Modelling railway dispatching actionsin
switching max-pluslinear systems

A : y’/] J‘\‘/
1 v = o
= Lz -;--9"' i
=1 o A X
L J¢

Student: Dirk van der Meer
E-mail: D.J.vander M eer @Student. TUD€ft.NL
Student number: 1158511
Date: October 22" 2008

]
TUDelft

Front page: No infra constraints are active as rdi959 awaits its scheduled departure time at DaadH
HS in the winter sun of December™007.

Modelling railway dispatching actions in switching max-pluslinear systems

Master thesis

Student:

Dirk van der Meer
D.J.vanderMeer@student. TUDelft.NL
Student number: 1158511

University:
Delft University of Technology
Faculty of Civil Engineering, Transport & Plannigsgction

Graduation Committee:

Prof.dr.ing. I.LA. Hansen

Faculty of Civil Engineering, Transport & Plannigsgction
I.A.Hansen@tudelft.nl

Dr. R.M.P. Goverde
Faculty of Civil Engineering, Transport & Plannisgction
R.M.P.Goverde@tudelft.nl

Dr.ir. T.J.J. van den Boom
Delft Center for Systems and Control
A.J.J.vandenBoom@tudelft.nl

Preface

This thesis is the result of a graduation projecathtain a Master’s degree in Civil Engineering at
the Delft University of Technology. This graduatiproject has been carried out at the
department of Transport and Planning of the facolt@ivil Engineering and Geosciences.

Interested in railways and railway operations agjlas | can remember, | used the flexibility of
the Transport and Planning Master’s program talagrong emphasis on public transport and rail
guided transportation systems in my personal spudgram. During the course ‘Railway Traffic
Management’ | found out about the use of max-plgskaa in railway operations research,
which, as a combination of railway timetabling,icengineering and mathematics, attracted my
interest. After a detour via the structural aspe€ts railway system in the form of an internship
at HTM, | decided to return to the research on iplas-algebra in railway operations by
choosing this as a subject for my graduation thesis

I would like to thank Rob Goverde for his great tritrution as a daily supervisor. From the
beginning, he understood my way of working and aix@d just the right theory and
backgrounds. Thanks to Ton van den Boom, the secmmdber of my graduation committee, for
his refreshing comments resulting from his theogettiiew. | finally thank Prof. Hansen for his
positive and constructive, yet critical and systiéomnaay of supervising the project.

Although not of substantial significance for thentamts of the project, my roommates of room
4.42 contributed in various ways to a perfect wagkenvironment. So thanks Koenis, for sharing
your plans to take over the world, Luis Costa C6B&@os y Burritos’ Garcia Lopez Viale, for
bringing about the Mexican spirit, Ivo, for yourilisophical view on several topics, Frank, for
your pleasant company and for showing us whabitddike to work hard, and last but certainly
not least Ollemollie, for (almost literally) alwabpeing there for some good chitchat. Thanks to
the people from room 4.39, in particular Martijrdadicole, for letting the event ‘go to lunch’
occur at exactly 12.15 without delay every day.

Dirk van der Meer
Delft, October 2008

Abstract

In order to reduce delays in a railway system angrévent them from propagating through the
network, a dispatcher can apply dispatching actifmmeexample by changing the location of a
planned overtaking, or cancelling a train run. 8pditching action is defined as an intervention in
the rail traffic system with the purpose of solvimgonflict between train runs, thereby aimed at
reducing delays and their propagation. This re$eargject is aimed at the development of a tool
that helps the dispatcher when deciding which di$iag actions to apply by quickly evaluating
their effectiveness on network level using alganghbased on max-plus algebra and timed event
graphs.

Max-plus algebra is a mathematical framework cagpabmodelling railway systems with all

their interdependencies in space and time, whicises to develop powerful tools to analyse
railway operations. When the max-plus model isrcéel with the ability to adapt in accordance
with dispatching actions, it can be used to pretietimpact of those dispatching actions. For the
approach followed in this thesis, max-plus moddlshe expressed graphically using timed
event graphs, since their transparency enablesllimgde railway network in a clear and
unambiguous way.

In order to study the stability and performanceefiodic (e.g. hourly) timetables, the existing
max-plus models and the corresponding timed evephg are cyclic. However, modelling
dispatching actions in such a cyclic environmemtifscult to implement, which is why an

acyclic model has been used in this research gr@eme methods for implementing this in
practice have been proposed.

The level of detail of the model was chosen toeswond with its emphasis on analysis and
control rather than accurate simulation of railvegerations. Therefore, block signals on the
open track are not modelled, and stations andipmeare modelled as timetable points acting as
‘black boxes’. All necessary time separations betwains are modelled as constraints between
arrivals at and/or departures from these timetpbists. Application to a test case showed that
the results of this approach are accurate enoughéble a network wide evaluation of
dispatching actions.

The timed event graph representation has beentasedestigate the implications of dispatching
actions on the model. These implications have ldesaribed as so called ‘construction rules’
describing the changes in the timed event grapbsseey to represent the corresponding
dispatching action, and following immediately fréine implications of the dispatching action on
the model. The following dispatching actions haeerbimplemented as algorithms using these
construction rules:

» Change the sequence order of trains,

* Short-turn a train (i.e. at a station before itsni@al station),

» Postpone the departure or arrival of trains atatatwith conflicting interlocking routes.
In practice, more different dispatching actions barevaluated with the theory developed in this
thesis. Changing the sequence order of trainsarandtance be used to move a scheduled
overtaking to another station, which is technicallgifferent dispatching action. Furthermore, the
described construction rules can be used to dewtegr algorithms, for instance for cancelling
train runs, introducing new train runs, etc.

In order to use the algorithms for finding effeetidispatching actions for a given network and a
set of initial delays, they can be implementedriroptimization algorithm. In this project, a
greedy approach has been used. To maximize ttiegteeness, order changes of trains have to

be evaluated in combination with the appropriatetpanements of arrivals and departures of the
involved trains when conflicting interlocking rostare present in the network. The total
passenger delay in the network served as the algdanction, thereby including the negative
effects for passengers when train trips are padhcelled due to short turning of delayed trains.
A test case with two delay scenarios showed tleagémerated dispatching actions are plausible
and consistent.

Dutch abstract

Nederlandse samenvatting

Om vertragingen in een spoorwegnetwerk te vermarden vertragingsvoortplanting te
voorkomen kan een treindienstleider bijstuurmaa&tiesg zoals het verplaatsen van een geplande
inhaallocatie of het opheffen van een trein, tospasEen bijstuurmaatregel is gedefinieerd als
een interventie in de treindienst met als doehMbetkomen van conflicterende treinbewegingen,
waarbij de vertraging en de vertragingsvoortplantiereduceerd worden. Dit project is gericht
op de ontwikkeling van een hulpmiddel voor de tdgnstleider voor het evalueren van de
effectiviteit van bijstuurmaatregelen, gebruik madtan max-plus algebra en timed event
graphs.

Max-plus algebra is een wiskundig raamwerk wagswoswegnetwerken met al hun
afhankelijkheden in ruimte en tijd gemodelleerdrkeim worden. Krachtige systemen voor het
analyseren van het railverkeer maken hiervan gebWwanneer een max-plus model wordt
uitgebreid met de mogelijkheid om te kunnen veragnl@anneer een bijstuurmaatregel wordt
doorgevoerd, kan het worden gebruikt om de effgettwan zulke maatregelen te evalueren. In
dit project zullen de max-plus modellen als timgdre graphs worden gerepresenteerd, omdat de
transparantie van deze grafische weergave het ijlogelakt om een spoorwegsysteem helder
en duidelijk te modelleren.

Voor het bestuderen van de stabiliteit en prestaté periodieke (uur)dienstregelingen wordt
gebruik gemaakt van periodieke max-plus modelletirmad event graphs. De implementatie van
bijstuurmaatregelen in een dergelijk cyclisch mag@chter problematisch. In dit onderzoek is
daarom een acyclisch model gebruikt, waarbij te\etkele methodes om dit in de praktijk te
implementeren zijn voorgesteld.

Omdat het model in dit onderzoek voornamelijk wayelbruikt voor het analyseren en regelen
van spoorwegsystemen is een nauwkeurige simuligtieam minder relevant. Het detailniveau
van het model is hierop aangepast, zodat bloksd@mgys de vrije baan niet zijn gemodelleerd en
stations en aansluitingen zijn gemodelleerd alssiiegelingpunten. De beveiliging die
noodzakelijke afstanden tussen treinen in het n&tgarandeert wordt gemodelleerd in de vorm
van randvoorwaarden in de tijd tussen de aankonestéf vertrekken bij deze
dienstregelingpunten. Toepassing van het modatinestscenario heeft aangetoond dat dit
nauwkeurig genoeg is om de effectiviteit van bijstnaatregelen op netwerkniveau te evalueren.

Voor het onderzoeken van de implicaties van bijshaatregelen op het model is de timed event
graph representatie gebruikt. De implicaties zijmsohreven als zogenoemde ‘constructieregels’
die de noodzakelijke wijzigingen in de timed evgraph voor het representeren van de
bijbehorende bijstuurmaatregel weergeven. De coctitregels volgen dus direct uit de
implicaties van bijstuurmaatregelen op het modelvbigende bijstuurmaatregelen zijn, gebruik
makend van deze constructieregels, als algoritregagementeerd:

* Het verwisselen van de volgorde van treinen,

» Het kort keren van treinen (waarmee wordt beddedtiiaten keren van een trein voordat

hij op zijn eindpunt is aangekomen),

» Het uitstellen van een aankomst of vertrek op ¢atioe met conflicterende rijwegen.
In de praktijk kunnen nog meer bijstuurmaatregehet behulp van de in dit project ontwikkelde
theorie worden geévalueerd. Door het verwisselendeavolgorde tussen treinen kan
bijvoorbeeld een geplande inhaallocatie wordenlaatpt. Bovendien kunnen de omschreven
constructieregels worden gebruikt voor het ontwi&kesan andere algoritmes, waarmee

bijstuurmaatregelen als het opheffen van treinenirtieggen van treinen, enz. kunnen worden
gemodelleerd.

Om de hierboven beschreven algoritmes te kunnerutgeln voor het vinden van effectieve
bijstuurmaatregelen voor een gegeven netwerk envegameling van initiéle vertragingen,
kunnen ze worden geimplementeerd in een optimigagoritme. In dit project is hiervoor een
greedy benadering gebruikt. Om hun effectiviteitn@ximaliseren moeten volgordewisselingen
hierbij altijd in combinatie met het uitstellen vaankomsten en vertrekken worden beoordeeld
wanneer sprake is van conflicterende rijwegen tmbéverk. De totale reizigersvertraging is
gebruikt als doelfunctie, zodat het negatieve éffeor reizigers wanneer treinen gedeeltelijk
worden opgeheven vanwege een korte kering wordgemeemen in de beoordeling. De
ontwikkelde algoritmes hebben in een testscendaigsfbele en consistente resultaten
opgeleverd.

Table of contents

PREFACE ...ttt ettt e s bt st e Rt s b e s e e Rt bt b e s e e Rt et e Rt e bt s e e n e e bt st e Rt b et e Rt b et e e ene e enes 4
F N 23S I N O RSP SORSR PRSPPI 5
DUTCH ABSTRACT ettt sttt st s s b e st e st b et e s e bt st e st e bt s e e s e b e seene b e st eneebeseeneeneneenes 7
1 INTRODUCTIONottt sttt sttt sttt be st ettt s ae ettt besae e ebesbenentenaene 12
2 PROBLEM ANALYSISAND RESEARCH OBJIECTIVE.....coccoiiieiienieieseseee e 13
21 MAX-PLUS ALGEBRA IN RAILWAYScetiitttutuiiaaeaaeeaetateeeaastataaaaaaaaaasaaaaaaeeesssssnnnnnnaaaaeaaaaeees 13
2.2 DISPATCHING ACTIONS IN MAX-PLUS ALGEBRA......ccuttutuiiaaaaaaaateteetitttinnnaaaaaaaaaaaaaaeeeeassnenns 13
2.3 PROBLEM DESCRIPTIONttttttttttttti s e aaaeaaaeeteaststassaaaasaaaaaaaaeeessssntanannaaaeaaaeaaeseessnnnsnnes 14
3 DISPATCHING ACTIONSIN RAIL TRAFFIC MANAGEMENTcooveiveveese et 15
3.1 INTRODUCTION. ..ttt tttttttttitae e e e e e e e e et et eeebabaaa e aa e e e e e e e e e eeeeeeeatbabaa e s e e e e e aaaeeeeesbnbnnnannn e e e e eaaaaeas 15
3.2 THE RAILWAY SYSTEM: DEFINITIONSuttttttteeiiittteeeeesasteeeeeeesantteseesssssssseeeessannnseeeesssnsnsseeeens 15
3.2.1 Train route and interloCKiNg OULEcieeereiiiiieiiiiieeeeee e 15
3.2.2 Timetable path and train INES.............uicemmmmeieiiirie e 15
3.2.3 The dispatcher and dispatching actionscccceeeeeeeiii e 16
3.3 TRAFFIC CONTROL ACTIONS ...t utttttteeesautttteeeessasttteeeeesassteeaessasstteeeessannstseeeessannsreeeeessnnsees 17
3.4 RESCHEDULING ACTIONS.utttttteessaitteeeeaesattteeeeessassteeeaasanssseeeeesannnsseeaessasnsseeeesannnseenens 17
3.4.1 Rescheduling actions changing the order of trains............cccoi i 18
3.4.2 Rescheduling actions changing the line routeSaiNgcccoevvviiiieeee i eceens 18
3.4.3 Change to an emergency timetable......... .o 18
3.5 REVIEW ON ONLINE DISPATCHING. ...t eeetettitittiutui e e e e e aeaaeaeeeasbssssnssaaaaeeaaaaeeeesssbnnnnnaaaaaeaas 19
3.5.1 Modelling rail traffic using blocking time diagrams............cccccooei i 19
3.5.2 Creating a model USING graphS..........ovi i e e s e
3.5.3 Methods using integer programming
3.5.4 Max-plus models with control POSSIDIlItIES. .. e eeeeeeeeiiiiiiiii e 20
3.6 L000] N[0TI U] (o P RPPTPPPPPPR 20
4 TIMED EVENT GRAPHSFOR RAILWAY OPERATIONScooieeree e 21
4.1 1N aTe] 0o 1 o N PP 21
4.2 WHY USE TIMED EVENT GRAPHS ...ttt e e e e e e ettt ettt i s e e e e e e ee et betbaa s e e e e e aaaaeeaeenes 21
4.3 RAILWAY OPERATIONS BROKEN DOWN INTO PROCESSES AND FERITS. ...uuvuuuiaaeaaaeeieeeeeennnnnnnnnns 22
4.4 BASIC CONCEPTS OF TIMED EVENT GRAPHScctttttutuiia e aaaaeateeeeeenstntaaaaasaaeaaeaaaaeeeessnnnanas 23
4.4.1 Places and transitions representing processes @Bccccovvvvieeeeriiiiiieeeeeeneens 23
4.4.2 Markings representing the actual state of the $gSte.........cccooii e 24
4.5 MODELLING A RAILWAY NETWORKcettttttutuuunaaaaeeaetateeeasstasaanaaaaaaaaaaaaaaeeeessssnnnnnnaaaaeaaaaaees 25
451 Modelling all train lINEScceeeeeee e e e e e e e 25
4.5.2 Modelling infrastruCture CONSIIAINTScceeerrrieiiririieeeee e ere e e e e e e e 25
4.5.3 Modelling synchronization CONSIIAINTS........cuue.eeeieeiennriiiiniieeereererreeeeeeeesesssssnnennnne 29
4.5.4 Determining the initial marking
4.6 TIMED EVENT GRAPH WITHOUT PERIODS.
4.6.1 Algorithms become complex when periodicity iS N@@it@deevveeeeeeeiiiiiennen 30
4.6.2 Unfolding periodic events during the day...............ii e 31
4.6.3 Methods for implementing the system without periods.........cccccceeeeiiiiiiiiiiiiiiiiieen, 32
4.7 LIMITATIONS OF THE MODEL......eeiititetittitutii e e aeeaeateeeeesebnsssnsnaaasaeeaaeeeeeesssbnnnnnaaaaaaeaaaes 33
4.8 CONCLUSION. .ttt e e e e e et et eeete bk oo 4 e 222 a2 e ae e e e e eeete bbbt s e e e e e eeaeeeeesssbsbb e e e e s e e aeeaaaeeennes 35
5 DATA STRUCTURE FOR TIMED EVENT GRAPHS........c.coo o 36
5.1 1N aTe] 0o 1 o N PP PRPR 36

5.2 VARIABLES FOR STORING AND EDITING THE TIMED EVENT GRPHccceiiiiiiererriniiiieneeeeeeeeneennns 36

6

7

5.2.1 ThE MALliX EVENT... oo e e e e e e e e e e e e s et e e e s eaaaass 36

B5.2.2 TRE ICHST..cciiiiiiiiie e 37
5.2.3 The timetable VECIOr dcoiiiiiiii e 38
5.2.4 AdJACENCY lISES ...ttt et et e e e e e e e e e e e e e e e e nnnnene 38
5.2.5 DEIBLNG @N AIC ..ottt ettt et e e e e e e e e e e e eeeeeeaeas 39
5.2.6 INSEILING N AIC .iiiiiiiiiiiee ettt e e e e e e e ettt et e e e et e aeaeaeaaaaaannnnenbbesseneeeeeeaeas 40
I A O] o [Tox A g F= L1 (o =L USROS 41

5.3 GENERATING THE TIMED EVENT GRAPH......uiiiiiiiiiiiitiiititiiaa s e e e e e e e et eeeaeeessessaaaasaeaaeaaaaaeaeesnnnes 42
5.3.1 Input data for synchronization CONSLraiNtsScccoc...ooiiiiiiiiiiie e 42
5.3.2 Input data for running and dwell tiIMES ... rrririiiiiiiiiiie e 43
5.3.3 The Generate algorithm.........ccccciiiiiiiiieee e e e e 43
5.3.4 Generating hindranCe CONSLIAINT @rCS..........uuuurririririiiiiriiierieeeeeeeeeesssssserenreeerreeeees 44

5.4 CALCULATING THE DELAY PROPAGATION IN TOPOLOGICAL ORIERceeeriiuiririeeeeannirieneeeennneneeas 46

55 CALCULATING THE CAPACITY CONSUMPTION OF A RAILWAY TRACK ...uvvvieeeiiiiiieeeeeniiieeeeesennnens 49

5.6 L600] N[0TI U] (o PSRRI TPPPPPPR 53
IMPLEMENTING DISPATCHING ACTIONS.......coictsetee ettt 54

6.1 INTRODUCTION. ..ttt tetttttttitae s e e e e e e e et eeeeetebaaa s e e e e e e e e e e aeeaeeeeaatbaba e s e e e eaaaeeeeeesbnbnnnannn e e e e aaaaeas 54

6.2 CHANGE THE ORDER BETWEEN TRAINS.cttttitttttutiiaaaeeaeaaeteeesstntssnaa e e aaaaaaaeeesssssnnnnnnns 54
6.2.1 Construction rule for changing headway CONSLraiNtS...........cceviiiiiiiriiiiiiiiiieeeeee, 55
6.2.2 Changing the hindrance CONSIrAINTS ... 56
6.2.3 Construction rule for removing hindrance Constraint...........cccccceeeieiiiiiiiiiiiiiiii e, 56
6.2.4 Construction rule for inserting hindrance CONSIBEN...........ccvvvvivieeeeeeeieiiieeceeeeeas 59
6.2.5 The algorithm ‘Chang@Ordercccuuiiieiiiiiiiieeer e e e e e e e e 62

6.3 POSTPONING ARRIVALS OR DEPARTURES AT A STATION.uvtteeeiiitiieeeeesirieeeeesssnnneeeesssnneeeas 64
6.3.1 The definition of postponing in this project.

6.3.2 Check if pOStPONING iS POSSIDIE........eiiii ettt e e e et ere e e e e e e e e e e
6.3.3 Situation without changing hindrance constraints.............cccccooiiiiiiiiiiiiiiiiiieeeeeeeen 64
6.3.4 Construction rule for changing hindrance conStraint...........ccccccoeiiiiiiiiiiiiiiiiiiieeeene. 65
6.3.5 The algorithm POSIPONE’ccoo it e e e 66

6.4 SHORT TURNING. ...t etettttttitae e e e e e e e e e e eeeeetabbba s e s s e e e e e e e e e eeeeeeaebbaba e e e e e e e aeeeeeeeebsbnnnnnnn e e e eeaeas 67
6.4.1 CancelliNg N EVENTu it e e e e e e e 68
6.4.2 The algorithm ‘SROMTUINuuiiiiiiii et ee e e e e e e e e e e e e e e e anaas 69

6.5 OPTIMIZATION FRAMEWORK ...1tttetetiutttteeeessaitteeeeeessnttaeeeeessstaeeeesssntbseeeaesastseeesessannnneeeaesans 71
6.5.1 Dispatching actions have to be combined with paBpTENtSccvveveeeeeeeiiiiiiciis 71.
6.5.2 Making an inventory of possible dispatching actions............ccccccvviiiiiviiiiiiie e, 72
6.5.3 The objective function: total passenger delay......c...cccuvvvveiiiiiiiieeeeee e,
6.5.4 Finding the most effective dispatching action..

6.6 DISPATCHING ACTIONS IN MAX-PLUS NOTATION. ... uutttteeesiitieeeeesssttieeeessanssneeessssssneeeesssnnnnns
6.6.1 Max-plus algebra: definitioNS.............uueiiiiiiiiiiii e
6.6.2 Max-plus lINEAI SYSIEIMSuiiiiiiiiii ittt et e e e e e e e e e e e e e e e nnnnaees
6.6.3 The switching Max-pluS SYSIEIM............ii ettt e e e e e e e e e eeees

6.7 1600 N[o1 U L] [0] AP TSPOUPPPPPTPIIN
CASE STUDY .ottt ettt sttt st s et steseesess e s e e b e s s ese e b e st eneesessessese st enensensensnnenennen 80

7.1 1N aTe] 0T ox 1 o N PP PRRR 80

7.2 TESTING NETWORK ¢ tttttttteeesiutteeteaesssitteeeeeessastsseaessasssseeeeeaansbeseeeesansbseeaeesansneaeaasansseneeeas 80
7.2.1 Considerations leading to the used testing NEtWArKcccoovviviiiccciiiiiiiiieieee e 80
7.2.2 The used testing network and timetable..... .o vveeeeeiieiiiiiieeee 81

7.3 TESTING METHODOLOGY. ... utttttteeesiuttteeeeesanttteeeeessanttseeessstsseeeessaassseeeeesssnssseeesessmsseeesssans 83
7.3.1 No real time SIMUIALIONcooiiiiiiiiiie e s 83
RS T |] o 10 a1 - WO PO U T T TR 83

7.4 RE S UL TS ettt ettt oottt ettt o e e e e e e e et e ettt bt b b e e e e e e e e eee et eeeenrnba e aeas 86
7.4.1 Delay scenario 1: Departure of train 102 delayed.............cccooiiiiiiiiiiiiiiiiiiiiiieeeeeeen 86
7.4.2 Delay scenario 2: Departure of train 502 delayed.............cccooiiiiiiiiiiiiiiiiiiiieeeeeen 90

7.4.3 Influence of the number of PASSENQEIS ...t 93

7.5 CONGCLUSION. ..ttt ettt ettt e e e et e e e e e e bbbt e ettt ettt e e e e e e e e e e s e e e e nbb b e e e et et e aeaaeeeeeenaans 96

8 (01]\ N[O IS 0]\ 1 R 97
8.1 IMAIN CONCLUSIONS ... ettt eeett e et e ettt e et e e e e e e et e e e eaeee e e e e s et e e e aa e e e e e s aaeesaneesnnserenasaennnses 97
8.2 APPLICABILITY IN PRACTICE .ttt ettttt et eetie et eet ettt e et et ta s sae st s e st s st sesbessnesansesnessnsssneesnessnsns a8
8.3 RECOMMENDATIONS FOR FUTURE RESEARCHuuittiitiiiiiiiieieeeee e iiee s e eas et e s e eaeeaneeans 99

9 BIBLIOGRAPHY oottt e et e s s et e e e e et e e e s e aa e e s sbbeessaabeeessasaeesssbbeessanteeessnnens 101

O N = = | N1 1) GO 102
10.1 ALGORITHM CHANGEL IS T ottt s e e et e st e e s e s aaesaneasnssannas 102
10.2 AMOUNTS OF TRAVELLERS USED IN TEST CASE....uituiitiitiietieiiieeiieiiieiiessnissiessaesineeassinees 103
10.3 DELAY PROPAGATION IN TEST CASESCENARIOL . .coviiiiiiiiie et eee e 105

10.4 DELAY PROPAGATION IN TEST CASESCENARIOZovviiiiiiiieeaaieaias it eeee e 109

Introduction 12

1 Introduction

Railway systems will always be subject to smallet bigger disturbances causing train delays.
Particularly in dense networks with a lot of tréaffic, such as the Dutch railway network,
delayed trains will cause conflicts by gettinglie tvay of other trains, or they will affect
connecting train services, thereby propagatingithay through the network and spreading the
delay to other trains.

In order to reduce delays and prevent them frorpggating, a dispatcher can apply dispatching
actions, for example by changing the location pfaaned overtaking, or cancelling a train run.
This is not an easy task because the locationsimednstances of occurring conflicts are not
known in advance, and it is difficult to predicetimpact of dispatching actions.

When delays occur in the network, train dispatcheed an answer to the question: how to get
the train service back to the scheduled situatioguackly as possible? This research project is
aimed at the development of a tool that helps thigaticher answer this question quickly by
evaluating the effectiveness of dispatching actions

Max-plus algebra is a mathematical framework cagpabmodelling railway systems with all

their interdependencies in space and time, whiahbeaused to develop powerful tools to analyse
railway operations. The computer application PET®Rich can calculate the delay propagation
in a railway network, as well as the robustnesssaalility of an hourly timetable, is an example
of this [7]. When the max-plus model is extendethwhe ability to adapt in accordance with
dispatching actions, it can be used to predicirtipact of those dispatching actions. This can be
done using switching max-plus systems [3]. A chawfghe railway system due to a dispatching
action being carried out can have many implicatmmsuch a max-plus system. These
implications are the main subject of this thesis.

For the approach followed in this thesis, max-phaels will be expressed graphically using
timed event graphs. The transparency of such grabimodels enables modelling a railway
network in a clear and unambiguous way. The lef/dktail of the model is chosen to correspond
with its emphasis on analysis and control rathan thccurate simulation of railway operations.
The timed event graph representation will be usedvestigate the implications of dispatching
actions on the model. These implications will b@liemented in algorithms able to evaluate the
effectiveness of dispatching actions.

The outline of this thesis is as follows: In thextnehapter, the research subject and the main goal
of this thesis will be described in detail. Chaferontains a more detailed description of the
dispatching actions and the railway system in wiiigty can be carried out. Furthermore, a brief
review of the literature on online dispatching syss will be given. The concept of timed event
graphs is explained in chapter 4. In chapter futieal data structure for storing the timed event
graph in the computer memory will be explained. @886 contains the main result of this thesis,
an explanation of the algorithms developed to attepmodel according to dispatching actions.
Furthermore, a greedy optimization approach fatifig a set of effective dispatching actions
based on a given set of delays is presented hkeed@veloped algorithms are tested in a case
study, which is described in chapter 7. Chaptesr@ains the conclusions of this thesis, along
with an outlook on the applicability and recommeaiss for future research.

