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Abstract

When symptoms of atrial fibrillation (AF), a common cardiac arrhythmia, are experienced, a Holter
monitor or event recorder is used for official diagnosis. Apart from the fact that these devices are
experienced as inconvenient, AF can already manifest damage in a pre-symptomatic phase. This
thesis is aimed at developing a method for recording heart activity using a wearable device to per-
mit convenient early detection of AF. For this, heart activity is measured continuously by means of
photoplethysmography (PPG). A classification algorithm is used to detect AF episodes in the PPG
recording. If the algorithm suspects AF, a limb lead I ECG recording is requested from the user. The
ECG recording can be analyzed by a clinician for official diagnosis. The Maxim Integrated Max86150
chip is used for the implementation of PPG and ECG. Acceleration data is gathered by means of the
Adafruit MMA8451 accelerometer to allow for detection of motion artefacts. These sensors and the
data they retrieve are controlled and processed by the ARM Cortex-M7 microcontroller. From the
results, PPG recordings have a higher quality when infrared light is used as compared to when red
light is used. However, both types of recordings are of sufficient quality for monitoring the heart rate
accurately when in stasis. Although complete functionality of the system could not be verified, the
results are promising for future work.
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1
Introduction

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia among the world popula-
tion. According to the Global Burden of Disease study of 2017 [1], the worldwide prevalence of AF
was reported to be 37.57 million cases, which composes approximately 0.51% of the global pop-
ulation, and this number is ever increasing. AF is characterized by irregular beating of the heart,
which is caused by disorganized electrical signals that emerge from the atria and propagate through
the heart. Long-term AF results in inefficient blood perfusion, which in turn may cause fatigue,
coagulation, strokes and even demise. The probability of developing AF increases with age and
additionally depends on other genetic and lifestyle-related diseases and conditions such as hyper-
tension [2]. Moreover, several studies suggest that vigorous exercise may increase the probability of
triggering AF episodes [3], [4], [5]. The frequency and length of AF episodes generally increase over
time, the corollary being that AF is classified as a progressive disease [6]. Although medication exists
that can alleviate the consequences of AF, no cure nor treatment is available at the time of writing
that can permanently remedy the disease itself. Nonetheless, since this is currently an active field
of research, fast and accurate diagnosis of AF has become of increasing interest.

1.1. Problem definition
Over the past decades, several methods for diagnosing AF have been used and are still being used in
medical environments. A prominent example of this is 12-lead electrocardiography (ECG) used in
hospitals, based on the findings of its founding father Willem Einthoven, MD, PhD [7]. 12-lead ECG
yields accurate recordings of heart activity but demands the patient to be situated in the hospital,
which can be inconvenient. Even more so, diagnosis of early AF, formally known as paroxysmal AF,
requires long-term monitoring since AF episodes are relatively infrequent and short at this stage of
the disease.

To resolve the issue of immobility, ambulatory ECG devices such as the Holter monitor and event
recorder have been introduced. The Holter monitor records heart activity continuously, whereas
the event recorder is only activated when the patient experiences symptoms. Although the use of
such a device is more convenient for the patient in terms of mobility, the device must still be car-
ried around, which may be experienced as cumbersome. Additionally, electrodes are used which
yield more accurate recordings but cause skin irritation when worn over an extended period of
time. A more concerning issue, however, is that the use of these devices is only prescribed after
the patient has informed a medical professional about symptoms he or she has experienced that
are characteristic of AF. This is problematic since AF can already manifest irreversible damage at
a pre-symptomatic stage. Naturally, the public would refrain from purchasing such a device when
they do not experience any symptoms due to its inconvenience and cost. Therefore, early detection
of AF is not feasible via this method and an alternative must be found.

1



1.2. Project description and subsystem division 2

(a) AliveCor KardiaMobile. Courtesy of [8]. (b) Fitbit Sense. Courtesy of [11]. (c) Apple Watch Series 4. Courtesy of [12].

Figure 1.1: State-of-the-art wearables for AF detection.

In recent years, the focus has shifted towards the development of convenient, non-invasive, mo-
bile devices with the aim to realize early detection of AF. This also introduced the use of artificial
intelligence (AI) to facilitate automated detection. Expansion of wearable technology, or wearables
as these devices are referred to, has rapidly progressed over the past decade to stimulate proactive
health monitoring. The AliveCor KardiaMobile [8], for example, is a clinically-validated handheld
device that is capable of making single-lead ECG recordings. The device can be paired with a smart-
phone, on which the recordings can be stored, analyzed by an AI algorithm and sent to a medical
professional for official diagnosis. The Fitbit Sense [9] offers similar functionalities and can also
be worn on the wrist. In addition to recording an ECG, the Apple Watch Series 4 [10] utilizes pho-
toplethysmography (PPG) for AF detection. PPG is a light-based technology which can be used to
assess heart rate and blood oxygen saturation. The advantage of PPG is that it is easier to implement
into a wearable than ECG.

The issue with these devices, however, remains that continuous monitoring of heart activity is
not feasible. Making an ECG recording with these devices requires the subject to actively maintain
physical contact with the electrodes, which is unrealistic to demand on the long term. Although the
Apple Watch utilizes PPG to complement this problem, it only monitors in intervals of 15 minutes,
which is too long for early AF detection.

1.2. Project description and subsystem division
The goal of this project is to design a wearable device for early detection of AF. The device should be
affordable, non-invasive and convenient to wear. In the proposed solution, heart activity is contin-
uously monitored using PPG technology. Acceleration data is recorded to provide a reference signal
for motion of the device. The PPG signal is processed to remove noise and motion artefacts. A ma-
chine learning algorithm is used to detect the presence of AF in the PPG signal. In the event that
AF is detected, the subject is prompted to record a single-lead ECG recording. The ECG recording is
then shared with and reviewed by a medical professional for official diagnosis.

To realize the goal of the project, the complete system is divided into the following subsystems:

• Signal acquisition

• Signal processing

• Classification

A block diagram of the interactions between these subsystems is shown in figure 1.2.
The objectives of the signal acquisition subsystem is to acquire continuous PPG and accelerom-

eter recordings. Whenever an AF episode is detected with the PPG recording an ECG recording must
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be made. The user is informed of this by means of a visual or haptic notification. The PPG, ECG and
accelerometer recordings must all be digitized.

The signal processing subsystem is responsible for filtering and processing of the digital signals.
The PPG signal is enhanced by reducing noise and motion artefacts. Furthermore, the beat-to-beat
heart rate is extracted from the PPG signal.

The objective of the classification subsystem is to extract features from the filtered PPG signal
and the accompanying beat-to-beat heart rate. A machine learning classification algorithm should
be designed that uses these features to detect AF episodes in the PPG recordings. Detected AF
episodes should be noted and the subject should receive feedback if AF is present. Furthermore,
if an ECG recording is made, the recording should be stored and prepared to share with a clinician.

This thesis is focused on the realization of the signal acquisition subsystem.

Figure 1.2: Top level overview of the complete system.

1.3. Thesis outline
This thesis has the following structure. In chapter 2, a Program of Requirements (PoR) is established
in which the requirements of both the complete system and the subsystem focused on in this the-
sis are stated. Subsequently, in chapter 3, AF is introduced in more detail and techniques used to
detect AF are discussed. In particular ECG and PPG, and important considerations for their imple-
mentation in a wearable are thoroughly examined. This forms the foundation for the hardware and
software design of the prototype, which is elaborated in chapter 4. The practical implementation
and validation of the prototype are then presented in chapter 5, and the results are discussed in 6.
Finally, this thesis is concluded with an outlook on future work in chapter 7.



2
Program of Requirements

The program of requirements is split into distinct parts. First, the global requirements of the com-
plete system are given. Next the requirements that are related to the signal acquisition subsystem
are presented. These are derived from and therefore categorized according to the global require-
ments.

2.1. Global requirements
The general requirements of the prototype are split into functional and non-functional require-
ments. The functional requirements describe what is required to allow the prototype to function
properly. The non-functional requirements encompass the requirements that do not contribute to
the functioning of the prototype, but are important for its realization.

Functional requirements

1 The device must measure the user’s heart activity.

2 The device must be able to detect all atrial fibrillation episodes.

3 The device must generate statements and statistics that are interpretable by a medical profes-
sional and are able to aid in the diagnosis of atrial fibrillation.

4 The device must give feedback to the user about the classification outcome.

5 The device must be able to provide core functionality without interaction with other devices.
Core functionality consists of recording and storing measurements, AF classification and user
feedback.

6 The device should be able to be used during day-to-day activities while maintaining its accu-
racy.

Non-functional requirements

7 The device must be wearable as an accessory.

8 The device can only provide information and advice; no definitive diagnosis is given.

9 The device should be affordable to be used in a wide audience and therefore components
should not cost more than €30,-.

4
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2.2. Signal acquisition requirements
From global requirement PoR:11 it is evident that the device requires a means of acquiring a heart
signal. Chapter 3 discusses the various methods that can be used for this in more detail. As a result
of this research, the following requirements have been derived to fulfill requirement PoR:1:

1.1 The device must be able to make a digital single-lead ECG recording.

1.1.1 The device must be able to detect an AC voltage signal within the range of 5 mV to 10 mV
[13].

1.1.2 The resolution of the ECG signal must be at least 12 bits [14].

1.1.3 The minimum sample rate must be 150 Hz.

1.1.4 The minimum common mode rejection ratio must be 89 dB [13].

1.1.5 The minimum duration of an ECG recording must be 30 seconds.

1.2 The device must be able to continuously make digital PPG recordings.

1.2.1 The photodiode must transduce light into an electrical current, whose AC component
has a peak-to-peak value of at least 10 nA [15], [16].

1.2.2 The resolution of the PPG signal must be at least 12 bits.

1.2.3 The minimum sample rate must be 20 Hz.

1.3 When no tissue is in range of the PPG sensor, the device must idle to reduce power consump-
tion.

Since motion artefacts contaminate these signals as will be explained in chapter 3, measures
must be taken to fulfill requirement PoR:2. For the signal acquisition subsystem, this leads to the
following requirement:

2.1 The device must provide data correlated to movement for the detection of motion artefacts.

Additionally, the signal acquisition department is responsible for integration of the hardware.
Therefore global requirements PoR:4, PoR:7 and PoR:9 are composed of the following sub require-
ments within the signal acquisition subsystem:

4.1 The device must have a visual indicator that can be used for giving feedback on the classifica-
tion outcome.

4.2 A vibration motor could be implemented to allow for haptic feedback. This is a trade off re-
quirement concerning time and cost (PoR:9).

7.1 Employed technologies must be implementable in the device with a maximum area size of
2000 mm2 and height of 10 mm.

7.2 The device must use a rechargeable battery and function a minimum of 12 hours on a single
charge.

7.3 The device lifetime on a single battery charge should be maximized while maintaining the
required performance. This is therefore a trade off requirement regarding measurement of
the user’s heart activity (PoR:1), dimension constraints (PoR:7.1), battery capacity (PoR:7.2)
and cost (PoR:9).

9.1 The components of the device should not cost more than €30,-.

1References to a specific requirement are denoted by PoR:number. E.g. PoR:1.1.2 refers to requirement 1.1.2.



3
Background

In order to enhance the design approach, it is insightful to investigate the mechanism of AF and
methods used to detect its manifestation. To this end, first a physiological analysis is introduced ex-
plaining the functioning of a normal, healthy heart during a cardiac cycle and the anomalies indica-
tive of AF. Subsequently, a survey of different techniques that are used for AF detection is presented.

3.1. Cardiac conduction system
The cardiac conduction system consists of specialized muscle cells that serve as a pathway for the
electrical signals propagating through the heart. As shall become clear in this section, AF is charac-
terized by deviations manifested in the conduction of these signals.

3.1.1. Normal sinus rhythm
A heartbeat is constituted by the contraction and relaxation of myocardium (cardiac muscle), for-
mally referred to as systole and diastole respectively. The systolic and diastolic phases are regulated
by electrical signals produced within the heart that propagate through the cardiac conduction sys-
tem. The signals are initiated within the sinoatrial (SA) node, which is located in the right atrium.
The initially polarized muscle cells depolarize as the signals travel across the atria, resulting in atrial
systole. As a result, blood present in the atria is pumped into the ventricles. The signals propagate
towards the atrioventricular (AV) node that is positioned at the top of the interventricular septum.
The AV node delays the signals to give the atria sufficient time to transfer the blood to the ventricles.
Subsequently, the signals continue from the AV node towards the ventricles, giving rise to depolar-
ization of ventricular myocardium and thus ventricular systole. This allows the blood, that is now
present in the ventricles, to be pumped into the arteries. Simultaneously, the atria repolarize which
is denoted by atrial diastole. Finally, ventricular systole is followed by ventricular diastole, during
which the ventricles relax and repolarize before the SA node re-initiates the cardiac cycle. Figure 3.1
visualizes the trajectory of the electrical signals through the heart in case of NSR.

3.1.2. Atrial fibrillation
In case of AF, the signals in the atria are not conducted properly from the SA node to the AV node.
Instead, they propagate in a disorganized fashion, resulting in irregular atrial systole and diastole
and thus inefficient transfer of blood to the ventricles. Since some of the signals arrive earlier at the
AV node than others, the signals traveling across the ventricles are disordered as well. As a conse-
quence, also the ventricles contract irregularly, ultimately resulting in irregular heartbeats. Hence,
the heart rate (HR) and the heart rate variability (HRV) are two characteristics of the heart that dis-
tinguishes AF from NSR. The propagation of the signals in case of AF is depicted in figure 3.1.

6
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Figure 3.1: The pathway of the electrical signals through the cardiac conduction system during normal sinus rhythm
(left) and atrial fibrillation (right). Adapted from [17].

3.2. Techniques for AF detection
Before addressing the various techniques that exist for AF detection, it is important to emphasize
the distinction between detection and diagnosis of AF. According to [18], "[a]n electrocardiogram
(ECG) recording is necessary to diagnose AF. Any arrhythmia that has the ECG characteristics of AF
and lasts sufficiently long for a 12-lead ECG to be recorded, or at least 30 seconds on a rhythm strip,
should be considered an AF episode." Thus, currently AF can exclusively be diagnosed by means of
ECG. Therefore, ECG is considered the gold standard for AF detection.

ECG is often combined with other techniques to establish a more precise diagnosis. Echocar-
diography, for example, is used to assess the physical structure of the heart, as dilation of the atria
is associated with AF [19]. This technique involves high frequency sound waves that are projected
towards the heart. The heart reflects these waves back in a manner that depends on its geometrical
structure, which alters throughout a cardiac cycle. From the reflected waves, a two-dimensional
image can be rendered that indicates the physical structure of the heart.

In addition to echocardiography, a blood sample is taken and examined on its biochemical con-
tents. Abnormal presence or concentrations of biochemicals that are affiliated with AF are analyzed,
including blood cells [20], cardiac troponin [21] and thyroid hormones [22].

Another technology that has recently sparked interest for AF detection is photoplethysmog-
raphy (PPG). Though PPG has a considerable history, its use was predominantly limited to pulse
oximetry and heart rate determination. Nevertheless, various studies with promising results are
currently promoting the potential of PPG-based AF detection [23], [24], [25], [26], [27], [28].

The two techniques that are focused on in this study are electrocardiography and photoplethys-
mography. These techniques offer relatively more freedom with respect to the design of a wearable
and can be implemented non-invasively, which is one of the requirements of the device to be de-
veloped. Unfortunately, the techniques are plagued by phenomena such as motion artefacts that
cannot be neglected and must be resolved. These challenges and other design aspects shall be ana-
lyzed critically in the rest of this chapter.

3.3. Electrocardiography
As elaborated in chapter 1, electrocardiography (ECG) is a technique with an extensive history. Be-
ing used in contemporary medical environments, ECG serves as the gold standard technology for
diagnosis of various cardiovascular diseases, including AF. In this section a brief overview of the
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principles of ECG is presented with information adapted from [29]. Additionally, aspects relevant
for the integration of ECG into a wearable device are discussed.

3.3.1. Underlying principle
As explained in the previous section, muscles contract as a result of depolarization of its cells. Due
to a difference in intra- and extracellular ion concentrations, an electrical potential difference exists
across a muscle cell’s membrane, which is known as the membrane potential. At rest, the mem-
brane potential is negative for muscle cells. However, as the cell depolarizes, this potential becomes
positive. Since a muscle consists of numerous cells, this change in potential difference is measur-
able at the body surface. Two electrodes are used for this measurement, since the potential at one
electrode (active) must be measured with respect to other (reference). This yields a voltage signal
that changes according to the propagation of the electrical signals in the heart, and thus indicates
the electrical activity of the heart.

3.3.2. ECG waveform
The waveform of an ECG recording depends on the placement of the electrodes on the body. This at-
tribute is used in hospital-grade ECG monitors, which employ 10 electrodes for 12-lead recordings.
By examining the voltage between various combinations of electrode pairs, the signals propagating
through the heart can be viewed from different perspectives, which allows medical professionals to
give a three-dimensional interpretation of the heart activity.

Figure 3.2: PQRST sequence of in case of NSR, showing a clear P wave (atrial systole), QRS comples (ventricular systole)
and T wave (ventricular diastole). Atrial diastole is not visible as it is masked by the QRS complex. Adapted from [29].

Figure 3.2 shows the signal of normal heart beat, also known as PQRST sequence, that contains
characteristic sections present in an ECG recording. The different sections of the signal each signify
a different stage within a heart beat. The first section represents the P wave and indicates depolar-
ization of the atria. At this moment the impulse signal initiated by the SA node travels towards the
AV node. The QRS complex denotes depolarization of the ventricles, which occurs as the impulse
travels from the AV node through the ventricular muscles. HR and HRV can be determined by ex-
amining the repetition rate and time interval between consecutive QRS complexes. Finally, the T
wave appears as a result of ventricular repolarization. Interestingly, repolarization of the atria is not
visible in an ECG recording. This is because the magnitude of the signal produced by atrial repolar-
ization is relatively small as compared to ventricular depolarization. As a result, atrial repolarization
is masked by the QRS complex.
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Limb lead I ECG recordings of a subject with NSR and a subject with AF are depicted in figure 3.3.
Two differences between the recordings can be recognized that distinguish AF from NSR. One is the
absence of the P wave. As mentioned previously, the signals in the heart do not propagate uniformly
from the SA node to the AV node. Instead, they travel in an omnidirectional and chaotic fashion.
On the recording, this results in no distinct P wave. The disorganized signals persevere within the
ventricular muscles after they have reached the AV node. This causes the second visible difference
in the recording, namely the irregular repetition of the QRS complex. Due to irregular ventricular
systole, HR is not consistent and HRV increases. Hence, these biomarkers aid to distinguish NSR
and AF cases.

Figure 3.3: Lead I ECG recording during normal sinus rhythm (top) and atrial fibrillation (bottom). The distinct P wave
in case of NSR is not visible in case of AF. Also, the interval between consecutive QRS complexes is constant for NSR

whereas for AF it is irregular. Adapted from [30].

3.3.3. Single-lead electrodes placement
As explained in the previous section, the waveform of an ECG recording depends on the placement
of the electrodes. Attaching 10 electrodes is impractical in non-medical, daily life situations. For-
tunately, a single-lead recording suffices for the detection of AF as only the absence of the P-wave
and irregular repetition of the QRS complex must be identified [31], [32], [33]. Therefore, a pair of
electrodes must be attached such that this information can be accurately extracted from the ECG
recording.

Precordial leads require electrodes to be positioned on the chest, which can be inconvenient for
the user. Similarly, apart from limb lead I, all limb leads require one electrode to be placed on the left
leg, which is also uncomfortable. Fortunately, as shown in the previous section, the P wave and QRS
complex can be identified clearly in limb lead I, which allows for clear HR and HRV determination.
Although this lead requires one electrode on each arm, this can be realized with minimal effort from
the user by placing two electrodes on the device.. One electrode is constantly in contact with, for
example, the wrist of the arm on which the device is mounted. The other electrode can then simply
be touched with the other hand, which completes the circuit. It is important to note, however, that
making long-term continuous ECG recordings is not feasible with this method, as this demands the
user to constantly place his or her hand on the device.

Detection of AF in lead I has been proven to be possible [34], [35]. In fact, several commercially
available devices utilize lead I ECG for AF detection. For example, the Apple Watch Series 4 is able
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to record accurate 30-second lead I ECGs, which has been validated using the conventional 12-lead
hospital-grade ECG recorder as ground truth [36], [37]. Similar studies have drawn an identical con-
clusion about the AliveCor KardiaMobile, which has comparable lead I ECG recording capabilities
[38], [39].

