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SUMMARY

The focus of this thesis is to study the magnetic behavior of ferromagnetic materials, pa-
rameter estimates of the material properties of ferromagnetic materials, and to introduce a
mathematical physics model that can accurately describe the temporal changes of the mag-
netic state of a naval vessel. The aspects mentioned are important steps in the development
of a closed-loop degaussing system.

In the introduction, extensive attention is paid to the background of the magnetic signatures
domain. Since the early twentieth century, sea mines have been seen as a major threat to
civilian ship traffic around the world. This led to the decision at the 1907 Peace Conference
that the use of sea mines should be strictly regulated in order to ensure safety on sea routes.
Since then, the development of sea mines has not stood still, and due to technological
developments, sea mines are becoming smarter and therefore more dangerous. We then
describe how the magnetic signature of a naval vessel introduces a vulnerability to smart sea
mines. The challenges this threat creates are named, and we show what traditional solutions
have been devised to address them. Finally, we describe the mathematical formulation of
the problem we consider in this thesis and define a number of research questions that are
central to it.

In Chapter 2 we give a brief description of the physical background used throughout the
thesis. Through a “Crash course” we explain the origin of magnetization and show what
(macroscopic) physical principles underlie magnetization. We end by solving the magneto-
static equations, and show how the application of Helmholtz’s theorem provides an elegant
description of magnetic fields, given the magnetization distribution of a magnetized object.
These expressions are a starting point for the derivation of the mathematical-physical model
(the “Method of Moments”) in Chapters 4 and 6.

Chapter 3 considers an extensive literature review comparing different models that have
been proposed in the past for the description of ferromagnetic behavior. In particular, we
review (1) the traditional model that divides the magnetic signature into an induced part and
a permanent part (this is strictly not a description of hysteresis), (2) the hysteresis model of
Lord Rayleigh, (3) the model of Jiles and Atherton, and (4) the Energy-Based variational
model by Progizhin and others. The purpose of this study is to understand which model is
best suited to be used in describing the magnetic behavior of a large ferromagnetic object,
such as a naval vessel. For this purpose, we consider not only the accuracy in describing
ferromagnetic behavior, but also the complexity of implementing the models. A trade-off
is made herein.

Chapter 4 introduces a parameter estimation method for the magnetic susceptibility distri-
bution in for linear reacting materials. For a good description of the magnetic state, it is

xi



xii SUMMARY

important to accurately map the magnetic susceptibility distribution. It is conceivable that
a the material from which an object is constructed is inhomogeneous. Based on the mag-
netostatic equations, an integral equation is derived that describes the induced behavior of
the object, under the condition that the magnetic susceptibility distribution is known. The
parameter estimator relies on solving the corresponding inversion problem. This means that
given a collection of magnetic measurements of a magnetized object in a given background
field, an estimate of the best magnetic susceptibility distribution is made. The addition of
regularization supports this search, and imposes a smoothness requirement on the solution
of the inverse problem.

Chapter 5 introduces a parameter estimator for an extension of the Jiles Atherton model.
The extension is designed to guarantee closed minor loops in the hysteresis curve; this is a
well-known artifact in the traditional Jiles and Atherton model. These types of estimators
are more common in the literature, but the focus in this chapter is in the derivation of
the material parameters in the absence of weak fields. This is in contrast to well-known
parameter estimators that require that the applied field can be so strong that saturation in
the material can occur. The parameter estimator we propose consists of two steps. In the
first step, an initial magnetization estimate is made based on an inversion model. For this
purpose, a collection of radial functions is used to represent the magnetization distribution
of a steel plate. Then, in the second step, a dataset of measurements of the interference
field for a varying background field is used to estimate, through a memetic algorithm (the
Shuffled Leaping Frog Algorithm), the optimal values for the material properties of the Jiles
Atherton model.

Chapter 6 introduces two concepts. On the one hand, a mathematical-physical model is
proposed that can describe the temporal variations in the magnetic state of a ferromagnetic
object. On the other hand, we propose a data assimilation scheme that, through magnetic
field measurements, improves the descriptive power of the mathematical-physical model.
In the mathematical model, we distinguish between the initial magnetization estimate and
an integration of the model over time. In a first step, the Method of Moments underlying
the description of the interaction between the ferromagnetic object and the background
field is described. Based on this, an inverse problem is derived that serves to estimate
the initial magnetization distribution. Next, the coupling between the Moments method
and the Rayleigh hysteresis model is considered. Together this forms the mathematical-
physical model used to describe the temporal variations in magnetization. Building on the
mathematical-physical model, we introduce a data assimilation scheme, which can be used
to improve the estimation of the magnetization of a ferromagnetic object over time. Finally,
we analyse the accuracy of the proposed model through a numerical Twin Experiment, and
validate that the mathematical-physical model, in combination with the data-assimilation
scheme, is able to accurately represent the experimental data.

In Chapter 7, we conclude this thesis and make a number of recommendations for a conti-
nuation of the presented research.



SAMENVATTING

De focus van dit proefschrift ligt op het bestuderen van het magnetisch gedrag van ferro-
magnetische materialen, parameterschattingen van de materiaaleigenschappen van ferro-
magnetische materialen en het introduceren van een mathematisch fysisch model die de
temporele veranderingen van de magnetische staat van een marineschip nauwkeurig kan
beschrijven. De genoemde aspecten zijn belangrijke stappen in de ontwikkeling van een
closed-loop degaussing systeem.

In de introductie wordt uitgebreid aandacht geschonken aan de achtergrond van het magne-
tische signaturedomein. Sinds het begin van de twintigste eeuw worden zeemijnen gezien
als een grote dreiging voor civiel scheepsverkeer op de wereld. Dit heeft ertoe geleid dat
tijdens de vredesconventie in 1907 besloten is dat het gebruik van zeemijnen streng ge-
reguleerd moet worden, om zo de veiligheid op vaarroutes op zee te kunnen waarborgen.
Sindsdien heeft de ontwikkeling van zeemijnen niet stilgelegen, en vanwege technologische
ontwikkelingen worden zeemijnen steeds slimmer en dus gevaarlijker. Vervolgens beschrij-
ven we hoe de magnetische signatuur van een marineschip een kwetsbaarheid voor slimme
zeemijnen introduceert. De uitdagingen die deze dreiging creeëert worden benoemd, en
we laten zien welke traditionele oplossingen hiervoor zijn bedacht. Als laatste beschrijven
we de wiskunde formulering van het probleem dat we in dit proefschrift beschouwen en
definiëren we een aantal onderzoeksvragen die centraal staan.

In hoofdstuk 2 geven we een beknopte beschrijving van de fysische achtergrond die door
het proefschrift heen gebruikt wordt. Via een “Crash course” leggen we uit wat de oor-
sprong is van magnetisatie en laten we zien welke (macroscopische) fysische principes ter
grondslag liggen aan magnetisatie. We eindigen met het oplossen van de magnetostati-
sche vergelijkingen, en laten zien hoe de toepassing van de stelling van Helmholtz een
elegante beschrijving geeft van magnetische velden, gegeven de magnetisatie verdeling van
een gemagnetiseerd object. Deze uitdrukkingen zijn een startpunt voor het afleiding van het
mathematisch-fysisch model (de “Method of Moments”) in Hoofdstuk 4 en 6.

Hoofdstuk 3 beschouwt een uitgebreide literatuurstudie waarin een vergelijking gemaakt
wordt tussen verschillende modellen die in het verleden zijn voorgesteld voor de beschrij-
ving van ferromagnetisch gedrag. In het bijzonder bekijken we (1) het traditionele mo-
del dat de magnetische signatuur opdeelt in een geïnduceerd deel en een permanent deel
(dit is strikt genomen geen beschrijving van hysterese), (2) het hysterese model van Lord
Rayleigh, (3) het model van Jiles en Atherton en (4) het Energy-Based variational model
door onder andere Progizhin. Het doel van deze studie is het begrijpen welk model het
meest geschikt is om gebruikt te worden in het beschrijven van het magnetische gedrag
van een groot ferromagnetisch object, zoals een marineschip. Met dit doel beschouwen we
niet alleen de nauwkeurigheid in de beschrijving van ferromagnetisch gedrag, maar ook de
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complexiteit van het implementeren van de modellen. Een afweging wordt hierin gemaakt.

In hoofdstuk 4 wordt een parameterschatting methode voor de magnetische susceptibiliteit
verdeling in voor linear reagerende materialen geïntroduceerd. Voor een goede beschrij-
ving van de magnetische staat is het van belang om de magnetische susceptibiliteitsverde-
ling nauwkeurig in kaart te brengen. Het is niet ondenkbaar dat een het materiaal waaruit
een object is geconstrueerd, inhomogeen is. Op basis van de magnetostatische vergelijkin-
gen, wordt een integraalvergelijking afgeleid die het geïnduceerde gedrag van het object
beschrijft, onder de voorwaarde dat de magnetische susceptibiliteitsverdeling bekend is.
De parameterschatter berust op het oplossen van het corresponderende inversie probleem.
Dit houdt in dat gegeven een collectie van magnetische metingen van een gemagnetiseerd
object in een gegeven achtergrondveld, een inschatting wordt gemaakt van de beste magne-
tische susceptibiliteitsverdeling. Door de toevoeging van regularisatie wordt deze zoektocht
ondersteunt, en wordt een gladheidseis op de oplossing van het inverse probleem opgelegd.

Hoofdstuk 5 wordt een parameter schatter voor een uitbreiding van het Jiles Atherton mo-
del afgeleid. De uitbreiding is erop berust om gesloten minor loops in de hysterese curve te
kunnen garanderen; dit is een bekend artefact in het traditioneel model van Jiles en Ather-
ton. In de literatuur komen dit soort schatters vaker voor, maar de focus ligt in dit hoofdstuk
in het afleiding van de materiaalparameters in de afwezigheid van zwakke velden. Dit in
tegenstelling tot bekende parameter schatters die eisen dat het aangelegde veld zo sterk kan
zijn, dat saturatie in het materiaal kan plaatsvinden. De parameter schatter die we voorstel-
len bestaat uit twee stappen. In de eerste stap wordt een initiële magnetisatie inschatting
gemaakt op basis van een inversie model. Met dit doel wordt een collectie van radiale func-
ties gebruikt om de magnetisatie verdeling van een stalen plaat te representeren. Vervolgens
wordt in de tweede stap een dataset van metingen van het stoorveld voor een variërend ach-
tergrondveld gebruikt om, door middel van een memetisch algoritme (het Shuffled Leaping
Frog Algorithm), de optimale waarden voor de materiaalparameters van het Jiles Atherton
model in te schatten.

Hoofdstuk 6 introduceert twee concepten. Aan de ene kant wordt een mathematisch-fysisch
model voorgesteld dat de temporele variaties in de magnetische toestand van een ferromag-
netisch object kan beschrijven. Aan de andere kant stellen we een data-assimilatieschema
voor dat, door middel van magnetische veldmetingen, de beschrijvende kracht van het
mathematisch-fysisch model verbetert. In het mathematisch model maken we onderscheid
tussen de initiële magnetisatie schatting en een integratie van het model in de tijd. In een
eerste stap wordt de Method of Moments beschreven die ten grondslag ligt aan de beschrij-
ving van de interactie tussen het ferromagnetische object en het achtergrondveld. Op basis
hiervan wordt een invers probleem afgeleid dat dient voor het schatten van de initiële mag-
netisatie verdeling. Vervolgens wordt de koppeling tussen de Momentenmethode en het
Rayleigh hysterese model beschouwd. Samen vormt dit het wiskundig-fysisch model dat
wordt gebruikt om de temporele variaties in magnetisatie te beschrijven. Voortbouwend op
het wiskundig-fysisch model, introduceren wij een data-assimilatieschema, dat kan worden
gebruikt om de schatting van de magnetisatie van een ferromagnetisch object in de tijd te
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verbeteren. Tenslotte analyseren we de juistheid van het voorgestelde model door middel
van een numeriek Twin Experiment, en valideren we dat het mathematisch-fysisch model,
in combinatie met het data-assimilatieschema, in staat is om de experimentele meetdata
nauwkeurig te beschrijven.

In hoofdstuk 7 besluiten we dit proefschrift en doen we een aantal aanbevelingen voor een
vervolg op het gepresenteerde onderzoek.





1
INTRODUCTION

1.1. BACKGROUND
Naval vessels often operate in areas where the threat of naval mines is high. Such fields of
naval mines can be found in littoral waters. During a mission, the detonation of naval mines
must be avoided to ensure the safety of the vessels and its crew. At this moment1, still over
a quarter of a million World War II mines are estimated to be active and impose an extra
risk to both civilian and military shipping. Furthermore, there is an estimated number of
500.000 up to a million modern influence mines active in Earth’s (shallow) waters. Such
numbers show the need of Mine Counter Measures (MCM).

Naval mines have been known in history for a long time. The first use of primitive naval
mines already stems back from the Ming dynasty in the 16th century, when the first mines
were deployed to target pirates operating in coastal seas near China. These kind of mines
consisted of an explosive charge that was loaded into a wooden box and sealed with putty.
A rip cord was pulled by hidden defenders located on the nearby shore which allowed them
to rotate a steel wheel-lock flint mechanism in the wooden box to produce sparks and ignite
the fuse inside the wooden box. During the American Civil war (1860-1865), watertight
keg filled with gunpowder naval mines were used. Floating on the sea surface, these contact
naval mines approached the enemy and detonated by a sparking mechanism if it did hit a
ship. But it was during the Russo-Japanese War (1904-1905) that naval mines were used
extensively as a (defensive) weapon. It is estimated that thousands of mines were deployed
by the Russians. As a result, they induced high costs to the naval fleet of both belligerents.
Unfortunately, it is known that civilians also paid a high price and commercial shipping
suffered both during and after the war. More recently, there are a number of detonations
known that led to large damages to naval vessels (both intended and unintended). These
occurrences clearly show that the threat of naval mines is still a reality. A more recent
example is the following: in 2005 three fishermen died in The Netherlands after a naval
mine was fished up and accidentally detonated.

Parts of this section are taken from [27].
1source: https://www.naval-technology.com

1
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In the past the use of naval mines in conflicts led to the desire to introduce a ban on
naval mines, in particular the unanchored ones, as such classes of mines were a huge threat
to civilian shipping as well due to the lack to control their location. It was during the
Peace convention in The Hague in 1907 that a treaty was defined to regulate the use of
naval mines in both times of war and peace. The treaty, called Hague VIII [4], defined the
regulations and focussed on the principle “freedom of sea routes, the common highway of
all nations”. Furthermore, the treaty forbids the use of unanchored automatic contact mines,
under the exception that “they are constructed as to become harmless at most one hour after
the person who laid them ceases to control them” [8]. It was clear for all nations (involved
in this treaty) that these mines are far too dangerous to civilians in both war and peace time.

1.1.1. NAVAL MINES
As a weapon naval mines are relatively cheap but have a significant value in both a tactical,
operational and strategic point of view. They can be used as a blockages of passage for ships
at strategic locations, or to (heavily) damage and sink ships. NATO [4, page 3] defines a
naval mine as follows:

“An naval mine is an explosive device laid in the water, on the seabed or in the
subsoil therefore, with the intention of damaging or sinking ships or deterring
shipping from entering an area.”

There are a number of types of naval mines known in the literature. They are categorized
in following four classes:

• Moored Mines: These are tethered to the bottom of the sea bed by an anchor and
hover beneath the sea surface. In general detonation takes place when a ship comes
in contact with the mine. This implies that this type of mines can only be used in
shallow waters up to 200 meters to ensure possible contact with the hull of a vessel.

• Drifting mines: As the name suggests, these mines are not anchored to the seabed
and can move freely in the water. It is clear that such mines impose a huge risk to
unintended targets as one cannot control the location of the mine accordingly.

• Bottom mines: Nowadays, technologically advanced mines called multi-influence
mines are deployed on the sea bed and can operate completely autonomously. These
mines can sense the surrounding using magnetic, electric, acoustic, seismic and pres-
sure signal in order to determine if a naval ship is near. On the basis of this infor-
mation, a mine can decide to actuate. These mines are most effective when used in
shallow waters up to 200 meters.

• Rising and rocket mines: These are highly advanced mines moored to the bottom
of the sea bed. Because of their design, these mines can be used effectively at depths
up to 2000 meters.

The effects of an underwater explosion on a ship is a complex phenomenon that involves
both the environmental conditions in the which the explosion occurs, propagation of the de-
tonation wave, energy dissipation to the environment (absorption of energy by the water),
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Figuur 1.1: On February 18th 1991, the USS “Tripoli” LPH-10, an Iwo Jima-class amphibious assault ship, hit
a LUGM-145 mine in the Persian Gulf. The resulting explosion made a breach of 16 by 20 meters. The mine
weighted 145 kg and its price was below $1000. The repair costs at that time amounted to 3.5 million dollars.
Source [23].

reflection of the shock wave from the bottom of the seabed, currents in the sea, wave inter-
ferences of the initial detonation wave and its reflection, cavitation in the sea, the location
of the explosion with respect to the location of the vessel, the mass of explosive material
and more [23].

For bottom mines such as multi-influence mines the explosion itself does not directly
damage a vessel due to the relatively large distance, but the induced shock wave is the main
source for potential damage. During an explosion, the solid state of the explosive material
rapidly transforms, within a time span of 10−7 seconds, into a gas at an initial temperature
of approximately 3300 Kelvin and pressures reaching up to 14000 MPa. The resulting
spherical shock wave propagates through the water at a speed of 5000− 8000 meters per
seconds; such waves decay in strength proportional to the travelled distance. The pressure
at the front of a shock wave is a leading measure to indicate how severe the damage will
be. As explained in [23], pressures of at least 27 MPa will likely result in the sinking of the
ship, but pressures of approximately 6−12 MPa can already have devastating effects on the
electronics of a vessel and crack the hull, taking away (combat) capabilities of a vessel. In
Fig. 1.1 an example of the effects of an exploding naval mine is shown. It is a well-known
case to illustrate the threat of naval mines.

1.2. THE SIGNATURE OF A NAVAL VESSEL
As mentioned already, a modern influence mine uses sensors to measure signals in order
to determine whether or not a vessel is near. If indeed a vessel is near, an influence mine
can decide to actuate. For naval mines, the following underwater signals are the most
interesting:

• A magnetic field surrounding a vessel that locally disturbs the Earth magnetic field.
This disturbance is caused by the ferromagnetic material in the construction of the
vessel, steel equipment on board of the vessel and weaponry.

• An electric field is partially caused by on-board equipment that works on electricity.
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Also the motion of the vessel in a background field generates a small contribution to
the electrical field. The main cause however is the cathodic protection of the system:
using electricity to avoid corrosion of the vessel’s hull and propellers. A current along
the vessel’s hull induces also a contribution to the magnetic field that surrounds the
vessel. However, such magnetic fields are small.

• Sources for Acoustic waves are the on-board machinery, noise from the propeller,
flow noise and the Target Echo Strength.

• Pressure waves are generated by the water displacement by the vessel. As a result, a
wake is created behind the vessel, which is a contribution to the Radar Cross Section
(RCS) of the vessel.

Thus, the existence of these signals makes vessels susceptible to threats of a potential ad-
versary. Besides the obvious threat of a naval mine, the risk of being detected is in some
cases an equal threat. To protect naval vessels to the threat of a naval mine, it is important
to know how strong these signals are, how they propagate through the surrounding media
to be able to minimize and control the signals as good as possible.

It is clear that these signals depend uniquely on the ship’s design, the environment,
location and use of the naval vessel. Therefore we define the signature of a naval vessel as
this complete “picture” of these signals in its surroundings. The reduction of these signals
increases the probability of mission success of a naval vessel. We speak of the magnetic
signature whenever we consider the magnetic distortion field of a naval vessel with respect
to the Earth magnetic field.

1.2.1. THE MAGNETIC SIGNATURE OF A NAVAL VESSEL
In our current research we solely consider the magnetic signature of a naval vessel. The
steel structure of the naval vessel acts as a magnet, and therefore creates a magnetic field
surrounding the vessel. By approximation, we may assume that the Earth’s magnetic field
is uniform locally. It is therefore a logical choice to talk about a distortion of the Earth mag-
netic field by a naval vessel, yielding the possibility to identify the presence of a naval ship
based on measurements of the magnetic field. It is therefore important to reduce magnetic
signatures to an acceptable level to ensure safety. One can distinguish a number of sources
that contribute to the magnetic signature, in order of significance:

(1) The interaction between the steel ship structure and the static Earth’s magnetic field;

(2) The use of cathodic protection to control the corrosion of the metal surface of a naval
vessel and propellers;

(3) Eddy currents in the vessel’s hull by the motion of the vessel in Earth’s magnetic field;

(4) Stray fields generated by electrical equipment, cabling and weaponry on the vessel.

In this thesis, we limit ourselves to the first contribution, that is, the interaction between the
steel ship construction and the Earth’s magnetic field.
The interaction of Earth’s background field and the steel construction of a vessel is a com-
plex phenomenon and its nature is based on physical principles on a microscopic level
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called ferromagnetism. Concepts and models describing ferromagnetism will be explai-
ned in Chapter 3, where a number of potential ferromagnetic models are investigated and
compared.

In more detail, ferromagnetic behaviour of steel consists of the following properties and
effects (see Chapter 3):

• Hysteresis: the magnetic memory of steel constantly changes the instantaneous res-
ponse of steel to an applied field. It is indicated by a non-linear relationship between
the internal magnetic field and magnetic induction field inside ferromagnetic mate-
rial. The evolution of the magnetisation in time depends on the the past values of the
applied magnetic field.

• Magneto-Mechanical effects: The behavior and properties of steel change due to
mechanical stress. Examples of mechanical stress are for example bending/welding
of steel plates or damage to the vessel’s hull due to military weapons.

1.2.2. MAGNETIC SIGNATURE RESEARCH
Signature research is an important field for many nations worldwide. Due to technological
developments in the field of electronics, robust sensors with increasing sensitivity are being
developed with decreasing costs. Therefore, signature reduction requires constant atten-
tion. Unfortunately, due to its classified nature, scientific developments in this field are not
always shared in (peer-reviewed) papers and thus it is not always clear what state-of-the-art
developments are.

1.3. MINE COUNTER MEASURES
As mention in Section 1.1, there is a need for mine counter measures to protect both the
military vessels and civilians in both peace and war time. A signature management sy-
stem is potentially a great counter measure against mine threats, but requires both good
(mathematical) models that describe signatures in an accurate way and knowledge about
environmental parameters such as the location of mine fields.

Since the use of influence mines in the second world war, effective counter measures
have been developed. After the allied forces in the war discovered the extensive use of
the magnetic signatures in sea mines, they started with investigating means to avoid the
detonation of sea mines. This led to the notions of deperming and degaussing.

1.3.1. INDUCED AND PERMANENT MAGNETISATION
In the field of magnetic signatures, it is common practice to linearise the complex ferro-
magnetic behaviour by the superposition of permanent magnetisation (constant in time)
and induced magnetisation due to a linear response of the steel material to the earth mag-
netic field (see Chapter 3 for an explanation about this separation into a permanent- and
induced magnetisation.). For this induced magnetisation, the permeability of the material
is important. In the case of steel, the relative permeability µr is in the order of 100−106.
Therefore, a vessel’s induced magnetisation changes significantly over time while moving
through the earth magnetic field. A schematic overview of the magnetic signature in the
Earth magnetic field can be found in Fig. 1.2. The signature is orientated in the same
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Figuur 1.2: (left) A schematic overview of the Earth magnetic field. Note that the geomagnetic north pole lies near
the geographic south pole, as the fields lines are pointing outward. source: http://www.nasa.gov. (right)
The induced magnetic signature of a steel vessel at the Northern Hemisphere. The Earth magnetic field pointing
vertically inwards the Earth, and therefore the vertical component of the magnetic signature is dominant.

direction as the Earth magnetic field. Measures are required to reduce the contributions
of permanent and induced magnetisation to the magnetic signature to keep the magnetic
signature below acceptable levels to remain magnetically unobservable.

1.3.2. DEPERMING A NAVAL VESSEL
One of the most effective ways to reduce the magnetic signature of a naval vessel, is the
use of a deperming treatment2. After the construction of a vessel, a (strong) magnetic
signature is unavoidable due to the mechanical stresses that build up in the material during
construction. The ferromagnetic nature of steel and the internal mechanical stresses lead to
a permanent magnetisation of the vessel’s structure.

Deperming, or demagnetisation of the vessel, is a treatment that is typically done a few
times in the lifetime of a naval vessel. Depending on the deperming range, a vessel is either
positioned within a coil system, or coils are wrapped around the vessel. In Fig. 1.4 the Lam-
bert Point Deperming Facility is shown. During deperming, an alternating decaying current
in the coils generates a magnetic field reduces the permanent magnetisation. Sometimes a
number of such treatments are required to obtain the necessary reductions. Unfortunately,
it is observed that the permanent magnetisation grows over time when a vessel is moving in
the Earth magnetic field. Therefore after some time another deperming treatment may be
necessary.

1.3.3. DEGAUSSING
After a deperming treatment, the permanent magnetisation is reduced to an acceptable level.
However, due to the ferromagnetic nature of steel, the steel hull of a vessel magnetises
over time when it moves through the Earth magnetic field. This implies that the magnetic
signature may still exceed certain norms, leading to vulnerable platforms and possible risks
to mission success.

The term degaussing3 was first was coined by then-Commander Charles F. Goodeve,
RCNVR during World War II. The Axis forces developed a naval mine with a detonation

2Building ships from nonmagnetic material is an even better way to reduce magnetic signatures, but there may
exists restrictions on the vessel’s capabilities and its operational purposes that make this choice of unfavourable.

3Source: https://en.wikipedia.org/wiki/Degaussing.

http://www.nasa.gov
https://en.wikipedia.org/wiki/Degaussing
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Figuur 1.3: US/UK World Magnetic Model (WMM). Every five years, a model for the magnetic field of the
Earth is updated. WMM2020 consists of a degree 12 spherical harmonic model of the Earth’s magnetic main
field. This model is calibrated using a large number of measurements of the magnetic field using both ground
and satellite data. Note that the magnetic field varies significant across the planet, which a clear distinction
of the z-component in the Northern and Southern Hemisphere. The values of Earth’s magnetic induction field
varies between ±60 microtesla. A red line indicates easterly changes, a blue line westerly changes and green
zero change. The contour plots indicates that the geomagnetic south pole of the Earth’s magnetic fields lies
close the North Pole and vice versa. Source: https://geomag.bgs.ac.uk/research/modelling/
WorldMagneticModel.html.

mechanism that uses the magnetic field as a measure for detonation. When a steel vessel
was near such a mine, the vertical component of the magnetic field, measured by the mine,
significantly increased and detonation then followed. In turn, the use of these mines was
an effective measure to counter the British Fleet. Admiralty scientists such as Goodeve,
developed a system that induced a strong "N-pole up"field, to reduce the strong vertical
field of the vessel, meaning that the sum of the two fields (the measured magnetic field
and the “N-pole up” field) of the vessel was approximately the same as the Earth magnetic
background field. Since the Axis used the gauss as the unit of the strength of the magnetic
field, Goodeve referred to the various processes to counter their mines as "degaussing".

A degaussing system is thus the collection of large coils (in three directions) inside the
ship’s hull, where the currents in each of the coil are controlled. The currents are used to
reduce the magnetic signature of the vessel. In the calibration of this degaussing system,
two steps are distinguished. First, values for the coil currents are determined to minimise the
contribution of permanent magnetisation to the magnetic signature. Note that in traditional
systems, the permanent magnetisation is assumed to be constant in time, and therefore the
found values only need to be computed once. To compensate the contribution of the induced
magnetisation, the values of the coil currents are computed through a simple linear model,
that uses the Earth magnetic field as input. An extensive explanation can be found in [11].

https://geomag.bgs.ac.uk/research/modelling/WorldMagneticModel.html
https://geomag.bgs.ac.uk/research/modelling/WorldMagneticModel.html
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Figuur 1.4: The Lambert Point Deperming Facility located in the Elizabeth River just off Lambert’s Point, Norfolk,
Virginia, United States.

1.4. MATHEMATICAL FORMULATION OF THE PROBLEM
In the previous section, separation of the magnetic signature into a permanent- and induced
part was mentioned. The resulting simple model is used to define a degaussing system that
can reduce the magnetic signature. It is observed that the permanent magnetisation in a
vessel changes significantly over time [26], and therefore the reduced magnetic signature
may exceed its required norm. In order to take the change of permanent magnetisation
into account, a more sophisticated mathematical model is required that also describes the
dynamics of permanent magnetisation of a naval ship. The model must include the use
of data of the ship’s motion, sensor data of on-board sensors, historical data and other
measurement data, to come up with a correct estimation of the changes in the permanent
magnetisation, to control the degaussing currents in the correct way. This model plays a
key role in the closed-loop degaussing methodology.

In the development of a mathematical model for the closed-loop degaussing system, the
following aspects need to be addressed.

1.4.1. MATHEMATICAL- PHYSICAL MODEL
In this thesis, advanced (mathematical) models are considered to capture the complexity of
ferromagnetic behavior. The notion of an induced and permanent magnetisation is loose-
ned, as permanent magnetisation is no longer considered “permanent”. Instead, the genera-
lisation to magnetic hysteresis is included in the proposed mathematical-physical models,
called ferromagnetic models. To understand how ferromagnetic hysteresis works, Made-
lung [15, 17, 30] investigated this behaviour and derived a number of rules that are obeyed
by ferromagnetic material. These rules play a starting point in the derivation of mathema-
tical and physical models for ferromagnetism. This results in numerous proposed models
in the literature. Examples are the mathematical models by Preisach [25] and Play-& Stop
models [1, 18, 19], the hysteresis model proposed by Tellinen [24, 31], a formalism that is
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based on physical concepts described by Jiles and Atherton [13, 29], the energy-variational
model by Henrotte et al. [10, 16, 22] and simplistic models such as the hysteresis model
by Lord Rayleigh [14] and by Zirka and Moroz [30] based on transplantation of the major
curve branches.

The above-mentioned models describe ferromagnetism on a material level by a set of
parameters. To describe the ferromagnetic behavior of a large structure, the coupling with a
finite-element environment or boundary element environment is necessary. In magnetosta-
tics, the Method of Moments is a well known method to describe the strong inter-coupling
effects within a magnetic structure. Note that this method is similar to the boundary ele-
ment method. Examples of the application of the Method of Moments can be found in e.g.
[2, 3, 20, 21, 28].

1.4.2. INVERSE MODELING

In order to use a ferromagnetic model, the initial magnetic state of a ferromagnetic struc-
ture must be determined. The initial magnetic state consists of (1) the magnetisation of
the structure and (2) the values of the material parameters. To obtain values for material
parameters in the hysteresis model, an inverse modeling framework must be invoked.

To understand this inverse modeling framework, the notions of forward and inverse
problems must be understood first. A forward problem is the process of calculating the
resulting effects from a set of causes. Contrary to the forward problem, the inverse problem
is the process of computing the causal factors from a set of observations. While mathemati-
cally speaking, forward problems are well-posed, an inverse problem is typically ill-posed.
Hadamard [5, page 31] defined a forward problem to be well-posed if (1) for all admissible
data, a solution exists, (2) for all admissible data, the solution is unique, and (3) the solu-
tion depends continuously on the data, are all satisfied. A problem is ill-posed if one of the
above criteria is not met. As a result, well-posed problems are in general “easy” to solve,
while ill-posed problems are typically hard.

In this thesis, the magnetisation of a large structure is found by solving an inverse pro-
blem based on measurements of the magnetic induction field in the vicinity of the structure.
Such measurements can be used to find either the magnetisation inside the object, or the
material parameters of the underlying ferromagnetic hysteresis model. The determination
of the magnetisation based on measurements of the magnetic induction field for one fixed
setting is called a static inverse problem, while the determination of the values of the ma-
terial parameters involves capturing the temporal behaviour of the material, and therefore
measurements in time are required in order to retrieve these values.

Inverse problems in magnetostatics are mathematically ill-posed. This is related to the
smoothing-properties of the Green’s function of the underlying Poisson’s equation. One can
prove [27, Section 3.6] that the corresponding bounded linear function T is compact with
finite-dimensional range. Therefore the pseudo-inverse T † is discontinuous which finishes
the proof. As a direct implication, resulting solutions are very likely to be (numerically)
unstable, and hard to solve. In order to resolve such issues regularisation of the problem is
required.
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1.4.3. REGULARISATION

In order to solve an inverse problem, additional information can be added to the problem
to prevent overfitting or to reduce the dimensions of the solution space of the problem,
therefore making it easier to obtain a solution to the problem. This is called regularisation,
see [7].

Regularisation is used in the cases where the inverse problem is either ill-posed or ill-
conditioned (in the case of a linear inverse problem). In machine learning applications,
regularisation plays an important role in for example classification. Also, regularisation
is often applied in continuous optimisation problems. For linear problems, regularisation
can be related to the adaptation of singular values of the corresponding singular value de-
composition of the linear operator, enforcing the adapted problem to have larger singular
values to improve and ensure numerical stability, while reducing the non-uniqueness of the
solution as the dimension of the kernel of the linear operator is reduced. Techniques such
as Tikhonov regularisation [9], [5, Chapter 5] and truncated singular value decomposition
[5, Section 3.3] modify the singular values.

More advanced regularisation techniques tend to include a priori information about the
solution that is sought. For example, a smoothness condition can be imposed as a regulari-
sation term to enforce a smooth solution.

1.4.4. DATA ASSIMILATION

In general, a mathematical model does not capture all aspects of a physical phenomenon,
due to insufficient knowledge about the underlying physical principles, limited computation
power, or due to intentionally neglected small effects in the modeling phase. In such cases,
the resulting mathematical model is uncertain with limited predictive power to represent the
real world accurately. Even if the model itself perfectly represents the real world, solutions
will not describe reality due to inaccurate initial or boundary conditions [6, Introduction].
To increase the predictive power of a model, measurement data can be assimilated to update
the model parameters. This is called data assimilation.