Problem analysis and research objective 13

2 Problem analysis and research objective

2.1 Max-plus algebra in railways

The structure of a railway network contains marigriependencies between train movements.
These interdependencies consist of passengerdraimsinections between trains, constraints
caused by the infrastructure and the rolling stwodulation, etc. Such a system can be
effectively modelled using scheduled max-plus linear systgéfh

In order to create a max-plus model of a railwastey, all train runs are broken down into series
of processes and events. Furthermore, all conttriiat have to hold for the events are
expressed in max-plus algebra. This yields a mag-hear system in which the event times and
the timetable are expressed in vectors and thdreamts caused by the structure of the network
and the timetable are captured in $lygstem matrixThe max-plus model can be used to calculate
several characteristics of the system behaviour aadhe stability of the timetable, the
propagation of delays, etc. The max-plus modelbsatranslated to a graphical representation in
the form of a timed event graph, which is exactjyiealent with the max-plus model it
represents.

2.2 Dispatching actions in max-plus algebra

In case of delays conflicts can occur betweendrhindering each other. Traffic control and
rescheduling actions can be carried out by dispascii2] in order to prevent delays from
propagating to other trains on the network.
Some typical examples of rescheduling actions are:

» Switching the sequence order of two trains (i.tinlg another train depart before a

delayed train).

* Change the location of a planned overtaking.
Control actions refer to traffic management actionshich the original train schedule is
maintained, such as:

» Cancel a transfer connection between two trains.

Max-plus linear systems are based on a timetaliteavbasic hourly pattern. This means that the
order of the trains on the tracks, the transfenegtions, the train routes, etc., are exactly the
same each hour. Railway traffic management actsrdepicted above cannot be modelled
within such a framework.

A railway system in which dispatching actions caketplace can be considered as a system that
can operate in differembodes In max-plus systems for railways each mode rdfeesset of train
sequences, transfer connections, etc. A systencéimaswitch between different modes of
operation can be modelled usisgitching max-plus linear systef@. In a switching max-plus
linear system each mode of operation is represdmteddifferent system matrix. With this
extension, the model can be used to calculateftbetiseness of different dispatching actions
with regard to the settlement of delays, or momgegal, to some objective function. In the end, an
optimization algorithm can be implemented in ordefind an effective (combination of) traffic
management actions in case of delays.

Problem analysis and research objective 14

2.3 Problem description

To model the switching structure of the systemasecof a dispatching action, different system
matrices for each given dispatching action are egethe generation of all different system
matrices in advance would lead to a combinatorplasion of the amount of data if all
hypothetical combinations of possible actions havee taken into account. This means that new
system matrices have to be generated ‘on therflihé calculation process when the
effectiveness of a dispatching action has to beutated.

In most cases a discrete choice for a control acicescheduling measure leads to implied
changes in the structure of the model. For examyben at some station the order of two trains
is changed, a sequence of changes along the rdileaig implied until the location where the
order is restored to the situation as scheduled.ifiplications of railway dispatching actions on
the structure of the system matrix are the maifjestiof this project. This leads to the following
problem question:

“How can a max-plus model be used to calculatenmgact of dispatching actions in railway
systems?”

To solve this problem, a research objective hdmetachieved. In this project, the research
objective is formulated as follows:

“To create a description of all relevant dispataebiactions that can be modelled in switching
max-plus linear systems, and to obtain an inventbtyre implications of dispatching actions on
the model which can be used to produce an algorithoalculate the effectiveness of dispatching
actions.”

Dispatching actions in rail traffic management 15

3 Dispatching actions in rail traffic management

3.1 Introduction

Before the implications on the max-plus model wHipatching actions are applied, the main
subject of this thesis, are discussed, an overaigdvdescription of the most important
dispatching actions and the railway system wilgbhen in this chapter.

The outline is as follows. The next section desgithe railway system as modelled in this thesis.
All terms used in this subject referring to railvsagre defined here. Then, the enormous amount
of possibly imaginable dispatching actions willdieided into two main groups: traffic control
actions, which will be described in section 3.3] asscheduling actions, to which section 3.4 is
dedicated. In section 3.5, an overview of theditere on recent research on railway operations
modelling and online rescheduling will be presengettion 3.6 contains a brief conclusion of
this chapter.

3.2 The railway system: definitions

In this section, the type of railway systems maatklh this thesis will be defined. Definitions are
important for two reasons:
* A model cannot be built if the system to be modkitenot defined clearly.
» In the different fields of railway operation andearch, some terms are defined slightly
different, which can lead to confusion.

3.2.1 Train route and interlocking route

In Figure 3.1 a part of an example train trip \@isns A and B is shown. In the station, the train
can go to different tracks using switches and/ossings. The exact route of the train through the
station is defined as thieterlocking route Switches and crossings are assumed to occubnly
stations (including their yards) and at junctisssa track connecting the stations and/or
junctions with each other is assumed to have ntthe$ and crossings. Such is track is called the
open track

The termtrain routerefers to the route of the train on network lgwalte the difference with
interlocking rout@. A trainrun is the part of a train trip between to subseqstations, and the
running timeis the time it takes to complete a train run. Téren traintrip refers to the journey

of a train from its starting station to its ternlistation (i.e. along its entire route through the
network). Thedwell timeis the time between the arrival and departuretddia in the station (i.e.
how long the train is standing still).

3.2.2 Timetable path and train lines

The trains modelled in this project are assumeadnicaccording to a timetable created in
advance. The path through time and space thattesiohis scheduled to follow is called the
timetable pathThe timetable is assumed topmriodic which means that train trips with the
same route, speed and stopping pattern occur egfheaiuring the day, separated by fixed time
intervals. An hourly timetable is obtained whenstnatervals amount exactly one hour. In this
project, hourly timetables are used to developderdonstrate the algorithms, but although other
period lengths are rare in reality, the theory lsareasily adapted to any other period length. A

Dispatching actions in rail traffic management 16

group of periodically occurring train trips withelsame route on network level, as well as the
same interlocking route, speed and stopping paideralled rain line. An example of a train
line is the intercity connection from AmsterdanmBiassels, running every hour, each trip
connecting the same stations. Note the differeritietive ternrailway line, which refers to the
rail infrastructure connecting two stations.

At the terminal station of a train trip, the rotfistock of that train will usually turn and perfoem
train trip in the opposite direction. This is cdllaturn.

Station A Open track Station B
| |
i — — !
[1
I I

Local routing (station level)

Train run (between
subsequent stations)

Station A Station B [
. . N
> > »!

|
i
Train route (network level) I
|

Running time

Dwell time

i

Distance —
Figure3.1 Part of an example train trip with definitions.

Timetable path

Time —

\

3.2.3 The dispatcher and dispatching actions

In this thesis, the train traffic is assumed tabeetrally controlled by a dispatcher. The term
dispatcheras used in this thesis refers to the employeesupervises and controls the train
movements, as described in Pachl (2004). Thisé&dordance with the way most railway lines
in Europe are operated.

Although a timetable is originally intended to lmntict-free, conflicts may arise between trains
in case of delays. Using dispatching actions, thpaicher has to solve the occurred conflicts,
while minimizing the delay and the propagation efags. A dispatching action is defined as
follows:

A dispatching action is an intervention in the raéffic system with the purpose of solving a
conflict between train runs, thereby aimed at redgalelays and their propagation.

Dispatching actions in rail traffic management 17

Dispatching actions can be divided in a group afffi control actions and a group of
rescheduling actions, which will be described sghseaetly in the next two sections.

3.3 Traffic control actions

Traffic control actions are small interventiongtie rail traffic system. They are used to prevent
delays from propagating through the network anchade the rail traffic more fluently. In this
thesis, traffic control actions are defined asoiak:

Dispatching actions in which the line routes andusnce orders of trains are not changed.
Traffic control actions have the following charagdtcs:

» Atraffic control action can be carried out lastaniie in most cases.

* The original schedule is not necessarily maintained

* The relative positions of the trains in the netw@r. their route and order) are
maintained.

The most common examples of traffic control actiares

1) Cancel a transfer connection between two trains.

2) Increase the running time.

3) Change the duration of a stop.

4) Modification of the stopping pattern (e.g. a stowpirain becomes an express train and

vice versa).

5) Assign another open track to the train (e.g. iow-frack section).

6) Assign another platform track to the train in dista

7) Change the interlocking route of a train in a stati
Note that the route of the train on network lewié(ine route) is not changed by th& f#affic
control action. Only the interlocking route throutje station is concerned here.

3.4 Rescheduling actions

Most conflicts cannot be solved effectively by gstraffic control actions only. Rescheduling
actions provide many more possibilities for solvihgse conflicts. In this thesis, rescheduling
actions are defined as follows:

Dispatching actions in which the line routes anddeguence orders of trains are changed.

The following characteristics can be assigned solveduling actions:

* In most cases, more time in advance is neededatdlen rescheduling action than in the
case of a traffic control action (e.g. a transfamrection can be broken at all times, while
an overtaking has to be planned before the traingmty have arrived at the station).

» By definition, the original schedule is not maimnial.

» The relative positions of the trains in the netw@rd. their route and order) are changed.

The rescheduling actions will be divided into thgeeups:
* Rescheduling actions changing the order of trains.
* Rescheduling actions changing the line routesanfst
* Change to an emergency timetable.

Dispatching actions in rail traffic management 18

3.4.1 Rescheduling actions changing the order of tr ains

This type of dispatching actions is often carrietlia case of bigger delays. By changing the
order of trains, a delayed train can be prevemaa propagating its delay to on-time trains
hindered by it. Examples are:

1) Change the sequence order of trains by plannirayariaking.

2) Change the location of a planned overtaking.

3) Cancel an entire train run.

4) Insert an on-time train and cancel the delayed trai

5) Insert an extra train.

6) Short-turn a train (i.e. let a delayed train turia atation before its terminal station).

7) Change the order of arrivals and/or departuresstdteon.

8) Cancel a planned coupling of two trains and lettleentinue as two separated trains.

9) Couple two trains that run on the same route.

10) Let a delayed train continue in the path of thet tin of the same type (e.g. exactly

half an hour later).

3.4.2 Rescheduling actions changing the line routes of trains

Changing the line route of a train on network lesaah be a convenient rescheduling action in
case of big disruptions (e.qg. closure of a track wurolling stock or infrastructure failure). The
line route of a train is changed by the followigcheduling actions:
11) Redirect a train to a different route through tleéaork (while maintaining the starting
and terminal stations).
12) Redirect a train to a starting and/or terminalistabutside its regular route.

3.4.3 Change to an emergency timetable

In case of big disruptions in the rail network, emeomplex rescheduling actions are applied.
These rescheduling actions are often part of aastethat is available at the traffic control
centre. Therefore, these rescheduling actions eaeén as a change to an emergency timetable:
13) Make an inventory of trains that can continue ragror that can be re-routed, cancel all
other trains.
14) Use measure 13, and improve the service leveldsriimg extra trains.
15) Go back and forth with one train through the batiek caused by the disruption.
16) Let trains with the same direction pass the batitéras a group in order to increase the
capacity of the bottleneck.

Some (combinations of) rescheduling actions case#ue rolling stock circulation to become
disrupted. In such cases, the rolling stock cirtiotehas to be adjusted to the rescheduled
timetable. This can be done using the aforementioescheduling actions (e.g. cancelling a train
run for which no rolling stock is available). Addmally, the following complex rescheduling
actions to create a feasible rolling stock ciraalaare:

17) Cancel an entire train line during a disruptiorg agrinsert the trains while assigning the

correct rolling stock units to every train run afiiee disruption.

18) Exchange train units between trains at turn-arciations.

19) Couple or de-couple train units to a train in oreget the correct amount of seats.

20) Insert an empty run in order to create a feasiitailation of rolling stock.

In practice, a lot of different combinations offfimcontrol actions and rescheduling actions are
applied in order to optimize the rail traffic anélke the process more smoothly.

Dispatching actions in rail traffic management 19

3.5 Review on online dispatching

After the discussion of different categories ofpdiching actions in the previous sections, the
guestion remains: which (combinations of) dispaighactions have to be applied in order to
solve conflicts in an optimal way? During the ldetades, research has been carried out to find
methods for answering this question in practicehis section, some results with relevance for
this project will be reviewed.

3.5.1 Modelling rail traffic using blocking time di agrams

A straightforward way of modelling the rail traffinakes use of blocking time diagrams, which
has been extensively described in the GermantliteraOn lines where train separation in block
distance is used, the track is divided in blockisas which may be exclusively occupied by one
train [12]. A blocking time diagram is a graphicapresentation of the blocking times of block
sections due to train traffic, enabling easy deaadf conflicts and their solutions. Note thatsthi
technique can also be used in combination with modafety and signalling systems using
moving blocks, such as ECTS level 3.

A method which makes use of a detailed calculatfdniocking times for detecting conflicts is
proposed by Jacobs [9]. Conflicts detected by ailéelt calculation of running times in which
specific characteristics of each train in the nekware taken into account, are solved by locally
rescheduling conflicting trains in such a way tiat propagated delays are as small as possible.
In case of different priorities of trains, the travith the lowest priority is postponed.

DisKon [8] is a system which is currently in deyaheent in Germany. DisKon is able to detect
and solve conflicts on a railway track. The traffituation and the calculated dispatching actions
are graphically displayed using blocking time dags. The system is aimed at handling one
railway line, so a focus on network level would méfaat the network has to be split up in several
railway lines. The dispatching actions used fovisg conflicts are: changing the route of a train,
changing a scheduled overtaking station, plannitigaestops, cancelling a train or cancelling
transfer connections.

3.5.2 Creating a model using graphs

Modelling the rail traffic system as a system adqasses and events can yield powerful
algorithms for real-time conflict detection andalesgion. Such a system can be visualized using
an alternative graph or a Petri net, or more sjpadly, a timed event graph.

D’Ariano et al. [5] use an alternative graph moidelvhich sets of alternative arcs represent the
possibilities for rescheduling the train trafficavptions. From the graph, boundary conditions for
train movements can be derived, which can therskd tor conflict detection and resolution. A
branch-and-bound algorithm is used to calculatepmal solution to solve conflicts.
Furthermore, speed profiles of the trains in thelehare adjusted according to actual signal
aspects to make the conflict detection and resmiutiore accurate. The system works on the
level of a dispatching area (i.e. the area thabrdrolled by one dispatcher).

Another description of the alternative graph mame be found in Mazzarello et al. [11], where
the alternative graph model is used to predictsatde conflicts in a case study at the Dutch
Schiphol railway line and tested in a pilot for nmakthe train traffic on the railway lines near
Lage Zwaluwe more fluently. The latter is done bynmunicating speed advices to train
engineers. However, the sequence order of traitkerailway lines remains the same, so no
specific modelling system as discussed in thisishesieeded to represent this.

Dispatching actions in rail traffic management 20

3.5.3 Methods using integer programming

Aside from rail traffic models using blocking tindéagrams or graphs, a great variety of other
ways for solving conflicts in real time has beeogwsed. Some different strategies will be
shortly reviewed in this section.

Tornquist [13] proposes a heuristic method for sgh\conflicts by assigning new timetable paths
(i.e. time-distance paths) to all trains, independ® which tracks were originally assigned in the
timetable. In some cases, the order of trainsanged as well, as delayed trains can be allowed
to stand back (i.e. wait on a siding track) forumber of other trains. A case study indicated that
a planning horizon of 60 minutes is sufficient &mhieving solutions which are good on the
longer-term.

Adenso-Diaz et al. [1] present a method in whi@htthffic system is modelled using integer
programming in order to calculate optimal reschieguactions in case of disruptions affecting
the train circulation. The rescheduling actionssidered here are: 1) cancelling the affected
service, in which case the effects on followingvaess of the same unit have to be calculated, 2)
sending another unit to carry out the service. Ariséic procedure for reducing the solutions
space is presented.

3.5.4 Max-plus models with control possibilities

Max-plus algebra is a powerful tool to calculatéagigoropagation. However, only few
publications are known in which max-plus algebraded for calculating the impact of railway
rescheduling measures on network level. Van demB&de Schutter [3] describe a way of
modelling discrete event systems in which contotibais are possible using a switching max-
plus linear system. They allow the system to ogedratdifferent modes, whereby each mode can
refer to a certain set of train orders and transé@nections. Goverde [6] uses max-plus algebra
to calculate the consequences of breaking a tnaocsfmection with regard to waiting times for
passengers.

3.6 Conclusion

A dispatching action is an intervention in the tedfffic system with the purpose of solving a
conflict between train runs, thereby aimed at redypdelays and their propagation. Dispatching
actions can be divided into two groupgffic controlactions are dispatching actions in which the
line routes and sequence orders of trains are aiagd, while byescheduling actionthe line
routes and sequence orders of trains are changed.

During the last decades, research has been catrted find ways for improving dispatching
procedures during disruptions in railway operatidvainly, models using blocking time theory,
graph theory or linear programming are used to diptimal dispatching actions.

Although most research on online rescheduling @ihsystems that can operate in one
dispatching area, one line of even one stationgstatays and dispatching actions can have
network-wide effects. However, no online tool atdealculate the network-wide effectiveness of
dispatching actions in railway systems has beerldped yet.

Timed event graphs for railway operations 21

4 Timed event graphs for railway operations

4.1 Introduction

How can railway operations, with all their interéepencies and constraints in space and time, be
modelled? The scheduled max-plus linear systerits graphical equivalent in the form of a
timed event graph, possesses properties makingatvarful tool to do this. In this chapter, the
concept of timed event graphs will be explainecgsin example of two trains crossing each
other at a station.

The outline is as follows: In section 4.2 will bepéained why timed event graphs are used
instead of the mathematical representation usingphss equations. In section 4.3 will be
explained how railway operations are broken dovim processes and events, which is used in
section 4.4 to explain the basic concept of timezheégraphs. How a timed event graph can be
used to model a railway system is shown in secibnAs stated in section 2.2, the periodic
model of a railway system cannot be used to repteispatching actions, which will be shown
in section 4.6. This section will deal with a macktion of the timed event graph such that the
model is no longer periodic. This enables the imaetation of dispatching actions. Section 4.7
is dedicated to the limitations of the presentedi@hocSection 4.8 contains the conclusion of this
chapter.

4.2 Why use timed event graphs?

A timed event graph and a max-plus model are etpnvén the sense that a timed event graph
can be translated directly into a max-plus moded, wce versa. Consequently, two approaches
for implementing dispatching actions in the modle, goal of this project, are possible. One
approach is to represent the railway system asedtievent graph. When doing so, dispatching
actions can be implemented by changing the timedteyraph accordingly. The other approach
involves representing the railway system as a sysfemax-plus equations. Dispatching actions
are in that case implemented by changing the &ffleelements of the max-plus matrix
accordingly.
For the development of the algorithms for this aesk project, the representation using timed
event graphs is used, for the following reasons:
* Visualising the system using timed event grapheginsight in the behaviour of the
system.
» Implications of dispatching actions on the model taanslated more easily to timed event
graphs then to systems of max-plus equations.
» Algorithms handling timed event graphs are transpiain the sense that it is clear to see
what they are doing and why they are doing that.
It should be remarked that the choice for modelthysystem as a timed event graph does not
necessarily have implications for later compatipiiith algorithms based on pure max-plus
theory. Since a max-plus matrix of a railway systemsparse, it is often represented as a list of
the nonzero elements. Such a list principally megdhe arclist representation used for storing
timed event graphs in this project, which will begented in the subsequent chapters. Therefore
the timed event graph representation can meretedmrded as a temporary stage in the
algorithm development process. The final resuthoalel with the ability to implement
dispatching actions, remains the same and carabslated back to max-plus algebra when
necessary. A way of representing dispatching astaaa switching max-plus linear system is
shown in section 6.6.

Timed event graphs for railway operations 22

4.3 Railway operations broken down into processesa nd events

In Figure 4.1, a small example network with twartsas shown. Train 1 is scheduled to go from
station A to station C. After the departure ofriréj train 2 is scheduled to go to station B. s th
example only the shown part of the railway netwisrkonsidered and the possible processes and
events before the departures of trains 1 and 2rarted. The interlocking routes of trains 1 and

2 are crossing each other when leaving statiord2an

Station A
Train 1 Station B
===
N
A NN >
: N
Train 2 Crossing interlocking
routes

4

Station C

Figure4.1 Small example network with crossing train movements

In order to understand the concept of timed eveaglts, one has to realize that railway
operations can be broken down into a sgirotesses pwvhich take a certain amount of time to
be completed, and a setefents xwhich form the beginning or the end of a process.

To illustrate this, three processes and four evieais the example of Figure 4.1 are identified in
Table 4.1 and Table 4.2 respectively. Note thaeality this example can be part of a much
bigger network of events and processes, but fosalke of simplicity only three processes and
four events will be taken into account.

Table4.1 Three processes from the example.

Process Description
1 Train 1 runs from Ato C
2 Train 2 waits until train 1 has left the station.
3 Train 2 runs from Ato B

Table4.2 Four event from the example.

Event number Description

1 Departure of train 1 from A
2 Arrival of train 1 at C
3 Departure of train 2 from A
4 Arrival of train 2 at B

All identified processes and events are interrelatgh each other. In the next section will be
explained how this can be modelled using graphrtheo

Timed event graphs for railway operations 23

4.4 Basic concepts of timed event graphs

In this section, the example of section 4.3 willttaslated to a timed event graph, while
simultaneously the basic concepts of timed eveaplgs will be explained.

4.4.1 Places and transitions representing processes and events

Timed event graphs are bipartite directed graphistwlorm a subclass of Petri nets. This means
that a timed event graph consists of a set of placé a set of transitions, which are connected by
arcs. Graphically, the places are representedrblesiand the transitions by rectangles, or bars.
In a timed event graph, each place has exactlyrmuening arc from a transition and one
outgoing arc to a transition. As a consequencd) plce together with its incoming arc and its
outgoing arc can be interpreted is an arc itselfinecting two transitions directly, as can be seen
in Figure 4.2. Therefore, the example describeskation 4.3 consists of four transitions.. X,
connected by three arts..ts.

When railway operations are modelled, the transitio the graph represemtentsand the arcs
represenprocessegsee section 4.3 for an explanatioregéntsandprocesseks Since processes
are obviously time-consuming (e.g. running timeakssn two stations), each arm the timed
event graph has a minimum time delagttached to it. In the literature, this time dekpften
referred to as tharc weightor holding time

transition transition
(= event) (= event)

1Ol

Arc (= process)
Figure4.2 Graphical representation of transitions and arcs.

Recall the example from section 4.3. The proceasdsvents identified in the example can be
translated to sets of transitions and arcs. Thdtieg timed event graph is shown in Figure 4.3.
Here the arc weigltt represents the running time from A tot&xepresents the waiting time for
train 2 until train 1 has left the crossing antepresents the running time from A to B.

X1 h X?
5)
X3 3 X4

Figure4.3 Timed event graph of example network.

Timed event graphs for railway operations 24

How can one tell from a timed event graph whiclcpeses are active, and which are not? In
other words: what is the actual state of the sy8t&his is represented by thearkingof the arcs,
which will be explained in the next section.

4.4.2 Markings representing the actual state of the system

The marking of an arc is represented by drawingpts (tokens) in the circle which stands for
placep;. A token in a place represents an active prod¥sen modelling of railway operations, a
token in placey, means that a train is actually performing progesd the represented time
instant. In Figure 4.3 no tokens are present atvdilich means that none of the three drawn
processes is active. This corresponds to the mituat Figure 4.1, where no train has departed
yet. In Figure 4.4 the same timed event graphasvehbut in this case the arcs 1 and 2 are
marked. This means that process 1 and processaete, which represents train 1 running from
Ato C, and train 2 waiting for the crossing to gietar.

X1 1 X2
5
X3 I3 X4

Figure4.4 Timed event graph with marked arcs.

Firing rule
After the departure of train 1 from station A, tr& has to wait long enough for the crossing to
get clear. To model this, a correct timing and sege of the events is guaranteed by the
following two stegfiring rule, which each event has to obey:
i. Atransition x issnabledf each incoming place contains a token and tremeisited
holding times have elapsed.
ii. Afiring of an enabled transition x removes one token fagh incoming place and adds
one token to each outgoing place.

The firing rule enables tokens to move over thegdathereby reflecting the dynamic behaviour
of the system. An example of an event firing isvghdan Figure 4.5.

et

Figure4.5 Timed event graph after firing event x

The basic concepts described above can be useddel entire railway networks with all their
interdependencies in time. In the next section bélldiscussed how all these interdependencies
can be included in the model.

Timed event graphs for railway operations 25

4.5 Modelling a railway network

A timed event graph is constructed in three phasbkigh reflect the different types of
dependencies existing between the events in aapihgtwork. In this section will be explained
how all dependencies between train movements camodelled using a timed event graph.

4.5.1 Modelling all train lines

In the first stage of constructing a timed eveiipdy, the train lines themselves are constructed.
Obviously, a train cannot arrive at a station befbhas departed from the preceding station. This
is modelled by a string of arcs, connecting allseguent events a train line consists of. The arc
weights between two stations reflect the minimunming time (i.e. the shortest time in which

the train can cover the distance between the sgtimt thescheduledunning time). Arcs

running from an arrival to a departure event reftee dwell time. An example of this is shown in
Figure 4.6, where the timed event graph of a fiaafrom station A to station C, with an
intermediate stop in station B is shown. When mfiae is running times per hour, the

described procedure is repeatéeiines.

Station A Station B Station C
il 6 :Icz b3 X3 By Xy
Departure travel time Arrival dwell time Departure travel time Arrival

Figure4.6 Timed event graph of an example train line.

4.5.2 Modelling infrastructure constraints

All trains sharing the same infrastructure aregxtad from collisions by signalling and safety
systems [12]. These systems make sure that a mimispace separation between trains using the
same infrastructure is assured. The space seperatie translated into time separations so that
they can be modelled using a timed event grapthdrsecond stage of the construction of a
timed event graph, these time separations, caifeastructure constraints, are modelled. Two
types of infrastructure constraints exist: heada@ystraints and hindrance constraints.

Before headway constraints and hindrance constranetdescribed, the modelling of stations as
timetable points will be explained.

M odelling with timetable points
Each location where trains can interact with eablerovia headway or hindrance constraints is
defined as a timetable point. This involves théofeing parts of a railway network:

« all stations,

» alljunctions.
Block signals, only contributing to the space sapan of trains on the open track, are not
modelled. Since this model is constructed withgheose of studying the arrival, departure and
through times at stations, the train movementderopen track are insignificant. Feasibility at
the open track and a fixed ordering of the traimshe open track and at timetable points are
ensured by considering the time separations die¢lyenning and at the end of the open track [7].

Timed event graphs for railway operations 26

All timetable points are modelled as ‘black boxesganing that the topology of the tracks and
the platforms in the station itself is not consetkerAn example is shown in Figure 4.7, where a
schematized double track line with a platform bemthe tracks is shown (one railway track is
represented by one line). The translation of tt@ien to a timetable point is also depicted. Point
where trains can enter or leave the station ateccai/out-points (or short: |O-points).

10-point 1 10-point 3

Station S Timetable point T
opont2| 10-point 4

Figure4.7 Translation of a station S into timetable padint

Headway constraints

Headway constraints ensure the time spacing betwaigs running behind each other on the
same railway track. They are modelled by arcs betveeibsequent departure or arrival events at
the same 10-point of a station. Hence the followdledjnition:

A headway constraint arc connects two events ogwyat the same |0-point, thereby
originating at the preceding event and ending atsbccessive event according to the schedule.

An example is shown in Figure 4.8, where threetliaies are running from station A to station B
(the black arcs). In order to model the requiretktspacing between the trains, the red arcs have
been added to ensure the minimal headway thmes

Station A Station B

Departures Arrivals
running times

Figure4.8 Example of headway constraints at two stations.ideway constraints are coloured red
and marked by their headway times h.

In an hourly timetable the headway constraints haferm cycles in order to allow the same
events to continue being fired in the next periddsexample of such a cycle, including its
marking (see section 4.4.2 for an explanatiomafking, is shown in Figure 4.9. Note that with
the shown markings, would have to occur before.