3.3.4. Bias electrode
In addition to the active and reference electrodes that are used to obtain the ECG traces, 12-lead ECG
monitors include a bias electrode. The purpose of the bias electrode is to reduce common-mode
noise such as power line interference. This is realized by a Driven Right Leg (DRL) circuit. A simpli-
fied front-end amplifier circuit conventionally used in ECG monitors is shown in figure 3.4. The two
inputs are the signals from the active and the reference electrode. These are fed into an instrumen-
tation amplifier, which ensures a larger common-mode rejection ratio (CMRR) than the standard
differential amplifier. The instrumentation amplifier additionally prevents loading the body since
the input impedance is larger than that of a differential amplifier. The gain of the instrumentation
amplifier is defined as

G I A = R4

R3

2R1 +Rg

Rg
(3.1)

The common-mode signal is then inverted and amplified before it is fed back to the body via the
bias electrode in the DRL circuit. The gain of the inverting amplifier is calculated as

GDRL =−R f 2

R f 1
(3.2)

As a result, the common-mode signal is cancelled out. Resistors Ri and Ro serve as a safety feature
and limit the current that can flow into the body in the event that any part of the circuit fails [40].

Given that the CMRR of the instrumentation amplifier is sufficient, omission of the bias elec-
trode is acceptable [41]. Apart from the fact that this enhances the user experience, it is also con-
venient for the device of this study, since the number of required electrodes reduces from three
to two thus reducing the design complexity. Furthermore, power consumption is decreased as an
amplification stage can be excluded.

Figure 3.4: A simplified ECG amplifier circuit. The signals from the active and reference electrodes are fed into an
instrumentation amplifier. The common-mode signal is inverted, amplified and fed back to the body.
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(a) Wet electrode (b) Dry electrode (c) Dry electrode with
microneedles

(d) Non-contact electrode

Figure 3.5: The different electrode types in the following order: (a) wet electrode, (b) dry electrode, (c) dry electrode with
microneedles and (d) capacitive electrode. Adapted from [44].

3.3.5. Electrode types
In addition to the placement of the electrodes, it is important to consider the physical implemen-
tation of the electrodes. There exist three types of electrodes: wet electrodes, dry electrodes and
non-contact or capacitive electrodes. The electrodes are depicted in figure 3.5. Each electrode has
its own advantages and disadvantages, which will be highlighted in this section.

Wet electrodes are electrodes that use a gel as an electrolyte to lower the skin-electrode impedance.
The gel is used to improve signal quality. Since these electrodes are adhesive, they are also more re-
sistant to motion artefacts (MAs) caused by physical displacement of the electrodes. Due to these
benefits, wet electrodes are currently still the standard in hospitals. A major drawback, however,
is that the gel can dry out over time or can be contaminated by sweat through perspiration. This
requires periodic replacement of the electrodes. On top of that, the electrodes could cause skin ir-
ritation when worn for a long time. Wet electrodes are therefore not suitable for daily usage beyond
medical environments.

To resolve the issues of wet electrodes, dry electrodes have been developed, which do not re-
quire any gel. Their use is intended for long-term continuous ECG monitoring in wearable devices.
However, due to the absence of electrolyte, the skin-electrode impedance is larger and as a result
the quality of the signal is diminished. Also, since dry electrodes are nonadhesive, they are more
prone to MAs. This is because the skin-electrode impedance is more likely to fluctuate due to phys-
ical movement of the user. Remarkably, sweat accumulated over time can serve as an electrolyte
and diminish this effect, though it is not as effective as the gel used for wet electrodes. Dry elec-
trodes that make use of microneedles have been developed to overcome these two problems. These
needles are injected past the stratum corneum, i.e. the outermost layer of the epidermis, to reduce
the skin-electrode impedance. Simultaneously, they fix the electrode and prevent it from moving.
Though the needles are painless, wearing them for a long-term may cause skin irritation.

Non-contact electrodes differ from wet and dry electrodes in the sense that they are galvanically
isolated from the epidermis. Galvanic isolation prevents the dependence on skin surface properties
such as non-uniformity and perspiration. However, the ECG signals sensed by non-contact elec-
trodes are significantly weaker as compared to wet and dry electrodes. Next to that, these electrodes
are more prone to MAs.

Recently developed commercially available wearables primarily make use of dry electrode, as its
advantages outweigh its disadvantages more than the other electrode types. Examples include the
Apple Watch Series 4, FitBit Sense and Withings ScanWatch [42]. Though the quality of the signal
obtained by the latter two has not been scientifically validated, the Apple Watch Series 4 has been
reported to score accurate results when compared to the standard 12-lead ECG monitor [36], [37],
[43].
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3.3.6. Removal of motion artefacts
As briefly indicated before, MAs adversely affect the signal quality of an ECG recording. MAs can
arise from various sources. An example is variable contact between the skin and the electrode. Even
if the electrode is firmly attached to the skin, any movement of the body can still introduce MAs. This
is because similarly to the cardiac muscles, other muscles in the body produce their own signals as
they contract and relax. Though these signals are of interest for electromyography (EMG), they can
contaminate or mask signals relevant for ECG and must therefore be filtered out. In addition to
improving electrode properties, alternative methods have been proposed to minimize the presence
of MAs. In this section, the focus will mainly be on the auxiliary hardware used for these methods
as the implementation of the filtering algorithms is outside the scope of this thesis.

One method examines properties of the ECG signal itself and does not require additional hard-
ware. Techniques such as principal component analysis and independent component analysis are
utilized to remove MAs [45], [46]. The disadvantage is that this method relies on multi-lead ECG,
which is not feasible with the device of this study. Next to that, these algorithms could be computa-
tionally complex, which may result in high power consumption and reduced battery life.

Another approach employs adaptive filtering techniques. This requires a reference signal that is
correlated with the MAs present in the ECG lead. The reference signal is realized with auxiliary
sensors. An example is the triaxial accelerometer, which detects inertial motion [47], [48], [49].
Skin-electrode impedance has been shown to be suitable for adaptive MA removal as well [50], [51].
Though the hardware design and integration challenges become more complex with the addition of
such sensors, the device could be more power efficient.

3.4. Photoplethysmography
In 1938, Hertzman had found a method to observe the dynamics of blood perfusion with photoelectric-
based plethysmography [52], which later became known simply as photoplethysmography (PPG).
Despite the fact that the technique itself has an extensive history, consideration of its usage for AF
detection has only gained interest in recent years. A brief overview of PPG with information adapted
from [53] and aspects relevant for this study is presented in this section.

3.4.1. Underlying principle
PPG is an optical technique used for monitoring of numerous biomarkers. Prominent biomarkers
extracted from a PPG signal include pulse rate (PR), pulse rate variability (PRV) and blood oxygen
saturation (SpO2). As will be elaborated shortly, determination of PR and HR are fundamentally dif-
ferent. A similar statement applies to PRV and HRV. However, research has suggested that PR and
PRV can be used as surrogates for HR and HRV respectively, although a discrepancy may arise de-
pending on the ambient temperature and body site on which PPG is performed [54], [55], [56], [57],
[58], [59]. Thus, for simplicity, PR and PRV will henceforth be denoted as HR and HRV respectively
as well.

As opposed to ECG, PPG is not directly based on the biopotential signals produced by the heart.
Instead, an external light1 emitting source is used, which is conventionally realized with a light emit-
ting diode (LED). Light from this source is directed towards blood vessels. Due to the blood present
in the vessels, light will either be transmitted, absorbed or reflected. As the heart circulates the blood
in periodic bursts, the amount of blood encapsulated within a certain volume of a vessel will vary
accordingly. As a result, the transmission, absorption and reflection of the emitted light will differ
over time as well. A photoelectric transducer serving as a receiver is then used to measure either the
transmitted or reflected light intensity. Commonly, this is realized with a photodiode.

1A more general term would be electromagnetic radiation. However, since specifically the infrared and visible light spec-
tra are used for PPG, for simplicity this will be denoted merely by light.
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(a) Light intensity absorbed by the body. (b) Light intensity received by the photodiode.

Figure 3.6: The light intensity absorbed by the body and received by the photodiode during a cardiac cycle. The received
light signal appears as an inversion of the absorbed light. Adapted from [53].

3.4.2. PPG waveform
The light that is received by the photodiode is composed of a DC component and an AC compo-
nent. The DC component remains approximately constant and is independent of heart activity.
It is determined by light absorption of tissue, venous blood and non-pulsatile arterial blood. The
AC component, on the other hand, varies in accordance with heart activity and is characterized by
pulsatile arterial blood. Systole and diastole can be identified by two consecutive peaks in the AC
component. Figure 3.6a shows how the absorption of light by the body changes during a cardiac
cycle. Note that this is not drawn to scale. Theoretically, venous blood introduces an AC compo-
nent as well, but its magnitude is negligible when compared to that of pulsatile arterial blood. The
DC component may still vary as a result of deformation of the tissue, for example through move-
ment. The light received by the photodiode has a waveform that appears as a vertical inversion of
the absorbed light waveform and is shown in figure 3.6b.

After the light received by the photodiode is transduced into an electrical signal, it must be am-
plified and processed to obtain a meaningful PPG signal. The photodiode can be used in two modes:
photovoltaic mode and photoconductive mode. In the photovoltaic mode, the incident light inten-
sity is related to the output voltage of the photodiode, whereas in the photoconductive mode the
incident light intensity is related to the output current of the photodiode. The voltage-light intensity
relation is non-linear, in contrast to the linear current-light intensity relation. Since a linear relation
is more convenient to interpret and implement, the photoconductive mode is generally preferred
for PPG applications [60].

The current that is output by the photodiode is first passed through a front-end pre-amplifier
before any further processing can be performed on the signal. This is done to prevent further signal-
to-noise ratio (SNR) degradation. A transimpedance amplifier is used for this as it simultaneously
converts the current into a voltage, which is required for the signal processing equipment that fol-
lows the front-end amplifier [61]. Since the gain of a transimpedance amplifier is negative, the wave-
form is inverted yielding a PPG signal that has a shape similar to that of figure 3.6a.
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(a) Transmissive PPG. (b) Reflective PPG.

Figure 3.7: Transmissive and reflective PPG. For transmissive PPG, the LED and photodiode are positioned on opposite
sides wheres for reflective PPG they are positioned adjacently. Courtesy of [66].

3.4.3. Transmissive and reflective PPG
As briefly mentioned before, there are two modes of PPG: transmissive and reflective PPG. The pre-
ferred technique depends on the body site of interest [62], [63]. Transmissive PPG relies on the
transmission of light through the body and is therefore generally used for thin body parts such as
the fingers, toes or earlobes. An example of a device that uses transmissive PPG is the pulse oxime-
ters used in hospitals. Reflective PPG, on the other hand, is based on the reflection of light and is
more suitable for parts of the body that cannot easily be penetrated by light, such as the forehead,
chest or wrists. Wearables such as smartwatches generally have a reflective PPG sensor as they are
less obtrusive to implement and thus contribute to the user’s comfort [64]. Despite the differences
in terms of implementation, the waveform of the two different modes is similar as this is largely
determined by light absorption of blood [65].

3.4.4. Sensor placement
The quality of a PPG signal highly depends on the body site on which measurements are performed.
The most relevant parameter for AF detection that can be extracted from a PPG signal are HR and
HRV. Thus, the signal quality must be such that these can be determined accurately. Another crite-
rion is that the PPG sensor should be located such that it is accessible and comfortable for the user.
Hence, a body site must be chosen that yields an acceptable trade-off between these criteria.

Various studies have investigated and compared different body sites at resting and moving con-
ditions. Longmore et al. [67] have considered the following eight body sites: forehead, temple, neck,
rib cage, wrist, finger, lower back and tibia. The forehead was generally found to yield the most ac-
curate results both when at rest and when moving, followed by the finger. Likely, the finger suffered
MAs during walking condition. The same applies to the wrist, which yielded the third most accurate
PPG data during walking condition. A remarkable notion from this study, however, is that at rest
the wrist yielded significantly worse PPG recordings. This is objected by the vast majority of stud-
ies that do find a reasonable accuracy from the wrist under this condition [68], [69], [70]. In fact,
smartwatches that are already commercially available have been proven to yield an acceptable PPG
signal, which only tends to degrade as the user physically moves [71], [72], [73].

In terms of accessibility and comfort, the majority of the aforementioned body sites are cum-
bersome. In recent years, alternative body sites that conform to the current comfort standard of
wearing conventional jewelry have been considered. For example, the Oura Ring is a commercial
ring that can accurately track nocturnal HR and HRV [74]. However, the problem is that this ring
is only intended for use during sleep. Additionally, measurements are performed in intervals of 5
minutes. For the purpose of early AF detection this does not suffice, since it requires continuous
monitoring. One of the challenges here is that consumer-grade batteries available at this scale can-
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Figure 3.8: The Oura Ring and its PPG sensors. Courtesy of [75].

not support long-term continuous measurements.

3.4.5. Light wavelength
Since the human body consists of layers of different tissues each with their distinct absorbent char-
acteristics, it is insightful to investigate what the dependence of a PPG signal is on the wavelength
of the light that is used. As light travels through a medium, a fraction of its waves is absorbed by the
medium resulting in attenuation of the light. The Beer-Lambert law describes the absorbance of a
material and is defined as:

A = log10
I0

I (l )
(3.3)

where I0 is the light intensity incident upon the medium and I the light intensity in the medium
as a function of the path length l . Alternatively, the absorbance can be expressed in terms of the
medium properties as:

A = ε(λ)Ml =α(λ)l (3.4)

with ε(λ) the molar attenuation coefficient as a function of the light’s wavelength λ and M the mo-
lar concentration. Assuming that the medium is uniform, the product of ε and M composes the
attenuation coefficient α(λ). Using equations 3.3 and 3.4, I can be expressed as:

I (l ) = I010−α(λ)l (3.5)

Thus, the transmitted light intensity depends on the characteristics of the medium, the wavelength
that is used and the path length.

The different tissues of the human body can be considered different media. Determination of
the total reflected light intensity for a particular wavelength is therefore complex, especially since
the properties of the tissues change dynamically. Nevertheless, several studies have empirically in-
vestigated the optimal wavelength for PPG. Maeda et al. [76], [77] have compared the use of green
(525 nm) and infrared (880 nm) light at different temperatures for reflective PPG on a finger. The
perfusion index, defined as the ratio between the magnitude of the AC and DC component of a
PPG waveform, was the metric used to compare the two signals. At both temperatures, green light
was found to yield a larger perfusion index than infrared light. Since the penetration depth of light
decreases with smaller wavelengths [78], infrared light travels further within the human body than
green light. However, since the information relevant for PPG is only present in blood vessels, reflec-
tion of light by any other tissue that is deeper within the body does not carry any information. In
fact, since the light is reflected in a randomly scattered fashion, this could be interpreted as a source
of noise. Hence, in reflective mode, infrared light PPG is more prone to noise artefacts than green
light PPG.

Vizbara et al. [79] have conducted a similar experiment with blue (465 nm), green (520 nm) and
infrared (940 nm) light. Reflective PPG was analyzed on the wrist. Also here green light was found
to yield better results than infrared light for identical reasons. Interestingly, blue light was found to
perform worse than green light. Instead of having a penetration depth that is too large as is the case
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with infrared light, the opposite is suspected for blue light: its penetration depth is too small. Since
blue light cannot penetrate deep enough to reach the blood vessels, the reflected light does not
contain sufficient information about HR and HRV. The results of a study performed by Lee et al. [80]
agree with this notion. In this study, the use of blue (470 nm), green (530 nm) and red (645 nm) light
for reflective PPG on a finger was analyzed. Additionally, the influence of physical movement for
the different wavelengths was observed. It was found that infrared light was the most susceptible
to MAs, as deformation of non-pulsatile tissue caused the DC component to differ the most over
time. Contrarily, blue light was found to be the least impacted by MAs as it was less affected by
deformation of deeper tissue. However, the problem remained that the AC component of blue light
is limited by the penetration depth. Thus, green light was found to be the optimal wavelength for
reflective PPG on peripheral body sites.

3.4.6. Skin pigmentation
An interesting aspect to consider that may influence the signal quality of PPG is skin pigmentation.
Skin pigmentation is determined to a significant extent by the concentration of melanin, which is
larger in darker skin. Melanin protects the internal cells of the human body by absorbing hazardous
UV radiation. However, melanin also absorbs EM radiation in proximity of the UV spectrum, in-
cluding wavelengths in the visible spectrum [81], [82], [83]. Therefore, dark skin absorbs more of
the light used for PPG than light skin, which may result in worse signal quality in the former case.

This concern was further investigated in a study conducted by Fallow et al. [84]. The effect of
skin pigmentation was examined in conjunction with different wavelengths for reflective PPG, both
at rest and while exercising. Skin pigmentation was assessed based on the Fitzpatrick scale. Blue
(470 nm), green (520 nm), red (630 nm) and infrared (880 nm) light were used as light source. In
most cases, green light was found to yield the best quality PPG signals. Furthermore, the darkest skin
type (type V) was repeatedly found to yield the worst quality. One of the shortcomings of this study,
however, is that merely 23 subjects were considered, which were additionally unequally distributed
over all skin pigmentation types. The results also have a large standard deviation, which may deem
the results to be non-representative.

In recent years, allegations have been made by media accusing consumer electronics companies
of manufacturing racially biased smartwatches as they supposedly provide inaccurate HR measure-
ments for darker skin pigmentation [85], [86], [87], [88]. From an ethical perspective, it is of great
importance that technology does not discriminate between different ethnicities to endorse racial
equity. Thus, in order to verify these allegations, researchers have evaluated the accuracy of HR
determination of different smartwatches for different skin types.

One study queried the accuracy of HR determination from PPG signals obtained by the commer-
cially available Apple Watch Series 1 [89]. 45 subjects were uniformly distributed over Fitzpatrick
skin types II, III and IV. Their HR was extracted from PPG recordings while at rest and afterwards
while exercising. No significant correlation was found between HR accuracy and skin type. Various
smartwatches, among which the Apple Watch Series 1 were examined in a similar study [90]. The
subjects consisted of 15 individuals with skin type IV or smaller and 7 individuals with skin type V
or VI. Interestingly, in this case the Apple Watch was found to be the only smartwatch which showed
correlation between skin type and HR accuracy. An equivalent study agrees with this conclusion
concerning the Apple Watch, and even infers the same about other smartwatches [91].

Currently, it is still undecided whether skin pigmentation has a significant impact on PPG signal
quality. Comparable suggestions have been made for pulse oximetry, which utilizes PPG technology.
Although there are both proponents [92], [93], [94] and opponents [95], [96], [97] of such claims, the
majority agrees that further research has to be done to draw a definitive conclusion.

Nevertheless, several solutions can be suggested that may solve or circumvent the issue. For
example, a greater light intensity may be used, as this may increase the AC component of the PPG
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signal [79], [98]. Though this also amplifies the noise and DC component as more light can pene-
trate deeper into the body, these signals should be filtered out regardless as they contain no infor-
mation about HR nor HRV. A more problematic issue, however, is that using a greater light intensity
may have a drastic impact on power consumption. Another solution could be to use reflective PPG
on the palm side of a finger, since here the difference in melanin concentration between different
skin pigmentations is significantly smaller. However, as mentioned before, this could introduce
constraints on other design aspects such as feasibility of implementation and maximum battery
capacity.

3.4.7. Removal of motion artefacts
Similarly to ECG, PPG suffers MAs, which degrade signal quality and could even result in futile sig-
nals. Multiple methods have been proposed for the removal of MAs in PPG signals that are analo-
gous to those presented for MA removal in ECG signals. As before, the processing of the signals itself
is outside the scope of this thesis, hence only the relevant hardware considerations are discussed
here.

One approach considers characteristics of the PPG signal itself, such as its periodicity and fun-
damental frequency within the frequency range of interest [99], [100]. The primary advantage of this
method is that no additional hardware is required. However, such algorithms are generally compu-
tationally heavy, which may raise power consumption and therefore diminish battery life.

A more conventional method utilizes adaptive filtering techniques and correlates the PPG signal
with data obtained by a triaxial accelerometer [101], [102], [103], [104], [105]. Since the accelerome-
ter data contains information about movement, correlating it with the PPG data aids in the detection
of where MAs are present and also how severe they are. Furthermore, accelerometer data helps with
quantification of the overlap between the frequency components of MAs and the frequency range
of interest for HR determination.

Another favored method is similar to the previous, except that the accelerometer is replaced
with an additional PPG sensor operating at a wavelength different from the main PPG sensor [106],
[107], [108], [109], [110]. A great advantage of this over the preceding method is that micro-MAs
can be detected as well [111]. Micro-MAs are induced by movement that cannot be registered by
an accelerometer. For example, if a PPG sensor and an accelerometer are positioned on the wrist,
movement of a finger will corrupt the PPG signal while the accelerometer does not detect any move-
ment. This is because deformation of the body’s tissue due to such movements affect the reflection
of the light used for PPG. Hence, using another PPG sensor as a reference for MAs can detect such
micro-MAs as well.



