
Modelling railway dispatching actions in
switching max-plus linear systems

Student: Dirk van der Meer
E-mail: D.J.vanderMeer@Student.TUDelft.NL
Student number: 1158511
Date: October 22th 2008

Front page: No infra constraints are active as train 1959 awaits its scheduled departure time at Den Haag
HS in the winter sun of December 15th 2007.

Modelling railway dispatching actions in switching max-plus linear systems

Master thesis

Student:
Dirk van der Meer
D.J.vanderMeer@student.TUDelft.NL
Student number: 1158511

University:
Delft University of Technology
Faculty of Civil Engineering, Transport & Planning section

Graduation Committee:
Prof.dr.ing. I.A. Hansen
Faculty of Civil Engineering, Transport & Planning section
I.A.Hansen@tudelft.nl

Dr. R.M.P. Goverde
Faculty of Civil Engineering, Transport & Planning section
R.M.P.Goverde@tudelft.nl

Dr.ir. T.J.J. van den Boom
Delft Center for Systems and Control
A.J.J.vandenBoom@tudelft.nl

Preface

This thesis is the result of a graduation project to obtain a Master’s degree in Civil Engineering at
the Delft University of Technology. This graduation project has been carried out at the
department of Transport and Planning of the faculty of Civil Engineering and Geosciences.

Interested in railways and railway operations as long as I can remember, I used the flexibility of
the Transport and Planning Master’s program to lay a strong emphasis on public transport and rail
guided transportation systems in my personal study program. During the course ‘Railway Traffic
Management’ I found out about the use of max-plus algebra in railway operations research,
which, as a combination of railway timetabling, civil engineering and mathematics, attracted my
interest. After a detour via the structural aspects of a railway system in the form of an internship
at HTM, I decided to return to the research on max-plus algebra in railway operations by
choosing this as a subject for my graduation thesis.

I would like to thank Rob Goverde for his great contribution as a daily supervisor. From the
beginning, he understood my way of working and explained just the right theory and
backgrounds. Thanks to Ton van den Boom, the second member of my graduation committee, for
his refreshing comments resulting from his theoretical view. I finally thank Prof. Hansen for his
positive and constructive, yet critical and systematic way of supervising the project.

Although not of substantial significance for the contents of the project, my roommates of room
4.42 contributed in various ways to a perfect working environment. So thanks Koenis, for sharing
your plans to take over the world, Luis Costa Costa ‘Tacos y Burritos’ Garcia Lopez Viale, for
bringing about the Mexican spirit, Ivo, for your philosophical view on several topics, Frank, for
your pleasant company and for showing us what it looks like to work hard, and last but certainly
not least Ollemollie, for (almost literally) always being there for some good chitchat. Thanks to
the people from room 4.39, in particular Martijn and Nicole, for letting the event ‘go to lunch’
occur at exactly 12.15 without delay every day.

Dirk van der Meer
Delft, October 2008

Abstract

In order to reduce delays in a railway system and to prevent them from propagating through the
network, a dispatcher can apply dispatching actions, for example by changing the location of a
planned overtaking, or cancelling a train run. A dispatching action is defined as an intervention in
the rail traffic system with the purpose of solving a conflict between train runs, thereby aimed at
reducing delays and their propagation. This research project is aimed at the development of a tool
that helps the dispatcher when deciding which dispatching actions to apply by quickly evaluating
their effectiveness on network level using algorithms based on max-plus algebra and timed event
graphs.

Max-plus algebra is a mathematical framework capable of modelling railway systems with all
their interdependencies in space and time, which is used to develop powerful tools to analyse
railway operations. When the max-plus model is extended with the ability to adapt in accordance
with dispatching actions, it can be used to predict the impact of those dispatching actions. For the
approach followed in this thesis, max-plus models will be expressed graphically using timed
event graphs, since their transparency enables modelling a railway network in a clear and
unambiguous way.
In order to study the stability and performance of periodic (e.g. hourly) timetables, the existing
max-plus models and the corresponding timed event graphs are cyclic. However, modelling
dispatching actions in such a cyclic environment is difficult to implement, which is why an
acyclic model has been used in this research project. Some methods for implementing this in
practice have been proposed.
The level of detail of the model was chosen to correspond with its emphasis on analysis and
control rather than accurate simulation of railway operations. Therefore, block signals on the
open track are not modelled, and stations and junctions are modelled as timetable points acting as
‘black boxes’. All necessary time separations between trains are modelled as constraints between
arrivals at and/or departures from these timetable points. Application to a test case showed that
the results of this approach are accurate enough to enable a network wide evaluation of
dispatching actions.

