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Abstract: Untargeted metabolomics (UM) is increasingly being deployed as a strategy for screening
patients that are suspected of having an inborn error of metabolism (IEM). In this study, we examined
the potential of existing outlier detection methods to detect IEM patient profiles. We benchmarked
30 different outlier detection methods when applied to three untargeted metabolomics datasets.
Our results show great differences in IEM detection performances across the various methods.
The methods DeepSVDD and R-graph performed most consistently across the three metabolomics
datasets. For datasets with a more balanced number of samples-to-features ratio, we found that AE
reconstruction error, Mahalanobis and PCA reconstruction error also performed well. Furthermore, we
demonstrated the importance of a PCA transform prior to applying an outlier detection method since
we observed that this increases the performance of several outlier detection methods. For only one
of the three metabolomics datasets, we observed clinically satisfying performances for some outlier
detection methods, where we were able to detect 90% of the IEM patient samples while detecting
no false positives. These results suggest that outlier detection methods have the potential to aid the
clinical investigator in routine screening for IEM using untargeted metabolomics data, but also show
that further improvements are needed to ensure clinically satisfying performances.

Keywords: untargeted metabolomics; outlier detection; anomaly detection; one-class methods; IEM;
inborn errors of metabolism

1. Introduction

In recent years, untargeted metabolomics has found its way into the clinic where this
platform can be used to screen for inborn errors of metabolism (IEM). It has been shown
that this platform can successfully detect a variety of IEM [1–12]. Detecting IEM involves
the discovery of aberrant patterns of metabolomics profiles and linking them to a certain
IEM. However, the interpretation of these profiles is complicated by a growing number
of metabolite annotations. Hence, manual analysis of untargeted metabolomics data is
time-consuming and as a result currently limited to a set of (annotated) metabolites. When
no clear coherent IEM pattern can be found in these metabolites, a decision needs to be
made whether to continue with a more in-depth investigation or to stop the investigation
without a diagnosis. Yet, potential disease patterns may be found in the unidentified
features, but this requires the ability to detect aberrant profiles within the unidentified
features.
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To guide this decision-making process, outlier detection methods can potentially
be used to assign an outlier score to each metabolomics profile [13,14]. An increased
abnormality, i.e., increased outlier score, could motivate the investigator to continue with
a more in-depth investigation for that patient. These methods typically try to establish a
boundary such that the majority of the healthy/normal samples lie within this boundary
(Figure 1). Outlier samples are considered to be those samples that are located outside
this boundary and thus have an abnormal metabolite profile. However, finding such a
boundary is not a straightforward task and is complicated by an increasing number of
features. It is not surprising that over the course of time, many different machine learning
methods have been proposed for the purpose of (generic) outlier detection.
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Figure 1. Outlier detection methods try to establish a boundary around the normal samples. Outlier
methods are presented with a set of normal samples and extracted from a boundary around them.
Distances to this boundary then give an impression of how aberrant a sample is with respect to
the set of normal samples. Here, six different outlier methods are shown that are based on distinct
approaches. The normal samples on which the outlier methods are trained are presented as blue dots
in the plots. The boundary is depicted with the black line and outlier scores (to the boundary) are
colored using a heatmap. As an example, one outlier sample is shown, the red dot. The different
figures show that different methods use different assumptions with respect to the distribution of the
normal samples. As a result, some methods are able to accurately follow the shape of the normal
data, whereas other methods find it harder to establish an appropriate boundary. Note that in these
illustrations, only two features are considered. (A) Model based outlier detection. (B) Density based
outlier detection. (C) Support vector based outlier detection. (D) graph based outlier detection. (E)
Ensemble based outlier detection. (F) Artificial neural network (ANN) based outlier detection.

Differences between outlier detection methods can be understood from differences in
the assumptions on the distributions of the normal samples, on the shape of the boundary,
as well as differences on how to model these distributions or boundaries. A restrictive
assumption is to assume that the normal samples are Gaussian distributed. Brini et al.
investigated such a methodology, called ES-CM, and calculated the Mahalanobis distance
for each metabolomics profile. This distance is derived from the (Gaussian) covariance
matrix of the normal data [14]. In order to deal with a small number of (normal) samples
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with respect to the number of features/metabolites, the authors investigated the use of
shrinkage estimators to improve the estimate of the covariance matrix. They have shown
that IEM patients indeed had higher outlier scores (i.e., Mahalanobis distances) than their
normal samples. Although the assumption that the normal data follows a multivariate
Gaussian distribution might be beneficial in case a limited number of normal samples is
available, this assumption might also lead to reduced performance in IEM detection when
the data do not follow this model (e.g., see Figure 1A).

Model-agnostic outlier detection methods could circumvent this issue since they do
not rely on any assumption about the shape of the data. For example, non-parametric
density-based methods estimate the sample density for a given point in (hyper)space.
Outlier samples are positioned in regions with reduced sample density (Figure 1B). Yet, the
way in which densities are measured substantially differs from method to method [15,16].

As the objective is to separate the hyper-space into a region containing normal samples
versus a region in which there are no normal samples, one can also try to find this decision
boundary directly. The one-class support vector machine (OC-SVM), is such a method that
finds the optimal hyper-plane that separates the normal samples from the origin [17]. With
the use of the so-called ‘kernel trick’, more tight non-linear boundaries can be established.
Similarly, Tax et al. developed a support vector data description (SVDD), that uses the same
mathematical principles as OC-SVM but defined a (mathematical) problem that solves for
a hypersphere with minimal volume that contains the majority of the normal data [18].

Similarity between the normal samples can also be expressed by creating a graph
representation of the normal samples. For example, samples (nodes) are connected (edge)
when the distance between them in the feature space is small [19], or by describing each
sample as a linear combination of other samples [20]. Hence, the graph describes the local
topology of similar normal samples. The obtained graph could then be used to calculate the
outlier scores. For example, R-graph propagates scores through the graph using a Markov
process to calculate an outlier score per sample. In this case, it is expected that the score
is lower for an outlier sample since more ‘score’ flows away from the (outlier) sample to
other samples than is received by the outlier sample from its neighbors.

Instead of relying on one outlier detection method, one can also use the agreement
between multiple outlier detection methods. Ensemble methods combine the results from
many individual (simple) outlier detectors in order to improve performance. For example,
Isolation Forest uses random splits in random features to segregate samples [21]. For an
outlier sample, it is expected that on average lesser splits are needed to isolate that sample.

More recently, methods based on artificial neural network (ANN) architectures have
been proposed for the purpose of outlier detection. These methods have been mostly
applied to image datasets in order to detect abnormal images or abnormalities in images.
Oza et al. proposed a method, called OC-CNN, where a classifier network is trained to
distinguish artificial noise (i.e., outliers) from normal samples. Informative features were
first obtained for each sample using a ‘feature extractor’ before it was used as input for the
classifier [22]. Based on SVDD, the DeepSVDD method uses an ANN in order to perform
the required non-linear mapping [23].

Other ANN methods integrated the generative adversarial network (GAN) architec-
ture to perform outlier detection [24–27]. A GAN consists of a generator and a discriminator
network, where the generator has the task of generating artificial samples that closely re-
semble the normal samples, while the discriminator tries to discriminate between artificial
and normal samples. The key idea is to use the discriminative power of the discriminator
as a loss for the generator during training [28]. Several methods have been proposed to
perform outlier detection using GANs but they differ in network architecture and the way
outlier scores are acquired from the (trained) network.

Outlier detection performed on metabolomics data with the purpose of detecting IEM
patients has been reported previously in two studies [13,14]. Both studies showed that IEM
patients have increased outlier scores when using the outlier detection method as proposed
by these authors. Nevertheless, both studies investigated the use of a single type of outlier
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detection method and applied that method to a single (IEM) dataset. To our knowledge, no
study has been reported that explored a large set of diverse outlier detection methods and
applied those methods to several metabolomics datasets.

Although not for metabolomics data, outlier detection methods have been bench-
marked for a variety of different types of data. For example, Han et al. showed that none of
the 14 investigated outlier detection methods were significantly better when compared to
each other and applied to 57 different problems [29]. On the contrary, Campos et al. found
significant performance differences when comparing 12 distinct different outlier detection
methods to 23 distinct datasets [30]. Generally, it seems that the performance of each outlier
detection method largely depends on the dataset to which it has been applied. Additionally,
the majority of outlier detection methods contain (hyper)parameters that require ‘tuning’
and not all studies tackled this issue in the same way, which, therefore, might also lead to
varying outcomes.

We set out to compare 30 different outlier detection methods specifically to detect IEM
patients from untargeted metabolomics data. The majority of these 30 methods originated
from the open-source libraries Scikit-learn [31] and PyOD [32], whereas the remaining
methods were obtained from individual studies and/or manually implemented for this
study. We evaluated these outlier detection methods on three independent untargeted
metabolomics datasets. Our results suggest that certain methods are evidently more suitable
for the purpose of detecting IEM patients as compared to others. Moreover, state-of-the-art
methods did not necessarily result in improved performance when compared with the
more conventional methods.

2. Materials and Methods
2.1. Evaluating the Performance of Each Outlier Detection Method

In order to evaluate the performance of each outlier detection method on the detection
of IEM patients, we calculated the area under the curve (AUC) of the receiver operating
characteristic (ROC). This curve is created by displaying the fraction of IEM patients having
an ‘outlier score’ above a given cut-off value as a function of the fraction of normal samples
(from the evaluation/test set) having a score above that same cut-off. The area under the
ROC curve expresses the overall detection performance of a method, where an AUC closer
to 1 indicates improved performance.