In mathematics, data assimilation methods are divided into two categories: sequential
data assimilation and variational data assimilation. The Kalman filter and Ensemble Kal-
man filter are well known sequential data assimilation methods, in which the state-vector of
a model is updated by assimilation of measurement data using the covariance matrices of
the uncertainties in both the model and state vector. The Kalman filter is a robust method
for high-dimensional systems, Particle filters or Sequential Monte Carlo (SMC) methods
are also sequential methods. However, particle filter methods do not perform well when
applied to very high-dimensional systems. Variational data assimilation methods such as
3DVAR and 4DVAR are successfully used in weather forecasting.

In this thesis, however, we follow a more heuristic approach when applying the concept
of data assimilation. This is based on the principles behind Kalman filtering, but any statis-
tical considerations are neglected. Using sensor data, discrepancies between the predicted
fields on the sensor data by the model and the measured values, are assumed to be related to
a change in magnetisation that is not captured by the model. Using a regularised inversion,
a change in magnetisation is computed to minimise this discrepancy.
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1.5. OUTLINE OF THIS THESIS
1.5.1. RESEARCH OBJECTIVES
The objectives of this thesis are the development of two models:

(M1) A monitoring model for accurately describing the magnetic signature of naval ships.

(M2) A closed-loop degaussing algorithm for optimal reduction of the magnetic signa-
ture.

It is important to note that the two goals are intertwined: the monitoring model takes part
in this complex closed-loop degaussing algorithm, because the coil system also affects the
magnetic signature and magnetic state of a vessel. To achieve the above-mentioned goals,
we distinguish the following research questions in this thesis:

(RQ1) Investigate the state-of-the art developments in the field of ferromagnetism. Which
hysteresis model should we choose for our mathematical-physical model?

(RQ2) How can we determine the initial magnetic state of a vessel?

(RQ3) Is it possible to obtain an efficient numerical model that describes the temporal
dynamics of the ferromagnetic behavior of a large structure?

(RQ4) What is the added value of data-assimilation in magnetostatic?

1.5.2. REQUIRED MODELS IN CLOSED-LOOP DEGAUSSING
In Figure 1.5 a concept of Closed-Loop DeGaussing (CLDG) is presented. The principle
idea behind CLDG is the use of on-board sensor data to update the underlying mathemati-
cal model and degaussing currents for optimal reduction of the magnetic signature at any
time. The closed-loop degaussing system should update the degaussing currents autono-
mously on the basis of on-board sensor data and a numerical model. In order to calibrate
the degaussing system for a naval vessel correctly, an extensive measurement campaign is
necessary to obtain values for the parameters in the numerical model and to determine the
initial magnetic state of the vessel.

The system mainly consists of two mathematical-physical models:

1. The first model, called the Initial Magnetic State Model, is an inverse model that
determines the initial magnetic state of the steel structure of a naval vessel. Such a
model uses a large data set of (on-board) measurements of the magnetic field.

2. The second model, called the Magnetic Signature Prediction Model, predicts the
change in the magnetic signature, based on on-board data such as magnetic mea-
surements, ship’s motion and location of the ship. The prediction of the magnetic
signature is used for the reduction of the signature by the degaussing system algo-
rithm.

The two models are represented in the Fig. 1.5 by larger red boxes. In the update-step of the
degaussing currents, a more sophisticated minimization algorithm should be implemented
to automate this process of minimizing the current magnetic signature.
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Figuur 1.5: Concept of CLDG, version 2015.

1.6. ORGANISATION OF THE THESIS
The thesis is organised as follows. Chapters 3 to 6 are based on papers and hence some
overlap is present. Therefore we have chosen to include in each chapter an abstract and a
reference list with the corresponding literature that is used in that chapter.

Chapter 2 describes fundamental aspects of magnetism and its origin. It provides the
reader with background information on the topic of magnetism. Important quantities and
formulas that are used throughout the thesis are explained briefly. Chapter 3 deals with
a literature study and assessment of a number of models that describe ferromagnetism.
Experimental data is compared to the performance of these models to show resemblance
in order to pick the best model for our closed-loop degaussing methodology. In Chapter
4 a magnetic susceptibility estimator in magnetostatics is proposed based on experimental
data with an application of the adjoint method to speed up the performance of the involved
optimisation algorithm. Chapter 5 proposes a parameter estimation method for the Jiles-
Atherton model in weak fields. The method is tested on thin steel sheets. In Chapter
6 we propose a data-driven model for magnetostatics based on a simple data assimilation
filter. The addition of data-assimilation allows the model to take into account changes in the
permanent magnetisation, based on on-board measurements. Finally, Chapter 7 summarises
the conclusions in this thesis and gives recommendations for further study.
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2
A CRASH COURSE IN

MAGNETISM

Magnetism1 was discovered a very long time ago, even back to the Ancient period. Around
2000 BC, people noticed that lodestones (which are naturally magnetised pieces of mineral
magnetite Fe3O4) could attract iron. Such magnetised lodestones were used in the first
simple magnetic compasses, by suspending the lodestone such it could rotate freely. In
ancient Greece, Aristotle was one of the first philosophers that started a scientific discussion
of magnetism, together with Thales of Miletus in the year 625BC to about 545BC. The word
magnet stems from the Greek term magnētis lithos, which means “the Magnesian stone”.
It is interesting to note that around the same time, Indian surgeon Sushruta already used
magnets for surgical purposes.

All materials exhibit magnetism at some level, but the magnetic behavior depends on
the electron configuration of atoms and the temperature. Therefore, in a macroscopic world,
many materials do not show magnetic properties because the strength of the magnetisation
is simply too weak to observe. Above the so-called Curie temperature, most material spon-
taneous lose their permanent magnetic properties; the magnetisation becomes unordered
yielding a vanishing average magnetisation.

In this chapter, we briefly discuss the basic notions of magnetism. The notions of mag-
netisation and a magnetic field are introduced, and we discuss what causes magnetic fields
in our psychical world. The concept of magnetic induction or magnetic flux density, allows
us to measure the effects of magnetism indirectly. After the introduction of what magneti-
sation is, we formulate the Maxwell equations that serve as fundamental laws for our work.
By means of these equations, we are able investigate magnetic fields that stem from mag-
netisation distributions in magnetised bodies, even though in general descriptions of such
magnetic fields are complex. It is worth mentioning that there are many well written books
about magnetism, see for example books on (electromagnetism) by Jackson [2], Coey [1]
and Zangwill [4]. This section is based on these books.

1source: https://www.thoughtco.com/
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2.1. WHAT IS THE NATURE OF A MAGNETIC FIELD?
The magnetic field is the most fundamental idea in magnetism, and magnetism is caused
by the electromagnetic force, which is one of the four fundamental forces along with the
strong force that holds nuclei together, the weak force that controls the decay of unstable
subatomic particles and the gravitational force between masses.

MOVING ELECTRIC CHARGE
When an electric charge is moving, it generates a magnetic field perpendicular to the velo-
city vector of the electron or current. An example for which electrical charge is moving is a
current in a wire. The magnetic force that exists due to charge in motion, can be explained
by application of the relativistic Lorentz transformation to the Coulomb force between the
charges. The magnetic force is therefore a relativistic one. Recall that when charges are at
rest, the only force between the charges is the electrostatic Coulomb force. This force is
described by Coulomb’s inverse-square law and reads

F = ke
q1q2

r 2 (2.1)

where ke ≈ 9 ·109 Nm2C−2 is Coulomb’s constant, q1 and q2 are the signed magnitudes of
the charges and r is the distance between the charges in meters. The magnetic field can
therefore been seen as a correction to the electrostatic Coulomb force.

PERMANENT MAGNETS
In the case of a permanent magnet, there is no moving electrical charge on a macroscopic
scale such as currents in wires or metal sheets. However, the orbital angular momentum
and spins of electrons within the magnetic material (the so-called Amperian currents) lead
to a net magnetisation within the geometry, and causes a magnetic field (outside the geo-
metry). To illustrate the appearance of magnetisation due to orbital motion, consider the
derivation of the magnetic moment of a single electron with charge −e in orbiting around
in an hydrogen atom. Please refer to Fig. 2.1 for a sketch of the situation.

Consider a hydrogen atom positioned at the origin and suppose an electron is orbiting
around the nucleus (in blue) in a circular orbit with a velocity of v clock-wise; the charge
of the nucleus is +e. The mass and charge of an electron and the Bohr radius2 in a classical
sense are given by

• me := 9 ·10−31 kg (the mass of an electron)

• e := 1.6 ·10−19 C (the charge of an electron)

• Ra0 := 5 ·10−11 m (the Bohr radius of an hydrogen atom)

The electron causes an effective current I running counter-clockwise around the nucleus.
The Coulomb force between the electron and the nucleus (2.1) is given by

F = ke
e2

4πR2 (2.2)

2The Bohr radius of an hydrogen atom is the most probable distance between the nucleus and the electron in a
hydrogen atom in its ground state.
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Observe that in this example the centripetal force Fc = mv2

R
equals the Coulomb force.

Therefore the velocity v is computed through

Fc = F ⇔ ke
e2

4πR2 = mv2

R
⇒ v =

√
ke e2

4πmR
≈ 2.3 ·106 m/s (2.3)

Note that the velocity of the electron is small compared to the speed of light, therefore we
may neglect any relativistic effects. Now that the velocity of the electron is known, the
current that the electron induces is computed. Note that current is by definition the amount
of charge per unit time, i.e., I = e

T
, where e is the charge of the electron and T is the period

of the electron traveling a full orbit. Because the orbit is a circle with radius R, the period
is T = 2πR/v ≈ 1.4 ·10−16 seconds. Therefore, the current produced by the single electron
is given by I ≈ 1.1 ·10−3 A, which is approximately 1 mA. Because there is a current in the
circular loop, a magnetic moment µ̂ is produced, µ̂= I A, where A = An is the vector area,
A is the area of the circle and n is the normal vector pointing upwards. The existence of
such a magnetic moment is due to the law of Biot-Savart (see Section 2.2). The magnetic
moment is given by

µ= I A = (1.1 ·10−3)(πR2) = 9.3 ·10−24 Am2 (2.4)

In atomic physics this is called the Bohr magneton, denoted by µB . To conclude that the
angular moment of an orbit is related to the magnetic moment, observe that L = r× (me v)

defines the angular moment. We then may write [2, Chapter 5.6, page 148] µ = q

2me
L,

where the charge q = −e now has negative sign to correct the orientation of the angular
momentum.

R

F
e−

v

I

Figuur 2.1: An electron in an orbit.

In both cases, the magnetic field is generated in space. The magnetic field exerts a force
on a moving charge called the Lorentz force. The Lorentz force, is the combination of the
electric and magnetic force on a point charge. For a particle with charge q moving with a
velocity in an electrical field E and magnetic induction field B the force that it experiences
reads

F = qE+q(v×B) (2.5)

The above explanation is within a classical framework. However, magnetism is in fact a
quantum-physical phenomenon. In the remaining chapter, it will become clear what we
mean by a magnetic induction field B. But first we discuss the magnetic field H arising
from a current in a wire, whose value is determined by the law of Biot-Savart.



2

18 2. A CRASH COURSE IN MAGNETISM

2.2. BIOT-SAVART LAW
The law of Biot-Savart allows us to compute the magnetic field H that is generated by an
electrical current. Note that this law was merely a statement of experimental observation,
first demonstrated by Ørsted, and that it may be derived from Ampere’s law. In differential
form, the law of Biot-Savart gives the field contribution δH to the magnetic field H genera-
ted by a current flowing through an infinitesimal length of a conductor. See Fig. 2.2. The
magnetic field δH is given by

δH(P) = 1

4π
J

[
δl× P− l

‖P− r′‖3

]
(2.6)

where J is the current in Amps flowing in an infinitesimal length δH, ‖x‖ = ‖P− l‖ is the
radial distance between the point of observation P and the position of the infinitesimal
length of a conductor l. In its integral form, the law of Biot-Savart for the magnetic field
H(r) at the observation point P reads

H(P) =− 1

4π

∫
γ

J (l)
[

r− l

‖P− l‖3 ×dl
]

(2.7)

where γ describes the contour of the conductor. For a circular coil, the magnetic field
produced by a running current is orthogonal to the cross section of the enclosed area. In
Fig. 2.2, using the Right-hand rule, the orientation of the magnetic field is upward.

Consider the application of the Biot-Savart law for a circular coil of N turns with a
radius of a meters. The coil is carrying a current of I amps. To find the magnetic field at
the center, we divide the coil into n elements with arc length δl. Note that (δl)i ×l = (δl )i uz ,
where uz is the unit vector pointing in the z-direction. Furthermore, the total current flowing
through the coil reads J = N I amperes. Applying the Biot-Savart law, we find the magnetic
field

H = N I uz

4πa2

n∑
i=1

(δl )i → N I

2a
uz (as n →∞) (2.8)

in Amps per meter. Observe that the magnetic field strength of a circular coil of N turns is
directly proportional to both the current I and the number of turns N . This observation is
crucial for designing degaussing coils.

Figuur 2.2: The law of Biot-Savart. Here, the contribution dH of a current I in an infinitesimal unit of length d l
to the magnetic field at location P is depicted. Source: [2].
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2.3. DEFINITION OF THE MAGNETIC FIELD
Based on our previous finding for the magnetic field at the center of a circular coil with one
turn, we define the unit of the magnetic field H. The magnetic field has as unit ampere per
meter [A/m], which is the magnetic field strength of 1 A/m that is produced at the center
of a single circular coil of diameter 1 meter when it carries a current of 1A. Note that it is
implicitly assumed that we work with (SI) units.

Note that in this definition the unit of the magnetic field is associated with a current.
In subsection 2.1 it was observed that a magnetic field can also be produced without an
effective current distribution, but rather by angular momentum of electrons. In table3 2.1
one can find the magnetic field strengths in various situations. It is worth noticing that
Earth’s magnetic field at the surface is relatively weak, of the order of 50 up to 100 A/m.

Field Strength [A/m] Application

1014 Surface of neutron stars
108 Implosive magnets (microsecond duration)
2−5×107 Pulsed electromagnets (microsecond duration)
1−3×107 High field electromagnets
1−1.5×107 Superconducting magnets
1−2×106 Laboratory electromagnets
1×106 Strongest permanent magnets
102 Earth’s magnetic field on the surface
10 Stray fields from electrical machinery
1 Urban magnetic noise level
5×10−2 Contours for geomagnetic anomaly maps
10−4 Magnetocardiograms
10−5 Fetal Heartbeat
10−6 Magnetic field from human brain
10−8 Limits of detection for superconducting quantum interference devices

Tabel 2.1: Magnetic field Strengths (A/m) in a variety of situations, showing a range of 19 orders of magnitude.
Source: [3, Chapter 1,page 9].

2.4. MAGNETIC INDUCTION FIELD AND FLUX
To understand what a magnetic induction field is, we first discuss the discovery of Michael
Faraday. He demonstrated the converse effect that Ørsted shown: varying magnetic fields
induce electrical currents in a wire. Although at that time people were not impressed,
this discovery was a crucial step to the development of generators and power plants. This
principle of inducing electrical currents is called magnetic induction.

The magnetic induction field is a measure of how much magnetic field is “flowing”
through a unit volume. In order to capture this idea, we have to generalize the notion of flux.
Traditionally, flux is an important notion in, for example, flow theory. But in such cases,
there are real particles such as sand or water molecules moving around, which inducing a
flux. In the case of magnetism, there are no “magnetic particles” moving around, but still it

3table taken from [3], page 9.
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θ

Figuur 2.3: Example of flux

is interesting and important to think about such imaginary particles that are moving around
due to the presence of a magnetic field.
As an illustration for traditional flux, we consider the situation where rain is falling verti-
cally on two rectangular tiles (in a garden). For clarification, see Fig. 2.3. We ask ourselves
how much rain hits this tile. This depends on three things, namely:

• the amount of rain falling per unit of time,

• the size of the tile,

• the orientation of the tile relative to the rain.

We consider each of these dependencies. If it rains is dense, then a lot of rain will hit a tile,
and if it is raining weakly, then also a smaller amount of rain hitting a tile. Of course, if a tile
is larger, then more rain will hit the tile compared with a smaller tile. Lastly, the orientation
of the till relative to the velocity of the rain plays an important role. In the extreme case
that θ = 90◦, then no rain will hit the tile, and for θ = 0 the amount of rain that hits the tile
is optimal.

2.5. MAXWELL’S EQUATIONS
One of the greatest scientific breakthroughs in science was achieved in the nineteenth cen-
tury, by the Scottish scientist James Clerk Maxwell (1831 - 1879). He combined the pre-
viously seemingly unrelated and mysterious phenomena of electricity, magnetism and (what
is now known as) electromagnetic radiation together in a very elegant theory, following
the work of Faraday, Ampère and Ørsted. The four coupled partial differential equations,
known as Maxwell’s Equations, describe the behaviour of electric and magnetic fields in
both vacuum and matter:

∇·D = ρ Gauss’ law: electrical fields are produced by elec-
trical charges

∇·B = 0 Gauss’ law: there exist no magnetic monopoles
∇×E =− ∂B

∂t Faraday’s law of induction: changing magnetic
fields produce electric fields

∇×H = ∂D
∂t + J Ampère’s law: magnetic fields result from cur-

rents and changing electric fields
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In these equations E stands for the electric field intensity [V/m] and B stands for the
magnetic induction field intensity [T]. One observes two extra vector fields in the diffe-
rential formulation of Maxwell’s equations. These so-called auxiliary fields take physical
matter into account and are defined as follows:

D = ε0E+P, (2.9)

H = 1

µ0
B−M. (2.10)

The quantities D [C/m2] and H [A/m] stand for the electric and magnetic flux densities
respectively. The electric charge density [coulomb/m3] is given by ρ and J stands for the
electric current density measured in [A/m2].

We see that in general the electric and magnetic fields are coupled by the above equati-
ons. We therefore speak of the electromagnetic field. When we assume that the fields are
static, i.e., the fields do not change in time, then the four equations decouple into two sets
of two equations that describe the electric field and the magnetic field. Assuming that there
are no currents present (J ≡ 0), the static magnetic field is described by

∇·B = 0, (2.11)
∇×H = 0, (2.12)
B =µ0(H+M). (2.13)

We call this set of equations the magnetostatic field equations. If the magnetisation of an
object is prescribed, then these equations fully describe the resulting magnetic field, also
called the reduced magnetic field. Throughout this thesis, these equations are used to model
the magnetic state and magnetic signature of a naval vessel.

2.6. SOLVING THE MAGNETOSTATIC FIELD EQUATIONS
In this section the magnetostatic field equations are solved. The forward problem is the
determination of the magnetic induction field B that is produced by some known magneti-
zation M in a magnetised object Ω.

This problem can be solved in two ways: by means of a scalar potential or via a vector
potential. Here, we note that a scalar potential exist because H is irrotational, and that
a vector potential exists due to the solenoidal field B. The Helmholtz theorem plays an
important role in solving the forward problem.

Moreover, solving the magnetostatic field equations becomes much more complex when
one also takes into account hysteresis. If an object is made from ferromagnetic material,
then the response due to an external field is described by the magnetostatic field equations
in an implicit way. This aspect is postponed to Chapter 3 and 6.

2.6.1. THE HELMHOLTZ THEOREM
The Helmholtz Theorem [4] states an important decomposition that holds for all (smooth)
vector fields. If C is a smooth vector field, then the vector field can be decomposed into the
sum of two fields, namely

C = C⊥+C∥, (2.14)
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where C⊥ is divergence-free and C∥ is a irrotational field. In particular the decomposed
fields are (under suitable conditions) uniquely determined by a vector potential and scalar
potential.

C⊥ =∇×F (2.15)
C∥ =−∇ϕ (2.16)

where the quantities F and ϕ are given by

F(r) = 1

4π

Ñ
R3

(∇′×C)(r′)
‖r− r′‖ dΩ′ and ϕ(r) = 1

4π

Ñ
R3

(∇′ ·C)(r′)
‖r− r′‖ dΩ′ (2.17)

In other words, a smooth vector field is completely determined by the curl and divergence
of the vector field.

2.6.2. SOLUTION BASED ON A SCALAR POTENTIAL
In the absence of a current density, the magnetostatic field equations can be solved via a
scalar potential. The Helmholtz theorem can be used to derive an analytical expression for
the scalar potential solution in terms of the magnetisation. Recall that in the absence of a
current density, the magnetostatic field equations reads

∇·B = 0, ∇×H = 0, and B =µ0(H+M) (2.18)

Combining the first and third identity, we find that from ∇·B =∇· (µ0H+M) = 0 it follows
that ∇·H = −∇·M. The curl and divergence of H are now known, therefore we can apply
Helmholtz theorem on H to find an analytical expression for H. Note that in (2.17), F = 0
as H is irrotational, which implies that H⊥ = 0. In turn, the decomposition of Helmholtz for
H reduces to H = H∥ =−∇ϕ. Looking at H∥, we observe that the scalar potential in (2.17)
can be expressed as follows:

ϕ(r) =− 1

4π

Ñ
R3

(∇′ ·M)(r′)
‖r− r′‖ dΩ′ (2.19)

Thus, the divergence of the magnetisation serves as the source of the magnetic field. The
magnetic field H is now given by

H(r) =−∇
(
− 1

4π

Ñ
R3

(∇′ ·M)(r′)
‖r− r′‖ dΩ′

)
. (2.20)

In the next step, the expression for H is simplified, this is done by switching the order of
the differentiation and integration. Note that the ∇ operator only applies to r, and so it is
allowed to bring it inside the integral. Using the identity

∇
(

1

‖r− r′‖
)
=− r− r′

‖r− r′‖3 , (2.21)

the final expression for H is obtained, namely

H(r) =− 1

4π

Ñ
R3

r− r′

‖r− r′‖3 (∇′ ·M)(r′)dΩ′. (2.22)
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Following [2, Section 5.9, page 197], it is convenient to further assume that magnetisation
falls suddenly to zero on the boundary surface of the object Ω. Using a pill-box argument,
the magnetic surface-density

σ= n ·M (2.23)

can be defined, where n is a normal vector pointing outwards. Then the magnetic field can
be written as

H(r) =− 1

4π

Ñ
Ω

r− r′

‖r− r′‖3 (∇′ ·M)(r′)dΩ′+ 1

4π

Ñ
∂S

r− r′

‖r− r′‖3 (n′ ·M)(r′)dS′. (2.24)

Note that both domains of integration are now bounded subsets of R3. The magnetic induc-
tion field outside the magnetised object satisfies B =µ0H, and thus reads

B(r) =−µ0

4π

Ñ
Ω

r− r′

‖r− r′‖3 (∇′ ·M)(r′)dΩ′+ µ0

4π

Ï
∂S

r− r′

‖r− r′‖3 (n′ ·M)(r′)dS′. (r ∉Ω) (2.25)

In Chapter 4, a Method of Moments is derived on the basis of these expressions for the
magnetic (induction) field.

2.6.3. SOLUTION BASED ON A VECTOR POTENTIAL
The magnetic scalar potential H = −∇ϕ is not valid whenever a current density is present
in the space of interest. A more general approach is then to exploit the divergence-free
condition on B. This approach also works in the absence of a current density.

The idea is to apply the Helmholtz theorem to the magnetic induction field B. In (2.18)
it is already given that ∇·B = 0. To obtain an expression for ∇×B, we combine the second
and third identity to obtain ∇× B = µ0∇× M. Observe that in this case, ϕ = 0 as B is
divergence-free. Thus, B =∇×F. The vector potential F immediately follows:

F(r) = µ0

4π

Ñ
R3

(∇′×M)(r′)
‖r− r′‖ dΩ′ (2.26)

Hence, the magnetic induction field B reads

B(r) = µ0

4π
∇×

Ñ
R3

(∇′×M)(r′)
‖r− r′‖ dΩ′ (2.27)

In Chapter 6, this alternative expression is used to derive a Method of Moments for our
Hybrid model.
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FERROMAGNETIC MODELS FOR

MAGNETIC SIGNATURE
PREDICTION: A STUDY TO

SELECT THE RIGHT MODEL

This chapter is based on:

Aad Vijn and Henk Jongbloed. Ferromagnetic Hysteresis Models for Magnetic Signature
Prediction: a study to select the right model. Marelec Conference, Marine Biological

Laboratory, Woodshole (Boston), 22-25 October 2019.

ABSTRACT
The development of a closed-loop degaussing system for naval vessels requires modeling
of the complex ferromagnetic behaviour of the steel structure of the ship. Our ambi-
tion is to describe the nonlinear hysteretic behaviour of the steel structure by means of
a mathematical-physical model. A number of hysteresis models have been introduced in the
past century. Examples of such hysteresis models are the mathematical model by Preisach,
the quasi-physical model by Jiles and Atherton, the simplistic model by Lord Rayleigh and
the more recent energy variational model that describes hysteris by an energy minimisation.
These models have shown their potential in the past year, but all have their own difficulties
in delivering a complete description of vectorial ferromagnetic behaviour. In this chapter
we give an overview of three of the above hysteresis models. In particular, we analyse these
models by considering the model complexity, to what extent these models can be extended to
incorporate properties such as inhomogeneity and anisotropy, the applicability of the model
in large-scale applications, the (numerical) complexity of their computational burden, and
their necessary parameter estimations. In addition, we illustrate the performance of these
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models by numerical examples and we relate the above models to experimental data of a
small scale ferromagnetic object.

3.1. INTRODUCTION
To come up with an accurate model to predict the magnetic signature of naval vessels, the
choice of a model that describes ferromagnetic behaviour is both interesting and important.
From a theoretical point of view, there is an obvious need to describe ferromagnetic be-
haviour as complete as possible. However, such a model is (probably) very complex and
increases the numerical burden of finite element implementations and thus predictions. Fur-
thermore, the model should feed the degaussing-algorithm for the determination of optimal
current settings in a fast and efficient way. Therefore, a trade-off between a sufficiently
complete model and numerical aspects has to be considered.

This Chapter is structured as follows. Section 3.2 covers a brief explanation of fer-
romagnetism. In Section 3.3, four models that describe behaviour of ferromagnetism are
discussed. In all four cases, we discuss the underlying assumptions that serve as the fun-
damentals for these models. It is important to notice that in this section we only consider
behaviour at a mesoscopic level. This means that the behaviour is considered on a mate-
rial level, and that no geometrical dimensions are considered. Therefore a demagnetising
field introduced by a magnetised body is absent. Illustrations of hysteresis curves by these
models are shown.

After the introduction of four models, we assess their strengths and weaknesses in Sec-
tion 3.4. The main question that we will try to answer in this Chapter is:

“Which model that describes ferromagnetic hysteresis for weak fields should we select as
a basis for the development of closed-loop degaussing?”

In fact, from the authors’ point of view, we will argue that the energy-variational model is
potentially the best model to describe the ferromagnetic behaviour in weak fields regarding
the hysteretic, anisotropic and numerical properties of the model.

In Section 3.5, we extend the hysteresis models by introducing a demagnetising mag-
netic field that arises from a ferromagnetic body and we illustrate the above-mentioned
models in comparison with experimental data of a ferromagnetic scale object. We conclude
this chapter with a discussion based on the central question in Section 6.11.

3.2. FERROMAGNETISM
In a nutshell, ferromagnetism means that there is a nonlinear relationship describing the
response of ferromagnetic material to a changing magnetic background field. The origin of
the word hysteresis traces back to the ancient Greek hysteros which means ’later’, ’second’
or ’after’, and was later incorporated in the English language as ’lagging behind’ or ’short-
coming’. It was coined around 1890 by Sir James Alfred Ewing to describe the behaviour
of magnetic materials [15]. Magnetic hysteresis implies that magnetisation is not only a
result of the applied background field at this moment, but also depends on the history of the
magnetic background field that preceded. This history-dependent aspect causes hysteresis
to be an intriguing and complex phenomenon to describe.
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Figuur 3.1: An example of a H −B hysteresis curve. In this figure, the major loop of the hysteresis curve is shown.
Clearly, the nonlinearity can be observed if one considers the particular shape of the curve. The size of the area
enclosed by the hysteresis curve shows how strong hysteresis effects are. If a hysteresis curve of a ferromagnetic
material have a small coercivity value, then it is called a soft material. Such materials are easy to magnetise or
demagnetise. On the contrary, hard materials have typically larger values of retentivity like permanent magnets.
Furthermore, this also implies that the slope near the rentitivity is small, therefore these materials keep their
magnetisation for a long time, under varying magnetic conditions. Source: http://electricalacademia.
com/

Magnetic hysteretic behaviour is dependent on many different material properties of
the magnetisable material. Besides properties that describe the internal crystallographic
structure of the material, other aspects such as temperature-dependence [21], frequency of
alternating fields [17], and applied stress [5] are important.

The microscopic and mesoscopic origins of hysteresis can be explained by magnetic do-
main behaviour, which actually can be observed using an electron microscope, see Fig. 3.2.
Details on the material properties due to ferromagnetism may be found in Coey [10] and
Chikazumi and Charap [9]. Hysteretic behavior is the result of imperfections in crystalline
structures on the nano- and microscale, giving rise to material anisotropy. The manufactu-
ring process of real-life materials involves complicated and random processes, introducing
certain distributions of mesoscopic magnetic domains inside a material, and mechanical
stresses that are build up in the material giving rise to additional magneto-mechanical ef-
fects. Even more fundamental theory on the occurrence of magnetism may be found in a
standard work on solid state physics and statistical thermodynamics.

To model ferromagnetic behaviour based on these material-specific properties, one has
to derive a macroscopic or mean-field description of the relation between different magnetic
quantities. The basic constitutive equation

B =µ0(M+H) (3.1)

always holds. In order to be able to solve the Maxwell equations, an extra constitutive
relation of the form

B =F (H) (3.2)

is required, which is well known in the literature to complete the set of PDE’s for quantities
B,H and M, see Jackson [14, Chapter 5]. For example, note that for paramagnetic material

http://electricalacademia.com/
http://electricalacademia.com/
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Figuur 3.2: An example of a distribution of magnetic domains within a piece of Nd2Fe14B alloy. source: https:
//en.wikipedia.org/wiki/Magnetic_domain.

this relationship is given by
M =χH (3.3)

which describes the response of material to a present magnetic field, in terms of the mag-
netic susceptibility. Recall that the relative magnetic permeability µr and the magnetic
susceptibility χ are related to each other through

µr = 1+χ (3.4)

and therefore these notions are interchangeable. In the case of ferromagnetic material, a
constitutive relation such as stated in (3.2) cannot be found, because there is no one-to-
one mapping between the internal fields H and B. Depending on the magnetic history,
the relation between these fields change. Therefore, a hysteresis model is required to take
ferromagnetism into account to solve the magnetostatic field equations. Different hysteresis
models exist in the literature relating B,H and M and including the dependence on the
magnetic history in some way. All models produce typical hysteresis curves as depicted in
Fig. 3.1.

As shown in Fig. 3.1, there are a number of important values within the hysteresis curve
that characterise the ferromagnetic behaviour of a material. Hilda Sung and Czeslaw Ru-
dowicz [36] wrote a nice survey on the misconceptions and misinterpretations in textbooks
regarding the interpretation of hysteresis curves. For example, Fig. 3.1 suggests that there is
a saturation value for B for sufficiently large values of H. However, as the applied magnetic
background field is further increased, the magnetic induction field also increases. This is
a misconception, as only the magnetization of material saturates1. Furthermore, they give
an extensive explanation in general of the notions of coercivity, retentivity and saturation in
different hysteresis curves.

3.3. MATERIAL MODELS
In this section we introduce four different approaches to describe ferromagnetic behaviour.
The four models are of increasing complexity and are defined by a number of material pa-

1Some papers indicate that after saturation, magnetisation of some materials can still increase in strong applied
fields.

https://en.wikipedia.org/wiki/Magnetic_domain
https://en.wikipedia.org/wiki/Magnetic_domain
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rameters. In each case, we should understand how the corresponding hysteresis curves look
like. The models are described in the original papers by Rayleigh [34], Jiles and Atherton
[15] and Bergqvist [3]. A discussion of these models follow in more detail, stating the
main equations, considerations and (dis)advantages as well as model parameter estimation
techniques. Furthermore, the approximation of magnetisation by an induced and permanent
part (see Section 1.3.3) is also included as a model. Although this model does not describe
hysteresis, it is a model that is often used to approximate magnetic behaviour, especially in
weak background field conditions it approximates the ferromagnetic behavior to a certain
accuracy.

First the model that considers magnetisation as the superposition of a linear part (indu-
ced magnetisation) and a constant offset (permanent magnetisation) is explained in Section
3.3.1. This is abbreviated as the IP model. Then, the order of complexity is increased by one
and this leads to the model first proposed by Lord Rayleigh in Section 3.3.2, which is deno-
ted by Rayleigh Model RM. Next, the well known hysteresis model by Jiles and Atherton
is discussed in Section 3.3.3, which in principle describes also higher order terms of ferro-
magnetic behaviour and in particular is able to describe saturation values of magnetisation.
The model of Jiles and Atherton will be denoted by JA. Finally, in Section 3.3.4 a more
recently proposed model to describe ferromagnetic behaviour, using a energy-variational
approach is explained. This is denoted by EV.

In the cases of the models RM and IP, we work towards a constitutive relationship
for ferromagnetic behaviour that we can use to complete the magnetostatic equations; for
IP this constitutive relationship is already given. In particular, we find expressions for the
incremental permeability given by

∂B

∂H
=µ(H|magnetic history) (3.5)

inside the material, where we assume that the magnetic history of the material is (partially)
accessible. Here, H is the present magnetic field. At a material level, we could simply
speak of the applied field (or effective field in the formulation of JA), but on a macroscopic
scale the H-field must be interpreted as the internal field, in which a demagnetising field
also plays an important role in describing coupling effects within a ferromagnetic body.

ASSUMPTIONS
Throughout this chapter, the following assumptions hold:

• Temporal behaviour of ferromagnetic material is neglected, such as eddy currents,
relaxation and magnetic viscosity. We only consider instantaneous relationships in
ferromagnetic material;

• We do not consider any geometrical dependencies. This implies that there is no de-
magnetizing field present inside the material. Therefore, the magnetic field H throug-
hout this chapter equals the applied magnetic field;

• There is a uniform applied magnetic field Happ present in the neighbourhood of an
infinitesimal small unit volume of ferromagnetic material.
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H
M

B

Figuur 3.3: A grain of ferromagnetic material in a uniform applied magnetic field H = Ha .