The timed event graph representation has been used to investigate the implications of dispatching
actions on the model. These implications have been described as so called ‘construction rules’
describing the changes in the timed event graph necessary to represent the corresponding
dispatching action, and following immediately from the implications of the dispatching action on
the model. The following dispatching actions have been implemented as algorithms using these
construction rules:

• Change the sequence order of trains,
• Short-turn a train (i.e. at a station before its terminal station),
• Postpone the departure or arrival of trains at stations with conflicting interlocking routes.

In practice, more different dispatching actions can be evaluated with the theory developed in this
thesis. Changing the sequence order of trains can for instance be used to move a scheduled
overtaking to another station, which is technically a different dispatching action. Furthermore, the
described construction rules can be used to develop other algorithms, for instance for cancelling
train runs, introducing new train runs, etc.

In order to use the algorithms for finding effective dispatching actions for a given network and a
set of initial delays, they can be implemented in an optimization algorithm. In this project, a
greedy approach has been used. To maximize their effectiveness, order changes of trains have to

be evaluated in combination with the appropriate postponements of arrivals and departures of the
involved trains when conflicting interlocking routes are present in the network. The total
passenger delay in the network served as the objective function, thereby including the negative
effects for passengers when train trips are partly cancelled due to short turning of delayed trains.
A test case with two delay scenarios showed that the generated dispatching actions are plausible
and consistent.

Dutch abstract

Nederlandse samenvatting

Om vertragingen in een spoorwegnetwerk te verminderen en vertragingsvoortplanting te
voorkomen kan een treindienstleider bijstuurmaatregelen, zoals het verplaatsen van een geplande
inhaallocatie of het opheffen van een trein, toepassen. Een bijstuurmaatregel is gedefinieerd als
een interventie in de treindienst met als doel het voorkomen van conflicterende treinbewegingen,
waarbij de vertraging en de vertragingsvoortplanting gereduceerd worden. Dit project is gericht
op de ontwikkeling van een hulpmiddel voor de treindienstleider voor het evalueren van de
effectiviteit van bijstuurmaatregelen, gebruik makend van max-plus algebra en timed event
graphs.

Max-plus algebra is een wiskundig raamwerk waarin spoorwegnetwerken met al hun
afhankelijkheden in ruimte en tijd gemodelleerd kunnen worden. Krachtige systemen voor het
analyseren van het railverkeer maken hiervan gebruik. Wanneer een max-plus model wordt
uitgebreid met de mogelijkheid om te kunnen veranderen wanneer een bijstuurmaatregel wordt
doorgevoerd, kan het worden gebruikt om de effectiviteit van zulke maatregelen te evalueren. In
dit project zullen de max-plus modellen als timed event graphs worden gerepresenteerd, omdat de
transparantie van deze grafische weergave het mogelijk maakt om een spoorwegsysteem helder
en duidelijk te modelleren.
Voor het bestuderen van de stabiliteit en prestaties van periodieke (uur)dienstregelingen wordt
gebruik gemaakt van periodieke max-plus modellen en timed event graphs. De implementatie van
bijstuurmaatregelen in een dergelijk cyclisch model is echter problematisch. In dit onderzoek is
daarom een acyclisch model gebruikt, waarbij tevens enkele methodes om dit in de praktijk te
implementeren zijn voorgesteld.
Omdat het model in dit onderzoek voornamelijk wordt gebruikt voor het analyseren en regelen
van spoorwegsystemen is een nauwkeurige simulatie hiervan minder relevant. Het detailniveau
van het model is hierop aangepast, zodat blokseinen langs de vrije baan niet zijn gemodelleerd en
stations en aansluitingen zijn gemodelleerd als dienstregelingpunten. De beveiliging die
noodzakelijke afstanden tussen treinen in het netwerk garandeert wordt gemodelleerd in de vorm
van randvoorwaarden in de tijd tussen de aankomsten en/of vertrekken bij deze
dienstregelingpunten. Toepassing van het model in een testscenario heeft aangetoond dat dit
nauwkeurig genoeg is om de effectiviteit van bijstuurmaatregelen op netwerkniveau te evalueren.

