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ABSTRACT

During the last decades, time-series interferometric synthetic aperture radar (InSAR) has been emerged as a

powerful  technique  to  measure  various  surface  deformation  phenomena  of  the  earth.  The  multivariate 
statistics  of  interferometric  phase  stacks  plays  an  important  role  in  the performance  of  different  InSAR 
methodologies and also in the final quality description of InSAR derived products. The multivariate phase 
statistics are ideally described by a joint probability distribution function (PDF) of interferometric phases,

whose  closed-form  evaluation  in  a  generic  form  is  very  complicated  and  is  not  found  in  the  literature. 
Focusing on the first two statistical moments, the stack phase statistics can be effectively described by a full

(co)variance matrix. Although a closed-form expression of interferometric phase variances has been derived

in  literature  for  single-looked  pixels,  there  is  no  such  an  expression  for  neither  the  variances  of  the

multilooked  pixels  nor  the  covariances  among  interferometric  phases.  This  paper  presents  two different 
approaches for evaluation of the full covariance matrix: one based on the numerical Monte-Carlo integration 
and the other based on an analytical approximation using nonlinear error propagation. We first, clarify on 
the noise components that are the subject of statistical models of this paper. Then, the complex statistics in

SAR stacks and the phase statistics in a single interferogram are reviewed, followed by the phase statistics 
in InSAR stacks in terms of second statistical moments. The Monte-Carlo approach and the derivation of an 
analytical  closed-form  evaluation  of  InSAR  second-order  phase  statistics  are  then  introduced  in  details. 
Finally, the two proposed methods are validated against each other. 
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1. Introduction 

     Since the late 1990s, different methodologies have been 

developed for processing multi-baseline Interferometric 

Synthetic Aperture Radar (InSAR) data stacks. Except for 

some recently developed algorithms (Ferretti et al., 2011; 

Monti-Guarnieri & Tebaldini, 2008) which are based on 

direct processing of SAR data instead of processing 

interferograms, most other algorithms use interferometric 

phases as primary inputs. Therefore, the phase statistics of 

interferograms (i.e., noise characteristics of interferometric 

phases) can play an important role in performance of 

different InSAR methodologies. For example, these statistics 

can be used for maximum likelihood estimation of different 

parameters of interest such as deformation, deformation rate, 

and topography, and can also be used for uncertainty 

(precision and reliability) description of these products. The 

phase statistics are ideally described by a probability 

distribution function (PDF) of interferometric phases. This 

PDF is a function of absolute interferometric coherence, 

which is a measure of the accuracy of the interferometric 

phase. In the case of a single interferogram, this PDF was 

derived in the closed form for both single and multi-looked 

cases in Bamler & Hartl (1998), Tough (1995), Just & 

Bamler (1994), Lee et al. (1994), Rodriguez & Martin 

(1992), Sarabandi (1992). However, in case of multi-baseline 

interferograms, we are dealing with a complicated multi-

dimensional joint PDF of interferometric phases. Such a joint 

PDF is difficult to derive and exploit, not only because of its 

high dimensionality but also because of the highly nonlinear 

relationship between the interferometric phases and the 

acquired complex SAR data. For simplicity, this PDF is 

usually computed based on the harsh assumption of mutual 

independency between interferograms, for example in 

Eineder & Adam (2005) and Cuenca et al. (2011). In this 

case, the joint PDF of multiple interferograms would be the 

product of PDFs of the single interferograms. However, this 
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independency assumption is not always met, especially 

because of the correlation of noise components between 

interferograms. Also two interferograms with a common 

SAR acquisition can never be independent, since they both 

depend on the common image signal. Some efforts has been 

found in literature for evaluation of the joint PDF of multi-

baseline interferograms. Lucido et al. (2010) presented the 

closed-form evaluation of the second-order joint PDF for two 

interferograms only, obtained by three correlated SAR 

images and for the single-looked case. No such study has 

been found for more general cases, i.e., for any two 

interferograms and for different multi-looking factors. 

Another convenient way to describe the phase statistics, 

especially for near-Gaussian data is to focus just on the first 

two statistical moments and use the covariance matrix of 

interferometric phases instead of the full joint PDF. In this 

way, instead of a complicated N-dimensional joint PDF 

(assuming 𝑁 as number of SAR images), we are dealing with 

an N×N covariance matrix which is more convenient to 

exploit in practice. Diagonal elements of such a matrix are 

variances of interferometric phases and off-diagonal 

elements are the covariances which describe the dependency 

among interferometric phases. The closed-form expression 

of interferometric phase variances were derived in Bamler & 

Hartl (1998) and Tough (1995) for the single-looked case. 

For a multi-looked case, variances can be derived 

numerically from the PDF. However, for evaluating the 

covariances, we need again the joint PDF of interferometric 

phases. Although, as mentioned before, there is a closed-

form evaluation of this joint PDF for the simple case               

(Lucido et al., 2010), there is need for the evaluation of such 

a PDF for more general cases. 

     In this paper, we present two approaches for this purpose: 

one based on the numerical Monte-Carlo integration and the 

other based on an analytical approximation using nonlinear 

error propagation. The paper is organized as follows. We 

first, in Section 2 clarify on the noise components that are the 

subject of statistical models of this paper. Then, we revisit 

the complex statistics in SAR stacks (Section 3). In addition, 

the phase statistics in a single interferogram are reviewed 

(Section 4), followed by the phase statistics in InSAR stacks 

in terms of second statistical moments or in the form of a 

covariance matrix (Section 5). A Monte-Carlo methodology 

to compute a full covariance matrix for interferometric phase 

stacks is introduced (Section 5.4), followed by the derivation 

of an analytical closed-form evaluation of InSAR second-

order phase statistics (Section 5.5). The conclusions and 

summary are given in (Section 6). 

2. Noise components in SAR/InSAR stacks 

     In general, the stochastic model of observations describes 

the uncertainty in the measurements by means of some 

statistical tools. Our main focus in this paper is on the 

stochastic aspects of noise/error components in SAR and 

InSAR stacks with special attention to DS-pixels. The term 

“noise”, however, may be interpreted loosely as its definition 

is application-dependent: one man’s signal is the other man’s 

noise. From the four main components of SAR/InSAR phase 

observations (i.e. the range-dependent component, 

atmospheric signal, the scattering effect, and noise), the 

range dependent phase is defined as a signal that includes 

information about the deformation and topography of the 

imaged area, and it is usually modeled functionally and is 

considered deterministic (or sometimes it is modeled as the 

summation of a deterministic model and stochastic 

deviations from the model), e.g., in  Hanssen (2001), Ferretti 

et al. (2001), and Kampes & Hanssen (2014). The other 

components are usually modeled in a statistical sense by 

means of a probability distribution function (PDF) or its first 

two statistical moments. Based on the different spatio-

temporal behavior of SAR/InSAR stochastic components, 

we analyze and model them independently. The scattering 

effect and the system noise mainly affect every single 

resolution-cell independently, resulting in an insignificant 

spatial correlation among nonadjacent pixels. Therefore, the 

stochastic model for these components can be presented in 

the single-point level. In contrary, the atmospheric 

components (and the unmolded deformation) have strong 

spatial correlation (Hanssen, 2001), and therefore, their 

stochastic model can be defined for multiple-points. As 

suggested by Hanssen (2001), focusing on 2nd statistical 

moments, the full covariance matrix of SAR/InSAR 

measurements 𝑄 can be approximated as summation of a 

covariance matrix 𝑄𝑛 influenced by single-point statistics 

and an atmospheric covariance matrix Q
atmo

 affected by 

multiple-point statistics as: 

Q≐Q
n
+Q

atmo
                                                                     (1) 

     The key focus in this paper is on the 

evaluation/description of single-point statistics for 

distributed scatterers (DS) pixels. The reason is mainly that 

the multiple-point stochasticity mainly describes the 

variability in atmospheric effects and is described 

comprehensively in literature, see for example Hanssen 

(2001). 