Furthermore, we choose to evaluate two points at the ROC curve that we considered
clinically interesting: (1) the point closest to the (0, 1) point and (2) the point at which
90% of the IEM patient samples are labeled as ’outlier’. At these points, we computed
the balanced accuracy, precision, and recall for both the IEM patient and normal samples.
These metrics are given by the following equations:

Precision P =
TP

TP + FP
(1)

Precision N =
TN

TN + FN
(2)

Recall P =
TP

TP + FN
(3)

Recall N =
TN

TN + FP
(4)

Balanced accuracy =
1
2

(
TP
P

+
TN
N

)
=

1
2
(RecallP + RecallN) (5)

2.2. Cross-Validation and Parameter Selection

The majority of outlier detection methods have (hyper)parameters that require ’tun-
ing’. Furthermore, when evaluating the performance of the various methods on each
dataset, we need to use a cross-validation procedure where training samples are used
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to train the detector and where a test set is used to build the ROC curve. In this study,
we chose to perform cross-validation using an evaluation set to decide which settings for
the (hyper)parameters were optimal, and cross-validation using a test set to evaluate the
performance of each method on IEM detection. Since the number of available normal
samples for the Miller and Radboudumc dataset was relatively low, we decided to perform
these cross-validation procedures in a slightly different manner than the Erasmus MC
dataset. These procedures are described in this section.

2.2.1. Erasmus MC Dataset

The Erasmus MC dataset consisted of 112 IEM patient samples, 10 samples with an
abnormal metabolite profile, and 522 patient samples without IEM-related diagnosis (see
Appendix A for more details). The latter group was assumed to be a normal/reference
cohort. Six cross-validation datasets were created by randomly selecting 70 (normal)
samples for the evaluation/test set. The known IEM patient samples were always included
in the test/evaluation set and thus excluded from the train set. For each cross-validation
experiment (CV), an ROC curve was created using the outlier scores from the IEM patients
and the normal samples were selected from that CV. Three out of the six CVs were used
to evaluate which parameter settings were best by calculating the mean AUC from these
three CVs (i.e., evaluation set). Next, the final average AUC was taken from the remaining
three CVs (i.e., test set).

2.2.2. Miller Dataset

The Miller dataset consists of 120 known IEM patient samples and 70 normal samples
(see Appendix A for more details). We used 18 cross-validation experiments (CV), each
having four normal samples for the test/evaluation set; the remaining 66 normal samples
comprised the train set. Outlier scores for the normal samples from 9 out of the 18 CVs
were pooled together and formed the evaluation set. Similarly, the outlier scores from the
remaining nine CVs were also pooled together to form the test set. For each cross-validation
experiment, two ROC curves were created using the outlier scores from the IEM patients as
determined from that CV and by bootstrapping the (pooled) outlier scores from the normal
samples from the evaluation set and the test set. In other words, 18 bootstrapped ROC
curves were obtained from the (pooled) evaluation set, and 18 curves from the (pooled)
test set. The optimal (hyper)parameter settings were chosen from the highest average AUC
calculated from the 18 evaluation AUCs. The 18 test AUCs were used to calculate the final
average AUC.

2.2.3. Radboudumc Dataset

The Radboudumc dataset consists of 38 known IEM patient samples, three samples
with an abnormal metabolite profile, and 123 normal samples (see Appendix A for more
details). We used seven cross-validation experiments, each having 18 normal samples for
the evaluation/test set, except for one CV having 15 normal samples. Similar to the analysis
described in Section Evaluation and parameter selection Miller dataset, we pooled the outlier
scores for the normal sample for three out of the seven CVs for the evaluation set. The
outlier scores for the normal samples in the remaining four CVs were pooled together to
comprise the test set. For each cross-validation experiment, two ROC curves were created
using the outlier scores from the (true) outlier samples, as determined from the CV and
bootstrapping the (pooled) outlier scores from the normal samples from the evaluation
set and the test set. The optimal (hyper)parameter settings were chosen from the highest
average AUC calculated from the seven evaluation AUCs. The seven test AUCs were used
to calculate the final average AUC.

3. Results

We compared 30 different outlier detection methods on three different datasets. The
characteristics of the three datasets are summarized in Table 1 and details are given in
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Appendix A. The three metabolomics datasets differ in the number of features, number of
normal and IEM patient samples, and number of distinct IEM included. Note that each
metabolomics dataset was acquired from a different experimental set-up and varied in data
(pre-)processing, i.e., peak alignment, peak peaking, peak integration, normalization etc.
[33]. This variety is favorable since it allows us to study the consistency of each outlier
detection method on IEM detection across different datasets.

For all datasets, normal samples and abnormal/patient samples were available. The
outlier detection methods were trained only on normal samples and evaluated using
a cross-validation procedure (see Methods). Briefly, the outlier detection methods were
evaluated on how well they can separate known normal and known abnormal samples
(i.e., IEM patient samples) that were not seen during training. Performance was expressed
in both the area under the receiver operating characteristic (ROC) curve (AUC), as well as
two clinically relevant points at the ROC curve: (1) the point for which the performance
of the outlier detector is closest to the optimal performance (detecting all patients (true
positives), while not calling any of the normal samples (false positives)) and (2) the point at
which 90% of the known IEM patients were detected (true positive rate or recallP equal
to 0.9), assuming that this is a satisfying detection rate for the clinic. At both points, we
determined the balanced accuracy, recall, and precision for each method (see Methods).

Table 1. Overview of the datasets used in this study and their characteristics. See Appendix A
for more details about each dataset. * All samples are from a single experimental batch measured
across three different set-ups. ** The authors only indicate that the majority of the patients received
treatment. † Only annotated features for this dataset were used in this study.

Dataset Experimental
Set-Up Tissue Type # Experimental

Batches
# Normal
Samples

# Abnormal
Samples

# Different
IEM

Receiving
Treatment # Features

Erasmuc MC [3] LC-MS(+) Blood plasma 25 552 122 62 50% 307

Miller et al. [1] GS-MS &
LC-MS(+/−) Blood plasma 1 * 70 120 21 >50% ** 661 †

Radboudumc [2] LC-MS(+) Blood plasma 12 123 41 28 ≈75% 6362

3.1. Performance Differences across Methods

Figure 2A shows the average AUC for each investigated outlier detection method
and dataset. We were interested in those methods that perform well regardless of the
differences between datasets. By sorting the methods based on the average AUC across the
three datasets (as in Figure 2A), we observe that R-graph and DeepSVDD had a (relatively)
good and consistent performance across datasets. It is worth noting that the standard
deviation on the AUC for DeepSVDD applied to the Radboudumc was relatively high
(Appendix L), indicating that the performance was not consistent across the different
train and test sets. The ANN method had a high performance for the Miller dataset but
performed less on the Erasmus MC and Radboudumc dataset. When maximizing the
performance per dataset, we observe that PCA reconstruction error was optimal for the
Erasmus MC dataset (AUC = 0.81), R-graph is optimal for the Miller dataset (AUC = 1) and
HBOS is optimal for the Radboudumc dataset (AUC = 0.77). Note that HBOS performed
poorly on the Erasmus MC and Miller dataset.

We observe that reconstruction-based techniques, i.e., PCA reconstruction error and AE
reconstruction error performed relatively well on the Erasmus MC and Miller dataset but
poorly on the Radboudumc dataset. The same holds for the Mahalanobis method. Since the
dimensionality (i.e., number of features) with respect to the number of normal samples
was much larger for the Radboudumc dataset than for the other two datasets (see Table 1),
we assume that PCA reconstruction error, Mahalanobis, and AE reconstruction error are more
sensitive to the number of normal samples in the train set.

Poor performing methods were ALOCC, ALAD, COPOD, ECOD, Isolation Forest, LOCI,
LMDD, MO-GAAL, and OC-CNN having an AUC of ≤ 0.71 for all datasets. This indicates
that investigators may want to avoid these methods for the purpose of detecting IEM
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patients. Yet, when we reduced the dimensionality by performing principle components
analysis (PCA)—applied on all samples in the dataset (including the train and test set)—we
were able to increase the AUC for several poor-performing methods when applied to the
Erasmus MC dataset (see Appendix D). For example, using 60 principle components (PCs),
the AUC for Isolation Forest went from 0.69 to 0.78. Similarly, the AUC for ECOD and
COPOD went from 0.68 to 0.78 using 150 and 60 PCs, respectively. LMDD improved from
0.66 to 0.76 using 150 PCs. These results show that performing PCA prior to applying an
outlier detection method may be beneficial for a subset of methods. Yet, none of these
approaches performed better than PCA reconstruction error without the initial PCA step.
Additionally, we performed a similar experiment on the Radboudumc dataset for a subset
of outlier detection methods (see Appendix E). These results confirm that an initial PCA
transform could improve performances. For PCA reconstruction error using 20 PCs, we were
able to obtain an AUC of 0.84 for this dataset. Using 20 PCs, Mahalanobis and LOF obtained
an AUC of 0.75 and 0.82, respectively, which is a clear improvement over the situation
where the PCA transform has not been applied (i.e., Figure 2A).

