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Abstract

With the sequencing of DNA becoming cheaper and the resulting stack
of data growing bigger, there is a big challenge for both engineer and
biologist. Researchers are limited by their computational power.

In this thesis, first an overview of sequence alignment algorithms will
be given. Then a method to store the values of the similarity score matrix
of the Smith-Waterman algorithm differentially will be presented. And
finally, a description of the system approach used to design an accelerator,
which implements this method, will be given.

Implementation of the system design on an Artix-7 XC7A200T-2C
FPGA, could lead to a total performance of 94 GCU/s. This is a speed
up of 5x compared to conventional CPUs.
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Preface

This bachelor thesis was written as part of the bachelor end project of the
Electrical Engineering bachelor at the University of Technology in Delft, for the
department of Computer Engineering.

During this project we developed a low-cost hardware accelerator for the
Smith-Waterman algorithm, which can be used for DNA sequence alignment.

A group of five students worked on this project, and two theses were written.
This thesis will describe the work we did on the project, namely the literature
study on the algorithms, acceleration techniques, hardware platforms and inter-
connect alternatives. The other thesis, written by Matthijs Geers, Fatih Han
Çağlayan and Rolf Heij, describes the work of the other subgroup, namely the
implementation of the accelerator design in VHDL [1].
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Chapter 1

Introduction

1.1 Introduction to the thesis

In this thesis an implementation of Smith-Waterman on an FPGA will be de-
signed. This will be done with a top-down approach. To do this first some
background theory about biology and sequence alignment will be discussed.
Then some acceleration techniques, hardware platforms and interconnect alter-
natives will be discussed. After this the thesis will get to an implementation
with a system design approach. The theory discussed in the first chapter will be
used to underpin the choices made for the system design and implementation.

In this chapter three subjects are discussed. First, information is given
about some biology topics after which genetic research is discussed, and finally
a problem definition will be made.

1.2 Biology

In this section a bottom-up approach is used to give some information about
biology, which is the study of life and living organisms.

1.2.1 Proteins

Proteins are large biological molecules that contain carbon, hydrogen, oxygen
and nitrogen. Some proteins also contain sulphur. Proteins have many roles
inside a living organism. They are responsible for a lot of functions within a
living organism. Enzymes, for example, are proteins that speed up biochemical
reactions.

The function of a protein is primarily defined by its shape and sequence of
amino acids. Amino acids are the monomers of proteins. Each of the 20 different
amino acids has a different side chain which gives the amino acid its distinctive
chemical identity. Amino acids can be represented by a letter, thus proteins can
be represented by a sequence of letters.

The process in which proteins are assembled is called synthesis. Information
encoded in genes defines which amino acids are used to assemble a protein. The
sequence of amino acids is specified by a nucleotide sequence. Nucleotides are
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composed of nucleobases and they are the building blocks of nucleic acids i.e.
nucleotides are the monomers of nucleic acids [2].

1.2.2 Nucleic acids

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are nucleic acids.
They consist of a nucleobase, a pentose sugar and a phosphate group. The
nucleobases found in DNA are Cytosine (C), Guanine (G), Adenine (A) and
Thymine (T). The nucleobases found in RNA are Cytosine (C), Guanine (G),
Adenine (A) and Uracil (U) [2], see Figure 1.1.

Figure 1.1: RNA a DNA, including their nucleobases.

DNA

DNA forms the inherited genetic material inside each cell of a living organism.
Each segment in DNA which encodes for a protein is called a gene. Genes
control the protein synthesis and regulate most of the activities inside a living
organism. All the information is copied when a cell divides.

In DNA two nucleobases pair to form a base pair, which, together with the
phosphate groups and deoxiribose sugars, form a spiral ladder, also called a
double helix.

Every time DNA is copied the two strands unwind. When a change occurs
in the base sequence of a DNA strand, it is called a mutation. These mutation
can lead to diseases or the death of a cell. If, after mutation, no disease or death
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occurs, there is a chance that the mutation will be passed through on offspring
[2].

RNA

RNA relays information from genes to guide each cell’s synthesis of proteins
from amino acids. Three types of RNA can be distinguished, messenger RNA,
ribosomal RNA and transfer RNA. Each of these types RNA carry out a special
role in the synthesis process.

RNA differs from DNA in several aspects. RNA is single stranded in humans
whereas DNA is double stranded. Another difference is the nucleobases of which
they are formed, as discussed earlier [2].

1.2.3 Cells

Cells are the fundamental units of structure and function in every living organ-
ism. Some organisms exist out of only one cell while other organisms consist of
trillions of cells. Cells multiply by dividing themselves.

Inside a cell there are many subcellular components. An organelle is a spe-
cialised structure inside a cell, that has a characteristic shape, and which per-
forms a specific function.

It is possible to distinguish three main parts of a cell. The nucleus, which is a
large organelle, holds most of a cell’s genetic information, the plasma membrane,
which forms the flexible outer surface of a cell, and the cytoplasm, which consist
of all the cellular components between the plasma membrane and the nucleus
[2], as shown by 1, 2 and 3 in Figure 1.2.

Figure 1.2: Schematic of an animal cell, showing subcellular components.
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Nucleus

The Nucleus is the core of a cell. Inside the nucleus are most of the cell’s
hereditary units, called genes. Genes control the cellular structure and control
cellular activities. Genes are arranged along chromosomes. The total genetic
information carried inside a cell or living organism is called the genome [2].

1.3 Genetic research

Nowadays a lot of genetic research is going on. In this section DNA sequencing
and DNA sequence analysis is discussed. Other topics of genetic research are
not discussed here.

1.3.1 DNA sequencing

DNA sequencing is a process in which the order of nucleotides is determined
for a DNA molecule. Nowadays the order of the nucleobases is determined by
a lot of different techniques. All techniques have a different read length, which
determines the maximal sequence length that can be read in one run.

Sequencing can be used to determine the sequence of nucleobases of a com-
plete genome, a chromosome or a certain gene.

Next-generation sequencing (NGS) are promising new techniques to sequence
DNA [3]. With one of these new techniques the DNA is reproduced multiple
times as small parts of RNA [4]. These small sequences are then read with
silicon based technology.

1.3.2 DNA sequence analysis

The sequences found by DNA sequencing can be used by researchers, interested
in molecular biology and genetics, forensics and medical personnel. Researchers,
for example, can use the information to learn and better understand certain
processes in cells. Medical personnel could try to find genes or expressions in
the DNA sequence which correspond to certain diseases or disorders. Forensics
use DNA sequencing to prove if someone committed a crime by comparing the
DNA sequence of a sample found at a crime scene, and the DNA sequence of a
suspect.

The comparison of DNA sequences is possible with sequence alignment al-
gorithms. These algorithms will be discussed in Chapter 2. By aligning two
sequences of DNA it is possible to find where the differences and similarities
are. This might be useful, for example, to determine which expression may
cause a certain disease or disorder, or to determine which gene or genes encode
for a certain protein.

1.4 Problem definition

In this section a problem definition will be made. First some aspects of the
problem will be discussed.
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1.4.1 Big data

The price for which DNA can be sequenced is dropping, whereas the rate, in
which DNA can be sequenced, is growing at a slower rate. A human genome
is normally stored in 23 chromosome pairs. These chromosomes contain all the
genes, for a human about 20000 genes.

The total human genome consists of 3.2×109 base pairs [5]. However the data
from a NGS run on one persons DNA gives 120 to 600 Gigabytes of data [6]. With
DNA sequencing getting cheaper and faster, the total amount of available DNA
sequences grows and so does the amount of data. Having a big unstructured
stack of data is referred to as a big data problem.

1.4.2 Moore’s law

In 1965 Moore predicted that the number of transistors on integrated circuits
double every 18 months [7]. This is important because currently the cost of DNA
sequencing is dropping faster than the cost of processing the resulting data on
computers [8][9]. This can also be seen in Figure 1.3.

Figure 1.3: DNA sequencing costs: data from the NHGRI Genome Sequencing
Program (GSP), cost per raw Megabase of DNA sequence [9].

1.4.3 Problem definition

With DNA sequencing becoming cheaper and the stack of unsorted data growing
bigger, there is a challenge for engineers and biologists to efficiently deal with the
available data. Analysis of this enormous amount of data could lead to a better
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understanding of life and living organisms. For the analysis of RNA and DNA
sequences, sequence alignment algorithms are being used. These algorithms
are time consuming, because (1) the amount of sequences can be very high,
because (2) the length of these sequences can be very long, and because (3) the
algorithms used to align the sequences are quadratic in time with the length of
the sequences.

The problem is that some researchers, who work with long sequences, have
to wait days or hours for an alignment. The lack of computational power slows
their research down. The aim of this project is to analyse sequence alignment
algorithms and how they can be efficiently implemented on a low-cost hardware
platform.
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Chapter 2

Sequence alignment
algorithms

In this chapter a classification of sequence alignment algorithms will be made
and five algorithms will be discussed in detail.

Sequence alignment is a way of arranging two sequences to identify regions
of similarity [10]. Sequence alignment algorithms exist to find the optimal align-
ment of two sequences. Aligning a sequence into another sequence can be done
with recursively replacing, inserting or removing an element. Each of these
operations have an associated score. Sequence alignment algorithms find the
optimal alignment i.e. the sequence of edits with the highest total score. An
example is shown in Figure 2.1.

A − C A C A C T A
| | | | | | |
A G C A C A C − A

Figure 2.1: Sequence alignment.

