be vanishing for a
well-resolved flow. The reasons behind this should be sought in the way the error estimator is constructed
(absolute error) and simply in that this EV model is not suitable for this particular problem.
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Both regression coefficients at the same time increase in frequency with increasing M . For the first two
bases, with dimensions 8,16 respectively, regression coefficients in t ∈ [0,2] are close to zero. This indicates
that in the beginning phase of the flow there is no need for a closure model, as low-dimension bases describe
dynamics accurately enough and very little fine-scale motions are present at that time. As will be revealed,
this does not mean that the error is low in that period. It only means, that LS optimization yielded such values
of regression coefficients, from which every deviation would result in a higher error. At that time, when mostly
large scale structures are present, the quotient in EV, including velocities and their gradients (eq. (3.37)) likely
does not properly reflect the action of truncated scales.

Another observation regarding regression coefficients is that (especially for M = 8), α and β seem to have
a high degree of correlation throughout the integration period. This tendency is diminishing for higher M
but it still may be said that high value of multiplicative constant frequently requires high value of additive
correction. Furthermore, most of the time, signs ofα andβ are the same. This could be a response to temporal
fluctuations of the target function. The matter will be further discussed at the end of this chapter.

Near t = tend there are noticeable oscillations of α in increased frequency for almost all M . This indicates
onset of turbulence (compare with wavenumber spectra of ROM solutions fig. 6.11), whereby temporal fluc-
tuations of target function (missing content based on FOM) become strong. Basis is also less accurate near
tend , as confirmed by almost all plots of solution error (see e.g. fig. 6.1), which could have also contributed to
this effect.
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Figure 7.1: Coefficients of regression for M = 8,16,32,48 and t ∈ [0,20]
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Relative errors are presented in fig. 7.2-7.3. Those measure how well does the EV-diffusive term along
with an additive constant approximate the missing content. When the error is close to 1, it means that there
is limited capability of the model to approximate unresolved content. It is clear from those plots, that the EV
model does not work well for this particular problem. The lowest error overall is obtained for M = 8, fig. 7.2a.
There are instants at which the error is satisfactory, even < 10−1, but in general it is very high. What is more,
this error is computed w.r. to the exact target function that was used in regression, i.e. xz-averaged unresolved
terms R. However, EV diffusion term is supposed to model a missing term in discretized NS equations. Both
terms are in non-averaged 3D setting. Errors are then of course even higher (see appendix A, appendix A.5).
It is also observed, that, as in the case of regression coefficients, the frequency of error oscillations increases
with M and for a fixed M near tend . The reasons behind that are the same as in case of α,β and L2 velocity
errors in the previous chapter.

What is a significant finding is that POD-expansion of EV does follow the actual EV term well, as indicated
by both errors and regression coefficients (blue curves in fig. 7.1 -7.3). This suggests, that precomputation
with the use of EV-POD makes sense.
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Figure 7.2: Relative error for M = 8,16 and t ∈ [0,20] in averaged terms.
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Figure 7.3: Relative error for M = 32,48 and t ∈ [0,20] in averaged terms.

As described in section 3.2.3, eq. (3.43) - (3.44), LS fit may be achieved either for all components of the

full target vector field 〈ΦΦT
R〉xz , or only for u-component

[
〈ΦΦT

R〉xz

]
u

. Presently only the latter option

is pursued. The errors that have been presented concern fitting xz-averaged regressors W1, W2. However
initial considerations of the closure term in section 3.2.1 were focused on the non-averaged term. Such is
also the role of eddy viscosity in a flow, where it acts on the whole 3D flow field. Errors of the present LS
fit, but computed w.r. to 3D target function R are placed in the appendix, appendix A.5. The conclusion is
that mixing-length EV model (eq. (3.32) with νt described by eq. (3.37)) is a completely inadequate model for
unresolved scales.

Actual regressors and targets are plotted in fig. 7.4-7.5. Legend is common for all plots. It is observed that
at times the approximation if fairly good, e.g. fig. 7.4 for M = 8, although it is too diffusive. From fig. 7.5 it
seems that the regressor misses some high frequency content, which was probably truncated by filtering EV
with Gaussian filter (see section 3.2.2). It appears that filtering could have been adapted better, i.e. by using
lower filter width.
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Figure 7.4: Regressor and target function for M = 8,16,32,48 at t = 5, with and without EV-POD

As mentioned, there appears a correlation between regression coefficients α and β and they frequently
have the same sign. Moreover, β is diminishing with increasing dimension of basis. Increasingly less high-

energy content is included in the (projected) exact closure term Φ
T

R as M increases. Target function is
derived from this term. On the other hand, there is increasingly more low-energy content in the regres-

sor Φ
T

W1, because more modes are included in Φ. However, this tendency is further disrupted by νt (t , x),
which, as M increases, is also built out of consequently lower-energy motions. It seems possible that β is
compensating for a low-energy quasi-steady component of motion, that is not present in the EV diffusive

term Φ
T

Lh

[
α1ν

t
h ¯

(
Sh

(
Φa

))]
when M is low. This component could have arisen e.g. due to perturbations

in IC, see section 4.1. If this was true, it would undermine the hypothesis of equivalence between Fourier and
POD basis.
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Figure 7.5: Regressor and target function for M = 8,16,32,48 at t = 20, with and without EV-POD