 
3. Single-point complex statistics for DS in SAR stacks 
3.1 Physical origin of noise 

     The reflected signal received from a DS resolution cell is 

equal to the coherent summation of the reflections from 

multitude of elementary scatterers within the cell. In other 

words, the complex value (phasor) P of a pixel (with 

amplitude 𝐴 and phase(ψ) can be written as the complex 

summation of the phasors of all the elementary scatterers 

within the associated resolution cell: 

P=Aexp(jψ)=∑ Si

i

=∑ ai

i

exp(ςi)=∑ℜ

i

(Si)+j∑ℑ

i

(Si) (2) 

where Si, ai, and ςi are the phasor, amplitude, and phase of 

the ith elementary scatterer within the cell. The elementary 

scattering phase ςi is a function of the relative position and 

dielectric characteristics of each elementary scatterer. 

Although the complex phasor P and its phase and amplitude 

are intrinsically deterministic quantities, i.e. they are 

invariant if the measurements are repeated under the same 

condition, they are unpredictable and hence they cannot be 

described mathematically in a deterministic manner, and so 

they are modeled stochastically. Assuming the location and 

distribution of elementary scatterers within a resolution cell 

to be random, the summation of Si values should result in a 

phasor P with a Wiener (or random walk) process 

(Sarabandi, 1992; Davenport, 1970). For a large number of 
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elementary scatterers, based on the central limit theorem1, the 

phasor P is a complex random variable with a circular 

Gaussian distribution (Sarabandi, 1992; Madsen, 1986). 

 

3.2 Circular Gaussian distribution 

     Goodman (1976) Showed that, under certain assumptions, 

the complex SLC phasor P has a zero-mean2 circular 

Gaussian distribution. These assumptions are (Bamler & 

Hartl, 1998; Madsen, 1986; Goodman, 1976): 

1. the responses of all the elementary scatterers within the 

resolution cell are independent, 

2. for each elementary scatterer, the amplitude Ai and 

phase ςi are independent, 

3. the phases ςi are uniformly distributed between -π and 

π, and 

4. All the elementary scatterers produce comparable 

amplitudes Ai — there is no dominant scatterer within 

a resolution cell. 

     These assumptions generally hold for areas with a surface 

roughness comparable to the radar wavelength, and for DS-

pixels over homogeneous natural landscapes such as 

agricultural fields, forests, and deserts. Considering a single 

DS-pixel in a stack of N SAR images, the set of phasors in 

all the images can be seen as a multivariate complex random 

variable y=[P
1
 P

2
⋯P

N
]
T

. The zero-mean circular complex 

Gaussian PDF of y is written as (Lee et al., 1994; Goodman, 

1976; Hannan & Thomson, 1971). 

f
y
(y)=

1

πN|Q
y
|
exp(-y*Q

y
-1y)                                                 (3) 

where Q
y
=D{y}=E{y y*} is an N×N complex covariance 

matrix defined by Eq. (4). 

Q
y
=

[
 
 
 
 
 
 
 E{|P

1
|
2
} γ

12
√E{|P

1
|
2
}E{|P

2
|
2
} ⋯ γ

1N
√E{|P

1
|
2
}E{|P

N
|
2
}

γ
12
* √E{|P

1
|
2
}E{|P

2
|
2
} E{|P

2
|
2
} ⋯ γ

2N
√E{|P

2
|
2
}E{|P

N
|
2
}

⋮ ⋮ ⋱ ⋮

γ
1N
* √E{|P

1
|
2
}E{|P

N
|
2
} γ

2N
* √E{|P

2
|
2
}E{|P

N
|
2
} ⋯ E{|P

N
|
2
}

]
 
 
 
 
 
 
 

                                                                                                 
(4) 

 in this formulation, the γ values are the complex correlation 

coefficients (called coherence values) between pair of 

images. The coherence value between Pi and Pj is defined as 

(Born et al., 1959; Foster & Guinzy, 1967 ; Papoulis, 1991). 

γ
ij
=

E{P
i
P

j
*}

√E{|P
i
|
2
}E{|P

j
|
2
}

=|γ
ij
|exp(jϕ

0ij
)                                   (5) 

 
1  Central limit theorem: Let x

1
,⋯,x

n
 be independent random variables/vectors and let z=∑ x

i

n
i=1 . Then under general conditions, the distribution of z approaches   

the (multivariate) normal distribution as n increases (n→∞). 
2  Here zero-mean refers to representation in real and imaginary components of the phasor. 
3 A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose. Hermitian matrices are the complex counterparts of symmetric   

matrices for real numbers. Note that the real part (and the absolute) of a Hermitian matrix is a symmetric matrix, but its imaginary part (and its phase) is a skew-

symmetric matrix: its transpose is equal to its negative. 

where the phase of the complex coherence,ϕ
0ij
∈[-π,π), is the 

phase of the expectation of the complex interferometric 

product P
i
P

j

*. The absolute coherence |γ
ij
|∈[0,1] is a measure 

of the correlation between the noise components of Pi and Pj. 

When the coherence is high, the noise components in Pi and 

Pj have a higher similarity, and so a large portion of the noise 

components will be canceled out in the interferometric phase. 

Consequently, the absolute coherence is also a normalized 

measure of the dispersion of the interferometric phase noise. 

The complex correlation matrix of the vector y is called the 

coherence matrix and is defined as: 

Γy=

[
 
 
 
 

1 γ
12

⋯ γ
1N

γ
12
* 1 ⋯ γ

2N

⋮ ⋮ ⋱ ⋮
γ

1N
* γ

2N
* ⋯ 1 ]

 
 
 
 

                                               (6) 

note that the coherence matrix Γy is a Hermitian matrix3. 