2.1 Classification

There are several sequence alignment algorithms. In this section a classifica-
tion will be made based on properties of these algorithms. First the difference
between dynamic programming algorithms and heuristics will be discussed, fol-
lowed by the difference between global alignment and local alignment. After
that, linear and affine gap penalty functions and divide and conquer algorithms
will be discussed.
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2.1.1 Dynamic programming and heuristics

Dynamic programming

Dynamic programming is a method for finding the optimal solution to problems
by breaking them down into smaller subproblems [11]. The dynamic program-
ming method can only be applied to problems with overlapping subproblems.

The solutions of the subproblems are being combined to find the overall
solution. Once the solution to a subproblem has been found, it is memoized to
prevent computing the same subproblem twice.

Dynamic programming algorithms find the optimal solution by examining
all possible ways to solve a problem. A sequence alignment algorithm is an
example of a dynamic programming algorithm. Finding all possible alignments
is necessary to find the guaranteed optimal alignment of two sequences.

Heuristics

A heuristic is a problem solving method based on experiences, findings and dis-
coveries. It gives a solution which is not guaranteed to be the optimal solution.
By making assumptions about where or how to search for the optimal solution,
a speedup of the original problem solving process can be achieved. Because
dynamic programming algorithms examine all possible ways to solve a prob-
lem this can be a time consuming process. A reduction in computation time is
possible by only examining the most probable ways to solve a problem.

An example of a heuristic approach for sequence alignment is the Basic Lo-
cal Alignment Tool (BLAST) [12]. This sequence alignment algorithm is based
on the Smith-Waterman algorithm, which will be discussed later in this chap-
ter. There are lot of variations, improvements and hardware accelerate imple-
mentations available for this alignment tool [13][14][15][16][17][18][19]. The way
BLAST or these other heuristic methods work will not be discussed.

2.1.2 Global and local

Given two sequences, A ={ACTAGC} and B ={TATCTGCCGT}, it is possible
to align them globally 2.2 or locally 2.3.

− A − C T A G C − −
| | | : |

T A T C T G C C G T

Figure 2.2: Global alignment.

A C T A G C
: | | | |
T C T − G C

Figure 2.3: Local alignment.
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Global

When aligning sequences globally, the optimal alignment is the alignment where
the total number of matches is maximal. All characters in both sequences
participate in the alignment. This method is useful when comparing closely
related sequences.

Local

Local alignment is used to find related regions in two sequences. This method
is much more flexible than the global alignment method. Related regions that
appear in different order can still be identified as being related whereas this is
not possible with the global alignment method.

2.1.3 Gap penalties

The first sequence alignment algorithms were defined with a linear gap penalty
function, which represented the cost of inserting a gap into one of the sequences.
Later affine gap functions were introduced to make the sequence alignment
algorithms better applicable to biological sequences [20][21].

Linear gap penalty

A linear gap penalty function w(k) can be defined as a function of gap length
k ≥ 0:

w(k) = uk (2.1)

with u ≥ 0 the gap penalty.

Affine gap penalty

An affine gap penalty function w(k) can be defined as a function of gap length
k ≥ 0:

w(k) = uk + v (2.2)

with v ≥ 0 the gap open penalty and u ≥ 0 the gap extension penalty.
When DNA gets replicated it is possible that the replica is not an exact

duplicate. This might happen due to deletion or insertion of a base pair.
In biological sequences it is not very likely that a gap occurs, however when

this happens, it is very likely that more than one base pairs are inserted. By
using an affine gap function it is possible to take this effect into account. For
biological sequences it makes sense to have a relatively big gap open penalty
and a smaller gap extend penalty i.e. v > u.

2.1.4 Divide and conquer

Divide and conquer is a programming technique to solve problems by recursively
dividing the problem into smaller subproblems. These smaller subproblems are
divided until the solution to the problem is trivial. Then the answer to the
subproblems is combined to get the answer. It is important to note that dynamic
programming is a method that applies the divide and conquer technique. The
difference are the memoization of solutions to subproblems and the solution
being the optimal solution.
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2.2 Global alignment algorithms

In this section two global alignment algorithms will be discussed in detail.

2.2.1 Needleman-Wunsch

In 1970 Needleman and Wunsch presented an algorithm to search for similarities
in the amino acid sequence of two proteins [22]. The algorithm returns the
alignment of two sequences for which the number of matches is maximal. With
a dynamic programming approach a similarity score matrix is built. From this
matrix the optimal global alignment can be found. The algorithm uses a linear
gap penalty function w(k) as defined earlier in Equation (2.1).

To find the optimal local alignment of two sequences A and B with:

A = a1 · · · ai · · · an
B = b1 · · · bj · · · bm

(2.3)

A similarity score matrix S is built as follows:

Si,j =

{
w(j), i = 0, j ≥ 0

w(i), i > 0, j = 0
(2.4)

Si,j = max


Si−1,j−1 + s(ai, bi)

Si,j−1 − w(1)

Si−1,j − w(1)

(2.5)

with s(ai, bj) the similarity score function defined as:

s(ai, bj) =

{
> 0, ai = bj Match

< 0, ai 6= bj Mismatch
(2.6)

The optimal alignment can be traced back starting at the highest value in
the last row or last column and then iteratively selecting the highest score of
the previous rows and columns until the origin is reached.

The Needleman-Wunsch algorithm runs in O(nm) time and has a space
complexity of O(nm).

2.2.2 Hirschberg

In 1975 Hirschberg presented an algorithm to find the optimal global alignment
of two sequences in quadratic time and linear space [23]. By applying this tech-
nique to the Needleman-Wunsch algorithm, a linear space requirement O(n+m)
is possible.

The Hirschberg technique is based on the data dependencies in the similarity
score matrix S. First note that in the similarity score matrix S of Needleman-
Wunsch the values in the j − 1th column are based on the jth column i.e. to
calculate the values of the jth column one only needs to know the values of the
j − 1th column. The data dependencies in the similarity score matrix will be
discussed in more detail later. An example is shown in Figure 2.4.
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The S matrix

A C T
A 1 1 1
A 1 1 1
C 0 2 1
T 0 1 3

The first two columns The last two columns
A C

A 1 1
A 1 1
C 0 2
T 0 1

C T
A 1 1
A 1 1
C 2 1
T 1 3

Figure 2.4: The Hirschberg technique.

2.3 Local alignment algorithms

In this section three local alignment algorithms will be discussed in detail.

2.3.1 Smith-Waterman

In 1981 Smith and Waterman presented an algorithm to find the optimal local
alignment of two sequences [24]. It is a dynamic programming algorithm like the
the Needleman-Wunsch algorithm of which it is a variation. The main difference
between the Needleman-Wunsch algorithm and the Smith-Waterman algorithm
is that negative values in the similarity score matrix are set to zero.

To find the optimal local alignment of two sequences A and B, a similarity
score function s(ai, bj) and a linear gap penalty function w(k) are used, as
defined in Equations (2.3), (2.6) and (2.1).

A similarity score matrix S matrix is built as follows:

Si,j = 0,

{
0 ≤ i ≤ n
0 ≤ j ≤ m

(2.7)

Si,j = max


0

Si−1,j−1 + s(ai, bi)

Si−1,j − w(1)

Si,j−1 − w(1)

(2.8)

To obtain the optimal local alignment a trace-back procedure is used. To
do this, first find the maximum value of S. Then start moving back to the
origin, choosing the highest value with each step until a zero is encountered.
Finally the optimal alignment can be constructed by following this path where
each step corresponds with either a replacement, insertion or deletion i.e. the
element of the sequence is inserted, a gap gets inserted in sequence A or a gap
gets inserted in sequence B.

The Smith-Waterman algorithm runs in O(nm) time and has a space com-
plexity of O(nm).
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Smith-Waterman example

Given two DNA sequences: A ={GGTGCGATAT} and B ={GCGTGGGA},
s(ai, bj) the similarity score function defined as:

s(ai, bj) =

{
2, ai = bj Match

−1, ai 6= bj Mismatch
(2.9)

and a linear gap penalty function as defined in Equation (2.1) with u = 1, a
similarity score matrix S can be initialised as follows from Equation (2.7):

Si,j =

- G G T G C G A T A T
- 0 0 0 0 0 0 0 0 0 0 0
G 0
C 0
G 0
T 0
G 0
G 0
G 0
A 0

Figure 2.5: The initialised similarity score matrix S.

By recursively applying Equation (2.8), the similarity score matrix S can be
filled as follows:

Si,j =

- G G T G C G A T A T
- 0 0 0 0 0 0 0 0 0 0 0
G 0 2 2 1 2 1 2 1 0 0 0
C 0 1 1 1 1 4 3 2 1 0 0
G 0 2 3 2 3 3 6 5 4 3 2
T 0 1 2 5 4 3 5 5 7 6 5
G 0 2 3 4 7 6 5 4 6 6 5
G 0 2 4 3 6 6 8 7 6 5 5
G 0 2 4 3 5 5 8 7 6 5 4
A 0 1 3 3 4 4 7 10 9 8 7

Figure 2.6: The filled similarity score matrix S.

The calculation of a cell is discussed here by applying Equation (2.8) to a
cell of the similarity score matrix S shown in Figure 2.6.

A
. . .

...
...

...

· · · 5 4 · · ·
G · · · 8 S6,7 · · ·

...
...

...
. . .