4
System Design

The choices made for the design of the signal acquisition system are based on the research pre-
sented in the preceding chapter and are elaborated in this chapter. It is important that the device
meets the criteria that must be fulfilled. Therefore, first the requirements from chapter 2 are re-
called. Subsequently, the design choices regarding the hardware that is used for the prototype are
discussed. Afterwards, the software that is required to control the hardware is explained.

4.1. Design choices
The goal of the prototype is to show the system works as intended. Therefore all of the functional
requirements should be met. The non-functional requirements, however, are more aimed at a final
product. To show that the technological aspects of the system are functional, these do not have to
be met explicitly. Nevertheless, they must be met implicitly in the following sense:

• PoR:7: The placement of the sensors in the prototype must be identical to the placement of
the sensors in the final product. The prototype itself does not have to be wearable: it should
merely show that the location of the sensors is viable.

• PoR:9: The costs of the prototype may exceed the €30.- range, as equipment needed for de-
velopment could be more costly. However, the total price of the main components selected
may not exceed the €30,- mark.

From the analysis presented in chapter 3 it becomes clear that although there are various meth-
ods of detecting atrial fibrillation, the medical standard is ECG. However, to be able to record an ECG
two points of contact are required. If these points of contact are too close together they will mainly
record the electrical signals produced by the muscle in between. To obtain a clear PQRST complex,
the most accessible lead is the limb lead I. The other limb leads require an electrode to be placed on
the leg and the precordial leads require electrodes to be placed on the chest. Since these leads are
not easily accessible, they are not in line with requirement PoR:7. Therefore, in order to be able to
make an ECG recording of sufficient quality, the design will consist of one electrode placed on the
bottom side (skin side) of the device, and the second electrode will be placed on the top side (air
side) of the device. In this manner, an ECG recording can be made by placing a finger from the other
hand onto the top side electrode. Dry electrodes have been chosen for this as the advantages of this
electrode type outweigh its disadvantages to a greater extent than the other types of electrodes.

This design does not allow for continuous monitoring of the heart activity and therefore does not
necessarily comply with requirement PoR:2 because AF episodes occurring while no ECG recording
is being made will not be detected. To meet this requirement a PPG sensor is used, which allows
for continuous monitoring of the heart activity. PPG is, however, sensitive to skin pigmentation.

18



4.2. Hardware design 19

To prevent the device from having a potential racial bias it is desired that the PPG sensor is placed
at a location on the palm side of the hand. Here, regardless of ethnicity, the melanocyte (pigment
producing skin cells) density is five times lower than elsewhere [112]. This can be done by placing
the PPG sensor inside a ring, allowing it to be placed at the palm side of the finger.

To fulfill PoR:2.1, it has been decided to utilize an accelerometer and an auxiliary PPG sensor.
The accelerometer serves as a reference for the device’s acceleration, and can be used to correlate
noise in the PPG and ECG recordings to motion. The auxiliary PPG sensor allows for the detection
of more subtle movements caused by deformation of body tissue, which cannot be detected by the
accelerometer.

4.2. Hardware design
As can be deduced from research presented in the preceding chapter, an increase in interest has
been established in the development of wearables over the past decade. As a response, a market has
emerged that focuses on the optimization of front-end technology for development and commercial
purposes. Although an interesting direction would be to explore the improvement of ECG and PPG
technology in wearables, this is beyond the scope of this thesis. Therefore, to avoid reinventing
the wheel and possibly working with sub-optimal performance, it has been decided to use existing
modules for the sensor implementation. The details of the hardware that will be used for the system
is described in this section.

4.2.1. ECG and PPG: Maxim Integrated Max86150
To realize the hardware required for ECG and PPG, the Maxim Integrated Max86150 chip (figure
4.2a) has been chosen. This chip is designed for mobile applications and has both ECG and PPG ca-
pabilities encapsulated in a 3.3 mm x 5.6 mm x 1.3 mm form factor. Apart from the fact that its size
is small and thus complies with requirement PoR:7.1, it also offers benefits such as synchronized
ECG and PPG data, simplified storage and communication of data, and a variety of adjustable set-
tings. The cost of the chip is €5.25. Features of the ECG and PPG modules of the chip are highlighted
below and the datasheet of the Max86150 chip can be found in [113]. Since certain components are
proprietary hardware of Maxim Integrated, the exact details of these cannot be given.

ECG module
The input of the ECG module is provided directly by the electrodes. This signal is passed through
a proprietary analog front-end where it is amplified and digitized. The analog front-end rejects
interfering signals coming from radio frequency sources, power lines, muscles other than the heart
and noise. The signal is fed to an instrumentation amplifier with a voltage gain that can be adjusted
between 5 and 50. Its CMRR is 136 dB, which is in accordance with requirement PoR:1.1.4. On top
of that, a programmable-gain amplifier is used whose voltage gain can be programmed to values
between 1 and 8.

After the signal has been processed by the analog front-end it is fed to an 18-bit analog-to-digital
(ADC) converter. Since a 12-bit resolution is the minimum requirement, this ADC obeys require-
ment PoR:1.1.2. The sample rate of the ADC can be adjusted within the range of 200 Hz to 3200 Hz,
which fulfills requirement PoR:1.1.3.

The processed and digitized signal is then stored in the chip’s First In First Out (FIFO) buffer.
The buffer can be read out externally over an I2C interface.

PPG module
The PPG module is intended for reflective PPG measurements. It contains two LEDs, one of which
emits infrared light (880 nm) and the other red light (660 nm). The LEDs are controlled by LED
drivers. The LED current can be adjusted with the drivers and can take on values from 0 mA to 100
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Figure 4.1: Signal flow of the ECG and PPG modules. Courtesy of [113].

mA. Next to that, the pulse width of the LEDs can be programmed from 50 µs to 400 µs. This allows
great flexibility in terms of making a trade-off between signal accuracy and power consumption.

The reflected light is registered by a photodiode and transduced into a current signal. A propri-
etary ambient light cancellation circuit is used to diminish the presence of ambient light captured
by the photodiode. This increases the effective dynamic range of ADC.

Subsequently, the current signal is digitized with a 19-bit ADC, which is in line with requirement
PoR:1.2.2. The sample rate of the ADC can be set to a value between 10 Hz and 3200 Hz, thus
fulfilling requirement PoR:1.2.3. The PPG module is also capable of sample averaging, which allows
reduction of the data throughput. Up to 32 adjacent samples can be averaged into a single sample.

The digital signal is then passed through a proprietary discrete-time filter to reject power line
interference and noise, after which the sample is eventually stored in the FIFO buffer.

One of the PPG module’s key features is that the LEDs can be turned off if the user is not in
proximity of the sensor. This reduces the power consumption in case the sensor is not utilized,
which fulfills requirement PoR:1.3.

Shortcomings
The chip does have a few shortcomings. Firstly, a custom PCB must be designed on which the
chip and other components required for its implementation must be soldered. This is because no
adapter exists for this specific chip. Secondly, the chip does not have a green LED, which was con-
cluded to be optimal for reflective PPG in chapter 3. Thirdly, an extensive driver must be written to
control the chip and retrieve its recorded data. Nevertheless, since the benefits of the chip outweigh
these shortcomings, its usage is a viable trade-off.

4.2.2. Accelerometer: Adafruit MMA8451
To monitor movement of a user and identify motion artefacts, the accelerometer that is selected is
the Adafruit MMA8451 (figure 4.2b). This device is chosen because of its configurable scale setting
and its built-in signal processing unit. The measurement range can be configured to be 2g, 4g and
8g, where g is the gravitational constant at the Earth’s surface, which is ideal for development as it
is not known what the optimal range is. The built-in signal processing unit is capable of detecting
when the device is in free fall and when a motion exceeds a specified threshold. A high-pass filter
with adjustable cutoff frequency is also incorporated to prevent baseline wandering. The on-chip
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signal processing saves processing power of the micro controller, allowing for more headroom for
the rest of the software [114]. The cost of the accelerometer is €6.95.

4.2.3. PCB design
As mentioned in section 4.2.1, a custom PCB must be designed for the implementation of the Max86150
chip. The PCB also contains other components that are important for the functioning of the chip.
The components are derived from the chip’s datasheet [113] and include:

• three pull-up resistors (1 kΩ each) for the communication ports;

• four decoupling capacitors (one 1 µF, one 10 µF, two 4.7 µF) to reduce AC interference on DC
lines;

• one capacitor (1 µF) for the ECG’s analog front-end filter and;

• two resistors (50 kΩ) and two capacitors (22 nF) for current limiting and radio frequency fil-
tering of the ECG inputs.

The design of the PCB requires careful consideration of the placement of components and traces
to minimize interference and to allow for efficient troubleshooting in case of faults. A schematic of
the PCB circuit and its corresponding layout can be found in appendix B. The cost of the PCB is
€45.76.

4.2.4. Development board: STMicroelectronics NUCLEO-H743ZI2
A microcontroller is required to control the sensors. For this, the ARM Cortex-M7 is selected. This
choice is based on the performance of the Cortex-M7. ARM has various models for microcontrollers.
Listed from low performance to high performance these are the Cortex-M0, Cortex-M3, Cortex-
M4 and Cortex-M7. The supported instruction set also depends on the model [115]. During the
development process, the highest performing microcontroller is desired to minimize limitations
imposed on the implementation of software that can be run on the microcontroller. In a later stage
the algorithm of the software can be improved, and the final microcontroller can be selected based
on the processing demands of the finished software.

The development board used must have the following features:

• Support for an I2C bus.

• The logic level voltage must be 1.8 V to be compatible with the Max86150.

• The development board must be able to be connected to the computer with a USB cable.

The following features are desired, but no required:

• The development board can supply 1.8 V to the Max86150 power supply pin.

• The development board can supply 3.3 V with a current of 150 mA to the Max86150 LED power
supply pin and the MMA8451.

• An LED that can be used for visual feedback.

Given these requirements, the STMicroelectronics NUCLEO-H743ZI2 development board [116]
(figure 4.2c) has been selected, which supports all the required features as well as the desired fea-
tures. The NUCLEO-H743ZI2 also has 2Mbytes of flash memory, which allows a lot of strings to
be stored for debugging statements. There is also 1 Mbyte of RAM available, which is important
as the recordings will require a lot of memory. A single recording of 60 seconds, made at a sample
rate of 100Hz where each sample takes up 4 bytes would already require 24 Kbytes. The cost of the
development board is €25.72.



4.3. Software design 22

(a) Maxim Integrated Max86150

(b) Adafruit MMA8451

(c) STMicroelectronics NUCLEO-H743ZI2

Figure 4.2: The hardware that is used for the implementation of the prototype.

Figure 4.3: Master requesting transmission from a slave using an I2C bus.Courtesy of [118].

4.3. Software design
In order to control the sensors and retrieve data from them, software must be developed that fa-
cilitates this. In this section, an overview of the software and the drivers that are required for the
communication of hardware is given.

4.3.1. I2C protocol
The sensors communicate through an I2C interface. The I2C bus is a synchronized serial commu-
nication protocol using two wires. The first wire is the Serial Data wire, usually denoted by SDA,
and the second wire is the Serial Clock wire denoted by SCL. Both SDA and SCL are pulled high by a
pull-up resistor. A master and up to 127 slaves can be connected on a single I2C bus. The master can
initiate a transmission by transmitting a start bit (0), followed by the 7 bit slave address, and finally a
read (1) or write (0) bit. The slave then acknowledges the message by sending an acknowledgement
bit (0) on the SDA line. After the transaction of the last byte is complete the master transmits a stop
bit (0). The master controls the clock signal on the SCL line during the transactions, the maximum
frequency for standard I2C implementations is 400 kHz. Figure 4.3 gives a visual representation of
the I2C protocol [117].

4.3.2. Mbed OS
The software development must be done using a real time operating system (RTOS), due to the
various modules sending interrupts to the microcontroller. These interrupts need to be handled in
real time, and can occur while a different block of code is being executed. An RTOS offers support
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for real time processing requirements in various manners.
The RTOS of choice is Mbed OS [119]. This is an open source operating system, and can be

used commercially and personally under an Apache 2.0 license (a license for free of charge software
usage). Mbed OS can be used with the ARM Compiler 6, which is the default setting, or the GNU
Arm Embedded Compiler (GCC). Both compilers use C++ as programming language. Mbed OS also
has an integrated development environment (IDE) called Mbed Studio. Within Mbed Studio, the
prototyping board for which the program is written can be selected, which automatically includes
all of the correct files at compile time.

Mbed OS comes with various application programming interfaces (API’s), a complete overview
of which can be found at [119], under the ’API references and tutorials’ section. The most notable
API’s are:

• I2C: used for creating an I2C master, and handling transactions.

• DigitalIn: used for reading signals on the I/O pins of the microcontroller.

• DigitalOut: used for controlling signals on the I/O pins of the microcontroller.

• InterruptIn: used for creating interrupt signals on I/O pins of the microcontroller.

• EventQueue: used for creating a queue, containing pointers to functions that should be exe-
cuted.

• Thread: used for creating and defining parallel tasks. An EventQueue can also be Attached to
a thread, allowing the code added to the queue to be executed in parallel.

4.3.3. System communication
The system must be able to communicate with the Max86150, the MMA8451 and the PC. The Max86150
and the MMA8451 both use an I2C bus for communication. The PC is connected to the NUCLEO-
H743ZI2 by USB. The system must be monitored on the PC, which allows for more convenient de-
bugging of code and also for checking whether the system operates as intended. The software is
written in C++, and runs on top of Mbed OS. A high-level system overview is given in figure 4.4.

For the Max86150 chip a driver has to be designed that can run on Mbed OS. The MMA8451,
however, already has an existing driver for Mbed OS that can be imported into the project. The
drivers’ task is to handle communication with the external devices. Functions within the driver for
changing specific settings are implemented. The driver however, does not have any data control; it
simply makes the retrieved data available. For controlling the drivers another class is implemented,
entitled the control class. The Max86150 driver and the MMA8451 driver are initialized from within
this class. The control class also synchronizes the data from both modules, handles the interrupts
received, controls the length of the recording and keeps collecting data until a recording is complete.
Once complete, a callback function is called for processing by the signal processing subsystem. An
overview of the classes is given in figure 4.5. In the following subsection, the design of the Max86150
driver will be discussed in further detail.

4.3.4. Max86150 driver
In this section, the driver for the Max86150 chip is described. First, the most important data struc-
tures of the Max86150 class will be introduced along with the related class methods. The structures
and methods that handle information regarding the settings of the Max86150 chip are discussed in
subsection Settings and the structure and methods that keep track of the various sensors (other-
wise known as Data Elements) and their related data are elaborated in subsection Data elements.
In figure 4.9 an overview of the data-structure of the class is given, which serves as a schematic
overview and reference throughout these subsections. Thereafter, the I2C class from Mbed OS will
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Figure 4.4: Overview of the communication between the different subsystems.

Figure 4.5: Overview of the designed classes.
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be introduced together with the class methods responsible for handling the communication with
the Max86150 in subsection I2C communication. Finally, the class constructor will be analyzed in
subsection Class constructor.

Settings
The Max86150 has many configurable settings. A complete overview of the registers is given in Ap-
pendix A.1. These register names are linked to the register addresses using an enumeration, namely
enum RegisterAddresses. Multiple settings can be changed within a single register. To keep track
of every setting the structure struct Setting is used. This structure contains RegisterAddresse c
s address, which holds the register address for the setting, and uint8_t bitmask, which contains
a bitmask that can be used to select specific bits within the register. The struct SettingsMap con-
tains a constant instance of struct Setting for each individual setting, and the instance settings
of this structure is used to hold the information of all the settings. Due to the way constant variables
are handled in C++ the values cannot be changed. To change a specific setting, the address can
be accessed using settings.<specific_setting>.address, and the bitmask can be accessed in
the same manner using setting.<specific_setting>.bitmask. Using this method avoids bugs
arising from typos and avoids having to reference the Max86150 throughout development.

In order for settings to be adjusted easily and reliably, the options from which can be chosen
are defined using enumerations. In figure 4.9 these enumerations are shown in red. When calling a
member function that changes a setting, the argument must be of the specified enumeration type
(i.e. it must be one of the items inside the enumeration). This method has the benefit that, when us-
ing a linter, the list of options will appear while filling in the function arguments. Most settings have
their own unique member function which can be called to change it. Other settings are grouped
together in a single function as it would make no sense to change them individually. The following
public member functions can be used to configure the Max86150:

• setInterrupt(bool enable, Max86150::InterruptEnableConf specific_interrupt c
)

• setFifoReadPointer(uint8_t address)

• setFifoAlmostFullInterruptClear(bool value)

• setFifoFullBehaviour(bool value)

• setFifoAlmostFullBehaviour(bool value)

• setFifoAlmostFullValue(uint8_t value)

• setFifoEnable(bool enable)

• sleep(bool enable)

• reset()

• setPpgAdcRange(Max86150::PpgAdcRangeConf value)

• setPpgSampleRate(Max86150::PpgSampleRateConf value)

• setPpgPulseWidth(Max86150::PpgPulseWidthConf value)

• setPpgSampleAveraging(Max86150::SampleAveragingConf value)

• setProximityThreshold(uint8_t threshold)
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• setLedPulseAmplitude(uint8_t amplitude, Max86150::LedType led)

• setEcgSampleRate(Max86150::EcgAdcSampleRateConf base_sample_rate, Max86150 c
::OverSamplingRatioConf over_sampling_ratio)

• setAmplifierGains(Max86150::PgaGainConf pga_gain, Max86150::Instrumentatio c
nAmplifierGainConf ia_gain)

• getPartId()

Data elements
The Max86150 allows for enabling and disabling its various sensors dynamically. To enable a sensor
(from here on referred to as a data element) the corresponding value must be written to one of the
FIFO Data Control Registers. Each FIFO Data Control Register can hold two data elements. The five
available data elements are:

• Infra Red PPG

• Red PPG

• Infra Red Led in pilot mode

• Red Led in pilot mode

• ECG

Once a data element is enabled, its samples are stored in the FIFO buffer. The FIFO buffer can
store up to 32 samples for each data element, and each sample is three bytes. Once the FIFO buffer
reaches the limit defined by the FIFO_A_FULL setting an interrupt is triggered. The FIFO can then
be read from the I2C bus by reading the FIFO Data Register. First, the first sample of the data element
(FD1) is sent, which consists of three bytes. Then the first sample of the second, third and fourth
data elements (FD2, FD3 and FD4) are sent unless one of these is disabled. When the first sample
of all enabled data elements is sent the second sample is sent for FD1, FD2, FD3 and FD4, unless
one of these is disabled. This goes on until the transmission is terminated by the master. Therefore
it is convenient to read the FIFO write pointer and read pointer registers before reading the FIFO
buffer. These can be used to determine the number of new samples which the master can then
keep track of and end the transmission accordingly. The bytes are all stored in the char[384] f c
ifo_buffer. This buffer is capable of storing 32 samples of three bytes for each of the four data
elements. The choice to store the read data in a single buffer is from a performance perspective, as
this allows all samples to be read in sequence. If each data element would have its own separate
buffer, the function to read from an I2C bus would have to be called for each individual sample, and
the slave address of the Max86150 together with the register address to read the FIFO would have to
be sent with each call. All the information regarding a data element is stored in the structure struct
FifoDataElement. This structure contains the following properties (also see figure 4.9):

• char* read_buffer[32]: This array of pointer contains pointers to fifo_buffer. The lo-
cations pointed to correspond to the first byte of each one of the 32 samples that can be read
from FIFO.

• FifoSensorsConf sensor: This contains information regarding the type of data element
that populates this FIFO data element.

• uint8_t new_samples: This indicates the number of new samples that have been read into
fifo_buffer from this data element.
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Anytime changes are made to a FIFO data element, the read_buffer pointers for all the FIFO data
elements are updated. The class methods associated with the data elements are:

• setDataElementPointers(void)

• getSensorData(FifoSensorsConf sensor, int32_t *write_buffer)

• setFifoDataElement(Max86150::FifoSensorsConf sensor, bool enable)

• readFifo()

I2C communication
One of the main tasks of the Max86150 driver is to handle the communication over the I2C bus.
Mbed OS has a class called I2C, which can be used to implement a master on an I2C bus. The basic
I2C protocol is already implemented within this class. Upon creating an object of the I2C class, the
SDA and SCL pins are defined. The public member functions write(int address, const char c
* data, int length, bool repeated) and read(int address, char* data, int length,
bool repeated) can be called after initialization, and handle the transaction of data between the
master and the slave with the corresponding address as defined by the I2C protocol [120]. In the
Max86150 chip’s datasheet [113] the protocols for reading from a register and writing to a register
are defined. The slave address for the Max86150 is 0xBC for write and 0xBD for read. For writing, the
protocol is:

1. Write register address from which data should be read to slave address 0xBC.

2. Transmit data that should be written to the register.

This is illustrated in figure 4.6. For reading, the protocol is:

1. Write register address from which data should be read to slave address 0xBC.

2. Send repeated start bit.

3. Request read from slave address 0xBD.

This is illustrated in figure 4.7.