Using the definition of the coherence matrix Eq. (6), the 

covariance matrix 𝑄𝑦  (see Eq. (4)) can be reformulated as: 

Q
y
=Γy∘

[
 
 
 
 
 
 
 
 E{|P

1
|
2
} √E{|P

1
|
2
}E{|P

2
|
2
} ⋯ √E{|P

1
|
2
}E{|P

N
|
2
}

√E{|P
1
|
2
}E{|P

2
|
2
} E{|P

2
|
2
} ⋯ √E{|P

2
|
2
}E{|P

N
|
2
}

⋮ ⋮ ⋱ ⋮

√E{|P
1
|
2
}E{|P

N
|
2
} √E{|P

2
|
2
}E{|P

N
|
2
} ⋯ E{|P

N
|
2
}

]
 
 
 
 
 
 
 
 

⏟                                          
𝐼

                                                                                                                   

(7) 

where ∘ represents the Hadamard (i.e., entry-wise) product, 

and the matrix I is the expectation power matrix whose 

elements are defined by 

I[i,j]=ζij=√ζiiζjj=√E{|P
i
|
2
}E{|P

j
|
2
}                                               (8) 

4. Single-point phase statistics for single interferogram 

     In the previous section the single-point phase statistics of 

distributed scatterers in SAR stacks were discussed. In order 

to evaluate the single-point interferometric phase statistics, 

the SAR statistics should be propagated through the 

interferogram generation process which includes complex 

conjugate multiplication of pairs of SAR images. Here, we 

first look at the phase statistics for a single interferogram, 

followed in Section 5, by the extension of the stochastic 

model to the multi-interferogram case, i.e., for a vector of 

single-point interferometric phases in InSAR stacks. 

Assuming two SLC pixels P1 and P2 with zero-mean 

complex circular Gaussian distribution (see Eqs. (3) and (4)), 

with complex coherence γ (see Eq. (5)), the joint PDF of the 

amplitude and the phase of the multilooked interferogram 

constructed from the two SLC images is given by (Tough, 

1995; Lee et al., 1994; Goodman, 1963; Barber, 1993): 
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f
A,ϕ

(A,ϕ)=
2L(LA)

L

πζ
L+1

(1-|γ|
2
)Γ(L)

exp(
2|γ|LAcos(ϕ-ϕ0)

ζ(1-|γ|
2
)

)KL-1(
2LA

ζ(1-|γ|
2
)
)     (9) 

where L is the number of looks, KL-1(.) the modified Bessel 

function of the third kind (Gradshteyn et al., 1994), Γ(.) the 

Gamma function, and ζ=√E{|P1|
2
}E{|P2|

2
}. By integrating 

over amplitudes A, the marginal PDF of the interferometric 

phase ϕ is computed as Bamler & Hartl (1998). 

 
 
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

 

                                                                                      (10) 

with β=|γ|cos(ϕ-ϕ
0
), where ϕ

0
 is the expected interferometric 

phase. An equivalent formulation of f
ϕ
(ϕ) has been presented 

in different publications (Lee et al., 1994; Barber, 1993, 

Joughin & Winebrenner, 1994; Lucido et al., 2010). 

f
ϕ
(ϕ)= 

Γ(L+0.5)(1-|γ|
2
)
L
β

2√πΓ(L)(1-β
2
)
L+0.5

 +
(1-|γ|

2
)
L

2π
 2F1(L,1;0.5;|γ|

2
β

2
)-π≤ϕ<π 

 (11) 

where  2F1(.) is the classical standard hypergeometric 

function (Kampes &  Hanssen, 2004; Oberhettinger, 1970).  

For single-look pixels (i.e., L=1), the interferometric phase 

PDF reduces to (Tough et al, 1995; Just & Bamler, 1994; Lee 

et al., 1994): 

f
ϕ
(ϕ|L=1)=

(1-|γ|
2
)((1-β

2
)
0.5

+β(π-cos-1(β)))

2π(1-β
2
)
1.5

  -π≤ϕ<π 

 

(12)

 

     Figures 1A, B, and C show examples of f
ϕ
(ϕ) for 

coherence values 0.2, 0.5, and 0.8, evaluated for different 

number of looks L=1, 5, 10, 20, and 50. We can see that the 

higher 𝐿 is, the more peaked the PDF is. For the extreme case 

of    |γ|=0, f
ϕ
(ϕ) reduces to 

f
ϕ
(ϕ|γ|=0)=

1

2π
    for  -π≤ϕ<π                                       (13) 

which is equivalent to the PDF of uniformly distributed 

phases between -π and π. For another extreme scenario of 

|γ|=1 (i.e., zero decorrelation or zero noise), the 

interferometric phase PDF reduces to the Dirac delta 

function: 

f
φ
(ϕ| |γ|=1)= {

∞      ϕ=ϕ
0

0      ϕ≠ϕ
0

                                           (14) 

 
4 Euler’s dilogarithm is defined as: Li2(x)=∑

xk

k
2

∞
i=1  

  

4.1 First and second statistical moments of interferometric 

phase 

       With the PDFs of Eqs. (10) or (11), the mean and the 

variance of the interferometric phases can be computed by 

evaluating the first two statistical moments of f
ϕ
(ϕ) as: 

E{ϕ}=μ
ϕ
=∫ ϕ

π

-π
f
ϕ
(ϕ)dϕ                                                (15) 

D{ϕ}=σϕ
2=∫ (

π

-π
ϕ-E{ϕ})

2
f
ϕ
(ϕ)dϕ                                 (16) 

For the single-look case (i.e.,L=1), Tough et al. (1995) 

evaluated the integrals of Eqs. (15) and (16) in a closed from 

as: 

μ
ϕ,L=1

=
|γ|sin(ϕ0)

√1-|γ|
2
cos2(ϕ0)

arcsin(|γ|cos(ϕ
0
))                        (17) 

σ(ϕ,L=1)
2 =

π2

3
-π arcsin(|γ| cos(ϕ

0
))+ 

(arcsin(|γ|cos(ϕ
0
)))

2
-Li2(|γ|

2
)        

(18) 

where Li2(.) is the Euler’s dilogarithm4. Note that both 

aforementioned evaluations of the mean and variance are not 

only related to |γ|, but they are also a function of ϕ
0
. This fact 

challenges the interpretation of mean and variance as a 

metric for the central tendency and spread of the 

interferometric phase.  Ideally we are interested in a measure 

of central tendency which can characterize ϕ
0
, and a measure 

of dispersion which characterizes the spread of the phase 

around ϕ
0
. However in above equations, for example if ϕ

0
 

(and consequently the mode of the PDF) deviates from zero, 

the bounded PDF between -π and π becomes non-symmetric 

around the mode, and consequently the mean of Eq. (16) is 

not representative of the central tendency, while the mode is 

a better measure. In the same manner, the variance is not 

representative of phase dispersion around ϕ
0
, but it is a 

measure of non-symmetric dispersion around the mean (See 

Qugan et al. (1994) for more discussion). In fact we are 

interested in a measure of dispersion which is invariant with 

respect to ϕ
0
 and which depends only on the coherence as a 

measure of noise. So the central tendency and the measure of 

phase dispersion ideally should be defined relative to the 

mode and account for the 2π symmetry of the PDF (Tough, 

1995). In order to solve this problem, considering the fact 

that the phase PDF is periodic with a 2π cycle, it is suggested 

to evaluate the integration of Eqs. (15) and (16) in the interval 

(ϕ
0
-π,ϕ

0
+π) instead of (-π,π), resulting in the following 

definition of phase mean and variance (Just & Bamler, 1994): 
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Figure 1. Probability density function of interferometric phase for coherence levels (A) |γ|=0.2, (B) |γ|=0.5, and (C) |γ|=0.8 evaluated for different 

number of looks L=1, 5, 10, 20, and 50 (the higher the L, the more peaked PDF). It is evident that multilooking improves the precision of the 

interferometric phase. All the PDFs were computed based on Eq. (11) assuming ϕ
0
=0. After Hanssen (2001) 

E{ϕ}=μ
ϕ
=∫ ϕ

ϕ0+π

ϕ0-π
f
ϕ
(ϕ)dϕ=ϕ

0
                                        (19) 

D{ϕ}=σϕ
2=∫ (

ϕ0+π

ϕ0-π
ϕ-ϕ

0
)
2
f
ϕ
(ϕ)dϕ= ∫ (

π

-π
ϕ)

2
f
ϕ
(ϕ+ϕ

0
)dϕ     (20) 

     It should be pointed out that changing the integration 

interval to (ϕ
0
-π,ϕ

0
+π), is equivalent to evaluating the 

integral in the interval (-π,π) under the assumption of ϕ
0
=0. 