(2.10)
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Applying Equation (2.8) for S6,7 results in:

S6,7 = max


0

H5,6 + s(G,A)

H5,7 − w(1)

H6,6 − w(1)

= max


0

5 +−1

4− 1

8− 1

= 7 (2.11)

To find the local optimal alignent the trace-back procedure, as described
earlier, is applied to the similarity score matrix S. This results in:

Si,j =

- G G T G C G A T A T

- 0 0 0 0 0 0 0 0 0 0 0

G 0 2 2 1 2 1 2 1 0 0 0

C 0 1 1 1 1 4 3 2 1 0 0

G 0 2 3 2 3 3 6 5 4 3 2

T 0 1 2 5 4 3 5 5 7 6 5

G 0 2 3 4 7 6 5 4 6 6 5

G 0 2 4 3 6 6 8 7 6 5 5

G 0 2 4 3 5 5 8 7 6 5 4

A 0 1 3 3 4 4 7 10 9 8 7

Figure 2.7: The trace-back procedure for the Smith-Waterman algorithm.

Reconstruction of the aligned sequences requires application of the trace-
back procedure to find a path as shown in Figure 2.7. The start point of the
path is the maximal score in the similarity score matrix S. The path continues
in the direction of the origin of the matrix i.e. S0,0, choosing the maximum
value each step, until a 0 is encountered.

The next set of rules is applied to each step in the path to find the aligned
sequences.

• A step diagonally up corresponds with a replacement i.e. a match or
mismatch

• A step towards the left corresponds with a deletion i.e. a gap in A

• A step upwards corresponds with an insertion i.e. a gap in B

This results in the aligned sequences as shown in Figure 2.8.

2.3.2 Gotoh

In 1982 Gotoh presented an improved algorithm for matching biological se-
quences [20][25][21]. The Gotoh algorithm is based on the Smith-Waterman
algorithm and finds the local optimal alignment of two sequences with an affine
gap penalty function.
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− − G G T G C − G A
| | : | |

G C − G T − G G G A

Figure 2.8: Optimal local alignment, found with the Smith-Waterman algo-
rithm, of the example sequences, A and B.

The algorithm uses the same sequences A and B, affine gap penalty function
w(k) and similarity score function s(ai, bj) as defined earlier in Equations (2.3),
(2.2) and (2.6).

The matrices D, P and Q are initialised as follows:

Di,j =


0, i = 0, j = 0

w(j), i = 0, j > 0

w(i), i > 0, j = 0

(2.12)

and for j > 0:

P0,j =∞ (2.13)

Qj,0 =∞ (2.14)

Then the matrices D, P and Q are generated by recursion as follows:

Di,j = min
i,j≥1


Di−1,j−1 + s(ai, bi)

Pi,j

Qi,j

(2.15)

where

Pi,j = min
1≤i≤n,1≤j≤m

{
Di−1,j − w(1)

Pi−1,j − u
(2.16)

and

Qi,j = min
1≤i≤n,1≤j≤m

{
Di,j−1 − w(1)

Qi,j−1 − u
(2.17)

Also note:
Ai = a1a2 · · · ai
Bj = b1b2 · · · bj

(2.18)

The D matrix holds the cost for alignment of prefixes Ai and Bj , the P
matrix holds the cost for alignment of prefixes Ai and Bj that ends with a gap
in B and the Q matrix holds the cost for alignment of prefixes Ai and Bj that
ends with a gap in A.

To find the optimal local alignment a trace-back procedure is needed. This
procedure will not be discussed.

The Gotoh algorithm runs in O(nm) time and has a space complexity of
O(nm).

21



2.3.3 Miller-Myers

In 1988 Miller and Myers presented an algorithm to find the optimal local
alignment of two sequences with an affine gap penalty function in linear space
[26]. Miller and Myers applied the Hirschberg principal, to align sequences in
O(nm) time and O(n+m) space, to the Gotoh algorithm, both described earlier.
Improvements to this algorithm were later presented by Guan and Uberbacher
[27] and Chao and Miller [28]. The details on these improved algorithms will
not be discussed.

The algorithm uses the same sequences A and B, affine gap penalty function
w(k) and similarity score function s(ai, bj) as defined earlier in Equations (2.3),
(2.2) and (2.6). The definition for Ai and Bj as defined in Equation (2.18) is
also used.

First an affine gap penalty function gap(k) is defined as:

gap(k) = g + hk (2.19)

where
g = v
h = u+ 1/2s(ai, bj)max

(2.20)

Three matrices are defined. Ci,j , which contains the minimum cost of a
conversion of Ai to Bj , Di,j which contains the minimum cost of a conversion of
Ai to Bj that deletes ai and Ii,j which contains the minimum cost of a conversion
of Ai to Bj that inserts bj . First the matrices are initialised as follows:

Ci,j =


0, i = 0, j = 0

gap(j), i = 0, j > 0

gap(i), i > 0, j = 0

(2.21)

Di,j = C0,j + g (2.22)

for i = 0, j > 0 and

Ii,j = Ci,0 + g (2.23)

for i > 0, j = 0.
Then the values in the matrices satisfy the following recurrence relations:

Ci,j = min
i>0,j>0


Di,j

Ii,j

Ci−1,j−1 + s(ai, bj)

(2.24)

Di,j = min
i>0,j>0

{
Di−1,j

Ci−1,j + g
+ h (2.25)

Ii,j = min
i>0,j>0

{
Ii,j−1

Ci,j−1 + g
+ h (2.26)

Because the values in the ith rows of C and D only depend on values in the
rows i and i− 1, it is possible to use row-sized vectors instead of matrices and
therefor it is possible to reach a O(n) space complexity. Two vectors and three
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scalars are used: CC, DD, e, c and s, the vectors and scalars respectively. They
are defined as follows:

CCk =

{
Ci,k, k < j

Ci−1,k, k ≥ j
(2.27)

DDk =

{
Di,k, k < j

Di−1,k, k ≥ j
(2.28)

e = Ii,j−1 (2.29)

c = Ci,j−1 (2.30)

s = Ci−1,j−1 (2.31)

The divide and conquer method needed for this algorithm, to find the optimal
alignment, will not be discussed because this is beyond the scope of this thesis.

2.4 Overview

In this section an overview is given for the discussed sequence alignment algo-
rithms.

There are more sequence alignment and sequence similarity algorithms, but
they all use the principles discussed in this chapter. The following algorithm
were not discussed here, but they might be interesting. For example, a new
algorithm by Waterman and Eggbert for best subsequence alignments with ap-
plication for tRNA and rRNA was introduced in 1987 [29], a time efficient lin-
ear space local similarity algorithm was introduced by Huang was introduced in
1991 [30] and recently Zhang introduced an algorithm for the Smith-Waterman
algorithm based on the divide and conquer principal [31][32].

In 1970 Needleman and Wunsch presented their algorithm to find the optimal
global alignment of two sequences. Hirschberg, in 1975, presented a memory
efficient way to find the optimal global alignment based on the Needleman-
Wunsch algorithm. In 1981 Smith and Waterman presented their algorithm,
based on the Needleman-Wunsch algorithm, to find the optimal local alignment
of two sequences. An improvement came from Gotoh in 1982. He added an affine
gap penalty function to the Smith-Waterman algorithm. Miller and Myers, in
1988, combined the work of Gotoh with the work of Hirschberg to present an
algorithm to find the optimal local alignment of two sequences with an affine
gap penalty function in a memory efficient way.
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Algorithm Classification Time Space
Needleman-Wunsch Global — Linear gap penalty O(nm) O(nm)
Hirschberg Global — Linear gap penalty O(nm) O(n+m)
Smith-Waterman Local — Linear gap penalty O(nm) O(nm)
Gotoh Local — Affine gap penalty O(nm) O(nm)
Miller-Myers Local — Affine gap penalty O(nm) O(n+m)

Table 2.1: An overview of sequence alignment algorithms.
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Chapter 3

Acceleration techniques

In this chapter some acceleration techniques will be discussed. Then memory
optimisation techniques will be discussed, including a new method to store the
values of the similarity score matrix differentially.

3.1 Acceleration techniques

In this section some acceleration techniques will be discussed. First paral-
lelism and data dependencies of the Smith-Waterman algorithm are discussed
to demonstrate why hardware acceleration is possible, after which linear systolic
arrays and recursive variable expansion will be discussed.

Processing cores are defined here as the smallest piece of a hardware architec-
ture which can perform an algorithm or part of an algorithm. In the literature
they are sometimes being referred to as processing elements (PE).

3.1.1 Parallelism and data dependencies

Filling up the similarity score matrix S as defined for the Smith-Waterman algo-
rithm in Equation (2.8), takes up most of the computation time when searching
for the optimal local alignment of two sequences. To be able to significantly
speed this process up, it should be possible to calculate different cells, of the S
matrix, at the same time.

The Smith-Waterman algorithm allows for this as can be seen from the data
dependencies in the similarity score matrix S. The value of a cell in the similarity
score matrix S depends on the cells left, above and diagonally left above i.e. to
calculate Si,j one needs to know Si,j−1, Si−1,j and Si−1,j−1.

. . .
...

...
· · · Si−1,j−1 Si,j−1

· · · Si−1,j Si,j

(3.1)

This demonstrates that the Smith-Waterman algorithm allows for paralleli-
sation. By using more than one processing core, multiple cells can be calculated
at the same time [33].

However, note that it take n iterations to fully utilise n processing cores for
the Smith-Waterman algorithm. This is demonstrated in Figure 3.1, where cells
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with the same colour indicate cells that can be calculate at the same time e.g.
all red cells can be calculated in the same iteration. Only the first 8 iterations
are shown in this figure.