Voor het onderzoeken van de implicaties van bijstuurmaatregelen op het model is de timed event
graph representatie gebruikt. De implicaties zijn omschreven als zogenoemde ‘constructieregels’
die de noodzakelijke wijzigingen in de timed event graph voor het representeren van de
bijbehorende bijstuurmaatregel weergeven. De constructieregels volgen dus direct uit de
implicaties van bijstuurmaatregelen op het model. De volgende bijstuurmaatregelen zijn, gebruik
makend van deze constructieregels, als algoritmes geïmplementeerd:

• Het verwisselen van de volgorde van treinen,
• Het kort keren van treinen (waarmee wordt bedoeld: het laten keren van een trein voordat

hij op zijn eindpunt is aangekomen),
• Het uitstellen van een aankomst of vertrek op een station met conflicterende rijwegen.

In de praktijk kunnen nog meer bijstuurmaatregelen met behulp van de in dit project ontwikkelde
theorie worden geëvalueerd. Door het verwisselen van de volgorde tussen treinen kan
bijvoorbeeld een geplande inhaallocatie worden verplaatst. Bovendien kunnen de omschreven
constructieregels worden gebruikt voor het ontwikkelen van andere algoritmes, waarmee

bijstuurmaatregelen als het opheffen van treinen, het inleggen van treinen, enz. kunnen worden
gemodelleerd.

Om de hierboven beschreven algoritmes te kunnen gebruiken voor het vinden van effectieve
bijstuurmaatregelen voor een gegeven netwerk en een verzameling van initiële vertragingen,
kunnen ze worden geïmplementeerd in een optimalisatiealgoritme. In dit project is hiervoor een
greedy benadering gebruikt. Om hun effectiviteit te maximaliseren moeten volgordewisselingen
hierbij altijd in combinatie met het uitstellen van aankomsten en vertrekken worden beoordeeld
wanneer sprake is van conflicterende rijwegen in het netwerk. De totale reizigersvertraging is
gebruikt als doelfunctie, zodat het negatieve effect voor reizigers wanneer treinen gedeeltelijk
worden opgeheven vanwege een korte kering wordt meegenomen in de beoordeling. De
ontwikkelde algoritmes hebben in een testscenario plausibele en consistente resultaten
opgeleverd.

Table of contents

PREFACE ... 4

ABSTRACT .. 5

DUTCH ABSTRACT... 7

1 INTRODUCTION... 12

2 PROBLEM ANALYSIS AND RESEARCH OBJECTIVE... 13

2.1 MAX-PLUS ALGEBRA IN RAILWAYS.. 13
2.2 DISPATCHING ACTIONS IN MAX-PLUS ALGEBRA... 13
2.3 PROBLEM DESCRIPTION.. 14

3 DISPATCHING ACTIONS IN RAIL TRAFFIC MANAGEMENT ... 15

3.1 INTRODUCTION... 15
3.2 THE RAILWAY SYSTEM: DEFINITIONS ... 15

3.2.1 Train route and interlocking route ... 15
3.2.2 Timetable path and train lines.. 15
3.2.3 The dispatcher and dispatching actions ... 16

3.3 TRAFFIC CONTROL ACTIONS... 17
3.4 RESCHEDULING ACTIONS... 17

3.4.1 Rescheduling actions changing the order of trains .. 18
3.4.2 Rescheduling actions changing the line routes of trains .. 18
3.4.3 Change to an emergency timetable... 18