• Due to the ferromagnetic behaviour, the material responds to the above-mentioned
H-field (by absorbing the energy that is produced by the work of the applied field)
and introduces a magnetisation M of the infinitesimal unit volume, and a magnetic
induction field B as a result of this response. These quantities are the output of our
hysteresis models. Indeed, a magnetisation also introduces a magnetic distortion
field, but for now we focus only on quantities M and B.

Although we do not consider geometrical dependencies, one could think that we consider a
grain of ferromagnetic material as representation of a unit volume of ferromagnetic mate-
rial, and that there is a net magnetisation M , magnetic field H and magnetic induction field
B present within this grain. Such a grain is depicted in Fig. 3.3.

To describe the behaviour of large ferromagnetic structures, an extension with a finite
element method (FEM) or boundary element method (BEM) is necessary. Such an exten-
sion is nontrivial and involves implicit relationships between the internal magnetic field Hi

and the internal magnetic induction field Bi , namely described via the incremental magne-
tic permeability tensor quantity (3.5). The Method of Moments is a well known method in
magnetostatics to describe in an explicit way how the applied magnetic background field
and the magnetisation are spatially related. However, this is not trivial at all.

3.3.1. MODEL OF INDUCED AND PERMANENT MAGNETISATION (IP)
The simplest approach to describe ferromagnetic behaviour, which is well-known [13], is
to approximate the nonlinear behaviour of ferromagnetism by a linearisation. We assume
that the magnetisation M can be split into two parts, the induced magnetisation (Mi nd ) and
the permanent magnetisation Mper :

M[H] = Mi nd [H]+Mper . (3.6)

The induced magnetization is the linear response of the material to the present magnetic
field H. For this component we simply assume that the material behaves like paramagnetic
material. For paramagnetic materials it holds that

Mi nd =χH. (3.7)

Here χ is the magnetic susceptibility of the material. This quantity is actually a tensor,
and depending on the entries of this tensor, one can describe either isotropic or anisotropic
material. It is assumed that χ is independent of H.

The permanent part Mper is the magnetization that is still present when there is no ap-
plied field. Traditionally, it is assumed that the permanent magnetisation does not change
over time. In practice, this component paradoxically does change (slowly) over time. The-
refore, IP entails a categorical error in describing ferromagnetic behaviour and is only ap-
plicable locally (close to the calibrated initial state of the model).
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To illustrate the nature of the above separation of magnetisation into an induced and
permanent magnetisation, observe the following reasoning. Consider the one-dimensional
constitutive relationship between M and H and a Taylor expansion of M(H) about the point
(H0, M0). We find the following expansion:

M(H) ≈ M0 + dM

dH

∣∣∣∣
H=H0

(H −H0)+h.o.t. (3.8)

When higher order terms (h.o.t.) are ignored it can be seen that indeed M(H) is linear
around H = H0. If one defines the magnetic susceptibility χ by

χ := dM

dH

∣∣∣∣
H=H0

(3.9)

then we may rewrite (3.8) as

M(H) ≈ (
M0 −χH0

)+χH +h.o.t. (3.10)

The magnetic susceptibility is a dimensionless material property that indicates the degree
of magnetization in response to the applied field. A large value of χ implies that many field
lines are attracted by the material, resulting in a large induced magnetisation. Note that
in (3.10) it follows that the magnetisation can be approximated by the sum of a constant
component and a linear component. These observations and results from [35] support the
assumption that the induced and the permanent magnetization can be considered separately.

To summarise the main features of the IP approach, we find that IP

• approximates the ferromagnetic behaviour by a linearisation, which is a rough ap-
proximation. It is expected that this approach only holds locally because for small
variations the hysteresis effects are neglectible;

• is applicable to both isotropic and anisotropic material. However, calibrating the
model to anisotropic material is complex and challenging. A sophisticated parameter
estimation algorithm is required to obtain the tensor χ, see [42].

Because the IP approach does not include any hysteresis effects, the model is neglected in
the remaining part of this chapter.

3.3.2. RAYLEIGH HYSTERESIS MODEL (RM)
Rayleigh’s hysteresis model approximates the nonlinear behavior of ferromagnetic materi-
als in weak applied fields. The Earth magnetic field (up to approximately 50µT in strength)
is considered a weak field. Recall that in this thesis, the emphasis lies on modeling the
magnetic signature of steel ships. Although the Earth magnetic field is considered weak,
the internal magnetic fields in the steel structure of a ship are likely stronger due to the
demagnetising field in the macroscopic structure and the presence of degaussing coils that
produce strong magnetic fields in the vicinity of the steel structure. Therefore the applica-
bility of the Rayleigh Model may not hold. In the case of higher field strengths, a different
more general model such as the Jiles-Atherton model or the energy-variational model is
required to describe the hysteresis effects. However, Rayleigh’s model gives a fairly simple
way to model the hysteresis effects by approximating branches of the hysteresis curve by
quadratic functions.
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SCALAR RM EQUATIONS

The initial magnetisation curve of ferromagnetic material is given by

B(H) =µ0µi H +µ0αR H 2 for H > 0, (3.11)

where µ0 = 4π·10−7H/m is the vacuum permeability, µi is called the initial relative perme-
ability and αR is called the Rayleigh constant. For negative values the initial magnetisation
curve can be extended as an odd function because B(−H) =−B(H) holds. Both values can
be found experimentally from the measured initial magnetisation curve.5 The initial mag-
netization curve is based on following a linear dependence between µr (H) and H , namely

µr (H) =µi +αR H . (3.12)

The minor loops within the hysteresis curve are based on approximation by quadratic func-
tions. More specifically, to include the dependence on the magnetic history, the modulus
value of the field value Hm at the turning point of such branches is introduced.

The above considerations lead to the following set of equations that describe the in-
creasing and decreasing branches within the hysteresis curve. For any increasing branch
(H ↗ Hm) where the field strength increases we have

B(H) =µ0

[
(µi +αR Hm)H − αR

2

(
H 2

m −H 2)] (3.13)

and for decreasing branches (H ↙ Hm) where the field strength decreases we find that

B(H) =µ0

[
(µi +αR Hm)H + αR

2

(
H 2

m −H 2) .
]

(3.14)

Whenever there is a change in sign in the change of the magnetic field, the hysteresis follows
a new increasing or decreasing branch that is defined by the last field turning point Hm =
Hl ast .

Along the increasing and decreasing branches, we may compute the incremental per-
meability. It follows that

µ′ = ∂B

∂H
=

{
µ0

[
(µi +αR Hm)−αR H

]
(H ↙ Hm)

µ0
[
(µi +αR Hm)+αR H

]
(H ↗ Hm)

(3.15)

Note the change of signs in the above expressions for increasing and decreasing branches.
Also, if H changes sign, then the incremental permeability makes a discontinuous jump in
the model, which may lead to gaps in the minor branches. This behavior is not favorable.
This problem is easily resolved when the Rayleigh model is defined as an ordinary diffe-
rential equation and solved using a numerical scheme. Hence, we have found a constitutive
relation for the incremental permeability that describes the hysteretic effect of ferromagne-
tism, which in turn can be coupled to a FEM/BEM to describe ferromagnetic behavior of
larger structures.
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VECTORIAL EXTENSION OF RM
We propose the following vectorial extension of RM. Using the relationship B =µ0(H+M),
one is able to derive a M −H relation:

M(H) = 1

µ0
B(H)−H (3.16)

= (
(µi −1)+αR Hm

)
H ± αR

2
(H 2

m −H 2) (3.17)

for increasing or decreasing branches. Taking the partial derivative with respect to H while
inserting the Rayleigh B −H relation yields for the increasing-decreasing branches:

∂M

∂H
=µi −1+αR Hm ±αR H (3.18)

(compare with 6.42), which is conveniently generalized to the incremental expression

dM =
(
µ

i
−1+diag(αR Hm)

)
dH+diag(αR (σ(dH)⊗H)) (3.19)

where µ
i

and αR are diagonal tensors that introduces anisotropy in the model, 1 is the
identity tensor and ⊗ denotes component-wise multiplication. This anisotropic extension
only includes anisotropic behavior in the three independent principal directions. The reason
for this is that one should give a meaning to the square of a magnetic field H 2 in a vectorial
sense. Furthermore,

σ(dH) :=
sgn(dHx )

sgn(dHy )
sgn(dHz )

 (3.20)

which is a vector containing the sign of the change in magnetic field. The incremental
expression (3.19) can be used to derive the Rayleigh incremental susceptibility

χ
R A

:= ∂M

∂H
(3.21)

which is a 3×3 Jacobian matrix of the magnetisation. The incremental susceptibility is use-
ful for modeling the magnetic behaviour of the ferromagnetic bodies in a FEM/BEM envi-
ronment (see also formula (3.9) for a general definition of the susceptibility). To conclude
this paragraph, we observe that the extension to a vectorial model necessarily introduces an
increase of the number of material parameters. However, the number of parameters remains
relatively small: only 6 parameters are required to describe vectorial behavior within the
Rayleigh model.

PARAMETER ESTIMATION FOR RM
In [34], a recipe for the identification of parameters of different materials is proposed on
the basis of measuring pairs of values (Hm ,Bm), where

Bm = Bi ncr (Hm) = Bdecr (Hm) =µ0(µi +αR Hm)Hm (3.22)

according to the Rayleigh model. Measuring different pairs of (Hm ,Bm) and fitting them
to (3.22) using a least squares approach, yields estimates for the parameters in the Rayleigh
model. Useful strategies for estimating the Rayleigh parameters in the vectorial case could
be:
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4 Rayleigh Material Hysteresis Curve

Figuur 3.4: Example of a hysteresis curve within the Rayleigh Hysteresis Model. The curve is the result of a
magnetic deperm signal for the applied background field H . Note that the resulting shape of the minor loop curves
are quadratic. Therefore, such loops only represent hysteresis for weak applied fields H .

• Employing the approach above, under the assumption of sinusoidal driving field and
isotropy.

• Using a gradient and/or adjoint approach to obtain some form of gradient-based error
minimization.

• Using a smart genetic algorithm.

Since the Rayleigh model only has a relatively small number of parameters, the second ap-
proach could still be feasible. Since the model is also relatively computationally efficient,
the genetic-algorithm approach could also result in a useful parameter estimation scheme.

EXAMPLE OF THE RM
To illustrate the performance of the Rayleigh Model, we consider the following scalar
example depicted in Fig. 3.4. Here, we consider the following material parameters

µi = 100 and αR = 10. (3.23)

Note that these values do not necessarily represent a specific ferromagnetic material at
hand, but were chosen such that the resulting hysteresis loop as shown in Fig. 3.4 is clearly
interpretable. More realistic values for µi and αR can be found in [19], where the authors
found material parameters for RM for four different ferromagnetic materials.

Next, a sinusoidal deperming signal Hdep with decaying amplitude is used as input for
RM to compute the response M of the model to this deperming signal. This results in
higher-order reversal curves with 8 turning points, starting at the demagnetised state (the
origin).
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SUMMARY OF RM
To summarise this paragraph:

• The Rayleigh model is a second order approximation of ferromagnetism, including
quadratic descriptions of minor loops.

• Extensions to a vectorial model are possible, in which anisotropic descriptions of µi

and αR can be included. However, this is not yet investigated intensively in literature.

• Only a fairly small number of material parameters have to be determined to calibrate
the model to experimental data.

• A number of estimation strategies can be used to find the material parameters based
on experimental data.

3.3.3. JILES ATHERTON HYSTERESIS MODEL
The original JA model [15] is a pseudo-physics based scalar model, where some of the
nonlinear phenomena of magnetic hysteresis are considered. These phenomena are the
domain wall motion, rotation and bending, and magnetic moment interactions.

SCALAR JA EQUATIONS
Starting point is the theory of Langevin for paramagnetic materials, which is extended by
Weiss to ferromagnetic materials. The original Langevin function is given by

L (x) = coth(x)− 1

x
(3.24)

from which the anhysteretic magnetisation curve is derived:

Man(H) = Msat L

(
H

a

)
= Msat

[
coth

(
H

a

)
− a

H

]
. (3.25)

The model is based on an effective field approximation. In the literature a lot of research
can be found on the famous model of Jiles and Atherton, see for example [2, 6, 15, 16, 23–
25, 27, 28, 30, 39, 44].

Weiss introduced the concept of “Molecular field” (HM ), not to be confused with Hm

in the Rayleigh model, in order to express the strong interaction between elementary mo-
ments in ferromagnetic material. He defined that HM (an internal fictitious field) is directly
proportional to M , which, in turn, adds to H . The effective field is given by:

He = H +HM = H +αM(H). (3.26)

It is then assumed that the anhysteretic behavior is described by the Langevin’s function
as function of the effective field He . The hysteresis behaviour is deduced from an energy
balance, derived by Jiles and Atherton, between de magnetic energy supplied by an external
source (Mext ), the change in stored magnetostatic energy and the hysteresis loss, related to
the irreversible magnetization Mi r r . For initially demagnetized material (Mext = Man), this
balance reads

µ0

∫
Man ·dHe =µ0

∫
M ·dHe +µ0k(1− c)

∫
δ

dMi r r

dHe
·dHe (3.27)
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where k is the pinning parameter (due to pinning domain wall effect, as a consequence of
material imperfections in its crystal structure), related to the energy dissipated due to hys-
teresis. Furthermore, δ := signum(dHe ). The value c ∈ [0,1] is a measure for the reversible
change of magnetization within the ferromagnetic material. Because we are considering
quasi-static equilibrium conditions (there is still a time-dependence in the applied field),
the energy losses occur only due to changes in Mi r r . Considering the irreversible (Mi r r )
and reversible (Mr ev ) components of magnetization, we define

M = Mi r r +Mr ev . (3.28)

If one differentiates the energy balance with respect to the effective field He we find

Man = Mr ev +Mi r r +k(1− c)δ
dMi r r

dHe
. (3.29)

If c = 0 and Mr ev = 0 then we find that

Mi r r = Man −kδ
dMi r r

dHe
. (3.30)

This leads to the following important description of reversible magnetization

Mr ev = c(Man −Mi r r ). (3.31)

Bergqvist observed that whenever (Man−Mi r r )dHe < 0 then there is no domain wall motion
(displacement) and therefore dMi r r = 0. This implies that the differential equation for Mi r r

should be slightly modified into

d Mi r r = 1

kδ
[(Man −Mi r r )dHe ]+ . (3.32)

Here, the operator [x]+ is used to take into account the observation by Bergqvist and reads

[x]+ =
{

x if x ≥ 0
0 if x < 0

.

DERIVATION OF INCREMENTAL PERMEABILITY
We now derive a differential equation for M(H), from which the incremental permeability
follows directly. We start by looking at the differential

dM = dMr ev +dMi r r

= c(dMan −dMi r r )+dMi r r

= cdMan + (1− c)dMi r r

. (3.33)

Now combining (3.32) and (3.33) leads to

dM = cdMan + 1

kδ
[(1− c)(Man −Mi r r )dHe ]+. (3.34)
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10
5 Jiles-Atherton Material Hysteresis Curve

Figuur 3.5: Example of a hysteresis curve by the Jiles and Atherton Model. The curve is the result of a magnetic
deperming signal for the applied background field H . Note that the applied signal is strong initially, and therefore
the major loop of the hysteresis curve is visible.

Observe that, using (3.31), we may rewrite the second term in the RHS of (3.34) as

(1− c)(Man −Mi r r ) = Man −Mi r r + cMan + cMi r r

= Man − (Mi r r + c(Man −Mi r r ))

= Man − (Mi r r +Mr ev )

= Man −M

. (3.35)

Therefore (3.34) is equivalent to

dM = cdMan + 1

kδ
[(Man −M)dHe ]+ . (3.36)

Note that by the chain-rule and (3.26) we have that

dMan = dMan

dHe
dHe

= M ′
an(H +αM) (d H +αdM)

. (3.37)

where M ′
an(H +αM) := dMan

dHe

∣∣∣
He=H+αM

. For a further deduction we write (3.36) as

dM = c
dMan

dHe
(dH +αdM)+ 1

kδ
[(Man −M)(dH +αdM)]+ . (3.38)

We now focus on formula (3.38) and consider two cases as observed by Bergqvist.

Case 1: In the case that (Man −M)dHe > 0, formula (3.38) simplifies to

dM = c
dMan

dHe
(dH +αdM)+ 1

kδ
(Man −M)(dH +αdM). (3.39)
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In equation (3.39) divide both sides by dH and use the result in (3.37) to obtain the follo-

wing ODE for
dM

dH
:

dM

dH
= cM ′

an(H +αM)+ 1
kδ (Man −M)

1−α(
cM ′

an(H +αM)+ 1
kδ (Man −M)

) . (3.40)

Case 2: Developing (3.38) when (Man −M)dHe ≤ 0 gives

dM = c
dMan

dHe
(dH +αdM) (3.41)

using a similar reasoning we find the following ODE for
dM

dH
:

dM

dH
= cM ′

an(H +αM)

1− cαM ′
an(H +αM)

. (3.42)

INCREMENTAL PERMEABILITY WITHIN THE JA MODEL
Based on the effective field description He one also introduces the corresponding effective
magnetic induction field

Be =µ0(He +M). (3.43)

Taking the derivative with respect to the applied field yields

dBe

dH
=µ0

(
1+ (1+α)

dM

dH

)
. (3.44)

We now postulate that the above-mentioned effective induction field Be equals the magne-
tic induction field B within a material. We may therefore write

µ= dBe

dH
=µ0

(
1+ (1+α)

dM

dH

)
. (3.45)

Note that the incremental permeability may be computed solely in a numerical scheme to
solve the differential equation for M(H).

VECTORIAL EXTENSION OF THE JA MODEL
A vectorial Jiles-Atherton model was proposed by Bergqvist [2]. In this paper, Bergqvist
first explained that there was an undesired behaviour present in the original model of Jiles
and Atherton. He noted that, near turning points in high-order minor curves, the magneti-
sation and the magnetic field had opposite signs, and hence introduce an error in the model.
This is easily resolved by introducing the positive-part operator as mentioned in (3.32). He



3.3. MATERIAL MODELS

3

39

proceeds by considering the parameters c and k, from the original scalar JA, as symmetric
tensors yielding the vectorial equation

dM =
χ

f

||χ
f
|| (χ

f
·dHe )++cξdHe (3.46)

where χ f
:= k−1(Man(He )−M)

ξ
i j

:= ∂Man,i
∂He, j

(3.47)

and the anhysteretic magnetisation reads

Man(He ) = Ms

(
coth

||He ||
A

− A

||He ||
)

He

||He ||
. (3.48)

From these two equations, any increment in M can be computed from an increment in H,
the driving magnetic field. However, the above equation is implicit in case α 6= 0. Since
dHe = dH+αdM, the quantity of interest dM appears on both sides of the equation and
should be solved in a ‘separation of cases’ or iterative way.

Another approach to a vectorial extension of the Jiles-Atherton model was given by
Szymanski and Waszak [37]. Bergqvist does not address anisotropic materials explicitly
and only considers uniaxial anisotropic materials. As a result, the number of parameters in
the vectorial JA model by Bergqvist increases from 5 to a total of 15. Szewczyk [38] does
give a full extension of the JA model. Note that each parameter involves a 3×3 symmetric
matrix. Hence, the full model is described by 30 parameters.

STRATEGIES FOR PARAMETER ESTIMATION

Many different methods of finding the Jiles-Atherton material parameters exist in litera-
ture. The earliest parameter identification procedures were devised by Jiles and Atherton
themselves. Thereafter, Jiles [16] proposed a parameter estimation method to estimate the
parameters a,α,k and c using readily available material properties. Based on the shape
of experimental hysteresis curves, he managed to estimate the parameters with an error of
only a few percent. Various intercepts and slopes (incremental susceptibility) were used
in determining the parameters. However, this method relies on the choice of anhysteretic
curve and is only applicable to material-isotropic materials.

Pop and Caltun [30] essentially perform the same procedure, with a very thorough de-
scription of their approach. Leite et al. [24] employed a genetic algorithm to obtain the
classical Jiles-Atherton parameters. In their approach, the aim is to ensure minor loop clo-
sure when finding the parameters. This is done by the introduction of a dissipative factor
R. During the parameter estimation, a number of minor loops are used to obtain the set of
marial parameters and an R − (H ,B) relation, which indicates the difficulty of estimating
the ‘variable’ parameter R. They used polynomial regression to obtain good results of the
parameter fit.

Three other parameter estimation methods were found in literature. Firstly, a diffe-
rential evolution algorithm was employed by Biedrzycki et al. [4], which gave good and
efficient results, even in the anisotropic, vectorial case with 9 parameters. They describe
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their method in detail. In his Msc. thesis, Olivier Baas [1] has fitted the Jiles-Atherton
model to experimental data using the so-called ‘Shuffled Frog-Leaping Algorithm’, intro-
duced in [27]. Lastly, an adjoint method of finding the parameters of the Jiles-Atherton
model while incorporating the positive susceptibility criterion was proposed by Zaman et
al. in 2016 [44]. This methodology allowed them to efficiently compute the gradient of the
cost function with respect to the Jiles-Atherton parameters, and by employing a conjugate
gradient-type algorithm, significantly lowered the computational time of arriving at optimal
parameters.

3.3.4. ENERGY-BASED VARIATIONAL MODEL (EV)
Another approach, similar to JA, is to describe ferromagnetic behavior by the dissipation
of energy based on a dry-friction representation. This approach leads to the energy-based
variational model, which we will abbreviate by EV. This subsection is mainly based on the
work of Leonid Prigozhin et al. We refer to [33] for more details and an in-depth analysis
of anisotropic properties of the model. An explanation of the EV model below is also based
on that paper. To ensure readibility, the notation below coincides with [33].

MODEL EQUATIONS

Starting point is the first law of thermodynamics. The conservation of energy for magneto-
statics states that the total energy is the sum of the empty space energy, depending on the
magnetic field H and the internal energy U (M), determined by the magnetisation M. This
is captured by the following formula

W = 1

2
µ0‖H‖2 +U (M). (3.49)

The change in empty space energy is H · Ḃ, where B is the magnetic induction field. Fur-
thermore, we assume that the change in internal energy can be written as ‖r Ṁ‖, where
r is some positive-definite friction tensor. Note that this assumption incorporates the dry-
friction representation of the dissipation of energy. This approach was originally introduced
by Bergqvist [3] to describe the disspiation of energy in material to ensure that minor loops
are always closed. Hence, we write

Ẇ = H · Ḃ+‖r Ṁ‖. (3.50)

An important difference between the Jiles-Atherton model and th energy-based variational
model is that here the magnetic field H is written as the sum of two fields, namely a reversi-
ble magnetic field Hr = f(M) and an irreversible magnetic field Hi = H−Hr . It is assumed
that magnetic work is fully converted into internal energy, and therefore no internal energy
dissipates. Dissipation of energy can be completely contributed to the irreversible field.

The separation law transforms the above equation (3.50) into an equation relating the
irreversible magnetic field and the rate of change of magnetization.

Hi ·Ṁ = ‖kṀ‖. (3.51)

Observe that in the isotropic case (k ∈ R+), sufficient for equation (3.51) to be satisfied are
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the following conditions on Hi and Ṁ:
(i ) ‖Hi‖ ≤ k

(i i ) ‖Hi‖ < k ⇒ Ṁ = 0

(i i i ) Ṁ 6= 0 ⇒ Ṁ ∥ Hi

. (3.52)

Here, by Ṁ ∥ Hi one means that Ṁ = aHi for some a ≥ 0.The implication (3.52) ⇒ (3.51)
is trivial in the case of ‖Hi‖ < k. If ‖Hi‖ = k and Ṁ 6= 0, we have Ṁ = aHi for some a > 0
and thus

Hi ·Ṁ = a‖Hi‖2 = ak2 = k‖aHi‖ = k‖Ṁ‖ = ‖kṀ‖, (3.53)

which proves the implication. The ‘dry friction conditions’ (3.52) can be cast into a more
convenient form with the help of some concepts from analysis.

Firstly, for a natural number n ∈ N define the Rn-closed ball K̃ := B(0,k) = {u ∈ Rn :
‖u‖ ≤ k} with the origin as center and radius k. Furthermore, define for any convex func-
tion2 f :Rn →R∪ {∞} the sub differential set of f at the point x ∈Rn

∂ f (x) := {p ∈Rn : (∀y ∈Rn)
(

f (y) ≥ f (x)+p · (y−x)
)
} (3.54)

This notion is an extension of the ordinary derivative of differential functions. To illustrate
this concept, consider the function

g :R→R, x 7→ |x|. (3.55)

Clearly, this function is not differentiable in x = 0. For any point x 6= 0, we easily find that
the subdifferential coincides with the derivative. For x = 0 we see that the subdifferential of
f at point 0 is the interval [−1,1]. To conclude

∂g (x) =


{-1} if x < 0
[-1,1] if x = 0
{1} if x > 0

. (3.56)

The subdifferential set of any convex function is always closed and convex. Because we
want to express the dry-friction conditions in mathematical terms so that we derive a way
to test if these conditions are satisfied, we take a look at a modified indicator function. The
subdifferential set of this function on the compact set K̃ , defined by

IK̃ (x) =
{

0 if x ∈ K̃

∞ if x ∉ K̃
(3.57)

is given by

∂IK̃ (x) =


{0} if x ∈ K̃ o

{ax : a > 0} if x ∈ ∂K̃

∅ if x ∈ K̃ C

(3.58)

2A function f : R→ R is convex if for any distinct two points x, y ∈ R, f (t x + (t −1)y)) ≤ t f (x)+ (t −1) f (y) for
any t ∈ [0,1].
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where K̃ o = {x ∈ Rn : ‖x‖ < k},∂K̃ = {x ∈ Rn : ‖x‖ = k} and K̃ C = {x ∈ Rn : ‖x‖ > k} are the
interior, boundary and complement of set K̃ respectively.

Indeed, for x ∈ K̃ o we see that p ∈ ∂IK̃ (x) if and only if p · (y − x) ≤ 0. Obviously
p = 0 works. If p 6= 0 then we find that for a sufficiently small number c ∈ R the vector
y = cp+x ∈ K̃ and

p · (cp+x−x) = p · (cp) = c‖p‖2 > 0

and therefore p 6= 0 is not an element of ∂IK̃ (x). For x ∈ ∂K̃ we find that vectors of the form
αx ∈ ∂IK̃ (x) for α > 0. Indeed, if we take p = αx for α > 0 then we find that p ∈ ∂IK̃ (x) if
and only if p · (y−x) ≤ 0. Writing out this expression we find that this is equivalent to

α
[
x ·y−k2]≤ 0 (3.59)

Because x,y ∈ K̃ it follows from Cauchy-Schwartz that

‖x ·y‖ ≤ k2

and hence (3.59) is satisfied for all y ∈ K̃ . Finally, whenever x ∉ K̃ then it follows evidently
that ∂IK̃ (x) =∅ because f (x) =+∞ and f (y) = 0 for all y ∈ K̃ .

Now, by (3.52) we have Hi ∈ K̃ . The dry friction law (3.52) can thus be conveniently
expressed as

Ṁ ∈ ∂IK̃ (Hi ). (3.60)

It was proven [26] that this characterization of the dry friction force follows from basic
thermodynamic principles of admissible irreversible fields, which in retrospect justifies our
postulation of the specific dry friction conditions (3.52). In the anisotropic case, k denotes
a symmetric positive definite matrix, which is invertible. The k-dependent ball K̃ is then
generalised to

K̃ := {u ∈Rn : ‖k−1u‖ ≤ 1} (3.61)

With the above definition, (3.60) still holds in anistropic material. The dry friction force
conditions in the anisotropic case are:

(i ) ‖k−1Hi‖ ≤ 1

(i i ) ‖k−1Hi‖ < 1 ⇒ Ṁ = 0

(i i i ) Ṁ 6= 0 ⇒ kṀ ∥ k−1Hi

(3.62)

where (kṀ ∥ k−1Hi ) means that the change Ṁ is in the direction of Hi (note that k is positive
definite). This yields the variational inequality problem at time t :

Find Hr ∈ K̃ (t ) such that for all u ∈ K (t ),

(∇S(Hr )−M) · (u−Hr ) ≥ 0.
(3.63)

Solving variational inequality problems can be challenging. However, using that ∇S(u)−
M is integrable we find that a sufficient condition for u∗ to solve (3.63) is that it is the
minimiser of the optimisation problem

Hr (t ) = argmin
u∈K (t )

{S(u)−M ·u} (3.64)
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Indeed, to find the implication of (3.64) to (3.63) we note that the minimiser u∗ of the
optimisation problem satisfies

∇(
S(u)−M ·u

)∣∣
u=u∗ = 0 (3.65)

from which it immediately follows that ∇S(Hr )−M = 0 and therefore (3.63) is satisfied by
u∗.

This minimization problem has a unique solution, provided that the derivative M ′
an > 0

on its domain. This is the case for any realistic anhysteric curves, which is further substan-
tiated by measurements and experimental data. Let us look more deeply into the minimiza-
tion problem (3.64). The unconstrained problem

Hr (t ) = argmin
u∈R3

{S(u)−M ·u} (3.66)

is a minimiser at a point u ∈R3 where the gradient

∇(S(u)−M ·u) =∇S(u)−M = 0.

By definition, we have u = Hr . If it is the case that this minimum is also contained in the
interior of set K (t ), we have found our unique solution to the constrained minimization
problem. So Hr = Hr . Otherwise, the minimum is attained at the boundary of K (t ) where
it holds that ‖k−1(Hr −u)‖ = 1. This expression can be used to find the minimiser of the
minimisation problem numerically [33].Solving the minimisation problem (3.63) therefore
leads to a new value for the magnetisation via

M =∇S(Hr ) (3.67)

in terms of a changing magnetic field H. Further details on the numerical procedures to find
solutions of the minimisation problem are omitted here, and the author refers to [33].

One of the elegant properties of the EV model is that the model is intrinsically vectorial
and that the model describes change of magnetisation in terms of minimisation problems
rather than PDE’s. Although PDE’s can be used to directly compute solutions, the mini-
misation alternative seems to reflect the very nature of ferromagnetism more precisely. In
particular, the principle of minimum energy is a direct consequence of the second law of
thermodynamics, and therefore it seems a good step to describe ferromagnetic behaviour
using such energy minimisation principles.

EV MODEL EXTENSIONS

It is stated in the paper that describing the change of magnetisation using the above metho-
dology does not lead to a realistic hysteresis curve. Therefore, the authors introduce two
essential modifications to the model:

• A superposition of cells, where each cell represents a part of the magnetisation based
on a dry-friction tensor.
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• The effective field He = H+αM is introduced, bringing about an extra parameter α.
This effective field is reminiscent of the effective field in JA, and couples the total
magnetization M to the magnetic field, bringing about an interconnection between
cells.

Each cell is assigned a cell magnetization Ml
c and a weight ωl , where the cell magnetisation

evolution is governed by the cell-specific friction coefficient. The total system magnetisa-
tion is then written as a linear combination of cell magnetisations:

M =
Nc∑
`=1

ω`M`
c (3.68)

One must thus keep track of all cell data during a simulation. The new magnetisation at each
time step is now given by the above superposition, and the magnetic field H in the above
model derivation is replaced by the effective field He , yielding the incremental formulation

Mnew =∑Nc
`=1ω

`M`
c =∑Nc

`=1ω
`Man(||H`

r ||) H`
r

||H`
r ||

H`
r = argminu∈K `(t ){S(u)−M`

c,ol d ·u}

S(u) = ∫ ||u||
0 Man(s)ds

K `(t ) = {u ∈R3 : ||(k`)−1(u−H`
e )|| ≤ 1}

(3.69)

where the optimisation step can be done by gradient descent or Newton minimisation, by
first writing the problem in an equivalent way using spherical coordinates. Furthermore, a
choice for the description of the anhysteretic magnetisation Man has to be made. Popular
choices are the arctangent or the Langevin-function. More recent research showed that the
“anisotropic extension function-based model” for the anhysteretic magnetisation curve de-
scribes the anhysteretic behaviour in the best way [29].

EXAMPLE OF A HYSTERESIS CURVE USING THE ENERGY-VARIATIONAL MODEL
To illustrate the energy-variational model, we the show hysteresis curves for different cells.
Here, the values for the dry-friction tensors k1, ...,k Nc

are all diagonal and isotropic and
linearly distributed in the range [0,km ax]. Furthermore, the model weights are given by
ω` = 1/Nc and Nc is varied per simulation.

STRATEGIES FOR PARAMETER ESTIMATION
In the Energy-Variational model as described by Prigozhin et al. [33], parameter estimation
was performed as follows. Under the assumption of material isotropy, a known anhysteretic
curve and an assumed linear distribution of N = 41 friction parameters k1, ...,kN , only the
N = 41 weights ω1, ...,ωN had to be estimated. In their procedure, Prigozhin et al. used
a cubic spline function as an approximation to the anhysteretic function. By performing
several experiments, the anhysteretic curve and the coupling parameter α could be estima-
ted. Next, a three-level Matlab algorithm was implemented to estimate the weights ωi . In
three nested algorithm steps, a least squares-error was minimized using intrinsic Matlab
functions. That way, the anhysteretic curve, the value of α and the weights were estimated
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Figuur 3.6: Energy variational hysteresis model for various numbers of cells. Note that the number of cells have
a direct influence on the shape of minor loops and (higher-order) reversal curves. As the number of cells grows,
these curves become more smooth and regular.

using a set of experimental ‘FORCs’ (First-Order Reversal Curves). This is a promising
and straightforward approach for parameter estimation, it yielded excellent results on real
material [33].