Si,j =

- G G T G C G A
- 0 0 0 0 0 0 0 0
G 0 2 2 1 2 1 2 1
C 0 1 1 1 1 4 3 2
G 0 2 3 2 3 3 6 5
T 0 1 2 5 4 3 5 5
G 0 2 3 4 7 6 5 4
G 0 2 4 3 6 6 8 7
G 0 2 4 3 5 5 8 7
A 0 1 3 3 4 4 7 10

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

6th iteration

7th iteration

8th iteration

Figure 3.1: Utilisation of the processing cores for the Smith-Waterman algo-
rithm.

It can be seen that in the first iteration only one cell can be calculated,
whereas in the second iteration, two cells can be calculated.

3.1.2 Linear systolic array

A linear systolic array is an array of processing cores where each cell shares its
data with the other cells in the array. Each processing core solves a subproblem
and shares the solution to all the other cells in the array to prevent calculation
of the same problem twice.

Processing

core

Processing

core

Processing

core

Processing

core

Data input Data input Data input Data input

Data output Data output Data output Data output

Figure 3.2: A linear systolic array of processing cores.

Linear systolic arrays are used to process dynamic programming algorithms
in which solutions to subproblems depend on solutions to other subproblems.
When a dynamic programming algorithm allows for parallelism, a linear sys-
tolic array can speed up the calculations significantly. Ideally, the number of
subproblems solved per iterations equals the number of processing cores in the
array. However, not all algorithms allow for full parallelisation from the first
iteration.

From all this it can be stated that a linear systolic array can be very useful to
speed solving an algorithm up, if the data dependencies of the algorithm allow
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for this. Theoretically a speed up of n is reachable by using n processing cores
in a linear systolic array for problems in which subproblems do not depend on
solutions of other subproblems.

However, linear systolic arrays are difficult to build, because each application
requires a different interconnection and structure of processing cores.

It is possible to build a linear systolic array to process the Smith-Waterman
algorithm [34][35]. However, this requires to take note of the data dependencies
and parallelism, discussed in the previous section. A decrease in the theoretical
speedup also comes from the iterations it takes to fully utilise all the processing
cores, as discussed in the previous section.

3.1.3 Recursive variable expansion

In 2007 Nawaz presented a method which allows for faster utilisation of the
processing cores [36]. This method or technique is called Recursive Variable Ex-
pansion (RVE). This method makes it possible for a processing core to calculate
a n × n block, of the similarity score matrix S, with n > 1, in one iteration.
This is demonstrated here for a 2× 2 block as shown in Figure 3.3.

This demonstrates that it is possible to process a 2×2 block in one iteration.
It is possible to do this for n× n blocks. The downside of using this method is
that the equations and therefore the processing elements grow in size. When the
Smith-Waterman algorithm is used, the value of cell is determined by finding
the maximum out of 4 equations, whereas this method requires to find the
maximum out of 8 (more complex) equations for a 2× 2 block [37].

3.2 Memory optimisation

In this section, some memory optimisations techniques will be discussed. First
some insights will be given about the memory usage. Then a differential model
will be discussed, and finally, data compression will be discussed.

3.2.1 Memory usage

Representation of the base pairs is possible with 2 bits, since there are 4 possible
nucleobases in DNA, Cytosine (C), Guanine (G), Adenine (A) and Thymine (T).
The nucleobases will represented as shown in Table 3.1.

Nucleobase Representation
Cytosine (C) 00
Guanine (G) 01
Adenine (A) 10
Thymine (T) 11

Table 3.1: Representation of the nucleobases found in DNA.

All sequence alignment algorithms compare sequences and store their align-
ment scores in one or several matrices. For the Needleman-Wunsch and Smith-
Waterman algorithms, the space complexity is O(nm). This means that the size
of the matrices used for these algorithms grows quadratic with the length of the
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sequences. As a result, the amount of storage needed to store these matrices
can grow beyond the available memory in conventional systems. For example,
the human chromosome 1 consists of 121 Megabase pairs. When two of these
chromosomes are aligned and stored in cells with 32 bit integers, the amount of
cells in the matrix is (121 · 106)2. Multiplication of this with the bit width of
each cell gives the storage size needed for the whole matrix. For this example
the amount of memory needed to store the matrix would be 468.5 Peta bits.
Nowadays sequences of these sizes are not aligned with the Needleman-Wunsch
or Smith-Waterman algorithms, but rather with the linear space algorithms as
discussed earlier.

3.2.2 Differential model

In this subsection a space efficient way to store the similarity score matrix
for the Needleman-Wunsch algorithm and the Smith-Waterman algorithm will
be shown [38]. First by proving a way to store the data differentially, then by
demonstrating the correctness of this model for the Smith-Waterman algorithm.

Definitions

The Needleman-Wunsch algorithm and the Smith-Waterman algorithm define
a score matrix S with the value of a cell, with columns i ∈ N and row j ∈ N,
given by Si,j , as can be seen in see Equation (3.1).

The Smith-Waterman algorithm initialises the similarity score matrix S as
stated before in Equation (2.7).

Lets define two differential variables δJi,j and δII,j , with I and J describing
the direction in the S matrix i.e. I corresponds to the difference between Si,j

and the cell left of Si,j and J corresponds with the difference between Si,j and
the cell above Si,j . For i, j ≥ 1 these differential variables can be defined as:

δJi,j = Si,j − Si,j−1 (3.2)

δIi,j = Si,j − Si−1,j (3.3)

Representation proof

The absolute values of the similarity score matrix can be found if the similarity
score matrix is represented by the differential values only. In this subsection a
proof by induction will be given. More specifically phrased: proof by induction
will be used to show that when the differential values between the cells are
stored, the absolute values of every cell in the similarity score matrix can be
calculated i.e. if Equation 3.4 is true.

Si,j =

j∑
1=k

δi,k (3.4)

Proof by induction
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Basis step For the basis step it is required to prove:

Si,1 =

1∑
1=k

δi,k (3.5)

Shuffling the definition of 3.2 gives Si,j = Si,j−1 + δJi,j . Recall that the
Smith-Waterman algorithm states Si,0 = 0, as can be seen in Equation (2.7).
Combining these two equations for j = 1 gives:

Si,1 = Si,1−1 + δi,1,0 = 0 + δi,1,0 =

1∑
1=k

δi,k (3.6)

Thus 3.5 is true for the basis step.

Induction step For the induction step, Equation (3.4) is assumed to be true
for all values up to l, the hypothesis, given in Equation (3.7). If Equation (3.4)
holds for l + 1, the equation is proven by induction.

Si,l =

l∑
1=k

δi,k (3.7)

Using the definition from Equation (3.3):

Si,l+1 = Si,l + δi,l+1,0 (3.8)

Substitution of the hypothesis in Equation (3.4) for Si,l gives:

Si,l+1 =

l∑
1=k

δi,k,0 + δi,l+1,0 =

l+1∑
1=k

δi,k (3.9)

Hereby Equation (3.4) is proven by induction.

Calculating differential values for the Needleman-Wunsch algorithm

In this subsection it will be demonstrated that a differential score value in the
similarity score matrix for the Needleman-Wunsch algorithm can be calculated,
when only differential values are stored. This will be done by manipulating
formulae.

The Needleman-Wunsch algorithm defines a similarity score matrix S, as
stated before in Equation (2.5), and a similarity score function s(ai, bj) as de-
fined earlier in Equation (2.6).

Substitution of Equation (3.3) and Equation (3.2) into Equation (2.5) gives:

Si,j = max


Si−1,j−1 + s(ai, bi)

Si−1,j−1 + δIi,j − w(1)

Si−1,j−1 + δJi,j − w(1)

(3.10)

This can be rewritten to:

Si,j = Si−1,j−1 + max


s(ai, bi)

δIi,j − w(1)

δJi,j − w(1)

(3.11)
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Combining Equation (3.2) and Equation (3.3) gives:

Si−1,j−1 = Si,j−1 − δIi,j−1 = Si,j − δIi,j−1 − δJi,j (3.12)

Substitution of Equation (3.12) into Equation (3.11) gives:

Si,j = Si,j − δIi,j−1 − δJi,j + max


s(ai, bi)

δIi,j − w(1)

δJi,j − w(1)

(3.13)

Si,j can now be taken out of Equation (3.13), this gives:

δJi,j = −δIi,j−1 + max


s(ai, bi)

δIi,j − w(1)

δJi,j − w(1)

(3.14)

The same steps can also be applied to get the horizontal difference δIi,j . This
gives:

δIi,j = −δJi−1,j + max


s(ai, bi)

δIi,j − w(1)

δJi,j − w(1)

(3.15)

This shows that for the Needleman-Wunsch algorithm the differential score
only depends on the differential values δIi,j and δIi,j and the output of the
similarity score function s(ai, bj). Thus the similarity score matrix S for the
Needleman-Wunsch can be built by using differential values only. Note that
the absolute scores for the similarity score matrix can be found by applying
Equation (3.4) to these values.

Calculating differential values for the Smith-Waterman algorithm

In this subsection it will be demonstrated that a differential score value in
the similarity score matrix for the Smith-Waterman can be calculated, when
only differential values are stored. Calculation of the similarity score matrix
differentially for the Smith-Waterman algorithm is slightly more complex than
doing this for the Needleman-Wunsch algorithm because the comparison in the
Smith-Waterman algorithm with a zero, as described earlier in Equation (2.8).
If only the differential values are used to calculate the value of a cell in the
similarity score matrix, it can not easily be determined whether Equation (3.4)
should return a zero.

However, by summing all the previous differential values it is possible to
determine the absolute values of the similarity score matrix for the Smith-
Waterman algorithm. This method, which differs from the previous discussed
method for the Needleman-Wunsch algorithm, will be demonstrated here and
its correctness will be shown.