One must keep in mind that POD was performed on the field of velocities Vh , not diffusive terms DhVh or
other, and that the regression is performed on xz-averaged terms. It is therefore difficult to argue that high
dimension of basis really fixes the issue of regression additive term β. It is however evident, from the error
plots, fig. 7.2-7.3, that the model simply does not accurately reflect the truncated content, and consequently
more so, for higher-dimensional bases. It is likely that this failure is caused by xz-averaging or deviations
from the original model by Aubry et. al [4], such as using filter on EV or computing EV as instantaneous.
Using iSVD of course could have also added its share of distortion to the results, but it is not regarded as a key
factor here.





8
Conclusion and recommendations

The subject matter of the research that has been carried out covers several topics of different fields:
projection-ROM, closure modeling of eddy viscosity type, approximate SVD/POD. The first objective was
to apply a particular algorithm, iSVD, to a particular ROM: EC-ROM. Then test the validity of produced ba-
sis against three key iSVD parameters by examining the quality of basis and ROM simulation errors, without
unresolved modes modeling.

The second objective was an a priori turbulence modeling analysis, in which a mixing-length EV model
had been implemented. The model coefficients have been regressed based on FOM data to fit to a target
function: the derived exact closure term i.e. the sum of expressions that are missing in ROM equations after
POD truncation. This was aimed at assessing the validity of this type of modeling for the investigated test
cases.

Research questions are recalled with answers written below each question in section 8.1. General conclu-
sion is presented in section 8.2. Recommendations for future research are listed in section 8.3.

8.1. Answers to research questions
In the light of the gathered results, the following answers to research questions from chapter 1 may now

be formulated:

1. Is it possible and to what extent, to use Baker’s incremental SVD algorithm as an approximate memory-
efficient method of computing ROM basis? (chapter 5)

It is possible, single-pass version of algorithm by Baker et al. [5] used in this research has provided bases
resembling cSVD with mode-to-mode errors < 10−4 in the first fifty modes for two different test cases.

(a) What influences the accuracy of basis computation and in what way?

The quality depends on an interplay between increment size kadd , maximum dimension of ap-
proximate basis Mdom and threshold. Preferably, these should be set as high as possible. For high
fidelity w.r. to cSVD kadd is by far the most important. When kadd = 1 (single snapshot incre-
mentation), setting the other parameters high does not compensate for low kadd . This is the price
paid for limited access to snapshot matrix. Increment size affects orthogonality of basis when
threshold is low. Zero-divergence property of the basis is affected by kadd but not by Mdom or
threshold. Increment size also influences distribution of divergence error over modes. With low
threshold more singular vectors are computed (limited only by Mdom). A low rank method, which
iSVD is, is accurate only for modes with lowest indices. When Mdom is low, threshold does not af-
fect the basis fidelity (w.r. to cSVD) significantly, otherwise it does, but only when it’s set to below
∼ 10−12 with also low kadd ∈ [1,10]. An imporant aspect related to effectiveness of iSVD is com-
putational time. Although not documented, it is clear that with low kadd and threshold, and high
Mdom , the algorithm becomes very slow. This is due to greater number of updates which must be
performed at a cost per update similar as with higher kadd . SV decay is mostly affected by kadd

(when kadd < 10) and Mdom , in that higher SVs, right below a given Mdom , are underestimated for
low kadd and Mdom . Threshold affects SV in a similar way, but only when kadd is also low. All of
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those issues could have a different form when a different snapshot matrix is considered. However,
snapshot matrix X used in this thesis contained blocks with highly correlated snapshots (rapid
decay of singular values) and those with low degree of correlation (slow decay of SV), so it covered
many scenarios.

All considerations may be summarized in the following way. Parameters kadd , Mdom and thresh-
old should be set as high as possible without compromising: the advantage of limited access
method (in order not to hit operational memory limits); and quality of basis (compute only as
many SV as necessary for accuracy, based on anticipated SV decay). Additionally, when only low
kadd is permitted, Mdom should not be too high and threshold too low, because computation time
then increases.

(b) How useful are Gram-Schmidt orthonormalization and Helmholtz decomposition as means of
counteracting possible non-divergence-free or non-orthogonal output bases?

There is evidence that they are useful and cause no harm to fidelity of iSVD basis w.r. to refer-
ence cSVD. Gram-Schmidt improves orthogonality, while not destroying zero-divergence prop-
erty. Conversely, Helmholtz decomposition extracts non-divergent part ofΦ at the same time not
affecting orthogonality. The treatment has no effect on wavenumber spectra. However, care must
be taken when corrections due to treatment are large, because then improvement in one property
may result in deterioration of another.