Figure 4.6: Protocol for writing data to a register on the Max86150. Courtesy of [113].
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Figure 4.7: Protocol for reading data from a register on the Max86150. [113]

These reading and writing protocols are implemented in the class as private member functions c
readRegister(Max86150::RegisterAddresses address, char* read_buffer, uint8_t re c
peat=1) and writeRegister(Max86150::RegisterAddresses address, uint8_t data))of the
class Max86150 (see Appendix A). This is to ensure that the register addresses that are written to or
read from are defined within the class as discussed in Settings. This avoids undefined behaviour as
a result of writing to incorrect register addresses.

Class constructor
The class constructor is responsible for initializing all of the required objects together with the
Max86150. The most important object is the I2C object, which is initialized with its correspond-
ing pins. An interrupt pin is also created, allowing the Max86150 interrupts to be handled properly.
As described in the Max86150 datasheet [113] the analog power supply must be turned on first, fol-
lowed by the digital power supply and finally the LED power supply. If the power-on sequence is
successfully executed an interrupt is sent. This is also illustrated in figure 4.8. The power-on se-
quence is controlled using the I/O pins of the Cortex-M7 in the constructor. Once the interrupt is
detected, the register containing the interrupt cause is read. If the interrupt flag corresponds to the
PWR_RDY flag, the Max86150 has been successfully initialized. When no interrupt is detected the
Max86150 has not been initialized correctly and the program exits. For a final check, the construc-
tor attempts to read the contents of the Part ID register. If the received data does not equal 0x1E
something is wrong with the physical I2C connections and the program sends a notification before
exiting.

Figure 4.8: Power on sequence from Max86150 datasheet. Courtesy of [113].
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Figure 4.9: An overview of important class properties. The color coding legend is defined at the bottom right.



5
System Implementation and Validation

Following the design in chapter 6, the physical implementation and validation of the system is dis-
cussed in this chapter. First, the hardware is implemented, which includes the soldering of the
Max86150 chip and the other components. The hardware is then validated for any potential faults
to rule out physical defects. Given that the hardware functions as intended, the Max86150 driver
can be tested to verify that the software operates properly as well.

5.1. Hardware implementation and validation
The Max86150 chip must soldered onto the PCB in order to connect it to the development board.
First, the connections on the PCB are tested using a multimeter in resistance mode. One of the
probes is pressed against the solder pad where the I/O pins will be connected. These are shown on
the left and right sides in figure 5.1a . The other probe is pressed against the corresponding pad of
the Max86150’s landing pattern which is at the center of figure 5.1b. If the two pads are connected
then the resistance is below 10 Ω, otherwise a value in the order of megaohms is measured. This
check is done to ensure that the PCB was manufactured correctly and all of the required connections
are made.

The pads used to solder the Max86150 are located underneath the chip. Therefore, a soldering
iron cannot be used as it cannot reach these pads. To solder the chip onto the PCB reflow soldering
must be used. With reflow soldering a solder paste is used. This solder paste consists of microscopic
balls of tin, suspended in a resin, which functions as flux. The solder paste is usually deposited

(a) The top side of the Max86150 adapter PCB. (b) The bottom side of the Max86150 adapter PCB.

Figure 5.1: The front and back side of the PCB designed for the Max86150 chip.

30
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Figure 5.2: Typical reflow profile. Courtesy of [122].

onto the pads using either a stencil or special equipment [121]. Once the solder paste is applied
the component is placed. The solder paste then functions as a glue, keeping the component in
place. Next, the PCB is placed in an oven. The oven follows a reflow profile, which determines the
temperature over time. A reflow profile’s exact characteristics depend on factors such as the type
of solder paste, PCB material and thickness and type of surface mount components. However, all
profiles have the same four phases as illustrated in figure 5.2, which are:

1. Pre-heating phase: the PCB, components and solder paste are gradually heated to a specific
temperature. Increasing the temperature too quick may cause defects in the components.

2. Soak: the temperature is kept steady for 60 to 120 seconds to ensure all components have the
same temperature, regardless of thickness.

3. Reflow phase: the temperature is increased to above the melting point of the solder paste al-
lowing it to form a liquid. The temperature is held above the melting point for 45 to 75 seconds
to ensure the solder properly adheres to the components and PCB. Some components might
fail when the temperature rises above a given threshold, therefore the peak temperature must
be properly controlled during the reflow phase.

4. Cooling phase: the PCB and components are gradually cooled. If the temperature drops too
quick cracks may form in the solder joints.

To verify whether any solder bridges have formed after soldering the chip, a digital power sup-
ply is used as opposed to measuring the resistance with a multimeter. This choice is made due to
the Max86150 having an absolute maximum rating of 2.2 V on each pin, except for the Vled pin.
The resistance measurement with the multimeter is performed using a voltage of 2.65 V, and would
therefore damage the Max86150. On the digital power supply the voltage is set to 1.8 V. The cur-
rent is limited to 20 mA, which is the absolute maximum rating of the Max86150. The positive and
negative leads are then connected to all adjacent pad pairs one by one. Solder bridges would create
a short circuit, and cause the current to reach 20 mA. Therefore, if the current is below 20 mA no
solder bridge is present. When no solder bridges are found the remaining components can be sol-
dered onto the PCB, and the Max86150 is ready for use. Only two capacitors that are required for the
internal functioning of the Max86150 are soldered onto the PCB. Therefore, the dimensions of the
PCB are 60 mm x 43 mm x 16 mm, or 2580 mm2 x 16 mm. Figure 5.3 shows the completed PCB. The
other components are placed on a breadboard as shown in figure 5.4 as this simplifies the testing
procedure.
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(a) The top side of the completed PCB. (b) The bottom side of the completed PCB.

Figure 5.3: The front and back side of the completed PCB.

Figure 5.4: The complete circuit with the Max86150 chip connected to the development board.
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Figure 5.5: The Vled switching circuit

To allow the development board to switch the Vled power supply on and off, a BJT NPN transistor
is used. This way the 1.8 V signal of the I/O pins can be used to turn the 3.3 V Vled power supply on
and off. The circuit used is illustrated in figure 5.5. The capacitor C2 is added as a bypass capacitor,
filtering out AC voltage signals on the 3.3 V line.

5.2. Software implementation
The Max86150 driver is compiled using Mbed Studio. Within Mbed Studio the target "NUCLEO-
H743ZI2" can be selected, and the required files are then automatically included at compile time.
The compiled program is saved as a binary. The development board is recognized as a storage device
when connected to the PC with a USB cable. To flash the program to the development board, the
binary file is copied to its root directory. To validate the proper operation of the driver software a
test program is used (see Appendix A.4). The function void testall() initializes an object of the
Max86150 class, and then calls each method of the Max86150 class. The output of the development
board inside the Mbed Studio terminal is then analyzed and used to determine if the driver works
properly. In appendix A.4 the comments after each method call contain the expected results. The
output of the test program is shown in appendix A.5. Note that the warning-statements are intended
to verify whether warnings are correctly prompted in case invalid arguments are given within the
code.

5.2.1. PPG recording verification
The control class module could not be finished due to time constraints. However, the basic func-
tionality required of the control class has been implemented. This allows a PPG recording to be
made, and output over the USB connection. The code is listed in appendix A.6. The program flow is
as follows:

1. The Max86150 driver is initialized

2. A new thread is created to move certain function calls out of the interrupt service routine (ISR)
context.

3. A queue is created and attached to the thread. This allows function calls to be added to the
queue, which are then handled by Mbed OS.

4. The Max86150 settings are configured.
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Figure 5.6: PPG recording of the tip of the middle finger at rest with a red and infrared LED.

5. The Red and Infrared LED’s are enabled.

6. An interrupt pin is created, and a callback function is attached to the falling edge event of this
pin. This callback function reads the interrupt cause from the Max86150 chip. If the cause is
A_FULL (which indicates the FIFO buffer exceeded the set value) the FIFO buffer is read, and
the values are then stored in the recording array of the corresponding sensor.

7. 30 seconds of data is gathered, and then transmitted over the USB connection as comma-
separated values.

The recording shown in figure 5.6 is made while keeping the tip of the middle finger still and
lightly pressed against the glass cover of the Max86150. The complete 30-second recording can be
found in appendix C. The following settings were used:

• PPG sample rate: 200 Hz

• Sample averaging: 2

• Red LED pulse amplitude: 5 mA

• LED pulse width: 50 µs

• PPG ADC range: 32768 nA

Both waveforms exhibit a clear indication of systole and diastole, as annotated in the figure. The
average peak-to-peak AC component of red light PPG is 1300 nA. For infrared light this is 2000 nA.



6
Discussion

The aim of this thesis was to develop a system capable of continuously monitoring a subject’s heart
activity using PPG technology and requesting an ECG recording in the event that an AF episode has
been detected in a PPG recording. For this, the Maxim Integrated Max86150 chip has been selected
as it offers the hardware for both technologies integrated in one form factor. Although the chip itself
is compact, the dimensions of the PCB including the additional components are 2580 mm2 x 16
mm. Hence, the device does not satisfy requirement PoR:7.1. Nevertheless, in order to meet this
requirement, the size of the PCB can easily be reduced by, for example, using SMD components for
the capacitors and resistors.

From the output of the test program presented in section 5.2, it may be concluded that the driver
developed for the chip has been implemented successfully. The I2C communication between the
development board and the chip is established correctly since each data segment is acknowledged.
The power up sequence of the chip evolves properly since the PWR_RDY interrupt is initiated directly
after the sequence has been completed. All adjustable configurations of the chip have been eval-
uated to verify whether the driver correctly recognizes invalid value designations. As can be seen
from the test program output, the driver appropriately displays a TRACE level statement when valid
values are assigned. WARNING level statements are properly printed when a value is out of range.

A PPG signal has been obtained with the the Max86150 chip as has been demonstrated in section
5.2.1. The PPG waveform of red and infrared light both display a clear indication of systole and di-
astole. Furthermore, the peak-to-peak value of the AC component of red light PPG is approximately
1300 nA. For infrared light PPG this is approximately 2000 nA. Therefore, requirement PoR:1.2 has
been successfully satisfied. The discrepancy between the magnitude of AC components may be
explained by the difference in penetration depth of red light and infrared light. As infrared light
penetrates deeper into tissue due to its larger wavelength, it reaches blood vessels deeper inside
the finger. Since these blood vessels are larger than peripheral blood vessels, the variation in blood
density is more substantial. As a result, the reflected light intensity fluctuates to a greater extent.

As this PPG recording was made at rest, further verification is required to evaluate the PPG signal
quality during motion of the user. Baseline wandering is clearly present and minor motion artefacts
can be identified in the recording as well. It is expected that the waveform will look more distorted
with increased motion. Nevertheless, as the signal must still be processed and filtered by the signal
processing subsystem, the current quality of the PPG signal may suffice.

Unfortunately, due to time constraints, complete functionality of the chip could not be verified
as no control class has been written for efficient control of the chip and transmission of the data it
retrieves. As a result, the ECG recording capabilities of the chip have not been verified and require-
ment PoR:1.1 is therefore not fully satisfied. Nevertheless, since each of its subrequirements with
the exception of requirements PoR:1.1.1 and PoR:1.1.5 have been achieved with the chip and the
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chip appears to be fully operational, it is expected that verification of the ECG recording is feasible
in the near future.

Although an accelerometer has been considered during the design, insufficient time has led to
the exclusion of its implementation. Therefore, requirement PoR:2.1 could not have been realized.
Since appropriate software resources for the accelerometer are available, implementing it will be
less cumbersome as opposed to the implementation of the Max86150 chip. A challenge that would
remain, however, is the integration of both sensor modules. To ensure synchronization of the data,
communication between the development board and each module must be in parallel. However,
since I2C is a serial communication protocol, this may introduce a conflict. Hence, it is insightful
to investigate the unification of the sensors into one module similarly to the integration of ECG and
PPG into the Max86150. In addition to simplifying the data flow and communication within the
system, this could also result in a physically more compact system.

As the functionality of the chip has not been fully tested, no feedback system has been imple-
mented yet. Therefore, requirements PoR:4.1 and PoR:4.2 have not been attained. A similar con-
clusion may be drawn for requirement PoR:7.2 and PoR:7.3 because the power consumption of the
device could not be verified empirically and the system could not be tested using a battery.

In terms of the costs, the complete system has a cumulative value of €83.68. However, exclud-
ing the PCB and development board as these are intended for the development of the device, this
reduces to €12.20 for only the Max86150 chip and MMA8451 accelerometer, thereby satisfying re-
quirement PoR:9.1.

6.1. Limitations
Several limitations have been experienced throughout the course of the project. These limitations
delayed certain objectives and restricted the completion of others.

One of the prominent limitations was the soldering of the Max86150 chip. Because of limited fi-
nancial resources, the chip could not have been soldered by the PCB supplier and had to be soldered
manually. Unforeseen challenges were introduced due to inadequate solder equipment. Repeated
attempts were unsuccessful and cost a substantial amount of time. Eventually, professional assis-
tance was sought from an external company, which had the appropriate equipment and properly
soldered the chip.

Another limitation emerged from the proprietary drive documentation of Maxim Integrated.
Since the driver for the chip was not clearly documented, it was unclear how the chip should be op-
erated. To avoid potential hidden complications amidst the project, it had been decided to develop
a new, properly documented driver. Though this has been proven to be successful, it was at the cost
of the available time for the project.



7
Conclusion

The goal of this project was to acquire information about a subject’s heart activity and motion in
a non-invasive and continuous manner. To monitor the heart activity, ECG and PPG technology
have been implemented by means of the Maxim Integrated Max86150 integrated circuit. An adapter
PCB has been created to implement the chip together with other electronic components required
for its functioning, which allows for easy interfacing with a development board. Additionally, a
well-documented driver for the Max86150 has been developed. The PPG signal acquired from the
Max86150 chip is of high quality when this recording is made at rest, and usage of the infrared LED
resulted in a higher AC component than usage of the red LED. Extensive verification of the Max86150
chip’s settings and performance on different body sites could not be realized within the given time
frame. Therefore, the chip’s ECG capabilities could not be verified. An equivalent conclusion ap-
plies to the implementation of the accelerometer. Nevertheless, it is expected that it would take at
most two weeks to make these functionalities fully operational.

7.1. Future work and recommendations
In addition to the functionalities focused on in this thesis, it is insightful to suggest improvements
for future iterations. These include, but are not limited to:

• Additional sensors to alleviate MAs. For example, a piezoelectric sensor could detect minor
changes in the pressure of the PPG sensor or the ECG electrodes on the body surface. Alter-
natively, the ECG electrodes could be used for skin-electrode impedance measurements.

• Integration into one form factor. Though the current device is still in its early development
phase, it is advisable to consider the potential of hardware integration with the aim to mini-
mize the device’s dimensions. In particular, it would be interesting to consider a system-on-
chip as final product with the aim to add it to existing wearables.

• Improvement of ECG electrodes. It is preferred to continuously monitor heart activity by
means of ECG over PPG since the former is considered the gold standard for assessing AF. A
next step would be to improve the practical implementation of electrodes for continuous and
daily usage. If this would enable monitoring of leads other than limb lead I, other cardiac
arrhythmia’s could be detected as well, which would enrich the application of the device.
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A.1. Max86150 register map

Figure A.1: Register map from Max86150 datasheet. [113]
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Figure A.2: Continued register map from Max86150 datasheet. [113]
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A.2. Max86150.h
1 /*
2 Author: Alex Smit
3 Author: Amar Kohabir
4 */
5

6 #ifndef MAX86150_H
7 #define MAX86150_H
8 #include "mbed.h"
9 #include <array>

10 #include <cstdint>
11 #include <stdio.h>
12 #include <map>
13 #include "logger.h"
14 #include "config.h"
15 #include <EventQueue.h>
16

17 //! The number of tries for an i2c request.
18 #define I2C_RETRY_LIMIT 3
19

20 namespace driver{
21 class Max86150{
22 private:
23 const uint8_t SLAVE_ADDRESS = 0xBC; //1011110[W]
24 I2C i2c;
25 InterruptIn intb;
26 AFLogger::Logger *logger;
27 EventQueue *queue;
28 DigitalOut vdd_dig;
29 DigitalOut vdd_ana;
30 DigitalOut vdd_led;
31

32 // These are the addresses for the MAX86150 registers
33 typedef enum RegisterAddresses{
34 INTERRUPT_STATUS_1 = 0x00,
35 INTERRUPT_STATUS_2 = 0x01,
36 INTERRUPT_ENABLE_1 = 0x02,
37 INTERRUPT_ENABLE_2 = 0x03,
38

39 FIFO_WRITE_POINTER = 0x04,
40 OVERFLOW_COUNTER = 0x05,
41 FIFO_READ_POINTER = 0x06,
42 FIFO_DATA_REGISTER = 0x07,
43 FIFO_CONFIGURATION = 0x08,
44

45 FIFO_DATA_CONTROL_REGISTER_1 = 0x09,
46 FIFO_DATA_CONTROL_REGISTER_2 = 0x0A,
47

48 SYSTEM_CONTROL = 0x0D,
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49

50 PPG_CONFIGURATION_1 = 0x0E,
51 PPG_CONFIGURATION_2 = 0x0F,
52 PROX_INTERRUPT_THRESHOLD = 0x10,
53

54 LED1_PA = 0x11,
55 LED2_PA = 0x12,
56 LED_RANGE = 0x14,
57 LED_PILOT_PA = 0x15,
58

59 ECG_CONFIGURATION_1 = 0x3C,
60 ECG_CONFIGURATION_3 = 0x3E,
61

62 PART_ID = 0xFF
63 }RegisterAddresses;
64

65 public:
66 /**
67 * All the possible statusses that can be returned by member

functions.,→

68 */
69 typedef enum ReturnCode{
70 OK,
71 ERROR,
72 INVALID_DATA,
73 I2C_NO_ACK,
74 MAX_SENSORS_EXCEEDED,
75 SENSOR_DISABLED,
76 VALUE_OOR,
77 RESETTING
78 }ReturnCode;
79

80

81 //! A list of the settings that can be written to the Max86150 to
enable specific interrupts. The value of the setting
corresponds to the bit to set

,→

,→

82

83 typedef enum InterruptEnableConf{
84 //! Set whether an interrupt is given when the FIFO buffer is

almost full. Indicates that the FIFO buffer overflows the
threshold set by FFIFO_A_FULL[3:0] on the next sample. This
bit is cleared when the Interrupt Status 1 register is
read. It is also cleared when FIFO_DATA register is read,
if A_FULL_CLR = 1

,→

,→

,→

,→

,→

85 A_FULL_EN,
86 //! Set whether an interrupt is given when new PPG data is

ready. In SpO2 and HR modes, this interrupt triggers when
there is a new sample in the data FIFO. The interrupt is
cleared by reading the Interrupt Status 1 register (0x00),
or by reading the FIFO_DATA register.

,→

,→

,→

,→
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87 PPG_RDY_EN,
88 //! Set whether an interrupt is given when the ambient light

cancelation analog to digital converter has an overflow,
indicating the ambient light is to bright for usefull
measurements. This interrupt triggers when the ambient
light cancellation function of the SpO2/HR photodiode has
reached its maximum limit due to overflow, and therefore,
ambient light is affecting the output of the ADC. The
interrupt is cleared by reading the Interrupt Status 1
register (0x00).

,→

,→

,→

,→

,→

,→

,→

,→

89 ALC_OVF_EN,
90 //! Set whether an interrupt is given when the proximity

threshold is crossed. The level at which this triggers can
be configured by Max86150::setProximityThreshold().

,→

,→

91 PROX_INT_EN,
92 //! Set whether an interrupt is given when the power supply

voltage is out of range. Indicated that VDD_ANA is greater
than 2.05V or less than 1.65V. This bit is automatically
cleared when the Interrupt Status 2 register is read. The
detection circuitry has a 10ms delay time and continues to
trigger as long as the VDD_ANA is out of range.