First, S∗
i,j is defined as a part of the max case of the Smith-Waterman

algorithm, as earlier defined in Equation (2.8):

S∗
i,j = max


Si−1,j−1 + s(ai, bi)

Si−1,j − w(1)

Si,j−1 − w(1)

(3.16)
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Then Equation (2.8) can be rewritten to:

Si,j = max

{
0

S∗
i,j

(3.17)

Using the definition of the max operator in Equation (3.17) gives:

Si,j =

{
0, if S∗

i,j < 0

S∗
i,j , else

(3.18)

The difference between a cell in the similarity score matrix, as defined in
Equation (3.16), and the cell left of this cell i.e. S∗

i,j and Si,j−1, is defined here

as δJ∗i,j . Using Equation (3.16) gives:

δJ∗i,j = S∗
i,j − Si,j−1 (3.19)

Applying the definition from Equation (3.2) for the zero case in Equation
(3.18) gives:

Si,j = 0 = Si,j−1 + δJi,j , if S∗
i,j < 0 (3.20)

Rewriting and substitution of the definition for δJ∗i,j , as defined in Equation
(3.19), into Equation (3.20) gives:

δJi,j = −Si,j−1, if Si,j−1 + δJ∗i,j < 0 (3.21)

The other case in Equation (3.18) gives:

Si,j = S∗
i,j , if Si,j−1 + δJ∗i,j ≥ 0 (3.22)

With Equation (3.2) and Equation (3.19), this can be rewritten to:

Si,j = Si,j−1 + δJ∗i,j = S∗
i,j = Si,j−1 + δJ∗i,j (3.23)

This simplifies to:

δJi,j = δJ∗i,j , if Si,j−1 + δJ∗i,j ≥ 0 (3.24)

Combining Equation (3.20) and Equation (3.24) gives:

δJi,j =

{
−Si,j−1, if S∗

i,j < 0

δJ∗i,j , else
(3.25)

The same steps can be applied to get the horizontal difference δIi,j . This
gives:

δIi,j =

{
−Si−1,j , if S∗

i,j < 0

δI∗i,j , else
(3.26)

with δI∗i,j the difference between a cell in the similarity score matrix, as defined
in Equation (3.16), and the cell above this cell i.e. S∗

i,j and Si−1,j .
This demonstrates that it is also possible for the Smith-Waterman algorithm

to calculate the similarity score matrix by using differential values and keeping
track of one absolute value.
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3.2.3 Data compression

The amount of bits needed per differential value is log2(2w(1) + smax). Al-
though it is possible to use log2(2w(1) + smax) bits, since the differential values
are bounded, as will be shown in this subsection. An implementation with
signed integers would make arithmetic operations easier. This would require
1 + log2(2w(1) + smax) bits per differential value. Thus, the amount of bits
needed for storing signed integers with a row reference and a column reference
is 2(1 + log2(w(1) + smax) bits per cell.

Bounded differences

In this section it will be proven that the difference between two cells is bounded.
Analysis of the minimal and maximal difference between two cells will be used
to do this.

Theorem All differences δi,j , are bounded by w(1) and s(ai, bj)max, for all i
and for all j:

s(ai, bj)max + w(1) ≥ δi,j ≥ −w(1) (3.27)

Proof Without loss of generality, the following will be shown only for δJi,j .
Let i and j be given, then first Equation (3.27) will be proven for the lower

bound and then for the upper bound.
First the lower bound will be proven, i.e. δJi,j ≥ −w(1), and then the upper

bound will be proven i.e. s(ai, bj)max + w(1) ≥ δi,j .

Lower bound For a value in the similarity score matrix of the Smith-Waterman
algorithm there are four different possibilities as can be seen from Equation (2.8).
Si,j−1 − w(1) ≤ Si,j applies to all the possibilities.

From this the horizontal lower bound for Si,j can be found:

Si,j ≥ Si,j−1 − w(1) (3.28)

Combining Equation (3.28) with the definition for δJi,j from Equation (3.2)
gives:

δJi,j = Si,j − Si,j−1 ≥ −w(1) (3.29)

Upper bound First, the maximal value of the similarity score function is
defined as:

smax ≥ s(ai, bj) (3.30)

From Equation (2.7) it follows that s(ai, bj) > 0 for ai = bj . This gives:

smax > 0 (3.31)

The diagonal upper bound is:

Si−1,j−1 + smax ≥ Si,j (3.32)

This can be concluded from the four different cases for a value in the sim-
ilarity score matrix of the Smith-Waterman algorithm, as can been seen from
Equation (2.8).
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Equation (3.30) and Equation (3.31) prove that Equation (3.32) is true for
Si,j = 0.

Equation (3.30) proves that Equation (3.32) is true for Si,j = Si−1,j−1 +
sai,bj .

By reductio ad absurdum lets assume Si−1,j−1 + smax < Si,j to be true.
Then a counter example can be made. If Si−1,j−1 = 0 and w(1), Si−1,j = 1,
then Si,j = Si−1,j −w(1) = 0. The assumption is false, therefore it follows that
Equation (3.32) is true for Si,j = Si−1,j − w(1).

By reductio ad absurdum lets assume Si−1,j−1 + smax < Si,j to be true.
Then a counter example can be made: If Si−1,j−1 = 0 and w(1), Si,j−1 = 1,
then Si,j = Si−1,j −w(1) = 0. The assumption is false, therefore it follows that
Equation (3.32) is true for Si,j = Si,j−1 − w(1).

Combination of the diagonal upper bound, given in Equation (3.32), and the
lower bound, given in Equation (3.28), gives the upper bound in the vertical
direction:

Si−1,j−1 + smax ≥ Si,j ≥ Si−1,j − w(1) (3.33)

Rewriting this equation for another row by using the definition of δJi,j , given
in Equation (3.2), gives:

Si,j−1 + smax ≥ Si,j − w(1) = δJi,j (3.34)

The upper bound, given in Equation (3.34), combined with the lower bound,
given in Equation (3.29), results in the bounded differences as stated in Equation
(3.27):

smax + w(1) ≥ δJi,j ≥ −w(1) (3.35)

Hereby it is proven that all differences δi,j are bounded by w(1) and s(ai, bj).
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· · · Si−1,j−2 Si−1,j−1 Si−1,j
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Si,j−1 depends on Si−2,j−2, Si−1,j−2, Si,j−2 and Si−2,j−1
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· · · Si−2,j−2 Si−2,j−1 Si−2,j

· · · Si−1,j−2 Si−1,j−1 Si−1,j

· · · Si,j−2 Si,j−1 Si,j

Si,j1 depends on Si−2,j−2, Si−1,j−2, Si,j−2, Si−2,j−1 and Si−2,j

Figure 3.3: A 2× 2 block in the similarity score matrix S can be calculated in
one iteration by using the Recursive Variable Expansion method.
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Chapter 4

Hardware acceleration

In this chapter some hardware acceleration platforms and interconnect alterna-
tives will be discussed.

4.1 Hardware platforms

In this section some hardware platforms will be discussed and compared.
A processing unit is defined as a piece of hardware, which consists of one or

more processing cores, which can perform an algorithm or part of an algorithm
by means of operations.

4.1.1 CPU

CPU is an abbreviation for Central Processing Unit. It is the most common
processing unit, used in most personal computers and supercomputers. A com-
puting system can contain more than one CPU, this is called multiprocessing.
It is also possible to have more than one CPU on a single chip, these chips are
called multi-core processors, where a core refers to a single CPU.

The cores in a CPU process software sequentially by performing simple arith-
metical, input or output and logical operations. When multiple cores and or
CPUs are present they can share their workload.

Conventional CPUs have large instruction sets, which makes them suitable
for a lot of different applications. However, these large instructions sets come
with a cost, most of the area of the CPU is inactive most of the time. The
performance of a CPUs depends on the clock rate and the number of instructions
that can be performed in one clock cycle. Most CPUs have high clock rates
compared to other processing units, which makes them suitable for algorithms
that allow no parallelism.

4.1.2 GPU

GPU is an abbreviation for Graphics Processing Unit. It is a processing unit
highly specialised in, and used mainly for, manipulation of computer graphics.
Its highly parallel structure makes it suitable for processing large blocks of data
in parallel.
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Nowadays there is a shift of focus by the manufacturers of GPUs from graph-
ics to more general and parallel computations. These GPUs are also referred to
as general-purpose graphical processing units (GPGPU). OpenCL is the most
commonly used general-purpose GPU computing language and CUDA is the
most commonly used framework.

A significant speedup of sequence alignment algorithms, compared to CPUs,
is achievable with GPUs [39][40][41][42][43][44].

4.1.3 FPGA

FPGA is an abbreviation for Field Programmable Gate Array. It is a integrated
circuit from which the logic ports can be configured to perform almost any
logical operation. Contrary to CPU and GPU, an FPGA is not per definition a
processing unit. It can be configured to be any processing unit. This makes it
possible to build highly specialised processing units with or on FPGAs.

FPGAs have a lower clock rate than conventional CPUs and GPUs. FPGAs
are mainly used for applications where a high throughput of data is required
or where algorithms are used that allow for parallel computing, because a high
number of multiple specialised processing cores can be implemented.

4.1.4 Overview

In this subsection an overview will be given for the discussed hardware platforms.
The aspects, important for sequence alignment algorithms, will be compared.

Sequence alignment algorithms allow for parallel computing, and would
therefore benefit from multiple processing cores. This makes the cost and power
requirement per processing core important. It is also important to compare the
flexibility of the different hardware platforms. Most of these aspects, includ-
ing scalability, were compared by Vermij and Hasan [37][33]. These results were
combined in Figure 4.1.