(c) What is the effect of downsampling on the basis accuracy?

It does not strongly affect orthogonality or divergence errors. But it does influence fidelity (mode-
to-mode errors to cSVD): only the first 10 modes have errors < 10−2 when constructed from down-
sampled snapshot set, compared with 10−4 for full set. When kadd is low, this error further in-
creases with mode index.

(d) How susceptible is the 3D EC-ROM basis to distortions or rotations, in terms of basis quality?

Both 5% and 10% distortions cause severe deterioration of orthogonality, zero-divergence prop-
erty and fidelity to cSVD. Rotation does not affect orthogonality or zero-divergence, but it does
alter the spectra and shapes of the modes. This confirms that rotation spoils the property of POD,
which is that modes are ordered w.r. to energy. Since POD basis is unique, deviation from its
original form generally results in loss of this property.

2. How well does INS3D-EC-ROM code perform, in particular with iSVD-basis? (chapter 6)

The code performs well, its behaviour is similar to the 2D-version in [31] by Sanderse in that energy is
also non-increasing. An increase of accuracy is obtained by increasing basis dimension and there are
also higher oscillations of solution errors near ends of the integration period. What is different w.r. to
[31] is that here deviation between εbest and εROM is stronger. It is likely caused by the 3D character of
the presently considered flow and the related forward energy cascade, not by iSVD.

(a) What is the accuracy in terms of errors in velocity, energy, momentum and divergence? (chap-
ter 6 throughout)

As expected, with increasing M , solution accuracy increases. It is particularly observable in εbest .
ROM solution error, represented by εROM , does not behave the same, which indicates that the
full dimension system dynamics is complex. For highest investigated M = 48, εROM ∼ 10−1 and
εbest ∼ 10−2. At lower M differences between εROM for various M are very small. Global kinetic
energy of FOM is followed more accurately by higher dimension ROMs with the exception of M =
8, which is regarded as incidental. At the end of simulation there is deficit in momentum ∼ 5−
10%. In bases of low dimension considerable loss of global momentum was observed (10−25%).
It would therefore be advisable to use constrained SVD (enforcing momentum conservation) in
future research where periodic BCs are considered, since there is also evidence that that technique
is compatible with iSVD. Divergence error in SL case behaves on the mean the same for all M ,
however its oscillations increase in frequency with M . Without treatment the mean divergence
error is ∼ 10−11 in ROM (compared to ∼ 10−18 in FOM).

There is very little influence of either downsampling or GS/Helmholtz treatment on solution accu-
racy. Patterns of evolution of kinetic energy and momentum are unaffected. This is explained with
the already high values of ROM solution errors ∼ 10−2 at best. The treatment or downsampling
make changes to bases well below that value. Hence those changes do not emerge in the presence
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of high solution errors or perhaps do not have enough time to manifest themselves. There was
one exception where supposedly ’better’ full-set basis had higher εbest than downsampled-set ba-
sis near tend . This could be a manifestation of such inconsistencies e.g. in divergence (divergence
error was lower for downsampled basis). Divergence error of ROM solution identically vanishes
upon applying Helmholtz decomposition.

(b) How do the ROM energy spectra compare to FOM? (section 6.1.3)

FOM spectra are mostly underestimated in high range and overestimated in low range of wavenum-
bers. The knee-effect, which is very mild in FOM is exaggerated by ROMs. One could speculate
that the ’knee’ has something to do with energy buildup due to POD truncation, drawing an anal-
ogy to the well-known phenomenon caused by filtering in LES. Since EC-ROM framework is used,
no indefinite buildup of global energy is possible, i.e. build-up in a range of spectrum would
require compensation (deficit) in a different range. This would partially explain the over- and un-
derestimation of energy in respectively low- and high-wavenumber range. What speaks against
the ’knee’ being a manifestation of energy buildup is that it occurs at the same wavenumber for
all M . It is therefore more likely that the ’knee’ is associated to grid cut-off wavenumber in FOM
(ξN yqui st = 125), only exaggerated through effects of EC-ROM and iSVD.

Even though with low dimension of basis one would expect low wavenumber energies to be ac-
curately reflected by ROM, the spectra do not always confirm that. However, since this is not a
stationary process, only instantaneous spectra are available. Because POD modes are energy-
optimal in a time-averaged sense, perhaps in a stationary process the lower-index modes would
more accurately reflect low wavenumber energies.

(c) How susceptible is 3D EC-ROM solution to distortions or rotations of basis in terms of the men-
tioned errors? (section 6.2.1)

Distortion causes larger εbest . When high enough, they also result in increasingly larger gap be-
tween εROM and εbest . There arise no indefinitely increasing instabilities (owing to EC-ROM frame-
work). Energy errors increase considerably when comparing 5% to 10% distortions. This is ex-
plained by the presence of more fine scale content in the lower, high-energy modes due to dis-
tortion. Since those modes have usually high corresponding values of ai , the diffusion dissipates
energy faster. Rotations of basis do not affect ROM solution at all, because they are orthogonal
transformations.