3.5 REVIEW ON ONLINE DISPATCHING.. 19
3.5.1 Modelling rail traffic using blocking time diagrams.. 19
3.5.2 Creating a model using graphs... 19
3.5.3 Methods using integer programming.. 20
3.5.4 Max-plus models with control possibilities... 20

3.6 CONCLUSION.. 20

4 TIMED EVENT GRAPHS FOR RAILWAY OPERATIONS ... 21

4.1 INTRODUCTION... 21
4.2 WHY USE TIMED EVENT GRAPHS?... 21
4.3 RAILWAY OPERATIONS BROKEN DOWN INTO PROCESSES AND EVENTS....................................... 22
4.4 BASIC CONCEPTS OF TIMED EVENT GRAPHS.. 23

4.4.1 Places and transitions representing processes and events ... 23
4.4.2 Markings representing the actual state of the system... 24

4.5 MODELLING A RAILWAY NETWORK.. 25
4.5.1 Modelling all train lines ... 25
4.5.2 Modelling infrastructure constraints .. 25
4.5.3 Modelling synchronization constraints... 29
4.5.4 Determining the initial marking ... 30

4.6 TIMED EVENT GRAPH WITHOUT PERIODS.. 30
4.6.1 Algorithms become complex when periodicity is maintained... 30
4.6.2 Unfolding periodic events during the day... 31
4.6.3 Methods for implementing the system without periods... 32

4.7 LIMITATIONS OF THE MODEL..33
4.8 CONCLUSION.. 35

5 DATA STRUCTURE FOR TIMED EVENT GRAPHS.. 36

5.1 INTRODUCTION... 36
5.2 VARIABLES FOR STORING AND EDITING THE TIMED EVENT GRAPH... 36

5.2.1 The matrix Event... 36
5.2.2 The arclist ... 37
5.2.3 The timetable vector d .. 38
5.2.4 Adjacency lists .. 38
5.2.5 Deleting an arc ... 39
5.2.6 Inserting an arc .. 40
5.2.7 Conflict matrices... 41

5.3 GENERATING THE TIMED EVENT GRAPH... 42
5.3.1 Input data for synchronization constraints ... 42
5.3.2 Input data for running and dwell times .. 43
5.3.3 The Generate algorithm.. 43
5.3.4 Generating hindrance constraint arcs.. 44

5.4 CALCULATING THE DELAY PROPAGATION IN TOPOLOGICAL ORDER ... 46
5.5 CALCULATING THE CAPACITY CONSUMPTION OF A RAILWAY TRACK ... 49
5.6 CONCLUSION.. 53

6 IMPLEMENTING DISPATCHING ACTIONS.. 54

6.1 INTRODUCTION... 54
6.2 CHANGE THE ORDER BETWEEN TRAINS.. 54

6.2.1 Construction rule for changing headway constraints... 55
6.2.2 Changing the hindrance constraints... 56
6.2.3 Construction rule for removing hindrance constraints... 56
6.2.4 Construction rule for inserting hindrance constraints ... 59
6.2.5 The algorithm ‘ChangeOrder’.. 62

6.3 POSTPONING ARRIVALS OR DEPARTURES AT A STATION... 64
6.3.1 The definition of postponing in this project .. 64
6.3.2 Check if postponing is possible... 64
6.3.3 Situation without changing hindrance constraints ... 64
6.3.4 Construction rule for changing hindrance constraints... 65
6.3.5 The algorithm ‘Postpone’ ... 66

6.4 SHORT TURNING... 67
6.4.1 Cancelling an event .. 68
6.4.2 The algorithm ‘ShortTurn’ ... 69

6.5 OPTIMIZATION FRAMEWORK ..71
6.5.1 Dispatching actions have to be combined with postponements ..71
6.5.2 Making an inventory of possible dispatching actions... 72
6.5.3 The objective function: total passenger delay .. 73
6.5.4 Finding the most effective dispatching action .. 74

6.6 DISPATCHING ACTIONS IN MAX-PLUS NOTATION.. 77
6.6.1 Max-plus algebra: definitions... 77
6.6.2 Max-plus linear systems ... 78
6.6.3 The switching max-plus system... 78