In this study, we observed some complications with the training of the GAN-based
methods which may, at least partially, explain their poor performance. ALOCC training
on the Erasmus MC dataset resulted in an increasing loss for the generator, indicating that
the discriminator was always winning from the generator (see Appendix H). One-sided
label smoothing was supposed to prevent this type of behavior, but was unsuccessful [34].
The authors of ALOCC proposed to stop the training when the reconstruction loss achieved
a certain value. However, training ALOCC on the Erasmus MC dataset did not result
in a decreasing reconstruction loss either, which complicated the use of this stopping
criterion. Training ALOCC on the Miller dataset did result in a decreasing generator and
reconstruction error, but its performance on IEM detection was still among the worst.
Ever-increasing generator loss and decreasing discriminator loss were also observed for
AnoGAN, ALAD, and MO-GAAL (see Appendices I–K). GAN-based methods furthermore
involve the training of many parameters (typically in the order of millions), which makes
training computationally expensive. Altogether, these observations show that training
GAN-based outlier detection methods is not a straightforward task.
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Figure 2. Several performance metrics are used to evaluate the various outlier detection methods. (A)
Average (across the cross-validations) AUC of the ROC curves for each dataset and outlier detection
method. In addition, the average and standard deviation of the AUC across all three datasets are
reported. The methods are sorted based on this average AUC. (B) Average balanced accuracy (see
Methods) at the ’closest-to-(0,1)’ point of the ROC curve for each dataset and outlier detection method.
Again, the methods are sorted based on the average balanced accuracy across the three datasets. (C)
RecallN at the ’RecallP = 0.9’ point at the ROC curve.
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3.2. Performance Differences across Datasets

Figure 2A also shows that AUCs vary across the explored datasets, with overall higher
performances for the Miller dataset. We expect that this is mainly a consequence of the fact
that the Miller dataset contains only 26 distinct IEM and contains biomarkers for each IEM,
thereby easing the task of detecting the IEM patients as outliers. In order to support this
argument, we compared the Mahalanobis distance of the IEM patient samples with and
without the inclusion of these IEM-related biomarkers (see Figure 3). From this experiment,
we clearly observe a decline in the Mahalanobis distance(s) for the IEM patient samples
when the relevant biomarkers were removed from the dataset.

The highest AUC achieved for the Erasmus MC dataset was 0.81. Since 62 distinct
IEM are included in this dataset, we expect that detecting all these distinct IEM might be
a more challenging task. Furthermore, the Erasmus MC dataset has the lowest number
of features due to the specific pre-processing steps that were followed. Consequently,
several IEM-related features may have been absent from this dataset which might have
considerably reduced the ability to detect IEM patient samples.

The majority of methods performed poorly on the Radboudumc dataset—only three
methods performed relatively well (e.g., AUC ≥ 0.68). The poor performance of the
majority of the outlier detection methods we relate to the small number of available normal
samples for training with respect to the number of features. Indeed, we saw that reducing
the dimensionality (using a PCA step) positively affects the performance of a number of
poorly performing methods. This suggests that for new datasets, it is important to explore
the dimensionality reduction before applying the outlier detection methods.
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Figure 3. Each panel shows the difference (∆) in Mahalanobis distance between the situation that all
52 biomarkers (as stated in the study of Miller et al.) were included and the situation that IEM-related
biomarkers were removed from the dataset. Note that for each IEM (i.e., panel) a different set of
biomarkers is left out. A negative difference in Mahalanobis distance indicates that the Mahalanobis
distance decreased (i.e., reduced abnormality) when IEM-related biomarkers are removed with
respect to the situation that all 52 biomarkers are included. These differences are shown for three
groups: normal (test) samples (grey), IEM patient samples having an IEM other than the IEM stated
in the title (red), and IEM patients having the IEM as stated in the title (blue). The ’n’ in the title
indicates the number of patient samples that are included with that particular IEM.
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3.3. Clinical Relevance of Outlier Detection Methods on Detecting IEM Patients

When evaluating the outlier detection methods for their optimal performance (i.e.,
the performance on the ROC curve closest to the (0,1) point), we found that for the three
metabolomics datasets, R-graph had recall rates for the IEM patients (recallP) ranging
between 0.62–0.98 (see Appendix F). Recall rates for the normal samples (recallN) were
in the range of 0.69–1.00. Similarly, for DeepSVDD recallP ranged from 0.72 to 0.81 and
recallN ranged from 0.62 to 0.8. When maximizing the balanced accuracy per dataset and
method, we observe that for the Erasmus MC dataset, Mahalanobis had a balanced accuracy
of 0.77 (Figure 2B) with recallP = 0.7 and recallN = 0.85. For the Miller dataset, R-graph had
a balanced accuracy of 0.99 with recallP = 0.98 and recallN =1.00. For the Radboudumc
dataset, HBOS had a balanced accuracy of 0.71 with recallP = 0.68 and recallN = 0.75.

When looking at the ‘recallP = 0.9’ point, we observe that for the Erasmus MC dataset
and PCA reconstruction error, the recallN = 0.39, indicating that 61% of the normal samples
were false positives (see Figure 2C). For the Miller dataset and R-graph, this recall rate was
1, which suggests clinically satisfying performances. HBOS applied on the Radboudumc
dataset had a recallN of 0.43. Altogether, this shows that for high IEM recall rates (i.e.,
recallP = 0.9), we should also expect a significant percentage (0%–61%) of false positives.
As described above, we were able to obtain an AUC of 0.84 by performing an initial PCA
transform on the Radboudumc dataset and using PCA reconstruction error. In this case, for
the ‘recallP = 0.9’ point, we observe that PCA reconstruction error had a recallN = 0.57 (see
Appendix E).

4. Discussion

The aim of our study was to investigate the potential of outlier detection methods to
detect IEM patients as outliers in untargeted metabolomics data. Our results show that
DeepSVDD and R-graph are two methods that performed consistently well across the three
datasets when looking at the AUC. The methods AE reconstruction error, Mahalanobis, and
PCA reconstruction error were effective for detecting IEM patients for the Erasmus MC and
Miller dataset, thereby partially confirming the results previously obtained by Brini et al.
[14] and Engel et al. [13]. When maximizing the AUC for each dataset individually, we
observed that PCA reconstruction error was optimal for the Erasmus MC dataset, R-graph
was optimal for the Miller dataset, and HBOS was optimal for the Radboudumc dataset.
These findings support results from previous studies that show that the best-performing
method largely depends on the dataset on which it is applied to [29,30].

Evidently, we have seen that a subset of outlier detection methods has predictive
power to detect IEM patients in metabolomics data (e.g., AUC� 0.5). However, in order
to judge whether such a strategy could successfully be used in the clinic we evaluated the
methods also on their performance when 90% of the IEM patients were detected. Given
this requirement, we have seen that PCA+PCA reconstruction error, (i.e., PCA reconstruction
error with an initial dimensionality reduction by PCA) had the best performance on the
Radboudumc dataset with 43% false positives, i.e., normal samples called to be IEM patients.
For the Miller dataset, R-graph had no false positives for this operating point. However, for
the Erasmus MC dataset, the best method was PCA reconstruction error, which generates
61% false positives in this clinical setting. This poor(er) IEM detection performance in the
Erasmus MC dataset might be related to the relatively high number of distinct IEM and the
possible absence of relevant biomarkers in this dataset. This absence of biomarkers is likely
to be caused by the fact that only features were included that were measured/detected
in at least 20 out of the 25 batches. This relatively strict criterion might have led to the
exclusion of IEM-related features and therefore may partially explain the reduced IEM
detection performances (i.e., AUC) of the outlier detection methods for this dataset.

We showed that the use of an initial PCA transform could improve the IEM detection
performance of several outlier detection methods. However, we need to realize that for this
PCA step, we used the full dataset, i.e., the training set (consisting of normal samples) as
well as the test set (consisting of normal as well as IEM samples). Therefore, it is expected
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that the resulting reduced PCA space indirectly acquired information about the IEM patient
samples, i.e., information on where IEM samples are distributed with respect to the normal
samples is provided. Although the outlier detection methods were trained solely on the
training set, the reduced PCA space might represent a subspace in which the normal and
IEM samples can be better separated, thereby making it easier for the outlier detection
method to find an appropriate boundary. Yet, this is still a valid procedure in the clinical
setting when samples are acquired batch by batch. Namely, the proposed procedure (i.e.,
PCA dimension reduction based on train and test samples, followed by training an outlier
detection on the train samples) can similarly be adopted in the clinical setting. Based on the
newly acquired batch of samples together with the available training set of normal samples,
we can apply the PCA dimension reduction, and after that, train the outlier detection
method in this new PCA subspace on the training samples. As we emulated this setting
during validation, our reported performance measures will be accurate estimates of the
performance in this clinical setting. We stress that it is important that in this setting one
needs to redo the PCA dimension reduction using the newly acquired batch of samples, as
well as retrain the outlier detector, for every new batch of samples.

Our results suggest that the optimal outlier detection method differed per dataset.
Ideally, an investigator would like to know a priori which method should be used given,
for example, a certain experimental set-up. The limited number of included datasets (n = 3)
in this study was not sufficient to study how the differences between these datasets affect
the selection of an optimal outlier detection method. A large number of diverse datasets
would be needed in order to study this effect and is hampered by the limited availability of
untargeted metabolomics studies that study IEM.

All three datasets were Z-score-scaled prior to training the outlier detection methods
(see Appendix A). In this study, we performed two distinct methods for scaling. For the
Erasmus MC and Radboudumc dataset, the mean and standard deviation per feature
were obtained in a robust manner using an iterative procedure where outlier samples
were removed. Here, it is assumed that the majority of the samples are normal when
considering a single feature. The Miller dataset was scaled based on the control group.
Interestingly, when we re-scaled the Miller dataset similarly to the Erasmus MC and
Radboudumc dataset, we observed a performance drop for the majority of investigated
outlier detection methods (see Appendix M), implicating that further investigation on
scaling and appropriate reference sets is important.

Additionally, the normal samples used in the Erasmus MC, Miller, and Radboudumc
datasets were acquired from routine screening. Thus, normal samples were assumed
to be those samples that did not receive a diagnosis related to a metabolomics disorder.
Consequently, reported IEM detection performances in this study may have been biased by
the absence of a genuine healthy population.

Besides the differences in the number of distinct IEM, number of normal samples,
number of IEM patient samples, and the number of features, we speculate that at least two
other factors might also contribute to the IEM detection performance differences between
the datasets. Firstly, technical variation (e.g., between experimental batches) in the data
may obscure/dilute structures in the data that would normally benefit outlier detection.
Adequate removal of these variations (i.e., normalization) is therefore important, and
the precision at which this has been achieved might differ between the studied datasets.
Secondly, other pre-processing steps, e.g., peak integration, scaling, and data transformation
could contribute to differences across the datasets.