With this new definition of the mean (i.e. Eq. (19)), μ
ϕ
 

directly characterizes ϕ
0
 and it is independent of the 

coherence values. Equivalently, the variance of Eq. (20) is 

now dependent on fϕ(ϕ+ϕ
0
) which is invariant with respect to 

ϕ
0
, and so the evaluated variance is exclusively a function of 

coherence. In general there is no closed-form evaluation of 

Eq. (20) (Except for single-look cases), and therefore the 

integral should be evaluated numerically. For single-look 

cases, the closed-form evaluation of Eq. (20) results in 

Monti-Guarnieri & Tebaldini (2008): 

σϕ,L=1
2 =

π2

3
-π arcsin(|γ|)+(arcsin(|γ|))

2
-Li2(|γ|

2
)                  (21) 

which is equivalent to Eq. (18) if ϕ
0
=0. In Figure 2 the 

standard deviation of the interferometric phase (i.e.,√σϕ
2) is 

evaluated as a function of coherence |γ| and for different 

number of Looks L=1,10,20, and 50. It is evident that a 

higher multilooking factor reduces the phase standard 

deviation, assuming ergodicity. Note that in the highest 

dispersion case (i.e., |γ|=0), the standard deviation reaches an 

upper bound which which is the standard deviation of 

uniformly distributed phase between -π . 

5. Single-point phase statistics for interferogram stack 

     In the previous section, we discussed the statistical 

properties of interferometric phases for single pixels in single 

interferograms. Thus, the interferometric phase is a 

univariate random variable, with a one-dimensional PDF 

 
5 Note that in this paper, we are discussing the statistics of noise terms due to different decorrelation mechanisms (i.e., single-point statistics, see Section 2 for 

more information on discrimination between different noise components). Therefore, when we talk about correlation or dependency, we mean correlation or 
statistical dependency between different noise terms for one pixel in two interferograms. This should not be mistakenly interpret as the correlation between other 

signal/noise components such as atmospheric or deformation phase. 

whose dispersion is given by the phase variance. However, 

in order to evaluate phase statistics for one pixel in a stack of 

interferograms, we are dealing with a multivariate vector of 

interferometric phases, with a multi-dimensional PDF (or a 

joint PDF of all the interferometric phases for one pixel) and 

the dispersion in the form of a full covariance matrix. If the 

decorrelation noise components in different interferograms 

are assumed independent, the joint PDF can be evaluated 

simply by multiplication of the univariate phase PDFs given 

by Eqs. (10) or (11), and the phase dispersion can be 

described by a diagonal covariance matrix whose diagonal 

elements are equal to univariate variance factors evaluated 

by Eq. (18). However the assumption of independency may 

not hold due to different reasons. In this section, we first 

discuss the reasons of dependency/correlation between the 

noise components, followed by reviewing different 

conceptsfor the analytical and numerical evaluation of 

multivariate interferometric phase PDFs and their dispersion. 

5.1 Causes of correlation between interferograms 

      Assume two interferograms I12 and I34 constructed from 

a set of four SLC images P1, P2, P3, and P4. In order to 

evaluate the correlation between the phases of the two 

interferograms, the noise statistics of the complex 

multivariate vector y= [P1,P2,P3,P4]
T
, which can be 

described by a circular complex Gaussian distribution (see 

Eqs. (3) and (5)), should be propagated to the 2×2 covariance 

matrix of the vector [ϕ
12

,ϕ
34

]
T
. As the SLC values in the 

vector y are likely to be correlated (as described by coherence 

values in the 4×4 coherence matrix Γy), there is no reason in 

principle to assume that the two interferometric phases are 

independent. In fact, the interferometric phases can be 

correlated or uncorrelated as expressed by different sets of 

coherence values in Γy. In order to get more insight on the 

physical origin of the correlation between noise components, 

we discuss three main sources of this dependency in the 

following5. 
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Figure 2. Evaluation of standard deviation of the 

interferometric phase (σϕ) as a function of coherence 

|γ|, for four different number of looks L=1,10,20, and 

50. The standard deviations are computed by 

numerical evaluation of Eq. (20). The upper-bound 

of standard deviation (visualized by the black dot •) 

is equivalent to 2π/√12 (or ≈ 104o), which is the 

standard deviation of uniformly distributed phase 

between -π and π. After Tough (1995). 

 

 

 

 

 

 

 

 

 

 

 

 
5.1.1 Common master/slave image 

      If two interferograms share a common master/slave 

image, the decorrelation noise terms in the common image 

(e.g. the thermal and system noise terms in the shared image) 

appear in the interferometric phases of both interferograms, 

introducing correlation between them.  

5.1.2 Common geometrical or Doppler-centroid 

decorrelation component 

     Even if there is nshared image between interferograms, 

the imaging geometry of the four acquisitions which produce 

the two interferograms, can cause correlation in the phase 

components of geometrical decorrelation, see e.g. Agram & 

Simons (2015). Assume the four SLC imagesP1,P2,P3 and 

P4 with the viewing geometry demonstrated in Figure 3. 

Then the total geometrical decorrelation noise affecting the 

interferometric phase ϕ
34

 also affects ϕ
12

 because of the 

overlap in the object spectrum, introducing correlation 

between the two interferometric phases. The same rationale 

can be also used for Doppler-centroid decorrelation, where 

an overlap in Doppler-baseline space can result in correlation 

between Doppler-centroid decorrelation phases in two 

interferograms. 

5.1.3 Common temporal decorrelation component 

      An overlap between the time-period covered by two 

interferograms can cause correlation between components of 

temporal decorrelation. In other words, the changes in 

scattering characteristics of the surface during the common 

period of time affect the both interferograms in the same 

manner and may introduce a correlation between the 

temporal decorrelation phases. 