,→

,→

,→

,→

,→

93 VDD_OOR_EN,
94 //! Set whether an interrupt is given when new ECG data is

ready to be read from the FIFO buffer.,→

95 ECG_RDY_EN
96 }InterruptEnableConf;
97

98 //! A list of bitmasks to AND with the interrupt status register
contents and obtain the corresponding interrupt cause,→

99 typedef enum InterruptStatus{
100 A_FULL = 0b10000000,
101 PPG_RDY = 0b01000000,
102 ALC_OVF = 0b00100000,
103 PROX_INT = 0b00010000,
104 PWR_RDY = 0b00000001,
105 VDD_OOR = 0b10000001, // added 1 as to indicate this status

is in the second register,→

106 ECG_RDY = 0b00000101, // added 1 as to indicate this status
is in the second register,→

107 NONE = 0
108 }InterruptStatus;
109

110 //! A list of sensors that can be written to the fifo data element
register. Doing so enables this sensor.,→

111 typedef enum FifoSensorsConf{
112 SENSOR_NONE = 0b0000,
113 LED1_IR = 0b0001,
114 LED2_RED = 0b0010,
115 PILOT_LED1_IR = 0b0101,
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116 PILOT_LED2_RED = 0b0110,
117 ECG = 0b1001
118 }FifoSensorsConf;
119

120 //! The PPG_ADC_RGE values that can be set.
121 typedef enum PpgAdcRangeConf{
122 NANO_AMPERE_4096 = 0b00,
123 NANO_AMPERE_8192 = 0b01,
124 NANO_AMPERE_16384 = 0b10,
125 NANO_AMPERE_32768 = 0b11
126 }PpgAdcRangeConf;
127

128 //! The sample rates that can be set for the PPG_SR with the amount
of pulses per second.,→

129 typedef enum PpgSampleRateConf{
130 SAMPLES_10_PPS_1 = 0x0,
131 SAMPLES_20_PPS_1 = 0x1,
132 SAMPLES_50_PPS_1 = 0x2,
133 SAMPLES_84_PPS_1 = 0x3,
134 SAMPLES_100_PPS_1 = 0x4,
135 SAMPLES_200_PPS_1 = 0x5,
136 SAMPLES_400_PPS_1 = 0x6,
137 SAMPLES_800_PPS_1 = 0x7,
138 SAMPLES_1000_PPS_1 = 0x8,
139 SAMPLES_1600_PPS_1 = 0x9,
140 SAMPLES_3200_PPS_1 = 0xA,
141 SAMPLES_10_PPS_2 = 0xB,
142 SAMPLES_20_PPS_2 = 0xC,
143 SAMPLES_50_PPS_2 = 0xD,
144 SAMPLES_84_PPS_2 = 0xE,
145 SAMPLES_100_PPS_2 = 0xF
146 }PpgSampleRateConf;
147

148 //! The different types of LED's, used in setting the pulse
amplitude.,→

149 typedef enum LedType{
150 INFRA_RED,
151 RED,
152 PILOT
153 }LedType;
154

155 //! The pulse width of the PPG LED's in microseconds.
156 typedef enum PpgPulseWidthConf{
157 MICRO_50 = 0b00,
158 MICRO_100 = 0b01,
159 MICRO_200 = 0b10,
160 MICRO_400 = 0b11
161 }PpgPulseWidthConf;
162
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163 //! Configurations for the LED current range setting
164 typedef enum LedCurrentRangeConf{
165 MILLI_AMP_51 = 0b00,
166 MILLI_AMP_102 = 0b01
167 }LedCurrentRangeConf;
168

169 //! The possible configuration that can be used in
Configurations::SMP_AVE.,→

170 typedef enum SampleAveragingConf{
171 SAMPLE_AVERAGE_1 = 0b000,
172 SAMPLE_AVERAGE_2 = 0b001,
173 SAMPLE_AVERAGE_4 = 0b010,
174 SAMPLE_AVERAGE_8 = 0b011,
175 SAMPLE_AVERAGE_16 = 0b100,
176 SAMPLE_AVERAGE_32 = 0b101
177 }SampleAveragingConf;
178

179 //! Configurations for setting the ECG ADC base clockrate.
180 typedef enum EcgAdcSampleRateConf{
181 ECG_CLK_200 = 0b0,
182 ECG_CLK_400 = 0b1
183 }EcgAdcSampleRateConf;
184

185 //!Configurations for setting the ECG oversampling ratio.
186 typedef enum OverSamplingRatioConf{
187 OSR_16 = 0b00,
188 OSR_8 = 0b01,
189 OSR_4 = 0b10,
190 OSR_2 = 0b11
191 }OverSamplingRatioConf;
192

193 //! Configurations for setting the ECG gain.
194 typedef enum EcgGainConf{
195 ECG_GAIN_1 = 0b00,
196 ECG_GAIN_2 = 0b01,
197 ECG_GAIN_4 = 0b10,
198 ECG_GAIN_8 = 0b11
199 }EcgGainConf;
200

201 //! Configurations for setting the programmable gain amplifier
gain.,→

202 typedef enum PgaGainConf{
203 PGA_GAIN_1 = 0b00,
204 PGA_GAIN_2 = 0b01,
205 PGA_GAIN_4 = 0b10,
206 PGA_GAIN_8 = 0b11
207 }PgaGainConf;
208

209 //! Configurations for setting the Instrumentation Amplifier Gain.
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210 typedef enum InstrAmpGainConf{
211 IA_GAIN_5 =0b00,
212 IA_GAIN_9_5 =0b01,
213 IA_GAIN_20 =0b10,
214 IA_GAIN_50 =0b11
215 }InstrumentationAmplifierGainConf;
216

217 private:
218 static const uint8_t FIFO_BUFFER_SIZE = 32;
219 static const uint8_t ELEMENT_SAMPLE_SIZE = 3; // Number of bytes

per element sample.,→

220 static const uint8_t FIFO_MAX_DATA_ELEMENTS = 4;
221

222 struct Setting{
223 Max86150::RegisterAddresses address;
224 uint8_t bitmask;
225 };
226

227 /**
228 * The FifoDataElement structure stores the information regarding

the sensors.,→

229 * Once a sensor has been loaded into the FifoDataElement register
on the Max86150,,→

230 * the read_buffer pointers are updated, to make sure they point to
the samples regarding,→

231 * this specific sensor. These samples can then be read by checking
how many new samples are available.,→

232 */
233 struct FifoDataElement{
234 //! Points to the first byte of the coinciding sample in the

fifo_buffer private variable.,→

235 char* read_buffer[32];
236 //! Indicates what sensor is set to this fd element.
237 FifoSensorsConf sensor =

Max86150::FifoSensorsConf::SENSOR_NONE;,→

238 //! Stores the number of new samples that have been read.
239 uint8_t new_samples = 0;
240 };
241

242 //! The different data elements.
243 FifoDataElement fd1, fd2, fd3, fd4;
244 //! Array of pointers to the different data element structs defined

above.,→

245 FifoDataElement *data_elements[4] = {&fd1, &fd2, &fd3, &fd4};
246

247 //! Read buffer for all the fifo data.
248 char

fifo_buffer[(FIFO_BUFFER_SIZE*ELEMENT_SAMPLE_SIZE*FIFO_MAX_DATA_ELEMENTS)];,→

249
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250 //! Keeps track of which sensors are enabled.
251 std::map<FifoSensorsConf, bool> sensorStatus = {
252 {FifoSensorsConf::LED1_IR, false},
253 {FifoSensorsConf::LED2_RED, false},
254 {FifoSensorsConf::PILOT_LED1_IR, false},
255 {FifoSensorsConf::PILOT_LED2_RED, false},
256 {FifoSensorsConf::ECG, false}
257 };
258

259 uint8_t active_data_elements = 0; // Keeps track of
the number of sensors writing data to the Fifo.,→

260

261 bool resetting = false;
262

263 std::map<Max86150::RegisterAddresses, uint8_t> registerContents = {
264 {Max86150::INTERRUPT_STATUS_1, 0x00},
265 {Max86150::INTERRUPT_STATUS_2, 0x00},
266 {Max86150::INTERRUPT_ENABLE_1, 0x00},
267 {Max86150::INTERRUPT_ENABLE_2, 0x00},
268 {Max86150::FIFO_WRITE_POINTER, 0x00},
269 {Max86150::OVERFLOW_COUNTER, 0x00},
270 {Max86150::FIFO_READ_POINTER, 0x00},
271 {Max86150::FIFO_DATA_REGISTER, 0x00},
272 {Max86150::FIFO_CONFIGURATION, 0x0F},
273 {Max86150::FIFO_DATA_CONTROL_REGISTER_1, 0x00},
274 {Max86150::FIFO_DATA_CONTROL_REGISTER_2, 0x00},
275 {Max86150::SYSTEM_CONTROL, 0x00},
276 {Max86150::PPG_CONFIGURATION_1, 0x00},
277 {Max86150::PPG_CONFIGURATION_2, 0x00},
278 {Max86150::PROX_INTERRUPT_THRESHOLD, 0x00},
279 {Max86150::LED1_PA, 0x00},
280 {Max86150::LED2_PA, 0x00},
281 {Max86150::LED_RANGE, 0x00},
282 {Max86150::LED_PILOT_PA, 0x00},
283 {Max86150::ECG_CONFIGURATION_1, 0x00},
284 {Max86150::ECG_CONFIGURATION_3, 0x02},
285 {Max86150::PART_ID, 0x1E}
286 };
287

288 /**
289 * The settingsMap is an struct containing constant setting

structs:,→

290 * {registerAdress, bitMask}
291 * The registerAdress is the address of the register where the

specified setting can be found.,→

292 * The bitMask is the mask used to specify which bits in the
register control the specified setting,,→

293 *
294 */
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295 struct settingsMap{
296 const Setting _A_FULL_EN =

{RegisterAddresses::INTERRUPT_ENABLE_1,
0b10000000};

,→

,→

297 const Setting _PPG_RDY_EN =
{RegisterAddresses::INTERRUPT_ENABLE_1,
0b01000000};

,→

,→

298 const Setting _ALC_OVF_EN =
{RegisterAddresses::INTERRUPT_ENABLE_1,
0b00100000};

,→

,→

299 const Setting _PROX_INT_EN =
{RegisterAddresses::INTERRUPT_ENABLE_1,
0b00010000};

,→

,→

300

301 const Setting _VDD_OOR_EN =
{RegisterAddresses::INTERRUPT_ENABLE_2,
0b10000000};

,→

,→

302 const Setting _ECG_RDY_EN =
{RegisterAddresses::INTERRUPT_ENABLE_2,
0b00000100};

,→

,→

303

304 const Setting _FIFO_WR_PTR =
{RegisterAddresses::FIFO_WRITE_POINTER,
0b00011111};

,→

,→

305

306 const Setting _OVF_COUNTER =
{RegisterAddresses::OVERFLOW_COUNTER,
0b00011111};

,→

,→

307

308 const Setting _FIFO_RD_PTR =
{RegisterAddresses::FIFO_READ_POINTER,
0b00011111};

,→

,→

309

310 const Setting _FIFO_DATA =
{RegisterAddresses::FIFO_DATA_REGISTER,
0b11111111};

,→

,→

311

312

313 const Setting _A_FULL_CLR =
{RegisterAddresses::FIFO_CONFIGURATION,
0b01000000};

,→

,→

314 const Setting _A_FULL_TYPE =
{RegisterAddresses::FIFO_CONFIGURATION,
0b00100000};

,→

,→

315 const Setting _FIFO_ROLLS_ON_FULL =
{RegisterAddresses::FIFO_CONFIGURATION,
0b00010000};

,→

,→

316 const Setting _FIF_A_FULL =
{RegisterAddresses::FIFO_CONFIGURATION,
0b00001111};

,→

,→
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317

318 const Setting _FD1 =
{RegisterAddresses::FIFO_DATA_CONTROL_REGISTER_1,
0b00001111};

,→

,→

319 const Setting _FD2 =
{RegisterAddresses::FIFO_DATA_CONTROL_REGISTER_1,
0b11110000};

,→

,→

320 const Setting _FD3 =
{RegisterAddresses::FIFO_DATA_CONTROL_REGISTER_2,
0b00001111};

,→

,→

321 const Setting _FD4 =
{RegisterAddresses::FIFO_DATA_CONTROL_REGISTER_2,
0b11110000};

,→

,→

322

323 const Setting _FIFO_EN =
{RegisterAddresses::SYSTEM_CONTROL,
0b00000100};

,→

,→

324 const Setting _SHDN =
{RegisterAddresses::SYSTEM_CONTROL,
0b00000010};

,→

,→

325 const Setting _RESET =
{RegisterAddresses::SYSTEM_CONTROL,
0b00000001};

,→

,→

326

327 const Setting _PPG_ADC_RGE =
{RegisterAddresses::PPG_CONFIGURATION_1,
0b11000000};

,→

,→

328 const Setting _PPG_SR =
{RegisterAddresses::PPG_CONFIGURATION_1,
0b00111100};

,→

,→

329 const Setting _PPG_LED_PW =
{RegisterAddresses::PPG_CONFIGURATION_1,
0b00000011};

,→

,→

330

331 const Setting _SMP_AVE =
{RegisterAddresses::PPG_CONFIGURATION_2,
0b00000111};

,→

,→

332

333 const Setting _PROX_INT_THRESH =
{RegisterAddresses::PROX_INTERRUPT_THRESHOLD,
0b11111111};

,→

,→

334

335 const Setting _LED1_PA_CONF =
{RegisterAddresses::LED1_PA,
0b11111111};

,→

,→

336 const Setting _LED2_PA_CONF =
{RegisterAddresses::LED2_PA,
0b11111111};

,→

,→

337
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338 const Setting _LED2_RGE =
{RegisterAddresses::LED_RANGE,
0b00001100};

,→

,→

339 const Setting _LED1_RGE =
{RegisterAddresses::LED_RANGE,
0b00000011};

,→

,→

340

341 const Setting _PILOT_PA =
{RegisterAddresses::LED_PILOT_PA,
0b11111111};

,→

,→

342

343 const Setting _ECG_ADC_CLK =
{RegisterAddresses::ECG_CONFIGURATION_1,
0b00000100};

,→

,→

344 const Setting _ECG_ADC_OSR =
{RegisterAddresses::ECG_CONFIGURATION_1,
0b00000011};

,→

,→

345

346 const Setting _PGA_ECG_GAIN =
{RegisterAddresses::ECG_CONFIGURATION_3,
0b00001100};

,→

,→

347 const Setting _IA_GAIN =
{RegisterAddresses::ECG_CONFIGURATION_3,
0b00000011};

,→

,→

348 }settings;
349

350 /**
351 * Read data from a specific register.
352 *
353 * To read data from a register, first a i2c write command has to

be given, followed by the,→

354 * register address. Then a repeated start condition has to be
given. After that read command,→

355 * is sent, no acknoledge bit is needed from the master. To end the
read the stop condition,→

356 * is given.
357 * @param address the register to be read from.
358 * @param read_buffer pointer to the buffer where data is stored.
359 * @param repeat indicates the number of sequential read operations

to perform.,→

360 * @return returns a Max86150::ReturnCode.
361 */
362 Max86150::ReturnCode readRegister(Max86150::RegisterAddresses

address, char* read_buffer, uint8_t repeat=1);,→

363

364 /**
365 * Write a byte of data to a specific register.
366 *
367 * The register that is written to cannot be in the

REGISTER_READ_ONLY list.,→
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368 * @param address The register address to be written to.
369 * @param data byte to be written to the register.
370 * @return returns a Max86150::ReturnCode.
371 */
372 Max86150::ReturnCode writeRegister(Max86150::RegisterAddresses

address, uint8_t data);,→

373

374 /**
375 * Determine the data to be written to a register for boolean

interrupts and settings.,→

376 *
377 * This function determines the data to be sent to registers for

interrupts and settings that can be enabled/disabled (i.e. boolean).,→

378 * @param enable true to enable interrupt/setting, false to disable
interrupt/setting.,→

379 * @param bitmask The bitmask of the interrupt/setting within its
respective register.,→

380 * @param current_data The data currently present in the
interrupt's/setting's register.,→

381 * @return Data to be written to the interrupt's/setting's
register.,→

382 */
383 uint8_t makeWriteRegisterData(bool enable, uint8_t bitmask, uint8_t

current_data);,→

384

385 /**
386 * Return a Max86150::ReturnCode after attempting to write data to

register.,→

387 *
388 * Max86150::ReturnCode::OK is returned if the data has been

successfully written to the register and the RAM has been updated
accordingly.

,→

,→

389 * Max86150::ReurnCode::I2C_NO_ACK is returned if the data has not
successfully been written to the register.,→

390 * @param specific_setting The setting to be adjusted. For this
function, only its register address is used.,→

391 * @param data The data to be written to the register
392 * @return returns a Max86150::ReturnCode.
393 */
394 Max86150::ReturnCode ackWriteRegister(Max86150::Setting

specific_setting, uint8_t data);,→

395

396 /**
397 *
398 * Write a boolean setting to the relevant register.
399 *
400 * Write the adjusted setting to its respective register.
401 * This function can only be used with boolean settings, i.e.

settings that can be enabled/disabled.,→
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402 * This function is called within the function that is used to
change a setting.,→

403 * @param value
404 * @param specific_setting
405 * @return returns a Max8150::ReturnCode.
406 */
407 Max86150::ReturnCode writeBoolSettingToRegister(bool value,

Max86150::Setting specific_setting);,→

408

409 /**
410 * Configure the read_buffer pointers inside the data_element

structs to point to the correct addresses,→

411 * in the fifo_buffer variable.
412 *
413 * @return Max86150::ReturnCode::OK when successfull.
414 */
415 Max86150::ReturnCode setDataElementPointers(void);
416

417

418 /**
419 * Read the status of the Max86150 reset routine and update the

class variable accordingly.,→

420 *
421 * @return true when still resetting, false if reset is finished.
422 */
423 bool isResetting();
424

425 public:
426 /**
427 * Construct the driver.
428 *
429 * The I2C object is initialized, the SDA and SCL pins are allready

defined for the target.,→

430 * On the schematic from mbed-os site the different I2C pins
indicate where extra slaves,→

431 * can be connected.
432 * The interrupt is also initialized, and the callback function is

coupled to it.,→

433 *
434 * @param int_pin The pin connected to the interrupt signal.
435 * @param interruptCallback pointer to the callback function of the

interrupt.,→

436 * @param scl_rate Set the clockrate for the I2C interface in kHz.
437 * @param logger Pointer to AFLogger::logger object.
438 * @param queue Pointer to the eventqueue.
439 */
440 Max86150(PinName int_pin, void (*interruptCallback)(void), uint16_t

scl_rate, AFLogger::Logger *logger, EventQueue *queue);,→

441



A.2. Max86150.h 52

442 /**
443 * Reads the content of register's 1 and 2 and returns the cause

of the interrupt.,→

444 * @return Max86150::InterruptStatus indicating the interrupt
cause,→

445 */
446 Max86150::InterruptStatus getInterruptStatus();
447

448 /**
449 * Enable/disable interrupt setting.
450 *
451 * The following interrupt settings can be enabled/disabled:
452 * A_FULL_EN;
453 * PPG_RDY_EN;
454 * ALC_OVF_EN;
455 * PROX_INT_EN;
456 * VDD_OOR_EN;
457 * ECG_RDY_EN.
458 * For elaboration on the interrupt settings, refer to enumeration

InterruptEnableConf,→

459 * @param enable true to enable this interrupt, false to disable
this interrupt.,→

460 * @param specific_interrupt The interrupt of interest to be
enabled/disable.,→

461 * @return returns a Max86150::ReturnCode.
462 */
463 Max86150::ReturnCode setInterrupt(bool enable,

Max86150::InterruptEnableConf specific_interrupt);,→

464

465 /**
466 * Read the overflow count out of the register.
467 *
468 * When FIFO is full, any new samples result in new or old samples

getting lost depending on FIFO_ROLLS_ON_FULL.,→

469 * OVF_COUNTER counts the number of samples lost. It saturates at
0x1F.,→

470 *
471 * @return Number of samples lost.
472 */
473 uint8_t getFifoOverflowCount();
474

475 /**
476 * Get the Fifo read pointer from the Max86150 register.
477 *
478 * @return Fifo address pointed to by read pointer.
479 */
480 uint8_t getFifoReadPointer();
481

482 /**
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483 * @param address value between 0 - 31.
484 */
485 Max86150::ReturnCode setFifoReadPointer(uint8_t address);
486

487 /**
488 * Read all the samples that are available from the Fifo buffer.
489 *
490 * @return returns a Max86150::ReturnCode::OK on success, otherwise

other value.,→

491 */
492 Max86150::ReturnCode readFifo();
493

494 /**
495 * 0: A_FULL interrupt does not get cleared by FIFO_DATA register

read. It gets cleared by,→

496 * status register read.
497 * 1: A_FULL interrupt gets cleared by FIFO_DATA register read or

status register read,→

498 *
499 * @param value true for 1, false for 0.
500 */
501 Max86150::ReturnCode setFifoAlmostFullInterruptClear(bool value);
502

503 /**
504 * 0: The FIFO stops on full.
505 * 1: The FIFO automatically rolls over on full, thereby

overwriting previous data.,→

506 *
507 * @param value true for 1, false for 0.
508 */
509 Max86150::ReturnCode setFifoFullBehaviour(bool value);
510

511 /**
512 * 0: A_FULL interrupt gets asserted when the a_full condition is

detected. It is cleared by status,→

513 * register read, but re-asserts for every sample if the
a_full condition persists.,→

514 * 1: A_FULL interrupt gets asserted only when the a_full condition
is detected. The interrupt,→