Timed event graphs for railway operations 27

Station A Station B

Departures Arrivals Departures
running times dwell times

X1 X BY)

hsa @ b hos
L/
Ix : I X : I X

4 5
Figure4.9 Headway constraints at the entrance of staBdior an hourly timetable with two lines.

Hindrance constraints

Whereas headway constraints ensure time sepatmtaren events using the same 10-points of
a station, hindrance constraints are used to nwmdlicts between events usiddferentlO-

points. Interlocking routes using different IO-pi@ircan conflict with each other when they use
the same infrastructure on their route throughtithetable point (e.g. when crossing each other).
An example is shown in Figure 4.10. Although tlans use different I0-points, a time
separation has to be included in the model bedhestains cannot depart at the same time. Note
that for modelling this, it has to be known whettter interlocking routs cross before of after the
platform, since this yields different hindrance staints.

Station S Timetable point T
Line 1 oompmmeme, — — — ~ 10-point 1
N —
BN A
\
\ :l N 10-point4 ¢ ute of line 2
Linez === ——————— = 10-point 2 \ _
\\ Route conflict
N Route of line 1
10-point 3

Figure4.10 Hindrance conflict between departures of tries.

As the interlocking route of trains through timd&points is not modelled in this project, it is

assumed that every train line has its own fixedinguthrough the timetable point. Therefore it
can be stated that hindrance conflicts occur betweaflicting trainlines Hence, the following

definition describes hindrance conflicts as implated in this project:

A hindrance conflict arc connects two events dédéht, conflicting train lines, occurring at
different 10-points but at the same timetable pdimtreby originating at the preceding event and
ending at the successive event according to thedsdé.

Often, one train line conflicts with two or morénet train lines. To assure a correct modelling of
all time separations caused by hindrance conflgash event should be connected by hindrance
arcs to the events correspondingliotrain lines it is conflicting with. This means thiaa
movement of train liné causes hindrance toother train linesn outgoing hindrance arcs have
to be added to the timed event graph for the cpording event of this train line. An example is
shown in Figure 4.11, where three train lines aleeduled to depart in the order 1, 2, 3. The
departure of line 1 is hindering the two other $ifgy crossing them while departing from station
S which is why two hindrance constraint arcs oraginfrom the departure event of line 1.

Note that in a periodic timetable, this impliestttiree departure of line 1 hasncoming

hindrance arcs as well.

Timed event graphs for railway operations 28

Station S
. SR

Line 1 | \\ Departure
0 \ of Line 2

Line 2 — o — ~» Departure

| N of Line 1

Line 3 = _\> Departure
\{ of Line 3

Figure4.11 Example of hindrance arcs. Line 1 is hindering ttieer train lines. The corresponding
hindrance arcs are shown on the right.

Since hindrance constraint arcs have to run inditeetion of the scheduled order of events, this
order has to be known for all events at a timetpblat when generating hindrance arcs. The
timetable vectod cannot be used for this purpose, since the schddent times only represent
the correct order of all events in theginal timetable. The scheduled order of events may be
changed by dispatching actions, e.g. when traiestake each other, making the scheduled order
of events in the timed event graph differ from t¢inéer in the timetable. This means that the order
of events occurring at the same timetable pointh&® stored separately, which is implemented
by using a linked list. For each eventhe preceding and the successive event are stoseth

a linked list. The system with linked lists is chodor its low complexity and its high flexibility,
since only a few entries of the linked list havdéochanged when the scheduled order of events
is changed.

Note that the presence of hindrance arcs in thedievent graph does not necessarily imply that
the corresponding hindrance conflict will actuadlycur in the railway system. Usually, the time
separation between conflicting train movementseoanted for in the timetable and the trains
are scheduled in such a way that no actual cosftictur. However, in case of delays and/or
dispatching actions the hindrance constraint aaosbecome significant and conflicts can occur.

Redundant constraints are maintained

When including hindrance constraints in the modealescribed above, some infrastructure
constraints in the model can become redundant.natcaint is called redundant when the time
separation it represents is already assured by otimstraints, an example of which is shown in
Figure 4.12. In this example, evertsandxs necessarily have a time separation of 6 minutes vi
the constraints connecting eveqtThis makes the constraint betwegmndx; redundant. In a
real railway system, this situation would for exdenpccur when two train movements in the
same direction are separated by a third, crossitiig movement. The headway constraint
between the two trains in the same direction isljyiko become redundant since sufficient time
separation is already assured by the crossingrmairement.

Redundant constraint

Figure4.12 Example of a redundant infrastructure constraint

Timed event graphs for railway operations 29

Redundant headway arcs are maintained in the téwendt graph, although they are irrelevant for
the dynamic behaviour of the model. In this wapdnance arcs and headway arcs are treated as
two separate groups without affecting each othtepslogy in the timed event graph. This has
been done for the following reasons:

* Hindrance and headway arcs can be generated wikhoutledge about the topology of
the timed event graph. This yields quick and singid@rithms for implementing
dispatching actions.

* The topology of headway arcs in the timed evenplyigontains information about the
order in which the trains are running along thekravhich is used by some algorithms.

* When events are postponed, redundant headway aimtisttan become active again.
When redundant headway arcs are kept in the timextgraph, the correct time
separation between trains is always assured, diso wispatching actions changing the
timed event graph are carried out.

4.5.3 Modelling synchronization constraints

Two types of synchronization constraints are digtished: passenger transfers and rolling stock
connections. In the literature, this is sometineerred to as soft synchronization constraints (as
they can be broken without implications for theestilie) and hard synchronization constraints
respectively (since a connecting train trip canpgdynmot depatrt if its rolling stock has not arrived

yet).

Passenger transfers

At many stations, trains are waiting for each otbegnable passenger transfers. In tA@ase

of the construction of a timed event graph, thesmections are modelled. This is done by
connecting the relevant events with an arc, wheseatc weight is the transfer time. An example
is shown in Figure 4.13, where the train at platf@ is the feeding train, while at platform 1 the
connecting train is scheduled. The red arc, reptesgthe synchronization constraint, ensures
that the departure of the connecting line at ptatft can take place only after the arrival of the
feeder line, after the transfer timgchonizaiorNas elapsed.

Station A, platform 2

Departure Arrival Departure Arrival

X{ running time Xy dwell time X3 running time Xy

O l synchronization
AN

X5 X6 M7 X3
running time dwell time running time
Departure Arrival Departure Arrival

Station A, platform 1

Figure4.13 Example of a transfer constraint between tvains.

Timed event graphs for railway operations 30

Rolling stock circulation

The rolling stock circulation is modelled in thisige in the same manner. In the case of rolling
stock circulation, the departure of a train line kawait for the arrival of the previous traindin

for which the same rolling stock is used. In mases this will correspond to a turn at the end of
atrain line.

4.5.4 Determining the initial marking

In order to get a working timed event graph, theking has to be set correctly. Recall from
section 4.4.2 that the marking represents the ptasate of the system. When constructing a
timed event graph, the state of the systetrra (the beginning of a period) is calculated. The
marking of the arcs at the reference time ingtan® is called thénitial marking. The initial

marking of an arci(j) can be calculated with the following formula, \m{éﬂ denotes the least
integer not smaller than[1R (i.e.x is rounded up):

L t; J
_|g+% -9 j
in which:
Wi = initial marking of arci(j),
tj = scheduled process time of arg),
d; = scheduled time of evept
d; = scheduled time of event
T = cycle time (60 minutes in case of an hourly taixde).

4.6 Timed event graph without periods

4.6.1 Algorithms become complex when periodicity is maintained

Modelling a railway system using timed event gragbslescribed above is suitable for studying
periodic timetables (e.g. an hourly timetable) thig becomes problematic when dispatching
actions have to be modelled. In particular, chagdjfire sequence order such thatkitle
occurrence of an event is postponed after occuederit of another event is difficult, which will
be illustrated in the following example:

Consider Figure 4.14, where postponing evetd the next period would lead to the situatiort tha
event 1 is not present in period 1 at all, whileéquk2 contains the same event twice. This would
be no problem if the scheduled order of events mesrfaxed, but events in period 2 may precede
events in period 1 when the order is changed, semeneral, occurrenda 1 of an event may
precede thé&-th occurrence of such an event. This is problesrgtice arcs have to run to
previous periods, which is difficult to implemefithie problem is solved in this project by
creating an acyclic model out of a periodic modalich will be explained in the next section.

Timed event graphs for railway operations 31

Identical timetable each hour Event 1 postponed
to next period
9:00 9:00
' Period 1 Period 1
17,
1i,(1) 17,1
10:00 . 10:00
17,(1)
Period 2 Period 2
11,2 14,2
1,2) 17,2

Figure4.14 Postponing an event to the next period, leatlinpe situation that an event precedes an
event from the previous period.

4.6.2 Unfolding periodic events during the day

The problems concerning the implementation of didpag actions within a periodic
environment have been solved by giving each pariedént a unique number for each period
over the entire day. This can be described in t&pss shown in Figure 4.15. As input, the
periodic model is used. In the first step, eachneigestored separately for each period, implying
that each event is identified with its event numbamd its period numbée This step can be
visualised as ‘unfolding’ the periodic events toque eventsi(k). The purpose of the second
step is to prevent the algorithms from getting wassarily complicated. In this step, each event
(i, k) gets a unigue event number

same event stored

same event separately for unique event
occurs periodically each period numbers

) i1)

k=1 I /(1) I () I I

k=2 1@ 1 @2 1 i

k=3 i 1 3 RS

i(k) = event i (i,k) = event i with unique events i modelled
occurring in period k period k stored as attribute during the day

Figure4.15 Unfolding periodic events to obtain unique aseaturing the day, shown as an example of
three periods.

The model used to perform the calculations can bleusgarded as one big period. However, the
periodicity of the hourly timetable is still presen the model, as events of the same train line

Timed event graphs for railway operations 32

occur periodically. This property is important the generation of hindrance constraints, as will
be described in section 5.3.4.
Using a timed event graph without periods has se¢edfects on the properties of the model, and
thus on the algorithms. The implementation of desyiswithout periods is motivated by the
following advantages of such a system:
» Postponing an event to the next hour can be impieedewithout ambiguous
implications such as arcs running to a precedimgpge
* Changes in the timetable during the day (e.qg. stiiffferences in running times and
stopping patterns of the first and last train tgpshe day) can be modelled easily.
* The algorithms become less complex due to negbpgkmiods.
» The graph becomes acyclic for which fast criticathpalgorithms exist.

On the other hand, discarding periodicity comeé aihegative aspect too. A periodic max-plus
model has structural properties which can be etgadiy advanced optimization algorithms. An
example is the critical path, from which the minirogcle time can be derived. This property can
be used as a first indication of the stability eftain dispatching actions. However, advanced
optimization algorithms are a subject beyond tlepeaf this research project, which is why
periodicity can be discarded without implications this research project.

4.6.3 Methods for implementing the system without p eriods

A non-periodic (acyclic) model as described inphevious section will be used as input for the
algorithms presented in this thesis. For an implgaten using a periodic model, several
methods to create an acyclic system can be adopheele of them will be explained briefly in
this section. The first method is used in the rewai of this thesis.

1. Create anon-periodic moddl in advance

This method involves defining each event in advaatter which the timed event graph is
generated. After generation, this timed event gighbe used to carry out the required
calculations. This method is suitable for creasngall hypothetical networks and for offline use,
and is therefore used in this project to develaptast the algorithms. Since the non-periodic
model is created in advance, a non-periodic ligvants is considered as input in chapter 5 when
generating the timed event graph.

2. Create a non-periodic model from a cyclic timed event graph

When a cyclic timed event graph is available, te@s described in section 4.6.2 as the
‘unfolding’ process, can be adopted to create apwiodic model for an entire day. This method
is useful to make offline calculations with disgatg actions if a cyclic timed event graph is
already available, for instance when dispatchirigpas are to be implemented in software like
PETER [7].

3. Create anon-periodic model for real time use

A way to implement the non-periodic model in a @@k environment is depicted in Figure 4.16.
Within the planning horizon, dispatching actionsén$o be evaluated in a model without periods,
for the reasons described in section 4.6.2. Theasaonstructed from one period which is
stored separately. During the day, periods aredatllthe model in order to maintain the desired
planning horizon. At the same time, the periodéigyn the past can be deleted from the model
for the obvious reason that dispatching actionsieabe carried out for events that occurred in
the past, and therefore do not need evaluatiogoOrfse, the deleted parts of the model can be

Timed event graphs for railway operations 33

stored separately for later analysis, as they aotha railway operations as actually carried out
including the dispatching actions.

Past | Planning horizon
events laying model consisting 1 period of
in the past of several periods hourly timetable
are deleted

Figure4.16 Model consisting of several periods.

4.7 Limitations of the model

Although the model described above allows a detagpresentation of large scale railway
networks with great computational power, it has edimitations too. The most important
limitations of the model will be reviewed in thiection.

Interlocking routesthrough stations are not modelled

By modelling all stations as timetable points, wggibility is left to include the routings through
stations as a variable in the optimization proc€hks.routings are regarded as a fixed property of
a train line. The disadvantage of this is that alishing actions regarding the interlocking routes
cannot be modelled. However, optimizing the inteking routes at bigger stations is very
complex and adding this possibility to the optiniga framework presented in this thesis is
considered a subject beyond the main goal of tlugepet.

Minimal running times are fixed

The minimal running timesfor each train run are included as a fixed prgpefthe
corresponding arc (the arc weight) in the modelweder, a fixed minimal running time is
sometimes inconsistent with the real situation. <iber for example Figure 4.17, where the time-
distance curve of a hindered train is shown. Inntioelel, the waiting time for the signal is
included via headway and hindrance constraintstiauadditional time loss due to the
acceleration of the train is not included.

Timed event graphs for railway operations 34

Waiting time Time loss due
for signal to accelaration

Timetable
path /
/

Distance s —

Location /

of signal /
Timet —

Figure4.17 Running time increase due to acceleration aftettiwgifor a signal.

This time loss depends on many factors, such aoHtirg stock, weather, personal driving style
of the train driver, whether the train came toladtop or not, etc., and can only be included in
the model with complex calculations of the traimagics. A practical suggestion for a less
complex implementation of this is to include anraxienalty for dispatching actions causing a
through train to be hindered, such that this pgredtounts for the running time increase of this
train while evaluating such a dispatching action.

Block or track occupation isnot modelled explicitly

Modelling the headway constraints as describetisiadhapter leads to a clear and
comprehensive model. However, a limitation of thés/ of modelling the time separation
between trains is that the actual occupation ajck by a train is not modelled explicitly. In case
of delays, this can sometimes lead to the situatidhe model that two trains seem to occupy the
same block.

Although this looks like a big limitation of the mel, the influence on the outcomes of the delay
propagation algorithm (see section 5.4) is not seadly big. Since the minimal headways are
always assured via the appropriate constraintsa@mrtodel, conflicts between trains in case of
delays will become apparent correctly by usingdélkay propagation algorithm. Therefore, this
limitation is no problem for the analysis and cohpurposes for which the model is used in this
project. Moreover, the question actually relevarthis context is whether this limitation
influences the outcome of the optimization algentwhen calculating the optimal combinations
of dispatching actions. In the remainder of thissik this is assumed highly unlikely. An
investigation of the exact influence of this lintiten on the algorithms ranges beyond the scope
of this project. It is recommended for all futuesearch on this subject to carefully consider the
level of detail of the model in relation with tharpose it is used for, as has been done in this
section.

A much more detailed model in which block and trackupation is modelled indeed, intended
for calculating optimal dispatching actions on dergbarts of a railway network, such as a station
or a dispatching area, is proposed in [5].

Deter ministic running times ar e used

The last limitation discussed here concerns thetfedt only deterministic (i.e. not stochastic)
running times are used in this model. In realityg minimal running time is never the same since
it depends on many factors not accounted for imbdel. Some of these factors can be
controlled, for example by communicating advisedesfs to train drivers, which can lead to the
situation that the running times in reality arehtygdeterministic indeed. However, the
introduction of a stochastic component of the rogrtimes in the model can lead to more
realistic results when the running times realizeckility are partly stochastic.

Timed event graphs for railway operations 35

4.8 Conclusion

Railway systems modelled as discrete event systambe represented by systems of max-plus
equations, which can be visualized as timed eveaple. For the development of algorithms in
this thesis, the timed event graph representatibio@/used. This chapter explained the concept
of timed event graphs. Railway operations are bral@wvn into processes and events, which are
represented in a timed event graph by arcs (plarebevents (transitions) respectively.
Subsequently, train lines are modelled as strifiggaresses and events.

In order to model the correct infrastructure camiats, timetable points are used to model stations
as a black box where trains can enter and exiQApoints. The infrastructure constraints are
modelled as arcs between events of train linegubkid same 10-points (in case of headway
constraints) or using conflicting interlocking reat(in case of hindrance constraints).
Synchronization constraints ensure that traineénnhodel wait for transfer connections and that
the rolling stock circulation is modelled correctly

To evaluate the impact of dispatching actions pigodicity of the model is abandoned, so one
day is regarded as one big period.

Data structure for timed event graphs 36

5 Data structure for timed event graphs

5.1 Introduction

A suitable data structure is essential for the graent of efficient algorithms. In this project,
the data structure means: the way in which thedieeent graph is stored in the computer.
Since the system presented in this thesis is aaneadsisting the dispatcher while deciding which
dispatching actions to carry out, calculations havee performed quickly (i.e. the system has to
operate in real time).
Recall the explanation of timed event graphs fréwapter 4. The data structure has to be suitable
for performing the following operations efficiently

* Finding all arcs starting at evenfi.e. all arcs with taii).

* Finding all arcs ending at evenfi.e. all arcs with head.

» Deleting an arc from the timed event graph.

* Inserting an arc in the timed event graph.
An algorithm is stated to be efficient if the timi¢akes to perform one of the above operations is
independent of the size of the model (i.e. the sfzbe modelled railway network). This can be
achieved using a data structure with adjacency, hghich is why this data structure has been
implemented in the algorithms presented in thisithe

The goal of this chapter is to define and explhmused data structure and to introduce
algorithms using this data structure to calculagedelay propagation in the railway network and
the capacity consumption of a railway line. Thdioatis as follows: The variables making up the
model in the computer memory are introduced iniged.2, where the adjacency lists will be
explained as well. When the data structure is éefigection 5.3 describes how the model is
generated. Calculating the delay propagation im#te/ork is important for the evaluation of
dispatching actions. In section 5.4, a time effitidelay propagation algorithm using the
described data structure is presented. Anotheulgafameter when evaluating dispatching
actions is the capacity consumption. An algoritlmmdalculating this is presented in section 5.5.
The conclusion can be found in section 5.6.

5.2 Variables for storing and editing the timed eve nt graph

5.2.1 The matrix Event

The matrixEventcontains characteristic information of each eygasent in the model. Since
each event has to be stored separately, as exgpliaisection 4.6, one row of the matkxent
represents one unique event during the day. Hamceyent occurring times a day is present
times in theEventmatrix. For each event a row of the matriEventcontains the following
objects:

Eventx) = (TN, LN, TTP, 10, type P, N)

where:
TN = unique train number of a train trip,
LN = line number,

TTP =timetable point,
10 = |O-point,

Data structure for timed event graphs 37

type = type of event,
P = preceding event scheduledraiP (linked list),
N = next event scheduled BT P (linked list).

The variablaypein de matrixEventcan have the following values:
1 = arrival,

2 = departure,

3 = arrival at the end of train run,

4 = departure at the start of a train run.

The purpose of thEventmatrix is twofold. Most importantly, it is used bye algorithms
presented in this thesis to identify characteisstitevents relevant for applying dispatching
actions correctly. The second purpose is to creatigut and give a meaning to it, for instance by
relating delays to the corresponding train numbers.
Why storing a line number when each train hasritgue train number anyway? Although an
acyclic timed event graph is used, periodicityhef timetable is assumed (see section 4.6). Each
train in the network can be assigned to a grouggafvalent trains having the same properties.
Each of those groups has a unique line nurabefThis property is used by the algorithms to
identify trains which have the same:

* interlocking route,

» stopping pattern,

* line route through the railway network.
The first property is used in the optimization geg to derive hindrance constraints when
dispatching actions are applied (see section $08.the algorithm generating hindrance
constraints). The second and third properties se€ to calculate the delay of travellers who have
to wait for the next train of the same type whegirtlrain is cancelled.

5.2.2 The arclist

The interdependencies between events are reprddsnsecs forming a timed event graph, as
explained in chapter 4. This is implemented byistpall arcs in a list, called. The arclist is
stored as a matrix of which each rowepresents one arc and contains the following tdijec

Alr) = (.1, t typg

in which:

] = head event (i.e. the event to which the aramsing),

[= tail event (i.e. the event from which the arngimates),
t = holding time of the arc,

type = activity type.

The variablaypecan have the following values:
1 = running time arc,

2 = dwell time arc,

3 = headway arc,

4 = turning arc,

5 = hindrance arc,

6 = through arc.

Data structure for timed event graphs 38

Note that the marking of the arcs is not preserd.H&ince the periodic events of the timetable are
modelled and stored separately during one daydldetl’, see section 4.6), the model has
become acyclic. Consequently, markings loose thegining, as they represent the possibility
that arcs can run from one period to another.

5.2.3 The timetable vector d
The timetable vectal contains the times at which each everst scheduled to occur. So:

d(x) = the scheduled event time of event

The event times are expressed in minutes stamimgy Mmidnight, so for example 6:40 hours
becomes 650 + 40 = 400 minutes. The timetable vector iardgd as input for the algorithms
presented in this thesis.

The timetable vector is not changed when dispatchations are carried out. The dispatching
actions for which algorithms will be developed e thext chapter are aimed at changing the
schedulearder of events. The underlying target is to minimize tielays in the network

resulting from a given set of initial delays. Bgaeding the timetable vector as a constant, it can
be used to calculate the delays of all eventsam#twork as it corresponds to the original
timetable.

5.2.4 Adjacency lists

The algorithms developed in this research projexctapable of exploring the timed event graph
without scanning the entire arclist for each operatThis capability is obtained by storing
adjacency lists together with the arclist. For eadnti two node-arc adjacency lists are
generated. The first list contains all arcgtarting at everit whereas the second list contains all
arcsk ending at everit

For an illustration of this, consider the examdla cimed event graph shown in

Figure 5.1. This graph consists of 6 events anbégsses (the arcs). The arclist representing this
is shown in Figure 5.2. For the sake of a cleangta, the holding times and activity types of the
arcs are omitted in this example. The adjacenty tislonging to this arclist are shown in the
figure as well. Now suppose that an algorithm needsnow’ which arcs have their ending (i.e.
their head) at event 3. This can be found by lagkinthe 3 row of the adjacency list for the
heads. As can be seen in the figure, this row aunthe numbers 2, 5 and 0, which means that
the 2 and the B arc in the arclist point to event 3. A zero in #tBacency list means that no
(more) arcs start at the according event. The samdye done for the tails in the other adjacency
list.

3 6 tail i headj

104

Figure5.1 Example of a timed event graph.

Data structure for timed event graphs 39

Adjacency lists Adjacency lists Arclist
headg | tailsi
headg | arcsr — tailsi | arcsr —

! 1.]0 | 1)1 0 1.]2 1
2.1 0 2.1 2 0 2.3 2
3.12 5 0 3./3 0 3.6 3
4.10 4.1 4 0 4.5 4
514 0 5.5 0 513 5
6.3 0 6.0

Figure5.2 Adjacency lists and arclist of example.

As can be seen in the example, a lot of informagioout the structure of the graph can be
retrieved without scanning the entire arclist, vahieould obviously be very time consuming
when big graphs are concerned.

The adjacency lists are generated using Algorithimhich scans the entire arclist once, while
storing each row number in the corresponding ad@acést. The adjacency lists are unsorted,
hence the running time is linear and depends onuh#er of rows of A, which is denoted by
O(n) in the algorithms literature. For very big artdighis can become time consuming. This is
why the adjacency lists are created before themigdition process starts.

Algorithm 5.1 (ARCLIST2ADJ)

Input:
A = list of all arcs
Output:
Adjtail = adjacency lists containing arcs starting at exent
Adjhead = adjacency lists containing arcs ending at exent
1. m« highest event number occurringAn
2. Adjtail < zeros n) ; Adjhead«— zeros [n) ;
3. for each row of Ado
4. Adjtail (i,) — Adjtail (i,)uy r ; % store rownmher for tail event
5 Adjhead(j,) < Adjhead(j,) U r; % store row number fiead event
6. return Adjtail, Adjhead

Adjacency lists become useless if the arclist iglified in order to represent a dispatching action.
This problem is solved by keeping the adjacendy lip to date when modifying the arclist, for
which the algorithms presented in the next sectamaaised.

5.2.5 Deleting an arc

In order to keep the data structure working whééeting an arc from the timed event graph, the
routine DELARC has been developed. A key idea lzbthe DELARC algorithm is that the
remaining arcs are kept at their original locationthe arclist. This minimizes the number of
changes required to keep the adjacency lists datm as the adjacency lists contain pointers to
thelocationsof arcs in the arclist. Obviously, an empty romaéns in the arclist after deleting
an arc. The row numberof those empty rows are stored in the veElmptyso that these
locations can be used to construct new arcs whesessary. The pseudocode of the DELARC
routine is shown below.

Note that keeping the adjacency lists up to datenadeleting an arc is just a matter of removing
the pointers from the adjacency lists. This is ienpénted by moving the values from positions
beyond the deleted value one position ahead ingbtor, so that the last value remains zero. The

Data structure for timed event graphs 40

worst case running time of this algorithm thus dejseon the size of the biggest adjacency list.
However, when modelling railway networks, an eveting more than around 10 successor
events or preceding events will be extremely rare.

Algorithm 5.2 (DELARC)

Input:

A = list of all arcs

Adjhead = adjacency lists containing arcs starting at exent

Adjtail = adjacency lists containing arcs ending at exent

Empty = vector containing empty row numbers

r = row number of arc that will be deleted
Output:

A = updated list of all arcs

Adjtail = updated adjacency lists containing arcs stadtreyenix

Adjhead = updated adjacency lists containing arcs endimyamtx

Empty = updated vector containing empty row numbers
1. A(r)<[0000]; % replace arc by a row of zerog\nalist
2. Empty— Emptyy r; % add to vector of empty rows
3. adjheadj,) < adjheadj,) \r ; % remove poirkdrom adjacency lists
4. adjtail(i,) < adjtail(i;) \r ;

5.2.6 Inserting an arc

The routine ADDARC has been developed for inseréingrc into the arclist while keeping the
adjacency lists up to date. The new arc is inputHe algorithm, and is a vector of the same
format of the rows oA, so:

arc=(,i,t, type.
Algorithm 5.3 (ADDARC)
Input:

A = list of all arcs

Adjhead = adjacency lists containing arcs starting at exent

Adjtail = adjacency lists containing arcs ending at exent

Empty = vector containing empty row numbers

arc = arc that will be inserted
Output:

A = updated list of all arcs

Adjtail = updated adjacency lists containing arcs stadtreyenix

Adjhead = updated adjacency lists containing arcs endimyamtx

Empty = updated vector containing empty row numbers
1. if Empty# O then
2. r — Empty1) ; % use empty row of aatcli
3. Empty«— Empty(2, ..., sizeEmpty) ; % remove used giatfr Empty
4. dse
5. r— size@®) +1; % use new row of atli
6. A(r)«arc;
8. Adjheadjy.) <« Adjheadjac) U T ; % add pointers tarc
9. Adjtail(iac) « Adijtail(iae) U T ;

Data structure for timed event graphs 41

Whenever possible, the new arc is inserted in gotyenow in the arclist. When no empty rows
are present, the arclist is extended with a newtoogveate space for the new arc. The routine is
shown below. Since no loops are present, the rgrtmme is approximately constant.