Various outlier detection methods contain one or more hyperparameters that ideally
need tuning. In this study, we used a parameter sweep for some of these parameters to
at least partially ‘tune’ these settings. Especially for methods that use an ANN, many
hyperparameters are present (such as the number of hidden layers, number of nodes, type
of activation, learning rate, etc.), thereby making a parameter sweep over all parameters
computationally unfeasible. Some parameters were chosen to be fixed or were made
dependent on the dimension of the input (i.e., M) or number of samples in the train set (i.e.,
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N) (see Appendix B). We acknowledge that the range of settings that were explored per
method was limited and that the ‘true’ optimal setting for a given method might have been
in an unexplored subset of settings.

5. Conclusions

We have shown that several outlier detection methods have the ability to detect IEM
patients in (untargeted) metabolomics data. From the 30 explored outlier detection methods,
such as AE reconstruction error, DeepSVDD, Mahalanobis, PCA reconstruction error, and R-
graph, seemed to perform overall best across the investigated metabolomics datasets. The
state-of-the-art methods (such as GAN-based methods) did not necessarily outperform
the more conventional approaches. Additionally, we showed that performing a PCA
transformation prior to applying an outlier detection method generally improves the
performance for a subset of methods. Although some methods seem more suitable for the
purpose of detecting IEM patients in metabolomics data, our results demonstrate that in
the end, the best-performing outlier detection method depends on the dataset to which it is
applied.

For only one of the three metabolomics datasets were we able to demonstrate clinically
satisfying true and false positives rates, where 90% of the IEM patient samples can be
detected while marking none of the normal samples as outliers (i.e., false positives). At
this point, for the other two datasets, the (lowest) false positive rates were 43% and 61%,
indicating that outlier detection methods may not have clinically satisfying performances.
Although we demonstrated that several outlier detection methods have the ability to detect
IEM patient samples in metabolomics data, we anticipate that future successes largely
depend on the number of distinct IEM that are deemed to be detected, the requirement
that IEM-related features are included, and the presence of a genuine normal reference
set. In case these requirements are met, we believe that outlier detection could be a useful
additional tool in the clinic.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neural network
AUC Area under the curve
CV Cross-validation
GAN Generative adversarial network
ROC Receiver operating characteristic
IEM Inborn error of metabolism
PCA Principle component analysis
PC Principle component
UHPLC Ultra-high performance liquid chromatography

Appendix A. Datasets

Appendix A.1. Erasmus MC Dataset

Untargeted metabolomics data from the blood plasma of 674 unique samples was
measured in 25 separate batches [3] and was merged to form a single dataset. This was done
by matching features from one batch to a reference batch (that was chronologically in the
middle) [35]. A feature was included in the merged dataset only if it was matched/detected
in at least 20 other batches. For the remaining missing values, an autoencoder was used
to impute these missing values (see Autoencoder). Furthermore, no significant differences
were present in the number of missing values between the IEM patient group and the
normal group. This was accessed by determining the number of missing values per sample
within each group and applying the Mann–Whitney U test. For the six cross-validations
(see Evaluation and parameter selection Erasmus MC dataset), the resulting p-values were in
the range of 0.12–45. The final dataset contains 307 features, where 98 features received a
metabolite identification. We used Metchalizer with a Box–Cox transformation to correct for
batch effects and other technical drifts [35]. Although each batch was measured in both
negative and positive ion mode, we only included the positive ion mode for this study.

The dataset contains 552 unique samples obtained from patients that did not receive
a diagnosis related to a metabolic disorder. Further, 112 patient samples were included
with known IEM and 10 samples with an abnormal metabolomics profile not related to
an IEM. The following IEM were included: Medium chain acyl-CoA dehydrogenase defi-
ciency (n = 6), carnitine palmitoyltransferase II (n = 5), nonketotic hyperglycinemia (n = 5),
phenylketonuria (n = 5), methylmalonic acidemia (n = 4), homocystinuria (n = 4), isova-
leric acidemia (n = 3), Smith–Lemli–Opitz syndrome (n = 3), lysinuric protein intolerance
(n = 3), propionic acidemia (n = 3), adenylosuccinate lyase deficiency (n = 3), methylmalonic
aciduria type cblB (n = 2), long-chain-3-hydroxyacyl CoA dehydrogenase deficiency (n = 2),
citrullinemia type I (n = 2), very-long-chain-acyl-CoA dehydrogenase deficiency (n = 2),
Mevalonic aciduria (n = 2), metachromatic leukodystrophy (n = 2), Ornithine transcarbamy-
lase deficiency (n = 2), Maple syrup urine disease (n = 2), molybdenum cofactor deficiency
(n = 2), TBCK deficiency (n = 2), hyperprolinemia, type I (n = 2), tyrosinemia I (n = 2), argini-
nosuccinic aciduria (n = 2), cerebrotendinous xanthomatosis (n = 2), beta-mannosidose
(n = 2), phosphoserine aminotransferase deficiency (n = 2), alpha-methylacyl-CoA race-
mase deficiency (n = 2), glutaric aciduria II (n = 1), beta-ketothiolase deficiency (n = 1),
3-methylcrotonyl-coa-carboxylase deficiency (n = 1), short-chain acyl-CoA dehydrogenase
deficiency (n = 1), alpha-mannosidosis (n = 1), mucopolysaccharidosis type III (n = 1),
malonyl-Coa decarboxylase deficiency (n = 1), glutamate formiminotransferase deficiency
(n = 1), congenital disorder of glycosylation type IIc (n = 1), thymidine phosphorylase
deficiency (n = 1), mucopolysaccharidosis type 3a (n = 1), pyruvate dehydrogenase phos-
phatase deficiency (n = 1), dihydrofolate reductase deficiency (n = 1), Hartnup (n = 1),
2-ketoglutarate dehydrogenase complex deficiency (n = 1), argininemia (n = 1), citrin defi-
ciency (n = 1), pyridoxine-dependent epilepsy (n = 1), glutaric aciduria I (n = 1), TANGO2
deficiency (n = 1), Lesch–Nyhan syndrome (n = 1), ornithine aminotransferase (n = 1),
carbamoyl phosphate synthetase deficiency (n = 1), galactosemia (n = 1), xanthinuria type
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1 (n = 1), 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (n = 1), combined malonic
and methylmalonic aciduria (n = 1), L-2-hydroxyglutaric aciduria (n = 1), alkaptonuria
(n = 1), mucopolysaccharidosis type 3c (n = 1), cerebral creatine deficiency syndrome 2
(n = 1), congenital disorder of glycosylation type Iy (n = 1), cystathioninuria (n = 1) and
3-methyl-crotonyl-glycinuria (n = 1). Here, 61 out of these 122 patient samples received
treatment when their samples were acquired. In agreement with national legislation and
institutional guidelines, all patients or their guardians approved the possible de-identified
use of the remainder of their samples for method validation and research purposes. Most
of the samples were measured as a (technical) triplicate, but only the first sample of the
triplicate was used in this study.

Feature levels were expressed as a Z-score by subtracting the mean and dividing
by the standard deviations, while also including the known IEM patients. The latter is
important to prevent artificial clustering of the control and the patient groups. To reduce
the contributions of outlier samples in an unbiased fashion, we randomly selected 50% of
the data, removed outliers (|Z-score| > 3), and then determined the mean and standard
deviation of the resulting samples. This was repeated 100 times and the final population
mean and standard deviation were taken to be the average of the 100 means and 100
standard deviations.

Since we did not wish a single or few extreme Z-scores to dominate/affect the findings,
we used a truncated version of the Z-scores using the following equation:

Z̃ = sign(Z)
(

α(Z) |Z|0.75 + [1− α(Z)]|Z|
)

α(Z) =
1

1 + exp (2− |Z|)
(A1)

This transform behaves approximately linear for the region 0 < |Z| < 2 but scales
down |Z-scores| when |Z|� 2.

Appendix A.2. Miller Dataset

We used the metabolomics dataset that was published by Miller et al. [1]. This dataset
is available via https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626538/ (accessed on
1 May 2022). No adjustments were made to the Z-scores. In total, 120 known IEM patient
samples and 70 normal samples were included in this dataset. The dataset contains 1203
features, but we chose to only include the 661 annotated features.

Appendix A.3. Radboudumc Dataset

High-resolution untargeted metabolomics data from blood plasma was measured for
12 separate batches at the Translational Metabolic Laboratory, Radboudumc, The Nether-
lands using the protocol described by Coene et al. [2]. All patients and control subjects
(or their guardians) included in these batches registered their informed consent for the
possible use of their left-over body fluid samples from clinical diagnostics for laboratory
method validation purposes in their electronic patient records. The study was conducted in
accordance with the Declaration of Helsinki, and following national (Dutch WMO (Medical
Research Involving Human Subjects Act), article 7:467) and institutional legislation (CMO
Radboudumc Nijmegen) on the use of left-over material from clinical diagnostics.