515 * gets cleared on status register read, and does not
re-assert for every sample until a new,→

516 * a-full condition is detected.
517 *
518 * @param value true for 1, false for 0.
519 */
520 Max86150::ReturnCode setFifoAlmostFullBehaviour(bool value);
521

522 /**
523 * Specifies the amount of free space on the FIFO at which the

interrupt is triggered. Can,→
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524 * be between 0 - 15 samples.
525 *
526 * @param value integer between 0 - 15 indicating when the

interrupt is triggered.,→

527 */
528 Max86150::ReturnCode setFifoAlmostFullValue(uint8_t value);
529

530 /**
531 * Configure the FIFO buffer data.
532 *
533 * The structure in which data is stored in the FIFO buffer is

controlled by the,→

534 * FIFO_DATA_CONTROL_REGISTER's. The FIFO buffer can hold samples
from up to 4 different,→

535 * sensors. These sensors are defined in Max86150::FifoDataConfig.
The elements of the,→

536 * FIFO buffer are defined in Max86150::FifoDataElement.
537 * @param sensor The sensor which is assigned to the selected Fifo

element.,→

538 * @param data_register The element of the Fifo which to add the
sensor to.,→

539 * @return returns a Max86150::ReturnCode.
540 *
541 * @todo Set the fifo_element pointers to point to the correct

position in the read buffer.,→

542 */
543 Max86150::ReturnCode setFifoDataElement(Max86150::FifoSensorsConf

sensor, bool enable);,→

544

545 /**
546 * 0: Push to FIFO is disabled, but the read and write pointers and

the data in the FIFO are all,→

547 * held at their values before FIFO_EN is set to 0.
548 * 1: The FIFO is enabled. When this bit is set the FIFO is flushed

of all old data and the new,→

549 * samples start loading from pointer zero
550 *
551 * @return OK on success, otherwise other ReturnCode
552 */
553 Max86150::ReturnCode setFifoEnable(bool enable);
554

555 /**
556 * 0: The part is in normal operation. No action taken
557 * 1: The part can be put into a power-save mode by writing a ‘1’

to this bit. While in this mode,→

558 * all registers remain accessible and retain their data. ADC
conversion data contained in the,→

559 * registers are previous values. Writable registers also remain
accessible in shutdown. All,→
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560 * interrupts are cleared. In this mode the oscillator is shutdown
and the part draws minimum,→

561 * current. If this bit is asserted during a active conversion then
the conversion completes,→

562 * before the part shuts down.
563 *
564 * @return OK on success, otherwise other ReturnCode
565 */
566 Max86150::ReturnCode sleep(bool enable);
567

568 /**
569 * 0: The part is in normal operation. No action taken.
570 * 1: The part under-goes a forced power-on-reset sequence. All

configuration, threshold and,→

571 * data registers including distributed registers are reset to
their power-on-state. This bit then,→

572 * automatically becomes ‘0’ after the reset sequence is
completed.,→

573 *
574 * @return OK on success, otherwise other ReturnCode
575 */
576 Max86150::ReturnCode reset();
577

578 /**
579 * Set the range of the PPG Analog to digital converter. Only fixed

values are available,→

580 * defined in Max86150::PpgAdcRangeConf.
581 *
582 * @return OK on success, otherwise other ReturnCode
583 */
584 Max86150::ReturnCode setPpgAdcRange(Max86150::PpgAdcRangeConf

value);,→

585

586 /**
587 * Set the effectife sampling rate. With this the number of pulses

per sample,→

588 * can also be selected. The available configurations are stored in
Max861150::PpgSampleRateConf.,→

589 *
590 * @return OK on success, otherwise other ReturnCode
591 * @todo check if the selected samplerate is available (table from

page 30 of datasheet).,→

592 */
593 Max86150::ReturnCode setPpgSampleRate(Max86150::PpgSampleRateConf

value);,→

594

595 /**
596 * Set the pulse width of the ppg signal. The available

configurations are stored in,→
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597 * Max86150::PpgPulseWidthConfg.
598 *
599 * @return OK on success, otherwise other ReturnCode
600 */
601 Max86150::ReturnCode setPpgPulseWidth(Max86150::PpgPulseWidthConf

value);,→

602

603 /**
604 * To reduce the amount of data throughput, adjacent samples (in

each individual channel) can be averaged and decimated,→

605 * on the chip by setting this register.
606 * These bits set the number of samples that are averaged on chip

before being written to the FIFO.,→

607 *
608 * @return OK on success, otherwise other ReturnCode
609 */
610 Max86150::ReturnCode

setPpgSampleAveraging(Max86150::SampleAveragingConf value);,→

611

612 /**
613 * Set the value of the IR ADC count at which the MAX86150 begins

the PPG mode,→

614 * specified in the FIFO data control register.
615 *
616 * PROX_INT_THRESH: Proximity Mode Interrupt Threshold*
617 * This register sets the IR ADC count that triggers the beginning

of the PPG mode specified in the FIFO Data Control,→

618 * Register. The threshold is defined as the 8 MSB bits of the ADC
count. For example, if PROX_INT_THRESH[7:0] = 0x01,,→

619 * then an ADC value of 1023 (decimal) or higher triggers the PROX
interrupt. If PROX_INT_THRESH[7:0] = 0xFF, then,→

620 * only a saturated ADC triggers the interrupt.
621 *
622 * @param threshold the value which to write to the register
623 * @return Max86150::ReturnCode::OK on succes.
624 */
625 Max86150::ReturnCode setProximityThreshold(uint8_t threshold);
626

627 /**
628 * Set the current pulse amplitude of the selected LED.
629 *
630 * This function set's both the LEDx PA register and the LED Range

register so a current between,→

631 * 0 and 102 mA can be selected. The LED PILOT PA register can also
be set, however, when a,→

632 * value exceeding the LEDx_RGE range is selected, the maximum
value will be set for the PILOT,→

633 * allowed by the current value of LEDx_RGE.
634 *



A.2. Max86150.h 57

635 * @param amplitude a value between 0 and 102 specifiy the pulse
amplitude in mA.,→

636 * @param led the Led of which to set the pulse amplitude.
637 * @return Max86150::ReturnCode::OK on succes.
638 */
639 Max86150::ReturnCode setLedPulseAmplitude(uint8_t amplitude,

Max86150::LedType led);,→

640

641 /**
642 * Set the ECG sample rate and the oversampling ratio, the sample

rate is the product of the two.,→

643 *
644 * The eventual sample rate is the product of the base sample rate

and the oversampling ratio.,→

645 *
646 * @param base_sample_rate the base sample rate to be used.
647 * @param over_sampling_ratio the multiplication factor for the base

sample rate.,→

648 * @return Max86150::ReturnCode::OK on success.
649 */
650 Max86150::ReturnCode

setEcgSampleRate(Max86150::EcgAdcSampleRateConf
base_sample_rate, Max86150::OverSamplingRatioConf
over_sampling_ratio);

,→

,→

,→

651

652 /**
653 * Set the gain of the ECG progammable gain amplifier and the ECG

instrumentation,→

654 * amplifier.
655 *
656 * The equivalent input voltage is given by V_INPUT = ADC_CODE x

12.247V / IA_GAIN / PGA_GAIN.,→

657 * only the setting PGA_GAIN=8, IA_GAIN=9.5 is trimmed to tight
tolerence.,→

658 * Note that the values for pga_gain and ia_gain must be specified
explicitly everytime the function is called.,→

659

660 * @param pga_gain The gain value to set the Programmable gain
amplifier to.,→

661 * @param ia_gain The gain value to set the Instrumentation
amplifier to.,→

662 * @return Max86150::ReturnCode::OK on success.
663 */
664 Max86150::ReturnCode setAmplifierGains(Max86150::PgaGainConf

pga_gain, Max86150::InstrAmpGainConf ia_gain);,→

665

666 /**
667 * Get the new values from the specified sensor.
668 *
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669 * @param sensor The sensor for which data is to be gathered.
670 * @param write_buffer pointer to first location in array which to

write the data to.,→

671 * @return OK if succesfull, otherwise corresponding error
672 */
673 Max86150::ReturnCode getSensorData(FifoSensorsConf sensor, int32_t

*write_buffer);,→

674

675 uint8_t getPartId();
676 };
677 }
678

679 #endif

[breaklines]
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A.3. Max86150.cpp
1 #include "max86150.h"
2 #include <cstdint>
3 #include <cstdio>
4

5 using namespace driver;
6

7 //==============================PRIVATE_FUNCTIONS=================================================================================
8 Max86150::ReturnCode Max86150::readRegister(Max86150::RegisterAddresses

address, char* read_buffer, uint8_t repeat){,→

9 if(resetting){
10 if(isResetting()){
11 return RESETTING;
12 }
13 }
14

15 queue->call(printf, "This test for eventqueue");
16

17 char data = address;
18 uint8_t flgs[2];
19 uint8_t i = 0;
20

21 do {
22 flgs[0] = i2c.write(SLAVE_ADDRESS, &data, 1, true);
23 flgs[1] = i2c.read((SLAVE_ADDRESS|1), read_buffer, repeat, false);
24 i++;
25

26 // If both i2c transmissions where succesfull the loop exits
27 if(((flgs[0] == 0) && (flgs[1] == 0)) ){
28 break;
29 }
30 }while (i < I2C_RETRY_LIMIT);
31

32 if(i >= I2C_RETRY_LIMIT){
33 return ReturnCode::I2C_NO_ACK;
34 }
35

36 return Max86150::ReturnCode::OK;
37 }
38

39 Max86150::ReturnCode Max86150::writeRegister(Max86150::RegisterAddresses
address, uint8_t data){,→

40

41 if(resetting){
42 if(isResetting()){
43 return RESETTING;
44 }
45 }
46
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47 char data2[2] = {address, data};
48 uint8_t flg;
49 uint8_t i=0;
50 do {
51 flg = i2c.write(SLAVE_ADDRESS, data2, 2, true);
52 i++;
53

54 if(flg==0){
55 break;
56 }
57 }while (i < I2C_RETRY_LIMIT);
58

59 if(i >= I2C_RETRY_LIMIT){
60 return ReturnCode::I2C_NO_ACK;
61 }
62

63 return ReturnCode::OK;
64 }
65

66 uint8_t Max86150::makeWriteRegisterData(bool enable, uint8_t bitmask, uint8_t
current_data){,→

67 uint8_t data;
68 if(enable==true){
69 data = (current_data | bitmask);
70 }else{
71 data = ~(~current_data | bitmask);
72 }
73 return data;
74 }
75

76 Max86150::ReturnCode Max86150::ackWriteRegister(Max86150::Setting
specific_setting, uint8_t data){,→

77 if(Max86150::writeRegister(specific_setting.address, data) ==
Max86150::ReturnCode::OK){,→

78 Max86150::registerContents[specific_setting.address] = data;
79 return Max86150::ReturnCode::OK;
80 }
81

82 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to write %x
to register %x", specific_setting.address, data);,→

83 return Max86150::ReturnCode::I2C_NO_ACK;
84 }
85

86 Max86150::ReturnCode Max86150::setDataElementPointers(void){
87 // Each sensor sample takes up 3 bytes in memory.
88 // The first sensor will have its first sample in fifo_buffer[0] -

fifo_buffer[2],→

89 // The second sensor in fifo_buffer[3] -
fifo_buffer[5],→
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90 //
-------------------------------------ETC----------------------------------------,→

91 // The first sensor will have its second sample in
fifo_buffer[0+active_data_elements*3] -
fifo_buffer[2+active_data_elements*3]

,→

,→

92

93 // Buffer can hold 32 samples for each sensor, so 32 pointers need to be
constructed for each sensor.,→

94 uint16_t index; // must be 16 bit integer, otherwise an overflow
will occur.,→

95 // i is Sample number
96 for(uint8_t i=0; i < FIFO_BUFFER_SIZE; i++){
97 // n is Sensor number
98 for(uint8_t n = 0; n < active_data_elements; n++){
99 // The data_elements array holds pointers to the individual data

elements.,→

100 // pointers to structs can access the members using ->
101 index = ELEMENT_SAMPLE_SIZE*n +

ELEMENT_SAMPLE_SIZE*active_data_elements*i;,→

102 data_elements[n]->read_buffer[i] = &fifo_buffer[index];
103 }
104 }
105 return Max86150::OK;
106 }
107

108 Max86150::ReturnCode Max86150::writeBoolSettingToRegister(bool value,
Max86150::Setting specific_setting){,→

109 uint8_t current_data =
Max86150::registerContents[specific_setting.address];,→

110 uint8_t data = Max86150::makeWriteRegisterData(value,
specific_setting.bitmask, current_data);,→

111 return ackWriteRegister(specific_setting, data);
112 }
113

114 bool Max86150::isResetting(){
115 // Send write slave id
116 i2c.start();
117 i2c.write(Max86150::SLAVE_ADDRESS);
118 // Send register address
119 i2c.write(settings._RESET.address);
120 // Repeated start
121 i2c.start();
122 // Send read slave id (SLAVE_ADDRES bitwise_or 1)
123 i2c.write(Max86150::SLAVE_ADDRESS|1);
124

125 uint8_t data = i2c.read(false);
126 data = data & settings._RESET.bitmask;
127 if(data == 0){
128 resetting = false;
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129 return false;
130 }else{
131 return true;
132 }
133

134 }
135

136 //================================PUBLIC_FUNCTIONS================================================================================
137 Max86150::Max86150(PinName int_pin, void (*interruptCallback)(void), uint16_t

scl_rate, AFLogger::Logger *logger, EventQueue *queue):,→

138 i2c(I2C_SDA, I2C_SCL),
139 intb(int_pin),
140 vdd_dig(PA_5),
141 vdd_ana(PA_6),
142 vdd_led(PB_5)
143 {
144 logger->log(AFLogger::Logger::eLogLevel::NORMAL, "Initializing max86150");
145 i2c.frequency(1000*scl_rate);
146 logger->log(AFLogger::Logger::eLogLevel::TRACE, "I2C frequency set to %u

kHz", scl_rate);,→

147 //max86150Interrupt.fall(*interruptCallback);
148 //logger->log(AFLogger::Logger::eLogLevel::TRACE, "Interrupt callback

configured");,→

149 this->logger = logger;
150 this->queue = queue;
151

152 // Start from a known state
153 vdd_led = 0;
154 vdd_dig = 0;
155 vdd_ana = 0;
156

157 ThisThread::sleep_for(1s);
158

159 // Initialize power to Max chip
160 vdd_ana = 1;
161 logger->log(AFLogger::Logger::eLogLevel::NORMAL, "Turned on vdd_ana");
162 ThisThread::sleep_for(500ms);
163 vdd_dig = 1;
164 logger->log(AFLogger::Logger::eLogLevel::NORMAL, "Turned on vdd_dig");
165 ThisThread::sleep_for(500ms);
166 vdd_led = 1;
167 logger->log(AFLogger::Logger::eLogLevel::NORMAL, "Turned on vdd_led");
168

169 while(intb.read()==1){
170 logger->log(AFLogger::Logger::eLogLevel::NORMAL, "No interrupt received

yet");,→

171 ThisThread::sleep_for(1s);
172 }
173
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174 uint8_t flgs[2];
175 char data[3];
176 char buff;
177 data[0] = 0x00; // interrupt cause register
178 data[1] = 0xff; // ID register
179

180 // THIS IS THE HARDCODE WAY USING HIGHER LEVEL FUNCTIONS FROM I2C CLASS
181 flgs[0] = i2c.write(SLAVE_ADDRESS, data, 1, true);
182 flgs[1] = i2c.read(SLAVE_ADDRESS, &buff, 1);
183

184 if(buff==1){
185 logger->log(AFLogger::Logger::eLogLevel::NORMAL, "PWR_RDY interrupt

received");,→

186 }else{
187 logger->log(AFLogger::Logger::eLogLevel::ERROR, "PWR_RDY interrupt not

received, please check connections");,→

188 }
189

190 flgs[0] = i2c.write(SLAVE_ADDRESS, &data[1], 1, true);
191 flgs[1] = i2c.read(SLAVE_ADDRESS, &buff, 1);
192

193 if(buff==0x1E){
194 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Max86150 succesfully

initialized");,→

195 }else{
196 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Max86150 not correctly

initialized");,→

197 }
198 }
199

200 // Alex
201 Max86150::InterruptStatus Max86150::getInterruptStatus(){
202 char data;
203 InterruptStatus ret = NONE;
204 // Read the first interrupt status register, this must be ISR safe
205 if(readRegister(RegisterAddresses::INTERRUPT_STATUS_1, &data)==I2C_NO_ACK){
206 //logger->log(AFLogger::Logger::eLogLevel::ERROR, "Could not read

INTERRUPT_STATUS_1 register");,→

207 return NONE;
208 }
209 if(data!=0){
210 // Cast the value in data[0] to the type Max86150::InterruptStatus
211 ret = static_cast<InterruptStatus>(data);
212 return ret;
213 }
214

215 // Read the second interrupt status register
216 if(readRegister(RegisterAddresses::INTERRUPT_STATUS_2, &data)==I2C_NO_ACK){
217 //logger->log(AFLogger::Logger::eLogLevel::ERROR, "Could not read

INTERRUPT_STATUS_2 register");,→
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218 return NONE;
219 }
220 if(data!=0){
221 // Add 1 to indicate it is the second status register, cast to

Max86150::InterruptStatus,→

222 ret = static_cast<InterruptStatus>(data|1);
223 //logger->log(AFLogger::Logger::eLogLevel::TRACE, "Interrupt cause is:

%x", ret);,→

224 return ret;
225 }
226

227 //logger->log(AFLogger::Logger::eLogLevel::WARNING, "No interrupt cause was
found");,→

228 // If all fails return NONE so the error can be handled
229 return ret;
230 }
231

232 Max86150::ReturnCode Max86150::setInterrupt(bool enable,
Max86150::InterruptEnableConf specific_interrupt){,→

233 Max86150::Setting specific_setting;
234 switch (specific_interrupt) {
235 case A_FULL_EN:
236 specific_setting = settings._A_FULL_EN;
237 break;
238 case PPG_RDY_EN:
239 specific_setting = settings._PPG_RDY_EN;
240 break;
241 case ALC_OVF_EN:
242 specific_setting = settings._ALC_OVF_EN;
243 break;
244 case PROX_INT_EN:
245 specific_setting = settings._PROX_INT_EN;
246 break;
247 case VDD_OOR_EN:
248 specific_setting = settings._VDD_OOR_EN;
249 break;
250 case ECG_RDY_EN:
251 specific_setting = settings._ECG_RDY_EN;
252 break;
253 }
254

255 uint8_t current_data =
Max86150::registerContents[specific_setting.address];,→

256 uint8_t data = Max86150::makeWriteRegisterData(enable,
specific_setting.bitmask, current_data);,→

257 if(ackWriteRegister(specific_setting, data)==OK){
258 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully enabled

interrupt %x", specific_setting.bitmask);,→

259 return OK;
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260 }else{
261 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to enable

interrupt %x", specific_setting.bitmask);,→

262 return I2C_NO_ACK;
263 }
264 }
265

266 uint8_t Max86150::getFifoOverflowCount(){
267 char data;
268 Max86150::readRegister(Max86150::RegisterAddresses::OVERFLOW_COUNTER,

&data);,→

269 // logger->log(AFLogger::Logger::eLogLevel::TRACE, "Fifo overflow count is:
\t %u", data);,→

270 return (uint8_t)data;
271 }
272

273 // Amar
274 uint8_t Max86150::getFifoReadPointer(){
275 char data;
276 Max86150::readRegister(Max86150::RegisterAddresses::FIFO_READ_POINTER,

&data);,→

277 // logger->log(AFLogger::Logger::eLogLevel::TRACE, "Fifo read pointer is:
\t %u", data);,→

278 return (uint8_t)data;
279 }
280

281 // Amar
282 Max86150::ReturnCode Max86150::setFifoReadPointer(uint8_t address){
283 // address must be within the range of 0-31;
284 if(address < 0 || address > 31 ){
285 return ReturnCode::VALUE_OOR;
286 }
287 Max86150::Setting specific_setting = settings._FIFO_RD_PTR;
288 if(ackWriteRegister(specific_setting, address)==OK){
289 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set fifo

read pointer to %x", address);,→

290 return OK;
291 }else{
292 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set fifo

read pointer to %x", address);,→

293 return I2C_NO_ACK;
294 }
295 }
296

297 // Alex
298 Max86150::ReturnCode Max86150::readFifo(){
299 // THIS FUNCTION IS AN INTERRUPT SERVICE ROUTINE FUNCTION, SO NO PRINTF
300