 

 

 

 

 

 

5.2 Phase statistics for interferograms with a common image 

      In the case of only two interferometric phases constructed 

from three SLCs (i.e. ϕ
12

 and ϕ
13

 constructed from three  

SLCs in y= [P1,P2,P3]
T with absolute coherence matrix(Υ), 

Lucido et al. (2010) evaluated a closed form expression for 

the joint PDF of the two interferometric phases as 

fϕ
12

,ϕ
13
(ϕ

12
,ϕ

13
)=

q

(2π)
2
|Υ|

1
2∏ λii

3
i=1

  (1+q(I1,2,3+I2,3,1+I3,1,2))  (22) 

with the following variables: Elements of the inverse of the 

absolute coherence matrix λij defined as 

Υ-1= [

1 |γ
12
| |γ

13
|

|γ
12
| 1 |γ

23
|

|γ
13
| |γ

23
| 1

]

-1

= [

λ11 λ12 λ13

λ12 λ22 λ23

λ13 λ23 λ33

]    (23) 

• parameter q defined as 

  q=
1

1-r12
2 -r13

2 -r23
2 +2r12r13r23

                                             (24)                                              

where 

  rik=rki=
λikcos(ϕik-ϕ0ik

)

√λiiλkk

                                                (25)                                       

• and Ii,k,l given by 

Ii,k,l=
rik

3 +2rilrkl-rik(1+ril
2)+rkl

2

√(1-rik
2 )

∗ (
π

2
- arctan

(

 
rik

√(1-rik
2 )
)

 )    (26) 
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Figure 3. Example of InSAR acquisition geometry for four 

acquisitions P1, P2, P3and P4: demonstration of the cause of 

correlation between geometrical decorrelation phases in two 

interferograms. The total geometrical decorrelation noise 

affecting the interferometric phase ϕ
34

 also affects ϕ
12

 

because of the overlap in the baseline space, introducing 

correlation between the two interferometric phases. Figure 

adapted from Agram & Simons (2015).

       Note that the PDF of Eq. (22) is periodic with 2π cycles 

in two dimensions. Considering wrapped phases in the 

interval [-π, π), the peak/mode of the PDF is located at 

[ϕ
012

,ϕ
013

]
T
. Figure 4 shows examples of 2D representation 

of the joint PDF given by Eq. (22) for cases where the 

coherence between all SLC pairs assumed to be equal (i.e., 

|γ
12

|=|γ
13

|=|γ
23

|), and for four different coherence values. 

Based on Eq. (22), the joint PDF of two interferometric 

phases sharing the same master image depends not only on 

the coherence values of the two interferograms, but also 

depends on the coherence of the third interferogram 

constructed by the two slave images. Figure 5 demonstrates 

this fact. In the plot, the coherence of two interferometric 

phases ϕ
12

 and ϕ
13

 is assumed to be constant and equal to 

|γ
12

|=|γ
13

|=0.6, but the coherence of the third interferogram 

(i.e. |𝛾23|) is gradually increasing from 0.1 to 0.9. We can 

clearly see that the joint PDF of (and so the correlation 

between) the two interferometric phases varies depending on 

the value of the |γ
23

|. Summarizing, in order to evaluate phase 

statistics of two interferometric phases constructed from 

three SLC values, the full 3×3 absolute coherence matrix Υ 

is required. Note that Eq. (22) evaluates the joint PDF for two 

connected interferograms—sharing a common master/slave 

image—and only for single-look pixels. For more general 

cases, i.e., for two interferograms without a common image 

and for different multilooking factors, there is no closed-

form expression available. For these cases, we will discuss 

the first two statistical moments of the joint-PDF in the next 

section. 

5.3 First and second statistical moments 

      The expected value of the random vector of two 

interferometric phases (i.e., y= [ϕ
12

, ϕ
34

]
T) is defined as a vector 

whose elements are the expected values of each 

interferometric phase, and so (see Eq. (19)). 

E{y}=E{ [
ϕ

12

ϕ
34

] }= [
E{ϕ

12
}

E{ϕ
34

}
]= [

ϕ
012

ϕ
034

]                                  (27) 

The second statistical moment or dispersion of the vector 

y= [ϕ
12

, ϕ
34

]
T
 is defined as a 2×2 covariance matrix Q

y
: 

D {y}=D {[
ϕ

12

ϕ
34

]} =Q
y
= [

σ2
ϕ

12
σϕ

12
,ϕ

34

σϕ
12

,ϕ
34

σ2
ϕ

34

]= 

∫ (y-E{y})(y-E{y})
T

y

f
y
(y)dy                                            (28) 

where f
y
(y) represents the multivariate PDF of y, i.e. 

f
y
(y)=f

ϕ
12

,ϕ
34

(ϕ
12

,ϕ
34

). The diagonal elements of this covariance 

matrix or the variance of the interferometric phases can be 

computed by numerical evaluation of Eq. (20) For 

multilooked pixels, or by evaluation of Eq. (21) For single-

look cases. However, evaluation of the off-diagonal element 

or the covariance between interferometric phases requires 

numerical integration over the joint PDF: 

Cov {ϕ
12

,ϕ
34
}=σϕ

12
,ϕ

34

=∫ ∫ ϕ
12

π

-π

π

-π

ϕ
34

fϕ
12

,ϕ
34

(ϕ
12

,ϕ
34
)dϕ

12
dϕ

34
 (29) 
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Figure 4. Examples of joint probability distribution function of two (single-look) interferometric phases ϕ
12

 and ϕ
13

 generated from 

three SLCs P1,P2, and P3 with mutual coherence between all pairs of SLCs equal to (A) 0.2, (B) 0.4, (C) 0.6, and (D) 0.8, assuming 

ϕ
012

=0 and ϕ
013

=0. The PDFs are evaluated based on the closed form expression of Eq. (22). Colors denote the probability density. 

Note the difference in color scales. 

 

     Because the generic closed-form expression of the joint 

PDF is not available, Eqs. (29) or (28) cannot be evaluated. 

Therefore, the evaluation of the full phase covariance matrix 

requires an alternative approach. In the following, we present 

two approaches for this purpose: one based on the numerical 

Monte-Carlo integration and the other based on an analytical 

approximation using nonlinear error propagation. 

5.4 Evaluation of phase covariance matrix: Monte-Carlo 

method 

     Monte-Carlo methods were originally developed for 

numerical evaluation of integrals by generating random 

numbers (Ripley .1987, Kalos and Whitlock .2008 and Liu 

.2001). More specifically for the computation of second 

statistical moment of interferometric phases, the integral of  

D{y}=Q
y
=

1

M
∑ (M

i=1 y(i)-E{y})(y(i)-E{y})
T
                          (30) 

where y(i),i=1…M  are the M random realizations of vector y 

generated from multivariate PDFf
y
(y).In order to generate 

random realizations of the vector of interferometric phases 

y(i), in the first step, random realizations of vector of SLC 

 
6 Generating random samples from a multivariate normal distribution is a standard practice in numerical simulations, and there are various libraries and packages 

for it in different programming/statistical environments. An example is the function mvnrnd.m in the MATLAB statistical toolbox (MATLAB, 2014). For more 
information concerning methods and algorithms of generating random vectors from multivariate normal distribution, see, for example, the textbooks by (Gentle, 

2003 ; Fishman, 2003). 

values (i.e., y
slc

) are simulated from the multivariate  circular 

Gaussian distribution specified by a coherence matrix. 