These 12 independent batches were then merged into a single dataset. Next, peak
detection and retention time alignment were performed using the XCMS R package [33].
Correction for intensity drift and batch effects was performed using batchCorr R package
v0.2.4 [36]. Only positive ion mode data were used for this study. The (merged) dataset
contains 41 samples from either patients with a known IEM or abnormal metabolomics
profiles. The following IEM were included: Ataxia–Telangiectasia (n = 14), glutamate
oxaloacetate transaminase deficiency (n = 7), S-Adenosylhomocysteine hydrolase deficiency
(n = 4), AICA-ribosiduria (n = 3), N-acetylneuraminic acid synthase deficiency (n = 3),
argininosuccinic aciduria (n = 2), methionine adenosyltransferase I/III (n = 1), long-chain 3-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626538/
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ketoacyl-CoA thiolase deficiency (n = 1), 5-oxoprolinase deficiency (n = 1), cerebrotendinous
xanthomatosis (n = 1) and very-long-chain acyl-CoA dehydrogenase deficiency (n = 1).
Three samples had an abnormal metabolite profile. Seven patient samples with Ataxia–
Telangiectasia were acquired before starting treatment. Most IEM patient samples were
acquired while receiving treatment. Then, 123 samples were assigned to ’normal’, as they
did not receive a diagnosis or had a diagnosis that was non-IEM related. The third group
of samples consisted of 510 samples assigned the label ’undiagnosed patients’. This group
included samples measured during screening but where no diagnosis had been established.
The dataset contains 6362 features. Feature abundancies were log-transformed and Z-scores
were determined in the same manner as described in Section Erasmus MC dataset. Note
that the ’undiagnosed patients’ group was also used for determining Z-scores since the
average and standard deviation were calculated using all samples in the dataset. The
Z-score truncation (Equation (A1)) was not applied to this dataset.

Appendix B. Detailed Description of Outlier Detection Methods

For this study, we implemented 30 outlier detection methods. A summary of their
characteristics can be found in Table A1. Details about their implementations and the used
settings for each method are described in this section.

Appendix B.1. Autoencoder

The TensorFlow with Keras framework (version 2.6.0) was used to create an autoen-
coder (AE), which consisted of five hidden layers [37,38]. Two hidden layers were used
as encoder, having M/2 and M/4 nodes, respectively, where M is the number of (input)
features. The bottleneck layer consisted of M/10 nodes, and the decoder part consisted of
M/4 and M/2 nodes, respectively. For all hidden layers, we used the hyperbolic tangent
activation. The output layer had no activation function. The mean squared error between
the input and reconstructed profile was used as a loss to train the autoencoder. To prevent
overfitting, we used a dropout layer between all layers, with a dropout rate of 0.1. Further-
more, we added uncorrelated normal noise N(µ = 0, σ) to the profiles during batch training,
while drawing σ from a uniform distribution U(0.05, 0.1). We used the Adam() optimizer
with a learning rate of 0.0001.

Outlier scores were obtained using the mean squared error between the input and the
reconstructed profile. For the Erasmus MC dataset, the trained AE (i.e., trained on the train
set) was also used to impute the missing values. The same trained AE was also used to
calculate the outlier scores for the AE reconstruction error method.

Appendix B.2. ANN Classifier

A simple artificial neural network was trained to distinguish artificial outlier profiles
from normal profiles included in the train set. These outlier profiles originated from two
types of noise:

1. Uncorrelated normal noise: outlier profiles were drawn from N(µ=0, σ) with three
different values for σ, namely 0.25, 0.5, and 1.

2. Subspace perturbation: following the method described by [16], where outlier profiles
were acquired by perturbing normal profiles as follows:

z ∼ N (0, Iσ)

xnegative
i = xpositive

i + M ◦ z
(A2)

where xpositive
i is the metabolomics profile (vector) of sample i. The vector M contains

binary elements with a probability p and 1− p of being ‘1’ or ‘0’, respectively. In this study,
p was set to p = 0.3. z is a vector where each element is normally distributed. σ takes
different values: 0.25, 0.5, and 1.



Metabolites 2023, 13, 97 16 of 32

Three hidden layers were used with M/2, M/4, and M/10 nodes, respectively, with
M being the dimensionality of the input. Two settings were explored for the first hidden
layer either with or without a bias term. Hyperbolic tangent activation was used for all
hidden layers. A single classifier node with sigmoid activation was used for classification.
We used binary cross entropy as the loss for training the network with noise and normal
profiles being classified as ‘1’ and ‘0’, respectively. Dropout layers were used to prevent
overfitting with a dropout rate of 0.1. We use the Adam()optimizer with a learning rate of
0.0001 for training. The output value of the classifier node was used as an outlier score for
each sample. Outlier scores were determined after several training steps, namely: 100, 500,
1000, 2000, 5000, 10000, and Nmax, with the latter being a variable number for each dataset.

Appendix B.3. ALOCC

We implemented the ALOCC method as described by Sabokrou et al., where we used
the same AE architecture design as described in Autoencoder [24]. The parameter λ was set
to 0.4 such that the reconstruction loss weighted less than the generator loss. Input profiles
were corrupted by adding normal noise from N(µ = 0, σ = 0.1). The discriminator network
consisted of four hidden layers having M/2, M/4, M/10, and 2 nodes, respectively, with
M being the number of features of the input. A single output node with sigmoid activation
was used to discriminate between fake (0) and real input samples (1). Dropout layers with
a dropout rate of 0.1 were used between all layers in both the generator and discriminator
except for the last hidden layer and the output node of the discriminator. Additionally,
we used one-sided label smoothing to improve network training [34]. Here, the labels for
the real samples are set to 0.9 instead of 1, which prevents the discriminator from being
overconfident. We used the Adam() optimizer with a learning rate of 0.0001.

Outlier scores were obtained in two ways: (1) by passing the reconstructed sample
(from generator) to the discriminator and (2) by passing the sample directly through the
discriminator. The output of the discriminator equals the outlier score, where values closer
to 0 suggest stronger abnormality and vice versa. Outlier scores were determined after
several training steps, namely: 100, 500, 1000, 2000, 5000, 10000, and Nmax, with the latter
being a variable number for each dataset.

Appendix B.4. ALAD

We implemented the ALAD method as described by Zenati et al. [27]. The encoder
network consisted of two hidden layers having M/2 and M/4 nodes, respectively. The
decoder network consisted of two hidden layers having M/4 and M/2 nodes, respectively.
The latent dimension was set to k= 2, 3, and 4. The two discriminator networks, called
Dxx and Dxz, were identical, each having two hidden layers with M/4, M/2, and 2 nodes,
respectively. The discriminator network Dzz consisted of two hidden layers, with 10k and 5k
nodes, respectively. For all discriminator networks, a single node with sigmoid activations
was used for classification. For all hidden layers, the hyperbolic tangent activation was
used, and dropout was used between all layers (dropout rate = 0.1). We used the Adam()
optimizer with a learning rate of 0.0001 for training. Outlier scores were determined by
using the mean absolute error between the activations of the last hidden layer in the Dxx
network between the real and reconstructed profile. Outlier scores were determined after
several training steps, namely: 100, 500, 1000, 2000, 5000, 10000, and Nmax, with the latter
being a variable number for each dataset.

Appendix B.5. AnoGAN

We implemented the AnoGAN method as described by Schlegt et al., except for some
minor differences [25]. The generator consisted of three hidden layers with M/10, M/4,
and M/2 nodes, respectively, where M is the dimension of the output (i.e., total number of
features of the metabolomics profiles). k-Dimensional uncorrelated normal noise N(µ = 0,
σ = 1) was used as input for the generator, where k was set to 2 and 3. The discriminator
consisted of three hidden layers with M/2, M/4, and 2 nodes, respectively, with a classifier
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node (sigmoid activation) as output. In both networks, we used dropout layers between
all hidden layers (dropout rate = 0.1), except between the latent input space and the first
hidden layer in the generator, and between the last hidden layer and the output node of
the discriminator. One-sided label smoothing was used to improve network training (see
ALOCC). We used the Adam() optimizer with a learning rate of 0.0001 for training.

Outlier scores were obtained by first approximating a point in the latent space of the
generator that outputs a sample that more closely resembles the ‘query sample’ (i.e., sample
for which the outlier scores is determined). This is done by considering the following loss:

L = ∑ |x− G(zγ)|+ ∑ | f (x)− f (G(zγ))| (A3)

with G indicating the generator and f indicating the activations of the second hidden layer
in the discriminator. zγ indicates the point in the latent space that more closely resembles
the query sample x. Note, that the weights for the generator and discriminator are kept
fixed when backpropagation was used to approximate zγ. Per (query) sample, we used 50
backpropagation steps, using the Adam() optimizer with a learning rate of 0.005. Outlier
scores were determined after several training steps, namely: 100, 500, 1000, 2000, 5000,
10000, and Nmax, with the latter being a variable number for each dataset.

Appendix B.6. ABOD

ABOD from the pyOD toolkit was applied to each dataset and is available at https:
//github.com/yzhao062/Pyod (accessed on 1 May 2022) [32,39].

Average of top 10 most extreme absolute Z-scores

For each sample, we determined the top 10 most extreme absolute Z-scores. The
average of these 10 |Z-scores| was used to obtain the outlier score.

Appendix B.7. COPOD

COPOD from the pyOD toolkit was applied to each dataset [40]. Since COPOD has
no learning parameters obtained from the train set, we ran a leave-x-out procedure for
the evaluation/test set in order to obtain outlier scores. For clarity, we took n samples
from the IEM patient samples and n samples from the normal samples, which originated
from the evaluation/test set. These 2n samples were concatenated with the train set, and
COPOD was applied to obtain the outlier scores for these samples. This procedure was
repeated until all samples in the evaluation/test set had an outlier score. The size of the
concatenated data was always equal to 2n. For the Erasmus MC dataset, n = 5; for the
Miller dataset, n = 2; and for the Radboudumc dataset, n = 5.

Appendix B.8. COF

COF from the pyOD toolkit was applied to each dataset [41]. The following settings
were used: n_neighbors= N, method=’fast’, with N being 10% and 5% of the number
of total samples in the train set. Since COF had no learning parameters obtained from
the train set, we ran a leave-x-out procedure for the evaluation/test set in order to obtain
outlier scores (see COPOD).