301 char write_buffer[2];
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302 char status[3];
303 char* write_ptr = &status[0];
304 char* ovf_count = &status[1];;
305 char* read_ptr = &status[2];; // value of read_ptr is the address,

the value of the register is *read_ptr,→

306 uint8_t samples_in_fifo;
307

308

309

310 // send start
311 // send device address + write mode
312 // send fifo_wr_ptr register address
313 write_buffer[0] = RegisterAddresses::FIFO_WRITE_POINTER;
314 if(i2c.write(SLAVE_ADDRESS, write_buffer, 1, true)){
315 return ReturnCode::I2C_NO_ACK;
316 }
317

318 // repeated start
319 // send device address + read mode
320 // read fifo_wr_ptr
321 // read ovf_acounter
322 // read fifo_rd_ptr
323 // stop
324 i2c.read(SLAVE_ADDRESS, status, 3, false);
325

326 // Check if there is an overflow
327 if ((uint8_t)*ovf_count!=0) {
328 samples_in_fifo = FIFO_BUFFER_SIZE;
329 }else{
330 if((uint8_t)*write_ptr <= (uint8_t)*read_ptr){
331 // The write pointer has looped around
332 samples_in_fifo = FIFO_BUFFER_SIZE -

((uint8_t)*read_ptr-(uint8_t)*write_ptr);,→

333 }else {
334 samples_in_fifo = ((uint8_t)*write_ptr-(uint8_t)*read_ptr);
335 }
336 }
337 //logger->log(AFLogger::Logger::eLogLevel::TRACE, "Samples to read in Fifo:

%u", samples_in_fifo);,→

338

339 // start
340 // send device address + write mode
341 // send fifo_data register address
342 write_buffer[0] = RegisterAddresses::FIFO_DATA_REGISTER;
343

344 if(i2c.write(SLAVE_ADDRESS, write_buffer, 1, true)!=0){
345 return ReturnCode::I2C_NO_ACK;
346 }
347 // repeated start
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348 // send device address + read mode
349 // loop through the samples in fifo
350 if(i2c.read(SLAVE_ADDRESS, fifo_buffer,

(samples_in_fifo*active_data_elements*ELEMENT_SAMPLE_SIZE), false)!=0){,→

351 // Reset read pointer to original position so read can be retried.
352 if(setFifoReadPointer((uint8_t)*read_ptr)!=ReturnCode::OK){
353 return ReturnCode::I2C_NO_ACK;
354 }
355 }
356

357 return ReturnCode::OK;
358 }
359

360 // Amar
361 Max86150::ReturnCode Max86150::setFifoAlmostFullInterruptClear(bool value){
362 Max86150::Setting specific_setting = settings._A_FULL_CLR;
363 if(writeBoolSettingToRegister(value, specific_setting)==OK){
364 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

FIFO_ALMOST_FULL_INTTERUPT_CLEAR to %x", value);,→

365 return OK;
366 }else{
367 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

FIFO_ALMOST_FULL_INTTERUPT_CLEAR to %x", value);,→

368 return I2C_NO_ACK;
369 }
370 }
371

372 // Amar
373 Max86150::ReturnCode Max86150::setFifoAlmostFullBehaviour(bool value){
374 Max86150::Setting specific_setting = settings._A_FULL_TYPE;
375 if(writeBoolSettingToRegister(value, specific_setting)==OK){
376 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

FIFO_ALMOST_FULL_BEHAVIOUR to %x", value);,→

377 return OK;
378 }else{
379 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

FIFO_ALMOST_FULL_BEHAVIOUR to %x", value);,→

380 return I2C_NO_ACK;
381 }
382 }
383

384 // Amar
385 Max86150::ReturnCode Max86150::setFifoFullBehaviour(bool value){
386 Max86150::Setting specific_setting = settings._FIFO_ROLLS_ON_FULL;
387 if(writeBoolSettingToRegister(value, specific_setting)==OK){
388 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

FIFO_FULL_BEHAVIOUR to %x", value);,→

389 return OK;
390 }else{
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391 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set
FIFO_FULL_BEHAVIOUR to %x", value);,→

392 return I2C_NO_ACK;
393 }
394 }
395

396 Max86150::ReturnCode Max86150::setFifoAlmostFullValue(uint8_t value){
397 if(value < 16){
398 uint8_t current_settings = registerContents[FIFO_CONFIGURATION];
399 // ABCD 1001
400 current_settings = current_settings >> 4;
401 // xxxx ABCD
402 current_settings = current_settings << 4;
403 // ABCD 0000
404 uint8_t new_settings = current_settings | value;
405 if(writeRegister(FIFO_CONFIGURATION, new_settings)==ReturnCode::OK){
406 registerContents[FIFO_CONFIGURATION] = new_settings;
407 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

FIFO_ALMOST_FULL_VALUE to %u", value);,→

408 return ReturnCode::OK;
409 }else {
410 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Failed to set

FIFO_ALMOST_FULL_VALUE to %u", value);,→

411 return ReturnCode::I2C_NO_ACK;
412 }
413 }else{
414 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Invalid argument

[%u]. value must be smaller than 16", value);,→

415 return Max86150::ReturnCode::INVALID_DATA;
416 }
417 }
418

419 // Alex
420 Max86150::ReturnCode Max86150::setFifoDataElement(Max86150::FifoSensorsConf

sensor, bool enable){,→

421 // Check if there is still space for an axtra sensor
422 if(active_data_elements == FIFO_MAX_DATA_ELEMENTS){
423 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Maximum number of

FIFO_DATA_ELEMENTS allready reached");,→

424 return ReturnCode::MAX_SENSORS_EXCEEDED;
425 }
426

427 // Check if the setting is allready correct, because then nothing has to be
done.,→

428 if (sensorStatus[sensor] == enable) {
429 logger->log(AFLogger::Logger::eLogLevel::TRACE, "This FIFO_DATA_ELEMENT

is allready enabled");,→

430 return ReturnCode::OK;
431 }
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432

433 // Set the sensorStatus map
434 sensorStatus[sensor] = enable;
435

436 // Reset the fd sensor values
437 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Resetting all data

elements for re-designation");,→

438 for (uint8_t i=0; i < FIFO_MAX_DATA_ELEMENTS; i++) {
439 data_elements[i]->sensor = FifoSensorsConf::SENSOR_NONE;
440 }
441

442 // Next the data elements need to be assigned the correct sensor.
443 // The ppg's come first and the ecg comes last, so construct a list with

the correct sequence.,→

444 // sensors
445 uint8_t i = 0;
446 if(sensorStatus[LED1_IR]){
447 logger->log(AFLogger::Logger::eLogLevel::TRACE, "LED1_IR is set to

data_element[%u]", i);,→

448 data_elements[i]->sensor = FifoSensorsConf::LED1_IR;
449 i++;
450 }
451 if(sensorStatus[LED2_RED]){
452 logger->log(AFLogger::Logger::eLogLevel::TRACE, "LED2_RED is set to

data_element[%u]", i);,→

453 data_elements[i]->sensor = FifoSensorsConf::LED2_RED;
454 i++;
455 }
456 if(sensorStatus[PILOT_LED1_IR]){
457 logger->log(AFLogger::Logger::eLogLevel::TRACE, "PILOT_LED1_IR is set

to data_element[%u]", i);,→

458 data_elements[i]->sensor = FifoSensorsConf::PILOT_LED1_IR;
459 i++;
460 }
461 if(sensorStatus[PILOT_LED2_RED]){
462 logger->log(AFLogger::Logger::eLogLevel::TRACE, "PILOT_LED1_IR is set

to data_element[%u]", i);,→

463 data_elements[i]->sensor = FifoSensorsConf::PILOT_LED2_RED;
464 i++;
465 }
466 if(sensorStatus[ECG]){
467 logger->log(AFLogger::Logger::eLogLevel::TRACE, "ECG is set to

data_element[%u]", i);,→

468 data_elements[i]->sensor = FifoSensorsConf::ECG;
469 i++;
470 }
471

472 // Keep track of the number of active sensors
473 if(enable){
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474 active_data_elements++;
475 }else {
476 active_data_elements--;
477 }
478

479 // Write the correct values to the registers on the Max86150
480 // Complete 8 bit value is constructed by shifting fd2 or fd4 4 bits to the

left, and,→

481 // or this with fd1 or fd3 respsectively.
482

if(writeRegister(RegisterAddresses::FIFO_DATA_CONTROL_REGISTER_1,(fd2.sensor<<4)|(fd1.sensor))==OK){,→

483 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully writen
data to FIFO_DATA_ELEMENT_REGISTER_1");,→

484 }else{
485 logger->log(AFLogger::Logger::eLogLevel::WARNING, "failed to write data

to FIFO_DATA_ELEMENT_REGISTER_1");,→

486 return I2C_NO_ACK;
487 }
488

if(writeRegister(RegisterAddresses::FIFO_DATA_CONTROL_REGISTER_1,(fd4.sensor<<4)|(fd3.sensor))==OK){,→

489 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully writen
data to FIFO_DATA_ELEMENT_REGISTER_2");,→

490 }else{
491 logger->log(AFLogger::Logger::eLogLevel::WARNING, "failed to write data

to FIFO_DATA_ELEMENT_REGISTER_2");,→

492 return I2C_NO_ACK;
493 }
494

495 // Reconfigure the pointers to the read buffers inside the FifoDataElement
structs,→

496 setDataElementPointers();
497

498 return ReturnCode::OK;
499 }
500

501 // Amar
502 Max86150::ReturnCode Max86150::setFifoEnable(bool enable){
503 Max86150::Setting specific_setting = settings._FIFO_EN;
504 if(writeBoolSettingToRegister(enable, specific_setting)==OK){
505 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

FIFO_ENABLE to %x", enable);,→

506 return OK;
507 }else{
508 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

FIFO_ENABLE to %x", enable);,→

509 return I2C_NO_ACK;
510 }
511 }
512
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513 // Amar
514 Max86150::ReturnCode Max86150::sleep(bool enable){
515 Max86150::Setting specific_setting = settings._SHDN;
516 if(writeBoolSettingToRegister(enable, specific_setting)==OK){
517 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set SLEEP

to %x", enable);,→

518 return OK;
519 }else{
520 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set SLEEP to

%x", enable);,→

521 return I2C_NO_ACK;
522 }
523 }
524

525 // Amar
526 Max86150::ReturnCode Max86150::reset(){
527 if (resetting) {
528 return RESETTING;
529 }
530 Max86150::Setting specific_setting = settings._RESET;
531 if(writeBoolSettingToRegister(true, specific_setting)==OK){
532 resetting = true;
533 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully RESET");
534 return ReturnCode::OK;
535 }else{
536 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to RESET");
537 return I2C_NO_ACK;
538 }
539 }
540

541 // Alex
542 Max86150::ReturnCode Max86150::setPpgAdcRange(Max86150::PpgAdcRangeConf value){
543 // specific setting
544 Setting ss = settings._PPG_ADC_RGE;
545 uint8_t data = registerContents[ss.address];
546 data = (~ss.bitmask) & data;
547 data = (value << 6) | data;
548

549 if(writeRegister(ss.address, data)==OK){
550 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

PPG_ADC_RANGE to %x", value);,→

551 return OK;
552 }else{
553 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

PPG_ADC_RANGE to %x", value);,→

554 return I2C_NO_ACK;
555 }
556 }
557
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558 // Alex
559 Max86150::ReturnCode Max86150::setPpgSampleRate(Max86150::PpgSampleRateConf

value){,→

560 Setting ss = settings._PPG_SR;
561 uint8_t data = registerContents[ss.address];
562 data = (~ss.bitmask) & data;
563 data = (value << 4) | data;
564

565 if(writeRegister(ss.address, data)==OK){
566 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

PPG_SAMPLE_RATE to %x", value);,→

567 return OK;
568 }else{
569 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

PPG_SAMPLE_RATE to %x", value);,→

570 return I2C_NO_ACK;
571 }
572 }
573

574 // Alex
575 Max86150::ReturnCode Max86150::setPpgPulseWidth(Max86150::PpgPulseWidthConf

value){,→

576 Setting ss = settings._PPG_LED_PW;
577 uint8_t data = registerContents[ss.address];
578 data = (~ss.bitmask) & data;
579 data = value | data;
580

581 if(writeRegister(ss.address, data)==OK){
582 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

PPG_PULSE_WIDTH to %x", value);,→

583 return OK;
584 }else{
585 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

PPG_PULASE_WIDTH to %x", value);,→

586 return I2C_NO_ACK;
587 }
588 }
589

590 // Amar
591 Max86150::ReturnCode

Max86150::setPpgSampleAveraging(Max86150::SampleAveragingConf smp_ave){,→

592 Max86150::Setting specific_setting = settings._SMP_AVE;
593 uint8_t data = 0;
594 data = data | smp_ave;
595

596 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Setting PPG sample
averaging to %u", smp_ave);,→

597

598 if(ackWriteRegister(specific_setting, data)){
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599 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set
PPG_SAMPLE_AVERAGING to %x", smp_ave);,→

600 return OK;
601 }else{
602 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

PPG_SAMPLE_AVERAGING to %x", smp_ave);,→

603 return I2C_NO_ACK;
604 }
605 }
606

607 // Amar
608 Max86150::ReturnCode Max86150::setProximityThreshold(uint8_t threshold){
609

if(Max86150::writeRegister(Max86150::RegisterAddresses::PROX_INTERRUPT_THRESHOLD,
threshold) == Max86150::ReturnCode::OK){

,→

,→

610 Max86150::registerContents[PROX_INTERRUPT_THRESHOLD] = threshold;
611

612 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set
PROXIMITY_THRESHOLD to %x", threshold);,→

613

614 return Max86150::ReturnCode::OK;
615 }
616 logger->log(AFLogger::Logger::eLogLevel::ERROR, "Failed to set

PROXIMITY_THRESHOLD to %x", threshold);,→

617 return Max86150::ReturnCode::I2C_NO_ACK;
618 }
619

620 // Alex
621 Max86150::ReturnCode Max86150::setLedPulseAmplitude(uint8_t amplitude,

Max86150::LedType led){,→

622 /*
623 the amplitude can take a value between 0 and 102 mA
624 from 51 - 102 mA the rge register value must be set to '01'
625 */
626

627 // Check if the amplitude is within range
628 if((amplitude < 0 || amplitude > 102)){
629 logger->log(AFLogger::Logger::eLogLevel::WARNING, "%u mA is out of

range. Pulse amplitude must be smaller than 102 mA", amplitude);,→

630 return ReturnCode::VALUE_OOR;
631 }
632

633 uint8_t data;
634

635 // Switch depending on the selected LED
636 switch (led) {
637 case INFRA_RED:{
638 // Current settings in registers
639 uint8_t range = (registerContents[settings._LED1_RGE.address] &&

settings._LED1_RGE.bitmask);,→
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640

641 if(amplitude>51){
642 if(range == 0){
643 // First write new range value
644 if(ackWriteRegister(settings._LED1_RGE,

0b00000001)==ReturnCode::I2C_NO_ACK){,→

645 logger->log(AFLogger::Logger::eLogLevel::WARNING,
"Failed to set LED1_IR_RGE range to 100 mA");,→

646 return I2C_NO_ACK;
647 }
648 logger->log(AFLogger::Logger::eLogLevel::WARNING,

"Succesfully set LED1_IR_RGE range to 100 mA");,→

649 }
650 // With the range set to 102 mA, the step size is 0.4 mA.
651 // Cast the division of the value by 0.4 into uint8_t.
652 data = (uint8_t) amplitude/0.4;
653 }else{ // The value is smaller than 51
654 if(range > 0){
655 // First write new range value so the value can be set more

accurately,→

656 if(ackWriteRegister(settings._LED1_RGE,
0b00000000)==ReturnCode::I2C_NO_ACK){,→

657 logger->log(AFLogger::Logger::eLogLevel::WARNING,
"Failed to set LED1_IR_RGE range to 50 mA");,→

658 return I2C_NO_ACK;
659 }
660 logger->log(AFLogger::Logger::eLogLevel::WARNING,

"Succesfully set LED1_IR_RGE range to 50 mA");,→

661 }
662 // With the range set to 51 mA the step size is 0.2 mA.
663 // Cast the division of the value by 0.2 into uint8_t.
664 data = (uint8_t) amplitude/0.2;
665 }
666 // Write new pulse amplitude value
667 if(ackWriteRegister(settings._LED1_PA_CONF, data)==OK){
668 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully

set LED1_IR_PA range to %u mA", amplitude);,→

669 return OK;
670 }else{
671 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to

set LED1_IR_PA range to %u mA", amplitude);,→

672 return I2C_NO_ACK;
673 }
674 break;
675 }
676 case RED:{
677 // Current settings in registers
678 uint8_t range = (registerContents[settings._LED2_RGE.address] &&

settings._LED2_RGE.bitmask);,→
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679

680 if(amplitude>51){
681 if(range == 0){
682 // First write new range value
683 if(ackWriteRegister(settings._LED2_RGE,

0b00000100)==ReturnCode::I2C_NO_ACK){,→

684 logger->log(AFLogger::Logger::eLogLevel::WARNING,
"Failed to set LED2_IR_RGE range to 100 mA");,→

685 return I2C_NO_ACK;
686 }
687 logger->log(AFLogger::Logger::eLogLevel::WARNING,

"Succesfully set LED1_IR_RGE range to 100 mA");,→

688 }
689 // With the range set to 102 mA, the step size is 0.4 mA.
690 // Cast the division of the value by 0.4 into uint8_t.
691 data = (uint8_t) amplitude/0.4;
692 }else{ // The value is smaller than 51
693 if(range > 0){
694 // First write new range value so the value can be set more

accurately,→

695 if(ackWriteRegister(settings._LED2_RGE,
0b00000000)==ReturnCode::I2C_NO_ACK){,→

696 logger->log(AFLogger::Logger::eLogLevel::WARNING,
"Failed to set LED2_IR_RGE range to 50 mA");,→

697 return I2C_NO_ACK;
698 }
699 logger->log(AFLogger::Logger::eLogLevel::WARNING,

"Succesfully set LED2_IR_RGE range to 50 mA");,→

700 }
701 // With the range set to 51 mA the step size is 0.2 mA.
702 // Cast the division of the value by 0.2 into uint8_t.
703 data = (uint8_t) amplitude/0.2;
704 }
705 // Write new pulse amplitude value
706 if(ackWriteRegister(settings._LED2_PA_CONF, data)==OK){
707 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully

set LED2_IR_PA range to %u mA", amplitude);,→

708 return OK;
709 }else{
710 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to

set LED1_IR_PA range to %u mA", amplitude);,→

711 return I2C_NO_ACK;
712 }
713 break;
714 }
715 case PILOT:{
716 // The pilot pulse amplitude depends on which LED is used for the

pilot,→

717 // The step size also depends on the RGE setting of that specific
LED,→
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718 // Fine control is not needed over the pilot pulse amplitude, so a
RGE of 102 mA is assumed,→

719 data = (uint8_t) amplitude/0.4;
720

721 if(ackWriteRegister(settings._PILOT_PA, data)==OK){
722 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully

set PILOT_PA range to %u mA", amplitude);,→

723 return OK;
724 }else{
725 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to

set PILOT_PA range to %u mA", amplitude);,→

726 return I2C_NO_ACK;
727 }
728 break;
729 }
730 }
731 }
732

733 // Alex
734 Max86150::ReturnCode Max86150::setEcgSampleRate(Max86150::EcgAdcSampleRateConf

base_sample_rate, Max86150::OverSamplingRatioConf over_sampling_ratio){,→

735 if(ackWriteRegister(settings._ECG_ADC_CLK,
(base_sample_rate<<2))==I2C_NO_ACK){,→

736 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to set
ECG_ADC_CLK to %x", base_sample_rate);,→

737 return I2C_NO_ACK;
738 }
739 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

ECG_ADC_CLK to %x", base_sample_rate);,→

740

741 if(ackWriteRegister(settings._ECG_ADC_OSR, over_sampling_ratio)==OK){
742 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

ECG_ADC_OSR to %x", over_sampling_ratio);,→

743 return OK;
744 }else{
745 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to set

ECG_ADC_OSR to %x", over_sampling_ratio);,→

746 return I2C_NO_ACK;
747 }
748 }
749

750 // Amar
751 Max86150::ReturnCode Max86150::setAmplifierGains(Max86150::PgaGainConf

pga_gain, Max86150::InstrAmpGainConf ia_gain){,→

752 // Dummy example:
753 // data: 0000 0000 the 4 MSB are don't cares (check

datasheet) and this initialization assumes that the pga_gain and
ia_gain are explicitly specified each time the function is called

,→

,→

754 // Bitwise shift right 4: xxxx ABCD
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755 // Bitwise shift left 2: xxAB CD00
756 // Set pga_gain: xxAB CDPP
757 // Bitwise shift left 2: ABCD PP00
758 // Set ia_gain: ACBD PPII
759 Max86150::Setting specific_setting = settings._PGA_ECG_GAIN; // here,

specific_setting is only used for the register address when writing to
the sensor, so either PGA_ECG_GAIN or IA_GAIN could be used