5.2.7 Conflict matrices

Lists of conflicting train movements are neededtfar reasons:
* When generating the timed event graph, hindranostcant arcs have to be derived and
incorporated in the model to ensure time separd@ween conflicting train movements,
as explained in section 4.5.2.
* When implementing dispatching actions, new hindeazunstraint arcs have to be
derived and kept up to date with the new situation.

Conflict data

The conflicting train movements are stored in thdgableConflicts which is a set of matrices
containing all data needed for constructing hindeagonflict arcs. This is implemented using the
cell-array notation of Matlab.

Recall from section 4.5.2 that hindrance conflaris defined to occur between conflicting train
linesLN, using different 10-points of the same timetabinp Consequently, for each
combination of line number, timetable point andd@nt a matrixConflictf LN, TTP, 10}
containing all line numbers of trains that are tiotifig with the combination ofN, TTPandIO
exists. Each row of such a matrix contains the following objects:

Conflict LN, TTP, 10}(r) = (LN jQeonieting. ¢y

where for each row.

LINconfieting = line number of the conflicting line,
|@conflicting = 10-point used by the conflicting line, N
t = minimal amount of time the conflicting train IOK°™“™"% has to wait foLN.

An empty matrix, denoted b@onflict{ LN, TTP, 10} = [, means that no train movement is
conflicting with the combinationl{N, TTP, |0}.

Note that the number of matrices@onflictscan become very large. When for example a small
network consists of 4 train lines, running betwdmetable points, of which the biggest
timetable point has 6 10-points, the number of mag inConflictsequals 4 - 5 - 6 = 120.
However, most of these matrices are empty sinceyriaretable points contain no conflicting
routes, or very small since it is highly unlikehat a train line is conflicting with 10 or more
other train lines at the same timetable point. Adfi¢ of this data structure is that it yields duic
access to a list of conflicting train lines wheg time number, timetable point and IO-point are
known, which is advantageous for the running tirhthe algorithm generating the hindrance
constraint arcs. Examples of conflict matrices loariound in the case study, presented in chapter
7.

Generating Conflicts matrices

The study of conflicting train movements and (ofetion of) interlocking routes through

stations is an entire subject within the fieldraiin operations research. Since this reaches beyond
the goal and the limitations of this thesis, nadet! attention is given to the generation of the
described conflict data. When testing the develaggdrithms for this project in the case study,
the Conflictsmatrices were generated by hand.

Data structure for timed event graphs 42

When applying the developed algorithms in practiceConflictsmatrices have to be generated
usingdetailed knowledge about the system, such as:

» topology of tracks in the stations,

» routing of train lines through stations,

* running characteristics of the trains (e.g. spaedeleration and decelaration rates, etc.).

5.3 Generating the timed event graph

In this section, an algorithm for generating timeeitl event graph will be presented. Three extra
input variables needed for the generation of tmed event graph are introduced first: Two
variables defining the passenger transfers andbtlieg stock turns are introduced in section
5.3.1, and a vector containing the running and tiveés as defined in section 5.3.2. After this,
the ‘Generate TEG’ algorithm is presented in sech@.3. Extra attention is given to the
generation of hindrance constraint arcs, to whaattisn 5.3.4 is dedicated.

5.3.1 Input data for synchronization constraints

Synchronization constraints are not created duhiegptimization process, so the information
about them is only needed in the generation prodéssefore they are defined in this section.

Rolling stock turns

The matrixTurn contains all data needed to generate synchrooizatinstraints for turning
rolling stock. Each row of the matrixTurn contains:

Turn(r) — (-I-Nfeedingr -I-Nzonnectingr; tr)

where for each row.

TNeedne. = train number of the feeding train,
TNeonnecting = train number of the connecting train,
t = minimal amount of time needed for turning.

Note that a turn always connects the end of thairfigetrain trip with the start of the connecting
train trip. Hence, the timetable points where tiva bccurs do not need to be stored.

Passenger transfers

The passenger transfers are stored in the matamsfers Passenger transfers can occur at
several timetable points during a train trip. SOppposed to rolling stock turns, the timetable
point where the transfer occurs has to be storegelisEach row of the matrixTransfers
contains:

Transfer$r) — (—I—Nfeedingr’ -I—Nconnectingr;, TTPn tr)

where for each row.

TNfeedne. = train number of the feeding train,
TNeonnecting = train number of the connecting train,
TTP = timetable point where the transfer is schedtbeatccur,

t = minimal transfer time.

Data structure for timed event graphs 43

5.3.2 Input data for running and dwell times

The running and dwell times are stored in the ve&toweight The value of an element
Arcweighti) is defined as the process time of the processwolg event. So if eveni is a
departure, theArcweighti) is a running time, and ifis an arrival, ther\rcweighti) is a dwell
time.

5.3.3 The Generate algorithm

The timed event graph is used as input for tharoptition process described in section 6.5, and
is therefore generated in advance using Algorittdn Bhe input of the algorithm consists of the
setsEvent TurnsandConflicts and of the timetable vectdr as described in section 5.2. The
matrix Eventused as input for the ‘Generate_ TEG’ algorithmtinasadditional properties when
compared with its definition in section 5.2.1:

1. The linked lists formed by the last two elements@ath row of the matrix
Eventare not present yet.

2. All events belonging to the same train trip occaiaalosed group in the list (i.e.
with no events of other train trips in between)] amchronological order
according to the schedule.

The output of the algorithm is an arclistcontaining the timed event graph of the railway
system, and the event matExent completed with the linked lists. The algorithmrk®as
follows:

In lines 1 — 10, the running and dwell time aras generated by scanning all events. When an
event of the type ‘arrival’ or ‘end’ (of train tfjjis found, a running time arc originating from the
previous event is generated (line 5). In case aheemt of the type ‘departure’, the arc from the
previous event is a dwell time arc, which is geteztan line 9. The type ‘start’ (of train trip) is
not regarded by the algorithm here, as no runnirdyell time arcs end at such an event.
When all running and dwell time arcs are generateal|inked lists are created in lines 11 — 14.
Then, the synchronization constraints are addégetonodel in lines 16 — 22.

In lines 23 — 29, the headway arcs are generatéd.i§ implemented by creating a list for each
I0-point, containing all events occurring therehegir scheduled order. Then, all events are
connected by headway arcs ensuring the time séparsteded for events occurring at the same
10-points (line 27).

Finally, in line 31, Algorithm 5.5 is called for @aeventx [J Event and the produced hindrance
constraint arcs are addedAoThis algorithm produces the hindrance constraics representing
the hindrance conflicts caused by everdand will be described in the next section.

Limitation of thisalgorithm: standard headways ar e used

A limitation of this algorithm is that the valueadsfor the headway times is always the same.
Obviously in reality the headways can differ depegan train types, the track layout of the
station, etc. When using the algorithm for modellareal railway system, each headway time
should be calculated separately. However, the sw#fect of this thesis is how to implement
dispatching actions in the model, and thereforeutating specific headway times is considered
to be a subject beyond the scope of this thesis.

Data structure for timed event graphs 44

Algorithm 5.4 (GENERATE_TEG)

Input:
Event = list of all events occurring in the network, wotlt linked lists
Arcweight = list of process times
d = timetable vector
Turns = list of turning trains
Conflicts = lists of train lines hindering each other
Output:
Event = list of all events occurring in the network, withked lists
A = arclist of generated timed event graph
1. for each evert [0 Eventdo
2. if typeg = ‘arrival’ or typeg = ‘end’ &frival or end or train line
3. le—x—-1;
4, j—X;
5. A— Ay {j, i, Arcweighti), ‘running’} ; % add running arc from pieus event
6. dsaif type = ‘departure’
7. i—x—-1;
8. j—X;
9. A<— Ay {j, i, Arcweighti), ‘dwell’} ; % add dwell time arc from pvous event
10. end

11. for eventx O Eventdo

12. find preceding event at the same timetable pbugnt_previous

13. find next event at the same timetable p&went_next

14. Even{x) < (Even{x), Event_previousEvent_next; % create linked list
15. for each row of Turnsdo

16. find arrival evenx®®"9of TN .

17. find departure evenf°""*""9of TNO"eCY .

18. A« Ay { xconnecting yfeeding {um pyrny ; % add turning arc
19. for each row of Transfersdo '

20. find arrival evenE such thal TPz = TTP, andLNg = LN®**"9 ;

21. find departure evem such thalf TP, = TTR, andLNp = LN®°"™"9 ;

22. A—Ay{DEt, transfer}; % add transfer arc
23. for each timetablepointTPdo

24, for each 10-pointO do

25. find first event scheduldtlsent_current

26. while next scheduled eveBtvent _nexexists

27. A «— Ay {Event_nextEvent_currenttpeagway, ‘headway’}; % add headway arc
28. Event_current— Event_next

29. find next event scheduldevent _next

30. for each event [0 Eventdo
31. Arcs_hindrance— generate hindrance forwards(% generate hindrance conflict arcs
32. A — A Arcs_hindrance; % add hindrance arcs

5.3.4 Generating hindrance constraint arcs

Hindrance constraint arcs between conflicting ev€ing. conflicting train movements) have to be
generated when building a timed event graph, asaselhen implementing dispatching actions.
Two types of hindrance constraint arcs are disisird: Forward hindrance constraints are arcs

Data structure for timed event graphs 45

originating from evenx, running to events conflicting with(i.e. events that have to wait
minutes after eventhas occurred). Backward hindrance constraintsui@srunningo eventx,
originating from events conflicting with(i.e. when eventt itself has to wait minutes after the
conflicting event has occurred).

When generating a timed event graph, the algori®GemHindrance_Forwards’, creating the
forward hindrance constraints, is used. Sincedlgerithm is called for each event present in the
model, the incoming hindrance constraints do netirte be generated separately. The algorithm
works as follows:

In line 1, the number of rows éfindrancg LN,, TTR, 10,}, which is the number of train lines
for which hindrance is caused by evgnis assigned to the varialieonflicts Recall from 4.5.2
that one outgoing hindrance arc for each hindraoodlict caused by evemthas to be produced.
The counteNbuilt is used to check if all hindrance conflicts aregyated. In line 3 the vector
Notbuiltis created, containing the value ‘one’ for each koof Hindrancg LNy, TTR,, 10,}.

This vector is used to flag rokif its corresponding hindrance arc has been addduhe 4, the
next event scheduled afters retrieved from the linked list.

In line 5, the actual loop starts. Via the linked, lall event€ scheduled subsequent to eveat
the same timetable point are visited in the screztlatder. At line 6, the conflict matrix
corresponding to evemtis scanned. Note that only the conflict matrixresponding to the
combination £N,, TTR,, I0,} has to be scanned. At line 7 each eveig checked for having a
hindrance conflict with, using the aforementioned conflict matrix. If tighe case, the
corresponding row of Hindrancg LN,, TTR, 10,} is flagged (line 8) and the hindrance arc is
added to the output matrircs The loop ends if no more events are schedul@&dBtor if all
events hindered by evexare found, which is wheNbuilt equalsNconflicts(recall from section
4.5.2 that the number of outgoing hindrance ams fan event equals the number of train lines
conflicting with it).

Algorithm 5.5 (GENHINDRANCE_FORWARDS)

Input:
Event = list of events
Hindrance = lists of hindrance constraints between traindine
X = event for which forward hindrance arcs have tgéweerated
Output:
Arcs = list of hindrance constraint arcs
1. Nconflicts— sizefHindrancg LN,, TTR,, 10}) ;
2. Nbuilt<—0;
3. Notbuilt = onesNconflicts ;
4. E«—N;; % next event salled afterx
5. while E exists &Nbuilt < Nconflicts
0. for each row of Hindrancqd LN,, TTR, 10,} % search confliist
7. if LNE =LN; & 10 =10, & Notbuilt (r) then
8. Notbuilt (r) < 0 ; % flagroesponding row oHindrance
9. Nbuilt « Nbuilt+1;
10. Arcs«— Arcs|J {E, x, tindrace 5y - % aHbohdrance arc

11. E <« next event scheduled after,
12. return Arcs

A periodic timetableisimportant for thisalgorithm

Note that the algorithm works properly only whea timetable is periodic. As explained in
section 4.6, aacyclictimed event graph of geriodictimetable is used in this thesis to
implement dispatching actions. An example of wlgat kappen when the timetable is not
periodic is shown in Figure 5.3. Suppose that tiam 2 is a line that runs only once per day and

Data structure for timed event graphs 46

that the routing of its departure is conflictinglwirain line 1. Algorithm 5.5 would in this case
build hindrance constraint arcs from each depasguent of train line 1 to the conflicting
departure event of train line 2, which is continslguhe same event. This yields many redundant
arcs and an increased complexity of the graphjstiterefore undesirable. When the timetable is
periodic, conflicting events are always near edblerd(i.e. within one hour), and the described
problem can therefore never occur.

Departure of train line 1

Departure of train line 1

Departure of train line 1

Departure of train line 2

Figure5.3 Bad hindrance constraints generated when a tivletis not periodic..

5.4 Calculating the delay propagation in topologica | order

In order to determine the effectiveness of disgatghctions, the propagation of delays in the
railway system has to be calculated. Goverde [Vgkbped an efficient algorithm to compute the
delay propagation in large scale networks. Howethés,algorithm only works under the
requirement that the timetable is periodic. Sinc@aeyclic graph is used in this thesis, a new
algorithm has been implemented.

The algorithm makes use of the fact that the prapag of each delay scenario can be calculated
by observing each event only once, which is tinfieieft. The running time of the algorithm is
O(n), wheren denotes the number of arcsAnHowever, this is only possible if all events are
observed in the correct order, which is known iapdr theory atopological order For instance,
consider the timed event graph of Figure 5.4, whiegedelay of event 3 can only be calculated if
the delays of both event 2 and event 5 are knowmmadke sure that all delays are calculated in
the correct order, a recursive loop has been impheed. The algorithm consists of two parts and
is based on recursive depth-first search algorittexamples of which can be found in [4].

The input of the algorithm is the arcl&twith the adjacency lists for the heaijhead

timetable vectod and the initial delay vecta. The output is an updated delay vedpwith all
propagated delays and a vedBwoparc containing the row numberf arcs from the arclist
which are involved in propagating delays. Thissediby the optimization algorithm (see section
6.5) to determine which trains are delayed, sotti@atppropriate dispatching actions can be
selected.

Algorithm 5.6 and Algorithm 5.7 show the pseudoeaahd their behaviour is illustrated in
Figure 5.4. The corresponding arclist can be faarfeigure 5.1. How would the algorithm
calculate the delay propagation in this graph Fatsnodes are marked ‘unvisited’, after which
Algorithm 5.6 will visit each event subsequentlydafling Algorithm 5.7.

Data structure for timed event graphs 47

Algorithm 5.6 (PROPAGATE)

Input:
A = arclist
Adjhead = adjacency lists for heads
d = vector with all scheduled event times
z = initial delay vector
Output:
Z = updated delay matrix
Proparc = list of arcs propagating delay
1. unvisited<— ones(sized)) ; % mark all nodes unvisited
2. for each event 0 Ado
3. if unvisitedx) = 1 % visit all unvisited nodes
4 Z, Proparc« visit node (x, unvisited, Adjhead, A, Z) d
5. return Z, Proparc

Algorithm 5.7 (VISIT)

Input:
X = event that will be visited
A = list of all arcs
Adjhead = adjacency lists for heads
d = vector with all scheduled event times
z = initial delay matrix
unvisited = list of unvisited events
Output:
z = updated delay matrix
unvisited = updated list of unvisited events
Proparc = list of arcs propagating delay
1. unvisitedx) < 0; % mark noxleisited
2. if Adjheadx) # (I then
3 for each preceding ard] Adjheadx) do % check all preceding arcs
4, if unvisitedi,) = 1then
5. visit node (i, , unvisited,Adjhead, A, Z) d
6 delay— d(i,) +Z(i;) +t, —d(x) ;
7 if delay> Othen
8 Z(X) — maxg(x), delay) ; % update delay
9 Propare— Proparcy r ;

10. return Z, unvisited

The key steps in Algorithm 5.7 are lines 2 and Bere the algorithm checks whether any
preceding arcs are present. For event 1 this i®obly not the case (see situation | of Figure
5.4), so the delay is calculated and updated wkerssary (lines 7-8). When a delay is
propagated via the arc under consideration, thésaxdded to the vect&roparcin line 9. While
visiting event 2 (situation Il), event 1 is founslapredecessor. Since this event is already
marked as visited, the delay can be calculatedowithroblems, and the updated delay is
returned to Algorithm 5.6.

Now, the algorithm arrives at event 3, where twedecessors are found (events 2 and 5). Here,
the recursive loop comes into action. Since evestshill unvisited, the “Visit’ algorithm will cél
itself (line 6 of Algorithm 5.7) to visit event 5hite still in the process of visiting event 3
(situation IIl). During the visit of event 5, tharee will happen for event 4, because this is an

Data structure for timed event graphs 48

unvisited predecessor of event 5 (situation 1V)ribyithe visit of event 4, no more predecessors
are found, so Algorithm 5.7 proceeds with lines07(dalculating the delay of event 4), after
which the delays of events 5 and 3 will be caladais well (situation V). Finally, event 6 will be
visited. As can be seen, each arc is visited onbeo

I 2 IV 1 2
3 6 3 6
4 5 4 5
11 1 2
v 1 2
3 6
3 6
4 5
4 5
I 1 2
3 6
4 5

Figure5.4 Calculating the delay propagation in topologicader. Events are shown in green when
visited and in red while being visited at the momBecursive calls are shown as yellow arrows.

The recursive calls of events 5 and 4 are graghiogbresented in Figure 5.5. In this figure can
be seen that the recursive calls of Algorithm Ee8ulting from its check for preceding events,
automatically lead to the correct, topological,artbr calculating the delays. Note that the
example could have been calculated in many othgs W&hen for instance event 6 was visited
first, all other events would have been visitedirsively, as they are all predecessors of event 6.

Call for node 3
Call for node 5 Calls for algorithm 5.7
Call for node 4 7

Calculate delay
of node 4

Calculate delay
of node 5
Calculate delay
of node 3

Back to algorithm 5.6

3\

From algorithm 5.6 —))

Figure5.5 Graphical representation of recursive calls (yellawows) and their returns (red arrows) in
delay propagation algorithm 5.7.

Data structure for timed event graphs 49

5.5 Calculating the capacity consumption of a railw ay track

As a measure of the traffic density on a railwas Jithe capacity consumption may be used as an
indication of the amount of slack time in the salledThis can be useful when evaluating
dispatching actions in order to reduce the delaya certain railway track. Therefore, an
algorithm calculating the capacity consumption o&ibway track has been developed.

Capacity consumption is a property afadway line instead of one point along the railway track.
Before the algorithm is explained, the definitidrcapacity consumption is considered in more
detail. In Figure 5.6 a blocking time diagram wtitéo trains is shown. The capacity consumption
can be visualized by moving the timetable pathsl@sely together as possible with regard to the
blocking times [14], which can be done by moving ttains together bly™ minutes. The time
t, is defined as theinimum line headwayvhich is the smallest buffer time between trains

a railway line. A minimum line headway exists betweach subsequent pair of trains on a
railway line. Thecapacity consumptioaf a railway track during a period is defined las sum of
the minimum line headways divided by the total tioraof that period [12].

As explained in chapter 4, instead of modellingosdcks only the stations are modelled in the
timed event graphs used for this project. Furtheemihe time separation between trains on a
railway line is modelled in the timed event graphifcluding headway constraints between the
trains at timetable points. This simplified siteatihas been visualized in Figure 5.7, where the
red arrows denote the headways that have to beatespto get a conflict-free schedule. In order
to determine the minimum line headway, the schetoidfer times have to be calculated first.
The algorithm calculates the scheduled buffer timigls the following formula:

to=d; —di —hy, (5.1)
where:
th = buffer time,
d, = scheduled arrival, through or departure timgah 2,
d; = scheduled arrival, through or departure timgah 1,
h;» = minimum headway between trains 1 and 2 (follgafiom infrastructure constraints).
Distance — Distance —
£ £
= =
! T !

\ v
\

tbmin

\ | tbmin

/

<l
«

Figure5.6 The time separation between trains Figure5.7 The time separation between trains as
as modelled by a blocking time diagram. modelled in a timed event graph.

Data structure for timed event graphs 50

Now, theminimum line headwaty™ between two trains is the smallest value foundfatong
the considered railway line, as shown in Figure Bate that this calculation yields the same
results as the calculation using a blocking tinsgthm when the correct values fofthe
headways) are used. Furthermore note that thisofvdgtermining,™" incorporates influences
on the minimum line headway (e.g. the presencerajdr blocks along the line, etc.) as long as
those influences have been taken into account whtrmining the arc weights of the timed
event graph of the considered railway network.

When the minimum line headways for all trains & ¢nsidered railway line in the considered
time period are found, the capacity consumptias calculated with:

ztmin
b

n=1-S
tP

where:

n = capacity consumption,

t,"" = minimum line headway,

t = total time of considered period.

The required calculations are implemented in Aldponi 5.8 ‘Capacity _Consumption’. The input
of the algorithm contains the timed event graphasgnted by the variablés Adjtail, d and

Event and the variables determining at which railwagkrand time period the capacity
consumption has to be calculated. The varialidethe event number with which a train trip starts
its trip on the considered railway libeforethe considered peridgstarts. An example of such a
train trip is train 1, shown in Figure 5.8, whele tocation in time of evemt beginis shown as
well. TTR.nqis the timetable point where the algorithm stogisuating, i.e. the end of the
considered train line, as shown in Figure 5.8. Staet and the end of the considered period are
given byt _beginandt_endrespectively.

x_begin Distance —
Train 1
tbmin .
o TTPeng Train 2 TTPeng
= Train 2 J
'I Train 3
¢
min
b Train 4 L ¢
p
A i
'tbmm
Train 4 4
A
st,mn Train 5 ‘
tbmin‘ \
Train 5 Y i
rtb
Train 6
Original timetable Trains starting within ¢, moved together

Figure5.8 lllustration of trains moved together by the@ighm ‘Capacity consumption'.

Data structure for timed event graphs 51

The three following assumptions have to be trudHeralgorithm to work correctly:

1. The eveni_beginis scheduled earlier thanbegin

2. Each train trip starting betweénbeginandt_endruns toT TP.ng

3. The sequence order of the trains on the considailwehy line stays the same,

i.e. trains do not overtake each other.

Figure 5.8 visualizes how the algorithm works. tBtgrat evenk, the algorithm finds all events
starting at the considered railway line which areeslulecoeforea train starting within periot).
In lines 1 — 5, the vectatarteventss filled with these events. In the example ofuf&5.8, this
vector would contain the first events of train213 and 4. In lines 7 — 20, the algorithm ‘walks
along’ the train trips until the end of the consatérailway line in order to determing" for
each pair of subsequent trains. These minimumh@aglways are stored in the vediaffertimes
which is used in line 25 to calculate the capacitgsumption.

Algorithm 5.8 (CAPACITY_CONSUMPTION)

Input:
A = list of all arcs
Adjtail = adjacency lists for heads
d = vector with all scheduled event times
Event = list of all events
X = first event of a train trip starting befarebegin
TTR = last timetable point of considered railway line
t begin = start time of considered period
t_end = end time of considered period
Output:
p = capacity consumption
1. whilexexists &d(x) <t _enddo % search starting events
2 find next evenk_successascheduled aftex at the same 10-point ;
3 if d(x_successor=t_begin & d(x_successg«t_end
4 startevents— startevents) x;
5. X «— X_successor
6. end
7. for each evenx_start[] starteventsio
8 tb_min< inf;
9 X<«— X_start; '
10. whilex existsdo % follow train trip to calculatg,™"
11. find next evenk_successoscheduled after at the same 10-point, and headway
12. if d(X) +t =<t_begin
13. tb_min«— min(tb_min (d(x_success)r—t_begin) ;
14. else
15. tb_min<— min(tb_min (d(x_successdr-d(x) —h)) ;
16. if TTR, = TTPRspgdo
17. break % stop IfTTP,yqgis reached
18. find next evenk_nextof the train trip ;
19. X «<— X_next
20. buffertimes— buffertimesy tb_min;
21. end

22. find next evenk_successoscheduled after the last eventstartand the headwaly;
23. supplement—t_end- (d(x_successQr+t) ;

24. buffertimes— buffertimesy supplement

25. p < 1-—sumuffertime$/ (t_end—t_begin ;

Data structure for timed event graphs 52

Note that train 2 is moved up only until the st#rthe considered peridg (see again Figure 5.8).
This is compensated at the endpfvhere instead of the entitg"" between trains 5 and 6, only
the time until the end df is considered. This is called the ‘supplemente(Bgure 5.9), which is
calculated in line 23.

: w
5

-
-
e

-

Supplement

End of
considered period

Train 6 s
L)

L)

-~

Figure5.9 Detall of figure 5.7 illustrating the supplenten

The algorithm is able to handle delayed and/oriredaled trains as well. When delays occur
and/or dispatching actions have been applied, ¢teypropagation through the network has to
be calculated with the algorithm ‘Propagate’, présd in the previous section. The event times
calculated with this algorithm can then be usenhpst for the ‘Capacity_Consumption’
algorithm, instead of the scheduled event timesmikta 5.1 then becomes:

th =X —X1 —hyo (5.2)
where:

th = buffer time,

Xo = calculated arrival, through or departure timerain 2,

X1 = calculated arrival, through or departure timerain 1,

hi, = time headway between trains 1 and 2.

Limitations of thisalgorithm

A limitation of this algorithm is that in some sitiions the timetable paths are moved closer
together then would have been actually possibteaiity. This is caused by the fact that the
actual occupation of a block or track is not maetkliwhich is a limitation of the model itself
already discussed in section 4.7. In some situatiois can lead to a slightly lower calculated
capacity consumption.

Data structure for timed event graphs 53

5.6 Conclusion

The ability to store and modify a timed event grapth minimal memory usage and optimal
time efficiency is crucial for the development afystem that can calculate the effectiveness of
dispatching actions quickly enough for real timemgpion. A data structure using adjacency lists
possesses these qualities, and has been presettieddhapter.

After defining the variables used for storing timeetd event graph in the computer memory, an
algorithm for the generation of the graph was pres Finally, algorithms for calculating the
delay propagation in the network and the capaatsumption of a railway line have been
discussed.

Implementing dispatching actions 54

6 Implementing dispatching actions

6.1 Introduction

Chapter 5 described how a timed event graph isrgeggeand stored in the computer memory as
an arclist. A time efficient delay propagation aifum has been introduced as well. The most
important question in case of delays is: whicth&smost effective dispatching action? To
determine the effectiveness of a dispatching actidras to be implemented in the timed event
graph, after which the delay propagation can beutated.
This chapter deals with algorithms that can chahgdimed event graph in order to represent
dispatching actions, and therefore contains the mgsortant result of this research project. In
section 6.2, the algorithm ‘ChangeOrder’ is preséntvith which the sequence order of two
trains running along a railway line can be chandeside of changing the sequence order of
trains, this can be used to:

* Move the location of a scheduled overtaking,

* Remove a scheduled overtaking,

* Introduce a new overtaking.
Section 6.3 is dedicated to an algorithm with whielin movements at stations can be postponed,
which is used to reflect a change in the orderof$sing train movements. A dispatching action
with more consequences for the travellers is taotgiion a train, which can be implemented in
the model by the algorithm presented in sectionl@.4rder to find the effective dispatching
actions, a simple optimization algorithm will besdabed in section 6.5. As explained in chapter
2, the railway system as modelled by a discretatesystem can be represented by a system of
max-plus equations. In section 6.6, a way of folyna@éscribing the possibility to apply
dispatching actions in max-plus algebra will beadtuiced. Section 6.7 contains the conclusion of
this chapter.