3.4. ASSESSMENT OF HYSTERESIS MODELS

In this section we assess the three candidates of models that describe ferromagnetic behavi-
our. To compare the three models, a list of criteria is defined which can be found in Table.
3.1. We will discuss each criterion separately and see how the models compare to each
other.
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IP RM JA EV
Orders of physics included 1st order 2nd order ∞th order ∞th order
Temperature dependencies No No Yes Yes
Hysteresis behaviour No Yes Yes Yes
Anistropy extensions Yes Yes Yes Yes∗
Number of parameters (scalar) 1 2 5 2+2Nc

Coupling to FEM Easy Moderate Moderate Hard
Nonlinear Coil effects possible? Yes Yes Yes Yes
Computational burden low limited high very high

Tabel 3.1: Assessment of four models for ferromagnetic behaviour. ∗Note that the EV model is intrinsically
anisotropic.

3.4.1. NUMBER OF FREE PARAMETERS
Looking at the three discussed models, it is clear that EV is the most complex out of the
three, followed by the JA model. RM is the simplest, but also the most inflexible; it is fur-
thermore only applicable at low to moderate magnetic field strengths. This can be a consi-
derable drawback within the framework of closed-loop degaussing, where strong magnetic
fields are often present locally. RM and JA are both scalar in nature, whereas EV is in-
trinsically vectorial. It is important to grasp this distinction, which can also be understood
in the following way. Suppose all tensor parameters of the vectorial hysteresis models are
taken isotropic, i.e. of the form θ = γδ, where γ ∈ R and δ is the unit tensor. Starting
from a nonzero initial condition and applying only a magnetic field in (for example) the x-
direction, in the case of RM and JA only yields a change in M in the x-direction. However,
if the applied field is strong enough, EV also yields changes in M in the y and z directions,
due to intrinsic anisotropy in the EV model.

In terms of the exact number of free scalar parameters, the following holds: Since all
tensors in the hysteresis models are physically required to be symmetric and positive defi-
nite, a general 3×3 hysteresis tensor consists of 6 free scalar parameters. Now we consider
each of the models and identify how many free parameters in the vectorial anisotropic case
are actually present:

• The original RM has 2 parameters. The three-dimensional RM model replaces the
two scalar parameters by two (symmetric) tensors, increasing the number of para-
meters to 12. The quantity Hm is not really a parameter, but rather a property and
consequence of the applied field.

• The original JA has 5 parameters. Not all these parameters are transformed to
vectors or tensors in the vectorial case. Bergqvist [2] indicates that in the vecto-
rial case, the parameters α, k and c become symmetric tensors, bringing the total
number of parameters to 20. As [38] indicates, the anhysteric curve parameters can
also be taken anisotropic, introducing the two parameter vectors a = (ax ay az ) and
Ms = (Msx Ms y Msz ). Furthermore, the minor loop closure parameter R needs to be
estimated for any minor loop, making it a ‘pseudo-parameter’, comparable to but
more complex than Hm in the RM . All in all, 24 free scalar parameters are needed
for the fully anisotropic JA .

• EV has two anhysteric curve-vectors, just as the JA model. The effective field para-
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meter α introduces another 6 free parameters. When Nc pseudo-particles are used in
modeling the hysteresis behavior, Nc weights and 6Nc scalar friction parameters are
needed, bringing the total number of free scalar parameters to 12+7Nc .

3.4.2. COMPUTATIONAL COMPLEXITY

In terms of computational complexity, the following can be stated. Firstly, let us consider
the material case, in which no demagnetization fields or geometrical considerations play a
role. When written in incremental form, a step of the RM can be taken by firstly checking
the sign change of the driving magnetic field. Thereafter, the incremental susceptibility is
given by a simple function of H and the change Ḣ in time. The values for Hm need to be
stored. Roughly the same can be said about JA , however, the anhysteretic function and
its derivatives must be evaluated a considerable number of times, yielding larger computa-
tion time. In contrast, both of these models are vastly more computationally efficient than
EV which, in order to find a new value for the magnetization, needs to solve a nonlinear
minimization problem Nc times (on average); this depends on whether irreversible changes
occur in the magnetisation in EV . In all these hysteresis models, the value of the ‘new’
magnetization is only dependent on the previous state. However, storing the previous mo-
del state is much more expensive in EV than in RM and JA , which can be a model choice
consideration in large-scale simulations. Loosely speaking, this ‘Markov property’ is in
contrast to for example the Preisach model, in which all previous model states have to be
taken into account.

Secondly, for large magnetic simulations on a macroscopic scale, a Finite Element of
Boundary Element approach can be taken. Focusing on the FEM for now, one can say that
the numerical complexity of material models can roughly be multiplied by the number of
ferromagnetic material nodes in the finite element mesh, thus scaling the model time accor-
dingly to the dimensions of the spatial discretisation in the FEM environment. In addition,
all of these models are cast in either incremental or forward form, which is convenient when
large magnetic simulations are integrated using a numerical scheme. However, in the case
of JA and EV , an extra internal iterative scheme is necessary to impose extra numerical
stability to ensure inner convergence of the models.

3.4.3. PARAMETER ESTIMATION OF MODELS

In the previous section, we have discussed the complexity of finding the correct material
parameters based on measurement data. It was stated that the parameter estimation for
RM and JA is well known and many parameter estimation methods are proposed in the
literature. However, for the more recent energy-variational model, EV , little is known about
how to effectively compute the material parameters. The authors have a need to develop
such a parameter estimator in the near future. One of the open problems is how to compute
the anisotropic material parameters from measurement data. What measurement data is
required to obtain anisotropic parameter values, and is it even observable in measurement
data alone?

We conclude that, based on the assessment, the energy-variational model is very promi-
sing, but requires additional research to define parameter estimations and to understand its
predictive power.
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Figuur 3.7: A steel prolate spheroid above the sensor-array and a top view of the ellipsoid. The solid spheroid is
580 mm long along the main axis and 95 mm in diameter along the two minor axes. It is placed inside a coil system
that is used to change the local applied magnetic field and is placed 56 mm above the sensor array. The global
coordinate frame is indicated on the A4 paper. To measure the magnetic induction field, HMC5983 Triple
Axis Compass magnetometers are used. Depending on the set gain, the sensor noise is approximately 1 µT up
to 3 µT. Higher gains are used to measure stronger fields, but also introduce a lower signal-to-noise ratio.

3.5. COMPARISON OF MODELS TO EXPERIMENTAL DATA

In this last section, we compare the above-mentioned material hysteresis models to expe-
rimental data of a case study. In the experiment, we have used a steel prolate spherical
ellipsoid as a ferromagnetic body. The solid steel prolate spheroid is 580 mm long along
the main axis and 95 mm diameter along the two minor axes. In Fig. 3.7 a picture of
this ellipsoid can be found. The prolate spheroid provides an excellent starting point for
investigating magnetic hysteresis since a perfect analytical solution for its magnetic field
exists.

3.5.1. DEMAGNETISATION FACTORS OF A GENERAL ELLIPSOID

As was briefly discussed Section 3.2, ferromagnetic material can be viewed as consisting of
a large collection of micro- or mesoscopic magnetic domains. Locally and averaged over
time (neglecting Barkhausen fluctuations), the magnetization due to an applied field can be
assumed constant over those subdomains. The net magnetization ‘creates’ small dipoles
inside the material, in turn causing a nonzero magnetic field. The magnetic field inside a
magnetic material, which is thus a consequence of the applied field and magnetization, is in
general a complicated function of the geometry of the object, the magnetization distribution
and the applied field itself. With this in mind, writing the magnetic field inside a material
locally as a sum of the applied field Ha(r) and the ‘magnetization-caused’ field HM (r),
which is justified by the superposition principle, one can write

H(r) = Ha(r)+HM (M(r),r) (3.70)
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which always holds true. It is also true that (locally speaking) HM (0,r) = 0. Now, expanding
the magnetization-caused field to first order in M(r) yields

HM (M(r),r) = HM (0,r)+ ∂HM (0,r)

∂M
M(r)+h.o.t . (3.71)

= ∂HM (0,r)

∂M
M(r)+h.o.t . (3.72)

(3.73)

Defining the local demagnetization tensor as

N (r) :=−∂HM (0,r)

∂M
, (3.74)

one observes that the magnetic field inside any magnetized material may be written out
locally as

H(M(r),r) = Ha(r)+HM (M(r),r) (3.75)
= Ha(r)−N (r)M(r)+h.o.t . (3.76)

Having obtained the nomenclature ‘demagnetization tensor’, the following important result
can be stated.

Theorem [Osborn (1945)]. If a (degenerate) ellipsoidal body is placed in a uniform
background field Ha and is uniformly magnetized with magnetization M, the demagneti-
zation field HM is also uniform. Furthermore, the demagnetization tensor is diagonal and
constant across the ellipsoid, with elements that can be calculated explicitly from the ellip-
soidal dimensions only:

H = Ha −N M (inside the ellipsoid) (3.77)

The diagonal entries of this particular demagnetization tensor are called demagnetization
factors and an important relationship for these diagonal entries is that in the SI-system,

Nxx +Ny y +Nzz = 1. (3.78)

The magnetic field inside the ellipsoid is thus uniform. Also,

H(r) = A(r)M (outside the ellipsoid) (3.79)

where A(r) is a 3×3 matrix with entries solely depending on the geometry of the ellipsoid
and r. An analytical expression for A(r) can be found in [1, Appendix A.3].

The above-mentioned theorem is taken from J.A. Osborn [31]. Note that the theorem states
an equivalence between (3.76) and (3.77) for which all higher order terms vanishes.

It was Siméon Poisson who already showed that any resulting magnetisation of such
an homogeneous ellipsoid in a uniform background field is uniform, but Osborn computed
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the resulting demagnetisation factors in an analytical way using expressions in terms of
elliptical integrals by Poritsky. In fact we have for prolate speroids that

Nxx = 1

m2 −1

(
mp

m2 −1
log

(
m +

√
m2 −1

)
−1

)
(3.80)

Ny y = m

2m2 −2

(
m −1p
m2 −1

log
(
m +

√
m2 −1

))
(3.81)

Nzz = Ny y (3.82)

for which m = l

d
where the polar radius l is greater than the equatorial radius d (l >

d). The resulting general analytical expressions for the demagnetisation factors in terms
of the radii of the three principal axes are expressed in [31] and a number of tables for
demagnetisation factor values are found for prolate and oblate spheroids. Note that for a
sphere the demagnetisation factors are

Nxx = Ny y = Nzz = 1

3

using a symmetry argument and the fact that the factors sum up to one. This implies that
the internal demagnetising field for a sphere is relatively strong in each direction.

3.5.2. MEASUREMENT DATA OF STEEL ELLIPSOID
Returning to our setup and steel ellipsoid, we can determine the demagnetisation factors
based on the expressions in [31]. We find that for our ellipsoid we have that

Nxx ≈ 0.0443, and Ny y = Nzz ≈ 0.4778. (3.83)

Based on these values, we observe that the demagnetising field is relatively small in the
longitudinal direction, while the field is ten times stronger in the other two principal direc-
tions. As a direct consequence we find that nonlinear hysteresis effects are more visible in
the longitudinal direction than in the other directions. We will see that this is observed in
the measurement data too.

We have collected a dataset of magnetic measurements by varying the magnetic back-
ground field in a prescribed scenario, as depicted in Fig. 3.8 in the top-left corner. Initially
the magnetic background field was cancelled out, then the background field was varied
along the three principal directions x, and z. After that, the field is rotated successively in
the x − y, y − z and x − z plane.

The magnetic field is measured at the sensor array in all 121 magnetic sensors. As an
illustration, we plot the resulting magnetic distortion field (thus measurements are corrected
for the magnetic background field) measurements at position 59 and this plot can be found
in the top-right corner of Fig. 3.8. Note that this is a sensor that is directly below the
longitudinal symmetry axis of the ellipsoid. In the first part of the scenario (0 ≤ t < 200),
we see that there is a dominant change in the x-component. This is a direct consequence
of a changing magnetization in the x-direction. Indeed, there are some variations up to 25
microtesla in the y and z component, but this is most likely due to misalignment of the
sensor with respect to the ellipsoid. Then, the background field rotates which results in
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variations in all three components. It is observed that those measured field values can be
seen as the sum of measurements in the principal directions in the first part of the scenario.
Therefore, we conclude that little anisotropic effects are present in this dataset.

Next, we have computed the magnetic state of the steel ellipsoid at each measurement
point in the scenario using an inversion. Here, we assume that the ellipsoid consists of
homogeneous distribution of ferromagnetic material and that the ellipsoid is uniformly
magnetised: averaging the magnetisation over the ellipsoid

m =
Ñ

Ω
M(r)dr (3.84)

we have defined a simple magnetic dipole model for the steel ellipsoid. This model is in
turn used to compute the magnetic state and the resulting temporal magnetisation can be
found in the left-bottom corner of Fig. 3.8. Finally, a H −M hysteresis plot is shown in the
bottom-right corner of Fig. 3.8.

Looking at the magnetisation in the x-component (the blue line), it is observed that there
is a small hysteretic effect present, if one looks at the M values for H = 0. Depending on the
increasing or decreasing branch, this value at H = 0 may differ slightly. However, the gap
is very small, indicating that the measurement hysteresis effects are small. Looking at the
other components of the magnetisation, it is clear that there is almost no variations present
in the measurement. This also supports the misalignment of the ellipsoid observation in the
aforementioned argument.

We want to compare the measurement data with our hysteresis models from Section III.
Although we were not able to estimate the material parameters for our steel ellipsoid due to
a lack of time, we can illustrate the performance of our hysteresis model when coupled to
the demagnetisation factors of the ellipsoid using the averaging model (3.84). In Fig. 3.9
examples of this averaging model can be found for the scalar Rayleigh hysteresis model,
the scalar Jiles-Atherton model and energy-variational model (for the x-component of the
magnetisation). Note that in all cases, due to the demagnetising field, the resulting H −M
hysteresis curves have similar shapes and are approximately quadratic in nature. This gives
us confidence that values for the parameters in these models can be found to represent the
measurement data accurately.

3.6. CONCLUSION
In this Chapter we gave an overview of three known hysteresis models. We first descri-
bed the principles of the Rayleigh hysteresis model, then we explained the physical-based
concepts of the Jiles-Atherton model and finally we introduced the energy-variational mo-
del. In particular, we analysed these models by considering the model complexity, to what
extent these models can be extended to incorporate properties such as inhomogeneity and
anistropy, the applicability of the model in large-scale applications, the (numerical) com-
plexity of their computational burden, and their necessary parameter estimations.

We have illustrated the performance of these models by numerical examples that showed
the resulting hysteresis curves, and we have looked at experimental data and related this to
the aforementioned hysteresis models to analyse and explain the data in detail.

It is concluded that the energy-variational model is a very promising model for ferro-
magnetic hysteresis, but requires some additional research in the near future. Furthermore,
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Figuur 3.8: Measurements and results based on experimental data collected for a steel ellipsoid. In the top-
left corner, the applied background field signal is depicted. The scenario consists of three consecutive saw-type
waveforms along each of the principal axes and than a rotating field along the three planes x−y , y−z and x−z. The
magnetic induction field Bs shown in the field that is measured by sensor 59 after substraction of the background
field, and therefore shows the values of the distortion field caused by the steel ellipsoid. Note that the t − M
relationship is computed using inversion based on analytical expressions for the propagation matrix that translates
a magnetisation to the magnetic induction field at the sensorlocations. The resulting hysteresis loop H − M as
depicted in the bottom right picture clearly shows the effect of the demagnetisation field on hysteresis effects.

the Rayleigh hysteresis model is a simple model that describes small nonlinear ferromagne-
tic effects. The model is shown to be feasible for weak applied fields. In our applications,
the Earth magnetic field is considered to be weak, and therefore it is expected that the hyste-
resis model is suitable for the development of a mathematical-physical model for magnetic
signature monitoring.



REFERENCES

3

53

-4 -3 -2 -1 0 1 2 3 4

H [A/m]

-600

-400

-200

0

200

400

600

M
 [

A
/m

]
Rayleigh Ellipsoid Hysteresis Curve

M
x

M
y

M
z

-4 -3 -2 -1 0 1 2 3 4

H [A/m]

-4000

-2000

0

2000

4000

6000

M
 [
A

/m
]

Jiles-Atherton Ellipsoid Hysteresis Curve

M
x

M
y

M
z

-1 -0.5 0 0.5 1

H [A/m]

-4000

-2000

0

2000

4000

6000

M
 [
A

/m
]

Energy-Variational Ellipsoid Hysteresis Curve: N
c
 = 16

M
x

M
y

M
z

-1 -0.5 0 0.5 1

H [A/m]

-4000

-2000

0

2000

4000

6000

M
 [
A

/m
]

Energy-Variational Ellipsoid Hysteresis Curve: N
c
 = 40

M
x

M
y

M
z

Figuur 3.9: Resulting hysteresis curves for a steel ellipsoid. Note that due to the presence of a demagnetising field,
the shape of the hysteresis curve is altered in all models. A common fact is that all curves more or less show minor
curves that are proportional to second order polynomial curves, as found in the Rayleigh model.

REFERENCES
[1] O.C.O. Baas. Nonlinear Behaviour of Ferromagnetic Steel. Mas-

ter thesis, 2018 http://resolver.tudelft.nl/uuid:
dc977bf0-8154-43ca-abe1-5160c7877ff2.

[2] A. J. Bergqvist. A Simple Vector Generalization of the Jiles-Atherton Model of Hyste-
resis. IEEE Trans. on Magn.. Vol: 32. No. 5. pp: 4213 – 4215. 1996.

[3] A. J. Bergqvist. Magnetic vector hysteresis model with dry friction-like pinning. Phys.
B. Condens. Matter. Vol. 233. No. 4. pp: 342 – 347. 1997.

[4] Biedrzycki R., Szewczyk R., Švec P., Winiarski W. Determination of Jiles-Atherton
Model Parameters Using Differential Evolution. Advances in Intelligent Systems and
Computing. Vol 317. 2015.

[5] D. Burgy. Magnetic and Magnetostrictive Characterization and Modeling of High
Strength Steel. Dissertation. 2014.

[6] K. H. Carpenter. A Differential Equation Approach to Minor Loops in the Jiles-
Atherton Hysteresis Model. IEEE Trans. on Magn.. Vol: 27. No. 6. pp: 4404 – 4406.
1991.

[7] O. Chadebec, J. L. Coulomb, J. P. Bongiraud, G. Cauffet, and P. Le Thiec. Recent
improvements for solving inverse magnetostatic problem applied to thin hulls. IEEE
Trans. on Magn., Vol. 38, no. 2, pp. 1005–1008, 2002.

http://resolver.tudelft.nl/uuid:dc977bf0-8154-43ca-abe1-5160c7877ff2
http://resolver.tudelft.nl/uuid:dc977bf0-8154-43ca-abe1-5160c7877ff2


3

54 REFERENCES

[8] O. Chadebec, J. L. Coulomb, G. Cauffet, and J. P. Bongiraud. How to Well Pose a
Magnetization Identification Problem. IEEE Trans. on Magn.. Vol. 39. No. 3. pp: 1634–
1637. 2003.

[9] Sushin Chikazumi and Stanley H. Charap. Physics of magnetism. Krieger Pub Co. June,
1978.

[10] J. M. D. Coey. Magnetism and magnetic materials. Cambridge University Press. 2009.

[11] K. O’Grady and S. J. Greaves. Minor Hysteresis loops effects in magnetic materials.
Journal of Magnetism and Magnetic Materials 138. pp: L233–L236. 1994.

[12] K. Hergli, H. Marouani, M. Zidi, Yasser Fouad and Mohamed Elshazly. Identification
of Preisach hysteresis model parameters using genetic algorithms. Journal of King Saud
University. 2017

[13] John. J. Holmes. Modeling a Ship’s Ferromagnetic Signatures. Morgan & Claypool
publ. Inc. 2007.

[14] J. D. Jackson, Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc.
1999.

[15] D. Jiles and D. Atherton. Theory on Ferromagnetic Hysteresis. Journal of Magnetism
and Magnetic Materials 61. Vol: 48. 1986.

[16] D. Jiles. Numerical Determination of Hysteresis Parameters for the Modeling of Mag-
netic Properties Using the Theory of Ferromagnetic Hysteresis. IEEE Transactions on
Magnetics. Vol: 28. No. 1. 1992.

[17] D. C. Jiles. Frequency Dependence of Hysteresis Curves in “Non-Conducting” Mag-
netic Materials. IEEE Trans. on Magn.. Vol: 29. No. 6. pp: 3490 -– 3492. 1993.

[18] Jianming Jin. The Finite Element Method in Electromagnetics. New York: John Wiley
& Sons, Inc. 2002.

[19] M. Kachniarz, R. Szewczyk. Study on the Rayleigh Hysteresis Model and its Applica-
bility in Modeling Magnetic Hysteresis Phenomenon in Ferromagnetic Materials. Acta
Physica Polonica A. Vol: 131, No. 5. pp: 1244 – 1249. 2017.

[20] P.H. Kirkegaard, R. Brincker. On the Optimal Locations of Sensors for Parametric
Identification of Linear Structural Systems. Mechanical Systems and Signal Processing.
Vol: 8. pp: 639 – 647. 1994.

[21] B. Kvasnica and F. Kundracik. Fitting experimental anhysteretic curves of ferromag-
netic materials and investigation of the effect of temperature and tensile stress B. Jour-
nal of Magnetism and Magnetic Materials. page 162. 2006.

[22] Muzaffar Eusuff, Kevin Lansey and Fayzul Pasha. Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete optimization. Engineering Optimization. Vol: 38.
No.2. pp: 129 – 154. 2006.



REFERENCES

3

55

[23] J.V. Leite et al.. The Inverse Jiles-Atherton Model Parameters Identification. IEEE
Trans. on Magn.. Vol: 39. No. 3. pp: 1397 – 1400. 2003.

[24] J.V. Leite et al.. Real coded genetic algorithm for Jiles-Atherton model parameters
identification. IEEE Trans. on Magn.. Vol: 40. No. 2. pp: 888 – 891. 2004.

[25] J.V. Leite, A. Benabou and N. Sadowski. Accurate minor loops calculation with a
modified Jiles-Atherton hysteresis model. COMPEL. Vol: 28. No. 3. pp: 741 – 749.
2009.

[26] J. J. Moreau. Application of convex analysis to the treatment of elastoplastic systems.
In: Germain P., Nayroles B. (eds) Applications of Methods of Functional Analysis
to Problems in Mechanics. Lecture Notes in Mathematics. Vol: 503. Springer, Berlin,
Heidelberg. 1976.

[27] R. Naghizadeh, B. Vahidi and S. H. Hosseinian. Parameter identification of Jiles-
Atherton model using SFLA. Vol: 31. No. 3. pp: 1293 – 1309. 2012.

[28] H.W.L. Naus. Theoretical developments in magnetomechanics. IEEE Trans. on
Magn.. Vol: 47. No. 9. pp: 2155 -– 2162. 2011.

[29] Michał Nowickim, Roman Szewczyk and Paweł Nowak. Experimental Verification of
Isotropic and Anisotropic Anhysteretic Magnetization Models. Materials. Vol: 12, pp:
1549. 2019.

[30] N.C. Pop and O.F. Caltun. Jiles–Atherton Magnetic Hysteresis Parameters Identifica-
tion. ACTA PHYSICA POLONICA A. Vol: 120. No. 3. pp: 491 – 497. 2011.

[31] J.A. Osborn. Demagnetizing Factors of the General Ellipsoid. Physical Review. Vol.
67. No. 11 and 12. 1945.

[32] C. Papadimitriou, J.L. Beck and S.K. AU. Entropy-Based Optimal Sensor Location
for Structural Model Updating. Journal of Vibration and Control. Vol: 6. No. 5. pp:
781 – 800. 2000.

[33] L. Prigozhin, V. Sokolovsky, J. W. Barret, and S. Zirka. On the Energy-Based Varia-
tional Model for Vector Magnetic Hysteresis. IEEE Trans. on Magn.. Vol: 52. No. 12.
2016.

[34] Lord Rayleigh. On the behaviour of iron and steel under the operation of feeble mag-
netic forces. Philos. Mag.. Vol: 23 . pp: 225. 1887.

[35] O. J. G. Somsen, G. P. M. Wagemakers. Separating Permanent and Induced Mag-
netic Signature: A Simple Approach. International Journal of Electrical, Computer,
Energetic, Electronic and Communication Engineering. Vol: 9. No. 10. 2015.

[36] H. W. F. Sung and C. Rudowicz. A closer look at the hysteresis loop for ferromagnets.
Department of Physics and Materials Science, City University of Hong Kong.

[37] G. Szymanski and M. Waszak. Vectorized Jiles–Atherton hysteresis model. Physica B
Condensed Matter. Vol: 343. No 1. pp: 26 – 29. 2004.



3

56 REFERENCES

[38] Szewczyk R. Computational Problems Connected with Jiles-Atherton Model of Mag-
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ABSTRACT
This chapter presents a parameter estimation method to determine the linear behavior of
an metal object build from thin plates. Based on the magneto-static field equations, an
integral equation is derived that fully determines the induced magnetization, whenever the
spatial magnetic susceptibility distribution is known. This forward problem is used as an
underlying physical model for the parameter estimation method. Using near field magnetic
measurements around a thin plate, the parameter estimation yields a distribution of the
magnetic susceptibility. Furthermore, a sensitivity analysis is performed to understand the
behavior of this parameter estimation method.

4.1. INTRODUCTION
Identification of the magnetic state of ferromagnetic objects is in general very difficult. A
common approach is to split the total magnetization into two parts: an induced part and a
permanent part. The induced magnetization is related to a linear response of the material to
the background field, and the permanent part is due to the magnetic history of the material
[16]. The magnetic history, also called magnetic hysteresis, is a very complex phenomenon
that may be described by means of Preisach models [18] or continuous models such as Jiles
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and Atherton [11]. The linear response is described by the magnetic susceptibility and may
be complex to describe depending on the material properties. Isotropic material does not
have a preferred direction in which it magnetizes, and therefore the magnetic susceptibility
is easily described by a scalar quantity. For anisotropic materials, the magnetic susceptibi-
lity is harder to describe because of the orientation dependencies within the material.

A related notion to the magnetic susceptibility is the (relative) permeability, which
seems to be more relevant in applications. The magnetic susceptibility χ and relative per-
meability µr are related to the well known identity

χ+1 =µr

Hence, all results in this chapter (in terms of the magnetic susceptibility) can equivalently
be expressed in terms of the permeability. From our point of view, we are interested in the
magnetic susceptibility, because it links the internal magnetic field inside an object to its
magnetization.

A typical application of identifications of magnetic states can be found in the military
context. Nowadays, accurate identification of the magnetic state of a military vessel (called
the magnetic signature) has become important, as more sophisticated weaponry use diffe-
rent kind of sensors – such as magnetic sensors – to find and destroy their target. It is of
utmost importance for the navy to reduce the magnetic signature of their military vessels,
to avoid detection and destruction of their vessels [7–9].

The forward computation of the induced magnetization is rather simple, and can be
done in a finite-element environment. Such implementations are readily available in many
software packages such as Comsol Multiphysics, Cédrat Flux3D and Ansys
Maxwell. However, for such computations of the induced magnetization, the value of the
magnetic susceptibility χ must be known. In the literature, one can find specific values for
different materials. In practice, anomalies in materials and the specific composition of the
material imply variations in these values. Therefore, one should expect spatial variability
of χ in an object rather than being a constant. This makes accurate modeling of the forward
problem complicated.

Several parameter estimation methods have been proposed for determination of the
magnetic susceptibility. Susceptibility estimation is found in the determination of the initial
magnetic susceptibility for the “Metal magnetic memory (MMM)” method to passive mag-
netic nondestructive testing [17]. Even though MRI works with a high frequency signal, a
magnetic susceptibility method can be defined in magnetostatics by considering the rela-
tionship between the magnetic susceptibility and varying magnetic fields in the frequency
domain (for a fixed frequency) [12]. However, for MRI-related applications the values of
the magnetic susceptibility are presumed to be small (in the order of 10−3), which leads to
approximately linear estimation models. For ferromagnetic steel, the magnetic susceptibi-
lity values are high (in the range of 102 – 105), which leads to non-linear magnetic field
equations in χ. This case is more challenging and the techniques used are more involved.

This chapter considers two topics. Firstly, we derive a magnetic susceptibility estima-
tion method to compute spatial magnetic susceptibility distributions of linearly reacting
materials, for which the magnetic susceptibility values are large. This method is based on
least-squares optimization and solved using the “Broyden-Fletcher-Goldfarb-Shanno” me-
thod [13]. Because approximations of these spatial magnetic susceptibility distributions
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may contain errors, we are interested in how these variations relate to the corresponding va-
riations in the induced magnetic induction field. Such insights may also tell us to what ex-
tent the parameter estimations must be accurate. It is also important for future work, where
we try to describe the magnetic distortion fields of magnetic objects accurately. These
sensitivity questions are considered in the second part of this chapter.

This chapter has the following structure. In section II, the methodology behind the
derived magnetic susceptibility estimation is discussed. A forward model is derived that
fully describes the linear behavior. Several magnetic identification methods are proposed
for semi-linearly reacting materials [3, 4, 19]. However, we take another, slightly different,
approach to describe the induced magnetization. From a physical point of view, we assume
that magnetization is a continuous vector field. Therefore, we expand any magnetization as
a function in terms of linear basis functions. This has some advantages, e.g, enabling the
use of smoothing regularization operators. Then, using various techniques from variational
data assimilation [5, 20] and numerical analysis [6], we solve the proposed nonlinear mi-
nimization problem. In section III numerical examples are given that illustrate the forward
and magnetic susceptibility estimation. A numerical identical-twin experiment where the
true magnetic susceptibility state is assumed to be known is conducted to test the validity
of the methodology. In this stage of the research it is essential to consider first a numerical
validation of the method, because the true magnetic susceptibility state of magnetic objects
are unknown in practice and therefore the performance of the method is hard to analyse.
In section IV, a sensitivity analysis is then performed to investigate the behavior of variati-
ons in the magnetic susceptibility in forward computations. A conclusion and a discussion
of future work for further enhancement of the proposed parameter estimation method are
summarized in Section V.

4.2. METHODOLOGY
In this section, the methodology behind our proposed parameter estimation method is dis-
cussed. Starting with the derivation of the underlying physical model from classical phy-
sical principles in magnetostatics, the parameter estimation method is then derived using
techniques from variational data assimilation.

4.2.1. MAGNETOSTATICS
Suppose that an object is made of linearly reacting and isotropic material, and suppose
that the magnetic susceptibility χ and the geometry of the object are known. Furthermore,
assume that the object is made of thin plates with a thickness t .

The object is placed in a uniform magnetic background field B0 = µ0H0. The back-
ground field induces some magnetization denoted by Mi nd . Assume that any permanent
magnetization is absent, therefore the magnetization of Ω reads

M := Mi nd .

Due to the induced magnetization, a perturbation arises and this perturbation is called the
reduced (or induced) magnetic field, denoted by Hr ed . The total magnetic field H reads

H = H0 +Hr ed . (4.1)
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LetΩ⊆R3 be the compact volume of the object. The linear behavior inΩ is defined through

M =χH (4.2)

which defines the coupling between the magnetic field and the magnetization of object Ω.
Here, χ is a dimensionless number which is assumed to be spatially dependent.

To obtain the reduced magnetic field due to M, use the magnetostatic field equations:
∇×H = 0
∇·B = 0
B =µ0(H+M)

. (4.3)

In these equations, B denotes the magnetic induction field, and µ0 = 4π ·10−7 H/m is the
magnetic permeability in vacuum. The magnetostatic equations can be solved via a scalar
potential function, see [10, page 194–197]. The reduced magnetic field at point r reads:

Hr ed (r) =− 1

4π

Ñ
Ω

r− r′

|r− r′|3 (∇′ ·M)(r′)dΩ′+ 1

4π

Ï
∂Ω

r− r′

|r− r′|3 (n′ ·M)(r′)dS′ (4.4)

where n′ = n′(r′) is a normal vector, pointing outwards. The differential operator ∇′ is
defined by ∇′ = [∂x′ ,∂y ′ ,∂z ′ ]

T . The magnetization M is supported on Ω, and M ≡ 0 outside
Ω.

Combining equations (6.5), (4.2) and (4.4) leads to the following integral equation for
M (see [19])

1

χ(r)
M(r)+ 1

4π

Ñ
Ω

r− r′

|r− r′|3 (∇′ ·M)(r′)dΩ′− 1

4π

Ï
∂Ω

r− r′

|r− r′|3 (n′ ·M)(r′)dS′ = H0. (4.5)

Note that this equation is only valid inside the object Ω. Evaluation of (4.5) in a point r ∈Ω
is mathematically challenging, since both integrals are singular for r′ = r. Equation (4.5)
must be reformulated in such a way that these singularities are avoided. This is done after
discretization of Ω, using Gauss’ divergence theorem. See Appendix 4.5.

4.2.2. THE DISCRETE FORWARD PROBLEM

Introduce a triangulation of Ω =
Ne⋃

k=1
ek where Ne is the number of triangular elements.

Because Ω is thin, we assume in the remainder of this chapter that Ω is a two-dimensional
surface and that the elements e are flat triangles. Using demagnetization factors [14] one
can derive that in this case the magnetization is approximately tangential to the object and
as χ is large, the induced magnetization is approximately uniform in the normal direction.
In Fig. 4.1 one can find an example of a triangulation of a square plate. Furthermore,
assume that χ is piecewise constant on each triangular element:

χ=χk on element ek , χk ∈R+
0 . (4.6)

The next step is to approximate the magnetization M on each element. To have a non-trivial
description for ∇ ·M, we assume that M is linear on each triangular element e, hence we
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expand M in terms of linear basis functions. On a triangular element e the approximation
of M is denoted by (M)e and reads

(M)e (r) =
3∑

k=1
Mkϕk (r). (4.7)

where Mk are the values of M at the vertices v1,v2 and v3 of the triangular element e and
ϕ1,ϕ2 and ϕ3 are linear basis functions on e defined by the relations

ϕi (v j ) = δi j , for i , j = 1,2,3. (4.8)

To find a local description of the magnetisation, let Le = {s,t,n} be an orthonormal basis for
element e. Such a local description allows one to impose extra constraints on the magneti-
sation such as a vanishing normal component, as indicated by the demagnetisation factors
of a thin sheet. 5Locally, the magnetization at each vertex point is thus reads

M(vk ) =C M̂(vk ) =C p̂k , p̂k ∈R2

where C is 3×2 the change of basis matrix from the local coordinates to the global ones,
which is simply given by C = [ s t n ]. Note that C is constant, because we consider
non-curved triangular elements. Therefore, it is straight-forward to construct such local
bases for any triangular element in our mesh. The expansion of M on e in terms of the
values p̂k is given by (

M(x, y, z)
)

e =
3∑

k=1
C p̂kϕk (x, y, z)

Hence, the magnetization M on e is fully determined whenever the six values of p̂k (two on
each vertex of element e) are known.