It demonstrates the different aspects of the different hardware platforms. It
can easily be seen, for example, that a bigger number of processing cores can
be implemented on an FPGA than on a CPU for the same power requirements
and cost.

4.2 Interconnect alternatives

In this section some interconnect methods will be discussed.

4.2.1 RS-232

RS-232 is an old serial communication protocol, defined in 1969. With normal
cables the maximal distance allowed is around 15 meters. The maximal bit rate
is around 11.5 kbit/s. The protocol is relatively easy to implement, but the
bit rate is very low compared to the alternatives discussed below. Previously it
was used to connect peripheral hardware to personal computers. Nowadays it
is sometimes used in industrial environments and for applications where the bit
rate is not important.
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Figure 4.1: Several aspects, important for sequence alignment algorithms, com-
pared for different hardware platforms.

4.2.2 Universal Serial Bus

Universal Serial Bus, usually abbreviated to USB, is a commonly used bus
standard. The standard specifies the communication protocol, the wires and
the connectors. There are several versions of the specification. Version 2.0 will
be discussed here. To communicate with USB, one side acts as a host and the
other side acts as a client. The client side is often the peripheral hardware
[45]. The connection can be set up in a star topology with a maximal of 5
hubs. The maximal theoretical bit rate is 480 Mbit/s. USB is commonly used
for communication between personal computers and peripheral hardware. The
success of this specification has also led to the usage on other devices such as
mobile telephones.

The versions of USB and their bit rates can be seen in Table 4.1.

Version Bit rate
USB 1.0 low speed 1.536 Mbit/s
USB 1.0 full speed 12 Mbit/s
USB 2.0 480 Mbit/s
USB 3.0 5 Gbit/s

Table 4.1: Versions of USB and their bit rates.

4.2.3 Ethernet

Ethernet is the name for a group of standards. These standards define wired
networking technologies. Ethernet enables computers to connect to other com-
puters in a convenient way. It is convenient because the technology is in use
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since the beginning of the Internet, it can be used in a star topology and the
cables are flexible and not expensive. There are a lot of different versions of
Ethernet. Different versions have different maximal bit rates. 10BASE5, for ex-
ample, has a bit rate of 10 Mbit/s and 100GbE has a bit rate of 100Gbit/s. For
the scope of this thesis, only the very commonly used versions, 100BASE-TX
and 1000BASE-T, will be discussed. 100BASE-TX is the standard for connect-
ing personal computers to networks and to the Internet. It features a maximal
bit rate of 100 Mbit/s full-duplex i.e. in both directions. Two devices can
be connected directly or two or more devices can be connected through hubs.
1000BASE-T is a more powerful version of 100BASE-TX. It features a maximal
bit rate of 1 Gbit/s full-duplex. Most conventional computers and servers are
equipped with this technology.

Some versions of Ethernet and their bit rates can be seen in Table 4.2.

Version Bit rate
10BASE-T 10 Mbit/s
100BASE-TX 100 Mbit/s
1000BASE-T 1 Gbit/s
10GBASE-X 10 Gbit/s
40GBASE-X 40 Gbit/s
100GBASE-X 100 Gbit/s

Table 4.2: Versions of Ethernet and their bit rates.

4.2.4 PCI-express

PCI-express is an expansion bus standard to connect boards with specialised
hardware to motherboards [46]. PCI is an abbreviation for Peripheral Compo-
nent Interconnect. The standard specifies lanes e.g. one lane is referred to as
x1 and 32 lanes are referred to as x32. One lane is the minimal bus width and
thirty two lanes is the maximal bus width. The biggest bus width supported by
conventional computers and servers is usually x16. The amount of lanes between
a device and a motherboard can change dynamically when needed. The bit rate
per lane differs for each different generation of PCI-express. Generation 3 will
be discussed here because it is commonly used and it has the highest bit rate
per lane. PCI-express Generation 3 features a bit rate of 8.0 Gbit/s per lane
full-duplex. The protocol uses packages to communicate. These packages have
headers and use a coding scheme of 128 bits data per 130 bits package. This
results in an effective data rate of 7.88 Gbit/s per lane. The maximal bit rate
for a standard PCI-express x16 Generation 3 card is 126.08 Gbit/s. It specifies
a physical layout as an interface between the motherboard and the peripheral
device. PCI-express cards are backwards compatible i.e. PCI-express will fit
in any slot that has at least as many lanes as the card is wired for. The PCI-
express slot also delivers the power to the peripheral device. Some generations
of PCI-express and the bit rates for 1 and 16 lanes can be seen in Table 4.3.
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Generation Lanes Bit rate
PCI-express Generation 1 x1 2.5 Gbit/s

x16 40.0 Gbit/s
PCI-express Generation 2 x1 5.0 Gbit/s

x16 80.0 Gbit/s
PCI-express Generation 3 x1 8.0 Gbit/s

x16 128.0 Gbit/s

Table 4.3: Generations and bus widths of PCI-express including their bit rates.

4.2.5 InfiniBand

InfiniBand is a standard for high speed networking which defines links [47]. The
possible link widths for InfiniBand are: one link, 1x; four links, 4x; eight links,
8x; and twelve links, 12x. There are five versions of InfiniBand as can be seen
in Table 4.4. The InfiniBand protocol uses packages with headers to deliver
data. InfiniBand uses 8B/10B coding to enable clock recovery. The actual data
rate without headers and coding is thus slightly less than 80% [48]. Optical
and copper cables can be used to interconnect devices. InfiniBand specifies a
star topology, but unlike Ethernet it also uses a switched fabric, with multiple
paths for one stream of data. The multiple paths guarantee a more continuous
throughput when used in large networks. InfiniBand is optimised for low latency.
There are switches available with a latency of 100ns [49].

Version Bit rate
SDR 2.5 Gbit/s
DDR 5.0 Gbit/s
QDR 10.0 Gbit/s
FDR 14.0325 Gbit/s
EDR 25.78125 Gbit/s

Table 4.4: Versions of InfiniBand and their bit rates.

4.2.6 Overview

In this subsection an overview will be given for the discussed interconnect meth-
ods. Different requirements demand different features. RS-232 could be a very
good interconnect alternative when a simple protocol is needed to transfer and
receive data at a slow bit rate. USB is a good alternative when convenience
to connect to personal computers is important. Ethernet is easy to use and
is available in a few versions for different bit rate requirements. However, it
requires a network infrastructure. PCI-express allows for high bit rates, but
the boards have to be placed inside a computer or server, on a motherboard,
therefore it is not easy scalable. InfiniBand has a high bit rate and it is easily
scalable. However, it requires an expensive network infrastructure.
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Interconnect technology Classification Bit rate
RS-232 Peripheral — Serial 115 kbit/s
USB (2.0) Peripheral — Serial 480 Mbit/s
Ethernet (1000BASE-T) Network — Serial 1 Gbit/s
PCIe (x16 Generation 3) Inter computer — Parallel 126.8 Gbit/s
InfiniBand (FDR) Network — Serial 56.25 Gbit/s

Table 4.5: An overview of some interconnect alternatives.
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Chapter 5

System design

In this chapter the system design will be discussed. First, the targets and
requirements will be defined. Then two possible system setups will be discussed
and design choices will be underpinned. Finally, an overview of the system
design and the choices that were made, will be given.

5.1 Conditions

In this section the targets and requirements for the system will be discussed.

5.1.1 Targets

The main target of this project is to design a system which can accelerate DNA
sequence alignment. Nowadays, DNA sequence alignment is being accelerated
by the use of heuristic methods or with use of hardware accelerators and super-
computers. The target of this system is to sit between the expensive hardware
accelerators and supercomputers, which can be used to find optimal alignments,
and the less accurate heuristic methods that are being used by researchers who
do not have access to hardware accelerators and supercomputers.

A list of targets is given here, after which, in the next subsection, the re-
quirements will be defined. The target system is a system which:

1. Accelerates DNA sequence alignment, compared to conventional CPUs,
used in PCs.

2. Guarantees the optimal local alignment.

3. Connects to a PC, to transfer the sequences, and receive the alignment.

4. Is low-cost, compared to other, high-end solutions available for sequence
alignment acceleration.

Before the requirements were defined, first some choices were made about
the algorithm and acceleration techniques. This allowed for a better definition
of the requirements and a faster implementation.

The algorithm that was chosen is the Smith-Waterman algorithm. The
Smith-Waterman algorithm returns the optimal local alignment of two sequences,
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as stated before in Chapter 2. This algorithm was chosen instead of the improved
algorithms available i.e. Gotoh and Miller-Myers. These improved algorithms,
allow for the use of an affine gap penalty function and/or require linear space,
but they are both based on the Smith-Waterman algorithm. A system which can
accelerate the Smith-Waterman algorithm could easily be extended to support
an affine gap penalty function, and/or require linear space instead of quadratic
space [32].

It was chosen instead of a heuristic method because the Smith-Waterman
algorithm guarantees the optimal local alignment and is thus more accurate
than the heuristic methods [33].

It is possible to use the Recursive Variable Expansion method for the Smith-
Waterman algorithm, as described earlier in Chapter 3. However, it was decided
that this method will not be used for the system, not because the results of im-
plementations have not proven to be very successful [50][51][52][53], but because
research has shown that the performance gain per area is not significantly bigger
compared to conventional methods [37][1].

Summarised, the target system is a low-cost system that accelerates the
Smith-Waterman algorithm with a linear gap penalty function, which returns
the optimal local alignment of two sequences, sent from a PC, back to a PC.