Appendix B.9. DeepSVDD

DeepSVDD from the pyOD toolkit was applied to each dataset [23]. The following
settings were used: use_ae=True, random_state=1, hidden_activation= ’tanh’,
dropout_rate=0.1, preprocessing=False, and hidden_neurons = [M/2, M/4], where
M is the dimension of the input. For the parameter epochs, we used 10, 50, 100, 500,
and 1000.

https://github.com/ yzhao062/Pyod
https://github.com/ yzhao062/Pyod
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Appendix B.10. ECOD

ECOD from the pyOD toolkit was applied to each dataset [42]. Since ECOD has no
learning parameters obtained from the train set, we ran a leave-x-out procedure for the
evaluation/test set in order to obtain outlier scores (see COPOD).

Appendix B.11. HBOS

HBOS from the pyOD toolkit was applied to each dataset [43]. For the parameter
n_bins, we used five different settings, namely, 50, 100, 250, 500, and 1000. For the
parameter alpha, we choose 0.1 and 0.5.

Appendix B.12. Isolation Forest

The Isolation Forest algorithm, as implemented by Scikit-learn (version 0.23.3), was
used to determine outlier scores [21]. Three different settings were used for n_estimators,
namely 500, 1000, and 2000. The function score_samples() from Scikit-learn was used to
obtain the outlier scores.

Appendix B.13. KDE

Kernel density estimation (KDE) was performed using the KernelDensity() function
from Scikit-learn. We used the ’gaussian’ setting for the parameter kernel. Five different
settings were used for bandwidth, namely 0.05, 0.1, 0.25, 0.5, and 0.75. We used the
score_samples() function to obtain the outlier scores for this method.

Appendix B.14. Feature Bagging

Feature bagging (FB) from the pyOD toolkit was applied to each dataset [44]. LOF was
used for outlier detector methods.

Appendix B.15. KNN

K-nearest neighbor (KNN) from the pyOD toolkit was applied to each dataset. The
following settings were used: n_neighbors=N, with N being 5%, 10%, and 25% of the
number of samples in the train set. For the setting metric, we used ’euclidean’, ’l1’, and
’l2’. For the setting method, we used ’largest’, ’mean’, and ’median’.

Appendix B.16. LMDD

LMDD from the pyOD toolkit was applied to each dataset [45]. The following settings
were used: n_iter=50, dis_measure=’aad’, random_state=None. Since LMDD has no
learning parameters obtained from the train set, we ran a leave-x-out procedure for the test
set in order to obtain outlier scores (see COPOD).

Appendix B.17. LOCI

LOCI from the pyOD toolkit was applied to each dataset [46]. For the setting alpha,
we used the values 0.1, 0.25, and 0.5. For the setting k, we used 1, 2, and 3.

Appendix B.18. LODA

LODA from the pyOD toolkit was applied to each dataset [47]. For the setting
n_random_cuts, we used the values 100, 250, and 500. For the setting n_bins, we used
’auto’, 10, 50, 100, and 250.

Appendix B.19. LOF

The local outlier factor (LOF) algorithm from Scikit-learn was trained on each train set
[15]. We used the following settings for the parameters: n_neighbors= N, novelty=True,
with N being 5%, 10%, and 25% of the number of samples in the train set. We used the
score_samples() function to obtain the outlier scores for this method.
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Appendix B.20. LUNAR

The implementation of learnable unified neighborhood-based anomaly ranking (LU-
NAR) can be found at https://github.com/mbongaerts/pyod/tree/LUNAR/pyod [16] (ac-
cessed on 28 June 2022). We used the following settings for the parameters: n_neighbors=N,
negative_sampling= ’SUBSPACE’, test_size=0.05, lr=0.0001, scaler=None, n_epochs=2000,
with N being 5%, 10%, and 25% of the number of samples in the train set. Note that
LUNAR uses an internal cross-validation approach on the train set to determine the optimal
network weights.

Appendix B.21. Mahalanobis

In line with the proposed method, as described Brini et al. [14], we estimated the
covariance matrix for each dataset using the ShrunkCovariance method from Scikit-learn.
The Mahalanobis distance obtained from the estimated covariance matrix was used as the
outlier score.

Appendix B.22. MO-GAAL

MO-GAAL from the pyOD toolkit was applied to each dataset [26]. The follow-
ing settings were used: lr_d=0.0001, lr_g=0.0001, stop_epochs=5000, decay=1e-06,
momentum=0.9. For the parameter k we used the values 1 and 5.

Appendix B.23. OC-SVM

The one-class support vector machine (OC-SVM) algorithm from Scikit-learn was
trained on each train set [17]. We used the following settings for the parameters: gamma =
’auto’. For the parameter kernel, we used ’rbf’ and ’linear’. We used the score_samples()
function to obtain the outlier scores for each sample in the test set.

Appendix B.24. OC-CNN

We implemented the one-class convolutional neural network (OC-CNN) method as
described by Oza et al. with some additional changes [22]. Instead of using a convolutional
neural network as the feature extractor, we used the latent space from the trained AE (see
Autoencoder) as input for the classifier. The classifier consisted of two hidden layers with M
and M/2 nodes, respectively, where M is the dimension of the input (i.e., the dimension of
the AE latent space). Two settings were explored for the first hidden layer either with or
without a bias term. Hyperbolic tangent activation was used for the hidden layers and a
single node with sigmoid activation was used for classification. As an artificial outlier class,
three types of noise were explored: (1) uncorrelated normal noise N(µ = 0, σ), (2) noise
from a uniform distribution U(-σ, σ), and 3) subspace perturbation (see ANN classifier).
Three different values for σ were used: 0.1, 0.5, and 1. Outlier scores were determined after
several training steps, namely: 100, 500, 1000, 2000, 5000, 10000, and Nmax, with the latter
being a variable number for each dataset. Dropout layers were used to prevent overfitting
with a dropout rate of 0.1. We used the Adam() optimizer with a learning rate of 0.0001.

Appendix B.25. PCA reconstruction error

Following the procedure described by Engel et al., we calculated the Q-values by
performing principle component analysis using p components [13]. Outlier scores were
obtained by projecting each of the first p principle components (as determined from the
train set), where each sample is reconstructed from its lower dimensional representation,
using the inverse transformation. The Q-value, i.e., outlier score for each sample was
calculated from the following equation:

Q-value = ||x− x̃||2 (A4)

where x is the input sample and x̃ is the reconstructed sample. Parameter p was set to 5, 10,
25, 50, 75, and 100.

https://github.com/mbongaerts/pyod/tree/LUNAR/pyod
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Appendix B.26. R-graph

R-graph was developed by You et al. [20]. In this study, we used the function
elastic_net_subspace_clustering() obtained from https://github.com/ChongYou/
subspace-clustering (accessed on 3 May 2022) to determine the self-representation of each
dataset. The following parameters were used: gamma_nz=True, tau=1.0, algorithm=
’lasso_cd’. Parameter gamma was set to 50 and 100. Parameter n_nonzero=N, with N
being 5%, 10%, and 25% of the total number of samples in the train set. We used 10, 25, 50,
and 100 transition steps in the Markov process to obtain the final (average) outlier scores
for each sample. Since R-graph has no learning parameters that are obtained from the train
set, we ran a leave-x-out procedure for the evaluation/test set in order to obtain outlier
scores (see COPOD).

Appendix B.27. SVDD

The support vector data description (SVDD) method was implemented in Python and
obtained from the GitHub repository https://github.com/iqiukp/SVDD-Python (accessed
on 31 March 2022) [18]. The model was trained without using outlier samples. The
following settings were used: gamma=’auto’. For parameter kernel, we used ’rbf’ and
’linear’. Parameter C was set to 0.1, 0.5, 1, and 2.

Appendix B.28. SOS

SOS from the pyOD toolkit was applied to each dataset [19]. The following settings
were used: metric= ’euclidean’, eps=1e-05, perplexity= N, with N being 5%, 10%,
25%, and 50% of the number of samples in the train set. Since SOS has no learning parame-
ters obtained from the train set, we ran a leave-x-out procedure for the evaluation/test set
to obtain outlier scores (see COPOD).

Appendix B.29. SOD

SOD from the pyOD toolkit was applied to each dataset [48]. The following settings
were used: n_neighbors= N, ref_set= 0.5N, alpha= 0.8, with N being 5%, 10%, and
25% of the number of total samples in the train set, respectively. Since SOD has no
learning parameters obtained from the train set, we ran a leave-x-out procedure for the
evaluation/test set in order to obtain outlier scores (see COPOD).

Table A1. Overview of outlier detection methods used in this study.

Nr. Name Method Type Summary of Working Principle Distance
Metric

Performs (Indirect)
Dimensionality
Reduction

Uses a Form of an
(Artificial) Outlier
Class for Training

1 AE reconstruction
error ANN Reconstruction error between autoencoder

reconstructed sample and input sample l2 Yes, latent space of
the AE

2 ALOCC ANN
(GAN)

GAN-based method, but replaces generator for an
autoencoder. Outlier scores are obtained from
discriminator that discriminates reconstructed samples
from real samples.

Yes, latent space of
the generator

3 ALAD ANN
(GAN)

GAN with multiple generator and discriminator
networks. Outlier scores obtained from the l1 error
between the activations in a hidden layer of the
discriminator between reconstructed and input sample.

l1 Yes, latent space of
the generator

Generated samples
from the generator

4 AnoGAN ANN
(GAN)

Reconstruction error between reconstructed and input
sample after finding an approximate point in latent
space of a query sample.

l1 Yes, latent space of
the generator

Generated samples
from the generator

5 ANN classifier ANN ANN classifier that distinguishes noise from normal
samples. Yes

Random noise or
subspace
perturbation

6 ABOD Probabilistic
A comparison of the variance of angles between query
sample and other samples in the dataset. Outlier
samples are expected to have a lower (angle) variance.