(d) Is enforced momentum conservation compatible with incremental algorithm? (section 6.2.2)

Constrained SVD has been documented as applicable with iSVD. Momentum is confined to ∼
10−12, but the error in energy w.r. to FOM is not always better when enforced conservation is
applied and gain in accuracy is marginal. Divergence error has been clearly lowered by almost
an order of magnitude on the mean. This could suggest that the problems with zero-divergence
are somehow connected to issues with momentum-conservation of ROM, but the differences in
errors are very small.

(e) How does the model behave when different FOM integration times are applied to construct
basis of the same dimension? (section 6.2.3)

As expected, comparing with the same M , the largest set of snapshots, corresponding to the
longest FOM integration period, yielded the least accurate basis. With increasing tend there ap-
pears increasingly more fine-scale energetic structures in the reduced basis. Dynamics of those
evolves very differently than that of FOM, hence the increasing gap between εbest and εROM for
the longest period. For shorter periods there exist correlations between these two errors (oscilla-
tions), for the longest period there are no such correlations observed. Energy and momentum are
lost much faster for ROM with tend = 20 than the shorter ROMs with the same M .

(f) How does the model behave when computed past FOM integration time? (section 6.2.4)

The well known issue with time extrapolation regretfully pertains in EC-ROM, because it is a fea-
ture of POD basis. It seems that there is a regularity in εbest for all M . Shortly after t FOM

end all εbest

fall into a single value.

3. Is EV modeling of mixing length type an appropriate technique to model unresolved scale terms in
the EC-ROM setting? (section 3.2, chapter 7)
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In the particular test case (periodic SL) and with a special variant of EV model, i.e. with filtered νt
(
t , y

)
it may be concluded that the closure model does not provide satisfactory approximation of truncated
modes.

(a) What is the exact form of the discrete closure term, i.e. what exactly is missing in ROM? (sec-
tion 3.2.1)

The term was derived in section 3.2.1. It comprises a sum of mixed convective terms−ΦT
Ch

(
Φ′a′)Φa,

−ΦT
Ch

(
Φa

)
Φ′a′, a fine-scale convective term −ΦT

Ch
(
Φ′a′)Φ′a′, and a fine scale diffusive term

Φ
T
νDhΦ

′a′. This is the exact closure term in the sense that it represents what is missing from
ROM (within FOM integration time) after POD expansion, truncation and projection are applied
to operators.

(b) What are the errors of EV closure term w.r. to the exact closure term?

The answer to that is simple: they are overall high, and more so, when basis dimension is high.
Then they also oscillate more frequently. It seems that for high M the modeling is more frequently
inadequate, i.e. when the error would have reached values exceeding 1 and it is better to switch
off the EV term by setting α and β to zero. It is stressed however, that the magnitude of the exact
closure term also decays with M , which has its role in increasing the relative error, because it is
the normalizing factor in relative error computation.

(c) What is the behavior of regression coefficients for various dimensions of RB?

Just as L2 error of solution oscillates more frequently as M increases, so do the regression coeffi-
cients α,β. The former does not lose its amplitude with increasing M , but the latter diminishes.
This means that no additive compensation is necessary for higher dimension of basis, which is
speculated to result from there being a low-energy quasi-steady motion encoded in the higher
modes. Steady amplitude of α indicates not only that the EV model is not suitable, but also that
the target and regressor terms decay at a similar rate with M .

(d) Is POD a viable choice for EV field approximation in this type of modeling?

Judging from all the plots in chapter 7, there are only rare and brief moments when EV and EV-
POD terms are misaligned. Therefore the answer is: yes, EV may be approximated by its truncated
POD. The same restrictions apply as when any other quantity is approximated by such decompo-
sition, e.g. truncated POD is a form of filtering. Here, the effect of POD filtering is not as much
visible, because νt is already conceived as filtered (by Gaussian filter), Therefore POD rarely intro-
duces change to filtered EV field, provided enough modes are used.

(e) Is precomputation of the EV diffusion operator in closure term possible?

It is certainly possible, and also a recommended step. Estimates on cost savings are not available,
but it is enough to mention that in 3D-EV case the time of computation of turbulent diffusion
operator exceeds 72 hours when no precomputation of EV is performed. The proposed solution
gives an alternative to the one presented by Wang et al. in [34], who propose a two-level scheme
of projection; or to using discrete empirical interpolation (DEIM).