Finally, we derive an explicit expression for the divergence of the magnetization M.
Recall that for any constant vector c we have ∇ · (cψ) = c · ∇ψ. Using this result, we can
derive an elegant expression for ∇·M in terms of the entries of p̂k :

(∇·M)e =∇· (M)e

=∇·
(

3∑
k=1

pkϕk

)

=
3∑

k=1
pk ·∇ϕk

=
3∑

k=1

(
s[p̂k ]s + t[p̂k ]t +n[p̂k ]n

) ·∇ϕk

Therefore, the expansion for ∇·M on element e is given by

(∇·M)e =
3∑

k=1

(
s ·∇ϕk

)
[p̂k ]s +

(
t ·∇ϕk

)
[p̂k ]t +

(
n ·∇ϕk

)
[p̂k ]n (4.9)
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31

2

4

5

n′

n′

Figuur 4.1: Example of a triangulation, with triangular elements e1, . . . ,e5. Note that we assume that the normal
vector points outward.

such that on each element e, the divergence of M is approximated by a constant value, in
terms of the entries of p̂ in each vertex of element e.

It remains to derive suitable expressions the expansion of n′ ·M on some line boundary
element be with outward pointing normal vector. Here, the vector n′ is the normal vector
that is perpendicular to be. We fix some boundary element be with vertices {v1,v2} and
observe that this element is a face of some triangular element e with vertices {v1,v2,v3}. We
use the local coordinates of this corresponding triangular element to expand M. Then we
have on be:

(n′ ·M)be =
2∑

k=1

(
s ·n′)ϕk [p̂k ]s +

(
t ·n′)ϕk [p̂k ]t +

(
n ·n′)ϕk [p̂k ]n (4.10)

In the case that we consider the expansions in the same global coordinate system using the
standard euclidean basis for R3, expression (4.9) simplifies. The divergence of M and the
flux n′ ·M are then approximated using these expansions:

(∇′ ·M)e (r′) =
3∑

k=1
Mk ·∇′ϕk (r′)

(n′ ·M)e (r′) =
3∑

k=1
(n′ ·Mk )ϕk (r′).

(4.11)

Using the triangulation and the above expansions for M, integral equation (4.5) is reduced
to a finite-dimensional system of equations. Due to the small thickness of Ω, the volume
and surface integrals in (4.5) are reduced to surface and line integrals. After applying a
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Galerkin projection method12, one obtains the following set of equations:

1

χ(ri )
(M)ek (ri )+ t

4π

∑
e

∫
∂e

n′

|ri − r′| (∇′ ·M)e (r′)dS′− t

4π

∑
e

∫
∂Ω∩e

ri − r′

|ri − r′|3 (n′ ·M)e (r′)dl ′ = H0

(4.12)

for each evaluation point ri ∈ ek . The normal vector n′ is defined as a vector pointing
outwards as illustrated in Fig. 4.1. Each evaluation of (4.12) in a point leads to a sin-
gle equations in terms of the background field H0, the magnetic susceptibility values and
magnetization values Mk at the grid points.

If the integral equation is evaluated in three points per triangular element ek the above
integral equation (4.5) can be solved consistently by solving the corresponding discrete
system (4.12). Further derivations show that (4.12) can be written as a system of the form[

Ne∑
k=1

1

χk
Dk + A+B

]
M = h0. (4.13)

The matrices Dk , A,B ∈ R3M×3N , where M is the number of evaluation points and N is
the number of grid points and h0 ∈ R3M is a constant vector that contains the magnetic
background field. Vector M ∈R3N is now the numerical approximation of the magnetization
and contains the values of the magnetization in each of the grid points. Note that this vector
suffices to describe the full magnetization through (4.7). Furthermore, the entries of Dk , A
and B may be computed analytically, or approximated numerically by means of suitable
quadrature rules.

Finally, if M is obtained after solving (4.13), the same triangulation and expansion is
used to compute the (total) magnetic induction field at any observation point via

Bc (rk ) = B0 +Br ed (rk ) (4.14)

where Br ed (rk ) is written as
Br ed (rk ) =µ0C (rk )M. (4.15)

The matrix C (rk ) ∈ R3×3N is obtained from (4.4) after applying the discretization and eva-
luation at rk .

4.2.3. INVERSE PROBLEM FORMULATION
Based on the discrete forward problem described in the previous subsection, one can for-
mulate the corresponding (discrete) inverse problem. Suppose that the magnetic induction
field of some linearly reacting magnetic object Ω is measured, the inverse problem is to
determine the magnetic source Mi nd , based on the physical model described in section
4.2.2.
1A word of caution on the reduction of the integral equation to the discrete case. Whenever the diameter of the
triangular elements ek become smaller than the thickness t of object Ω, then approximation (4.12) of integral
equation (4.5) becomes invalid.

2In the derivation of (4.12), the assumptions are used in a slightly different order. One first start with a discreti-
zation of the full three-dimensional object Ω, and uses the typical value of the thickness to neglect terms of the
equation. One is then left with integrals defined on the surface of the three-dimensional object, as mentioned in
(4.12).
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If M = {r1,r2, . . . ,rK } denotes a collection of measurement locations, the values of the
magnetic induction field in the measurement locations gives rise to a vector Bm ∈R3K given
by

Bm = [
(Bm(r1))x , (Bm(r1))y , (Bm(r1))z , . . .

(Bm(rK ))x , (Bm(rK ))y, (Bm(rK ))z
]T .

(4.16)

Each measurement is contaminated by noise; in this chapter we assume Gaussian white
noise and write

Bm := b0 +Be
r ed +e, e ∼N (0,Σ) (4.17)

where Σ is the covariance matrix of e, Be
r ed are the exact values of the reduced magnetic

induction field and b0 ∈ R3K is a constant vector containing the values of the magnetic
background induction field. Similarly, using the discrete forward model, one can compute
the magnetic induction field in the measurement locations for some prescribed magnetic
susceptibility distribution. This forward computation gives rise to a vector Bc [χ] that is
computed via a simple matrix-product:

Bc [χ] := b0 +C (M )M, (4.18)

where C (M ) ∈R3K×3N is built out of block matrices defined in (4.15).

4.2.4. INVERSION, MINIMIZATION PROBLEM
System (4.13) and expressions (4.16) and (4.18) are the starting point of the derivation of
the parameter estimation method. The idea is as follows: based on near field measurements
of the magnetic field B, the task is to find a suitable spatial distribution of χ such that there
is a good fit between computed values and the measured values. This naturally results in
defining the residual

Res := Bm −Bc [χ] (4.19)

If the residual is small, a good fit between the measured values and computed values is
expected, and the choice of the corresponding spatial distribution of χ should be acceptable.
Define the residual functional

J (χ) = 1

2
ResT W Res = 1

2
‖Res‖2

W . (4.20)

where W =Σ−1 is the inverse of the covariance matrix. Note that J depends on χ, although
this dependency is not explicitly visible from its definition. The parameter estimation me-
thod is based on the iterative minimization of this functional. A solution of the parameter
estimation method is found through

χ∗ = argmin
χ∈RNe

J (χ). (4.21)

In practice, measurements are contaminated by noise. Noise typically arises from mea-
surement interference and inaccuracies in the measuring devices; for magnetic field sensors
these inaccuracies are e.g. orthogonality errors between axes, temperature dependencies,
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hysteresis in the device and scaling errors. This implies that whenever one tends to solve
(4.21), a certain tolerance level εtol should be chosen in such a way that it reflects the noise
level in the measurements (4.17):

stop whenever |J (χ∗)| < εtol . (4.22)

Otherwise, the minimization will over fit the noise in the measurements, which leads to
unsatisfying solutions.

4.2.5. INVERSION, REGULARIZATION
In general the solution of least-squares problem (4.21) is not unique, and J (χ) has many
local minima. In order to choose the optimal minimizer, additional information can be
added to the least-squares problem to reduce the dimensions of the solution space.

In the literature the values of χ for different materials can be found. This information
can be used as a prior estimation of the χ-distribution in the minimization to guide the
search of the solution, denoted by χpr i or .

In addition, one may require that χ satisfies a smoothness condition [2, Chapter 3.2].
Such a condition can be formalized in terms of a smoothing operator, say R, which origi-
nates from application of finite differences to χ. Smoothness requirements ensure that the
value of χk on some element ek should not differ much from its neighbors χ j . Define the
function

ϕ :
Ne⋃

k=1
{ek } → {1,2,3}, ek 7→ϕ(ek ) (4.23)

as the number of adjacent triangular elements e j ; call two elements ep and eq adjacent
whenever they share a side. The following stochastic equation reflects the smoothness
condition:

χk = 1

ϕ(ek )

ϕ(ek )∑
i=1

χki + Ik , Ik ∼N (0,σ2
k ) (4.24)

for k = 1,2, . . . , Ne . Element eki is a neighbors of ek and the term Ik is called an innovation
term. The innovation term shows that χk can vary with respect to its neighbors. The value
of σk reflects to what extent the value of χk can differ with respect to the values of its
neighbors. To illustrate this idea, apply (4.24) to the elements in Fig. 4.1 to obtain e.g.

χ1 = 1

2

(
χ2 +χ4

)+ I1,

χ2 = 1

3

(
χ1 +χ3 +χ5

)+ I2.
(4.25)

The set of equations in (4.24) can be written as

Rχ= E (4.26)

where R ≡ (INe×Ne −S) and E ∼N (0,ΣNe×Ne ). The matrix S originates from the right-hand
side in (4.25). Note that the null space of R is one-dimensional and consists of all uniform
χ-distributions. The obtained operator R is used to regularize the solutions. The stochastic
model (4.24) can be used if one defines the minimization problem in terms of a Bayesian
framework [2].
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In general, if Ω is meshed by means of a non-uniform triangulation, smoothness requi-
rement (4.24) must be replaced by e.g.

χk =
ϕ(ek )∑
i=1

 µ(eki )∑ϕ(ek )
j=1 µ(ek j )

χki + Ik , Ik ∼N (0,σ2
k ) (4.27)

where µ(e) measures the area of element e. Note that in the case the triangulation is uniform
expression (4.27) reduces to (4.24).

Tikhonov regularization [2, Chapter 6] means that the original problem is replaced by a
nearby minimization problem

χ∗ = argmin
χ∈RNe

J (χ)+λ2 1

2
‖R(χ−χpr i or )‖2

2 (4.28)

here λ is called the regularization parameter. The regularization parameter should be selec-
ted in such a way that for the desired solution, the norm of the vector R(χ−χpr i or ) is not
excessively large; whenever ‖R(χ−χpr i or )‖2 is small, it follows that χ is relatively smooth.
However, it is not desirable that the norm is close to zero, because it would imply that the
found solution hardly shows variation.

In general, it is not clear which value for λ is optimal and how to find a suitable value.
One heuristic approach is the use of the so-called L-curve [6]. The most favorable value
of λ is the one that corresponds to the corner of the L-curve, which gives a good balance
between the minimization of the residual and the size of the regularization term. However,
the computation of this L-curve is too cumbersome and time-consuming.

4.2.6. INVERSION, SOLVING THE MINIMIZATION PROBLEM
Hereinafter, problem (4.28) is considered. Note that this problem is not linear in χ. The-
refore the parameter estimation method is based on a nonlinear least-squares problem. A
sophisticated (iterative) numerical solver is required to solve this least-squares problem.
Recall that a necessary condition for χopt to be a local minimum for J is

∇
[
J (χ)+λ2 1

2
‖R(χ−χpr i or )‖2

2

]∣∣∣
χ=χopt

= 0. (4.29)

In Gauss-Newton-Type methods [13, Chapter 3], one requires these gradients with respect
to χ for efficient computation of the nonlinear least-squares problem. In general, it is com-
plex to find an analytical expression for this gradient, as the underlying physical model
may consist of many nonlinearities. It is favorable to derive analytical expressions for the
gradient, as this reduces the computational time significantly. In Appendix 4.5, analytical
expressions for the gradient of J are derived using the adjoint method.

The quasi-Newton method or “Broyden-Fletcher-Goldfarb-Shanno” [13], with acronym
BFGS, is used to solve the minimization problem. The BFGS method is part of the fmi-
nunc routine in the unconstrained optimization toolbox in MATLAB, and uses the gradient
expressions derived for (4.28).

In practice, the value of J is rather small, and therefore any pre-programmed tolerance
values are already met, terminating the process. Scaling of the problem avoids this problem.
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To overcome any numerical problems, we introduce the scaling factor κ in the minimization
problem and write

χ∗ = argmin
χ∈RNe

κ

[
J (χ)+λ2 1

2
‖R(χ−χpr i or )‖2

2

]
. (4.30)

An appropriate choice for scaling factor κ is

κ=
(
J (χ0)+λ2 1

2
‖R(χ0 −χpr i or )‖2

2

)−1

(4.31)

for some regularization parameter λ and initial guess χ0 in the BFGS method.

4.2.7. MAGNETIC SUSCEPTIBILITY ESTIMATION METHOD
Finally, we present our main result in this chapter. The parameter estimation method, that
computes estimations of spatially magnetic susceptibility distributions, is called the “Mag-
netic Susceptibility Estimation Method”. We abbreviate our parameter estimation method
by MSEM and it is defined as follows: Based on an initial guess for χ, say χ0, solve pro-
blem (4.28) for λ= 0 to obtain a solution of the original problem without any regularization.
Then, the obtained solution acts as initial guess for the full problem described in (4.28), for
some nonzero λ. The obtained solution is the estimation for χ. Pseudo-code for this method
can be found in Fig. 4.2.

It is observed that residual functional (4.20) is quite insensitive to variations in χ, which
makes the search for an optimal solution difficult. This is due to the asymptotic behavior
of forward model (4.13) for χ→∞. Rescaling the problem via (4.30) and (4.31) allows the
BFGS method to find a local optimal solution. This solution is then used in the MSEM to
find a more optimal regularized solution.

4.3. NUMERICAL EXAMPLES
In this section two numerical examples are given. First, the integral equation is solved for
a square plate to obtain the induced magnetization M, and then the corresponding reduced
magnetic field is computed in a plane above the plate. The typical shape of the solution M
shows that the integral equation is implemented correctly. Then, an identical-twin experi-
ment is conducted to test the methodology.

4.3.1. SOLVING THE INTEGRAL EQUATION
Consider the following simple example: a square plate Ω that is 1m long and 10 mm thick
is placed in a uniform external magnetic field given by

B0 = [60,0,0]T (µT ). (4.32)

Suppose that the magnetic susceptibility is uniform on Ω and χ≡ 100; the plate is meshed
into 50 triangular elements. The condition number of system (4.13) is approximately 28,
which means that the system is well conditioned. Therefore, the problem may be solved
using an LU or SVD decomposition. The resulting magnetization distribution M is shown
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Magnetic Susceptibility Estimation Method:

Input: Set χ0 ∈RNe ,εtol ∈R+,χpr i or and κ,λ≥ 0
Output: Minimizer χ∗ of problem (4.28)

1: function PARAMETERESTIMATION
2: Use fminunc(χ0,εtol ) to solve

χ̂= argmin
χ∈RNe

J (χ)

3: Use fminunc(χ̂,εtol ) to solve

χ∗ = argmin
χ∈RNe

J (χ)+λ2 1

2
‖R(χ−χpr i or )‖2

2

4: return χ∗
5: end function

Figuur 4.2: Magnetic Susceptibility Estimation Method.

in Fig. 4.3. Note that the induced magnetization is more or less parallel to the background
field, as expected. At 5 cm above Ω the corresponding magnetic field is computed. The
results are shown in Fig 4.4.

4.3.2. TWIN EXPERIMENT FOR PARAMETER ESTIMATION
Identical-twin experiments [1] use a model to generate a set of “observations”, add random
noise to the simulated observations, and then try to estimate the true model parameters,
using these noisy observations and the same model. This type of experiment is a natural
first step, because it limits the sources of errors to a minimum and it enables us to understand
whether or not the estimation method acts consistently to simulated data.

Our estimation method is tested on a square steel plate using an identical-twin expe-
riment. Start with a plate with a length L of 1 meter, a width W of 1 meter and 10 mm
thickness. Suppose a continuous χ distribution is given by

χ(r) = 70+30cos(2‖r+c‖2), c = 1

2
[L,L]T . (4.33)

The vector c indicates the center of the plate. The above definition of χ defines a smooth
varying χ-pattern of the plate. The plate is meshed into Ne = 200 triangular elements. In
each element we compute the value χ using (4.33). This leads to the true model parameters
χtr ue ∈R200, as depicted in Fig. 4.5a.

For the above mentioned plate with magnetic susceptibility χtr ue , generate a set of
M = 225 measurements of the reduced near field in a uniform sampling grid 1

2 [−L,L]2 at
z = 1 cm above the plate and form Bm

c ∈ R3M using (4.13), (4.14) and (4.16). Gaussian
white noise is added to each component of Bm

c :

Bm = Bm
c +e, e ∼N (0,σ2I3M×3M ). (4.34)
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Figuur 4.3: Induced magnetization on a square plate for χ≡ 100, placed in a uniform background field H0 = 50ux
A/m.

Figuur 4.4: Reduced magnetic induction field 5 cm above the plate.
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We choose σ = 10−6 in the above error vector, which means that there is approximately
3µT variation in each component. In practice, magnetic sensors have a measurement error
in the order of 1nT , but in this twin experiment we want to push the boundaries of the
performance of MSEM. Set

χ0 ≡ 70, χpr i or ≡ 0, λ= 10−11, (4.35)

and apply the MSEM to the above set of noisy measurements. The results of χ̂ and χ∗ are
depicted in Fig. 4.5b and 4.5c. Note the influence of regularization on the obtained estimate
χ∗. Regularization not only steers the iterative solver to a better minimizer, but we are even
able to reconstruct the true χ-pattern with a high accuracy. In Fig. 4.7 and 4.8 the iterative
process in the second step of MSEM is shown. Note that, for a nonlinear problem, the
convergence of the problem is sufficiently fast.

In Fig. 4.5d and 4.5e the difference and relative error between χtr ue and χ∗ are depicted;
the relative error is point-wise defined by

τ= |χ∗−χtr ue |
|χtr ue |

. (4.36)

A maximum relative error 0.05 is quite acceptable. Based on these results, we conclude that
the twin experiment is successful.

4.3.3. EXPERIMENT DESIGN
Based on the numerical identical-twin experiment, a real experiment for the characterization
of the magnetic materials can be designed as follows. The performance of the estimation
method is dependent on the chosen measurement configuration. The twin experiment could
be used to determine the optimal sensor configuration. Start with defining a true magnetic
susceptibility pattern χtr ue . If no a priori knowledge about the material is known (such as
anomalies in the material), the pattern χtr ue should be chosen uniformly. For given sensor
configuration S, let χS denote the corresponding solution of the MSEM. To find an optimal
sensor configuration, we could solve the following minimization problem

S∗ = argmin
S∈S

VN (S) (4.37)

where N is the size of the susceptibility pattern (dependent on the chosen mesh), S is the
set of all possible sensor configurations, and

VN (S) =
N∑

i=1

(
χS (i )−χtr ue (i )

)2 (4.38)

is the empirical variance in the susceptibility pattern. Note that the solution depends on the
chosen true pattern χtr ue .

Furthermore, as a rule of thumb the measurements should take place near the magnetic
object, and in such a way that the shape of the induced magnetic field is represented in the
data set. If the measurements take place too far away from the magnetic object, than the
method is not able to determine the local variations of the χ-pattern inside the magnetic
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(a) (b)

(c)

(d) (e)

Figuur 4.5: Twin-experiment results for MSEM: spatial distributions (a) χtr ue , (b) χ̂ (without regularization), (c)
χ∗ (with regularization), (d) absolute error χ∗−χtr ue , (e) relative error (χ∗−χtr ue )/χtr ue .



4

72 4. MAGNETIC SUSCEPTIBILITY ESTIMATION FOR MAGNETOSTATICS

Pl ate

zk = 0.5

zk = 1

zk = 1.5

Figuur 4.6: Measurements planes above plate for several values of z.

object. If an optimal sensor configuration is found using this routine, a real experiment can
be defined to determine the magnetic susceptibility of a real magnetic object.

Lastly, note that we have assumed that there is no permanent magnetization present in
the magnetic object. In practice, there is a permanent component present. Therefore, any
data set of measurements of the magnetic field is spoiled by this component. One should
filter out this contribution in the data set first, before it can be used in the MSEM method.
This is easily done by considering two measurements of the magnetic object in different
background fields. By a suitable subtraction one is left with a data set that is related to the
linear behavior and can be used for the estimation method.

4.4. SENSITIVITY ANALYSIS
In the identification of magnetic states of objects it is evident that an accurate estimation
of χ is required. By means of the MEMS method, we can estimate the true χ-distribution
in some magnetic object. However, small differences between the estimation and the true
distribution will remain, and it is important to understand how this difference propagates in
the reduced magnetic field at larger distances. The purpose of this section is to understand
the statistical properties of the forward model described in (4.12).

4.4.1. FORWARD PROPAGATION OF MAGNETIC SUSCEPTIBILITY
We investigate the statistical properties of the forward problem, by means of a Monte Carlo
simulation. As before, consider a square plate with sides of 1 meter and a thickness of
10 mm. Discretize the square plate into 200 triangular elements and assume that the mag-
netic susceptibility is 100 on each triangular element; denote this magnetic susceptibility
distribution by χ0. Define a realization of the magnetic susceptibility in the Monte Carlo
simulation by

χk =χ0 + (∆χ)k , (∆χ)k ∼N (0,σ2) (4.39)

for each k = 1,2, . . . , N , where N denotes the sample size in the Monte Carlo simulation. In
our Monte Carlo simulation we set N = 1000. For χ0 and each realization χk we compute
the reduced magnetic induction field in a several planes above the plate. See Fig. 4.6.

In each plane, we compare the magnetic induction field corresponding to χ0, denoted by
Bz

0, with the magnetic induction fields Bz
k of the realizations at height z. These comparisons
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Figuur 4.7: Values of the residual function during the iterative process.

give rise to the relative error and maximum error at height z defined by

τz
k = ‖Bz

0 −Bz
k‖2

‖Bz
0‖2

(4.40)

and
εz

k = ‖Bz
0 −Bz

k‖2 (4.41)

for each realization k = 1,2, . . . , N . The mean values

τz = 1

N

N∑
k=1

τz
k and εz = 1

N

N∑
k=1

εz
k (4.42)

are shown in Fig. 4.9 and Fig. 4.10, for several values of σ. In this analysis we considered
the values σ = 3,6,9. Using a rule of thumb for Gaussian distributions this implies that
the variations (∆χ)k falls within the interval [−3σ,3σ] with a probability of 0.99. This
means that we consider variations in each component in the order of 10,20 and 30 nanotesla
respectively.

Note that the absolute error vanishes for increasing z, as expected. For z ≥ 1 m the
variations (∆χ)k are not visible anymore. However, if we look at the relative errors, the
relative error becomes constant3 for larger z. This is also as expected, as the magnetic
intensity of the field decreases as 1

r 3 , where r is the distance from the source.

3Indeed, the values for the relative errors at z = 2 are slightly higher, but this is probably due to numerical errors
in the computations.
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Figuur 4.8: The relative error in χ during the iterative process.

Figuur 4.9: Monte-Carlo simulation results for system (4.13). The maximum mean relative error between the true
magnetic field and the computed fields.
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Figuur 4.10: Monte-Carlo simulation results for system (4.13). The maximum mean absolute error between the
true magnetic field and the computed fields.

4.5. CONCLUSION
In this chapter, we proposed a method to estimate the magnetic susceptibility of a magnetic
object. This method can be applied to any (ferro)-magnetic material, under the assumption
that the object itself has a sufficiently small thickness compared to the other dimensions
of the object. The estimation method is based on a nonlinear least-squares optimization
problem, and is solved via the BFGS method. Based on an identical-twin experiment,
we have seen that the method shows a very good fit; under reasonable large measurement
errors, the MSEM method is still able to estimate an accurate distribution of the magnetic
susceptibility. An interesting next step is to see how the parameter method performs in
practice.

Moreover, a sensitivity analysis has shown that it is not strictly necessary to estimate the
magnetic susceptibility distribution with a high accuracy, if we want to use these distributi-
ons in accurate descriptions of the reduced magnetic field. Small variations in the magnetic
susceptibility distribution are only locally observable in the induced magnetic field. Based
on an error analysis, the local variations in the magnetic susceptibility in a square plate are
not visible in the induced magnetic field at a distance approximately the size of the plate.

Future work is to test and validate the MSEM method on a real magnetic plate. Using
experimental data it should become clear to what extent the method is able to estimate the
magnetic susceptibility distribution accurately. However, this is not an easy task as the true
magnetic susceptibility distribution is unknown in practice. Therefore, validation of the
results will be complicated. An experimental design can be developed to determine which
measurements are necessary to obtain the magnetic susceptibility of magnetic materials.



4

76 REFERENCES

REFERENCES
[1] L. Bengtsson, M. Ghil, E. Källén (Eds.). Dynamic Meteorology: Data Assimilation

Methods. Springer, New York. 1981. p. 330.

[2] D. Calvetti and E. Somersalo. Introduction to Bayesian Scientific Computing. Springer-
Verlag, New York Inc. 2007.

[3] O. Chadebec, J. L. Coulomb, J. P. Bongiraud, G. Cauffet, and P. Le Thiec. Recent
improvements for solving inverse magnetostatic problem applied to thin hulls. IEEE
Trans. on Magn., Vol. 38, no. 2, pp. 1005–1008, 2002.

[4] O. Chadebec, J. L. Coulomb, G. Cauffet, and J. P. Bongiraud. How to Well Pose a
Magnetization Identification Problem. IEEE Trans. on Magn.. Vol. 39. No. 3. pp: 1634–
1637. 2003.

[5] M. B. Giles and N. A. Pierce. An introduction to the Adjoint Approach to Design. Flow,
Turbulence and Combustion. No. 65. 2000.

[6] P. C. Hansen and D. P. O’leary. The use of the L-curve in the regu- larization of discre-
tization of discrete ill-posed problem. J. Sci. Comput. 14. pp: 1487 – 1503. 1993.

[7] John. J. Holmes. Exploitation of A Ship’s Magnetic Field Signatures. Morgan & Clay-
pool publ. Inc. 2006.

[8] John. J. Holmes. Modeling a Ship’s Ferromagnetic Signatures. Morgan & Claypool
publ. Inc. 2007.

[9] John. J. Holmes. Reduction of a Ship’s Magnetic Field Signatures. Morgan & Claypool
publ., Inc. 2008.

[10] J. D. Jackson. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc.
1999.

[11] D. Jiles and D. Atherton. Theory on Ferromagnetic Hysteresis. Journal of Magnetism
and Magnetic Materials 61. Vol: 48. 1986.

[12] B. Kressler, L. de Rochefort, T. Liu, P. Spincemaille, Q. Jiang and Y. Wang. Nonlinear
Regularization for Per Voxel Estimation of Magnetic Susceptibility Distributions From
MRI Field Maps. IEEE Trans. Medical Imaging. Vol. 29. No. 2. pp: 273 – 281. 2010.

[13] J. Nocedal, S. J. Wright. Numerical Optimization. USA: Springer Text. 1999.

[14] J.A. Osborn. Demagnetizing Factors of the General Ellipsoid. Physical Review. Vol.
67. No. 11 and 12. 1945.

[15] Néstor G., Sepúlveda, Ian M. Thomas, and John P. Wikswo, Jr.. Magnetic Suscepti-
bility Tomography for Three- Dimensional Imaging of Diamagnetic and Paramagnetic
Objects. IEEE Trans. on Magn.. Vol. 30. No. 6. pp: 5062 – 5069. 1994.



REFERENCES

4

77

[16] O. J. G. Somsen, G. P. M. Wagemakers. Separating Permanent and Induced Mag-
netic Signature: A Simple Approach. International Journal of Electrical, Computer,
Energetic, Electronic and Communication Engineering. Vol: 9. No. 10. 2015.

[17] L. Sun, X. Liu, D. Jia, and H. Niu. Three-dimensional stress-induced magnetic ani-
sotropic constitutive model for ferromagnetic material in low intensity magnetic field.
American Insitute of Physics. 2016.

[18] Edward. D. Torre. Magnetic Hysteresis. Wiley-IEEE Press. 1999.

[19] Y. Vuillermet, O. Chadabec, J. L. Coulomb, J. P. Bongiraud, G. Cauffet and P. Le
Thiec. Scalar Potential Formulation and Inverse Problem Applied to Thin Magnetic
Sheets. IEEE Trans. on Magn.. Vol. 44. No. 6. 2008.

[20] M. A. Zaman, P. C. Hansen. L. T. Neustock, P. Padhy and L. Hesselink. Adjoint
Method for Estimating Jiles-Atherton Hysteresis Model Parameters. Journal of Applied
Physics. No. 120. 2016.



78 REFERENCES

APPENDIX A. APPLICATION OF THE ADJOINT METHOD FOR

GRADIENT COMPUTATIONS
In this appendix the gradient of the object functionals (4.20) and (4.28) are computed, by
means of the adjoint method [5, 20]. The adjoint method is a technique to obtain the gra-
dient of an implicit nonlinear function with respect to variables for which the derivative is
not obtained through a direct computation. By considering the variation of the function and
the underlying physical model, one can introduce a dummy variable that makes it possible
to obtain an analytical expression for this derivative. In fact, the adjoint method is similar
to the application of a Langrange multiplier method.

In the first step, note that the underlying physical model, the discretised integral equa-
tion for M, can be written as

F (M,χ) = 0 (43)

where F reads

F (M,χ) :=
[

Ne∑
k=1

1

χk
Dk + A+B

]
M−h0 (44)

Thus, feasible pairs of magnetisation and susceptibility distributions (M,χ) satisfy (43).
This is an crucial observation that is used in the adjoint method. Recall that actually M
is a derived quantity in our model, based on the a priori known magnetic susceptibility
distribution and the known applied magnetic field h0.

The idea behind the adjoint method now is to consider the object functional

J (χ) = 1

2
ResT W Res−LT F (M,χ) (45)

which is equivalent to (4.20) and where L is called the adjoint variable. Note that L acts as
a Lagrange multiplier and therefore we can assign any value to L such that the mentioned
equivalence still holds. As a result, we have introduced extra freedom that allows us to
obtain the gradient of the object functionals as the two object functions are equivalent for
each choice of L, due to (43). Using the total derivative of the functional (45), variation of
J with respect to variable χ j is given by

∆J j = ResT W
∂Res

∂M
∆M−LT

(
∂F

∂M
∆M+ ∂F

∂χ j
∆χ j

)
=−LT ∂F

∂χ j
∆χ j +

(
g T −LT ∂F

∂M

)
∆M

(46)

where g T is given by

g T := ResT W
∂Res

∂M
. (47)

The variation is now in terms of a variation in Ji and in the magnetisation. But because the
magnetisation is nested in a complex way in our model, it is hard to retrieve values for this
variations in M. Therefore, we want to get rid of this term. This is where the essential idea
behind the adjoint method comes in. Choose the adjoint variable L such that the last term
in (46) vanishes by solving (

∂F

∂M

)T

L = g . (48)
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Using the discretised model, the above equation reduces to a system of linear equations
that can be solved using traditional methods, depending on the numerical properties of the
system at hand. For this choice of L the j th component of the gradient of (4.20) reads

(∇J ) j := lim
∆χ j →0

∆J j

∆χ j
=−LT ∂F

∂χ j
(49)

It remains to derive analytical expressions for the partial derivates in (46). Some fruitful
computations yields

∂F

∂M
=

Ne∑
k=1

1

χk
Dk + A+B ,

∂F

∂χ j
=− 1

χ2
k

Dk M (50)

The partial derivative ∂Res
∂M is in general difficult to compute, but (4.18) yields that

∂Res

∂M
=C (M ) (51)

Next, the gradient of (4.28) is computed. Using the previous computations, only the gra-
dient of the second term in this expression remains. A simple computation shows that

∇
[

1

2
(χ−χ0)T RT R(χ−χ0)

]
= RT R(χ−χ0) (52)

because RT R is symmetric. Combining results (49) and (52) yield the gradient of (4.28).
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APPENDIX B. APPLICATION OF THE DIVERGENCE THEOREM

OF GAUSS DURING THE DERIVATION OF THE METHOD OF

MOMENTS.
In the derivation of the integral equation, We observed a subtle detail in the derivation of
the M-formulation.

Based on the derivation described in [3], the divergence theorem of Gauss is applied to
the integral

∇
Ï

ek

c− r′

|c− r′|3 ·Mk dS

(where ek is two-dimensional surface element and c is the barycenter of ek ) to transform
the surface integral into an integral over the boundary of ek given byÏ

∂ek

c− r′

|c− r′|3 (Mk ·n′)dL

However, a necessary condition to be able to apply the divergence theorem is that the inte-
grand itself is smooth on ek . This is obviously not the case, because c ∈ ek . So the vector
function has a singularity and is not smooth on ek . Therefore, we are not allowed to directly
apply the divergence theorem of Gauss.