6.2 Change the order between trains

Consider the trains running from station 1 to sta® depicted in the example of Figure 6.1,
where train 1 is scheduled to run before traint2stAtion 1, the trains arrive at two different 10-
points, but they leave the station using the sabapdint (I0-point 3). This implies that the two
trains have merged to the same track. They contising the same infrastructure until their
arrival at the terminal station, station 3. Now goge that train 1 is delayed, and has to be
postponed on the route between station 1 and statidhis dispatching action implies that at
four IO-points, namely 10-point 3 of station 1, [§@ints 1 and 2 of station 2 and 10-point 3 of
station 3 their running order has to be changed.

Train 1

Train 2

Station 1 Station 2 Station 3
Figure6.1 Two trains sharing the same infrastructure betwetations 1 and 3.

Implementing dispatching actions 55

The algorithm presented in this section starts wgrlat the 10-point where the affected trains
leave the timetable point from which the dispatghaction starts. Then, the algorithm works its
way along the train lines towards the end of tispaliching action. At each 10-point the same
modifications of the timed event graph are perfapmamely changing the headway constraints
and changing the hindrance constraints. The meadifios will be explained in the next two
sections, after which the actual algorithm willdeplained.

6.2.1 Construction rule for changing headway constr aints

As described in section 4.5.2, all events occuranthe same |O-point of the same timetable
point are connected with headway constraints tarertie correct time separation between
subsequent trains on the same track. When the ofdeo trains is changed, the headway
constraints change accordingly. Figure 6.2 shoedidadway constraints between a series of
subsequent events in case of the originally scleeldalder and in case of a changed order, in
which event 1 has been postponed. The event pregedent 1 is called, and the event
subsequent to event 2 is callgdFor each I0-point where the order is changeegtineadway
arcs have to be changed. The necessary changasam@arized in construction rule 1, shown

below.
xp I‘
X
Event 1
postponed
X
Xn

Figure6.2 Changing headway constraints when the order batvéns is changed.

Original
order

\Q‘}\Q‘; o

Xn

Constructionrule 1
Given: - eventx, scheduled after evert.
- TTP =TTPR, andlO; =10, (eventsx; andx, use the same 10-point at the
same timetable point).

When changing the running ordengfandx, three headway constraint arcs have to be changed
as follows:

Arcinoriginal graph Becomes arc in changed graph
1. preceding event, to x; preceding everx, tox,
2. X1 10X, Xo 10 X1
3. X, 10 next evenk, X1 10 next evenk,

Implementing dispatching actions 56

6.2.2 Changing the hindrance constraints

At stations where hindrance conflicts can occurtdueonflicting interlocking routes, the
hindrance arcs have to be updated in order to heistent with the new situation. This is done in
two steps:
1. The first scheduled everiis removed from the linked list, and the hindranoastraints
are updated accordingly.
2. Eventx is inserted in the linked list directly behind at®,, and the hindrance
constraints are updated accordingly.
For step one, an algorithm able to update the himm constraints when an event is removed
from the scheduled order of events has been dexel&iep two is carried out by an algorithm
updating the hindrance constraints when addingraevent to the scheduled order of events.
These algorithms will be discussed in the nextigadiefore the actual ChangeOrder algorithm
using them will be discussed.

6.2.3 Construction rule for removing hindrance cons traints

Three different situations can occur when remowngvenk from the sequence of scheduled
events at a timetable point:
* A pair of incoming and outgoing hindrance arcs barleleted.
* Asingle incoming hindrance arc has to be connestfddan event scheduled later than
eventx.
» A single outgoing hindrance arc has to be connesttfdan event scheduled sooner than
eventx.
All situations will be described with the exampletwo conflicting routings shown in Figure 6.3.
Each time, a departure event of line 1 will be tildo show the implications in the hindrance
constraint arcs.

Station S
Line 1 S
: \
\
Line 2 amEmn - \\——»

\
\

\

Figure6.3 Example of conflicting routings.

A pair of incoming and outgoing hindrance ar cs can be deleted

This situation occurs when the deleted evemas an incoming hindrance arc from an evemid
an outgoing hindrance arc to an evewhereLN; = LN; andIO; = 10; (i.e. events andj represent
events of the same train line using the same I@tp@hen removing the conflicting event
scheduled betwedrandj the hindrance constraints can be removed as suedle the time
separation between evemntndj is still assured by headway constraintg, @sdj occur at the
same 10-point. This is shown in Figure 6.4.

Departure Departure
of Line 2 of Line 2
Departure

of Line 1

Departure I Departure

of Line 2 of Line 2 I

Figure6.4 A pair of incoming and outgoing hindrance aissleleted (only hindrance arcs are shown).

Implementing dispatching actions 57

A singleincoming hindrance arc

When evenk has an incoming hindrance arc from an evédmit no outgoing hindrance arc to an
eventj such thatN; = LN; andlO; =10, the incoming hindrance arc has to be connectéueto
next eveny scheduled aftex such thatN, = LN, andlOy, = 10,. This is shown in Figure 6.5.
Note that the new hindrance arc is necessary tureiise time separation between the two

remaining events, as these events are not sepéatetieadway constraint since they do not use
the same 10-points.

Departure Departure
of Line 2 of Line 2
Departure

of Line 1
Departure Departure
of Line 1 of Line 1

Figure6.5 A single incoming hindrance arc is connectetth\ahother event (only hindrance arcs are
shown).

A single outgoing hindrance arc

This situation is similar to the previous situatibat in this case, only an outgoing arc is present
The outgoing arc has to be connected to an gvsctieduled preceding ¥ such that N, = LN,
andlOy = 10,, as shown in Figure 6.6. As with the previous eplaqthis is necessary to ensure
the time separation between two conflicting eveviigch are not separated by headway
constraints since they do not use the same I0-point

Departure Departure
of Line 1 of Line 1
Departure

of Line 1

Departure Departure
of Line 2 of Line 2

Figure6.6 A single outgoing hindrance arc is connectetthwanother event (only hindrance arcs are
shown).

Construction rule

The necessary changes in the timed event graph rehaoving an event from the scheduled
order of events at a timetable point follow frore three examples described above, and are
summarized in the construction rule below.

Implementing dispatching actions 58

Construction rule 2
Given: - eventx

- Conflictd LNy, TTR, 10,} # I

When removing event from the scheduled order of eventdae, , the following situations with
their respective implications for the timed everah can occur:

Situation Implications

1. An incoming hindrance arg, &) and an Both hindrance arcs can be deleted.
outgoing hindrance arg,(j) exist such
thatIOi = |OJ & LN; = LN]

2. An incoming hindrance arg &) exists, The incoming arci(x) has to be connected to an
but no outgoing hindrance arg |) such eventy scheduled subsequent¢such thatO, =
thatlO; =10; & LN; = LN, exists. [Ox & LN, =LN,.

3. An outgoing hindrance arg, () exists, = The outgoing arcx(j) has to be connected to an
but no incoming hindrance ar X) such eventy scheduled preceding kosuch thatO, =
thatlO; =10; & LN; = LN, exists. [Ox & LN, =LN,.

Algorithm for removing an event from the scheduled order of events

Construction rule 2 has been implemented in theritkgn ‘Delevent_Hindrance’ shown below.
The input of the algorithm consists of the timeemgraph represented ByAdjhead Adjtail
andEvent and the event that has to be removed from the scheduled ordeverits. The output
consists of the matriArcs2add of which each row is an arc that has to be adoldioe timed

event graph according to the construction rule,taedrectorArcs2de]) containing the row
numbers of arcs that have to be deleted ffom

The algorithm works as follows: In lines 1 — 4, timked lists containing the scheduled order of
events are updated. In lines 5 and 6 the headwastraints are explored to find the next and the
previously scheduled everrisandp of the same train line. This is used in linesI77+o

implement the construction rule.

No big vectors or matrices have to be process#uisralgorithm, so its running time depends
only on the complexity of the graph (i.e. the nunsba incoming and outgoing hindrance arcs to
and fromx, and whether the next and previously scheduledteweandp are found quickly by
searching headway constraints in lines 5 and 6).

Algorithm 6.1 (DELEVENT_HINDRANCE)

Input:
A = arclist
Adjhead = adjacency lists for heads
Adjtail = adjacency lists for tails
Event = list of events
X = event that will be removed from the scheduledepaf events
Output:
Arcs2add = arcs that have to be inserted in the timed egeayh
Arcs2del = list of row numbers of arcs that have to be @elet
Event = updated list of events
1. ifPy£0 % remove event fronkéd lists

2. N(Py) <« Ng;

Implementing dispatching actions 59

3. ifNg#0

4 P(Ny) < Py ;

5. find next scheduled evemsuch thatO,, =10, & LN, = LNy ;

6 find previous scheduled evgnsuch thatO, =10, & LN, = LN, ;
7. for each incoming hindrance ar¢i ,x) tox do

8

. Arcs2dek— Arcs2dely r ; % construction rule 2.1
9. find outgoing hindrance auq X, y) to an eveny such thatO, =10; & LN, =LN; ;
10. if uexists
11. visitequ) < 1 ; % mark outgoing arc visited
12. elsaif n exists
13. Arcs2add— Arcs2addy {n,i;,t;, ‘hindrance’}; % constructionle 2.2
14. for each outgoing hindrance ar¢ x , j) fromx do
15. Arcs2dek— Arcs2dely u; % construction rule 2.1
16. if visitedu) =0 & p exists
17. Arcs2add— Arcs2addy {j.,p.t., ‘hindrance’}; % constructionle 2.3

6.2.4 Construction rule for inserting hindrance con straints

When inserting an evertinto the scheduled order of events, the timed tegeaph has to be
updated with respect to two aspects:
* Hindrance constraints to and fronfave to be inserted into the timed event graph.
* Some existing hindrance constraints can be deleted.
To illustrate this, the example shown in FigureBiBbe used once more.

Hindrance arcs haveto beinserted

Hindrance arcs have to be added to the timed graph when an eventis inserted between

two conflicting events, as shown in Figure 6.7. Blprecisely, for each line of the matrix
Conflict{ LN, , TTR,, IO,}, an outgoing hindrance arc to the next schedatadlicting event and
an incoming hindrance arc from the previously scihei conflicting event has to be constructed.

Departure Departure
of Line 2 of Line 2
Departure
of Line 1
Departure Departure
of Line 2 of Line 2

Figure6.7 Example of hindrance arcs that have to be irgkvthen the departure of Line 1 is inserted.

Existing hindrance arcs haveto be deleted

An example of a situation where existing hindraas have to be deleted is shown in Figure
6.8. When inserting a departure of line 1, no incgnhindrance arc is needed, since the time
separation between the two departures of the saimeline is already assured by headway
constraints. An outgoing headway arc to the depaduent of line 2 is constructed, and the
existing hindrance constraint can be deleted assiipgired time separation is ensured by the new
constraints.

Implementing dispatching actions 60

Departure Departure
of Line 1 of Line 1
Departure
of Line 1
Departure Departure
of Line 2 of Line 2

Figure 6.8 Example of a situation where hindrance arcs haviee deleted when inserting an event.

The necessary changes to the timed event graphlzet@bove are summarized in construction
rule 3. Construction rule 3.1 describes the constn of new outgoing (forward) hindrance
constraints, while rule 3.2 describes the inconfrarkward) hindrance constraints. The situation
that a new hindrance constraint is not neededh@srsin the example of Figure 6.8, is reflected
by the eveng in the construction rule. In the example, evg@niould be the previous departure of
line 1 in the upper right corner of Figure 6.8.

Construction rule 3
Given: - eventx

- Conflictd LNy, TTR, 10,} # I

When inserting eventin the scheduled order of eventslat?, , for each row of
Conflict{ LN, TTR,, 10,} the following hindrance arcs have to be inseedeleted:

Hindrancearcstoinsert Hindrance arcsto delete (when existing)

1. An outgoing hindrance arc to the In incoming hindrance arg (i) running toi from
conflicting eveni scheduled subsequent toan evenf such thatO; =10, & LN; = LN..
eventx, unless an evemtsuch thatO4 =
O« & LNy = LNy is scheduled in between.

2. An incoming hindrance arc from the An outgoing hindrance arc (j) running fromi
conflicting eveni scheduled preceding to to an evenj such thatO; =10, & LN, =LN,.
X, unless an eventsuch thatO, =10, &
LN, = LNy is scheduled in between.

Algorithm for inserting hindrance constraints

Construction rule 3 is implemented in the followmgorithm. In lines 1 — 4 the linked lists
containing the scheduled order of events are ugdatee variables created in lines 5 and 6 are
used to check whether all conflicts have been implgted, so that the algorithm can stop when
this is the case. In lines 8 — 19, the algorithntkevalong the linked list of events (lines 7 ang, 18
to build all outgoing hindrance arcs fromin line 16 it is checked whether a hindranceexists
that has to be deleted according to constructin3il. When an eventis found according to
the construction rule, the while loop started melB is broken in line 9. The algorithm will then
continue with line 20.

In lines 22 — 32, the incoming hindrance arcs atiogrto construction rule 3.2 are constructed.
Again it is checked whether existing hindrance &g to be deleted, this time in line 30. The
algorithm terminates via line 23 when an ewgnof the same train lineN, is found, or when no
previous evenk is found anymore.

Implementing dispatching actions 61

Algorithm 6.2 (INSERTEVENT _HINDRANCE)

Input:
A = arclist
Adjhead = adjacency lists for heads
Adjtail = adjacency lists for tails
Event = list of events
X = event that will inserted in the scheduled ordegvents
a = event after whiclkx will be inserted
Conflicts = conflict matrices for hindrance conflicts
Output:
Arcs2add = arcs that have to be inserted in the timed egeayh
Arcs2del = list of row numbers of arcs that have to be @elet
Event = updated list of events
1. Ny<Xx; Y%dape linked lists
2. Py<—a;
3. Ny« N;;
4. if Ny#O0then P(N,) < x; end
5. Nconflicts— sizeindrancd LN,, TTR, 10,}) ;
6. Nbuilt — 0 ; Notbuilt = onesNconflictg ;
7. E<«N,;
8. while E exists &Nbuilt < Nconflicts % create forwhrddrance arcs
9. if LN =LN, & 10z =10, then break ;
10. for each row of Hindrancqd LN,, TTR, 10,} % search confliist
11. if LNE =LN; & 10 =10, & Notbuilt (r) then
12. Notbuilt (r) < 0 ; % flagroesponding row oHindrance
13. Nbuilt « Nbuilt+1;
14. Arcs«— Arcs|J {E, x, t'ndrace 5y - % aHdohdrance arc
15. for each incoming hindrance arcfrom an evenb to E do
16. if LN, =LN, & 10, =10, then
17. Arcs2del— Arcs2dely m;
18. E«— Ng;
19. end
20. Nbuilt < 0 ; Notbuilt = onesNconflictg ;
21. E<« Py;
22. while P exists &Nbuilt < Nconflicts % create backwardllance arcs
23. if LNz = LNy & IO =10, then break ;
24, for each row of Hindrancqd LN,, TTR, 10,} % search confliist
25. if LNE =LN; & IOg =10, & Notbuilt (r) then
26. Notbuilt (r) < 0 ; % flagroesponding row oHindrance
27. Nbuilt — Nbuilt+1;
28. Arcs«— Arcs {x, E, tindrance 5y - % aduhdirance arc
29. for each outgoing hindrance arcfrom E to an evenb do
30. if LN, =LN, & 10, =10, then
31. Arcs2delk— Arcs2dely m;
32. E— Pg;

33. end

Implementing dispatching actions 62

6.2.5 The algorithm ‘ChangeOrder’

The algorithm consists of two parts. In the ‘explpart’ (lines 1 — 33), the timed event graph is
explored and an inventory of all changes necedsargplement the dispatching action is made.
All necessary changes are stored temporarily irvéiotorarcs2del(row numbers irA of arcs
that have to be deleted) and in the madrios2add(arcs that have to be inserted). After the
explore part, the actual changes are performedeirgraph update part’ (lines 34 — 44). The
separation in two sections is necessary since ergland changing the timed event graph at the
same time causes the algorithm to work improperkploring a partly changed timed event
graph can lead to inconsistencies).
In line 1 the evert, corresponding to the next train is found by logkiar headway constraints.
Lines 2 — 33 contain the main loop of the algoritfine new headway arcs, as explained in
section 6.2.2, are constructed in lines 9, 16 éhd Bere are two occasions in which the
algorithm terminates before applying any changeakédimed event graph:
1. Inline 18, when a headway arc frogato x; is found (i.e. the running order is changed
already).
2. Inline 32, when an outgoing running or dwell aenissing forx; or X;, which means
that line 1 or line 2 ends unexpectedly.
In such an occasiolyarning= 1 is returned, to indicate that the algorithnswaable to perform
the requested dispatching action. In line 26, essgrdndx, are stored in the two column matrix
H, which will be used in the graph update part toegate new hindrance constraint arcs. In line
27, evenk, is removed from the scheduled order of eventslevthe implied changes for the
hindrance constraints are stored in line 28.
The ‘graph update part’ starts with carrying olichhnges calculated in the ‘explore part’. The
necessary changes are performed in lines 35 anifter this, the structure of the timed event
graph is as follows:
* The topology of headway constraint arcs corresptmtise new situation (i.e. the events
of line 2 occurafter the events of line 1).
* The topology of the hindrance constraint arcs gpoads to the situation in which the
events of line 2 are deleted from the scheduledravtievents.
To complete the new timed event graph, the evdiise2 have to be inserted in the scheduled
order of events again. This is done in line 39, iehbe events of line 2, which were stored in
matrix H during the exploration phase, are inserted iritiked lists directly subsequent to the
events of line 1. The implied changes of the hindeaconstraint arcs are carried out in lines 41
and 43. Note that the routinascs2addandarcs2delare presented in sections 5.2.5 and 5.2.6.

Algorithm 6.3 (CHANGEORDER)

Input:
A = arclist
Adjhead = adjacency lists for heads
Adjtail = adjacency lists for tails
Event = list of events
Hindrance = lists of hindrance constraints between traindine
Xt = starting event
n = number of 10-points where the order has to bengbd
Empty = list of empty rows in arclisA
Output:
A = updated arclist
Adjhead = updated adjacency list for heads
Adjtail = updated adjacency list for tails

Event = updated list of events

Implementing dispatching actions 63

Empty = updated list of empty rows i

Warning = 0 if dispatching action is possible, 1 = dispatghaction is impossible
1. find evenix; of the next train scheduled behixd % explqrart
2. m<0;
3. whilem<ndo %imboop
4, m—m+1;
5. for each outgoing ancof x; do
6. if type = headwayhen
7. if successor evenpt=x,then
8. arcs2del— arcs2dely r;
0. arcs2add— arcs2addy (X, X, t; ,type) ; % swap, , X, (constr. rule 1.2)
10. esaif type = running ortype = dwellthen
11. X"« successor evept; % store nexent of train line 1
12. for each incoming arcof x; do
13. if typg = headway
14. if preceding everit # x; then
15. arcs2delk— arcs2dely r;
16. arcs2add— arcs2addy (%2 ,i,,t ,type) ; % construction rule 1.1
17. ese
18. warning« 1 ;return % running ordechanged already
19. for each outgoing ancof x, do
20. if type = headwayhen
21. if successor event# x; then
22. arcs2delk— arcs2dely r;
23. arcs2add— arcs2addy (j; , X .t ,type) ; % see constr. rule 1.3
24, esaif type = runningor type = dwellthen
25. X" «— successor eveft; % store nexent of train line 2
26. H— H U {x,%};
27. [add_tempdel_temp Eveni < Delevent_ Hindrance() ;
28. arcs2add— arcs2addy add_temp; arcs2delk— arcs2dely del_temp;
29. if x,"*"existsand x,"*" exists
30. Xq Xlnext C Xy — inext;
31. ese
32. Warning< 1 ;return
33. end
34. for each arc [] arcs2deldo % graph update part
35. (A, Adjhead, Aadjtail, empty < delarc A, Adjhead Adjtail ,empty, r);
36. for each row [J arcs2adddo
37. (A, Adjhead, Adjtail,empty <« addarcA, Adjhead, Adjtail,empty,r);
38. for eachrow §; ,x} LI H
39. [arcs2add, arcs2del, Even} < Insertevent_Hindrance(, X,) ;
40. for each ara L1 arcs2deldo % graph update part
41. (A, Adjhead, Aadijtail, empty < delarc A, Adjhead, Adjtail,empty, r) ;
42. for each row [1 arcs2adddo
43. (A, Adjhead, Adijtail,empty «— addarcA, Adjhead Adijtail,empty,r);
44. return

Implementing dispatching actions 64

6.3 Postponing arrivals or departures at a station

At stations where hindrance conflicts can occurdrance constraints ensure that conflicting
train movements are separated in time. When thedsiéd order of events would be strictly
maintained in case of delays, those delays catydmspassed on to crossing train movements
waiting for the delayed train. In such cases postgpthe delayed event is an effective
dispatching action to reduce the amount of knockleays. To find the optimal postponing
actions, the algorithm ‘Postpone’, presented ig $igiction, has been developed.

6.3.1 The definition of postponing in this project

An important difference with the algorithm ‘ChanQeder’ is that the sequence orders of trains at
theopen track and thus the headway constraints, stay the danig.the order in which trains
enter and/or leave thenetable pointss changed. This implies that only the hindrance
constraints are changed when postponing an ewvetitelremainder of this thesis, ‘postponing’
will be defined as follows:

Eventx is called ‘postponed’ when it is moved ahead agbheduled order of events of a
timetable point without implications for the heagwa@nstraints.

6.3.2 Check if postponing is possible

The developed algorithm postpones an exghy moving it one line ahead in the linked list of
scheduled events, which means that exeigt moved immediately behind the next eveniThe
first question that has to be answered beforeltwithm can carry out the actual postponing
action is: can even be postponed after evegtat all? Postponing evert is not possible in the
two following situations:
1. Eventx, is the last event scheduled at this timetabletp@ibviously, it cannot be
postponed when this is the case.
2. Eventsx; andx, are using the same 10-point. This implies thatdider of trains at the
open track has to be changed when postponing &vent
When postponing is possible, two situations camoa situation in which hindrance constraints
are changing, and a situation in which they are Hois will be explained in the next sections.

6.3.3 Situation without changing hindrance constrai nts

Postponing an event does not necessarily meahitidriance constraints have to be changed.
Hindrance constraints do not change when evgraadx;, are not conflicting. Consider for
example the situation shown in Figure 6.9. Supplatline 2 has a delay, and that the departure
of line 2 has to be postponed after the departiliea3. As can be seen, lines 2 and 3 only have
hindrance conflicts with line 1, but not wigach otherAs a result, the scheduled order of line 2
and 3 can be changed without any implicationstiertimed event graph. When this is the case,
only the linked list containing the scheduled oroieevents has to be changed.

Implementing dispatching actions 65

) Departure
Station S Scheduled Of Line 1
. <mpemm - — - order of
et TE—1\ ente
\
R\ Departure
Line 2 T s > of Line 2
. smpemmy ————— - o
Line 3 W Departure
P of Line 3

Figure6.9 Hindrance constraints at station S.

6.3.4 Construction rule for changing hindrance cons traints

When evenk; has a hindrance conflict with, postponing event; implies changes in the timed
event graph. How the new hindrance constraintamegenerated is explained using Figure 6.10,
where a station with two conflicting hourly trainés is shown. In the original order, the
successive departures of lines 1 and 2 can bewéhrtheir hindrance constraints arcs
connecting them. Suppose that line 1 is delayezlr@l event in the figure) and will be
postponed.
First, the old hindrance constraint arcs have tdddeted, after which three new hindrance
constraint arcs have to be generated:

1. Hindrance constraint from evextto evenix;.

2. Hindrance constraint from evextto the next scheduled event with the same linebbaim

and the same IO-point ag
3. Hindrance constraint from the preceding scheduwedtewith the same line number and
the same 10-point as to evenix,.

However, numbers 2 and 3 are not necessary toraohsthen time separation is already assured
by headway constraints. This is illustrated ind¢hee of Figure 6.10. In the new order of events
(after postponing the departure of line 1) two dapas of line 2 are scheduled subsequent to
each other. Since two departures of the samelin@use the same 10-point, these events are
separated by headway constraints anyway, and moemonstraints are not necessary. The same
is applicable to the two subsequent departuresefl. The only new hindrance arc that has to be
generated is shown on the right in Figure 6.10.
The necessary changes are summarized in construate4.

Departure of Line 1

Original order postponed

Departure Departure

of Line 2 of Line 2

Station S Scheduled
order of
. TS - —— events Departure Departure
Line 1 |:| \ of Line 1 of Line 2
\
2\
Line 2— === ig

\ Departure Departure

\ of Line 2 of Line 1
Departure Departure

of Line 1 of Line 1

Figure6.10 Two lines with hindrance constraints in origimader and when line 1 is postponed.

Implementing dispatching actions 66

Constructionrule 4
Given: - eventx, scheduled subsequent to event
- eventsx; andx, have a hindrance conflict

When postponing; afterx, three new hindrance constraint arcs have to bsteaned:
1. fromx, to x;.

2. fromx; to the next scheduled evéyitsuch thatOy =10, andLNy = LN, unless an event
Q scheduled betweeq andN exists such thdOgq = 10; andLNg = LN;.
3. tox, from the previously scheduled evéhsuch thatOp = 10; andLNp = LN; unless an

eventQ scheduled betweeq andP exists such thdOg =10, andLNg = LN,.

6.3.5 The algorithm ‘Postpone’

Algorithm 6.4 implements the postponement of orenéaccording to construction rule 4 in the
timed event graph, and works as follows:

In lines 1-5 is checked whether the postponemesnttisally possible (see section 6.3.2). Event

is the event that will be postponed, while evemns the first event scheduled subsequent to

line 6, the linked list is updated using the fuactiChangeList’, which can be found in appendix
1. Whether eventsandE are conflicting is checked in lines 7 and 8. Isecaf a conflict the
hindrance arcs relating to this conflict have taipdated and lines 9 — 39 are executed. In lines 9
— 30 the relevant hindrance arcs are deletednén3il, the hindrance arc frdgto x is

constructed. In lines 32 — 34 a new hindrancerar fa previous train to evehtis constructed
when necessary according to construction rulen2,3i and in lines 35 — 37, a new hindrance arc
from eventx to a future train is constructed when necessagrding to construction rule 2, line

2 (see section 6.3.4). Finally, the generated himgi arcs are inserted in the timed event graph in
lines 38 and 39.

Algorithm 6.4 (POSTPONE)

Input:
A = arclist
adjhead = adjacency lists for heads
adjtail = adjacency lists for tails
Event = list of events
Hindrance = lists of hindrance constraints between traindine
X = event that will be postponed
Empty = list of empty rows in arclish
Output:
A = updated delay matrix
adjhead = updated adjacency list for heads
adjtail = updated adjacency list for tails
Event = updated list of events
Empty = updated list of empty rows i
Warning = 0 if dispatching action is possible, 1 = dispatghaction is impossible
1. E < nextevent scheduled after
2. ifEexists=0
3. Warning=1 ;return % no next elyexo postpone is impossible
4. if 10 =104
5. Warning=1 ;return % same 10-point, posgpanplies order change
6. Event= changeListEvent, x, E) ; % cige order in linked list

Implementing dispatching actions 67

7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

findk such thatHindrancd LN, , TTR,, IO}(k) = (LNg, IOg , t) ;
if k exists

for each outgoing anm of x do
if type, = hindrancehen
j « successor evep;
if LN; = LNg then % conflicts withx
arcs2del— arcs2dely k;
for each incoming amm of x do
if type, = hindrancehen
i — preceding event,;
if LN; = LNg then % conflicts withx
arcs2delk— arcs2dely k;
for each outgoing anm of E do
if type, = hindrancehen
] < successor evep ;
if LN; = LN, then % conflicts withE
arcs2del— arcs2dely k;
for each incoming amn of E do
if type, = hindrancehen
i — preceding event,;
if LN; = LN, then % conflicts withE
arcs2delk— arcs2dely k;
for each ardk LI arcs2deldo
(A, adjhead, adjtail, empty < delarc A, adjhead, adjtail,empty, K) ;
arcs2add— arcs2addy (x,E,t,5); % hindrance &omE to x
find eventP preceding= such thatOp, = 10g & LNp = LNg ;
if no evenQ such thatOq =10, & LNg = LNy is found soonedo
arcs2add— arcs2addy (E,P,t, ‘hindrance’) ; % hindrance arc frdtto E
find eventN scheduled later thansuch thatOy =10, & LNy = LN, ;
if no evenQ such thatOq = 10g & LNg = LN is found soonedo
arcs2add— arcs2addy (N, x,t, ‘hindrance’) ; % hindrance arc fronto N
for each rowk [arcs2adddo
(A, adjhead, adjtail,empty < addarcf, adjhead, adjtail ,empty, K) ;

6.4 Short turning

Short turning can be a useful dispatching actioceise of big delays or obstruction of the railway

line. To illustrate this dispatching action, a tamtrain is visualized in Figure 6.11. Suppose

train 1 has a big delay, or the railway line betwetations 1 and 2 is (temporarily) obstructed.
Letting train 1 turn already in station 1 yieldg #ituation shown in Figure 6.12. Carrying out
this dispatching action implies cancelling (i.eletieg from the timed event graph) four events,
namely the departure of train 1 from station 1,aheval at station 2, the departure of train 2

from station 2 and its arrival at station 1. In tlext section, the implications on the timed event
graph when cancelling an event are explained. iShised in the subsequent section to develop

an algorithm for short turning.