8.2. Conclusion
A priori analysis has revealed, that the proposed EV mixing-length model, inspired by Aubry et al. [4] and

Wang et al. [35], is inadequate in the presently considered test case (SL). Of potential reasons behind this, us-
ing iSVD instead of cSVD seems of marginal significance. The more likely reasons are: the use of xz-averaging
of terms in regression, xz-averaging and Gauss-filtering of νt , computing EV as unsteady (νt = νt

(
y, t

)
), and

the sheer simplicity of expression for EV, which was primordially aimed at modeling turbulence in a near-
wall region of a wall-bounded stationary flow [4]. Especially the last observation makes it understandable
that such model could be inaccurate in an unsteady shear layer flow where no boundaries are present. Fur-
thermore filtering made EV less noisy but also removed some high-wavenumber content, which is observed
in the plots, see appendix A.3. Finally, EV term is simply imposed, artificially added to the ROM equations,
while usually, e.g. in RANS-based ROMs (see [14]), it appears naturally, as one of the RANS-FOM terms, pro-
jected.

Summarizing, iSVD and similar algorithms are a promising direction of research withing MOR, because
savings in computational time and resources are always desired. Even though online-computation (during
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FOM) with single-snapshot increments is at present not recommended, auxiliary methods exist that aid this
process and/or Baker’s algorithm may also be applied to stored data, where also operational memory lim-
itations apply. EV turbulence modeling in POD context is a more complicated matter. Primitive types of
modeling like mixing-length EV mostly fail in ROM just as they fail in RANS/LES. As means of improving
ROM stability, those are unnecessary, because EC-ROM is already stable in a non-linear sense. Energy is
non-increasing, hence an imbalance (such as additional dissipation introduced by closure term) in a range
of wavenumbers requires a compensation in a different range, thereby reducing accuracy. Therefore perhaps
it is more reasonable to seek improvement e.g. in modifications of the SVD basis instead of in artificial dis-
sipation. After all POD basis is optimal only in a single sense: capturing energetic structures within a set of
snapshots in average sense. When truncated POD basis is used and/or when time extrapolation is applied
reduced order modeling is still a challenge.

8.3. Recommendations
This section contains recommendations for future research. Those are grouped into several categories,

corresponding to important aspects of this thesis.

8.3.1. Regarding iSVD
Future research using iSVD could benefit from combining it with algorithm of optimal snapshot selection

by Oxberry et al. [21], see appendix A.7. This has a potential of reducing RB construction time.
Convergence properties of iSVD have been empirically investigated by Baker et al.([5]) only in case of

multi-pass algorithm. No theoretical proof was provided for a general case of matrix A in the single-pass al-
gorithm. Theoretical research should focus on providing error bounds for single-pass algorithm, as this ver-
sion of iSVD is useful for online basis computation. The present research uses single-pass algorithm, whose
performance is verified in [5] only on compression of photographs. Multi-pass algorithm is said to be more
accurate, but requires access to all of A. For offline basis computation it is recommended to apply multi-pass
version of iSVD for higher accuracy.

Due to higher divergence errors in higher-index modes and orthogonality errors which might also ap-
pear in iSVD, treatment of basis is should be considered. When the main iSVD parameters kadd , Mdom and
threshold are maintained in a ’safe’ range, Helmholtz decomposition and Gram-Schmidt orthogonalization is
recommended. The ’safe’ range is such that the resultant orthogonality and divergence errors are maintained
well below basis fidelity errors. This range is case-dependent, but it is advised to keep all three parameters as
high as possible while achieving the purpose of iSVD: accurate low-rank approximation SVD.

8.3.2. Regarding reduced basis
As already stated, SVD provides an optimal basis only in a sense - within a given set of snapshots. There-

fore it is perhaps a convenient starting point, but for problem of time extrapolation it fails. In this case the
basis should be further enhanced, possibly with the use of FOM data from further integration period.

It is difficult to assess what constitutes a good basis, but as a rule it holds that intermodal energy transfer
must be the same as in the full-order basis. This is easier to imagine in solution reproduction problem, but
in time-extrapolation not so much, full-order basis then is still equally inaccurate. Since the mechanism of
energy transfer between modes is not yet well understood, further research in this topic in the spirit of [10] by
Couplet et al. is recommended.

While investigating the ROM vulnerability to RB distortions, the bases should be modified with a dis-
tortion that is divergence-free. This would allow to isolate the effect of distortion from the effect of non-
vanishing pressure which appears when the modes are not divergence-free.

8.3.3. Regarding mixing-length EV model in EC-ROM
EV was (in the primordial plan for this research) supposed to be trained on a neural network or otherwise

regressed, based on high-fidelity data (FOM) to achieve νt = νt (a). Regression is currently not pursued, but
recommended in the future research. In the context of fitting the constant α in the presently used EV model,
sophisticated LS regression could be attempted, such as proposed in appendix A.9 or [14] by Hijazi et al.
POD basis for νt is not a necessary choice. Fourier basis could prove just as good, or better, due to lower
computational effort, as Fourier modes are constructed independently of FOM snapshots. The advantage
of using any series expansion of EV function is that the EV diffusion term can be pre-computed in this case,
without the necessity to project this term at high cost. POD is recommended in case of 3D eddy viscosity,
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νt = νt
(
x, y, z, t

)
, i.e. when storing snapshots is costly and when EV field cold be complex.