,→

,→

760 uint8_t data = 0;
761 data = data | pga_gain;
762 data = data << 2;
763 data = data | ia_gain;
764 if(ackWriteRegister(specific_setting, data)==OK){
765 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully set

PA_GAIN to %x and IA_GAIN to %x", pga_gain, ia_gain);,→

766 return OK;
767 }else {
768 logger->log(AFLogger::Logger::eLogLevel::WARNING, "Failed to set

PA_GAIN to %x and IA_GAIN to %x", pga_gain, ia_gain);,→

769 return I2C_NO_ACK;
770 }
771 }
772

773 Max86150::ReturnCode Max86150::getSensorData(FifoSensorsConf sensor, int32_t
*write_buffer){,→

774

775 uint8_t setting = (registerContents[settings._PPG_ADC_RGE.address] &
settings._PPG_ADC_RGE.bitmask);,→

776 PpgAdcRangeConf range = (PpgAdcRangeConf) (setting >> 6);
777

778 // The value to multiply by
779 float mult;
780 // The offset is used in the case of ECG, as the ADC outputs a bipolar

integer.,→

781 uint32_t offset = 0;
782 // Cannot be unsigned, as ECG data can have a negative value.
783 int32_t sample;
784 uint32_t bitmask = 0;
785

786 if (sensor != ECG) {
787 // bitmask for PPG data
788 bitmask = 0x07FFFF;
789 // For the PPG the multiplier is determined by the ADC_RGE setting

only,→

790 switch (range) {
791 case NANO_AMPERE_8192:
792 mult = 7.8125;
793 break;
794 case NANO_AMPERE_4096:
795 mult = 15.625;
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796 break;
797 case NANO_AMPERE_16384:
798 mult = 31.25;
799 break;
800 case NANO_AMPERE_32768:
801 mult = 62.5;
802 break;
803 }
804 }else{
805 // bitmask for the ECG data
806 bitmask = 0x03FFFF;
807 offset = 65536;
808 uint8_t ia_gain_bit = registerContents[settings._IA_GAIN.address] &

settings._IA_GAIN.bitmask;,→

809 float ia_gain;
810 switch (ia_gain_bit) {
811 case IA_GAIN_5:
812 ia_gain = 5;
813 break;
814 case IA_GAIN_9_5:
815 ia_gain = 9.5;
816 break;
817 case IA_GAIN_20:
818 ia_gain = 20;
819 break;
820 case IA_GAIN_50:
821 ia_gain = 50;
822 break;
823 default:
824 ia_gain = 1;
825 }
826

827 uint8_t pga_gain_bit =
(registerContents[settings._PGA_ECG_GAIN.address] &
settings._PGA_ECG_GAIN.bitmask)>> 2;

,→

,→

828 uint8_t pga_gain;
829 switch (pga_gain_bit) {
830 case PGA_GAIN_1:
831 pga_gain = 1;
832 break;
833 case PGA_GAIN_2:
834 pga_gain = 2;
835 break;
836 case PGA_GAIN_4:
837 pga_gain = 4;
838 break;
839 case PGA_GAIN_8:
840 pga_gain = 8;
841 break;
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842 }
843

844 // According to formula on page 17 of datasheet
845 mult = 12.247 / (ia_gain*pga_gain);
846 }
847

848 // Check whether the sensor is enabled
849 for (uint8_t i=0; i < active_data_elements; i++) {
850 if(data_elements[i]->sensor == sensor){
851 // Sensor is enabled, so process the fifo_buffer and write it to

the array pointed to by write_buffer,→

852 for (uint8_t j=0; j < data_elements[i]->new_samples; j++) {
853 // Pointer to first byte of sample in the fifo_buffer
854 char* base_pointer = data_elements[i]->read_buffer[j];
855 sample =

(*(base_pointer)<<16)|(*(base_pointer+1)<<8)|*(base_pointer+2);,→

856 sample = (sample & bitmask) - offset;
857 // Store value to correct relative address of write_buffer
858 *(write_buffer + j) = (sample)*mult;
859 }
860 return OK;
861 }
862 }
863

864 return SENSOR_DISABLED;
865 }
866

867 uint8_t Max86150::getPartId(){
868 char* data;
869 InterruptStatus ret = NONE;
870 // Read the first interrupt status register
871 if(readRegister(RegisterAddresses::PART_ID, data)==OK){
872 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Succesfully read

PART_ID as %x", *data);,→

873 return (uint8_t)data[0];
874 }else{
875 logger->log(AFLogger::Logger::eLogLevel::TRACE, "Failed to read

PART_ID");,→

876 return 0;
877 }
878 }
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A.4. Max86150_test.cpp
1 #include "max86150.h"
2 #include "logger.h"
3 #include "config.h"
4 #include <cstdint>
5

6 #if ACTIVE_FILE == DRIVER_TEST
7

8 void dummyCallbackFall(){
9 }

10

11 void dummyCallbackRise(){
12 }
13

14 void testall(){
15 AFLogger::Logger logger(AFLogger::Logger::eLogLevel::TRACE);
16 EventQueue queue;
17 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Started up

everything===========================================================");,→

18 driver::Max86150 test(PC_6, dummyCallbackFall, 100, &logger, &queue);
19

20 // Calling every function one by one for testing
21 test.getInterruptStatus();
22

23 test.setInterrupt(true, driver::Max86150::InterruptEnableConf::A_FULL_EN);
24 //test.setInterrupt(true,

driver::Max86150::InterruptEnableConf::ALC_OVF_EN);,→

25 //test.setInterrupt(true,
driver::Max86150::InterruptEnableConf::ECG_RDY_EN);,→

26 //test.setInterrupt(true,
driver::Max86150::InterruptEnableConf::PPG_RDY_EN);,→

27 //test.setInterrupt(true,
driver::Max86150::InterruptEnableConf::PROX_INT_EN);,→

28 //test.setInterrupt(true,
driver::Max86150::InterruptEnableConf::VDD_OOR_EN);,→

29

30 test.getFifoOverflowCount();
31 test.getFifoReadPointer();
32 test.setFifoReadPointer(14);

// should work,→

33 test.setFifoReadPointer(32);
// address out of range, should return error,→

34 // Might have to check whether sensors are activated
35 test.setFifoAlmostFullInterruptClear(true);

// simple bit write operation,→

36 test.setFifoAlmostFullBehaviour(true);
37 test.setFifoAlmostFullBehaviour(true);
38 test.setFifoAlmostFullValue(12);

// should work,→
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39 test.setFifoAlmostFullValue(17);
// value out of range, should return error,→

40

41 test.setFifoEnable(true);
// should work,→

42 test.sleep(true);
// goes to sleep,→

43 // A check should be implemented, as certain functions won't be accessible
due to Max86150 sleeping, this still has to be implemented,→

44 test.sleep(false);
45 test.setPpgAdcRange(driver::Max86150::PpgAdcRangeConf::NANO_AMPERE_32768);

// should work,→

46

test.setPpgSampleRate(driver::Max86150::PpgSampleRateConf::SAMPLES_1600_PPS_1);
// should work

,→

,→

47 test.setPpgPulseWidth(driver::Max86150::PpgPulseWidthConf::MICRO_200);
// should work,→

48

test.setPpgSampleAveraging(driver::Max86150::SampleAveragingConf::SAMPLE_AVERAGE_2);
// should work

,→

,→

49 test.setProximityThreshold(144);
// should work,→

50 // Extensive testing
51 test.setLedPulseAmplitude(10, driver::Max86150::LedType::INFRA_RED);

// should work,→

52 test.setLedPulseAmplitude(200, driver::Max86150::LedType::INFRA_RED);
// value oor,→

53 test.setLedPulseAmplitude(60, driver::Max86150::LedType::INFRA_RED);
// changes range register,→

54 test.setLedPulseAmplitude(10, driver::Max86150::LedType::RED);
// should work,→

55 test.setLedPulseAmplitude(200, driver::Max86150::LedType::RED);
// value oor,→

56 test.setLedPulseAmplitude(60, driver::Max86150::LedType::RED);
// changes range register,→

57 test.setLedPulseAmplitude(10, driver::Max86150::LedType::PILOT);
// should work,→

58 test.setLedPulseAmplitude(200, driver::Max86150::LedType::PILOT);
// value oor,→

59 test.setLedPulseAmplitude(60, driver::Max86150::LedType::PILOT);
// does not change rge register, just divides by 0.4 and casts to int,→

60

61 test.setEcgSampleRate(driver::Max86150::EcgAdcSampleRateConf::ECG_CLK_200,
driver::Max86150::OverSamplingRatioConf::OSR_16);,→

62 test.setAmplifierGains(driver::Max86150::PgaGainConf::PGA_GAIN_4,
driver::Max86150::InstrumentationAmplifierGainConf::IA_GAIN_50);,→

63

64 // Extensive test for the fifo data elements, most important part to get
right.,→



A.4. Max86150_test.cpp 82

65 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED1_IR, true);
// should work,→

66 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED1_IR, true);
// should return that the sensor is allready active,→

67 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED1_IR, false);
// should work,→

68 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED2_RED, true);
// should work,→

69 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED1_IR, true);
// should work, and reorder the sensors properally,→

70 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::ECG, true);
// should work, get's added to FD3,→

71 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::PILOT_LED1_IR,
true);// should work, sensors get rearranged,→

72 test.setFifoDataElement(driver::Max86150::FifoSensorsConf::PILOT_LED2_RED,
true);//should not work, max sensors reached,→

73 test.readFifo();
// Should try and read all available samples,→

74

75 test.reset();
76 }
77

78 void testI2c(){
79 InterruptIn intb(PC_6);
80 DigitalOut led(LED1);
81 DigitalOut vdd_dig(PA_5);
82 DigitalOut vdd_ana(PA_6);
83 DigitalOut vdd_led(PB_5);
84

85 AFLogger::Logger logger(AFLogger::Logger::eLogLevel::TRACE);
86 I2C i2c(I2C_SDA, I2C_SCL);
87 i2c.frequency(100000);
88 const uint8_t WRITE_ADDRESS = 0XBC;
89 const uint8_t READ_ADDRESS = 0xBD;
90

91 // Start from a known state
92 led = 0;
93 vdd_led = 0;
94 vdd_dig = 0;
95 vdd_ana = 0;
96

97 intb.fall(&dummyCallbackFall); // Setup interrupt callback
98 ThisThread::sleep_for(1s);
99

100 // Initialize power to Max chip
101 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Initializing max86150");
102 vdd_ana = 1;
103 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Turned on vdd_ana");
104 ThisThread::sleep_for(500ms);
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105 vdd_dig = 1;
106 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Turned on vdd_dig");
107 ThisThread::sleep_for(500ms);
108 vdd_led = 1;
109 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Turned on vdd_led");
110

111 while(intb.read()==1){
112 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "No interrupt received

yet");,→

113 ThisThread::sleep_for(1s);
114 }
115

116

117 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Startup successfull");
118 uint8_t flgs[2];
119 char data[3];
120 char buff[2];
121 data[0] = 0x00; // interrupt cause register
122 data[1] = 0xff; // ID register
123 data[2] = 0;
124

125

126 // THIS IS THE HARDCODE WAY USING HIGHER LEVEL FUNCTIONS FROM I2C CLASS
127 flgs[0] = i2c.write(WRITE_ADDRESS, data, 1, true);
128 flgs[1] = i2c.read(READ_ADDRESS, buff, 1);
129 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Received flags are: %x and

%x", flgs[0], flgs[1]);,→

130 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Read data is: %x",
buff[0]);,→

131

132

133 flgs[0] = i2c.write(WRITE_ADDRESS, &data[1], 1, true);
134 flgs[1] = i2c.read(READ_ADDRESS, buff, 1);
135 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Received flags are: %x and

%x", flgs[0], flgs[1]);,→

136 logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Read data is: %x",
buff[0]);,→

137

138 // Wait around, interrupts will interrupt this
139 while(1){
140 }
141 }
142

143 int main(){
144 testall();
145 //testI2c();
146 while(1);
147 }
148
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149 #endif
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A.5. Test program output
NORMAL : Started up everything=================================================
NORMAL : Initializing max86150
TRACE : I2C frequency set to 100 kHz
NORMAL : Turned on vdd_ana
NORMAL : Turned on vdd_dig
NORMAL : Turned on vdd_led
NORMAL : PWR_RDY interrupt received
TRACE : Max86150 succesfully initialized
TRACE : Succesfully enabled interrupt 80
TRACE : Succesfully set fifo read pointer to e
TRACE : Succesfully set FIFO_ALMOST_FULL_INTTERUPT_CLEAR to 1
TRACE : Succesfully set FIFO_ALMOST_FULL_BEHAVIOUR to 1
TRACE : Succesfully set FIFO_ALMOST_FULL_BEHAVIOUR to 1
TRACE : Succesfully set FIFO_ALMOST_FULL_VALUE to 12
WARNING : Invalid argument [17]. value must be smaller than 16
TRACE : Succesfully set FIFO_ENABLE to 1
TRACE : Succesfully set SLEEP to 1
TRACE : Succesfully set SLEEP to 0
TRACE : Succesfully set PPG_ADC_RANGE to 3
TRACE : Succesfully set PPG_SAMPLE_RATE to 9
TRACE : Succesfully set PPG_PULSE_WIDTH to 2
TRACE : Succesfully set PPG_SAMPLE_AVERAGING to 1
TRACE : Succesfully set PROXIMITY_THRESHOLD to 90
TRACE : Succesfully set LED1_IR_PA range to 10 mA
WARNING : 200 mA is out of range. Pulse amplitude must be smaller than 102 mA
WARNING : Succesfully set LED1_IR_RGE range to 100 mA
TRACE : Succesfully set LED1_IR_PA range to 60 mA
WARNING : Succesfully set LED2_IR_RGE range to 50 mA
TRACE : Succesfully set LED2_IR_PA range to 10 mA
WARNING : 200 mA is out of range. Pulse amplitude must be smaller than 102 mA
WARNING : Succesfully set LED1_IR_RGE range to 100 mA
TRACE : Succesfully set LED2_IR_PA range to 60 mA
TRACE : Succesfully set PILOT_PA range to 10 mA
WARNING : 200 mA is out of range. Pulse amplitude must be smaller than 102 mA
TRACE : Succesfully set PILOT_PA range to 60 mA
TRACE : Succesfully set ECG_ADC_CLK to 0
TRACE : Succesfully set ECG_ADC_OSR to 0
TRACE : Succesfully set PA_GAIN to 2 and IA_GAIN to 3
TRACE : Resetting all data elements for re-designation
TRACE : LED1_IR is set to data_element[0]
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_1
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_2
TRACE : This FIFO_DATA_ELEMENT is allready enabled
TRACE : Resetting all data elements for re-designation
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_1
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_2
TRACE : Resetting all data elements for re-designation
TRACE : LED2_RED is set to data_element[0]
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TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_1
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_2
TRACE : Resetting all data elements for re-designation
TRACE : LED1_IR is set to data_element[0]
TRACE : LED2_RED is set to data_element[1]
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_1
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_2
TRACE : Resetting all data elements for re-designation
TRACE : LED1_IR is set to data_element[0]
TRACE : LED2_RED is set to data_element[1]
TRACE : ECG is set to data_element[2]
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_1
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_2
TRACE : Resetting all data elements for re-designation
TRACE : LED1_IR is set to data_element[0]
TRACE : LED2_RED is set to data_element[1]
TRACE : PILOT_LED1_IR is set to data_element[2]
TRACE : ECG is set to data_element[3]
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_1
TRACE : Succesfully writen data to FIFO_DATA_ELEMENT_REGISTER_2
WARNING : Maximum number of FIFO_DATA_ELEMENTS allready reached
TRACE : Succesfully RESET
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A.6. Max86150_recording.cpp
#include "max86150.h"
#include "logger.h"
#include "config.h"
#include <cstdint>
#include <cstdio>

#if ACTIVE_FILE == RECORDING_TEST

#define PPG_SAMPLE_RATE 100
#define RECORDING_LENGTH 30
// PPG_ADC_RGE= 32µA, PPG_SR = 100Hz, PPG_LED_PW = 400s

void intCallback();

uint32_t rec_samples = PPG_SAMPLE_RATE*RECORDING_LENGTH;
uint32_t current_samples = 0;
int32_t recording_IR[PPG_SAMPLE_RATE * RECORDING_LENGTH+100];
int32_t recording_RED[PPG_SAMPLE_RATE * RECORDING_LENGTH+100];

bool interrupt;
AFLogger::Logger logger(AFLogger::Logger::eLogLevel::WARNING);
driver::Max86150::InterruptStatus cause;
EventQueue queue(32*EVENTS_EVENT_SIZE);
Thread important(osPriorityRealtime7);
InterruptIn intb(D10);
driver::Max86150 test(&intb, 100, &logger, &queue);

void retrieveIRSensorData(){
if(current_samples < rec_samples){

current_samples +=
test.getSensorData(driver::Max86150::FifoSensorsConf::LED1_IR,
&recording_IR[current_samples]);

,→

,→

logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Total read IR samples:
%d", current_samples);,→

test.getSensorData(driver::Max86150::FifoSensorsConf::LED2_RED,
&recording_RED[current_samples]);,→

logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Total read RED
samples: %d", current_samples);,→

}else{
test.sleep(true);
for(uint32_t i=0;i<rec_samples;i++){

printf("%d, ", recording_IR[i]);
}
printf("\n\n");
for(uint32_t i=0;i<rec_samples;i++){

printf("%d, ", recording_RED[i]);
}
exit(0);
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}
}

void interruptHandler(void){
cause = test.getInterruptStatus();

switch (cause) {
case driver::Max86150::InterruptStatus::A_FULL:

logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: A_FULL");
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "readFifo response:

%x", test.readFifo());,→

retrieveIRSensorData();
break;

case driver::Max86150::InterruptStatus::PWR_RDY:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: PWR_RDY");
break;

case driver::Max86150::InterruptStatus::ECG_RDY:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: ECG_RDY");
break;

case driver::Max86150::InterruptStatus::NONE:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: NONE");
break;

case driver::Max86150::InterruptStatus::PPG_RDY:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: PPG_RDY");
break;

case driver::Max86150::InterruptStatus::PROX_INT:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: PROX_INT");
break;

case driver::Max86150::InterruptStatus::VDD_OOR:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: VDD_OOR");
break;

case driver::Max86150::InterruptStatus::ALC_OVF:
logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Cause: ALC_OVF");
break;

}
}

void intCallback(void){
//queue.call(printf, "Interrupt detected\n");
queue.call(interruptHandler);

}

void fallingCallback(void){
queue.call(printf, "Interrupt removed\n");

}

int main(){
// Start event queue
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logger.log(AFLogger::Logger::eLogLevel::NORMAL, "Testing");

test.setFifoAlmostFullInterruptClear(true);
test.setFifoAlmostFullBehaviour(false);
test.setFifoAlmostFullValue(15);

test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED2_RED, true);
test.setFifoDataElement(driver::Max86150::FifoSensorsConf::LED1_IR, true);
test.writeFifoDataElements();
test.setFifoEnable(true);
//test.setFifoDataElement(driver::Max86150::FifoSensorsConf::PILOT_LED1_IR,

true);,→

//test.setFifoDataElement(driver::Max86150::FifoSensorsConf::PILOT_LED2_RED,
true);

,→

,→

test.setLedPulseAmplitude(5, driver::Max86150::LedType::INFRA_RED);
test.setLedPulseAmplitude(5, driver::Max86150::LedType::RED);
//test.setLedPulseAmplitude(80, driver::Max86150::LedType::PILOT);
test.setPpgPulseWidth(driver::Max86150::PpgPulseWidthConf::MICRO_50);
test.setPpgAdcRange(driver::Max86150::PpgAdcRangeConf::NANO_AMPERE_32768);

//test.setProximityThreshold(128);
//test.setInterrupt(true,

driver::Max86150::InterruptEnableConf::PROX_INT_EN);,→

test.setInterrupt(true, driver::Max86150::InterruptEnableConf::A_FULL_EN);
//test.setInterrupt(true,

driver::Max86150::InterruptEnableConf::ALC_OVF_EN);,→

//test.setInterrupt(true,
driver::Max86150::InterruptEnableConf::VDD_OOR_EN);,→

//test.setInterrupt(false,
driver::Max86150::InterruptEnableConf::PPG_RDY_EN);,→

important.start(callback(&queue, &EventQueue::dispatch_forever));
intb.fall(intCallback);
//intb.rise(fallingCallback);
queue.call(printf, "Queue test\n");
interruptHandler();

test.setPpgSampleRate(driver::Max86150::PpgSampleRateConf::SAMPLES_200_PPS_1);,→

test.setPpgSampleAveraging(driver::Max86150::SampleAveragingConf::SAMPLE_AVERAGE_2);,→

while(true){
}

}

#endif
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Figure B.1: The schematic of the PCB circuit.
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Figure B.2: Top view of the designed PCB layout.
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