Implementing dispatching actions 68

Train 2 «—

Train 1 —»

Station 1 Station 2
Figure6.11 Rolling stock of train 1 running back as trairafler turning at station 2

101 102 101
Train2 <
Train 1 —»

103 104 102

Station 1 Station 2
Figure6.12 Turn at station 2 moved to station 1 with foaladed events.

6.4.1 Cancelling an event

Cancelling an event has implications for all typéarcs in the timed event graph. Obviously,
running-, trough- and dwell time arcs to and frdma évent have to be deleted. However, the
implications on headway and hindrance constraicg are more complicated. In this section, the
implications will be investigated, after which thkgorithm ‘Cancel Event’, able to implement
these implications in the timed event graph, walldresented.

Implications on headway constraints

The headway constraints have to be changed sucththme separation between the preceding
train and the successive train is still ensureds Ehillustrated in Figure 6.13. Construction réle
describes the necessary changes in the timed gragtt.

Xp

Xp

Original x Event x
situation deleted

Xn

Xn

Figure6.13 New headway constraint when an everd deleted.

Construction rule5
Given: - eventx scheduled between its preceding evgrand its successor eveqtat
the same 10-point.

When deleting eventfrom the timed event graph, the headway arcs tabe changed as
follows:

1. delete arc from, to x
2. delete arc from to x,
3. create new arc from to x,

Implementing dispatching actions 69

Implications on hindrance constraints

When cancelling part of a train trip due the introiibn of a short turn, the events modelling this
part of the train trip are simply removed from Huteduled order of events. An algorithm that
determines the implications on the timed eventlyidye to this operation has already been
discussed in section 6.2.3. This algorithm willused to determine the implications for hindrance
constraints in case of short turning as well.

6.4.2 The algorithm ‘ShortTurn’

The algorithm ‘ShortTurn’ is able to change thedthevent graph according to the situation that
a train turns earlier than scheduled. The inpusist® of the timed event graph, represented by
the variables\, Adjhead Adjtail, andEvent The vectolEmpty needed for the algorithms

‘Delarc’ and ‘Addarc’, for updating the graph, iput as well. The location of the new turn is
determined by, which is the arrival event at the new turningista In the example of Figure
6.11 and Figure 6.12 this would be the arrivalraiit 1 at station 1. The output is an updated
timed event graph and the mat@ancelled containing the numbers of all cancelled everts, a
well as the numbers of the next scheduled evertseafame train line. This is used for
calculating the passenger delay, since passengeestt wait for the next train if their train is
cancelled. The algorithm works as follows:

In line 1, the next event of the train trip is faliin Figure 6.11 this would be the departure from
station 1. The number of this event is assigndétidosariabla. The dwell or through arc running
to this event has to be deleted, so it is storeédenvectorArcs2delfor later deletion. In line 5, the
main loop starts. This loop ‘walks’ along the tr&iips until the algorithm arrives at the new
turning station again, which is checked in linén7FFigure 6.11 this would correspond to walking
via the turn at station 2 until the arrival of tré at station 1. On its way along the train tif®
algorithm stores all headway constraint arcs inviietorArcs2delfor later deletion according to
construction rule 5.1 and 5.2. The new headwaypeatween the previous and the next train
according to construction rule 5.3 is stored ie [#2. The arcs of which the train trip itself
consists (i.e. running, dwell, through or turn aa® deleted as well. Hindrance constraint arcs
are investigated in line 23, where the algorithneRent_Hindrance, presented in section 6.2.3, is
called.

In line 25, the algorithm continues to the nextrayavhich was found while scanning the
outgoing arcs (in line 16). Upon arrival at the nemning station, the loop ends and the algorithm
continues with lines 27 and 28. A new turn arc,n@mting evenk with the departure after the
newly scheduled turn, is created in line 27. Theimal duration of the new tutg,, is the same

as the turning time of the original turn, which wagieved from the timed event graph in line 13.
In line 28 the timed event graph is actually updatesing the algorithms presented in sections
5.2.5and 5.2.6.

Limitations of the algorithm

Two limitations of this algorithm deserve attentidime first limitation concerns the turning time
twm Used for the new turn arc. In the real railwaytetys this time would be called the ‘minimum
layover time’, which is the minimal time that hasdlapse between the arrival and the departure
at the turning station. In the presented algorittima,minimum layover time of the original turn is
used agy,n for the new turn (e.qg. if the turn at station Zigure 6.11 would take at least 10
minutes, then the new turn in Figure 6.12 will takéeast 10 minutes as well). The limitation is
that in reality the minimum layover time can diffarcase of dispatching actions. For example,
the minimum layover time in the original schedudm be relatively long (e.g. if the train has to
be cleaned, etc.), where this is not always necggsaase of dispatching actions (e.qg. if
cleaning the trains has a lower priority in casdalfys). Still, using the same minimum layover

Implementing dispatching actions 70

time for the new turn is considered realistic, sinwost factors affecting it remain the same in
case of dispatching actions. These factors arexample the length of the train (if the train
driver has to walk back to the other cab), thamglstock (whether it takes some time to make
the train ready for a trip in the opposite diregjicetc.

Algorithm 6.5 (SHORTTURN)

Input:
A = arclist
Adjhead = adjacency list for heads
Adjtail = adjacency list for tails
Event = list of events
Empty = list of empty rows irA
X = arrival event where the new turn will take place
Output:
A = updated arclist
Adjhead = updated adjacency list for heads
Adjtail = updated adjacency list for tails
Event = updated list of events
Empty = list of empty rows irA
Cancelled = list of cancelled events and next scheduled svefrdgame train line
1. find outgoing are of x such thatype = ‘dwell’ or ‘through’ ;
2. i< successor evenbof arcr ;
3. Arcs2del— Arcs2dely r ;
4. continue—1;
5. whilecontinuedo
6. Cancelled— Cancelledy {i , next evenh atlO, such thatN, = LN} ;
7. if type = ‘arrival’ & TTR =TTP, then % arrival at new turningtiia
8. continue— 0 ;
9. for each outgoing ancofi do % scan outgoing arcs
10. if type = ‘headway’'then
11. Next« successor event of ar¢ Arcs2dek— Arcs2dely r ;
12. elsaif type = ‘turn’ then
13. successoE— successor event of arg ty, <« t; ; % store min. duration of turn
14. Arcs2dek— Arcs2dely r ;
15. elseif typg # ‘hindrance’then
16. successo¥— successor event of arg
17. for each incoming arcofi do % scan incoming arcs
18. if typg = ‘headway’'then
19. Arcs2dek— Arcs2dely r ;
20. Previous— preceding event of arc;
21. if Nextexists &Previousexiststhen
22. Arcs2add— {Next Previoust, ‘headway’} ; % consttien rule 5.3

23. [add_tempdel_temp, Event < Delevent_Hindrance() ;
24. arcs2add— arcs2addy add_temp; arcs2delk— arcs2dely del_temp;

25. i < successor
26. end
27. Arcs2add = Arcs2add) {i , X, tym, ‘turn’}; % new turn arc

28. DelarcArcs2de) ; Addarc@rcs2add ; % update graph

Implementing dispatching actions 71

The second limitation concerns the treatment odifsince constraint arcs. The short turning
manoeuvre introduced in the new turning statiog. (&ation 1 in Figure 6.12) can lead to new
hindrance conflicts, for instance if the turningitr crosses some tracks used by other train lines
when changing to a track for the opposite direct@mrating new hindrance constraints in this
case is possible only with detailed knowledge alimeitopology of the station and the
interlocking route of the turning manoeuvre, whiglimot included in the presented algorithm.
Note that this is only the case for hindrance cdumgethe turning manoeuvitself, the arrival

and departure from the new turning station aresstdured by all headway and hindrance
constraints present in the model before the shantwas introduced. This is shown in Figure
6.14, which is based on the example presentecgur&ic.12.

Turning manoeuvre without

Departure event with . .
hindrance constraints

existing infra constraints

Train 2 <—

Train 1l —»

Arrival event with Station 1
existing infra constraints

Figure6.14 Schematic representation of turning manoeuvtesaoured by infra constraints.

6.5 Optimization framework

In order to find effective dispatching actions,raagly optimization algorithm has been
implemented. The optimization algorithm calculates effectiveness of each dispatching action
from a list of possible dispatching actions credietbrehand. In the end, the optimization
algorithm returns the dispatching action with tineagest effectiveness. By applying this
algorithm several times and storing each optimspaliching action, a greedy approach yielding
effective combinations of dispatching actions itagied.

6.5.1 Dispatching actions have to be combined with postponements

Often, one dispatching action is not enough to cediccurring delays. In such cases, a
combination of different dispatching actions protebe much more effective. In particular, a
dispatching action is likely to be most effectivbem it is combined with one or more
postponements of events from the delayed trainfdp example, suppose that train 1 has a
delay, which is propagated to train 2, running bdhi. In this case, changing the order between
trains 1 and 2 seems to be an effective dispatdmstign. But suppose that train 1 has a
hindrance conflict with train 3 as shown in Figété5. When the order between trains 1 and 2 is
changed, train 3 still has to wait for its depagtuntil train 1 has passed. As a result, delayp kee
being propagated through the network and the @ffautss of a dispatching action is not
maximized. Clearly, the solution to this problemddet train 3 depatieforetrain 1 has passed,
i.e. the departure of train 1 has to be postporeshll the definition of postponing posed in
section 6.3.1. In that case, changing the ord&raifs 1 and 2 is effective indeed. As a
consequence, the positive effect of each dispagchation has to be maximized by combining it
with appropriate postponements. This has been mgéed in the optimization algorithm, as
will be described in the next sections.

Implementing dispatching actions 72

Train 3 Route of train 1
(waiting for train 1) Al

/

et - - - —-—-—— G- ———— + Route of train 3

Station S //
P —— s — -
Train 2 Train 1

(delayed)

Figure6.15 Delayed trains at a station.

6.5.2 Making an inventory of possible dispatchinga ctions

Before the actual optimization process can staringentory has to be made of all dispatching
actions to be taken into consideration. To this, ¢émel algorithm ‘Generate_Inventory’ is used.
The input for this algorithm consists of the timeent graph represented by the arclist and its
adjacency lists, and the matixent The output is a matri€hoicecontaining all possible
dispatching actions recognised by the algorithnis Tiatrix is used as input for the optimization
algorithm described in section 6.5.4. Each rowhefmatrixChoicedescribes a dispatching
action as follows:

In case of an order change, a nowontains the following elements:

Choicdr) = {type, x , amount

where:
type =‘OrderChange’,
X = event from where the order change starts,

amount= amount of 10-points where the order is changed.

The variablex andamountare input for the ChangeOrder algorithm (see se@i2.5) when
implementing this dispatching action in the timedrm graph.

In case of a short turn, a ravwcontains the following elements:

Choicdr) = {type, x }

where:
type = 'ShortTurn’,
X = arrival event where the new turn will take place

The variablex is input for the ShortTurn algorithm (see sectiof2) when implementing this
dispatching action in the timed event graph.

The algorithm works by investigating the possitatfor dispatching actions for each event
separately. If eventis a departure of a start of a train trip, theggalties for changing the
sequence order are investigated in lines 2 — 1is.i$hdone by following the (events of the) train
trip through the graph (line 6). For each arrivtzd &tation where overtaking is possible, the
corresponding dispatching action is stored inGheicematrix (line 11). If the train running
behind the train under investigation ends or cartinin a different direction, changing the order
is not possible anymore. This is accounted foayit-statement in line 10.

If eventx is an arrival event at the end of a train trig, plossibility of short turning is
investigated. If the train is scheduled to turni@hhs checked in line 13), the train trip is tradk
back through the timed event graph to search fort shirning possibilities. Each arrival event at

Implementing dispatching actions 73

a timetable point where turning is possible repnesa possibility to short-turn a train, and is
stored in theChoicematrix (line 16). Note that it is assumed thatheain turns at a train with

the same route (but obviously in the opposite time, since short turning is impossible if a train
continues at a different route after turning.

Algorithm 6.6 (GENERATE_INVENTORY)

Input:
Event = list of events
A = arclist
Adjhead = adjacency list for heads
Adjtail = adjacency list for tails
Output:
Choice = list of possible dispatching actions
1. for each event [J Eventdo
2 if type = ‘departure’ otypg = ‘start of train trip’then % explore order changes
3 amount— O ;
4. find train numbéeFN_nexof the train scheduled to run subsequeriiNg ...
5. ... by exploring headway constraint arcs ;
6 for each following arrival evera of train trip TN, do
7 amount— amount+ 2 ;
8 if overtaking aff TP, is possible
9 find train numbeN_nexbf the train scheduled to run subsequeriNp;
10. if TN_nextis the same as in the previous step
11. Choice— Choice|y {'ChangeOrder’ x,amount ;
12. eseif type = ‘end of train trip'then &tplore short turns
13. if an outgoing arc exists such thaype = ‘turn’ then
14. for each preceding arrival evemdf train trip TN, do
15. if short turning alT TP, is possible
16. Choice<— Choicey {'ShortTurn’, a};

6.5.3 The objective function: total passenger delay

Many considerations play a role when choosing gaative function for the optimization

process. In the optimization framework used in fingect, the total passenger delay is used as an
optimization function. In order to calculate théalgpassenger delay, a number of passengers is
attached to each event in the railway network.dxample the number of passengers attached to
an arrival evenx reflects the number of alighting passengerET&,. The total passenger delay is
then calculated by multiplying the delay vectoratesl by the delay propagation algorithm with

the vector containing the numbers of passengeastedtl to each event, as shown by the next
formula:

Z _total=2* P, (6.1)
where:

Z_total = total passenger delay in minutes,

Z = delay vector,

P = vector containing the number of passengerslagthto each event.

The main reason for choosing the total passenday ds an objective function is that the impact
of dispatching actions for the passengers is censtimore important than the impact on the

Implementing dispatching actions 74

trains themselves. For instance introducing a glantmay be very effective to restore the train
service to the scheduled situation. For passergavsver, this is an unpopular measure causing
large passenger delays at the stations wherehiagurain is cancelled, particularly when the
considered train line runs at a low frequency (eagirly).

Since cancelled events are no longer part of thedievent graph, they are not visited by the
delay propagation algorithm presented in sectidraymore. Each cancelled evens

registered in the matri€ancelled along with the next scheduled event of the sagaie linen.
Before formula 6.1 can be used, the delays ofaaitelled events L1 Cancelledare calculated as
follows:

Z(X) =d(n) —d(x) + Z(n) (6.2)
where:

Z(X) =delay of a cancelled event

d = timetable vector,

n = next event scheduled 18, such that.N,, = LN,.

This way of calculating the passenger delay incaias:

» Arrival delays of alighting passengers,

» Departure delays of embarking passengers,

» Delays of passengers who have to wait for the tnaitt since their train is cancelled due

to short turning.

This is sufficient for a correct evaluation of ispatching actions considered in this thesis.
However, more elaborate ways of calculating passedeglays exist, for instance including
origin/destination matrices for an accurate catioeof the passenger delays caused by broken
transfers, etc, a description of which can be four[d0].

6.5.4 Finding the most effective dispatching action

Figure 6.16 shows a flow diagram explaining therojzation algorithm ‘Dispatch_optimal’,

which evaluates all dispatching actions from teedf possible dispatching actions created by the
algorithm ‘Generate Inventory’. After calling thigarithm, a delay vector is generated from the
initial delays (the initial delays are input datis vector is used to calculate the delay
propagation through the network in the situatiotheiit any dispatching actions. During the
calculation of the delay propagation, a list ofayeld trains is produced. After these initial steps,
the actual loop starts. To speed up the algoritlismatching actions regarding on-time trains are
omitted. That is why in the loop each dispatchiotioa is checked for being associated with a
delayed train.

Implementing dispatching actions

75

Start

Input: - Timed Event Graph
- List of initial delays

- List of possible
dispatching actions

Generate delay vector Z

Generate list of delayed trains

Y

|Algorithm Dispatch_optimal |

Have all dispatching
actions been
processed ?

-

Go to next dispatching action

Dispatching
action is associated with
a delayed train

Yes

Return

»
Output: - stored Timed Event Graph

- stored dispatching action

Implement dispatching action

Calculate optimal postpone
actions

A

Calculate delay propagation
and
total passenger delay

total passenger delay
<

smallest delay

Store Timed Event Graph and
dispatching action

Figure6.16 Diagram of algorithm ‘Dispatch_optimal’ to firtthe most effective dispatching action.

When a dispatching action relates to a delayed,tthé dispatching action is implemented, using
one of the algorithms presented in this chapteindgJ$he changed timed event graph, the optimal
postpone actions are calculated. After implemerttiggdispatching actions, the delay

propagation is calculated. Finally, the calculadethy is compared with the smallest delay found

so far. If the calculated delay is smaller, theetihevent graph and the performed dispatching

actions are stored, after which the loop contin#isen no more dispatching actions are

available for testing, the loop ends and the mffsttve dispatching action is returned, along
with the changed timed event graph.

Implementing dispatching actions 76

This algorithm yields only one optimal dispatchangion. In order to get a set of dispatching
actions forming a complete tactic to revert toghbkeduled situation, several iterations have to be
done, which is implemented in the algorithm ‘Disipat The adapted timed event graph
according to the dispatching action of iteratioe @then used as input for iteration two, etc. A
flow diagram of this algorithm is shown in Figurd .

Start

Input: - Timed Event Graph; — Dispatch_optimal
- List of initial delays;

- List of possible
dispatching actions.

A

Store best dispatching action

Generate delay vector Z

A

Generate list of delayed trains Return

total passenger delay
<

Output: - stored Timed Event Graph;
- list of stored dispatching
actions.

previous total
passenger delay

Figure6.17 Flow diagram of the algorithm 'Dispatch’, calatihg a combination of dispatching actions.

Note that this algorithm contains similarities tgraedy algorithm, as the most effective
dispatching actions are stored during the itergtiaeess. Greedy algorithms are used frequently
in the literature to solve similar problems, seeifistance [5], where a greedy algorithm is used
to find effective dispatching actions in a modehggshe specific properties of an alternative
graph formulation. However, the philosophy behimel &approach proposed in [5] is aimed at
detailed modelling of railway operations (each klsignal is modelled), used for calculating
accurate speed profiles of the trains. This diffesm the idea behind this research project, which
is aimed at a quick, network wide, evaluation @& ittnpact of dispatching actions.

Different approaches can be evaluated

The output of the algorithm described here consistg e combination of dispatching actions
found during the optimization process. In practiogvever, situations can occur in which a
dispatcher is interested in comparing differentrapphes to react on the given delays in a
network. Particularly with respect to the dispatchactions investigated in this thesis, it may be
interesting to compare an approach in which shonig is allowed with another approach in
which short turning is not considered as an opttiorestore a delayed train service. This can be
implemented by running the algorithm ‘Dispatch’ ¢ej where the second time a modified
version of theChoicematrix, from which the dispatching action ‘shartrting’ has been
removed, is used. If this case, the dispatcheragets/erview of both options, and he can choose
which approach to follow depending on the situation

Limitations of this optimization approach

Some limitations to the described optimization apph deserve attention. The most important
limitation is that the possibility to carry out gegching actions regarding on-time trains is
omitted during the optimization process. The chéicehis methodology is based on the fact that
all dispatching actions regarded in this thesisfige order, postpone and short turning) are
aimed at reducing the delay propagation causedd&yaged train. Hence it is logical, and in

Implementing dispatching actions 77

most cases effective, to try applying these didpatractions to delayed trains only. However,
situations in which it is effective to apply onetbé aforementioned dispatching actions to an on
time train can theoretically exist, which coulddhetically lead to a sub-optimal solution.
Nevertheless, it is highly unlikely that postponargon-time train is an effective dispatching
action, so it is assumed that this limitation @ #igorithm will not lead to a considerable
discrepancy between the dispatching actions adwigéle algorithm and the dispatching actions
that are advisable in reality.

Another limitation is related to the complexitytbke problem that the optimization algorithm has
to solve. Even in small networks an enormous coathin of dispatching actions is theoretically
possible. For large scale networks, this leadsdonabinatorial explosion of the solutions space
for the problem. It is therefore of importance &velop intelligent optimization strategies for
finding effective combinations of dispatching an8oSome ideas for this will be discussed in
section 8.3.

6.6 Dispatching actions in max-plus notation

Timed event graphs can be translated into systémsuo-plus equations and vice versa. Since
most theory, algorithms and literature about maadgla railway system as a discrete event
system makes use of the max-plus notation, thaionsaof a switching max-plus system (i.e.
with the possibility to represent dispatching aasipwill be briefly discussed in this section.

6.6.1 Max-plus algebra: definitions

The following definitions of max-plus algebra wgnablished in [3], while a more detailed
description of max-plus algebra for railways carfdaend in [7].

First, the set of real numbers is extended forwitle max-plus algebra. Define:
£=-—00

R, =R0O{¢}

The two basic operations in max-plus algebra ararthx-plus algebraic addition and
multiplication, which are defined as follows formbersx, yLI R, :

max-plus addition: xO y=max(x,y),
max-plus multiplication: xOy=x+y.

n,
-

Matrix operations are defined as follows for matsid, BORT", COR Pand vectox O R
max-plus addition: [AD B]ij =g Ubh=max(a,p),

matrix — vector multiplication: [AD X]i =JaUx= leaX(%(+ %),
k=1

..... n

n

max-plus multiplication: [AD C]ij =[] a0 g =max(g + g)

= =1,...h

Implementing dispatching actions 78

6.6.2 Max-plus linear systems

The dynamics of a discrete-event dynamic systech(as a railway system), modelled so far by
timed event graphs, can be described by recursiyat®mns in max-plus algebra [7]. These
equations can be put together to a max-plus liggstem. First, the following variables are
defined:

x(ky = Thestate vectgrwherex(k) denotes the actual time at which evieotcurs for the
k-th time (recall that a periodic timetable is camesl).

A = Thesystem matrixwhere /\]; denotes the time that has to elapse after theerme
of eventj before eveni can occur. In the timed event graph, this is eqjaivt to the
arc weight of the arc originating from evgrand ending at even{recall the firing
rule for events, explained in section 4.4.2). Ifamo {, i) exists, thenA]; = ¢. Since
the timetable is periodi@ is the same for each perikd

Thetimetable vectgrwhered;(k) denotes the scheduled time for kaa occurrence
of eventi.

d(K)

A homogeneouax-plus linear system has no inputs from a tibletalhe recursive state
equation, with which the event times in periocan be calculated when the event times in period
k-1 are known, is:

x(k) = AOD X k-1), X0)= x, (6.3)

wherex, is the initial state vector, containing the eviiamies of the first occurrences of all events.
Since the timetable is not included in the systgsrdynamic behaviour depends on the
eigenvalues oA and the initial state vectas. In the real railway system, this can be viewed as
the situation that each train would depart andrarais early as possible in the scheduled order,
instead of waiting for their scheduled departumes.

Of course, in a scheduled railway system, each tas according to a timetable. The timetable
is introduced in the model as a timetable ved{k). The periodic timetable with cycle tinfe
(which usually equals 60 minutes) is modelled by:

d(k)=d(k-)O T, d0)= d, (6.4)

whered, is an initial timetable vector. A scheduled raywsystem can be represented by a
scheduled max-plus linear systesmcording to the following recursive equation:

x(K) = AO k-0 d R. (6.5)

6.6.3 The switching max-plus system

In aswitchingmax-plus system, the system matixan be different for each period. In the
preceding sections, algorithms for changing thediravent graph according to a given
dispatching action are discussed. As a timed eyeh is equivalent to a max-plus system, the
algorithms can in fact be used to adapt the systatnix A, given a set of dispatching actions.
The ability to change the system matrix can beuihet! in equation (6.5) by introducing a new
input variableu(k), representing the possible changes that canrbeat®@ut inA. This can for
example be implemented as a binary vector withtlengwheren is the number of possible
dispatching actions. In that casgk) = 1 means that dispatching actiois implemented in

Implementing dispatching actions 79

periodk. Since dispatching actions affect the system mairbecomes dependentfWhen
writing k + 1 instead ok, this yields:

x(k+1)= Atk u(R)O X RO d k1) (6.6)

Note that some dispatching actions could also affectimetable vector (for example when
changing a dwell time). However, in this projecpditching actions affecting the timetable
vector are not considered, since the goal of cagrgut the dispatching actions is to revert to the
original timetable.

Since dispatching actions are carried out withpilngoose of reducing the delays in the system, a
delay vector(K) is introduced. The delay vectyK) is defined as the difference between the
scheduled event time and the actual event timejsanelver smaller than zero:

z(k) = (K- d'B). (6.7)

Note thatz(k) cannot be negative, since in equation 6.6 thedwdld event timed(k + 1) are
added to the calculated event timx@s+ 1).
When no delays are present in the system the syaggnx is not changed in that period, so:

z(k) =0, which impliesu(k) =0, (6.8)
and therefore:

A(k,0) = A. (6.9)

6.7 Conclusion

This chapter contains the main result of this thashich is description of algorithms able to
change the timed event graph according to givepatiifiing actions. These are:

» ChangeOrder, for changing the sequence order ofrwas,

» Postpone, for postponing the arrival or departi@ toain at a station with conflicting

interlocking routes,

e ShortTurn, for applying a short turn.
Construction rules describing the necessary chatogeslect dispatching actions in the timed
event graph have been described and implementbése algorithms. The algorithms
ChangeOrder and ShortTurn make use of two otheritiigns for calculating the implications on
the hindrance constraints when deleting or insgim event in the scheduled order of events.
Furthermore, a simple optimization algorithm usingreedy approach has been described, which
will be used in the case study to calculate eféeatiispatching actions in a testing network.
Finally, the possibility to apply dispatching acitsoin max-plus algebra has been formally
described, yielding a switching max-plus system.
The consistency of the algorithms presented indh&pter will be tested in a case study, which is
the subject of the next chapter.

Case study 80

7 Case study

7.1 Introduction

This chapter is dedicated to the application oftle®ry presented in the preceding chapters to a
test case. In many fields of research, the test isassed for the calibration and/or validation of
the model. However, since this thesis is aimedhatving how dispatching actions can be
implemented in aexistingmodel (i.e. the max-plus model), the purpose efdhse study in this
thesis is to illustrate how the algorithms can beduin practice, and to examine the consistency
and plausibility of the results.

The outline of this chapter is as follows: In sectv.2 a fictive testing network with a timetable

is presented. Section 7.3 explains the way in wthhnetwork is used to test the algorithms. In
section 7.4 the results are presented and intepr8ection 7.5 contains a brief conclusion.