To overcome this technicality, we should postpone the reduction of the three-dimensional
object Ω to a two-dimensional one and consider the integral over a three-dimensional ele-
ment ek

∇
Ñ

ek

c− r′

|c− r′|3 ·Mk dS

where c is the barycenter of ek . Take ε> 0 so small such that Bε[c] ⊆ e◦k , where Bε[c] is the
closed ball with radius ε and center c. We consider the integral, but now with the integration
domain ek \Bε[c]. Note that the vector function is smooth on this integration domain. Using
the divergence theorem we get for all points r∗ ∈ B 1

2 ε
(c) in a neighborhood of c that

∇
Ñ

ek \Bε[c]

r∗− r′

|r∗− r′|3 ·Mk dS′ =∇
Ï
∂ek

1

|r∗− r′| (Mk ·n′)dS′−∇
Ï
∂Bε[c]

1

|r∗− r′| (Mk ·n′)dS′

=−
Ï
∂ek

r∗− r′

|r∗− r′|3 (Mk ·n′)dS′+
Ï
∂Bε[c]

r∗− r′

|r∗− r′|3 (Mk ·n′)dS′

Furthermore, using spherical coordinates one can showÏ
∂Bε[c]

c− r′

|c− r′|3 (Mk ·n′)dS′ = 4π

3
ε2Mk

First observe that n′ is the inwards normal vector for this integration domain and that the
normal vector can be written as n′(r′) = c−r′

|c−r′| , and 1
|c−r′|2 = 1

ε2 . Transform the integral into
an integral over S2 and apply spherical coordinates to obtain the value of the integral.
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Taking the limit ε ↓ 0 we get

∇
Ñ

ek

c− r′

|c− r′|3 ·Mk dS = lim
ε↓0

∇
Ñ

ek \Bε[c]

c− r′

|c− r′|3 ·Mk dS

= lim
ε↓0

(
−

Ï
∂ek

c− r′

|c− r′|3 (Mk ·n′)dS +
Ï
∂Bε[c]

c− r′

|c− r′|3 (Mk ·n′)dS

)
= lim

ε↓0

(
−

Ï
∂ek

c− r′

|c− r′|3 (Mk ·n′)dS + 4π

3
ε2Mk

)
=−

Ï
∂ek

c− r′

|c− r′|3 (Mk ·n′)dS

∇
Ï

ek

c− r′

|c− r′|3 ·Mk dS =
Ï
∂ek

c− r′

|c− r′|3 (Mk ·n′)dS

The boundary of ek consists of 5 faces. Now using that the magnetization of M is tangential
to Ω and that Ω is a thin sheet leads to

∇
Ñ

ek

c− r′

|c− r′|3 ·Mk dS = t
∫

Lk

c− r′

|c− r′|3 (Mk ·n′)dS

where Lk is the edge of ek , which is the two-dimensional projected copy of ek . We conclude
that equations (4) and (5) are in equivalent.
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PARAMETER ESTIMATION FOR
THE JILES-ATHERTON MODEL

IN WEAK FIELDS

This chapter is based on:

Aad Vijn, Olivier Baas and Eugene Lepelaars. Parameter estimation for the Jiles-Atherton
model in weak fields. IEEE Trans. on Magn. Vol: 56, Issue: 4. (2020)

ABSTRACT
The purpose of this chapter is to estimate the parameters of the Jiles-Atherton hysteresis
model, based on minor-loop measurement data in weak applied fields. The well-known
hysteresis model by Jiles and Atherton serves as a basis of this work with an extension for
closure of minor loops. In order to represent minor loops correctly, a dissipative factor
is introduced. A methodology to obtain the initial magnetisation of a specimen is defined,
based on an expansion in terms of higher-order Gaussian functions. The methodology is im-
plemented within a finite-element method using an interconnection between MATLAB and
COMSOL. This interconnection allows the investigation of potentially large ferromagnetic
objects to be calibrated for the proposed ferromagnetic model in weak fields. The proposed
methodology was verified using an original approach. The approach relies on the use of
a sensor array that makes it possible to detect local variations of magnetic properties in
steel plates. Material parameters for our test specimen are successfully obtained by means
of experimental data, using the Shuffled Frog Leaping optimisation algorithm. An analysis
of the obtained results show that the calibrated model is able to represent the measurement
data accurately.
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5.1. INTRODUCTION
Accurate modeling of ferromagnetic behavior requires a complete representation of the
material hysteresis properties. Over the past century, a large number of phenomenological
and mathematical-physical models were presented to describe this behavior, with various
success. Well known examples are the mathematical models by Preisach [37], Play-& Stop
models [3, 28, 29], the hysteresis model proposed by Tellinen [35, 44], a simple formalism
that is based on physics-based concepts described by Jiles and Atherton [17, 43], the energy-
variational model by Henrotte et al. [12, 24, 34] and simplistic models such as the hysteresis
model by Lord Rayleigh [20]. It is interesting to note that the Rayleigh Model is related to
the Preisach Model [14], while the Play-& Stop models are a generalisation of the Preisach
methodology.

These models each have their own challenges and advantages considering the represen-
tation of the model of the nature of ferromagnetism, numerical stability of implementati-
ons and effective descriptions of parameter estimation algorithms. All are able to capture
a large portion of the nonlinear ferromagnetic behavior, while for a subset of these mo-
dels extensions to temperature, temporal and stress-related effects are known. However, if
one analyses the numerical stability of the proposed models, it can be observed that, for
example, implementations of the Rayleigh and Jiles-Atherton model exhibit numerical dif-
ficulties, as the magnetic field H can change of value rapidly as a response of material to
its magnetising field. Sophisticated numerical solvers are then necessary to obtain stable
integration of these models by, for example, incorporating an inner-iterative scheme that
stabilises the numerical integration. Such a inner-iterative scheme is also proposed for the
Energy-variational model [34].

One drawback for the Jiles and Atherton model is that model results lead to properties
that are not observed in experimental data. In the original model, minor loops are not
closed which leads to unfavorable behavior in the hysteresis curve as the model encounters
difficulties in representing a hysteresis curve. In [1, 4, 7, 8, 15, 17, 22, 27] the authors
address and discuss possible modifications to the Jiles and Atherton model to resolve this
issue. In contrast, Preisach modeling, the Play-& Stop models and the Energy-variational
model (and others) ensure minor loop closure.

In more detail, the following adjustments have been proposed to the model of Jiles
and Atherton to resolve the above-mentioned issue. Jiles [17] proposed a modification of
the differential equation that describes the irreversible component of the magnetisation,
Carpenter [4] describes scaling factors to ensure closure of minor loops. Furthermore, in
the original paper of Jiles and Atherton [17] the dependencies of the material parameter k
on the magnetisation is discussed. It seems that taking k constant leads to such nonclosure
behavior too. Leite [27] introduced a slight modification of the irreversible component of
the magnetisation in order to close minor loops. By introducing a dissipative factor R in
the differential equation that describes irreversible magnetisation, it is possible to properly
close minor loops. In particular, the factor R depends on the magnetic field value at a
reversal point of a minor loop. We will refer to this modified version of the model by Jiles
and Atherton as the JA+R model, to emphasize the addition of this dissipative factor R.
This extended hysteresis model will serve as our choice of model throughout this chapter.

In order to find a good fit between measured hysteresis curves and a hysteresis model, a
parameter fit algorithm is required to find the optimal material parameters. Many numerical
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procedures and algorithms have been explored and proposed, see [18, 27, 33, 42]. This is
a challenging problem because of the nonlinear nature of hysteresis. It is common practice
to consider the major hysteresis loop for determination of the parameters. However, obtai-
ning the major loop of a specimen requires the application of large applied field strengths
which imposes extra requirements on the measuring equipment. It is also likely that such
procedures severely limit the size of a specimen that can be investigated. There are nu-
merous papers concerning parameter estimation, for example parameter estimation for JA
[1, 10, 11, 27, 39] and estimation of the parameters of Play-& Stop models [28, 29] in which
the authors use slightly minor hysteresis loop measurement data, because of the difficulty
in measuring major hysteresis curves due to either the strong demagnetising fields or the
required applied field strengths. Among these papers, optimisation algorithms are proposed
to find a feasible set of parameters in the JA model. It has been observed that the genetic
algorithm showed effective applications in finding these sets of parameters. However, one
should be careful with applying the genetic algorithm, as the convergence may only be
local.

The main contribution in this chapter is the following: Using JA+R, we have developed
a methodology that estimates the material parameters in the JA+R model based on minor
loop hysteresis curve measurements. This methodology is applied on large ferromagnetic
objects, such as square steel plates; other geometrical shapes and ferromagnetic materials
are also possible. Furthermore, we assume that the material parameters are uniform over
the domain of the object and we assume the material is anisotropic (Though the proposed
methodology is defined for the general case of inhomogeneous and anisotropic material).
Therefore, only a small number of material parameters are sought. Based on measurements
of minor loops, in which we vary the weak background field in the order of a few hundred
microtesla, an estimation of the material parameters and the dissipative factor is done using
a population-based search algorithm, which searches for a global optimum.

It is important to note that the current choice of hysteresis model is not a core aspect
in this methodology. In principle it is possible to use alternative hysteresis models for
which the parameters can be estimated using the same scheme. The emphasis in the current
chapter is on the determination of material parameters in weak fields. All aspects of this
proposed methodology are implemented in the finite-element software package Comsol
Multiphysics and controlled by Matlab.

This chapter has the following structure. In Section 5.2 the methodology used in the
proposed formalism is discussed.

In Section 5.3, a method to determine the magnetisation distribution based on measure-
ments and a collection of higher-order Gaussian functions is proposed. This class of radial
basis functions can be used to describe magnetisation globally. In Section 5.4, we define a
parameter estimation method to determine the material properties of a ferromagnetic body.
This parameter estimation method is based on measurement data of minor loops and the
Shuffled Frog Leaping Algorithm [30], abbreviated by SFLA.

In the latter part of the chapter, the methodology is tested in an experimental envi-
ronment. The measuremetn setup is described in Section 5.5. In Section 5.6, we apply
the proposed methodology to a collection of ferromagnetic specimens to obtain a sets of
material parameters for JA+R. This is based on both the determination of the initial mag-
netisation distribution and the optimisation solver SFLA. The results and the behavior of
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the optimisation process are analysed.
In Section 5.7, we conclude the chapter and discuss future recommendations. The ap-

pendices contains extra explanation about the proposed algorithm based on a flowchart
diagram, and a table in which values can be found that are used to bound the search-space
for the chosen numerical solver.

ASSUMPTIONS
Throughout this chapter, the following assumptions hold:

• Uniform background field in the vicinity of the geometry;

• Anisotropic material, where tensors are given by diagonal matrices hence only the
principal axes are taken into account;

• Homogeneous material, i.e., the material parameters do not depend on the location
inside the geometry. This assumption reduces the complexity of the problem at stake
significantly.

5.2. FERROMAGNETIC HYSTERESIS
In this section, a brief recap on the hysteresis model of Jiles and Atherton is given. For more
details, see [2, 17, 27, 31, 37]. The main result of this section is an adapted Jiles and Ather-
ton model, which we call the JA+R model, that includes both the magneto-mechanical
effect up to elastic deformations and the possibility to close minor loops. Closing minor
loops is essential for an accurate estimation of material parameters described in section
II.D, based on minor loop measurements.

5.2.1. JILES-ATHERTON MODEL
Starting point is the definition of the effective field. The effective field reads

He = H+Hm , (5.1)

where H is the total magnetic field in [Am−1], Hm =αM is the Weiss field in [Am−1], α
is the field parameter. The magnetisation M is due to magnetic domain motion and is in
[Am−1]. Note that the total field is considered inside the material. Therefore, the magnetic
field H reads

H = Ha +Hd , (5.2)

where Ha is the applied background field and Hd is the demagnetizing field. Note that the
value of the demagnetizing field depends on the position within the ferromagnetic body and
follows from finite-element computations [16, 19].

ANHYSTERETIC AND (IR)REVERSIBLE MAGNETISATION
When a material starts in the demagnetized state, the ferromagnetic behavior is described
by the anhysteretic magnetisation curve. The anhysteretic magnetisation curve in the i -th
direction reads

(Man(He ))i = (Ms )i L

(‖He‖
ai

)
(He )i

‖He‖
i ∈ {x, y, z}, (5.3)
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H

M

Figuur 5.1: Illustration of nonclosure of minor loops in the model of Jiles and Atherton. Here, two minor loops are
shown on both the increasing and decreasing branch of the minor loop. Non-closure of the minor loop is observed
as the end-point of the minor loop does not coincide with the starting point of the minor loop.

where L (x) = coth(x)− 1
x is the Langevin-function, (Ms )i is the saturation magnetisation

value in [Am−1] in the i -th direction and ai is a constant in [Am−1].
The magnetisation is considered as the sum of a reversible component Mr ev and irre-

versible component Mi r r

M := Mi r r +Mr ev , Mr ev = c(Man −Mi r r ), (5.4)

where Mi r r and Mr ev are in [Am−1], and c is the domain rotation loss matrix. Note that
when c = I , then M is completely reversible and Mi r r = 0.

DISSIPATIVE FACTOR FOR MINOR-LOOP CLOSURE

The non-closure of minor loops in the model by Jiles and Atherton is an artifact that shows
a lack of resemblence of JA compared to experimental data. As an example, a hysteresis
curve and two minor loops are shown in Fig. 5.1, based on JA.

In [27], a dissipative factor is introduced that is used to close minor loops in the traditi-
onal Jiles and Atherton formalism. Note that the value of the dissipative factor for a minor
loop depends on the amplitude of the corresponding applied field. The adapted differential
equation [2] describing vectorial behavior of the irreversible magnetisation reads

dMi r r =
[
χ−1(Man −RM)dHe

]+
, (5.5)

where χ and R are diagonal matrices given by

χ=
 χ1 0 0

0 χ2 0
0 0 χ3

 and R =
 R1 0 0

0 R2 0
0 0 R3

 . (5.6)

Here, Ri > 0 are dissipative factors and χi = kiδi where ki is the pinning parameter in
[Am−1] in the i -th direction and δi is the sign of the slope of the i -th component of the
effective field, δi = sign(d(He )i ). Furthermore, [x]+ := max{0, x} is recognised as the linear
activation function.
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ANISOTROPIC MATERIAL
In this chapter the simplest case of anisotropic material is considered, i.e., only along the
principal axes inside the material, behavior may differ. This implies that the domain rotation
loss c and the field parameter α takes on the following form:

c =
 c1 0 0

0 c2 0
0 0 c3

 and α=
 α1 0 0

0 α2 0
0 0 α3

 . (5.7)

Note that the anisotropy assumption is already reflected in the definitions of χ and R.

5.2.2. GENERAL FORM OF PDE FOR JA+R
Based on the modeling principles discussed in the previous subsections, the JA+R hyste-
resis model is defined. The general partial differential equation describing the temporal
evolution of M(t ) in time reads

dM

dt
= c

dMan

dt
+ (I −c)

dMi r r

dt
, (5.8)

for a given initial magnetisation distribution M|t=0 = M0. For numerical consistency, it
is necessary to indicate the value of δi (t = 0), because the slope of the effective field is
unknown at t = 0. We choose this value based on the right-derivative of the applied field
Ha ,i.e.,

δi (t = 0) ≡ lim
t↓0

(Ha)i (t )− (Ha)i (0)

t
(5.9)

where we tacitly assume that this signal is known a priori.
The derivative of Mi r r (t ) with respect to t follows from (5.5) after differentiation with

respect to t
dMi r r

dt
=

[
χ−1(Man −RM)

dHe

dt

]+
. (5.10)

Note that (5.10) follows easily after applying the chain-rule

dMi r r

dt
=

(
∂Mi r r

∂He

)
dHe

dt
(5.11)

to (5.5) for both cases [x]+ = 0 and [x]+ = x to yield (5.10).

5.3. INITIAL MAGNETISATION DISTRIBUTION M0
GENERAL APPROACH
The initial magnetisation distribution is in general unknown. In order to find or approximate
the magnetisation initially, an inverse problem has to be solved. Solving inverse problems
in magnetostatics is a challenging task, see for example [5, 6, 40, 41], which often requires
additional regularisation techniques for stable solutions. However, in the proposed approach
below no regularisation is considered.

Defining an inverse problem for finding the magnetisation distribution is typically based
on a Finite Element Method approach. In such cases, the magnetisation is described by
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Figuur 5.2: Two examples of higher order Gaussian functions, A = 1 and Px = Py = 1 (left) and A = 1 and
Px = Py = 3 (right).

local basis functions. Typical choices for such basis functions are zeroth-order (constant
functions) and linear basis functions. Higher order basis functions are usually avoided
because of their complexity. Another argument is that higher order basis functions tend to
be too smooth and therefore fall short in representing the solution space for M.

Here, we propose a “global approach” for finding M. The magnetisation distribution is
described by a collection of higher order Gaussian functions1. A higher-order rectangular
Gaussian function in 2D with amplitude A ∈R, center (xc , yc ) and spreads σx ,σy > 0 reads

f (x, y) = A exp

(
−

(
(x −xc )2

2σ2
x

)Px

−
(

(y − yc )2

2σ2
y

)Py
)

(5.12)

Here, the powers Px and Py are used to control the decay of the function. Larger values
for Px and Py lead to a flat-top and a rapid Gaussian fall-off to zero. Two examples of
these higher order Gaussian functions are given in Fig. 6.1. Notice that in the limit as
Px ,Py →∞, higher-order Gaussian functions correspond to basis functions with compact
support. An example of a collection of Gaussian functions is given in Fig. 6.2, which can
be used to approximate any constant function defined on a (square) domain. This choice of
global functions also allows us to introduce magnetic anomalies inside a magnetised object.

DETERMINATION OF M0

In the remainder of this section, without loss of generality, consider a magnetised plate
Ω. Furthermore, assume a priori that centers (x, y) ∈Ω, spreads σx ,σy > 0 and the powers
Px ,Py > 0 are fixed for a collection of Gaussian functions { fi (Ai )}n

i=1. Hence, only the
amplitudes of the Gaussian functions are unknown and can be chosen freely.

The aim is to find the magnetisation M of the plate Ω. This is done based on measure-
ments of the magnetic induction field B at sensor locations surrounding the plate.

1Finally recall the following result from Approximation Theory: for a square interval [0,1]2 the set of all Gaussian
functions is dense in the function space C ([0,1]2,R). Therefore, any component of a magnetisation can be
approximated with arbitrary accuracy by a collection of n Gaussian functions, for sufficiently large n ∈N.
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Figuur 5.3: An example of a distribution of nine two-dimensional higher order square Gaussian functions, σx =
σy = 0.05, Px = Py = 1.5 and A = 1 for all Gaussian functions.

To that end, observe that a Gaussian function fi (Ai ) describes a magnetisation distribu-
tion Mi = fi (Ai )ui on Ω, where ui is a unit vector. For example, if for all i ≤ n ui = ux ,
then the x-component of the magnetisation is sought.

Sub-sequentially, this magnetisation produces a magnetic induction field Bi (Ai ) in sen-
sorlocations r1,r2, . . . ,rN ∈Ωc . To determine the initial magnetisation, the following linear
problem has to be solved

Â = argmin
A1,A2,...,An∈R

∥∥∥ n∑
i=1

Bi (Ai )−Bm

∥∥∥2

2
(5.13)

where Bm is a vector that contains the measured values of the magnetic field in the sen-
sorlocations r1,r2, . . . ,rN and Â = [A1, A2, . . . , An]T is a vector containing the optimal values
for amplitudes A1, A2 . . . , An . Note that the resulting vector Â depends on the collected me-
asurement data, and the sensor locations. To find the optimal sensor locations, one should
vary the locations and investigate the sensitivity of the solution and fit with respect to these
variations. However, finding optimal sensor locations is in general a very complex problem.

To obtain acceptable sensor configurations, one can derive configurations on the basis
of minimisation of the norm of the Fisher information matrix, called the (FIM) method
[21, 38]. Alternatively, the determinant or the trace of the Fisher information matrix is also
a possibility. An alternative method is to minimize the expected Bayesian loss function that
uses the inverse of the FIM as a measure for the quality of the sensor configuration [32].
However, information about the (model) noise is necessary, which can be hard to obtain.

5.4. PARAMETER ESTIMATION OF JA+R
In this section, we discuss the estimation of material parameters in the JA+R model. First
note that there is a total of 18 parameters that fully define the model, summed up in the
following matrices



5.4. PARAMETER ESTIMATION OF JA+R

5

91

Jiles-Atherton≡


α1 α2 α3

(Ms )1 (Ms )2 (Ms )3

a1 a2 a3

c1 c2 c3

k1 k2 k3


Dissipative factor≡ [

R1 R2 R3
]

(5.14)

where the parameters in the first, second and third columns in (5.14) correspond to the
ferromagnetic behavior in the x, y and z-direction respectively. In the latter of this report we
assume for simplicity that the dissipative factors are constant such that the parameters can
be stored in a single parameter vector, denoted by p ∈ R18. Indeed, the values of R1,R2,R3

may vary in the model.

5.4.1. FORWARD PROBLEM
In this subsection we define the forward problem that serves as a foundation for the deriva-
tion of the parameter estimation problem. In particular, the main result in this subsection is
the definition of Bc [p], which is a vector that consists of computed magnetic induction field
values at sensor locations for a given applied magnetic field signal.

Let Ba : [0, tend ] → R3 be an applied background field signal and let Ω denote a ferro-
magnetic object. Furthermore, assume that the initial magnetisation M|t=0 = M0 is known.
Given a fixed set of material parameters for JA+R, the solution to the forward problem is
the magnetic induction field caused by the magnetisation of Ω at a collection of measure-
ment locations for t ∈ [0, tend ], when the background field signal is applied to Ω.

If M = {r1,r2, . . . ,rK } denotes a set of K measurement locations, then Bc (t ) ∈ R3K is
a vector that contains the magnetic induction field at the measurement locations at time
t ∈ [0, tend ].

If {t1, t2, . . . , tT } ⊂ [0, tend ] denotes a sample of time instants, then we may form vector
Bc [p] ∈ R3K T by concatenating the vectors Bc (t1),Bc (t2), . . . ,Bc (tT ) at the corresponding
time instances:

Bc [p] = Vec (Bc (t1),Bc (t2), . . . ,Bc (tT )) (5.15)

5.4.2. MINIMIZATION PROBLEM
The idea behind parameter estimation is as follows: based on a collection of N measured
minor loops, with T measurements per loop at K measurement locations, the task is to find a
feasible collection of parameters p̂ ∈R18 such that there is a good fit between the measured
minor loops, and the minor loops computed by the FEM implementation in COMSOL. To
measure the fit, the residual

Res := Bm −Bc [p] (5.16)

is chosen. Here, the vector Res ∈R3K N T is the residual between the measured minor loops
Bm and the computed values of the minor loop Bc [p] for a given parameter vector p. If
the residual is small, then corresponding parameter vector p is a feasible solution to the
parameter estimation problem.
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To define the minimization problem, we introduce the Root Mean Square Error (RMSE)

J (p) =
√

ResT W Res

n
, n ≡ 3K N T. (5.17)

The positive diagonal matrix W contains weights that can be used to control the importance
of each measured point on the minor loop. For example, one should relax the fit near the
tip-points of the minor loop, to increase the performance of the parameter estimation. This
is achieved by choosing weights wi i relatively small for tip point measurements, compared
to the weights for other measurements .

5.4.3. SOLVING THE MINIMIZATION PROBLEM
To find the optimal values that best fit the (measured) data, a memetic meta-heuristic called
the Shuffled Frog Leaping Algorithm (SFLA) is applied [23]. The SFLA is a population-
based cooperative search inspired by frogs that work together to find food. The algorithm
contains both elements of local search and global information exchange, and it is shown to
be very efficient for finding traditional Jiles and Atherton parameters [30].

Choosing a particular bounded search space increases the speed of convergence sig-
nificantly. This is done by choosing suitable boundaries for the unknowns. The minimal
and maximal values for the above-mentioned parameters in the JA+R model are given in
Appendix 5.7. These bounds are based on successively applying the SFLA to learn the
behavior of the optimisation process and the already known material parameters found in
the literature [18, 25, 26, 36].

Finally, in Appendix 5.7 a flowchart is shown that describes the complete parameter
estimation procedure based on the initial magnetisation distribution and the SFLA.

5.5. MEASUREMENT SETUP
In this section the experimental setup is explained briefly. A measurement facility is avai-
lable consisting of a coil configuration and a magnetic sensor array. The rectangular coil
configuration can change the local ambient magnetic field by imposing a uniform magnetic
field in all three directions. Fig. 5.4 shows a picture of the coil structure. Inside the cage
the background field can take values of the form{

Bapp ∈R3 : |(Bapp )i | ≤ 400µT for i = x, y, z
}

. (5.18)

The sensor array consisting of 112 sensors is placed 56 mm below the object. To measure
the magnetic field, HMC5983 Triple Axis Compass magnetometers are used. De-
pending on the set gain, the sensor noise is approximately 1 µT up to 3 µT. A schematic
overview of this sensor array is found in Fig. 5.5.

5.6. EXPERIMENTAL RESULT
In this section, we apply the proposed parameter fit to steel specimens. The goal is to
obtain the material parameters for JA+R. The assumptions of homogeneity and isotropy
imply that there is no spatial dependency in the material parameters. Therefore five material
parameters are sought, plus a dissipative factor for each measured minor loop.
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Figuur 5.4: Measurement facility “CLAViS” that contains a coil configuration to change the ambient field in three
directions.

50 mm

750 mm

3
0

0
 m

m
Figuur 5.5: Schematic overview of the sensor array.

Figuur 5.6: Steel plate above sensor array.

5.6.1. SPECIMEN DESCRIPTION
In this experiment four different specimen (I,II,III,IV) are investigated. Each specimen is a
square metal plate with sides of 300 mm. Specimen I and III have a thickness of 5 mm, II
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Figuur 5.7: Scenario: sinusoidal background field of increasing and measurements at several instances.

and IV have a thickness of 2 mm.
Each plate is placed parallel to the sensor array in the cage, and is measured at a distance

of 56 mm above the array. In Fig. 5.6 a picture is shown of the steel plate within the coil
structure on top of the sensorarray.

In the remainder of this section, we take the measurement and results of specimen I as
a guideline. The results of the other specimen are similar except for specimen III. This is
likely due to the prior deperming procedure applied to this specimen, which made the initial
magnetisation distribution estimation procedure additionally complicated.

5.6.2. MEASURING A MINOR LOOP
At the start of a measurement, the background field is set to 0 µT in x, y , and z-directions,
which is from here on defined as t1. Then, the background field is varied in the x-direction
for one full period with an amplitude of A µT, where A ∈ {100,200,300,400}. During this
period, five distinctive time instants are defined:

• tA , the starting point when the background field is 0 µT;

• tB , after the background field has been increased to A µT in x-direction;

• tC , after the background field is reduced to 0 µT;

• tD , after the background field is set to −A µT in x-direction;

• tE , when the background field is increased back to 0 µT.

In total, the experiment consists of measuring four minor loops subsequentially. See Fig.
5.7 for clarification of the described scenario. The first measurement (at time t = t1) is used
to determine the initial magnetisation distribution M0 and we refer to Section II.C for more
details on this specific routine.

5.6.3. INITIAL MAGNETISATION DETERMINATION
First the initial magnetisation of specimen I is determined. The measurement of the mag-
netic induction field (the x-component Bx) of specimen I in zero field at time t = t1 is given
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Figuur 5.8: Specimen 1: (above) measured Bx -field at t1 and (below) the corresponding computed B x-field based
on the initial magnetisation distribution estimation.

in Fig. 5.8. This is a measurement in which the background field is cancelled by the coil
cage.

Applying the method in Section II.C leads to the following initial magnetisation dis-
tribution for which the x component of the magnetisation is given in Fig. 5.9. Here, the
collection of higher-order Gaussian functions is chosen such that the resulting condition
number of the linear problem is low. This is done by choosing functions that are (almost)
linearly independent. By tuning the values of σx and σy such that the resulting support
of the Gaussian functions is small, one can achieve such independences. Finally, solving
the linear problem is done using standard Gaussian elimination (or equivalently using an
LU -decomposition of the coefficient matrix).

After solving the linear problem of finding the amplitudes (Ai )n
i of the Gaussian functi-

ons, the corresponding initial magnetisation distribution is found and given in Fig. 5.9. The
erratic behavior that is seen in the initial magnetisation distribution is caused by COMSOL
when the solution to the linear problem was imported to COMSOL. COMSOL translates
the continuous magnetisation distribution to a discretised version on a mesh for further
finite-element computations.

The resulting computed magnetic induction field for the obtained initial magnetisation
distribution is found in Fig. 5.8. Compared to the measured field, there is a good agree-
ment. The difference between the computed and measured values in terms of the RMSE
is sufficiently small, and therefore we accept the estimation of this initial magnetisation
distribution.

5.6.4. PARAMETER ESTIMATION RESULTS
Using the initial magnetisation distribution from the previous subsection, the JA+R ma-
terial properties are obtained using forward simulations within the SFLA as described in
Section 5.4.B. The optimal parameter values for all specimen are found in Table. 5.1. In
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Tabel 5.1: JA+R parameters obtained using SFLA.

JA Parameter I II III IV Unit
Ms 1.52×106 1.67×106 1.52×106 1.66×106 Am−1

k 379 270 295 323 Am−1

a 2565 1256 1763 379 Am−1

c 0.1344 0.0974 0.1139 0.1194 -
α 1.793×10−3 9.929×10−4 9.884×10−4 7.777×10−4 -

thickness 5 2 5 2 mm

particular, the dissipative factors R for specimen I for minor loops of amplitude 100 µT,
200 µT, 300 µT and 400 µT are respectively R100 = 1.5,R200 = 1.2,R300 = 1.1 and R400 = 1.0.
Note that these values are consistent with the reasoning in [27], in which it is assumed that
the values of R are decreasing with increasing field strength, and such that R is bounded
below by 1.

It is observed that applying the SFLA multiple times on the same problem may result
in different sets of parameters for which the functional takes (approximately) the same
minimal value. This implies that based on minor loop measurements the set of parameters is
not unique. A consequence is that these material parameters cannot be used in the region of
the hysteresis curve outside the 400 µT minor loop, as it is expected that the hysteresis curve
outside this region is poorly described by the obtained material parameters. Fortunately, for
our applications this is not a limitation because we stay within the 400 µT region for a given
initial magnetisation distribution.

5.6.5. ERROR ANALYSIS OF SFLA RESULTS
The resulting computed magnetic induction field based on the initial magnetisation from
Fig. 5.9 and optimal JA+R parameters from table 5.1 subjected to a hysteresis loop of
400 µT for specimen I is given in figure 5.11. Based on visual inspection, a good agreement
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is seen between the measured fields and the computed fields by the proposed model.
The result of error calculations for the first specimen are given in Fig 5.10. Observe

that the relative error is smaller for larger minor loops. This is explained by the fact that for
larger background fields the hysteresis effects are more pronounced, such that discrepancies
between the measured and computed fields are relatively small. It can be observed that, as
expected, the relative error becomes rather large when the background field is zero since
the measured fields are much closer to 0 µT than whenever the background field is nonzero.
Therefore no strong conclusions can be made by interpreting the values of the relative error.

A better quantity to considering is the Root Mean Square Error which averages all
absolute errors along the measurement locations. Observe that this error does not exceed
2 µT whenever the background field is zero. This error is within the sensor noise level, hence
the model represents our measurements very well in these cases. Unfortunately, there is a
large peak in the RSME computed during a 400 µT minor loop. A plausible explanation
for this is that an error occurred while doing a measurement and that the coil configuration
did not produce the correct background field. Similar arguments may hold for other minor
loops, although it is not completely clear if the larger RMSE is due to malfunctioning of
the equipment or to the performance of the model.

Note that for measurements in zero background field, there is a significant discrepancy
between the measured and computed magnetic induction field. Nevertheless, there is a
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good agreement between the measured and computed 400 µT minor loop with a maximum
RMSE error of 6 µT. Overall, the RMSE is 10 % (see Fig. 5.11) of the average measured
field strength which indicates a good fit.

In general it is also observed that there is a better agreement between the model and
measurements for larger field strength amplitude. This makes sense since high amplitude
field variations make larger hysteresis effects better visible. In total, based on error com-
putations we conclude that we correctly found material parameters for the JA+R model and
our model reproduces the measured data accurate enough.

5.6.6. COMPUTATIONAL EFFORT
Finally, we look at the computational effort of SFLA. The computation time is rather long.
For each specimen there are 1000 evaluations of the forward problem required within the
SFLA to find a good fit. This translates to a total computation time of approximately 24
hours on a high-end CPU. The computational burden is mainly caused by the communica-
tion between Matlab and COMSOL. COMSOL is used to compute the forward simulations
that the SFLA require in the optimisation problem. However, each evaluation of such a for-
ward simulation requires a fresh call to the COMSOL engine, which drastically increases
the computation time. Indeed, a more sophisticated implementation of the method reduces
the computation time significantly by integrating SFLA into COMSOL, so there is no need
to rebuild the model every time.

5.7. CONCLUSION
This chapter presented a method to estimate the material parameters of homogeneous aniso-
tropic material in the Jiles and Atherton Model framework in weak applied fields. This
estimation is based on both the hysteresis model that we refer to as JA+R and the optimisa-
tion algorithm called the Shuffled Leaping Frog Algorithm (SFLA). Based on a collection
of minor loop measurements for steel plates in weak fields, we have shown that material
parameters of a number of specimen can be obtained at the required accuracy.

The choice to use only minor loop measurements is not common and we have shown
that it is possible to only use such measurements with accurate results. This increases the
applicability of material estimation properties, while in other related work only material
parameters are obtained using major loop measurements Such measurements are not trivial
and may not be achievable in practice. Therefore, our method is applicable in finding the
material parameters in a more general setting.

The material parameters that we have found are similar to values found in the literature
for different alloys of steel. This gives us confidence that our application of the proposed
methodology is correctly performed. Also it is shown that the RMSE, whenever the results
are compared to the measurements, is small enough. It is further noted that the perfor-
mance of the method is better when the initial magnetisation is not too small. Deperming a
specimen increased the complexity of finding material parameters, and therefore this is an
important observation for future experiments.

Preliminary results indicate that the obtained values have some predictive power to mo-
del ferromagnetic behavior for weak fields inside the region that is used to obtain the para-
meters. However, more research and measurements are required to further investigate this
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Figuur 5.11: Specimen 1: measured (left) and computed (right) magnetic induction field component Bx at
tA , tB , . . . , tE for a 400 µT minor loop measurement. Note that all field components (Bx ,By ,Bz ) are used in the
computations.
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predictive power in more detail, e.g., how to interpret the nonuniqueness of obtained mate-
rial parameter set, as different sets are solutions to the minimisation problem as described
in Section 5.4.2.