It is recommended to apply a more sophisticated EV model e.g. Smagorinsky and compare computation
times of turbulent diffusion operator using EV-POD, 2-step scheme by Wang et. al [34] and discrete empir-
ical interpolation method (DEIM). Perhaps the present EV model inspired by [4] would perform better for
stationary test case, where νt = νt

(
y
)

only. Other expression for νt could also be investigated.

8.3.4. Regarding INS3D
Performance of the code is limited to small-scale simulations. While INS2D is fit for 2D cases, its 3D coun-

terpart requires major changes, particularly in how results data is stored inside and saved. Matrix operators,
which are all fully assembled take considerable amount of memory. Speed is also limited due no multi-core
capabilities. Restart options should also be re-invented.
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A.1. SV decay comparison
Singular value decay of TG and SL cases on fine and small grid are compared in this section. The reference

cSVD full range is plotted (for SL case) and it is shown on scale how small is the fraction of total SV spectrum,
that is the target of iSVD (compare with fig. 5.28)
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Figure A.1: Comparison of singular value decay for all tested cases: full range.
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magnitude of velocity in x-y midplane @ t = 10.00000
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Figure A.2: Shear layer. Fine grid. Velocity magnitude at t = 10: FOM and ROMs. Contours in x y plane.
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(a) FOM (b) ROM M = 16

(c) ROM M = 32 (d) ROM M = 48

Figure A.3: Shear Layer. Fine grid. Velocity magnitude at t = 15: FOM and ROMs. Contours in x y plane.
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(a) FOM

magnitude of velocity in x-y midplane @ t = 10.00000
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(b) ROM M8

magnitude of velocity in x-y midplane @ t = 10.00000
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Figure A.4: Talor-Green vortex. Fine grid. Velocity magnitude at t = 10: FOM and ROM with M = 8,16,32, tend = 10, . Contours in
x y-plane.

A.3. A priori eddy viscosity plots
Here xz-averaged EV is plotted in three variants: raw as obtained from original expression based on [4]:

νt
(
y, t

) = 〈u>·u>〉x,z√〈
∇u>:∇u>

〉
x,z

; filtered with filter kernel h, see eq. (3.37); and POD of this filtered EV. The number

of modes used in this POD is the as respective basis dimension (i.e. when EV is computed for basis M = 16,
then the POD of EV also engages 16 modes).
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Figure A.5: Eddy viscosity at t = 5
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Figure A.6: Eddy viscosity at t = 20
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A.4. A priori absolute errors
In this section absolute errors in averaged terms are presented.
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Figure A.7: Absolute error for M = 8,16 and t ∈ [0,20] in averaged terms.
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Figure A.8: Absolute error for M = 32,48 and t ∈ [0,20] in averaged terms.

A.5. A priori relative errors
In this section relative errors in global terms are presented.
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Figure A.9: Relative error for M = 8,16 and t ∈ [0,20] in global terms.
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Figure A.10: Relative error for M = 32,48 and t ∈ [0,20] in global terms.
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A.6. Pressure Poisson equation
In incompressible flow, pressure is not a strictly independent variable and also needs to satisfy a certain

Poisson equation, derived from eq. (3.9)-(3.10) by taking divergence of the latter equation (see [25] by Pope):

∂

∂xi

∂ui

∂t
+ ∂

∂xi
u j
∂ui

∂x j
=− ∂

∂x j∂x j
p +ν ∂

∂xi

∂2

∂x j∂x j
ui . (A.1)

Periodic BCs, continuity and assumptions that divergence operator commutes with temporal and spatial
derivatives in the terms, eliminate 3 terms from the above equation. The result is a Poisson equation with
velocity-gradient-dependent RHS:

∂

∂x j∂x j
p =−∂ui

∂x j

∂u j

∂xi
. (A.2)

In case of periodic BCs, a Fourier transform may serve to simplify the solution to this equation, now written
using vector notation

F
(∇2p

)=F
(

f
)

, (A.3)

where f is a generic right-hand side in physical space. Then differentiation in spectral space simplifies, be-
coming multiplication by wavenumber vector:

ξ2p̂ = f̂ . (A.4)

Therefore:

p =F−1 (
p̂

)=F−1

(
f̂

ξ2

)
, (A.5)

retrieves the pressure in physical space.
Solving this Poisson equation (A.2) is equivalent to enforcing mass conservation, ∇ ·u = 0 (see [25]; in

discrete domain a correction step must follow). Since periodic BCs are considered, fast Fourier transform
(FFT) might be used, a brief explanation is as follows. Poisson equation in discretized form is:

Ah ph = fh . (A.6)

Solving this system in general case requires LU decomposition of the pressure matrix, or other, iterative meth-
ods. However, as mentioned in the previous section, one might resort to Fourier transform to solve the equa-
tion much simpler, provided that BCs are periodic. Simply an FFT algoritm is used in the numerical domain:

Âh p̂h = f̂h , (A.7)

where Âh is a diagonal matrix with the following elements:

âi = 2hx1hy1hz1

(
2

h2
x1

sin2
(

(i −1)π

Nx

)
+ 2

h2
y1

sin2
(

(i −1)π

Ny

)
+ 2

h2
z1

sin2
(

(i −1)π

Nz

))
, (A.8)

which correspond to the wave number product in eq. (A.5). The matrix is easily invertible, therefore discrete
pressure is easy to recover from:

ph = F F T −1 (
Â−1

h f̂h
)

. (A.9)

A.7. Optimal snapshot selection
Oxberry et al. in [21] demonstrate an algorithm of snapshot selection capable of deciding online (during

FOM run) which snapshots should be selected to update the SVD of the current basis. The authors use Brand’s
iSVD, contrary to the present research, where Baker’s iSVD is used. Although this approach had not been used
in the present research, it is of interest to describe it, as potential savings in computational resources may be
considerable and further recommendations include application of this algorithm.

Denote the right-hand side of FOM eq. (2.6) as Fh (Vh (t )) and assume it is velocity-only. ROM equation is
then

ȧ (t ) =ΦT Fh (Φa (t )) , (A.10)
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whereΦ is the current ROM basis (not the one based on all snapshots, as these are not yet available).
Error is defined as the difference between current FOM solution and its projection onto the image of

current basis:
ė (t ) = Fh (Vh (t ))−ΦΦT Fh (Φa) . (A.11)

This may be rewritten as:

ė (t ) = (
I−ΦΦT )

Fh (Vh (t ))︸ ︷︷ ︸
out-of-subspace component

+ΦΦT (Fh (Vh (t ))−Fh (Φa (t )))︸ ︷︷ ︸
in-subspace component

. (A.12)

Error estimator is constructed by neglecting the in-subspace component:

˙̃e = (
I−ΦΦT )

Fh (Vh (t )) , (A.13)

which integrated w.r. to time yields:
ẽ = (

I−ΦΦT )
Vh (t ) (t ) . (A.14)

Current POD (SVD) is updated with a new snapshot at query time tQ which is computed based on how
fast the error estimator is predicted to grow, by forward Euler method (see equation (14) in [21]).

A.8. LS regression - derivation of formulas
The goal here is to find α,β in the relation between target and regressor, of the form x = αy +β. Let

x, y ∈ RN be vectors containing discrete values of the target function f and regressor g at N 1D grid points,
x = [

f1, f2, ..., fN
]
, y = [

g1, g2, ..., gN
]
. Let 1N = [1,1, ...,1] denote an N -component vector of ones. Define scalar

product
(
x, y

)
:= xT y = ∑

i fi gi . Thus (1N , x) =
∑

i fi and
(
1N , y

)
=

∑
i gi . Finally, let the objective function be

defined as J
(
α,β

)
:= 1

2

∥∥∥x −αy −β1N

∥∥∥2
.

Necessary and sufficient condition for a minimum of the convex function J
(
α,β

)
is that partial derivatives

of J vanish for minimizers αmi n ,βmi n :{
− ∂J
∂α = (

y, x −αy −β1N
)= 0

− ∂J
∂β = (

1N , x −αy −β1N
)= 0.

(A.15)

Further expansion of eq. (A.15) yields:{(
y, x

)−α∥∥y
∥∥2 −β(

1N , y
)= 0

−Nβ+ (1N , x)−α(
1N , y

)= 0.
(A.16)

From the second equation in (A.16):

β= 1

N

(
(1N , x)−α(

1N , y
))

.

Inserting this into the first equation in (A.16) yields:(
y, x

)−α∥∥y
∥∥2 − 1

N

(
(1N , x)−α(

1N , y
))(

1N , y
)= 0. (A.17)

The final formulas for the regression coefficients are then:

α= (y,x)− 1
N (1N ,x)(1N ,y)

‖y‖2− 1
N (1N ,y)2

β= 1
N

(1N , x)−
(
y, x

)− 1
N (1N , x)

(
1N , y

)∥∥y
∥∥2 − 1

N

(
1N , y

)2︸ ︷︷ ︸
α

(
1N , y

)
 .

(A.18)

The above derivation is equivalent to the following one, using Moore-Penrose inverse, found in many

applied linear algebra textbooks e.g. [6] by Ben-Israel and Greville. Let x = [
f1, ..., fN

]T be the target, c =[
α,β

]T regression coefficients and A =
[[

g1, ..., gN
]T

[1, ...,1]T
]

the regression basis functions. We seek the

solution to an overdetermined system:
x = Ac,

which is given by c = (
AT A

)−1
AT x. If A has linearly independent columns (which it does here), the matrix(