Subsequently, the sample vectors of interferometric phases 

are computed from the simulated SLC realizations. Finally 

the empirical covariance matrix is computed by Eq. (30) 

Based on the simulated realizations. The algorithm to 

compute the covariance matrix Q
y
 can be summarized as:  

Inputs: the N×N absolute coherence matrix 𝛶 (assuming a 

stack of N SLC images), the multilooking factor L, and the 

number of realizations M, which should be chosen as a large 

number. Eq. (28) can be numerically estimated by the Monte-

Carlo integration as (Gundlich et al., 2003 ; Alkhatib, 2007). 

Step 1: generate M×L vectors of samples y
slc

(j)
, j=1…M×L of the 

form of y
slc

(j)
=[R1

j
⋯RN

(j)
I1

j
⋯IN

(j)
]

T from a zero-mean multivariate 

normal distribution6 with absolute coherence matrix 

Q
y
-slc

=
1

2
[
Υ 0

0 Υ
] 

Step 2: compute M realizations of multilooked 

interferometric phase vectors y(i), i=1…M from M×L generated 

samples of SLC vectors y
slc

(j)
. 
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Step 3: compute the empirical 

covariance matrix by evaluation of Eq. 

(30), where the expectation E{y} can be 

estimated as the average of the 

simulated samples as Ê {y}=1/M∑ y(i)M
i=1   

Figure 5. Examples of joint probability 

distribution function of two (single-

look) interferometric phases ϕ
12

 and ϕ
13

 

generated from three SLCs P1, P2, and 

P3. In all the plots, the coherence of 

ϕ
12

and ϕ
13

is assumed to be constant and 

equal to|γ
12
|=|γ

13
|=0.6, but the 

coherence of the connecting 

interferogram is gradually increasing 

from 0.1 to 0.9. This is the 

demonstration of the fact that the joint 

PDF of and the correlation between two 

interferometric phases (sharing a 

common master image) not only 

depends on the coherence of two 

interferograms but also depends on the 

coherence of the interferometric phase 

between the two slave images. (Colors 

denote the probability density). 

 

     Note that, although the integral of Eq. (28) was written for 

the vector of only two interferometric phases 

(i.e.,y=[ϕ
12

,ϕ
34

]
T
), the Monte-Carlo algorithm is generic and 

can be applied, in principle, to any stack of interferometric 

phases provided that an N×N absolute coherence matrix 𝛶 is 

available.As a demonstration, for a stack of 10 SLC images, 

Figure 6 shows an arbitrary 10×10 coherence matrix 𝛶 and 

its corresponding 45×45 covariance matrix Q
y
 computed by 

the Monte-Carlo method for the vector y which includes all 

the 45 interferometric combinations constructed from the 10 

SLC images (assuming multilooking factor L=25). Note that 

the unit of interferometric phases is radian, so the unit of the 

elements of the covariance matrix is squared radians 

([rad2]). 

5.5 Evaluation of phase covariance matrix: Analytical 

approximation 

     The closed-form evaluation of the second statistical 

moment of the vector of interferometric phases is challenging 

to derive due to the highly nonlinear relationship between 

SLC values and multilooked interferometric phases, and 

hence such a closed-form expression has not been derived so 

far. In this section, we derive such an expression using the 

concept of nonlinear error propagation in order to propagate 

the dispersion of SLC values described by coherence matrix 

to  

the dispersion of interferometric phases. Assume two 

complex interferograms I
12

 and I
34

 constructed from the set 

of four SLC values (i.e.,y
slc

=[P
1
,P

2
,P

3
,P

4
]
T
) with a circular 

complex Gaussian distribution described by a 4×4 absolute 

coherence matrix 𝛶 

12 13 14

12 23 24

13 23 34

14 24 34

1 | | | | | |

| | 1 | | | |
 

| | | | 1 | |

| | | | | | 1

  

  

  

  

 
 
  
 
 
 

                        (31)                                                                           

      We are interested in the dispersion or covariance matrix 

of the vector of interferometric phases y=[ϕ
12

,ϕ
34

]
T
. We 

assume, without loss of generality, that the amplitude of SLC 

images are normalized in the way that E{A
i

2}=1 (Note that 

the final goal is the computation of the phase dispersion, 

which is invariant with respect to normalization of 

amplitudes). In the complex plain, every multilooked 

interferometric phase can be computed as the ratio between 

the multilooked interferometric imaginary component over 

the real component, and so: 

ϕ
i,j

=arctan(
ℜ(<Ii,j>)

ℑ(<Ii,j>)
)                                                                 (32) 
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where <.> denotes spatial complex averaging or complex 

multilooking. So the relationship between the vector of two 

interferometric phases (i.e., y=[ϕ
12

,ϕ
34

]
T
) and interferometric 

real/imaginary components can be written as 

y= [
ϕ

12

ϕ
34

]= [
arctan(

ℑ(<I1,2>)

ℜ(<I1,2>)
)

arctan(
ℑ(<I3,4>)

ℜ(<I3,4>)
)

]                                                        (33) 

For simplicity, we express the vector of interferometric real 

and imaginary components as 

x= [

x
1

x
2

x
3

x
4

] =

[
 
 
 
 
ℜ(<I

1,2
>)

ℜ(<I
3,4

>)

ℑ(<I
1,2

>)

ℑ(<I
3,4

>)]
 
 
 
 

                                                      (34) 

the functional relationship between the vector of two 

interferometric phases (i.e., y=[ϕ
12

,ϕ
34

]
T
) and the vector   

y= [
ϕ

12

ϕ
34

]=F(x)= [
F1(x)

F2(x)
]= [

arctan(
x

3

x
1

)

arctan(
x

4

x
2

)
]                          (35) 

Based on the nonlinear error propagation law, the dispersion 

of vector y= [ϕ
12

,ϕ
34

]
T
 can be approximated as: 

Q
y
=D{ [

ϕ
12

ϕ
34

] }≈JF(x|x0) Q
x
 JF(x|x0)

T
                               (36) 

where JF(x|x0) is the Jacobian of the multivariate function 

F(x) with respect to the vector x evaluated at an expected 

value x0. For zero-mean7 phases (i.e.,E{ϕ
1,2

}=E{ϕ
3,4

}=0), and 

assuming x0 equal to the expected values of the 

interferometric real and imaginary components, Eq. (36) is 

evaluated and the dispersion or covariance matrix of the 

interferometric phase vector is approximated as (the explicit 

derivation is provided in Appendix A.  

 

 

Figure 6. Demonstration of the Monte-Carlo method to propagate an absolute coherence matrix to interferometric phase covariance matrix: (A) 

An arbitrary 10×10 absolute coherence matrix𝛶, (B) corresponding 45×45 covariance matrix Q
y
 computed by the Monte-Carlo method for the 

vector of all the 45 interferometric combinations constructed from the 10 SLC images, for multilooking factor L=25. The 45 interferometric 

combinations in the vector 𝑦
̲
 are assumed to be ordered as[ϕ

12
. . . ϕ

1N 
 ϕ

23 
 . . . ϕ

2N 
. . .ϕ

(N- 1)N
 ], where N=10. 