7.2 Testing network

7.2.1 Considerations leading to the used testing ne twork

In order to demonstrate all characteristics ofdéeeloped algorithms, a small testing network
has been made up. The choice for a hypotheticalanktinstead of (a part of) a real world
railway network is based on the following considierss:

* The algorithm ‘Postpone’ can only be demonstratedmstations with hindrance
constraints exist (e.g. stations with crossingrlotking routes). However, in the Dutch
railway network such stations typically have a cbogped track layout (i.e. Den Haag
HS). Stations with a simple track layout are mari¢able for easy interpretation of the
test results.

* Modelling a real world network requires a thorowgificulation of all headways, turning
times, running times etc., which is consideredfeasible for this research project.

A testing network is considered useful if it prazsdthe possibilities to apply the presented
algorithms in their full functionality, suggestitigat the following elements have to be present in
the test network:
» Trains with different operational speeds (i.e.ficity and local trains) are required since
changing the sequence order of such trains istecplarly useful dispatching action.
» Avrolling stock circulation modelled by trains tumg at their terminal stations is needed
to enable short-turning of trains.
» A station with crossing train lines is needed, ridev to get hindrance constraints
allowing the ‘Postpone’ algorithm to be useful.
* Alonger railway line with one or more stations wéé is possible to change the
sequence order of trains is needed, so that difféoembinations of) order changes can
be tested.

Furthermore, the following characteristics for timetable are required:

* The timetable has to be simple enough for easyprggtion of the test results.

* The timetable has to offer possibilities for digipég actions, which implies that the
traffic has to be dense enough to enable dispajaustions. However, the capacity
consumption has to be low enough to offer the figiky needed to implement
dispatching actions.

Case study 81

e Just asin a real railway system, time supplemg@aetsslack time) have to be included in
the timetable to enable small delays to settleatithe need for dispatching actions.

7.2.2 The used testing network and timetable

Based on the considerations in the preceding sedtie testing network shown in Figure 7.1 has
been produced. As can be seen, stations 1, 6 forxchZhe end of a railway line. The trains turn
here. The track layout of these stations is notvsh&tations 2, 4 and 5 are stations with
overtaking possibilities along the railway lineatsdn 3, where two railway lines merge (without
flyover) forms the heart of the testing network.

Station 1
1 2
1 Local service
Station 7 ! 2
; Station 2 HEm Intercity service
|: 3[4 Station 1

2
1] 2 3 4

|:| |:| Station 3

Station 2
Station 7

5 6 Station 3
1 2
Station 4 Station 4
——0—
3 4
1 2 Station 5
Station 5
3 4 Station 6
1 2
Station 6

Figure7.1 Testing network for the case study. Figure7.2 Schematization of the timetable used
for the test case.

Figure 7.2 contains a schematization of the lirm pif the test case. A thick line denotes a train
line running in a 30 minutes service. One intertiitg runs between stations 7 and 6, via station
3. Another intercity line connects station 1 witht®n 6. A local service runs between stations 1
and 6 as well. Note that all train lines sharesiéwme infrastructure between stations 3 and 6.
The hourly timetable of the train lines runningiiorth — south direction are shown in Table 7.1,
while the trains in the opposite direction candenid in Table 7.2. A through train is indicated
by italic print of the departure time. In the tegtitimetable, each train line runs 6 times in total
hence, with a 30 minutes service on each line,cqpiately 3 hours are simulated.

A time-distance diagram of the corridor betweetiatas 1 and 6 is shown in Figure 7.3. The
individual train trips are numbered with three-tligain numbers, where the first digit
corresponds with the line number. Note that in@ted, direction north — south, line 5 (local
service) is scheduled to be overtaken by line tefaity), and in direction south — north, line 6
(local service) is scheduled to be overtaken by Ar{intercity). Note also that the local trains
have longer scheduled running times than the iityarains (i.e. the local trains are slower).

Case study 82

Table7.1 Timetables of trains in north - south directiontdést network (d = departure, a = arrival).

Linel: Intercity | Line3: Intercity | Line5: Local
Station 7 — Station 1 — Station 1 —
Station 6 Station 6 Station 6
Station 1 d. .15 .45 21 51
Station 2 a. | | .28 .58
d. .20 .50 .29 .59
Station 7 d. .00 .30 | | | |
Station 3 a. A1 41 .26 .56 .36 .06
d. 13 43 .28 .58 .38 .08
Station 4 a. | | | | .45 15
d. .18 .48 .33 .03 51 21
Station 5 a. .28 .58 43 13 .04 .34
d. .30 .00 .45 .15 .05 .35
Station 6 a. .36 .06 51 A1 13 43

Table 7.2 Timetables of trains in south - north directiontést network (d = departure, a = arrival).

Line2: Intercity | Line4: Intercity | Line6: Local
Station 6 — Station 6 — Station 6 —
Station 7 Station 1 Station 1
Station 6 d. .16 .46 .01 31 .09 .39
Station 5 a. .22 .52 .07 .37 A7 A7
d. .24 .54 .09 .39 .18 .48
Station 4 a. | | | | 31 .01
d. .34 .04 .19 49 37 .07
Station 3 a. .39 .09 24 54 44 .14
d. 41 A1 .26 .56 .46 .16
Station 7 a. .52 22 | | | |
Station 2 a. | | .53 .23
d. .32 .02 .54 .24
Station 1 a. .38 .08 .01 31
1 2 3 4 5 6
| L L] L] L] il
8:30 FoYa P .‘?Q')\ 504 10+
\ \
8:40 7

8:50

jf
|

9:00

9:10

9:20 50

/]

9:30

Figure7.3 Time-distance diagram of hourly schedule in tettvork. Local trains are coloured blue. For
clarity, only one direction is shown. Note that trens of line 1 merge with the corridor at statig.

Case study 83

7.3 Testing methodology

7.3.1 No real time simulation

Although the algorithms presented in this thesisraeant to operate in the real time environment
of the dispatchers’ office, no real time simulatisrcarried out for the test case. Instead, differe
delay scenarios are used as input, and the ewauaitidifferent dispatching actions, leading to a
(set of) dispatching actions yielding the best itesa the output. This is schematized in Figure
7.4. The real time implementation of an evaluatawl for dispatching actions is a subject
beyond the goal of this thesis. Furthermore, thpwiwf a simulation of a real time environment
would be less suitable for interpretation when isn@ainly interested in the algorithms used for
theimplementatiorof dispatching actions in the max-plus model.

\‘ Set of

Evaluation of dispatching

Timetable | || || — | dispatching | —» | SSPECT
- actions actions yielding

/ best results

Figure7.4 Schematization of one test run.

Model of network ?H

Set of initial delays o

7.3.2 Input data

All variables as defined in chapter 5 (Data strrefor timed event graphs) are needed for
running the test case. This section explains h@wehuired data is generated.

Thematrix Event

The first 5 columns of the matrEventare created before the actual timed event graph is
generated. For each train line 1...6 all events eftoain trip are created by hand, after which a
small script is used to multiply the result sixdisn(recall from the previous section that eacimtrai
line runs 6 times in the testing timetable, andldoom section 4.6 that the algorithms only
work in an acyclic model). As an example, the mamyaut for train line 5 is shown in Table 7.3.
When multiplying this data 6 times, the train numsb&re increased every time.

The linked lists in columns 6 and 7, containing shbeduled order of events at a timetable point,
are generated automatically by the ‘Generate_THga&rdhm when building the timed event
graph.

Table 7.3 Example of manual input for one train line.

TN LN TTP 10 type

(Train number) (Line number) | (Timetable point)| (I0-point)

501 5 1 1 4 (‘start’)

501 5 2 1 1 (‘arrival’)
501 5 2 3 2 (‘departure’)
501 5 3 3 1 (‘arrival’)
501 5 3 5 2 (‘departure’)
501 5 4 1 1 (‘arrival’)
501 5 4 3 2 (‘departure’)
501 5 5 1 1 (‘arrival’)
501 5 5 3 2 (‘departure’)
501 5 6 1 3 (‘end’)

Case study 84

Thetimetable vector d

The same approach is followed when creating thettible vectod: the scheduled event times
for one train run are created manually, after wisicdmall script multiplies the input 6 times,
thereby increasing the scheduled event times viitimiBiutes each time, such that each train line
runs in a 30 minutes service.

Amount of travellers
As explained in section 6.5.3, an amount of tra&vslis attached to each event in the model.
Tables containing the used amounts of travellensbeafound in appendix 10.2.

Turn data

As in a real railway system, train turns are ineldidh this model as well. The turns can be found
in Table 7.4. All turns have a minimum turning timie6 minutes, but the actual layover times are
longer due to the schedule, yielding extra slatletfor absorbing delays.

Table7.4 Train turns in rolling stock circulation of thtest case. The minimum turning time is 6 minutes.

Feeder | Connecting | Scheduled lay- Feeder | Connecting | Scheduled lay-
train train over time (min.) train train over time (min.)
101 203 10 301 403 17
102 204 10 302 404 17
103 205 10 303 405 17
104 206 10 304 406 17
201 102 8 401 303 37
202 103 8 402 304 37
203 104 8 403 305 37
204 105 8 404 306 37
205 106 8 601 503 20
501 604 26 602 504 20
502 605 26 603 505 20
503 606 26 604 506 20

Hindrance conflict data

As can be seen in the testing network shown inrgigul, conflicting train routings are possible
in station 3. In particular, trains departing ie tirection of station 7 have to cross the incoming
track of the railway line from station 1. When afahe conflicting trains has passed the
crossing, the track is entirely free for the ottnain, which means that the conflict duration is
relatively short. A duration of 2 minutes is usedthese crossing conflicts. The conflicts to be
included in the model are shown in Table 7.5.

Table 7.5 Conflicting train movements in testing network.

Train movement Conflicting train movement Conflict duration
Departure of line 2 to station 7 Arrival of linéff®m station 1 2 minutes
Departure of line 2 to station 7 Arrival of linéffdm station 1 2 minutes

Recall the implementation of conflict matrices aneir notation explained in section 5.2.7. For
each combination of line numbEN, timetable poinT TP and 10-pointiO a conflict matrix exists
in which each row represents a train movement mbimty with such a combination, containing
the following elements:

Case study 85

Conflict LN, TTP, 10}(r) = (LN®°"""9 jOo™e™. t)

where for each row.

LINconfieting = line number of the conflicting line,
|Qcenflicting = 10-point used by the conflicting line, N
t = minimal amount of time the conflicting train 0K has to wait foLN.

For the test network, this yields the following @ matrices:

Conflictd2, 3, 2} = {3’ 3 2}
53 2
Denoting that line 2 at timetable point 3 usingd@int 2 is conflicting with:
* line 3 using 10-point 3 with a conflict duration diminutes
* line 5 using 10-point 3 with a conflict duration dfminutes

Conflictd3, 3, 3} =[2, 2, 2]

Denoting that line 3 at timetable point 3 usingd@ant 3 is conflicting with line 2 using 10-point
2 with a conflict duration of 2 minutes.

Conflictd5, 3, 3} =[2, 2, 2]

Denoting that line 5 at timetable point 3 usingg@int 3 is conflicting with line 2 using I0-point
2 with a conflict duration of 2 minutes.

The other matrice€onflict{ LN, TTP, 10} are empty, denoting that no other hindrance dotsfl
occur in the network. Note that theadwayconflicts are implemented later by the ‘Generate
TEG’ algorithm.

Generating the timed event graph
With the input data described above, a timed egeaqth is generated using the ‘Generate_TEG’
algorithm described in section 5.3.3. This yielus following data:

* TheEventmatrix, now completed with the linked lists.

* The arclistA.
After this, the adjacency listsdjheadandAdijtail are created using the algorithm ‘Arclist2adj’,
described in section 5.2.4. Now, the timed eveaplris ready to use for the case study.

List of possible dispatching actions

As explained in section 6.5.2, a list of possibipdtching actions has been created using the
algorithm ‘Generate_Inventory’. The output, tBeoicematrix, was used as input for the
optimization algorithm ‘Dispatch’ described in deat6.5.4, yielding the results presented in the
next section.

Note that it is assumed that trains can overtakh ether (i.e. the sequence order can be
changed) at each station in the testing networlte ldiso that short turning is considered possible
at each station in the testing network, althoughsthitches and tracks needed for this are not
shown in the track layout of Figure 7.1.

Case study 86

7.4 Results

Two delay scenarios have been tested. The follos@&agions contain descriptions of the delay
scenarios and the respective results. For eaclasoethe following parameters are calculated:

» advised dispatching actions when no short turréreglowed, calculated by the

‘Dispatch’ algorithm,

» advised dispatching when short turning is allowed,

» the delay propagation when no dispatching actioagpplied,

» the delay propagation when dispatching actiongppéied,

» the first order delay (i.e. the delay resultingnfrmitial delays),

* the consecutive delay (i.e. the delay caused ydmiopagation).

In this project, first order delay is defined akkdws:

First order delay is the delay resulting from a@ivset of initial delays. In the timed event graph,
the first order delay is transmitted via runninghgé and dwell time.

The consecutive delay is defined as follows:

Consecutive delay is the delay resulting from del@pagation caused by headway constraints,
hindrance constraints, transfers and turns.

The results of each scenario are interpreted asulissed using time-distance diagrams.

7.4.1 Delay scenario 1: Departure of train 102 dela yed

Reason for thisdelay scenario

The rolling stock circulation of lines 1 and 2 haktively short layover times (10 minutes at
station 6 and 8 minutes at station 7), which makese lines interesting to compare the
dispatching actions ‘change order of trains’ arwbf$ turning’ with the delay propagation when
no dispatching actions are applied.

Train 102 is the second train trip of line 1 dejpgrfrom station 7, which is chosen for a delay
scenario since a delay of train 101 (the firstravould cause less delay propagation, which is
not insightful for a test case.

Expected results
The following results are expected:

* In case of small delays, it should be advised mattry out any dispatching actions,
since slack times and layover times can make uthéodelay.

* In case of bigger delays, order changes are exgphdatparticular, it is expected that the
local train, which is scheduled to be overtakernhgydelayed train in station 4, is advised
not to wait for this train anymore.

* In case of severe delays, the advice to turn befmecheduled turn station is expected

Case study 87

Calculated results

Five different delays ranging from 5 minutes toni2fiutes are tested in this scenario. For each
delay, the advised dispatching actions minimizimgtbtal passenger delay calculated using the
‘Dispatch’ algorithm are described in Table 7.6eTdelay propagation in the situations with and
without dispatching actions are summarized in Table

In case of initial delays of 5 minutes and 10 masyit is advised to apply no dispatching actions
at all. The delays will settle automatically by saming the slack times in the timetable and at
the turning stations. The first dispatching aci®applied when the delay amounts 15 minutes.
When a dispatching action is applied, the practioglications for the train service are described
between brackets.

Table 7.6 Advised dispatching actions (no short turninguied) and total delays in scenario 1.

Delay | Advised dispatching actions
(min.) | (without short turning)

+5 Do nothing

+10 Do nothing

+15 1. Switch order train 102 and train 502 betwstations 4 and 6.
— (‘Cancel scheduled overtaking of train 502 byrtra02)

+20 1. Switch order train 102 and train 502 betwstations 4 and 6.
— (‘Cancel scheduled overtaking of train 502 byrtrad?2’)

2. Switch order train 102 and train 303 betweeticgta 3 and 5.
— (‘Let train 102 run behind train 303 between stadi 3 and 5")

3. Switch order train 204 and train 604 betweeticsta 4 and 3.
— (‘Cancel scheduled overtaking of train 604 byrtrad4’)

+25 1. Switch order train 102 and train 502 betwstations 4 and 6.
— (‘Cancel scheduled overtaking of train 502 byrtra02")
2. Switch order train 102 and train 303 betweetizsta 3 and 6.
— (‘Let train 102 run behind train 303 until arria station 6’)
3. Switch order train 204 and train 604 betweetista 4 and 3.
— (‘Cancel scheduled overtaking of train 604 byrtra04")
4. Switch order train 105 and train 505 betweeticsta 4 and 5.
— (‘Move scheduled overtaking of train 505 from &tat4 to station 5')

Table7.7 Summary of delay propagation with and withogpdiching actions.

Delay propagation without Delay propagation with dispatching
dispatching actions actions
Initial Total first | Total Total Total first | Total Total
delay order delay | consecutivel passenger | order delay| consecutive passenger
delay delay delay delay
5 24 7 2600 - - -
10 64 31 8700 - - -
15 104 128 22010 104 62 15960
20 144 326 42970 144 132 29110
25 184 632 72960 184 229 41190

Short turning is a dispatching action with largeasequences for the travellers, since they have to
wait for the next train. Therefore, the possibitibyuse this dispatching action is calculated
separately. When short turning is included in thlewdation, the advice stays the same for the

Case study 88

delays of 5, 10, 15 and 20 minutes. Only the defd36 minutes yields better results when short
turning is applied, as shown in Table 7.8.

Table 7.8 Alternative dispatching action with short turgim scenario 1.

Delay | Advised dispatching actions
(min.) | (with possibility for short turning)

+25 1. Short-turn train 102 at station 3.
— (‘Hence, train 204 is cancelled between statioaa® 3’)

Table 7.9 Summary of delay propagation with and withosgpdiching actions, when short turns are
allowed.

Delay propagation without Delay propagation with dispatching
dispatching actions actions
Initial Total first | Total Total Total first | Total Total
delay order delay | consecutivel passenger | order delay| consecutive passenger
delay delay delay delay
25 376 440 72960 49 0 37700

Discussion of the results

The delay propagation when no dispatching actioaspplied in case of a delay of 25 minutes
for train 102 is shown in Figure 7.5. Each traifoiced to run in the scheduled order due to the
lack of dispatching actions, which can be cleaglgrsfrom the pattern of train 502. This train is
scheduled to be overtaken by train 102 at stati@nd therefore has to wait almost half an hour
for the overtaking to take place.

In contrast, the situation when the advised didpatcactions are applied is depicted in Figure
7.6. In this diagram can be seen that train 502ti@iel 303 are allowed to rureforethe delayed
train 102, and that train 102 gets an almost ctAfilee path along the track.

7 3 4 5 6
[L] L] L i
. HNA 2S00 Ya
8:40 5, 3 5
8:50
9:00 103
9:10 R0 B —
9:20 — —
\
030104 e e
\ \
9:40 1904

Figure7.5 Time-distance diagram of delay propagation withdispatching actions when train 102 has
25 minutes delay.

Case study 89

7 3 4 5 6
[| L L L |
840 50~ 302 5N
8:50 —
9:00 103 03
\ \
\ \‘
9:20 R — -
\
030M0¢ 0a_ —
9:40 1904 i

Figure7.6 Time-distance diagram of delay propagation wiispatching actions (no short turns allowed)
when train 102 has a delay of 25 minutes.

Some other interesting observations can be maden$tance in case of a delay of 20 minutes,
the order of trains 102 and 303 is switched betvgations 3 and 5, and not until the terminal
station of both trains, station 6, as shown in Fégl7. This can be explained when regarding the
scheduled layover times at station 6. Train 102ahaatively short layover time (10 minutes),
while train 303 has a longer layover time (17 masyit Hence, when train 102 can arrive at the
terminal station before train 303, less delay gppgated via the turn of train 102. This is a ttesul
of the fact that the algorithms evaluate the eiffectess of dispatching actions on network level.

7 3 4 5 6
= = = = |
8:40 50~ 30> \QQ/\
8:50 10>
9:00 103 03
\ \
1503 ——
9:10 ~
9:20 \
9:30 -10g e
\ \
5 T
9:40 =20q
Figure7.7 Time-distance diagram of train service with @igghing actions when train 102 has a delay of

20 minutes.

Influence on the capacity consumption

Note that due to the delayed train 102, betweenoappately 9:00 and 10:00 more trains run
along the track from station 4 to station 6 thathim situation without delays. This leads to a
higher capacity consumption, which has been cakedibith the algorithm ‘ExploitationRate’
presented in section 5.5, leading to the followiespults:

Capacity consumption on the railway track betweatians 4 and 6,
between 9:00 and 10:00 hours:

Original schedule: 37 %

In the disrupted situation:]| 45 %

Case study a0

Note that 45 % is still sufficient for a stable\dee. Obviously, the delayed train 102 is missing
in the hour between 8:00 and 9:00, which leadsltovar capacity consumption during that
period.

7.4.2 Delay scenario 2: Departure of train 502 dela yed

Reasonsfor thisdelay scenario

Train 502 is a local train of line 5 starting at&in 1 and ending at station 6. The interlocking
route of this train line crosses the routing oélihat station 3. Therefore, this delay scenario
offers the possibility to study the ‘postpone’ aigfum, as well as the ‘change order’ algorithm.

Expected results
* In case of small delays, no advised dispatchingr&tare expected.
* In case of bigger delays, postponing actions apea®d, since conflicting interlocking
routes with the delayed train at station 3 existtfiermore, order changes are expected.

Calculated results

As in the previous delay scenario, 5 different gelare tested. The advised dispatching actions
calculated by the optimization algorithm are showmable 7.10. A summary of the delay
propagations with and without dispatching actiarsthiis scenario is shown in Table 7.11.

Table7.10 Total delays with dispatching actions in scea&i

Delay | Advised dispatching actions
(min.) | (without short turning)

+5 Do nothing

+10 1. Switch order train 502 and train 102 betwstations 3 and 4.

— (‘Let train 502 run behind train 102 and cancel ¢ivertaking of train 502 at
station 4)
2. Postpone the arrival of train 502 at statiom@l train 202 has departed.

+15 1. Switch order train 502 and train 102 betwstations 3 and 4.

— (‘Let train 502 run behind train 102 and cancel ¢tivertaking of train 502 at
station 4)
2. Postpone the arrival of train 502 at statiom@l train 202 has departed.

+20 1. Switch order train 502 and train 102 betwstations 3 and 4.
— (‘Let train 502 run behind train 102 and cancel ¢tivertaking of train 502 at
station 4)
2. Postpone the arrival of train 502 at statiom@l train 202 has departed.
3. Switch order train 502 and train 303 betweeticsta 4 and 6.
— (‘Let train 303 overtake train 502 at station 4.")

+25 1. Switch order train 502 and train 102 betwstations 3 and 4.
— (‘Let train 502 run behind train 102 and cancel ¢lvertaking of train 502 at
station 4)
2. Postpone the arrival of train 502 at statiom@l train 202 has departed.
3. Switch order train 502 and train 303 betweetista 4 and 6.
— (‘Let train 303 overtake train 502 at station 4.)

Case study 91

Table7.11 Summary of delay propagation with and withospdiching actions.

Delay propagation without Delay propagation with dispatching
dispatching actions actions
Initial Total first | Total Total Total first | Total Total
delay order delay | consecutivel passenger | order delay| consecutive passenger
delay delay delay delay
5 19 4 1230 - - -
10 50 62 8330 50 5 2870
15 98 198 24540 98 0 5080
20 148 460 52290 148 25 8930
25 198 910 96430 198 74 16930

When the possibility to schedule short turns fefore the scheduled turning station) is included,
the advice stays the same. This can be explaindaebiact that train 502 has a relatively long
layover time (26 minutes) so that a delay of 25utes can be absorbed almost entirely at the
turning station (the minimum layover time is 6 nties).

Discussion of theresults

A difference with scenario 1 is that dispatchingats are advised already for the relatively
small delay of 10 minutes in scenario 2, while tétay did not require dispatching actions in
scenario 1. Figure 7.8 shows a time-distance diagrfathe delay propagation for this situation
(train 502 delayed by 10 minutes). It can be shahttain 102 is hindered by train 502 on the
track between stations 3 and 4. Figure 7.9 showsithation with dispatching actions (i.e. order
change of trains 502 and 102 between stations 3 arihis is very effective, since train 102, an
intercity train, is not hindered anymore, and 5utés of the delay of train 502 are absorbed at
station 4 since the time-consuming overtaking ixelled. The graph shows clearly that the
dwell time of train 502 is reduced to the minimufriLoninute, instead of the scheduled 6
minutes including the overtaking action.

1 2 3 4 5 6
8:30 @\ ﬁﬂh\\ ia,\ia\
8:40
B

8:50 é5{%3\ N\\WZ\
9:00 \‘G\ N\
9:10 B P —

' I
9:20 k50,
9:30 \ E—

Figure7.8 Time-distance diagram of delay propagation withdispatching actions when train 502 has a
delay of 10 minutes.

Case study

8:30

8:40

8:50

9:00

9:10

9:20

9:30

Figure7.9 Time-distance diagram of delay propagation wdigpatching actions when train 502 has a

The results for the initial delay of 20 minutes shewn in Figure 7.10 and Figure 7.11, for the
situations without and with dispatching actiongeegively. As with scenario 1, a fixed sequence
order of the trains causes heavy delay propagétidhis case from the initially delayed train

502 to trains 102 and 303).

Other causes of delay propagation are the hindremestraints at station 3. The delay of train
103 is caused by the hindrance conflict betwedndra02 and 202 at station 3. The delay of train
202 caused by this conflict is propagated to ti#i8 via the turn at station 1. In Figure 7.11 can

1 2 3 4 5 6
X I
\my\ —
I
5 \ e

delay of 10 minutes.

be seen that train 103 runs on time when the dopestponing actions are applied.

Finally note that the scheduled overtaking of t&d2 by train 102 is in the rescheduled situation

replaced by an overtaking of train 502 by train.303

8:40

8:50

9:00

9:10

9:20

9:30

9:40

Figure7.10 Time-distance diagram of delay propagation withdispatching actions when train 502 has

. 2 : : 3 g
MQ\\\\TYJZ\
\\\
R
\ \\

a delay of 20 minutes.

Case study 93

1 2 3 4 5 6
B L L L = L p il
8:40 50 302 561

8:50

9:00

2 T
9:10 N‘

R

9:20

\
9:40 —

Figure7.11 Time-distance diagram of delay propagation wdispatching actions when train 502 has a
delay of 20 minutes.

il
/]

9:30

7.4.3 Influence of the number of passengers

As explained in the description of the input dataection 7.3.2, amounts of passengers are
attached to each event in the model of the test dashis section, the influence of the number of
passengers on the advised dispatching actiongeftyisplayed using delay scenario 1.

In order to show the influence of the number ofspagers on the results, it is investigated
whether the advised dispatching actions chandeifimount of passengers in trains 102 and 204
is lowered.

The amounts of passengers used in the test casgedannd in appendix 10.2, but for
completeness the amounts of passengers for tr@tharid 204 are shown here as well, see Table
7.12. In the table can be seen that a relativeggelamount of passengers use train 102 between
stations 5 and 6 (200 passengers embarking imistati300 passengers disembarking at station
6, which is the terminal station). Train 204, rurmin the opposite direction, is used by 200
passengers, embarking at station 6.

Table7.12 Amounts of passengers for trains 102 and 204 inceese.

Train 102 Train 204
Amount of embarking / Amount of embarking/
Station alighting travellers Station alighting travellers
7, departure 200 6, departure 200
3, arrival 50 5, arrival 50
3, departure 50 5, departure 50
4 (through) 0 4 (through) 0
5, arrival 100 3, arrival 100
5, departure 200 3, departure 100
6, arrival 300 7, arrival 200

It is expected that short turning becomes moredealtle when train 102 is delayed if less
passengers use trains 102 and 204 between statan 6. To investigate this, the amounts of
passengers are changed into the values shown la T4l8, where only 100 passengers
disembark from train 102 at its terminal statiomg @nly 50 passengers use train 204 from its
start at station 6.