Future steps are to apply the methodology to experimental data to obtain the material
parameters for the full anisotropic tensor case. Furthermore, the use of regularisation to
increase the robustness of the solutions to the parameter estimation is valuable and must
be incorporated in further extensions of the proposed model. This will reduce the effect of
noise to the solutions. Lastly, the predictive performance of the obtained parameters is still
ongoing research and must be understood in more detail.

REFERENCES
[1] A. Benabou et al. Minor loops modelling with a modified Jiles Atherton model and

comparison with the Preisach model. J. Magn. Magn. Mater. pp: 320. 2008.

[2] A. J. Bergqvist. A Simple Vector Generalization of the Jiles-Atherton Model of Hyste-
resis. IEEE Trans. on Magn.. Vol: 32. No. 5. pp: 4213 – 4215. 1996.

[3] S. Bobbio, G. Miano, C. Serpico and C. Visone. Models of Magnetic Hysteresis Based
on Play and Stop Hysterons.IEEE. Trans. on Magn. Vol. 33. No. 6. 1997.

[4] K. H. Carpenter. A Differential Equation Approach to Minor Loops in the Jiles-
Atherton Hysteresis Model. IEEE Transactions on Magnetics, Vol: 27. No. 6. pp: 4404
– 4406. 1991.

[5] O. Chadebec, J. L. Coulomb, J. P. Bongiraud, G. Cauffet, and P. Le Thiec. Recent
improvements for solving inverse magnetostatic problem applied to thin hulls. IEEE
Trans. on Magn., Vol. 38, no. 2, pp. 1005–1008, 2002.

[6] O. Chadebec, J. L. Coulomb, G. Cauffet, and J. P. Bongiraud. How to Well Pose a
Magnetization Identification Problem. IEEE Trans. on Magn.. Vol. 39. No. 3. pp: 1634–
1637. 2003.

[7] K. Chwastek et al. Modelling dynamic hysteresis loops in steel sheets, COMPEL. Vol.
28. No. 3. pp: 603 – 612. 2009.

[8] K. Chwastek. Modelling offset hysteresis loops with the modified Jiles-Atherton de-
scription. Journal of Physics D: Applied Physics. Vol: 42. 2009.

[9] K. O’Grady and S. J. Greaves. Minor Hysteresis loops effects in magnetic materials.
Journal of Magnetism and Magnetic Materials 138. pp: L233–L236. 1994.

[10] Ch. Guérin et al. Using a Jiles-Atherton vector hysteresis model for isotropic magne-
tic materials with the finite element method, Newton-Raphson method, and relaxation
procedure. International Journal of Numerical Modelling, Electronic Networks, Devi-
ces and Fields. Vol. 30. No. 5.

[11] M. Hamimid, S.M. Mimoune, M. Feliachi. Minor hysteresis loops model based on
exponential parameters scaling of the modified Jiles–Atherton model. Physica B: Con-
densed Matter. Vol. 407. No. 13. pp: 2438 – 2441. 2012.



REFERENCES

5

101

[12] F. Henrotte and K. Hameyer. A Dynamical Vector Hysteresis Model Based on an
Energy Approach. Trans. on Magn.. Vol: 42. No. 4. 2006.

[13] K. Hergli, H. Marouani, M. Zidi, Y. Fouad and M. Elshazly, Identification of Preisach
hysteresis model parameters using genetic algorithms. Journal of King Saud University
– Science. 2017.

[14] A. Iványi (Ed.). Preisach Memorial Book. Akadémiai Kiadó, Budapest. 2005.

[15] Z. Wlodarski et al.. Modeling DC-biased hysteresis curves in self-developed SMC
cores. International Journal of Applied Electromagnetics and Mechanics. Vol: 61. No.
1. pp: S151-S157. 2019.

[16] J. D. Jackson, Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc.
1999.

[17] D. Jiles and D. Atherton. Theory on Ferromagnetic Hysteresis. Journal of Magnetism
and Magnetic Materials 61. Vol: 48. 1986.

[18] D. Jiles. Numerical Determination of Hysteresis Parameters for the Modeling of Mag-
netic Properties Using the Theory of Ferromagnetic Hysteresis. IEEE Transactions on
Magnetics. Vol: 28. No. 1. 1992.

[19] Jianming Jin. The Finite Element Method in Electromagnetics. New York: John Wiley
& Sons, Inc. 2002.

[20] M. Kachniarz, R. Szewczyk. Study on the Rayleigh Hysteresis Model and its Applica-
bility in Modeling Magnetic Hysteresis Phenomenon in Ferromagnetic Materials. Acta
Physica Polonica A. Vol: 131, No. 5. pp: 1244 – 1249. 2017.

[21] P.H. Kirkegaard, R. Brincker. On the Optimal Locations of Sensors for Parametric
Identification of Linear Structural Systems. Mechanical Systems and Signal Processing.
Vol: 8. pp: 639 – 647. 1994.

[22] P.I. Koltermann et al., A modified Jiles method for hysteresis computation. Physica B.
Vol: 275. pp: 233 – 237. 2000.

[23] Muzaffar Eusuff, Kevin Lansey and Fayzul Pasha. Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete optimization. Engineering Optimization. Vol: 38.
No.2. pp: 129 – 154. 2006.

[24] V. François-Lavet, F. Henrotte, L. Stainier, L. Noels, and C. Geuzaine. An energy-
based variational model of ferromagnetic hysteresis for finite element computations.
Journal of Computational and Applied Mathematics. Vol: 246. pp: 243 – 250. 2013.

[25] J.V. Leite et al.. The Inverse Jiles-Atherton Model Parameters Identification. IEEE
Trans. on Magn.. Vol: 39. No. 3. pp: 1397 – 1400. 2003.

[26] J.V. Leite et al.. Real coded genetic algorithm for Jiles-Atherton model parameters
identification. IEEE Trans. on Magn.. Vol: 40. No. 2. pp: 888 – 891. 2004.



5

102 REFERENCES

[27] J.V. Leite, A. Benabou and N. Sadowski. Accurate minor loops calculation with a
modified Jiles-Atherton hysteresis model. COMPEL. Vol: 28. No. 3. pp: 741 – 749.
2009.

[28] T. Matsuo, D. Shimode, Y. Terade and M. Shimasaki. Application of Stop and Play
Models to the Representation of Magnetic Characteristics of Silicon Steel Sheet. Trans.
on Magn., Vol. 39, No. 3, May 2003.

[29] T. Matsuo, Y. Terada, M. Shimasaki. Representation of minor hysteresis loops of a
silicon steel sheet using stop and play models. Phys. B.. Vol: 372. pp: 25 – 29. 2006.

[30] R. Naghizadeh, B. Vahidi and S. H. Hosseinian. Parameter identification of Jiles-
Atherton model using SFLA. Vol: 31. No. 3. pp: 1293 – 1309. 2012.

[31] H.W.L. Naus. Theoretical developments in magnetomechanics. IEEE Trans. on
Magn.. Vol: 47. No. 9. pp: 2155 -– 2162. 2011.

[32] C. Papadimitriou, J.L. Beck and S.K. AU. Entropy-Based Optimal Sensor Location
for Structural Model Updating. Journal of Vibration and Control. Vol: 6. No. 5. pp:
781 – 800. 2000.

[33] N.C. Pop and O.F. Caltun. Jiles–Atherton Magnetic Hysteresis Parameters Identifica-
tion. ACTA PHYSICA POLONICA A. Vol: 120. No. 3. pp: 491 – 497. 2011.

[34] L. Prigozhin, V. Sokolovsky, J. W. Barret, and S. Zirka. On the Energy-Based Varia-
tional Model for Vector Magnetic Hysteresis. IEEE Trans. on Magn.. Vol: 52. No. 12.
2016.

[35] J. Tellinen. A Simple Scalar Model for Magnetic Hysteresis. IEEE. Trans. on Magn..
Vol: 34. No. 4. 1998.

[36] M. Toman, G. Stumberger, and D. Dolinar. Parameter identification of the Jiles-
Atherton hysteresis model using differential evolution. IEEE Trans. on Magn.. Vol.
44. No. 6. pp: 1098 – 1101. 2019.

[37] Edward. D. Torre. Magnetic Hysteresis. Wiley-IEEE Press. 1999.

[38] F.E. Udwadia. Methodology for Optimal Sensor Locations for Parameter Identifica-
tion in Dynamic Systems. Journal of Engineering Mechanics (ASCE). Vol: 120. No. 2.
pp: 368 – 390. 1994.

[39] G. Vertésy et al..Minor hysteresis loops measurements for characterization of cast
iron. Physica B: Condensed Matter. Vol: 372. Issues 1–2. pp: 156 – 159. 2006.

[40] A.R.P.J. Vijn, E.S.A.M. Lepelaars, J.B.L. Dubbeldam, M.B. van Gijzen, A.W. Hee-
mink. Magnetic susceptibility Estimation for Magnetostatics. IEEE Trans. on Magn..
Vol. 55. No. 3. 2019.

[41] Y. Vuillermet, O. Chadabec, J. L. Coulomb, J. P. Bongiraud, G. Cauffet and P. Le
Thiec. Scalar Potential Formulation and Inverse Problem Applied to Thin Magnetic
Sheets. IEEE Trans. on Magn.. Vol. 44. No. 6. 2008.



REFERENCES

5

103

[42] M. A. Zaman, P. C. Hansen. L. T. Neustock, P. Padhy and L. Hesselink. Adjoint
Method for Estimating Jiles-Atherton Hysteresis Model Parameters. Journal of Applied
Physics. No. 120. 2016.

[43] S. E. Zirka et al. On physical aspects of Jiles-Atherton models. Journal of Applied
Physics. Vol: 112. 2012.

[44] J. Ziske and T. Bödrich. Magnetic Hysteresis for Modelica. Proceedings of the 9th
International Modelica Conference. 2012.



5

104 REFERENCES

APPENDIX A. TABLE OF JA+R PARAMETER BOUNDARIES

FOR SFLA
A set of JA+R parameter boundaries for SFLA are given in Table. 2. Recall that using such
bounds reduces the computation time of to execute the SFLA and speeds up the convergence
of the algorithm. The values of the boundaries should be chosen in such a way that one
avoids the introduction of a bias in the solution. In this chapter, the values are based on
both known values from the literature for steel alloys, as mentioned in Section 5.6.

Tabel 2: JA+R parameter boundaries for SFLA.

JA Parameter min. value max. value Unit
Ms 1.50 × 106 1.80 × 106 Am−1

k 0 5000 Am−1

a 0 5000 Am−1

c 0.05 0.5 -
α 1.0 × 10−5 1.0 × 10−2 -

APPENDIX B. PARAMETER ESTIMATION FLOWCHART
In this appendix, a flowchart for the proposed parameter estimation is presented. Based on
the initial magnetisation distribution estimation and the shuffled frog leaping algorithm, an
optimisation process is defined to find the optimal values of the parameters in the JA+R
model. The flowchart can be found in Fig. 12.

To clarify the flowchart, note that M is the coefficient matrix based on the collection
of higher-order Gaussian functions with unknown amplitudes. Note that the linear problem
mentioned in (5.13) can be translated to a linear system of the form

MA = b (19)

from which the initial magnetisation distribution can be computed.
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Figuur 12: Algorithm for determination of material parameters. Firstly, measured data of the magnetic induction
field B is loaded into the algorithm. Based on the initial magnetisation distribution, the sensitivity matrix M is
created and M0 is computed. Then the Shuffled frog leaping algorithm is used to find the optimal set of material
parameters that fits the measured data in an optimal way.
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ABSTRACT
This chapter presents a hybrid model to estimate the magnetic behaviour of a ferromag-
netic structure. The mathematical-physical model has been developed using the Method
of Moments combined with a hysteresis model. The mathematical model was derived by a
linearisation of the hysteresis curve. The initial magnetic state of a ferromagnetic object
is found through inverse computations, including regularisation techniques. The idea of
dictionary regularisation is introduced to support the inverse computations with prescribed
templates that reflect a priori knowledge of the typical shapes of magnetisation distribu-
tions. These templates are extracted from the Method of Moments. Data assimilation is
used to update the model in time by means of measurements of the magnetic field near a
ferromagnetic structure. The proposed hybrid model is implemented for a typical steel ob-
ject and verified by means of numerical experiments and measurements in an experimental
environment.
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6.1. INTRODUCTION
Estimation of the magnetic state of ferromagnetic objects is in general very difficult. This is
due to the nonlinear and hysteretic behaviour of ferromagnetic material, a field that is still
open to be explored scientifically. In the past century, a number of models have been de-
veloped to describe ferromagnetic behaviour. The mathematical principles of Preisach [20]
and the quasi-physical model of Jiles and Atherton [12] serve as a foundation for this mo-
deling. Also energy-based models show promising results, such as the energy-based varia-
tional model [14] based on laws of thermodynamics, the extended version [16] in which the
underlying minimisation problem is analysed in more detail, and the homogenized energy
model [18].

Accurate descriptions of the ferromagnetic dynamics are important in smart material
systems, where ferromagnetic materials such as steel cores are used in the construction
of electronic devices [18]. The performance of such devices suffer from the non-static
electrodynamics of their structures and in order to work properly, this has to be taken into
account. Also understanding energy losses in transformers due to soft ferromagnetic cores
requires a good understanding of ferromagnetic behaviour and corresponding modeling
principles.

Another application is the identification of magnetic states of steel vessels in a military
context. In [8–10] it is explained that identification and evaluation of magnetic signatures
of naval vessels is important in order to protect these vessels against hostile threats. In
particular, two threats are of interest in the case of magnetic signatures. One are modern
influence mines that sense the magnetic field. Based on these measurements, a mine can
decide if a potential naval vessel is nearby and can actuate to (critically) damage a naval
vessel. Another threat is the risk for a submarine to be detected by means of so-called
magnetic anomaly detection (MAD) [17]. This inverse method effectively determines the
location and strength of a magnetic dipole based on measurements of the magnetic field.

In this chapter, we propose a mathematical-physical model to predict the magnetic state
of a ferromagnetic object. Following from this is the hybrid model which is based on the
combination of a hysteresis model to describe the behaviour of ferromagnetic material and
the Method of Moments to describe the inter-coupling effects inside a large magnetised
structure. This mathematical-physical model is then used to describe changes in magneti-
sation for varying magnetic background fields.

Data-assimilation [1, 6] is a mathematical field that combines (numerical) models with
experimental observations to obtain a more accurate mathematical-physical description of
the phenomenon at hand. In such methods, as in parameter estimation methods, inverse
problems are typically involved. By inverse problems, it is understood that an underlying
quantity is estimated by means of measurement data. Such problems are challenging from
a mathematical point of view. By assimilating data, an estimate of the underlying model
parameters can be obtained. Alternatively, it is used to enhance the estimation of the state
of a model and thus to improve the predictive power of a model. The application of data-
assimilation is well known in the field of weather forecasting and air quality models. In
this chapter, data-assimilation is used in the following way. By means of near field mea-
surements of the magnetic field, we set up a data assimilation procedure. This allows us to
correct the predictions based on the physical model. It is important to note that in specific
applications, a much simpler correction method can be used to obtain an improved model.
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In this chapter, a much more general approach is proposed, which is based on the known
underlying physics. This allows one to correct for a larger set of effects that might be absent
in the numerical model by forehand.

In the prediction of the magnetic state, inverse problems are solved. In magnetosta-
tics, such inverse problems are inherently ill-posed, which introduces extra difficulties in
obtaining robust solutions. One way to resolve these issues, is the regularisation of the
inverse problem. In the current chapter, a priori information about the solutions of an in-
verse problem is used to reduce the problem complexity. In the data-assimilation scheme,
regularisation plays an important role. Examples of regularisation that are considered in
this work are a smoothness operator and dictionary learning. The addition of regularisation
in the assimilation scheme implies that changes in the magnetic state prediction are correct
and numerically stable.

This chapter is structured as follows. In Section 6.2 the assumptions throughout this
chapter are mentioned. In Section 6.3 a few preliminary notions in magnetostatics are re-
called. In particular a field description of the magnetic distortion field is mentioned, that
is used extensively in the derivation of the Method of Moments. The methodology behind
the Method of Moments is discussed in Section 6.4. Section 6.5 defines the forward and in-
verse problems that are used in the derivation of the mathematical physical model and data
assimilation. Also, the use of a dictionary regularisation approach is discussed, in which a
set of templates are used to support the inverse problems in obtaining accurate solutions to
inverse problems. In Section 6.6 the connection between the MoM and a hysteresis model
is discussed. The Rayleigh model is used as a model for ferromagnetic behaviour, although
this choice is not strictly necessary. In a similar way other hysteresis models can be used.
Via point-wise linearisation in time, a dynamical model for temporal changes in magneti-
sation due to ferromagnetism follows. In Section 6.7 the data-assimilation step is added to
the ferromagnetic model that is obtained in Section 6.6. The resulting model is called the
hybrid model, as it incorporates both a mathematical-physical model and data-assimilation.
After the methodology, a twin experiment is conducted to understand the consistency of the
proposed prediction model and to analyse to what extent it is possible to describe the mag-
netic state sufficiently accurate. In Section 6.8 the test object and experimental setup are
introduced. To verify the hybrid model, a numerical twin experiment is conducted and the
results are found in Section 6.9. After this numerical analysis, the application of our hybrid
model to real measurement data is discussed in Section 6.10. The chapter is concluded in
Section 6.11.

6.2. ASSUMPTIONS
Throughout this chapter, the following assumptions hold.

• Uniform background field in the neighborhood of a ferromagnetic object is conside-
red. It is assumed that the changes in the background field are relatively slow in time,
ensuring that the linearised model can be used in a time-stepping numerical scheme.

• Isotropic nonlinear behaviour. We look at the static ferromagnetic behaviour that is
described by the magnetostatic equations. The nonlinear and hysteretic behaviour is
taken into account, but time-dependent behaviour such as relaxation and magnetic
viscosity are neglected;
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• First-order approximation of hysteretic and nonlinear behaviour based on the well
known separation of the magnetisation into an induced part and a permanent part. The
induced magnetisation is described by the location-dependent magnetic susceptibility
χ, which is assumed to change in time due to the hysteretic behaviour. Furthermore,
we assume that any hysteretic behaviour is described by a (slowly) varying permanent
magnetisation and small changes in the value of the magnetic susceptibility. Note that
this approach remains valid in the presence of a weak applied field [13].

6.3. MAGNETOSTATICS
Suppose that a ferrous object is placed in a uniform magnetic background field B0 =µ0H0.
Let Ω ⊆ R3 represent the compact volume corresponding to the object. Assume that Ω is
constructed from ferromagnetic material that behaves in an isotropic way. The ferromagne-
tic material responds to the background field, inducing a magnetisation M in the material.
Assuming that the magnetic field H is sufficiently close to H∗, a linearisation is allowed
to approximate the nonlinear behaviour of the ferromagnetic material. In particular, Taylor
expansion around the point (H∗,M∗) leads to

M(H) = M∗+ ∂M

∂H

∣∣∣∣
H=H∗

• (H−H∗)+h.o.t. (6.1)

where h.o.t. stands for the higher order terms of this expansion. From here after the mag-
netisation is assumed to be the sum of an induced part and a permanent part

M = Mi nd +Mper . (6.2)

Note that combining (6.1) and (6.2) leads to the expressions

Mper = M∗− ∂M

∂H

∣∣∣∣
H=H∗

• H∗ and Mi nd = ∂M

∂H

∣∣∣∣
H=H∗

• H. (6.3)

where we have used that Mper is the magnetisation that remains in absence of the magnetic
field H. In general, the higher order terms are neglected and hence the traditional separation
of ferromagnetism into a permanent and induced part follows [19]. In this chapter, we
assume that the higher order terms in (6.1) and hysteretic behaviour are included into the
permanent magnetisation part, under the assumption that these higher order terms vary
slowly in time. These slow variations are required to allow the use of data assimilation to
capture the hysteretic effects in the sensor data.

The constitutive relationship for isotropic linearly reacting material now follows from
(6.3) and reads

Mi nd =χH,
∂M

∂H

∣∣∣∣
H=H∗

:=χI3 (6.4)

where χ ∈ R is the incremental magnetic susceptibility and I3 is the 3×3 identity matrix.
Note that the value of χ typically depends on the centre for which the Taylor expansion is
evaluated. Lastly, the value of the permanent magnetisation is assumed to be constant for a
given Taylor expansion of M(H).
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Due to the magnetisation, a perturbation in the magnetic background field arises and
this is called the reduced magnetic field, denoted by Hr ed . The total magnetic field H and
the magnetic induction field B inside and outside Ω reads

H := H0 +Hr ed

B := B0 +Br ed .
(6.5)

Note that Hr ed depends on the total magnetisation M, and therefore on both the perma-
nent and induced magnetisation. In turn, this implies that in (6.3) and (6.4) the induced
magnetisation in fact also depends on the permanent magnetisation. In Section 6.5.3 this
implication is further discussed.

To obtain the reduced magnetic field due to a prescribed magnetisation M, the magne-
tostatic field equations are solved: 

∇×H = 0
∇·B = 0
B =µ0(H+M)

. (6.6)

In these equations, B denotes the magnetic induction field, and µ0 = 4π ·10−7 N /A2 is the
magnetic permeability in vacuum. In [15] the reduced magnetic induction field Br ed is
expressed in terms of the curl of the vector potential

Br ed (r) =∇×
(
µ0

4π

Ñ
Ω

M(r′)× (r− r′)
‖r− r′‖3 dr′

)
. (6.7)

6.4. METHOD OF MOMENTS
In this section, the methodology behind the prediction model is discussed. Most of the
equations are already derived in [15], but here we extend the proposed Method of Moments
to include permanent magnetisation. To make this chapter self-contained, the relevant equa-
tions are briefly reviewed. After both the forward and inverse problem are defined, a filter
algorithm is described for data-assimilation and correction of the magnetic state. This filter
also includes a regularisation technique to avoid local updates in the magnetic state predic-
tion, as such corrections are unphysical. A smoothness operator ensures that the updates
are done globally.

Following [15], Morandi et al. proposed a Method of Moments based on the discretisa-
tion of a magnetic object in triangular prisms. As an example in Fig. 6.1 a discretisation of
an object is depicted.

It is assumed that the magnetisation (both permanent and induced) is uniform within
each triangular prism ek , i.e.,

M(r)ek = Mk , for r ∈ ek . (6.8)

Furthermore, the magnetic susceptibility is assumed uniform on each element. Equivalent
to the constitutive relation mentioned in (6.4),

Mi nd = f

(
B

µ0
−Mper

)
, f := χ

1+χ (6.9)
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Figuur 6.1: A mesh of the test object in triangular prisms. Dimensions are in meters. The thickness of the elements
are not shown.

for a prescribed permanent magnetisation Mper . Equation (6.9) is used to derive the Method
of Moments where B is the internal magnetic induction field. The scalar value of f̂ reflects
the assumptions on isotropic material and depends on the location in Ω. Using the discre-
tisation, the magnetic induction field at any point r ∈Ω inside the object is approximated
by

B(r) = B0 +Br ed = B0 +Bi nd +Bper (6.10)

= B0 +
Ne∑

k=1
[C (r)]k

(
(Mi nd )k + (Mper )k

)
(6.11)

where Bi nd and Bper are the magnetic induction field produced by the the induced and
permanent magnetisation respectively. Furthermore, Ne is the number of elements and
[C (r)]k is a 3×3 matrix defined by

[C (r)]k =
3∑

i=1

[
∇×

(
µ0

4π

Ñ
ek

ui × (r− r′)
‖r− r′‖3 dr′

)]
uT

i (6.12)

where ui is the unit vector along the i -th direction. Further derivations for these matrices are
found in [15]. Knowing all the 3×3 matrices [C (r)]k , one can assemble a 3Ne ×3Ne matrix
C = [

C (r1) C (r2) · · · C (rNe )
]T by applying a point-matching method for which the

centre of each prism is used to evaluate the matrices [C (r)]k . Note that matrix C maps a
magnetisation distribution to the corresponding internal magnetic induction field. A similar
reasoning is applied to f̂ , which leads to a 3Ne ×3Ne diagonal matrix f with the magnetic
susceptibility values on the diagonal for each element.

Using the assembled matrix C the numerical approximation of the magnetic induction
field B in (6.11) can be written as

B(r) = B0 +C Mi nd +C Mper (6.13)
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where the quantities Mi nd ,Mper ∈ R3Ne are now the numerical vectors for the induced and
permanent magnetisation. In the remainder of this chapter, we will refer to these numerical
vectors for the induced and the permanent magnetisation respectively, on a fixed partitio-
ning of the object Ω. Combining the assembled matrix C and the expression for the magne-
tic induction field B, the following linear equation can be found for the magnetisation after
substitution into (6.9):

A(χ)Mi nd =
(

f

µ0

)
B0 +

(
f

µ0

)
C Mper − f Mper , (6.14)

where A(χ) is a 3Ne ×3Ne matrix that depends on the magnetic susceptibility and is given
by

A(χ) = I −
(

f

µ0

)
C . (6.15)

Therefore, the solution to system (6.14) is given by

Mi nd = A(χ)−1
((

f

µ0

)
B0 +

(
f

µ0

)
C Mper − f Mper

)
. (6.16)

Note that the induced magnetisation depends of the permanent magnetisation. This obser-
vation is reflected by the MoM in (6.16).

6.5. STATIC FORWARD AND INVERSE PROBLEM
6.5.1. STATIC FORWARD PROBLEM
Let V = {s1,s2, . . . ,sNs } be a collection of measurement locations of the magnetic field B
outside Ω, where Ns is the number of sensors. Assume that the magnetic background field
B0 is known beforehand. The static forward problem amounts to computing the magnetic
induction field B at the given collection of measurement locations.

Given some magnetisation distribution M the magnetic field at the measurement loca-
tions V can be computed using (6.7) and (6.5). If B0 ∈ R3Ns contains the values of the
magnetic background induction field at the sensor locations, then the magnetic induction
field Bc is computed through

Bc [M] = B0 +C1M, C1 ∈R3Ns×3Ne , (6.17)

where C1 = [
C (s1) C (s2) · · · C (sNs )

]T is the field matrix in locations V and M =
Mi nd +Mper is the numerical vector for the total magnetisation.

6.5.2. STATIC INVERSE PROBLEM
The static discrete inverse problem amounts to finding the optimal magnetisation M such
that there is an agreement between a measured magnetic induction field Bm ∈R3Ns and the
magnetic field Bc [M] computed using (6.17). If one defines the residual

Res = Bm −Bc [M], (6.18)

then the solution to the discrete inverse problem is found by solving the following Tikhonov
minimisation problem

M̂ = argmin
M∈R3Ne

ResT Res+λ2‖RM‖2
2, (6.19)
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where R is a regularisation operator [21] and λ is the corresponding regularisation parame-
ter. The regularisation operator typically enforces certain conditions or properties on the
solution, depending on the choice of R. Well known examples of R are either the identity
matrix (minimising the length of the solution-vector) or a smoothing operator (the first-
order derivative or Laplacian operator), enforcing certain smoothness properties upon the
solutions. The regularisation parameter is used to put more or less emphasis on the re-
gularisation term. If λ is chosen small, the optimisation problem primarily minimises the
residual, while if λ is large, the regularisation term is minimised, enforcing the regularised
solution to stay close to the null-space of R.

If we only consider reduced magnetic fields, then the solution to the above minimisation
problem is found in an equivalent way by solving the normal equations(

C T
1 C1 +λ2RT R

)
M =C T

1 Bm (6.20)

using a singular value decomposition [21] or by applying a Krylov iterative method such as
CGLS on (6.19). The optimal value for λ is found using the L-curve criterion [7].

6.5.3. PERMANENT MAGNETISATION ESTIMATION
To determine the initial magnetic state in the hybrid model in Section 6.7, an inverse pro-
blem has to be solved for t = 0. Based on the discrete inverse problem, an inverse problem
for the permanent magnetisation is derived.

Assume that at time instant t = 0 a measurement of the magnetic induction field Bm

is available at a collection of measurement locations, as described in Section 6.5.1 in the
presence of an applied field B0. We stress that, although in the absence of an applied
field, the magnetisation always consists of a permanent magnetisation contribution and an
induced magnetisation. The induced magnetisation is the result of the internal magnetic
field caused by the permanent magnetisation.

Based on the above observation, let us write the magnetisation M|t=0 (in the presence
of an applied field) as a sum of the permanent magnetisation and the corresponding induced
magnetisation, i.e.,

M|t=0 = Mper + Mi nd |B0
. (6.21)

The induced magnetisation is the solution to the MoM under the conditions of applied field
and the presence of an internal magnetic field due to the permanent magnetisation. The
resulting solution to the MoM is given in (6.16). Using the intermediate result

I + A(χ)−1
((

f

µ0

)
C − χ

χ+1
I

)
= 1

χ+1
A(χ)−1 (6.22)

shows that the total magnetisation can be fully expressed in terms of the presence of a
permanent magnetisation and an applied magnetic background field by combining (6.21)
and (6.16):

M|t=0 = A(χ)−1
(
(1− f )Mper + f

(
B0

µ0

))
, s ≡ χ

χ+1
. (6.23)

Note that the permanent magnetisation is easily obtained from the magnetisation if (6.23)
is solved for Mper :

Mper = 1

1− f

(
A(χ)M− f

(
B0

µ0

))
. (6.24)
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The computed magnetic induction field Bc at t = 0 at the measurement locations is then
obtained through

Bc = K Mper +C1 A(χ)−1
(

f

µ0

)
B0 +B0, (6.25)

where K ≡ 1
χ+1C1 A(χ)−1 and the residual is defined as

Res = Bm −
(

B0 +K Mper +C1 A(χ)−1
(

f

µ0

)
B0

)
. (6.26)

6.5.4. OPERATORS FOR REGULARISATION
In order to reduce the large solution space in the inverse problem, a regularisation operator
is derived based on the interaction matrix mentioned in the previous section.

SMOOTHNESS OPERATOR
The first well known example of a regularisation operator is based on the assumption of
smoothness on the solution to the inverse problem. Assuming that the solution is diffe-
rentiable, we know that local variations in the solution are bounded. Then a regularisation
operator R can be derived as explained in [21].

DICTIONARY AS A REGULARISER
Sometimes the magnetisation distribution can be represented by a linear combination of a
priori basis distributions, which we will refer to as templates for the (permanent) magneti-
sation. In this way, a dictionary of field-shapes can work as a regulariser. In this paragraph,
the principles behind this dictionary approach are illustrated using a small set of templates.
In the next paragraph, the dictionary is extended using a more general approach in finding
templates for M. Note that this approach resembles the use of spectral decomposition in
model order reduction (MOR) and sparse dictionary learning [2].

Let M1,M2,M3 be three solutions to the MoM associated to uniform background fields
of unit length in all three principal directions x, y and z respectively. Then one may regu-
larise the solution space of the static inverse problem by using the distance of a solution to
the subspace spanned by the three basis fields as a measure.

Note that when the distance of a solution to the above subspace is zero, the solution can
be written as a linear combination in the basis fields. Let P be a projection matrix onto the
subspace W = sp(M1,M2,M3) ⊆R3Ne . Then a solution M lies in the subspace W if and only
if the orthogonal complement of M is the zero-vector, i.e.,

(I −P )M = 0 ⇔ M ∈ ker(I −P ). (6.27)

Note that in the same manner as in the previous proposed regularisation operator an inno-
vative term is introduced to allow small deviations from the templates. In mathematical
terms,

((I −P )M)i = 1

3Ne
I , I ∼N (0,σ2) (6.28)

for i = 1,2, . . . ,3Ne . In the permanent estimation problem, the templates are added as a
penalty term in the Tikhonov regularisation approach (6.19) with R = I −P . In Fig. 6.2 an
example of the resulting templates can be found.
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Figuur 6.2: Example of a template for the static inverse problem, based on a MoM computation with a uniform
background field in the y-direction.

MOM-BASED TEMPLATES FOR DICTIONARY REGULARISATION

To extend the dictionary mentioned in the previous paragraph, the Method of Moments can
be used to obtain a basis of templates for magnetisation. In this section, it is assumed that
the magnetic susceptibility does not show spatial variations, therefore the value of χ is con-
stant. Recall that a solution M to the MoM (in the absence of a permanent magnetisation)
satisfies

A(χ)M =
(

f

µ0

)
B0. (6.29)

Furthermore, f is now a diagonal matrix with constant diagonal-entries. Therefore we can
state that if M is a solution to the MoM, then a necessary condition for M is that it is an
element of the column-space of the pseudo-inverse of A(χ):

M ∈ col A(χ)†. (6.30)

Using the compact singular value decomposition (cSVD) of A(χ)†, a basis of shapes for
these solutions can be obtained. Note that if we write A(χ)† =UΣV T , where U is an n × r
orthogonal matrix, V is an r ×n orthogonal matrix, Σ is an r × r diagonal matrix with non-
zero singular values on the diagonal-entries in decreasing order and r = Rank

(
A†(χ)

)
, then

an immediate result is that
col

(
A(χ)†

)
= col(U ) . (6.31)

In the Method of Moments, n = 3Ne and A(χ)† is non-singular, thus r = Rank
(

A†(χ)
) =

3Ne . To obtain a set of MoM-based templates, take l < r . The first l columns of U form a
basis of a subspace of col A†, say T = {u1, . . . ,ul } (not to be confused with the unit vectors
in (6.12)). These elements are added to the dictionary approach to regularise the (static)
inverse problem. Note that these l vectors correspond to the l largest singular values of
A†. To use the projection-approach as mentioned above, it is assumed that the size of the
dictionary does not exceed the dimensions of the solution space; otherwise the projection
I−P does not exist. To illustrate this template approach a template example is shown in Fig.
6.2. Note that the above-mentioned cSVD depends on the value of χ. To avoid a numerical
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burden, the limit χ→∞ is can be considered to obtain a cSVD independent of the value of
χ. Note that in this limit (6.29) simplifies to

AM = 1

µ0
B0, A := I − 1

µ0
C . (6.32)

6.5.5. DICTIONARY REGULARISATION AS A PRECONDITIONER
The dictionary regularisation, as introduced in the previous subsections, can be seen as a
preconditioner for the static inverse problem described in Section 6.5.2.