 

Figure 7. Stylized setting for the demonstration of covariance 

evaluation between two interferometric phases ϕ
12

 and ϕ
34

 (the 

results of simulation are visualized in Figure 8). Four SLC 

images P1, P2, P3, and P4 are considered, with absolute 

coherence values |γ
ij
|. Four of the coherence values assumed to 

be constant and equal to an arbitrary value 0.3, and the 

coherence values |γ
13

| and |γ
24

| are gradually increased in the 

simulation from 0.5 to 1. 

 

 

 
7 Note that the assumption of zero mean phase is equivalent to changing the integration interval of Eqs. (15) and (16) to (ϕ

0
-π,ϕ

0
+π) instead of (-π,π) (see 

Section 4 and Eq. (20)). 
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      (37)     

from Eq. (37), the general equation for the interferometric 

phase variance and the covariance between interferometric 

phases are expressed as 

D{ϕ
ij
}=σϕ

ij

2 ≈
1-|γij|

2

2L|γij|
2,                                                  (38) 

and 

Cov{ϕ
ij
,ϕ

kl
}=σϕ

ij
,ϕ

kl
≈

|γik||γjl|-|γil||γjk|

2L|γij||γkl|
.                                      (39) 

Note that, for two interferometric phases with the same 

master image, equation is reduced to 

Cov{ϕ
ij
,ϕ

ik
}=σϕ

ij
,ϕ

ik
≈

|γjk|-|γij||γik|

2L|γij||γik|
.                                          (40) 

     In a stack of N SLC images, for the vector of any subset 

of interferometric phases, all the elements of the full 

covariance matrix of interferometric phases can be 

approximated by Eqs. (38), (39), and provided that the N×N 

absolute coherence matrix is available. In summary, with 

these two equations, the absolute coherence matrix 𝛶 can be 

approximately propagated to the full covariance matrix of the 

multilooked interferometric phases. It should be pointed out 

that the approximation via nonlinear error propagation is 

valid when the dispersion of interferometric real/imaginary 

components is relatively small with respect to nonlinearity of 

the function F(x) around its expectation. This assumption 

holds for high coherence values or a large number of looks. 

This is in fact the reason that the variance of Eq. (38) gives 

exactly the variance of interferometric phase of point 

scatterers, which have a relatively large interferometric 

amplitude compared to dispersion of their interferometric 

real/imaginary components. As a demonstration for 

covariance evaluation between two interferometric phases 

ϕ
12

 and ϕ
34

, we simulate some numerical examples. The 

setting of the simulation has been captured in Figure 7 Four 

SLC images P1,P2, P3, and P4 are considered, with absolute 

coherence values |γ
ij
|. Four of the coherence values are 

assumed to be constant and equal to an arbitrary value of 0.3, 

and the coherence values |γ
13

| and |γ
24

| are gradually 

increased in the simulation from 0 to 1. The results of the 

simulation for four different multilooking 

factors L=1,5,20 and 50 are visualized in Figure 8. We can 

clearly see that Eq. (39) provides an good approximation for 

high number of looks. This is expected as, for larger L, the 

dispersion of interferometric real and imaginary components 

gets smaller and so the nonlinear error propagation gives a 

better approximation. Rocca (2007) and De Zan et al. (2015) 

also have reported as equation for the evaluation of 

covariance between interferometric phases as: 

Cov{ϕ
ij
,ϕ

kl
}≈

|γil||γjk|-|γij||γkl|

2L|γij||γkl|
.                                               (41) 

     Note the difference between the numerators of Eqs. (41) 

and (39). It is possible to show that Eq. (41) derived by 

(Rocca, 2007; De Zan et al., 2015) has been derived based on 

the simplified assumption that complex interferograms have 

a circular complex distribution, which is an invalid 

assumption as the Hermitian product of circularly Gaussian 

distributed SLC values does not generally follow a circular 

distribution (see Appendix A).  Furthermore, we can see that 

Eq. (39) is truly the function of all the six absolute coherence 

values in 𝛶, in contrast with Eq. (41) which is invariant with 

respect to the coherence values |γ
ik

| and |γ
jl
|. For example, for 

the demonstration setting of Figure 7, Eq. (41) evaluates the 

covariance values equal to zero which is clearly wrong 

compared to the results of the Monte-Carlo simulation (see 

Figure 8). Hence, we conclude that Eq. (39) is more generic 

than Eq. (41) and is a better approximation for the phase 

covariance of interferometric phases. 

6. Summary and conclusions 

     This paper gave an overview of single-point statistics for 

distributed scatterers in InSAR stacks. We reviewed the 

single-point statistics of interferometric phase values, for 

both cases of a single interferogram (Section 4) and a stack 

of interferograms (Section 5). For a vector of (multilooked) 

interferometric phases associated with a single DS-pixel, the 

stochastic model has been given in terms of second statistical 

moments or the covariance matrix. We have introduced a 

Monte-Carlo numerical approach to evaluate the covariance 

matrix of interferometric phases (Section 5.4). As an 

alternative, an analytical approximation for evaluation of the 

variances and covariance’s of interferometric phases has 

been also derived by nonlinear propagation of SAR statistics 

(i.e., coherence matrix) into the dispersion of interferometric 

phases (Section 5.5). 
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Figure 8. Demonstration of covariance evaluation between two interferometric phases ϕ
12

 and ϕ
34

, and comparison between 

evaluations by the Monte-Carlo approach and the closed-form evaluation of Eq. (39), for four different multilooking factors:  (A) 

L = 1, (B) L = 5, (C) L = 20, and (D) L = 50. The stylized setting of the demonstration have been visualized in Figure 7. We can 

see for higher number of looks, Eq. (39) provides a good approximation

 

Appendix A: Derivation of Equation (37) 

     The objective is to evaluate the covariance matrix of the 

vector y=[ϕ
12

,ϕ
34

]
T
 via the approximation (nonlinear error 

propagation): 

 

Q
y
=D{ [

ϕ
12

ϕ
34

] }≈JF(x|x0) Q
x
 JF(x|x0)

T                                 (42) 

• where x is the vector of interferometric real and 

imaginary components as 

x= [

x
1

x
2

x
3

x
4

] =

[
 
 
 
 
ℜ(<I

1,2
>)

ℜ(<I
3,4

>)

ℑ(<I
1,2

>)

ℑ(<I
3,4

>)]
 
 
 
 

                                                           (43) 

• F(x) is the multivariate function describing the 

relationship between the vector of two interferometric 

phases (i.e., y=[ϕ
12

,ϕ
34

]
T) and x: 

y= [
ϕ

12

ϕ
34

]=F(x)= [
F1(x)

F2(x)
] = [

arctan(
x

3

x
1

)

arctan(
x

4

x
2

)
]                           (44) 

• And JF(x|x0) is the Jacobian of the multivariate 

function F(x) with respect to the vector x evaluated at 

an initial value x0. 

Derivation of JF(x|x0): 

     The Jacobian of JF(x) is computed by taking the partial 

derivatives of F with respect to the elements of x, so 

JF(x)=

[
 
 
 

-x
-3

x
-1

2+x
-3

2
0

x
-1

x
-1

2+x
-3

2
0

0
-x
-4

x
-2

2+x
-4

2
0

x
-2

x
-2

2+x
-4

2
]
 
 
 

                                       (45) 

The initial value x0 can be selected at the expected value of 

the elements of x: 

x0= [

x01

x02

x03

x04

] =

[
 
 
 
 
E{ℜ(<I

1,2
>)}

E{ℜ(<I
3,4

>)}

E{ℑ(<I
1,2

>)}

E{ℑ(<I
3,4

>)}]
 
 
 
 

                                                (46)                              

Assuming zero-mean interferometric phase (i.e. 