AT A
)−1

AT is the Moore-Penrose inverse (or pseudo-inverse),
(

AT A
)−1

AT =: A†. Then the solution is simply
c = A†x.
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A.9. Proposition of LS regression (more sophisticated)
The following idea was not implemented, only mathematical derivation is performed. A more sophisti-

cated regression may be built with coefficients g of EV-POD modes η. Let us invoke the term RHS2 of inves-
tigated equation eq. (3.33). The regression will be performed on xz averaged terms as also EV is computed as
an xz-averaged quantity, which is considered a fair approximation in the shear layer case. The regressor will
also follow only u-component of the averaged LHS. Denote:

k(g ) =
〈
Φ

T
Lh︸ ︷︷ ︸

Lh

diag
(
ηg

)
ShΦa︸ ︷︷ ︸

b

〉
xz

, (A.19)

where Lh is a Nu ×Nu matrix, η is a Nu ×M matrix and b := ShΦa is a Nu ×1 vector. The regression problem
is stated as: find a vector g ∈RM , for which the function f :RM →R,

f
(
g
)= 1

2

∥∥∥k
(
g
)−h

∥∥∥2
, (A.20)

reaches its minimum. Vector h in this equation is simplyΦ
T

R. With the above symbolic k may be written:

k
(
g
)= 〈

Lhdiag
(
ηg

)
b
〉

xz
. (A.21)

It is easily shown that diag
(
ηg

)
b = diag(b)ηg , therefore:

k
(
g
)= 〈

Lhdiag(b)ηg
〉

xz
. (A.22)

Denoting A := Lhdiag(b)η allows to write:

k
(
g
)= 〈

Ag
〉

xz
=

〈
A

〉
xz

g , (A.23)

where the last equality hold because the averaging operation
〈
·
〉

xz
:= 1

Lx Lz
Ωxz

h is linear. Also because of this,

it commutes with the gradient operation:

∇k
(
g
)= 〈

∇(
Ag

)〉
xz

=
〈

AT
〉

xz
. (A.24)

The objective function f is convex, hence a necessary and sufficient condition for a minimum is:

∇ f
(
g
)= 0. (A.25)

The application of chain rule leads to:

∇ f
(
g
)=∇k

(
g
)(

k
(
g
)−h

)=〈
AT

〉
xz

(〈
Ag

〉
xz

−h
)
=

〈
AT

〉
xz

(〈
A

〉
xz

g −h
)

.
(A.26)

With the condition for minimum this yields (denoting
〈

A
〉

xz
:= Aav g ):

AT
av g Aav g g = AT

av g h. (A.27)

Provided an inverse of AT
av g Aav g exists, the solution to the regression problem i.e. minimizing eq. (A.20),

is:

ĝ =
(

AT
av g Aav g

)−1
Aav g h. (A.28)

A.10. Performed computations
The table below summarizes important settings in all performed computations, including tests of iSVD

basis, ROM simulations with a variety of settings, and a priori analysis of turbulence modeling.
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Type of computation Snapshots kadd Mdom threshold treatment t FOM
end tend M Np

Basis quality (SL) 100 100 10−6 - 20 - -
10 100 10−6 - 20 - -
1 100 10−6 - 20 - -

100 100 10−6 Helmholtz 20 - -
100 100 10−6 GS 20 - -
100 100 10−6 Helmholtz +GS 20 - -
100 100 10−10 Helmholtz 20 - -
100 100 10−10 GS 20 - -
100 100 10−10 Helmholtz +GS 20 - -
100 100 10−8 - 20 - -
10 100 10−8 - 20 - -
1 100 10−8 - 20 - -

100 100 10−10 - 20 - -
10 100 10−10 - 20 - -
1 100 10−10 - 20 - -

10 50 10−8 - 20 - -
10 100 10−8 - 20 - -
10 200 10−8 - 20 - -

100 200 10−6 - 20 - -
10 200 10−6 - 20 - -

100 50 10−6 - 20 - -
100 50 10−8 - 20 - -
100 50 10−10 - 20 - -
100 100 10−6 - 20 - -
100 100 10−8 - 20 - -
100 100 10−10 - 20 - -
100 200 10−6 - 20 - -
100 200 10−8 - 20 - -

full set

100 200 10−10 - 20 - -
100 100 10−6 - 20 - -
10 100 10−6 - 20 - -50% downsampled set
1 100 10−6 - 20 - -

1503

SL simulation (main) 8
16
32

full set 100 100 10−6 - 20 20

48
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8
16
32

50% downsampled set 100 100 10−6 - 20 20

48
8

16
32

full set 100 100 10−6 Helmholtz + GS 20 20

48

2503

SL simulation (additional) 8
5% distorted basis

full set - - - - 10 10
16

10% distorted basis 8
full set - - - - 10 10

16

1503

enforced momentum 11
conservation 19full set 100 100 10−6 - 10 10

35
2503

varying integration period 10 10 32
15 15 32full set 100 100 10−6 -
20 20 32

2503

time extrapolation 8
16
32

full set 100 100 10−6 - 10 15

48

2503

TG simulation 8
16
32

full set 100 200 10−6 - 10 10

48

2503

SL a priori analysis 8
16
32

full set 100 100 10−6 Helmholtz+GS 20 20

48

2503

Table A.1: Summary of computations performed in the thesis
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