Let T be a collection of linearly independent templates, as defined in the previous
section. The set T forms a basis of a subspace of R3Ne . We augment this basis with a basis
T ′ of choice for the orthogonal complement colT . Then T ∪T ′ is a basis for the whole
space R3Ne . Now form the 3Ne × 3Ne matrix Q = [Q1 Q2] for which the columns of Q1

and Q2 consist of the basis vectors from T respectively T ′. Note that per construction the
matrix Q is non-singular.

Recall that the main idea behind dictionary regularisation is that in the static inverse
problem, one seeks solutions that (approximately) are a linear combination of prescribed
templates. This idea can be cast into a preconditioner in the following way. One can write
a solution M for the static inverse problem as described in Section 6.5.2 as

M =
|T |∑
j=1

c j t j +
3Ne∑

j=|T |+1
c j t′j−|T | (6.33)

where |X | stands for the number of elements in the set X , T = {t1,t2, . . . ,t|T |}, T ′ =
{t′1,t′2, . . . ,t′|T ′|} and the two bases satisfy |T | + |T ′| = 3Ne . Using the matrix Q equation
(6.33) can be compactly written as

M = [Q1 Q2]

[
c1

c2

]
, for some c1 ∈R|T |,c2 ∈R|T ′|. (6.34)

Hence, matrix Q can be seen as a preconditioner for the static inverse problem. Therefore,
if we rewrite the static inverse problem with the use of (6.34), we find the following inverse
problem

M =Q ĉ, ĉ = argmin
c∈R3Ne

‖B0 +C1Qc−Bm‖2, (6.35)

which is equivalent to (6.19) for λ = 0. In particular, if a solution is found for which the
entries in c2 are zero, then M is a linear combination of templates. Therefore, we can
introduce a penalty term in terms of the 2-norm for vector c2 that regularises the solution c,
to obtain a solution c2 with small length and thus to steer the solution towards the dictionary.
Hence,

M =Q ĉ, ĉ = argmin
c∈R3Ne

‖B0 +C1Qc−Bm‖2 +λ2‖Rc‖2 (6.36)

where the regularisation operator R is given by

R =
[ ;|T |×|T | ;|T |×|T ′|

;|T ′|×|T | I|T ′|×|T ′|

]
(6.37)

and where ;|T |×|T | is the |T | × |T | zero matrix, and I|T ′|×|T ′| is the |T ′|× |T ′| identity
matrix.
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6.6. HYSTERESIS MODEL AND CONNECTION TO THE ME-
THOD OF MOMENTS

In this section the Rayleigh hysteresis model, that serves as one of the building blocks
for our ferromagnetic model, is explained in detail. The model describes ferromagnetic
behaviour on a material level. Therefore, the connection with the Method of Moments is
made to describe how magnetisation changes in a ferromagnetic macroscopic structure. We
require the Method of Moments to compute the internal magnetic fields of the ferromagnetic
object, to be able to use the hysteresis model in a consistent way. As only isotropic material
is considered, it is sufficient to use the scalar version of the hysteresis model.

6.6.1. RAYLEIGH’S HYSTERESIS MODEL
Rayleigh’s hysteresis model [13, 18] approximates the nonlinear behaviour of ferromagne-
tic materials in weak applied fields. For higher field strengths of the applied field the mo-
del is not applicable and a different more general model such as the Jiles-Atherton model
or the energy-variational model is required for correct modeling of the hysteresis effects.
However, Rayleigh’s model gives a fairly simple way to model the hysteresis effects by
approximating the minor loop branches by quadratic functions.

The initial magnetisation curve of ferromagnetic material is given by

M(H) = (µi −1)H +αR H 2 (H > 0) (6.38)

and
M(H) = (µi −1)H −αR H 2 (H < 0), (6.39)

where µi is called the initial relative permeability and αR is called the Rayleigh constant,
M and H are the magnetisation and internal magnetic field respectively. Both values of the
parameters of the Rayleigh model can be found experimentally by determining the initial
magnetisation curve by means of measurements. The minor loops within the hysteresis
curve are based on approximation by quadratic functions. More specifically, the Rayleigh
model introduces a dependence on the modulus of the field value Hm at the turning point
of such branches.

The above considerations lead to the following set of equations that describe the incre-
asing and decreasing branches for higher-order reversal curves. For any increasing branch
(H ↗ Hm) where the field strength increases we have

M(H) =
[

(µi −1+αR Hm)H − αR

2

(
H 2

m −H 2)] (6.40)

and for decreasing branches (Hm ↙ H) where the field strength decreases we find that

M(H) =
[

(µi −1+αR Hm)H + αR

2

(
H 2

m −H 2)] . (6.41)

Whenever the time derivative of the magnetic field changes sign, the hysteresis follows a
new increasing or decreasing branch that is defined by the last field turning point Hm =
Hl ast . In Fig. 6.3 and Fig. 6.4 two realisations of the Rayleigh model are shown.
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106 Rayleigh model, deperming field

Figuur 6.3: Example of a deperming signal using the Rayleigh hysteresis model. Here, the material parameters
are µi = 100 and αR = 100 m/A, starting at a demagnetised state. The hysteresis curve is the result of a magnetic
deperm signal for the applied background field H . This signal is piece-wise linear with turning points Hm =
[0, 200, −200, 200,−200, 178, −158, 140, −125, 111, −99].
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105 Rayleigh model, varying applied field

Figuur 6.4: Example of a hysteresis curve in the presence of a varying applied field. Here, the materials parameters
are µi = 100 and αR = 100 m/A, starting at a demagnetised state. The applied field is piece-wise linear with
turning points Hm = [0, 200, −180, 100, −80, 200, 40]. Observe that the symmetrical properties for increasing
and decreasing branches is no longer present, but the erasure of magnetic memory is still visible.

Along the increasing and decreasing branches, we may compute the incremental mag-
netic susceptibility χ. It follows that

χ=
{

(µi −1+αR Hm)−αR H (Hm ↙ H)
(µi −1+αR Hm)+αR H (H ↗ Hm)

. (6.42)

Note the change of signs in the above expressions for increasing and decreasing branches.
Also, if dH

dt changes sign, then the incremental magnetic susceptibility makes a disconti-
nuous jump in the model, which may lead to gaps in the minor branches. This behaviour is
unfavourable. Fortunately, if one casts the above direct expressions for the parabolic curves
into the scheme

Mn+1 = Mn + ∂M

∂H

∣∣∣∣
H=Hn

dH (6.43)

for which the resulting hysteretic solutions are continuous.
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6.6.2. MATHEMATICAL MODEL FOR TEMPORAL BEHAVIOUR OF A FER-
ROMAGNETIC OBJECT

In this section, the Method of Moments is combined with the Rayleigh hysteresis model
to obtain a framework in which the magnetic state of a ferromagnetic object is described.
The idea is to alternately 1) linearise the hysteresis model around the current magnetic state
(H,M) of a ferromagnetic object, and 2) use the Method of Moments to compute the next
point in the hysteresis model due to a change in the applied magnetic field. If one assumes
that variations in the background field are small, then such a linearisation in the second step
is allowed to compute the next magnetic state. This implies that variations in the magnetic
state due to a time-varying background field can be tracked in the hysteresis model, which
is necessary for our mathematical-physical model. In the remainder of this chapter the
combination of (1) and (2) is called a Rayleigh time step.

6.7. HYBRID MODEL BASED ON DATA ASSIMILATION
In this section, the hybrid model is defined. The model consists of an initial state computa-
tion, in which an estimation of the initial permanent magnetisation is determined, and an
online algorithm that describes the evolution of the magnetisation for a varying background
field signal by means of Rayleigh time stepping. In this online algorithm the magnetisation
is corrected during the data-assimilation step.

Note that in Section 6.5.3 the permanent magnetisation is estimated on the basis of the
a priori known distribution for the magnetic susceptibility χ. In practical applications, one
should also estimate this distribution. This estimation is omitted in this chapter, and the
authors refer to [21] for a method to obtain a magnetic susceptibility distribution.

A pseudo-code of the resulting hybrid model in this section is found in Appendix 6.11.

6.7.1. INITIAL MAGNETIC STATE
In the initial magnetic state computation, the inverse problem in Section 6.5.3 is solved.
In this step, the dictionary regularisation approach is used to obtain a reliable permanent
magnetisation field. Via an L-curve criterion, the optimal regularisation parameter is deter-
mined.

6.7.2. DATA ASSIMILATION
The data assimilation step in the hybrid model (see Section 6.7.3) is based on updating
the value of the magnetisation through describing the change of permanent magnetisation.
Recall that we assume that during a on a small time-scale the magnetic susceptibility dis-
tribution is fixed, but permanent magnetisation is not and varies slowly. This implies that
the induced magnetisation is fully determined if one knows the values of the magnetic sus-
ceptibility, the current value of the permanent magnetisation and applied magnetic field.
The value of the magnetic susceptibility and the permanent magnetisation follow from the
linearisation in the Rayleigh hysteresis curve. Therefore it is assumed that discrepancies
between estimation of the magnetic state and the true (hidden) magnetic state correspond
to variations in the permanent magnetisation that are not taken into account in the Rayleigh
hysteresis model.

The update step is based on a filtering step using near field measurements of the magne-
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tic induction field. Assume that at time t = n+1 an estimate of the magnetic state is known
given the information at time t = n, i.e., M(n +1|n) is given.

Now suppose that we have a collection of measurements at locations V . Note that Bm

is of the form
Bm(n +1) = B0(n +1)+Br ed (n +1) (6.44)

where B0(n+1) is the applied magnetic field at time instance n+1. Based on the prediction
M(n + 1|n) we compute the residual magnetic induction field at the measurements using
(6.17)

Res(n +1) = Bm(n +1)−
(
B0(n +1)+Br ed [M(n +1|n)]

)
(6.45)

By assumption, the above residual magnetic induction field corresponds to a variation in the
permanent magnetic field ∆Mper , and to find this variation we solve the equivalent discrete
inverse problem for obtaining the permanent magnetisation as described in (6.19):

∆̂Mper = argmin
∆M∈R3Ne

‖C1∆M−Br es‖2
2 +λ2‖R∆M‖2

2 (6.46)

where C1 is the field matrix at measurement locations V2 and R is either the smoothing or
the template operator. It is important to note that the regularisation is necessary to ensure
that the update ∆M is not locally, but a correct update along the whole magnetisation vector.
This is because the inverse problem is under-determined, hence extra information must be
added to obtain a robust solution.

6.7.3. MAGNETIC STATE UPDATE
The magnetic state update step in the hybrid model is defined in terms of an iterative
scheme. In this section, the steps to go from instant t = n to instant t = n + 1 are dis-
cussed. Consider that case that the initial state is already determined, i.e., the magnetisation
at time t = 0 is known beforehand.

At time instant t = n +1 we assume that the magnetisation M(n) := M(n|n) is known,
that the linearisation in the hysteresis curve about the point (H(n),M(n)) led to the magne-
tic susceptibility value χ and that the background induction field Ba(n +1) is given. The
magnetisation at time n +1 is approximated by means of the Method of Moments. If ∆B0

is the change in the applied magnetic induction field, then

M(n +1|n) = M(n|n)+ A(χ)−1( f ∆B0). (6.47)

Note that in this step, it is assumed that permanent magnetisation did not change, thus any
change in magnetisation is solely in a linear manner.

The next step is to update the magnetisation by means of the data-assimilation filter, as
described in Section 6.7.2. Applying this filter yields

M(n +1|n +1) = M(n +1|n)+∆M(n +1). (6.48)

Based on the corrected magnetisation, the corresponding internal magnetic field H ∈ R3Ne

at the centre of the mesh elements follows from combining the Method of Moments and
(6.6):

H(n +1) =µ−1
0 C M(n +1)−M(n +1) (6.49)
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Figuur 6.5: A picture of the steel rectangular test object, without an on-board sensor system.

is computed, where C is the interaction matrix defined in (6.12). The pair P = (H(n +
1),M(n +1)) is used to obtain a new linearisation in the hysteresis curve about the point P ,
as a starting point for the next time step.

6.8. TEST OBJECT
For numerical and practical examples, a rectangular test object is used consisting of four
attached open cubes with sides of 120 mm without a top-plate. The test object is constructed
from 0.5 mm thick steel plates, see Fig. 6.5. Inside 20 sensors are placed, one at the
centre of each face and another 14 sensors are placed on the outside of the test object.
These 34 sensors are considered as the on-board sensors for the purpose of the data-driven
corrections. In Fig. 6.7 the on-board sensor locations are depicted.

The test object is placed inside a coil structure that can change the local magnetic field
in all three directions. Inside the cage the background fields can take values of the form{

B0 ∈R3 : |(B0)i | ≤ 400 µT for i = x, y, z
}

. (6.50)

A sensor array consisting of 200 sensors is placed 56 mm below the object for validations.
To measure the magnetic field, RM3100 Geomagnetic sensors are used. In Fig. 6.6
the experimental setup is shown.

The object is discretised using a structured mesh with equally sized triangles, see Fig.
6.1. For the experiments a mesh consisting of 136 elements is used, giving a good trade
off between accuracy and computational time. An important observation is that for this
choice of a mesh for the steel object, and the number of sensors in the sensor array, the
static inverse problem is over-determined. Therefore, one should expect that the resulting
solutions to the static inverse problem are robust.

6.9. NUMERICAL TWIN EXPERIMENT
To understand if a proposed model has predictive power, testing it on (experimental) data
is necessary. However, in many applications, a true state is often not measurable directly.
This is in particular the case when inverse problems are involved. In such cases, it is im-
portant to run numerical simulations to analyse the model’s properties. A twin experiment
uses the forward model to simulate a data set, by means of a prescribed true state. Then,
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Figuur 6.6: The coil setup, sensor array and sensors close to the steel object. Inside and outside the steel object,
magnetometers are placed at approximately 5 mm away from the faces of the object. The sensor array is placed at
a distance of 56 mm beneath the steel object.

the simulated data is contaminated with noise to create a challenging data set. The same
forward model is then applied on this noisy data with the aim to reproduce the underlying
true state, while taking into account the noise level in the analysis of the performance.

In this section, a twin experiment is conducted to understand the consistency of the
proposed hybrid model. The goal is to show that the data-assimilation is able to retrieve a
good description of the magnetic state, in the case that the model initialisation differs from
the true state. A consistent model is able to recover the prescribed magnetic state of the
object up to a certain accuracy, depending on signal-to-noise ratio in the data.

In this twin experiment the hybrid model is applied to the rectangular test object, found
in Fig. 6.5. A set of simulated data is created by running the hybrid model for a given
applied magnetic field together with a prescribed initial permanent magnetisation. In this
Twin experiment, the permanent magnetisation is the result of solving an inverse problem
based on a real measurement of the test object inside our experimental environment. With
the same hybrid model we try to estimate the magnetisation variations in time from noisy
data.

6.9.1. COMPUTATION OF THE SIMULATED DATA SET
In order to obtain a realistic set of simulated data, one measurement of the steel object is
used. This measurement is assumed to correspond to the initial magnetic state of the object.
In Fig. 6.8 the measurement of the magnetic induction field of the steel object is found.

The following values for the Rayleigh model are chosen:

µi = 200, and αr = 2. (6.51)

Note that these values are reasonable for ferromagnetic materials, in the case that hysteresis
is relatively small. Based on the magnetic susceptibility, the initial permanent magnetisation
is obtained via solving the corresponding inverse problem.
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Figuur 6.7: The placement of the on-board sensors with respect to the test object.

Next, a varying magnetic background field B0 is defined to compute how the magnetic
state of the object varies in the scenario. In this computation, the magnetic model (i.e.,
the hybrid model without the assimilation step) is used to find the changes in the magnetic
state.

In Fig. 6.9 this background field is shown. It consists of three double loops in principal
directions, followed by figures-of-eight in the x − y , y − z and x − z plane.

In each time step, the resulting magnetic induction field at the sensor array and on-board
sensor locations are computed and stored for the given value of the applied magnetic field.

The magnetisation and the magnetic induction fields at the sensor locations are calcu-
lated using the hybrid model. Next the data set is contaminated with Gaussian white noise
with standard deviation σ= 2 ·10−6 T:

Bm =Bc +e, e∼N (0,σ2I3Ns×3Ns ) (6.52)

for both the sensor array and the on-board sensor measurements. This results in variations of
±6 µT per component. Note that this is a fairly large noise level. In practice magnetometers
have a much lower noise level. The resulting simulated data set is used in our numerical
twin experiment.

6.9.2. RESULTS OF TWIN EXPERIMENT
With the set of simulated data from the previous section, the numerical twin experiment
can now be conducted. The idea is the following: We start with the initialisation of the
hysteresis model. We guess that

µ′
i = 100, and α′

R = 1. (6.53)

Note that the guess is quite far away from the true values. This means that our numerical
model (without data-assimilation) differs from the true state and thus a significant mismatch
is to be expected. Therefore it is the task of the data-assimilation scheme to correct the
model based on on-board measurements.
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Figuur 6.8: Magnetic induction field measured at the sensor array. This field is used to obtain the initial magnetic
state of the steel object to generate a realistic simulated data set.

Besides choosing values for the material parameters, the initial magnetic state is esti-
mated by applying the static inverse problem defined in Section 6.5.3 to the measurement
(for all sensors) showed in Fig. 6.8. The application of Template regularisation with
λ = 5× 10−10 is used to obtain a robust solution. The templates are derived for χ = 100
and the first three are used in our regularisation operator. If one compares Figures 6.8 and
6.11, then it is observed that there is a good agreement between te ground truth and the
estimated initial magnetic induction field.

Next, the performance of the hybrid model is tested on the applied magnetic field signal.
During the assimilation step, standard Tikhonov regularisation is used to obtain a smooth
magnetisation correction with λ= 5×10−10. It is observed that the value of λ influences the
resulting performance of the assimilation scheme. If the value of λ is too high, then In Fig.
6.12 the magnetic induction field corresponding to the ground truth, the uncorrected nume-
rical model and hybrid model are shown for t = 1,2, . . . ,150. Observe that our assimilation
scheme often corrects the numerical model in such a way that the magnetic induction field
coincides with the true state.

To evaluate the performance of the hybrid model, the Root Mean-Squared Error (RMSE)
defined by

RMSE(X ) =
√√√√ 1

Nt NX

Nt∑
i=1

NX∑
j=1

(
X est

i j −X tr uth
i j

)2
(6.54)

is used to check if the method is consistently able to recover the ground truth. In this chapter,
X stands for either the three magnetisation components of M or the three magnetic induction
field components of B, measured at the sensor array. Here NX = 136 (the number of mesh
elements) if the RMSE is evaluated for the magnetisation and NX = 200 (the number of
sensor locations) if it is evaluated at the sensor array. The number of measurements along
the scenario is Nt = 250.
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Figuur 6.9: The applied magnetic background field that is used to generate a set of simulated data.

Looking at the values of the RMSE for the magnetic induction field in Fig. 6.13, it is
observed that there is a good agreement between the estimated state and the ground truth.
The RMSE at the sensor array has a maximum of 1.44µT, which is (compared to the typical
field values at the sensor array) only a few percent. Taking into account the relatively
large chosen noise-level, the RMSE is surprisingly small. It is concluded that the Twin
experiment is succesfull and that data-assimilation is able to correct the estimated magnetic
state in a sufficient way.

Figuur 6.10: The estimated initial magnetisation.
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Figuur 6.11: The absolute error in the initial magnetisation estimated at the sensor array. The error has a maximum
of 1µT and thus the found magnetisation is agreement with the field shown in Fig. 6.8.

Figuur 6.12: The uncorrected and corrected estimated magnetic induction field using the hybrid model compared
with the ground truth magnetic induction field simulated at a sensor that is positioned at the centre of the sensor
array. The uncorrected curves uses the hybrid model without the data-assimilation step.
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Figuur 6.13: Resulting performance of both the uncorrected and corrected model. The time steps are shown along
the horizontal axis, and the values of the magnetic induction field of the sensor components are shown along
the vertical axis. The first column shows the magnetic induction field at the sensor array in [µT]. The second
column shows the errors between the true state and the uncorrected model. The RMSE indicates that there is a
relatively large discrepancy between the true state and the uncorrected model. This is expected, as the material
values are far away from the true values. The third column shows the performance of the hybrid model. Note that
the assimilation scheme significantly lowers the RMSE and the error drops to only a few percent of the true state.
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6.10. APPLICATION OF THE HYBRID MODEL TO EXPERI-
MENTAL DATA

In the previous section it was shown that the hybrid model accurately recovers the true state
during the scenario. Such a numerical twin experiment gives the user confidence that the
hybrid model also works on experimental data.

In this section we validate the hybrid model on experimental data. The experimental
data set is obtained using the coil construction, sensor array and the sensors in the vicinity
of the steel object, as depicted in Fig. 6.6 and Fig. 6.7.

In Fig. 6.14 the applied magnetic field is shown. During this scenario, the magnetic
induction field at the sensor array and at the sensors in the vicinity of the steel object are
collected.

At t = 0 the measurement on the sensor array is used to determine the initial magne-
tisation. Note that this measurement is already used in the previous section as input for a
realistic initial magnetic state. Therefore, the corresponding initial state estimation is the
same for the current experimental validation. The data of the sensor array for t > 0 is only
used for validation of the hybrid model.

Figuur 6.14: The applied magnetic background field that is used in the scenario to collect experimental data. In
270 steps the applied magnetic field is varied.

Next, the hybrid model is applied to the experimental data obtained from the scenario.
The chosen hysteresis parameters are

µi = 30, and αR = 0.2 (6.55)

The data-assimilation scheme is applied to the measurements of the 34 nearby sensors,
shown in Fig. 6.7. This leads to an estimation of the magnetic state M(t ) along the scenario.
By means of the forward problem (see Section 6.5.1), the magnetic induction field at the
sensor array locations is estimated and compared to the measured magnetic induction field.

For the sensor located at the centre of the sensor array, a comparison is done between
the estimated field and measured field. In Fig. 6.15 the performance of the methodology
is shown, in the absence of the data-assimilation scheme. Note that the performance of the
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model is already good if one considers the y-component of the magnetic induction field.
However, there is quite a discrepancy in the x and z-component. This implies that the
current physical model does not include all effects that are measured, such as anisotropy
and inhomogeneity of the material (recall that it is assumed that the material is homoge-
neous, which implies that the hysteresis behaviour is described by one set of parameters).
Additional research, not included in this chapter, indicates that the material does behave
anisotropic, for which the chosen material properties do not represent the hysteretic beha-
viour well in all directions in the material.

Figuur 6.15: The performance of the hybrid model in the absence of a data-assimilation scheme. The reduced
magnetic induction field components are shown. Note that the model is able to represent a portion of the measured
data, but it has difficulties in describing the x and z-component of the magnetic induction field.

Next, the performance of the model is considered including the data-assimilation scheme.
The results are shown in Fig. 6.16. Note that the data-assimilation scheme correctly picks
up any discrepancy in the estimation of the magnetic state, and corrects the magnetic state
such that the resulting estimated magnetic induction fields match the measured data more
accurately.

Finally, we analyse the results by considering the absolute errors between the measured
and the estimated magnetic induction field at the sensor array. The difference between the
estimated and the measured induction field is shown in Fig. 6.17. The RMSE in the current
scenario is 0.32,0.27 and 0.42 µT for each component respectively, resulting in errors in the
order of a few percentage compared to the field strength of the measured field. This shows
that the methodology is robust and able to accurately estimate the magnetic state of the
steel object. In Fig. 6.18 the maximum value of the magnetic induction field at the sensor
array is visualised for both the uncorrected numerical model and the hybrid model. Note
that on the time interval [0,180] both the uncorrected and the hybrid model are producing a
maximum field close to the measured value. However, on the interval [180,225] we see that
the uncorrected numerical model deviates away from the measurements, while the hybrid
model is capable of staying close to the measurement. This illustrates the added value of
data-assimilation to the numerical model. We conclude that the validation of our hybrid
model with experimental data is successful.
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Figuur 6.16: The performance of the hybrid model, with the data-assimilation scheme. Note that, compared to
Fig. 6.15, the assimilation of data leads to a better estimation of the x-component of the magnetic induction field
at the centre of the sensor array.

Figuur 6.17: (left) the measured magnetic induction field during the scenario. Along the y-axis, the measurement
of the field in each sensor is shown, while along the x-axis the estimation in time is shown. (right) The difference
between the estimation and the measured magnetic induction field is shown.
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Figuur 6.18: Maximum reduced magnetic induction field at the sensor array for the measurement, uncorrected and
hybrid model. The maximum per time step is taken over all 200 sensors.

6.11. CONCLUSION
In this chapter, a hybrid model is proposed to describe temporal changes in the magnetisa-
tion of a ferromagnetic object. By the means of the Method of Moments and the Rayleigh
hysteresis model, a mathematical model is derived that describes the changes of magne-
tisation in a ferromagnetic object for a varying background field. The addition of a dic-
tionary regularisation allows the user to obtain accurate solutions to the inverse problems
that are encountered in the application of the hybrid model. A data-assimilation scheme is
introduced to correct the magnetisation estimation by the mathematical model to improve
performance of the model.

A Numerical Twin experiment is conducted to test the consistency of the hybrid model.
It is shown that the methodology is able to reproduce the simulated data accurately. There-
fore it is concluded that the methodology behind the hybrid model is consistent. Finally, the
methodology is validated on an experimental data set. The proposed model is able to simu-
late the measured data accurately. It is shown that the data-assimilation scheme is essential
for a robust model. In the absence of the scheme, it is observed that there is a significant
discrepancy when estimating all three components of the magnetic induction field at the
sensor array. This suggests that the hysteresis model should include anisotropic behaviour
in order to further improve the results. Fortunately, the data-assimilation scheme can detect
and correct these inaccuracies, which results in robust predictions of the magnetic state.

Future steps are to include anisotropic behaviour into the model, as it is observed that
the assumption on isotropic material is probably too strong. Furthermore, an online para-
meter estimation of the material parameters of the Rayleigh Model can be included in the
assimilation step, which can lead to an improved performance of the hybrid model. Further-
more, more advanced data assimilation methods can be used to improve the performance
of the update step. A Kalman filter approach could lead to an improvement of the hybrid
model.
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APPENDIX A. PSEUDO-CODE
FOR HYBRID MODEL

In this appendix, a pseudo-code for the algorithm is given. During stepping from time n
to n +1, a number of problems are solved to estimate the magnetic state by means of the
Method of Moments and the data-assimilation scheme. The algorithm is first initialised
by estimating the initial magnetic state for a prescribed set of hysteresis parameters. The
pseudo-code is found in Fig. 19.
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Algorithm 1 Hybrid Model MoM+Hyst

Input: Mper (0) ← M0 . Initial state solution
Input: θ|t=0 ← θ0 . Initial guess parameters
Input: Hm . Set memory for hysteresis model

1: procedure F (Mper (n),B0(n +1),Bm(n +1))
2: for n → n +1 do . Outer, sampled time-loop
3: b0 = B0(n) . Background field at t = tn

4: b1 = B0(n +1) . Background field at t = tn+1

5: ∆b = b1 −b0 . Change in background field
6: Bm = Bm(n +1) . Measured field at t = tn+1

7: function COMPUTE M(n +1|n) AND Hi n

8: Linearisation: χ= ∂M

∂H

∣∣∣∣
t=tn ,θ

, where

(Hi (n),M(n)) is from previous time step.
9: ∆M = A(χ)−1 f ∆b

10: M(n +1|n) ← M(n|n)+∆M
11: Hi n = (µ−1

0 C − I )M(n +1|n)
12: end function
13: function UPDATE MAGNETIC MEMORY
14: for all j ∈ {x, y, z}:
15: (dHm)+j = (Hm) j −H j

16: if σ((dHm) j )+ 6=σ((dHm) j )− then
17: (Hm) j ← H j

18: end if
19: end function
20: function UPDATE M(n +1|n)
21: Br es =C M(n +1|n)−Bm

22: Solve: ∆M = argmin
M∈R3Ne

J2(M)+λ2‖RM‖2

23: M(n +1) ← M(n +1|n)+∆M
24: end function
25: function COMPUTE FIELDS
26: Bc [M(n +1)] =C1M(n +1)
27: Hi n(n +1) = (µ−1

0 C − I )M(n +1)
28: end function
29: end for
30: end procedure

Figuur 19: Pseudo-code for the proposed hybrid model.
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CONCLUSION

The main contribution of this thesis is the development of a Magnetic Signature Prediction
Model that can be used in a closed-loop degaussing framework. In particular, we have de-
rived a mathematical-physical model that described the temporal behavior of the signature
of a ferromagnetic object. This mathematical-physical model is based on the choice of a
hysteresis model to describe the nonlinear effects that occur in ferromagnetic material. In
addition, a sensor configuration that measures the magnetic induction field is introduced to
correct the mathematical model by means of an assimilation scheme to improve the estima-
tion of the magnetic state of a ferromagnetic object. In this chapter, the conclusions of this
thesis and subsequent recommendations are presented.

For readability, we restate the research questions:

(RQ1) Investigate the state-of-the art developments in the field of ferromagnetism. Which
hysteresis model should we choose for our mathematical-physical model?

(RQ2) How can we determine the initial magnetic state of a vessel?

(RQ3) Is it possible to obtain an efficient numerical model that describes the temporal
dynamics of the ferromagnetic behavior of a large structure?

(RQ4) What is the added value of data-assimilation in magnetostatic?

Answers on the research questions (RQ1– RQ4) defined in Section 1.5.1 are presented in
the same order. After the conclusion a number of recommendations are presented.

7.1. ANSWERS TO THE RESEARCH QUESTIONS
A literature study on some well known hysteresis models for ferromagnetic behavior was
performed to select the most suitable model for magnetic signature monitoring. The clas-
sical models of Lord Rayleigh (RM), Jiles and Atherton (JA) and the more recent energy-
based variational model (EV) by Prigozhin et al. were compared in Chapter 3. It is conclu-
ded that the Rayleigh model seems to be most promising because of its simple formulation.
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Advantages for using the Rayleigh model are its numerical properties, the applicability in
weak fields and the straight-forward connection to the Method of Moments as shown in
Chapter 6. This answers research question 1 (RQ1).

In (RQ2) we looked at how the initial magnetic state of a vessel can be determined. The
magnetic state of a vessel is the combination of the determination of material parameters
and the magnetisation distribution. It is noted that both notions are intertwined. To obtain
the distribution of the magnetic susceptibility, a parameter estimation method is presented
in Chapter 4. Finding the magnetic susceptibility distribution involves solving a regularised
nonlinear problem. The Magnetic Susceptibility Estimation Method (MSEM) we propose
solves this problem. In the case that we consider the Jiles-Atherton model, the material
parameters are found by the parameter estimation method proposed in Chapter 5. We have
shown that the values of the parameters of the Jiles and Atherton model can be obtained
in the case that only measurements in weak applied fields are given. A method to deter-
mine the initial magnetisation of a vessel is presented in Chapter 6. The corresponding
inverse problem is solved using Dictionary Regularisation. This method is based on an a
priori assumption on the shape of the initial magnetisation. Here, we assume that the ini-
tial magnetisation is approximately represented by a linear combination of magnetisation
distributions that follows from solutions to the Method of Moments. The presented initial
magnetisation determination method is successfully validated on experimental data. We
conclude that we have obtained a methodology that can accurately determine the initial
magnetic state of a vessel.

Chapter 6 covers research questions (RQ3) and (RQ4). In this chapter, we propose a
numerical model that describes the temporal dynamics of the ferromagnetic behavior of a
steel object. The connection of the Rayleigh hysteresis model to the Method of Moments
allows us to describe these dynamics in time. In reality, it is unlikely that a mathematical-
physical model can correctly represent experimental data. Therefore we have introduced
a data-assimilation scheme to correct our numerical model with measurements to obtain
an improved description of the magnetic state. Through Twin experiments, it is shown
that the implementation of our hybrid model is numerically stable and consistent. Using
experimental data we have successfully demonstrated the numerical model and the added
value of a data-assimilation scheme in magnetostatics.

7.2. RECOMMENDATIONS FOR FUTURE WORK
Although the research described in this dissertation forms a good basis for the development
of a closed-loop degaussing system, there is more work required in order before such a
system can be developed and applied to naval vessels.

As a first step, a sophisticated degaussing controller should be developed that uses the
mathematical-physical model to compute optimal degaussing currents for effective degaus-
sing of naval vessels. It is envisioned that techniques from nonlinear control theory are
required as the underlying mathematical-physical model is nonlinear. This is a challenging
step as research in nonlinear control theory is an open and active field. Due to the character
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of the underlying mathematical-physical model, it is expected that gain-scheduling might
be an effective technique to derive such a nonlinear degaussing controller.

In the present work, the emphasis was on the derivation of a numerical model to de-
scribe the temporal changes in the magnetic signature due to the underlying ferromagnetic
behavior of steel. Our proposed models are validated in an experimental setup on small
ferromagnetic structures. It is clear that when we look at larger ferromagnetic structures,
extra challenges will arise such as computational time, out-of-memory issues, and the nu-
merical burden. Therefore, it is important to investigate numerical methods to obtain fast
implementations of the forward model. Model Order reduction (MOR), for example Pro-
per Orthogonal Decompositions (POD), can help to reduce the numerical burden of the
mathematical-physical model, by embedding the nonlinear model into a lower dimensio-
nal subspace. Also the use of hierarchical matrices can reduce the computation time of
matrix-vector calculations in the iterative methods used in the current implementation of
the numerical model.

In our hybrid model, we have implemented a data-assimilation scheme to support the
mathematical-physical model in describing the magnetic state of a ferromagnetic object.
We have proposed a general assimilation-scheme that can correct for all (non)linear discre-
pancies that may occur. However, in many cases a simple correction of the mathematical-
physical model can be sufficient in order to simulate measurement data in an accurate way.
Such a correction model can be obtained by applying Total Least-Squares to a small set of
measurements.
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