E{ϕ
12

}=E{ϕ
34

}=0), the elements of x0 are evaluated as: 

x0= [

x01

x02

x03

x04

] = [

|γ
12

|

|γ
34

|

0

0

]                                                                  (47) 
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Evaluating the Jacobian of Eq. (45) at x0 gives 

JF(x|x0)= [
0 0

1

|γ12|
0

0 0 0
1

|γ34|

]                                              (48) 

Derivation of 𝑄𝑥: 

     First, it should be noted that, generally speaking, complex 

interferograms that are computed by the Hermitian product 

of circularly Gaussian distributed SLC values, do not follow 

a circular distribution, and hence, the multivariate PDF of the 

vector of complex interferometric values may not be circular. 

In general, for a non-circularly distributed random vector z, 

the dispersion or covariance matrix defined as D{z}=E{zz*} 

does not entirely describe the second order statistics of z 

(Mandic &  Goh, 2009). This is due to the fact that the vector 

𝑧 and its conjugate transpose 𝑧∗ are correlated in case of non-

circularity. For a full description of the second statistical 

moment of non-circularly distributed complex vectors, a 

complementary quantity called pseudo-covariance or 

complementary covariance needs to be taken into account 

(Mandic & Goh, 2009 ; Neeser & Massey, 1993; Picinbono 

& Bondon, 1997; Schreier & Scharf, 2003). The 

complementary covariance is defined as E{zzT} where the .T 

denotes the standard transpose operation. In agreement with 

the terminology complementary covariance, we introduce 

the term complementary dispersion denoted by D̃ which is 

defined as D̃ {z}=E{zzT}. It is known that the dispersion of 

the vector of real and imaginary component of z can be 

computed as (Neeser & Massey, 1993).  

D{ [
ℜ(z)

ℑ(z)
] }=

[
 
 
 0

2
ℜ(D{z}+ D̃ {z})

1

2
ℑ(D{z}+ D̃ {z})

-
1

2
ℑ(D{z}- D̃ {z})

1

2
ℜ(D{z}- D̃ {z})]

 
 
 

 

                                                  (49)  

Assuming the complex vector of the interferometric phases 

z=[I
12

,I
34

]
T
, the vector x can be reformulated as 

𝑥 = [
ℜ(𝑧)

ℑ(𝑧)
]                                                                              (50) 

And so the dispersion of x (i.e., Q
x
) can be evaluated by Eq. 

(49). In order to evaluate Eq. (49), the dispersion and the 

complementary dispersion of z=[I
12

,I
34

]
T
 should be derived. 

The dispersion of z=[I
12

,I
34

]
T
 is written as 

 

   

   

12

34

*

1 2

*

3 4

*

* *1 2

2 1 4 3*

3 4

* * * *

1 2 2 1 1 2 4 3

* * * *

2 1 3 4 3 4 4 3

D D (51)

D (52)

E (53)

E E
(54)

E E

I
z

I

P P

P P

P P
P P P P

P P

P P P P P P P P

P P P P P P P P

  
   

  

   
   

    

        
    

 
 
 
 

 

Using the Gaussian moment factoring theorem8 Reed (1962) 

and Krishnan & Chandra (2006), Eq. (54) is written as: 

 
       

       

       

       

* * * *

1 2 2 1 1 1 2 2

* * * *

2 1 3 4 2 4 1 3

* * * *

1 2 4 3 1 3 2 4

* * * *

3 4 4 3 3 3 4 4

E E E E
D ...

E E E E

E E E E
(55)

E E E E

P P P P P P P P
z

P P P P P P P P

P P P P P P P P

P P P P P P P P

 

 







 

Assuming amplitude-normalized SLC images (i.e E{A
I

2}=1 

and zero-mean interferometric phases (i.e. E {ϕ
i,j
}=0), the 

expected value of the interferograms is equal to the absolute 

coherence values (i.e., E {P
i
P

j

*} =E {P
j
P

i

*} = |γ
i,j
| ,see Eq. 

(5) and so Eq. (55) can be evaluated as: 

D{z}=D {[
I
12

I
34

]}= [
1+|γ

12
|
2 |γ

12
||γ

34
|+|γ

13
||γ

24
|

|γ
12
||γ

34
|+|γ

13
||γ

24
| 1+|γ

34
|
2

]   (56) 

In the same manner the complementary dispersion of z is 

computed as Eq. (57): 

 
   

   

             

* * * *
* *

1 2 2 1 1 2 4 3
* *12 1 2 1 2

2 1 4 3* * * * * *
34 3 4 3 4 2 1 3 4 3 4 4 3

* * * * * * *

1 2 2 1 1 1 2 2 1 2 4 3 1 3 2

E E
D D D E

E E

E E E E E E E E

P P P P P P P PI P P P P
z P P P P

I P P P P P P P P P P P P

P P P P P P P P P P P P P P P

                                                   

   

               

*

4

* * * * * * * *

2 1 3 4 2 4 1 3 3 4 4 3 3 3 4 4

2

12 12 34 14 23

2

12 34 14 23 34

E E E E E E E E

2
(57)

2

P

P P P P P P P P P P P P P P P P

    

    

 
 
  
 

 
 
  

Substituting Eqs. (56) and (57) into Eq. (49) gives the 

dispersion of x (for single-look pixels). Finally for 

 
8 Gaussian moment factoring theorem: if 𝑥1 , 𝑥2 , 𝑥3 , and 𝑥4  are zero mean variables with a complex jointly Gaussian distribution, the following relationship holds: 

          E{𝑥1  𝑥2
∗𝑥3𝑥4

∗
} = E{𝑥1  𝑥2

∗
}E{𝑥3𝑥4

∗
} + E{𝑥1𝑥4

∗
}E{ 𝑥2

∗𝑥3} 
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multilooked pixels computed by coherent averaging over L 

independent homogeneous pixels with covariance 

 

2 12 34

12

13 34 14 23

212 34

12

13 34 14 23

2

12 13 24 14 23

2

13 24 14 23 12

2 ...
3 1 0 0

2 ...1
3 1 0 0

2

0 0 1

0 0 1

xD x

 


   

 


   

    

    

 
 

 
 

    
 
  
 
   

                                                                                                  
(58) 

matrix Q
X 

: the covariance matrix of the vector of 

interferometric real and imaginary components is computed 

by linear error propagation as 

Q
x|L

=
1

L
Q

x
                                                                          (59) 

Derivation of Q
y
: 

     By substituting Eqs. (59), (58), and (48) into Eq. (42), the 

covariance matrix of the interferometric phase vector is 

approximated as 

12

34

2

13 24 14 2312

2
12 3412

D
2

13 24 14 23 34

2
12 34 34

1

22

1

2 2

LL

L L





   

 

    

  

   
  
    

 
 
 

  
  

 
  

           (60) 
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