5.1.2 System requirements

With the targets, as described earlier, the requirements can be defined. The
MoSCoW method was used to prioritise the requirements. The MoSCoW cate-
gories are defined as follows:

• Must; these requirements must be satisfied for the system design to be
successful.

• Should; these requirements should be included in the system.

• Could; these requirements are desirable, but not necessary for the system
design to be successful.

• Would; it would be nice to realise these requirements in the future.

To realise a system that meets the targets that were set, the following system
requirements were defined.

The system must at least:

• Be able to calculate the similarity score matrix of the Smith-Waterman
algorithm, for DNA sequences, using a linear gap penalty function, as
defined in Equation (2.8) and Equation (2.1).

• Connect easily to a conventional PC.

• Be able to return the value of the maximal score in the similarity score
matrix to a PC.

• Accelerate the Smith-Waterman algorithm, compared to the conventional
CPUs, currently used in PCs.

• Be low-cost, compared to the other available accelerators.
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The system should at least:

• Be able to return the value and the index of the maximal score in the
similarity score matrix to a PC.

• Be easily scalable e.g. by clustering.

The system could maybe:

• Be able to calculate the matrices of the Gotoh algorithm, for DNA se-
quences, using an affine gap penalty function, as defined in Equation
(2.15), Equation (2.16), Equation (2.17) and Equation (2.2).

• Be able to do the trace-back procedure, to find the optimal local alignment.

For future research, it would be nice if the system:

• Is able to find the optimal local alignment, for DNA sequences, using an
affine gap penalty, in linear space i.e. the Miller-Myers algorithm.

5.2 System setup

In this section, two possible system setups will be discussed.

5.2.1 Single accelerator

In this setup, a host will connect to an accelerator through an interface, see
Figure 5.1. The user will send DNA sequences from the host to the accelerator,
on which the similarity score matrix of the Smith-Waterman algorithm will be
calculated.

Host Interface Accelerator

Figure 5.1: Single accelerator setup.
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5.2.2 Clustering

In this setup, a host will connect to multiple accelerators through a shared
interface, see Figure 5.2. A group of independent computing units, where all
units perform a small part of the same task, are called clusters. The shared
interface could be realised with switches.

With more accelerators, more processing cores could be implemented, and
therefore the performance of the system would increase with this setup, com-
pared to the single accelerator setup.

Host Interface

Accelerator

Accelerator

...

Accelerator

Accelerator

Figure 5.2: Cluster setup, multiple accelerators connected to a single host.

For this system, first the single accelerator setup was chosen, since the clus-
tering setup would be based on the single accelerator setup. The clustering
setup could then be realised by applying some changes to the single accelerator
setup.

5.3 Design

In this section, the system design choices will be discussed.

5.3.1 Host

The host in the system, connects to the accelerator, via an interface, as can
be seen in Figure 5.1. The host should at least be able to sent and receive
information to the accelerator. One of the targets is to use a PC as host.
By choosing a PC as host, the entry level for users gets lowered, and future
expansions are relatively easy to implement. Another benefit from choosing a
PC, is the number of interconnect options available with conventional PCs.
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The host will have two main tasks, sending the DNA sequences to the ac-
celerator, and receiving the results from the accelerator. The results can either
be the similarity score matrix or the value and index of the maximal score.

Host program for the Smith-Waterman algorithm, with the similarity score ma-
trix returned by the accelerator.

Require: A,B
Ensure: connection with accelerator
1: send(A,B)
2: receive(S)
3: alignment ← trace-back(S)

Host program for the Smith-Waterman algorithm, with the value and index of
the maximal score returned by the accelerator.

Require: A,B
Ensure: connection with accelerator
1: send(A,B)
2: receive(scoremax, index)
3: alignment ← divide-and-conquer(scoremax, index)

Unfortunately, because the size of the similarity score matrix for long DNA
sequences can grow beyond available memory and storage on conventional PCs,
it is not possible for the accelerator to return the complete similarity score
matrix. This is the reason that for this system, the accelerator will return the
value and the index of the maximal score, as can be seen from the requirements.

It could have been possible to implement the trace-back procedure on the ac-
celerator [54][55], but this would not be a good choice, since calculating the sim-
ilarity score matrix requires the most computation time in the Smith-Waterman
algorithm, and the trace-back procedure can easily be implemented on the host.

5.3.2 Accelerator

The accelerator receives the sequences from the host. With these sequences,
the similarity score matrix, as defined in Equation (2.8), can be built. The
accelerator in the system then returns the value and index of the maximal score
to the host, via an interface, as can be seen in Figure 5.1. With these results,
the host can use the divide and conquer technique to find the alignment.

A hardware platform was chosen for the accelerator. As explained in Sub-
section 3.1.1, the Smith-Waterman algorithm allows for parallel computation of
the similarity score matrix. The system would, for that reason, benefit from
a processing unit with multiple processing cores. Calculation of the similarity
score matrix can be done by a linear systolic array of processing cores. The
number of processing cores defines the acceleration that can be achieved. Ide-
ally, the number of processing cores corresponds to the number of cells of the
similarity score matrix that can be processed at the same iteration. Please note
that utilisation of the processing cores takes some time, but this effect becomes
neglectable for long DNA sequences.
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An FPGA was chosen as the hardware platform for this system. This hard-
ware platform is not very flexible, as can be seen from Figure 4.1, but the
performance/power unit ratio and performance/cost unit ratio are better for
this platform than the ratios of the other hardware platforms that were consid-
ered for this system [56][57][58]. An FPGA can be configured for a specific task,
which means that all the area of the FPGA can be effectively used, most of the
time [59]. Therefore, the number of processing cores, which corresponds almost
directly to the speedup that can be achieved, that can be implemented per cost
unit is the largest for the FPGA platform. This, together with the scalability
options, were the two main reasons that an FPGA was chosen for this system.

5.3.3 Interface

The interface in the system connects the host to the accelerator, as can be
seen in Figure 5.1. The two main tasks for the interface are to send the DNA
sequences from the host to the accelerator, and return the result to the host i.e.
the value and index of the maximal score.

As stated before, the size of the similarity score matrix can grow beyond
available memory and storage, and therefore it is not possible to store the sim-
ilarity score matrix on the accelerator or on the host. Instead, the value and
index of the maximal score are returned.

The bandwidth intensive task for the interface is to send the sequences to
the accelerator [60]. Each nucleobase in DNA can be represented by 2 bits, as
shown before in Table 3.1. Two options were considered here. First, it would
be possible to send the complete DNA sequences to the accelerator where they
would be stored in memory. The other option, which is probably better because
a lot of memory could be required for long DNA sequences, is to send parts of
the sequences on demand to the accelerator. The number of processing cores
determines how much sequences have to be send within a certain time frame,
and therefore determine the bandwidth requirement, when the sequences are
streamed to the accelerator [60].

However, the choice for a interconnect method, was not only based on the
bandwidth requirement. Because a PC was chosen as a host, the accessibility
of the system depends on the ease of connecting it to a PC.

For this system, serial and USB were considered, but the maximal bit rates
of these interconnect alternatives would become the bottleneck of the system.
PCI-express and Ethernet support higher bit rates. From these two, Ethernet
has the advantage of easier connectivity and cluster options. InfiniBand could
also be used however this method is expensive and not common for conventional
PCs.

5.4 Overview

In this section, an overview will be given of the choices that were made for the
system design.

A single accelerator setup was chosen because clustering is beyond the scope
of this thesis. As host, a PC was chosen because nowadays they are commonly
used. For the accelerator, an FPGA was chosen, because they can be configured
to be specific processing units, with lots of processing cores. As interconnect
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alternative, Ethernet was chosen, because it connects easily to conventional PCs
and it supports relatively high bit rates.

An overview of the system design choices is shown in Table 5.1. An overview
of the system setup is given in Figure 5.3.

Part of design Choice
System setup Single accelerator
Host PC
Accelerator FPGA
Interface Ethernet

Table 5.1: An overview of the system design choices.

PC Ethernet Accelerator

FPGA

Figure 5.3: An overview of the system setup.
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Chapter 6

Implementation

In this chapter a possible implementation of the design, described in the previ-
ous chapter, will be discussed. First an FPGA selection will be made. Then,
the computation and communication implementations of the accelerator are dis-
cussed. Finally an overview is given, in which the performance is analysed and
compared with other studies and platforms.

6.1 FPGA selection

In this section, the FPGA selection and choice will be discussed.
For the selection of the FPGA, the two most important properties were cost

and power efficiency. Since the target of this project is to design a low-cost
solution, a consideration between performance and cost had to be made. The
goal was to find the FPGA with the best performance/cost unit ratio.

The performance of an FPGA can best be expressed by the limiting factor.
The limiting factor is the number of look up tables (LUTs). LUTs are a basic
hardware parts for FPGAs.

First, two manufacturers were considered; Xilinx and Altera. They both
offer different families of FPGAs, for all kinds of applications. A state-of-the-
art Xilinx Atrix-7 FPGA was chosen, since this family of FPGAs is optimised
for low-cost and low-power. The XC7A200T was chosen, which features 33, 650
slices, and each slice contains four LUTs, which gives a total of 134, 600 LUTs
[61].

The two other 7 series FPGAs from Xilinx, the Kintex-7 and the Virtex-7,
offer better performance, but they were not chosen since they are not considered
to be low-cost.

6.2 Computation

In this section the implementation of the computational part of the acceler-
ator will be discussed. First, the implementation of the processing core will
be demonstrated, after which an implementation of a linear systolic array of
processing cores will be given.
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6.2.1 Processing core

A processing core in this system will calculate the value of a cell of the similarity
score matrix. The value of a cell is determined by Equation (2.8). In the
implementation the differential method, introduced in Section 3.2.2, will be
used to reduce the number of logic cells needed per processing core.