Case study 94

Table 7.13 Modified amounts of passengers for trains 102 aidl 2

Train 102 Train 204
Amount of embarking/ Amount of embarking/
Station alighting travellers Station alighting travellers
7, departure 200 6, departure 50
3, arrival 100 5, arrival 20
3, departure 50 5, departure 20
4 (through) 0 4 (through) 0
5, arrival 100 3, arrival 20
5, departure 50 3, departure 120
6, arrival 100 7, arrival 150

A test run using the algorithm ‘Dispatch’ showstttee advices have changed indeed, as can be
seen in Table 7.14, where the results with the tedi@assenger amounts for trains 102 and 204
are shown. Note the two differences with the oagiest case of scenario 1 described in section
7.4.1:
1. When train 102 is delayed 10 minutes, an order ghanadvised, while in the original
test case ‘do nothing’ was advised.
2. When train 102 is delayed 20 minutes, a shortigiadvised, while in the original test
case order changes were advised.
Difference 1 can be explained by the time-distatiagrams of Figure 7.12 and Figure 7.13. The
former shows the delay propagation when no disjpajcdctions are carried out (which is the
advice in the original test case for a delay ofriifutes of train 102). It can be clearly
distinguished that train 502 has to wait more thaminutes at station 4 for train 102 to come
through.
When the amount of passengers in train 102 is lesvarain 502 gets more relative importance
in the calculation of the most effective dispatchactions, which leads to the new advice of
moving the overtaking to station 5, causing ledaydfor train 502. This is visualized in Figure
7.13.

Table 7.14 Advised dispatching actions with lowered passeagesunts for trains 102 and 204 (short
turning is allowed).

Delay | Advised dispatching actions
(min.) | (with short turning)

+5 Do nothing

+10 Switch order train 102 and train 502 betweatiais 4 and 5.
— (‘Move scheduled overtaking of train 502 by trab® from station 4 to
station 5)

+15 Switch order train 102 and train 502 betweatiais 4 and 6.
— (‘Cancel scheduled overtaking of train 502 byrtrad2’)

+20 Short-turn train 102 at station 3.

+25 Short-turn train 102 at station 3.

Case study

95

8:30

8:40

8:50

9:00

9:10

9:20

9:30

& : . a S
302 50+ 10+
10> 502 D —
2 —
102 QQS\\
~ N\
1304 T

Figure7.12 Time-distance diagram of delay propagation wtram 102 as a 10 minute delay and no
dispatching actions are carried out.

8:30

8:40

8:50

9:00

9:10

9:20

9:30

& el = 2 g
302 YaP 10+
105 502 — T
2 —
102 QQS\\\
503 T
304 =

Figure7.13 Time-distance diagram of advised dispatchindgpoastwhen train 102 has a 10 minute delay
and a lowered amount of passengers.

The comparison between the delays of the indivitha@ts in Table 7.15 shows the difference.

With the lowered amount of passengers in trainsgk@204, slightly more delay for these trains
is accepted, while the delay of train 502 is lowlerensiderably.

Original amounts of passengers

Train number Delay (min.)
102 64
204 3
502 27
303 1

204

Less passengers in trains 102 and
Train number Delay (min.)
102 67
204 9
502 10
604 1

Table7.15 Comparison of individual train delays with difat amounts of passengers.

The second difference can be explained directiyftioe fact that less passengers are affected by
a short turn, leading to the outcome that thisatidfing action becomes more favourable when
the turning trains carry less passengers.

Case study 96

7.5 Conclusion

This chapter contains a case study in which thergtgns for evaluating dispatching actions,
presented in chapter 6, are tested on a fictivengesetwork to investigate the consistency and
plausibility of the results. As an objective furtj the total passenger delay has been used.

The expectation was that in case of small delayslispatching actions can reduce the passenger
delay. When the delay gets higher, order changeexgrected to be effective to reduce delay
propagation. Short turns are expected to be efecily in case of big delays (i.e. more than 20
minutes), since the objective function takes irdooaint the fact that passengers have to leave the
train if a short turn is applied. The results obtdelay scenarios met these expectations, showing
that:

1. The developed algorithms implement the dispatchictgpns in a consistent way.

2. The algorithms can be used effectively to evaldapatching actions.

One delay scenario has been used to test the efféed chosen objective function on the
dispatching actions generated by the optimizatigarahm. This showed that the amount of
passengers influences the results in such a wayhth@enerated dispatching actions show an
emphasis on reducing the trains carrying passengers

Conclusions 97

8 Conclusions

This chapter contains the conclusions of the rebesubject presented in this thesis. The main
goal was to implement railway dispatching actiona max-plus model, and to create an
algorithm which can be used to evaluate dispatchatipns.

Section 8.1 presents the main conclusions of tigsis. Section 8.2 offers an outlook on the
applicability of the developed theory in practiediere a distinction will be made between offline
and online applications. Some recommendationsutoiré research will be discussed in section
8.3.

8.1 Main conclusions

A dispatching action is an intervention in the tedfffic system with the purpose of solving a
conflict between train runs, thereby aimed at ratydelays and their propagation. Dispatching
actions in which the line routes and sequence srafetrains remain unchanged are called traffic
control actions. The other dispatching actionspivinmg changes in the line routes and/or
sequence orders of trains, are called reschedatitigns.

Over the last decades, research has been cartiédl develop tools able to calculate the most
optimal approach for solving conflicts in railwagtworks. Yet, a tool for quick evaluation of
dispatching actions on a network scale level acigg real time decision support system for
dispatchers does still not exist.

In this thesis, algorithms that can be used effeltito evaluate dispatching actions on network
level using max-plus theory have been presentddteen shown that the timed event graph
representation of a max-plus system is suitabl¢hi®development of such algorithms.
Particularly the advantage of being able to viggaihe implications of dispatching actions on the
model has been proven useful for the developmetiteo&lgorithms in this thesis. The detail
level of the model is aimed at a network wide egabn, which means keeping the model and the
algorithms simple and time efficient. Using thisdad the following dispatching actions have
been implemented as algorithms:

* Change the sequence order of trains.

* Short-turn a train (i.e. at a station before itsnieal station).

» Postpone the departure or arrival of trains atsstatwith conflicting interlocking

routes.

For the development of these algorithms, so-cadledstruction rules’ have been specified for
each dispatching action. These construction rudssribe the changes in the timed event graph
necessary to represent the corresponding dispgtelstion, and follow immediately from the
implications of the dispatching action on the motielpractice, more different dispatching
actions can be evaluated with the theory develapéus thesis. Changing the sequence order of
trains can for instance be used to move a schedwiediaking to another station, which is
technically a different dispatching action. Furthere, the described construction rules can be
used to develop other algorithms, for instancecéarcelling train runs, introducing new train
runs, etc.

In order to use the algorithms for finding optind&patching actions for a given network and a
set of initial delays, they can be implementedriroptimization algorithm. In this project, a

Conclusions 98

greedy approach has been used. To maximize tHeatiweness, order changes of trains have to
be evaluated in combination with the appropriatstpanements of arrivals and departures of the
involved trains when conflicting interlocking rostare present in the network. The total
passenger delay in the network served as the olgdanction, thereby including the negative
effects for passengers when train trips are padhcelled due to short turning of delayed trains.
Although global optimality has not been checket&sh case with two delay scenarios showed
that the generated dispatching actions are plauaitdl consistent.

8.2 Applicability in practice
The developed algorithms can change an existingphaxmodel, represented by a timed event

graph, in order to evaluate dispatching actionss €an be used for offline and online
applications, as will be briefly described in thextion.

Offline applications
Offline applications for the evaluation of dispatahactions are particularly useful for analysis
of railway operations and in the timetable desigycpss. They enable a timetable designer for
example to:
» Assess the flexibility of a timetable with regaeodthe application of dispatching actions,
» Assess the stability of possible dispatching astion
» Design emergency schedules in case of disruptions,
» Use the results of offline evaluations to decidethibr certain timetable paths can be
inserted in an existing timetable or not.

For such applications, the developed algorithmddcfon instance be used in PETER, an offline
timetable evaluation tool described in [7], to cddt¢e the delay propagation in situations where
dispatching actions are applied. PETER is originailended to evaluate periodic timetables and
therefore makes use of a periodic max-plus modavéver, an acyclic model is more suitable
for the operations needed for the evaluation giatishing actions. Therefore, PETER is to be
expanded with the possibility to ‘unfold’ the cyctimed event graph as described in section
4.6.2 before algorithms for modelling dispatchimgi@ans can be implemented.

Online applications

The ultimate goal of the research subject dealt inithis thesis is to enable real time evaluation
of dispatching actions to support the dispatchbke dlgorithms developed in this thesis can be
used for this if the following requirements ardfifldd:

* A max-plus model of the existing railway system tebe available, which implies that
detailed knowledge of the timetable, minimum rugnémd dwell times, and conflicting
routes of train pairs with headway times has tavzlable.

» The online application has to be provided withdb&ual delays in the network. Data
streams that can be used for this are alreadyadlailn the TNV system at the Dutch
dispatchers’ offices.

* The online application has to be able to cope walitpossibly occurring dispatching
actions and disruptions in the network, since gedumax-plus model has to be kept
consistent with the real situation.

When the aforementioned requirements are fulfilted,following online applications are
possible:
» Implementation as a tool for the dispatcher to wstsl and compare the effectiveness of
different dispatching actions when he has to chbeseeen different approaches to react

Conclusions 99

on a disruption (e.g. one approach including stusrts and another approach where short
turns are not allowed).

* Implementation as an online tool calculating thestadfective approach for the
dispatcher to react on a disruption.

» Visualization of the train traffic including thegliatching actions in time-distance
diagrams to show dispatchers that the proposeatdisipg actions are effective. A visual
representation makes it easier for employees wadadecision since they can
immediately recognize the impacts of the propossgadching actions, giving them the
knowledge and confidence needed to decide quickbase of disruptions.

* The max-plus model which has been changed and eghdatording to the dispatching
actions during the day can be stored for lateryaiglas it contains a model of the train
service as actually carried out.

8.3 Recommendations for future research

Carrying out this research project has brought tibauny ideas for future research. The most
important suggestions are discussed in this section

Scalelevel of the used model
In the current model, stations are modelled asekithox (a timetable point), so what happens
inside is unknown. When dispatching actions regaytle interlocking routes of trains have to
be implemented (such as: changing the platfornkto&@ train), the stations have to be modelled
in more detail. However, this can have implicationghe running time of the algorithms,
endangering their ability to run in real time.
A possibility to avoid this problem could be to wskess detailed model to calculate dispatching
actions on network level, and to use a more detarledel to calculate dispatching actions on
station level afterwards when necessary. A morailéet model can for instance be obtained by:
* Modelling all different platform tracks of a statiseparately, instead of modelling one
timetable point as a black box,
» Modelling each switch and crossing separatelyhavitterlocking routes and the
conflicts between them can be modelled in greaildet
» Modelling all block signals separately.
The purpose of the model thereby determines widaledevel should be used. As shown in this
thesis, control and analysis on network level dasgequire the aforementioned level of detail.
However, it is recommended for all future reseamgtthis subject to carefully consider the level
of detail of the model in relation with its purpose

M odelling dispatching actions at network level

The dispatching actions implemented in this thegmly regard switching the sequence order of
trains, or letting a train turn before its schedulgning stations. However, as described in
chapter 3, more dispatching actions are possible.

Dispatching actions with implications at a highevrdl, (i.e. at network level) can be effective in
case of bigger disruptions such as a blocked tetck]t is recommended to investigate the
implications of such dispatching actions (e.g.aeting a train on network level) on the max-plus
model, since the model has to be capable of repiiagehese bigger dispatching actions when
used in practice. The construction rules and algms in this thesis may form a start for this.

Conclusions 100

Optimization strategy

In this thesis, a simple greedy approach has bset to find the most effective dispatching
actions for a given railway network, timetable aledty scenario. It is recommended to conduct
research to more powerful optimization strategidsle keeping in mind the online application
and the short calculation times required for thise following approaches may be examined:

* Use the delay propagation algorithm in an optinnraapproach to return information
about occurring conflicts in order to choose dispaig actions that are likely to be
effective (e.g. when a delay is transmitted by adweay arc, changing the order between
the involved trains is likely to be effective). Mdhat this approach has already been
illustrated in this thesis by trying dispatchindiaes related to delayed trains only, but
could be improved further.

* Aim at the near-optimum instead of the overall impiin. When looking for effective
dispatching actions, near-optimality may be sudfitiwhen this yields a substantial
improvement of the current situation.

» Use characteristics of the max-plus model, sudhasycle time, to get an indication of
the stability and effectiveness of selected digpatractions, which can be used by the
optimization algorithm to work effectively and ifiigently.

» Use the delay propagation algorithm to detect éxtsfand resolve them within the delay
propagation algorithm using a branch and boundagmbr (branching on different
dispatching actions).

Case study on a (part of a) real railway network
It is recommended to carry out a case study orad ¢b a) real railway network, such as for
example the Dutch railway line Den Haag — Dordrelths expected that this yields valuable
insight in the requirements needed for the impldaat@n in practice, such as:

* Which data is required, and how can this data lvaimdd?

* How should the model be adjusted or extended iardalwork on a real railway

network?

For this analysis, the outcomes of the model cbaldompared to real-world data from situations
in which dispatching actions were carried out ialitg.

Relateresultsto the duration of a disruption
In this research project, the dispatching actioasswnainly aimed at reducing the effects of a
given set of initial delays in the network. Howeuercase of bigger disruptions, lasting for
example 8 hours, different strategies to reducetteets on the train service can be adopted.
Offline investigation using real-world data andfee algorithms presented in this thesis may
reveal a correlation between the duration of augison and the effectiveness of dispatching
actions. Such results can be used to adopt eféestiategies that differ in case of shorter or
longer disruptions, which could be beneficial foe bptimization algorithm. During the different
stages of a disruption, the optimization strategyla for instance be aimed on:

1. Reducing the effects on the train service durirgdisruption and,

2. Get the train service back to the scheduled s@natihen the disruption is over.
Note however that this is only useful when the tiiemd algorithms in this thesis are extended
with more dispatching actions to enable investigathe full range of possibilities from which a
real dispatcher can choose.

Bibliography 101

9 Bibliography

[1]

[2]
[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

Adenso-Diaz, B., Oliva Gonzalez, M., Gonzalez-Toke “On-line timetable re-
scheduling in regional train serviceJtansportation Research Part Bol. 33, pp.
387 — 398, 1999.

Ahuja, R.K., Magnanti, T.L., Orlin, J.BNetwork Flows: Theory, Algorithms, and
Applications Prentice Hall, New Jersey, 1993.

Boom, T.J.J. van den, De Schutter, B., “Modelling aontrol of discrete event
systems using switching max-plus-linear syster@sfitrol Engineering Practigevol.
14, Issue 10, pp. 1199 — 1211, 2006.

Cormen, T., Leiserson, C., Rivest, Rtroduction to AlgorithmsThe MIT Press,
London, England, 1990.

D’Ariano, A., Pranzo, M., Hansen, I., “Conflict Re#stion and Train Speed
Coordination for Solving Real-Time Timetable Pebations”,IEEE transactions on
intelligent transportation systemgol. 8, No. 2, 2007.

Goverde, R.M.P., “Synchronization Control of ScHeduTrain Services to Minimize
Passenger Waiting Times”, IRroceedings of the™4TRAIL Year Congresgart 2,
TRAIL Research School, Delft, 1998.

Goverde, R.M.P Punctuality of Railway Operations and Timetableb8ity Analysis,
TRAIL Thesis series no T2005/10, Delft, 2005.

Heller, S., Schaer, T., “DisKon — Disposition undrifliktiésungsmanagement der DB
AG”, Eisenbahningeniewol. 55, Issue 9, pp. 102 — 122, 2004.

Jacobs, J. “Reducing delays by means of computdeddon-the-spot’ rescheduling”,
In: J. Allan, C. A. Brebbia, R. J. Hill, G. Sciut8&S. Sone (Eds.Computers in
Railways IX(pp. 603—-612). Southampton, UK: WIT Press, 2004.

Koopman, D.J.Vervoersprestatieverbetering van spoorwegen tijaetasmiteiten
Delft University of Technology, Faculty of Civil §meering and Geosciences, 2007.
Mazzarello, M., Ottaviani, E., “A traffic managemesystem for real-time traffic
optimisation in railways”Transportation Research Part Bol. 41, pp. 246274,
2007.

Pachl, J.Railway Operation and ControlfTD Rail Publishing, Mountlake Terrace,
WA, USA, 2004.

Tornquist, J. “Railway traffic disturbance managemeAn experimental analysis of
disturbance complexity, management objectives anitakions in planning horizon”,
Transportation Research Part A: Policy and Practigelume 41, Issue 3, pp. 249-
266, 2007.

UIC 406R,Capacity 2004.

Appendix 102

10 Appendix

10.1 Algorithm ‘ChangeList’

The algorithm ‘ChangelList’ changes the linked lstaitaining the scheduled order of events
whenx andE, scheduled directly subsequent to each othesveapped. This is the case when
eventx is postponed aftdt. Recall from section 5.2.1 that for each evetite preceding ever,
and the next evei, scheduled at the same timetable point are sttied {orming a linked list).
This is illustrated in the table below.

Algorithm 10.1 (CHANGELIST)

Input:
Event
X E
Output:
Event
I:)E — Px ;
Ne < X;
Py E;
Ny < Ng;
if Px#0then
N(Py) < E;
if Ne#Othen
P(Ng) < Xx;

= list of events
= subsequently scheduled events that will be swappe

= list of events with updated linked lists

NGO~ WNE

Linked lists in original order:

Events:

Px

E

N

Linked list:

N(P,)

P(E)

N(E)

P()

N(X)

P(Ng)

Value:

PP

X

P

E

X

N

E

N(NE)

The linked list as they are updated when eveiatsdE are swapped is shown in the next table:

Events: Py E X N
Linked list: P(P,) N(P,) P(E) N(E) P(x) N(X) P(Ng) N(NEg)
Value: - E P X E Ne X -

Appendix

103

10.2 Amounts of travellers used in test case

Linel

Station

Amount of embarking/
alighting travellers

7, departure 200

3, arrival 50

3, departure 50

4 (through) 0

5, arrival 100

5, departure 200

6, arrival 300

Line2

Station Amount of embarking/
alighting travellers

6, departure 200

5, arrival 50

5, departure 50

4 (through) 0

3, arrival 100

3, departure 100

7, arrival 200

Line3

Station Amount of embarking/

alighting travellers

1, departure 300

2, (through) 0

3, arrival 100

3, departure 100

4 (through) 0

5, arrival 100

5, departure 200

6, arrival 400

Line4

Station Amount of embarking/

alighting travellers

6, departure 200
5, arrival 50
5, departure 100
4 (through) 0
3, arrival 50
3, departure 100
2, (through) 0
1, departure 300

Appendix

104

Line5

Station Amount of embarking/
alighting travellers

1, arrival 100

2, arrival 40

2, departure 40

3, arrival 50

3, departure 50

4, arrival 30

4, departure 30

5, arrival 40

5, departure 40

6, departure 100

Line6

Station Amount of embarking/

alighting travellers

6, departure

100

5, arrival 40
5, departure 40
4, arrival 30
4, departure 30
3, arrival 50
3, departure 50
2, arrival 40
2, departure 40
1, arrival 100

Appendix

105

10.3 Delay propagation in test case, scenario 1

Delay 5 minutes:

Delay propagation without dispatching actions:

Total first order delay: 24 minutes.
Total consecutive delay: 7 minutes.
Total delay of travellers: 2600 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 24 3,00
502 7 0,70

Advice without possibility for short turning:
No dispatching actions advised.

Advicewith possibility for short turning:

Delay 10 minutes:

Delay propagation without dispatching actions:

Total first order delay: 64 minutes.
Total consecutive delay: 31 minutes.
Total delay of travellers: 8700 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 64 8,00
204 3 0,38
303 1 0,10
502 27 2,70

Advice without possibility for short turning:
No dispatching actions advised.

Advicewith possibility for short turning:

Delay 15 minutes:

Delay propagation without dispatching actions:
Total first order delay: 104 minutes.
Total consecutive delay: 128 minutes.
Total delay of travellers: 22010 minutes.

Appendix

106

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 104 13,00
105 1 0,13
204 40 5,00
303 22 2,20
405 1 0,10
502 47 4,70
604 17 1,70

Advice without possibility for short turning:

1. Switch order train 102 and train 502 betweeticsta 4 and 6.

— (‘Cancel scheduled overtaking of train 502 byrtrad?2’)

Delay propagation with dispatching actions:

Total first order delay: 104 minutes.
Total consecutive delay: 62 minutes.
Total delay of travellers: 15960 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 104 13,00
105 1 0,13
204 40 5,00
303 4 0,40
604 17 1,70

Advicewith possibility for short turning:

Delay 20 minutes:

Delay propagation without dispatching actions:

Total first order delay: 144 minutes.
Total consecutive delay: 326 minutes.
Total delay of travellers: 42970 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 144 18,00
105 32 4,00
204 80 10,00
303 52 5,20
405 36 3,60
502 67 6,70

Appendix

107

505 11 1,10
604 a7 4,70
605 1 0,10

Advice without possibility for short turning:

1. Switch order train 102 and train 502 betweeticsta 4 and 6.
— (‘Cancel scheduled overtaking of train 502 byrtrad?2’)

2. Switch order train 102 and train 303 betweetista 3 and 5.
— (‘Let train 102 run behind train 303 between stati3 and 5")

3. Switch order train 204 and train 604 betweetizsta 4 and 3.

— (‘Cancel scheduled overtaking of train 604 byrtr204’)

Delay propagation with dispatching actions:
Total first order delay:

Total consecutive delay:
Total delay of travellers:

Delayed trains:

144 minutes.
132 minutes.
29110 minutes.

Train number Delay (min.) Average delay
(min.)
102 144 18,00
105 32 4,00
204 80 10,00
303 9 0,90
505 11 1,10

Advicewith possibility for short turning:

Delay 25 minutes:

Delay propagation without dispatching actions:
Total first order delay: 184 minutes.
Total consecutive delay: 632 minutes.
Total delay of travellers: 72960 minutes.

Delayed trains:

Train number Delay (min.) Average delay (min.)
102 184 23,00
103 18 2,25
105 72 9,00
204 120 15,00
205 17 2,13
303 82 8,20
305 1 0,10
306 4 0,40
405 86 8,60
502 87 8,70
503 14 1,40

Appendix 108
505 31 3,10
604 77 7,70
605 23 2,23

Advice without possibility for short turning:
1. Switch order train 102 and train 502 betweeticsta 4 and 6.
— (‘Cancel scheduled overtaking of train 502 byrtrad?2’)
2. Switch order train 102 and train 303 betweeticsia 3 and 6.
— (‘Let train 102 run behind train 303 until arrivatl station 6)
3. Switch order train 204 and train 604 betweeticsia 4 and 3.
— (‘Cancel scheduled overtaking of train 604 byrtr204’)
4. Switch order train 105 and train 505 betweetista 4 and 5.
— (‘Move scheduled overtaking of train 505 from &tat4 to station 5)

Delay propagation with dispatching actions:
Total first order delay:

Total consecutive delay:
Total delay of travellers:

Delayed trains:

184 minutes.
229 minutes.
41190 minutes.

Train number Delay (min.) Average delay (min.)
102 184 23,00
105 72 9,00
204 120 15,00
305 1 0,10
405 25 2,50
503 1 0,10
505 10 1,00

Advicewith possibility for short turning:

1. Let train 102 turn in station 3.

— (‘Hence, train 204 is cancelled between statioaa®3’)

Delay propagation with dispatching actions:

Total first order delay:

Total consecutive delay:

Total delay of travellers:

Delayed trains:

49 minutes.
0 minutes.
37700 minutes.

Train number

Delay (min.)

Average delay (min.)

102

49

24,50

Appendix

109

10.4 Delay propagation in test case, scenario 2

Note: when short turns are allowed, the advisepladching actions remain the same.

Delay 5 minutes:
Delay propagation without dispatching actions:

Total first order delay: 19 minutes.
Total consecutive delay: 4 minutes.
Total delay of travellers: 1230 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 3 0,38
502 20 0,70
Advice:

No dispatching actions advised.

Delay 10 minutes:
Delay propagation without dispatching actions:

Total first order delay: 50 minutes.
Total consecutive delay: 62 minutes.
Total delay of travellers: 8330 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 32 4,00
103 3 0,38
202 9 1,13
502 68 6,80
Advice:

1. Switch order train 502 and train 102 betweeticgta 3 and 4.

— (‘Let train 502 run behind train 102 and cancel ¢tivertaking of train 502 at station 4)

2. Postpone the arrival of train 502 at statiom®l train 202 has departed.

Delay propagation with dispatching action:

Total first order delay: 50 minutes.
Total consecutive delay: 5 minutes.
Total delay of travellers: 2870 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)

502 55 5,50

Appendix

110

Delay 15 minutes:
Delay propagation without dispatching actions:

Total first order delay: 98 minutes.
Total consecutive delay: 198 minutes.
Total delay of travellers: 24540 minutes.

Delayed trains:

Train number Delay (min.) Average delay

(min.)
102 62 7,75
103 40 5,00
202 19 2,38
204 24 3,00
303 12 1,20
502 118 11,80
503 15 1,50
604 6 0,60

Advice:

1. Switch order train 502 and train 102 betweeticsta 3 and 4.

— (‘Let train 502 run behind train 102 and cancel ¢ivertaking of train 502 at station 4’)

2. Postpone the arrival of train 502 at statiom®l train 202 has departed.

Delay propagation with dispatching actions:

Total first order delay: 98 minutes.
Total consecutive delay: 0 minutes.
Total delay of travellers: 5080 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
502 98 9,80

Delay 20 minutes:
Delay propagation without dispatching actions:

Total first order delay: 148 minutes.
Total consecutive delay: 460 minutes.
Total delay of travellers: 52290 minutes.

Delayed trains:

Train number Delay (min.) Average delay
(min.)
102 92 11,50
103 80 10,00
105 16 2,00
202 29 3,63
204 64 8,00
205 16 2,00

Appendix

111

303 42 4,20
304 8 0,80
405 16 1,60
502 168 16,80
503 35 3,50
505 4 0,40
604 35 3,50
605 3 0,30
Advice:

1. Switch order train 502 and train 102 betweeticsta 3 and 4.

— (‘Let train 502 run behind train 102 and cancel divertaking of train 502 at station 4’)

2. Postpone the arrival of train 502 at statiom@l train 202 has departed.
3. Switch order train 502 and train 303 betweetista 4 and 6.

— (‘Let train 303 overtake train 502 at station 4.")

Delay propagation with dispatching actions:
Total first order delay:

Total consecutive delay:
Total delay of travellers:

Delayed trains:

148 minutes.
25 minutes.
8930 minutes.

Train number Delay (min.) Average delay
(min.)
303 5 0,50
502 168 16,80

Delay 25 minutes:

Delay propagation without dispatching actions:

Total first order delay:

Total consecutive delay:
Total delay of travellers:

Delayed trains:

198 minutes.
910 minutes.
96430 minutes.

Train number Delay (min.) Average delay
(min.)
102 122 15,25
103 120 15,00
105 56 7,00
106 9 1,13
202 39 4,88
204 104 13,00
205 56 7,00
303 91 9,10
304 34 3,40
405 66 6,60
406 9 0,90
502 218 21,80
503 57 5,70

Appendix

112

505 23 2,30

506 1 0,10

604 65 6,50

605 38 3,80
Advice

1. Switch order train 502 and train 102 betweeticgta 3 and 4.

— (‘Let train 502 run behind train 102 and cancel divertaking of train 502 at station 4’)

2. Postpone the arrival of train 502 at statiom@l train 202 has departed.
3. Switch order train 502 and train 303 betweetista 4 and 6.

— (‘Let train 303 overtake train 502 at station 4.")

Delay propagation with dispatching actions:
Total first order delay:

Total consecutive delay:
Total delay of travellers:

Delayed trains:

198 minutes.
74 minutes.
16930 minutes.

Train number Delay (min.) Average delay
(min.)
303 53 5,30
502 218 21,80
503 1 0,10