No

7
Average of top 10
most extreme
absolute Z-scores

Probabilistic

https://github.com/ChongYou/subspace-clustering
https://github.com/ChongYou/subspace-clustering
https://github.com/iqiukp/SVDD-Python
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Table A1. Cont.

Nr. Name Method Type Summary of Working Principle Distance
Metric

Performs (Indirect)
Dimensionality
Reduction

Uses a Form of an
(Artificial) Outlier
Class for Training

8 COPOD Probabilistic Combines empirical cumulative distributions in a
copula to estimate a ‘probability’ per sample. No

9 COF
Compares the average chaining distance of a point with
the average chaining distance of the k-nearest
neighbors.

No

10 DeepSVDD
Support
vector +
ANN

Minimum volume of sphere containing majority of the
normal samples using an ANN for non-linear mapping. Yes

11 ECOD

Computes left- and right-tail univariate empirical
cumulative distribution functions (ECDFs) per feature.
ECOD uses the uni-variate ECDFs to estimate tail
probabilities for the datapoint and aggregates these tail
probabilities to a final outlier score.

No

12 HBOS Density /
proximity

Builds a histogram for each dimension and aggregates
the results from each histogram into a single outlier
score.

13 Isolation Forest Ensemble Number of splits needed to isolate a sample. No

14 KDE
Density /
proximity /
Probabilistic

Density based on Gaussian kernel density
approximation.

Depends
on the
used
kernel

No

15 Feature bagging Ensemble Ensemble of detectors that use a random subset of
features.

16 KNN Density /
proximity

Mean, largest, or median distance of the k-nearest
neighbors.

Euclidean,
l1, l2 No

17 LMDD

18 LOCI Density /
proximity

Compares the density of a sample with the density of its
neighborhood. Density is measured by considering the
multi-granularity deviation factor.

19 LODA Ensemble
Using an ensemble of one-dimensional histograms by
projecting the data to a (random) one-dimensional
space.

Inconclusive

20 LOF Density /
proximity

Compares the average distance of a sample to its
neighboring samples with the average distance of those
samples with their neighborhood.

No

21 LUNAR Graph +
ANN

Uses a graph neural network (GNN), where the graph is
determined from the local neighborhood of each
sample. GNN is trained using an artificial outlier class.

Yes, depending on
number of nodes in
hidden layers

Subspace
perturbation

22 Mahalanobis Density /
proximity

Mahalanobis calculated from the estimated covariance
matrix. Mahalanobis No

23 MO-GAAL ANN
(GAN)

GAN with multiple generators to generate different
parts of the normal data.

24 OC-SVM Support
vector

Finds a hyperplane that maximizes the distance of the
normal data to the origin. No Origin is outlier class

25 OC-CNN ANN ANN classifier that distinguishes noise from normal
samples after feature extractor

Yes, latent space of
the feature extractor
(AE)

Random noise or
subspace
perturbation

26
PCA
reconstruction
error

Density /
proximity

Reconstruction error between input sample and
reconstructed sample after projection to lower
dimensional space from PCA.

l2 Yes, PCA

27 R-graph Graph
Represents each samples as a linear combination of
other samples, using a Markov process to propagate
scores though the graph.

Projection in a
(lower) subspace

28 SVDD Support
vector

Minimum volume of sphere containing majority of the
normal samples (using a kernel).

29 SOS Graph Euclidean

30 SOD Each sample’s outlierness is evaluated in a relevant
subspace.

Projection in a
(lower) subspace
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Appendix C. Optimal Settings for Each Dataset and Outlier Detection Method

Table A2. Optimal settings for each method and dataset based on the highest average AUC across
the evaluation CVs.

Method Setting Erasmus
MC Miller Radboudumc

ALAD epochs 100 10000 500
ALAD latent_dim 4 3 4
ALOCC D(x) epochs 100 5000 100
ALOCC G(D(x)) epochs 2000 500 1000
ANN bias False False True
ANN epochs 500 2000 5000

ANN noise normal subspace_ pertur-
bation normal

ANN std 1 1 0.25
AnoGAN epochs 2000 100 2000
AnoGAN latent_dim 3 3 3
DeepSVDD epochs 10 1000 1000
HBOS alpha 0.1 0.1 0.5
HBOS n_bins 100 50 250
Isolation Forest n_estimators 500 500 500
KDE bandwidth 0.25 0.25 0.5
KNN distance euclidean euclidean l1
KNN method mean mean mean
KNN n_neighbors_frac 0.05 0.05 0.1
LOCI alpha 0.1 0.5 0.5
LOCI k 1 1 2
LODA n_bins 50 10 auto
LODA n_random_cuts 500 500 100
LOF n_neighbors_frac 0.05 0.1 0.05
LUNAR n_neighbors_frac 0.1 0.1 0.1
MO-GAAL k 5 5 5
OC-CNN bias True True True
OC-CNN epochs 5000 15000 5000
OC-CNN noise uniform normal uniform
OC-CNN sigma 0.5 1 0.5
OC-SVM kernel rbf rbf linear
PCA reconstruc-
tion error n_components 50 25 100

R-graph gamma 100 100 50
R-graph n_nonzero_frac 0.05 0.25 0.25
R-graph steps 100 25 10
SOD n_neighbors_frac 0.05 0.05 0.25
SOS perplexity_frac 0.5 0.25 0.5
SVDD C 2 1 2
SVDD kernel rbf linear linear
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Appendix D. PCA Prior to Applying the Outlier Detection Method (Erasmus MC)

We trained the outlier detection methods on varying numbers of features by perform-
ing principle component analysis (PCA). PCA was performed on the train and test set
(including both normal and IEM patient samples). After the transformation, a certain
number of principle components was selected and the train and test set were disjointed.
Each outlier detection method was trained on the train set, and tested on the test set in
the same manner as described in Methods but without parameter setting selection. This
experiment was performed on the Erasmus MC dataset and for a fixed set of settings for
each method (see Table A3).

Figure A1 shows the AUC for each method and a varying number of PCs. Overall,
we observe an increasing AUC for an increasing number of PCs. The results indicate
that for some methods (e.g., COPOD and LMDD) an optimal number of PCs may exist.
Furthermore, we observe that the influence of the number of PCs largely differs among the
methods.
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0.61 0.71 0.76 0.78 0.79 0.79 0.8 0.8 0.8 0.8 0.8

0.56 0.72 0.76 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.78

0.61 0.7 0.75 0.77 0.77 0.77 0.78 0.78 0.78 0.77 0.75

0.61 0.71 0.75 0.76 0.78 0.78 0.77 0.78 0.78 0.77 0.74

0.62 0.7 0.75 0.76 0.77 0.78 0.77 0.77 0.77 0.77 0.75

0.62 0.7 0.74 0.75 0.76 0.76 0.77 0.77 0.77 0.77 0.78
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Figure A1. Average AUC (across 4 CVs) for an increasing number of principle components after
performing PCA analysis. Hyperparameter settings were fixed for each method (see Table A3).
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Table A3. Settings used for the experiment as described in Appendix B.

Method Setting Value

OCSVM kernel rbf
SVDD C 1
SVDD kernel rbf
PCA reconstruction error n_components 9
ALOCC D(x) epochs 10000
OC-CNN bias False
OC-CNN epochs 10000
OC-CNN noise uniform
OC-CNN sigma 0.1
ANN bias False
ANN epochs 10000
ANN noise normal
ANN std 0.25
LODA n_bins 50
LODA n_random_cuts 500
LOCI alpha 0.1
LOCI k 1
R-graph gamma 100
R-graph n_nonzero_frac 0.05
R-graph steps 100
MO-GAAL k 5
HBOS alpha 0.1
HBOS n_bins 100
DeepSVDD epochs 10
SOS perplexity_frac 0.5
SOD n_neighbors_frac 0.1
Isolation Forest n_estimators 500
LOF n_neighbors_frac 0.05
KNN distance euclidean
KNN method largest
KNN n_neighbors_frac 0.05
KDE bandwidth 0.25
LUNAR n_neighbors_frac 0.1
AnoGAN epochs 10000
AnoGAN latent_dim 3
ALAD epochs 10000
ALAD latent_dim 3

Appendix E. PCA Prior to Applying the Outlier Detection Method for Radboudumc
Dataset

A subset of outlier detection methods was applied on the PCA transformed Rad-
boudumc dataset, where we included various numbers of principle components (PCs).
Note that all samples in the dataset were used to perform this transformation, which
includes the 510 undiagnosed patient samples, the 38 IEM patient samples, the three ab-
normal samples, and the 123 normal samples. AUCs were obtained in the same manner
as described in Methods. Figure A2 shows the effect of an increasing number of PCs on
the (average) AUC for each investigated method. Interestingly, we observe that for PCA
reconstruction error(with 10 PCs) that we obtained an AUC of 0.84, which is higher than the
AUC obtained when PCA reconstruction error is applied directly to the dataset (see Figure
2). Similarly, we observe good AUC (≥0.78) for ABOD, LOF, KDE when 10/20 PCs are
used while AUCs are low (AUC ≈ 0.58–0.66) when applied directly to the dataset. These
findings support the results that are obtained from a similar experiment performed on the
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Erasmus MC dataset (Appendix D). Clearly, some methods benefit from an initial PCA
transform prior to applying the outlier detection method.