The processing core implementation can be seen in Figure 6.1 and Figure
6.2.

Processing core

ai
bj

δJi,j

maxin

reset
clk

bj

δIi,j

maxout

Figure 6.1: A processing core.
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Figure 6.2: The processing core implementation by Geers, Çağlayan and Heij
[1]. This core processes the differential score values from the top to the bottom
of a column.

The implementation in VHDL of this design was done by Geers, Çağlayan
and Heij [1]. With, 4 ≥ smax ≥ 2 and 8 ≥ w(1) ≥ 1, one 32 bit sum opera-
tor and three 5 bit subtract operators were used for this implementation. A
straight forward implementation of Smith-Waterman would need three 32 bit
add operators. The use of the differential model reduces the number of logic
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cells needed per processing core. For this design, one processing core uses 226
LUTs and 46 slice registers [1].

6.2.2 Linear systolic array

With the processing cores a linear systolic array will be built, as can be seen in
Figure (6.3). The implementation in VHDL was done by Geers, Çağlayan and
Heij [1].

Processing

core
· · · Processing

core

Processing

core
Q

δJi,j

maxout

bj+1

ai
bj ai−1 ai−k

· · · · · ·

Figure 6.3: Linear systolic array implementation.

The linear systolic array calculates the similarity score matrix from the top
to the bottom, and from the left to the right [34][62][52]. Some of the differential
values calculated are fed back into the same processing core. This means that
the calculated difference with the cell to the left will be stored for one clock pulse,
and will then be used to calculate the value of the cell below. The calculated
difference with the cell above is sent to the next processing core in the array,
which will calculate the value of the cell to its right.

6.3 Communication

In this section, the selection of an Ethernet version and core, which will form
the communication part of the accelerator, will be discussed.

6.3.1 Ethernet selection

In Chapter 4, different versions of Ethernet were discussed. In this subsection,
a version will be selected, according to the requirements of the system.

Since bandwidth can easily become the limiting factor for long DNA se-
quences, a consideration had to be made between cost, performance and acces-
sibility.

The fastest version of Ethernet currently available is 1000GBASE-X which
supports a bit rate up to 100 Gbit/s. However, the 1000BASE-T version
was chosen, which supports a bit rate up to 1 Gbit/s, because this version
is supported by most conventional PCs nowadays, and it has the best perfor-
mance/cost ratio.

A bit rate of 1 Gbit/s would be sufficient for alignment of two long DNA
sequences, however it could be insufficient for the alignment of a short and a
long sequence. This is because the amount of bits that need to be transferred
in a certain time frame is relatively low for alignment of two long sequences
compared to the amount of bits transferred in a certain time frame when a
short sequence is aligned to a long sequence.
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6.3.2 Ethernet core

Because developing an Ethernet core is beyond the scope of this thesis, an open
core was selected because of the low-cost requirement. A stable 10/100/1000
Mbit/s tri-mode Ethernet core was selected [63]. The core uses 1526 LUTs.

6.4 Overview

In this section, an overview will be given of the suggested implementation given
in this chapter. The performance will be analysed and compared to other solu-
tions.

6.4.1 Theoretical performance

The performance of a linear systolic array implementation can be expressed
as the number of active processing cores times the clock frequency. For long
sequences, the start up and finish time become a very small part of the total
sequence. The difference between the actual performance and the maximal
performance is neglectable [37].

The amount of processing cores possible on an FPGA depends on the avail-
able amount of LUTs and slice registers. An Artix-7-200T has 134600 LUTs
and 269200 slice registers [61]. The number of processing cores is limited by the
amount of LUTs. If 80% of the LUTs can be used, which is quite ambitious,
469 processing cores could fit on an Artix-7. This can be seen in Table 6.1.

Part of the design Cores LUTs Total LUTs LUTs usage
Ethernet core 1 1, 526 1, 526 1.1%
Processing cores 469 226 105, 994 78.7%
Total design - - 107, 520 79.8811%

Table 6.1: The number of LUTs needed for the design.

The Artix-7 FPGA can run on a 200 MHz clock [64]. This could lead to a
total performance of 93.8 GCU/s.

6.4.2 Overview

The system proposed in this thesis delivers at least 2 times more performance
per euro compared to the other systems that were compared. This does not
include the host and the interface.

An overview of the performance of several implemented platforms will be
given here. The price per system are estimates. The proposed system will cost
about 400 euro. The price of an Artix-7 XC7A200T-2C is 200 euros [65]. The
accelerator, with the FPGA, will cost around 240 euros, leaving 160 euros for
development and research.

A mid-range CPU was used for The Szalkowski implementation and a high-
end CPU was used for the Hasan implementation [56]. The price is deducted of
a Opteron 6284 system. The Convey HC-1 implementation [37] and the Rivyera
by Sciengines [66] were also compared. The prices of these systems were found
after contact with the companies.
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Implementation Cores Frequency Performance Price Price
(Mhz) (GCU/s) (e/system) (GCU/s/e)

Proposed 469 200 93.8 400 0.234
Szalkowski [56] 4 2400 15.7 400 0.039
Hasan [56] 16 2300 64 2000 0.032
Convey [37] 691 150 691 22000 0.031
Sciengines [66] - - 6046 70000 0.086

Table 6.2: Comparison of different computing solution on GCU/s and price.
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Chapter 7

Conclusions and
recommendations

In this chapter, conclusions and recommendations for future research will be
given.

7.1 Conclusions

In this section, the conclusions of the research, design and implementation will
be given.

Unfortunately, the suggested system setup could not be implemented in the
time that was available for this project. For testing purposes an implementation
of a USB driver in VHDL was tested on an Altera DE2 FPGA Development
Board. With this driver, data could be shared between a host PC and the
FPGA board. However, from this implementation it could be concluded that
the bit rate of USB 2.0 would be the limiting factor for the system. An Ethernet
driver was not implemented, because this was beyond the scope of this thesis,
and there was insufficient time.

A linear systolic array of processing cores, which returns the value of the
maximal score of the similarity score matrix, was implemented in VHDL by
Geers, Çağlayan and Heij [1]. Tests on an Altera DE2 FPGA Development
Board demonstrated that the implementation of the processing core and the
linear systolic array of processing cores worked accordingly, and could return
the value of the maximal score of the similarity score matrix.

An estimation of the performance of a implementation of the system on an
Artix-7 XC7A200T-2C FPGA shows that a performance of 93 GCU/s is achiev-
able with a low-cost FPGA. The power requirement of this implementation was
not analysed, nor the power requirements of the other implementation that are
available, but it can easily be stated that the power demanded for this system
is less than the power demanded for super computing platforms. The perfor-
mance/power unit ratio for this implementation would be better than for other
implementations, due to the use of a low-power FPGA and an area efficient im-
plementation of the processing cores. As a result, this system is both low-cost
in use and in purchase compared to the other systems that are available and the
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performance/cost unit of this system is bigger than the other available system
as can be seen from Table 6.2.

7.1.1 Research

From the research, which is the main part of this thesis, the following conclusions
can be made:

• Genetic research leads to understanding how life and living organisms
work, and this research field is limited by its computational power.

• The cost at which DNA can be sequenced is dropping at a higher rate than
the cost at which the DNA sequences can be analysed with computation
power.

• Heuristics methods are used, because optimal methods require too much
computation time on conventional or available systems.

• Local sequence alignment algorithms, with an affine gap penalty function,
are mainly used for DNA sequence alignment.

• There are a lot of improved variations to the Smith-Waterman algorithm
however there is a lack of optimised hardware implementations for these
improved algorithms.

• The similarity score matrix of the Smith-Waterman algorithm can be cal-
culated in parallel.

• The similarity score matrix of the Smith-Waterman algorithm can be
stored differentially.

7.1.2 Design

From the design the following conclusions can be made:

• There is a lack of low-cost systems which can find the optimal local align-
ment of DNA sequences.

• Using a host PC allows for flexible designs.

• FPGAs can be used to accelerate the Smith-Waterman algorithm, because
a lot of processing cores can be implemented on a single FPGA.

• Low-cost and low-power solutions for sequence alignment algorithms are
possible.

7.1.3 Implementation

From the implementation, which was mostly done by Geers, Çağlayan and Heij
[1], the following conclusions can be made:

• The area needed per processing core could be reduced by calculating the
values of the similarity score matrix differentially.
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• The available bandwidth of the system can become the limiting factor for
mapping of the sequences found by Next-Generation sequencers.

• The bandwidth requirement can be reduced by using buffers on the FPGA
to keep track of the value of the maximal score.

7.2 Recommendations

The following recommendations for future research can be made:

• Implementation of the differential method, introduced in this thesis, for
other hardware platforms.

• Implementation of the Gotoh algorithm with an affine gap penalty func-
tion, to make the system design, suggested in this thesis, more suitable
for biotechnology applications.

• Implementation using state-of-the-art FPGA platforms.

• Implementation of the clustering system setup.

• Adding memory to the accelerator design for better performance with long
DNA sequences.

• A hybrid platform of an FPGA and CPU to perform the Miller-Myers
algorithm.

• On-the-fly reconfiguration of the FPGA, using the Recursive Variable Ex-
pansion method only to speed up the utilisation of the processing cores.

• Sequence alignment algorithms usages comparison study.

• Analysis of computational problems in the bio-technology industry.

• Comparison study of power requirements for hardware accelerated systems
used for sequence alignment algorithms.
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