Next, we determined the recall, precision, and balanced accuracy at the ‘closest-to-(0,1)’
point and ‘recallP=0.9 point’ as can be observed in Figures A3 and A4.
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Figure A2. Average AUC (across 7 test CVs) for an increasing number of principle components after
performing PCA analysis, similar to as described in Methods. Note that the number of PCs that PCA
reconstruction error uses should always be lower or equal to the number of PCs that is used to (PCA)
transform the dataset.
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Figure A3. Evaluation metrics at the ‘closest-to-(0,1)’ point for four methods as indicated on the
x-axis when 20 PCs are used to transform the dataset.
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Figure A4. Evaluation metrics at the ‘recallP=0.9’ point for four methods as indicated on the x-axis
when 20 PCs are used to transform the dataset.

Appendix F. Balanced Accuracy, Recall, and Precision at the ‘Closest to the (0,1)’ Point
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Figure A5. (Average) balanced accuracy, recall, and precision at the point in the ROC curve that lies
closest to the (0,1) point. Methods are ordered by descending average AUC per dataset. All reported
values are the average across all (test) cross-validations.
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Appendix G. Balanced Accuracy, Recall, and Precision at the ‘RecallP = 0.9’ Point
PC

A 
re

co
ns

tru
ct

io
n 

 e
rro

r

M
ah

al
an

ob
is

AE
 re

co
ns

tru
ct

io
n 

 e
rro

r

De
ep

SV
DD

R-
gr

ap
h

SO
D

Fe
at

ur
e 

 b
ag

gi
ng LO

F

LU
NA

R

Av
er

ag
e 

|Z
-s

co
re

| 
 to

p 
10

KN
N

KD
E

SO
S

OC
-S

VM

SV
DD

AB
OD

LO
DA CO

F

An
oG

AN

Iso
la

tio
n 

 F
or

es
t

CO
PO

D

EC
OD

HB
OS

LM
DD AN

N

AL
OC

C 
D

(x
)

AL
AD

OC
-C

NN LO
CI

AL
OC

C 
D

(G
(x

))

M
O-

GA
AL

Balanced accuracy

Precision N

Precision P

Recall N

Recall P

0.64 0.61 0.62 0.61 0.6 0.63 0.6 0.6 0.61 0.59 0.62 0.6 0.59 0.6 0.57 0.59 0.6 0.62 0.58 0.6 0.59 0.56 0.56 0.54 0.57 0.55 0.52 0.5 0.59 0.48 0.47

0.69 0.64 0.66 0.64 0.64 0.68 0.64 0.63 0.65 0.61 0.67 0.64 0.61 0.64 0.57 0.6 0.64 0.66 0.58 0.63 0.61 0.56 0.56 0.49 0.58 0.54 0.44 0.37 0.47 0.27 0.19

0.72 0.7 0.7 0.7 0.69 0.71 0.69 0.69 0.7 0.68 0.71 0.69 0.68 0.69 0.67 0.69 0.69 0.7 0.68 0.69 0.68 0.67 0.67 0.65 0.67 0.66 0.65 0.64 0.69 0.63 0.62

0.39 0.31 0.34 0.31 0.31 0.37 0.31 0.3 0.33 0.28 0.35 0.31 0.27 0.31 0.23 0.28 0.31 0.33 0.25 0.3 0.27 0.22 0.22 0.17 0.24 0.2 0.14 0.1 0.29 0.067 0.048

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Performance metrics at recallP = 0.9 point

0.5

0.6

0.7

0.8

0.9

1.0

Erasmus MC dataset

R-
gr

ap
h

AN
N

Av
er

ag
e 

|Z
-s

co
re

| 
 to

p 
10

PC
A 

re
co

ns
tru

ct
io

n 
 e

rro
r

M
ah

al
an

ob
is

SV
DD

AE
 re

co
ns

tru
ct

io
n 

 e
rro

r

LO
F

KD
E

AB
OD KN

N

OC
-S

VM

LU
NA

R

De
ep

SV
DD

Fe
at

ur
e 

 b
ag

gi
ng SO
S

CO
F

An
oG

AN SO
D

EC
OD

Iso
la

tio
n 

 F
or

es
t

CO
PO

D

LM
DD

LO
DA

HB
OS

AL
OC

C 
D

(x
)

M
O-

GA
AL

AL
AD

OC
-C

NN LO
CI

AL
OC

C 
D

(G
(x

))

Balanced accuracy

Precision N

Precision P

Recall N

Recall P

0.95 0.84 0.8 0.76 0.74 0.79 0.78 0.77 0.74 0.73 0.7 0.71 0.72 0.73 0.68 0.71 0.68 0.68 0.57 0.62 0.63 0.62 0.61 0.64 0.55 0.73 0.5 0.53 0.54 0.45 0.55

0.76 0.71 0.69 0.66 0.64 0.68 0.67 0.67 0.65 0.64 0.61 0.62 0.63 0.64 0.59 0.61 0.59 0.58 0.42 0.52 0.53 0.51 0.49 0.54 0.39 0.57 0.23 0.32 0.34 0 0.31

1 0.93 0.91 0.88 0.87 0.9 0.89 0.89 0.87 0.87 0.85 0.86 0.86 0.87 0.84 0.85 0.84 0.84 0.79 0.81 0.82 0.81 0.81 0.82 0.78 0.87 0.76 0.77 0.78 0.74 0.78

1 0.79 0.7 0.61 0.58 0.68 0.65 0.65 0.58 0.56 0.51 0.53 0.54 0.57 0.46 0.51 0.47 0.45 0.24 0.34 0.37 0.34 0.33 0.39 0.21 0.56 0.1 0.17 0.18 0 0.2

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Performance metrics at recallP = 0.9 point

0.5

0.6

0.7

0.8

0.9

1.0

Miller dataset

HB
OS

De
ep

SV
DD

CO
PO

D

R-
gr

ap
h

AB
OD

EC
OD

AE
 re

co
ns

tru
ct

io
n 

 e
rro

r OC
-S

VM KN
N

PC
A 

re
co

ns
tru

ct
io

n 
 e

rro
r OC

-C
NN

M
ah

al
an

ob
is

LO
F

Iso
la

tio
n 

 F
or

es
t

AN
N

KD
E

SO
D

Fe
at

ur
e 

 b
ag

gi
ng

SV
DD

LM
DD

LU
NA

R

CO
F

LO
CI

Av
er

ag
e 

|Z
-s

co
re

| 
 to

p 
10 M
O-

GA
AL

AL
AD

AL
OC

C 
D

(G
(x

))

AL
OC

C 
D

(x
)

SO
S

LO
DA

An
oG

AN

Balanced accuracy

Precision N

Precision P

Recall N

Recall P

0.67 0.69 0.58 0.58 0.62 0.55 0.61 0.51 0.61 0.6 0.51 0.6 0.54 0.55 0.52 0.56 0.48 0.55 0.54 0.51 0.55 0.6 0.45 0.54 0.5 0.57 0.56 0.61 0.54 0.55 0.56

0.88 0.85 0.81 0.81 0.84 0.77 0.83 0.58 0.83 0.83 0.52 0.83 0.73 0.75 0.45 0.78 0.51 0.76 0.75 0.65 0.71 0.83 0 0.75 0.53 0.72 0.56 0.79 0.62 0.59 0.47

0.49 0.53 0.42 0.42 0.45 0.4 0.44 0.38 0.44 0.43 0.38 0.43 0.4 0.4 0.39 0.41 0.36 0.4 0.39 0.38 0.4 0.43 0.35 0.4 0.37 0.42 0.42 0.45 0.42 0.41 0.44

0.43 0.48 0.27 0.26 0.33 0.2 0.31 0.12 0.31 0.29 0.13 0.3 0.18 0.21 0.13 0.22 0.07 0.21 0.18 0.11 0.2 0.3 0 0.19 0.1 0.24 0.22 0.32 0.18 0.2 0.22

0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Performance metrics at recallP = 0.9 point

0.5

0.6

0.7

0.8

0.9

1.0

Radboudumc dataset

Figure A6. Balanced accuracy, recall, and precision at the point in the ROC curve where recallP = 0.9.
All reported values are the average across all (test) cross-validations.

Appendix H. Learning Curves ALOCC
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Figure A7. Learning curves for the ALOCC method. The generator, discriminator, and reconstruction
loss are displayed in each subplot. Note that each curve represent one cross-validation.
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Appendix I. Learning Curves AnoGAN
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Figure A8. Learning curves for the AnoGAN method. The generator and discriminator loss are
displayed in each subplot. Note that each curve represent one cross-validation.

Appendix J. Learning Curves ALAD
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Figure A9. Learning curves for the ALAD method. The generator and discriminator loss are displayed
in each subplot. Note that each curve represents one cross-validation.
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Appendix K. Learning Curves MO-GAAL
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Figure A10. Learning curves for the MO-GAAL method with k = 5 (number of subgenerators). The
generator and discriminator loss are displayed in each subplot. Note that each curve represent one
cross-validation. The grey learning curves indicate the individual losses of the subgenerators.

Appendix L. Overview with Standard Deviations on AUC
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Figure A11. Overview of the average AUC plus standard deviation (between parentheses) on the
AUC obtained from the k-fold cross-validation.
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Appendix M. Effect of Scaling Based on Different Groups on Outlier Detection
Performance

We investigated the effect of the initial Z-score scaling on the IEM detection perfor-
mance for six outlier detection methods for the Miller dataset. The first Z-score scaling is
based on the 70 control samples, where the mean and standard deviation for each metabo-
lite are calculated from these samples. For the second Z-score scaling method, we used all
190 samples to determine this mean and standard deviation (per metabolite) and using
the iterative procedure as described in Appendix A. For six outlier detection methods and
both scaling methods we calculated the AUC using the 120 IEM patient samples, and 25
control samples as the test set (i.e., 45 control samples were in the train set) (Figure A12).
The results indicate that for 5/6 outlier detection methods, the AUC dropped for scaling
method 2 with respect to scaling method 1.
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Figure A12. ROC curves and AUCs for six outlier detection methods (as indicated in the title), for
two different Z-score scaling methods.
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