6.7 CONCLUSION.. 79

7 CASE STUDY ... 80

7.1 INTRODUCTION... 80
7.2 TESTING NETWORK.. 80

7.2.1 Considerations leading to the used testing network ... 80
7.2.2 The used testing network and timetable.. 81

7.3 TESTING METHODOLOGY.. 83
7.3.1 No real time simulation .. 83
7.3.2 Input data.. 83

7.4 RESULTS.. 86
7.4.1 Delay scenario 1: Departure of train 102 delayed... 86
7.4.2 Delay scenario 2: Departure of train 502 delayed... 90
7.4.3 Influence of the number of passengers ... 93

7.5 CONCLUSION.. 96

8 CONCLUSIONS ... 97

8.1 MAIN CONCLUSIONS... 97
8.2 APPLICABILITY IN PRACTICE ..98
8.3 RECOMMENDATIONS FOR FUTURE RESEARCH.. 99

9 BIBLIOGRAPHY... 101

10 APPENDIX.. 102

10.1 ALGORITHM ‘CHANGELIST’...102
10.2 AMOUNTS OF TRAVELLERS USED IN TEST CASE.. 103
10.3 DELAY PROPAGATION IN TEST CASE, SCENARIO 1 .. 105
10.4 DELAY PROPAGATION IN TEST CASE, SCENARIO 2 .. 109

Introduction

12

1 Introduction

Railway systems will always be subject to smaller and bigger disturbances causing train delays.
Particularly in dense networks with a lot of train traffic, such as the Dutch railway network,
delayed trains will cause conflicts by getting in the way of other trains, or they will affect
connecting train services, thereby propagating the delay through the network and spreading the
delay to other trains.
In order to reduce delays and prevent them from propagating, a dispatcher can apply dispatching
actions, for example by changing the location of a planned overtaking, or cancelling a train run.
This is not an easy task because the locations and time instances of occurring conflicts are not
known in advance, and it is difficult to predict the impact of dispatching actions.
When delays occur in the network, train dispatchers need an answer to the question: how to get
the train service back to the scheduled situation as quickly as possible? This research project is
aimed at the development of a tool that helps the dispatcher answer this question quickly by
evaluating the effectiveness of dispatching actions.

Max-plus algebra is a mathematical framework capable of modelling railway systems with all
their interdependencies in space and time, which can be used to develop powerful tools to analyse
railway operations. The computer application PETER, which can calculate the delay propagation
in a railway network, as well as the robustness and stability of an hourly timetable, is an example
of this [7]. When the max-plus model is extended with the ability to adapt in accordance with
dispatching actions, it can be used to predict the impact of those dispatching actions. This can be
done using switching max-plus systems [3]. A change of the railway system due to a dispatching
action being carried out can have many implications on such a max-plus system. These
implications are the main subject of this thesis.

For the approach followed in this thesis, max-plus models will be expressed graphically using
timed event graphs. The transparency of such graphical models enables modelling a railway
network in a clear and unambiguous way. The level of detail of the model is chosen to correspond
with its emphasis on analysis and control rather than accurate simulation of railway operations.
The timed event graph representation will be used to investigate the implications of dispatching
actions on the model. These implications will be implemented in algorithms able to evaluate the
effectiveness of dispatching actions.

The outline of this thesis is as follows: In the next chapter, the research subject and the main goal
of this thesis will be described in detail. Chapter 3 contains a more detailed description of the
dispatching actions and the railway system in which they can be carried out. Furthermore, a brief
review of the literature on online dispatching systems will be given. The concept of timed event
graphs is explained in chapter 4. In chapter 5 the used data structure for storing the timed event
graph in the computer memory will be explained. Chapter 6 contains the main result of this thesis,
an explanation of the algorithms developed to adapt the model according to dispatching actions.
Furthermore, a greedy optimization approach for finding a set of effective dispatching actions
based on a given set of delays is presented here. The developed algorithms are tested in a case
study, which is described in chapter 7. Chapter 8 contains the conclusions of this thesis, along
with an outlook on the applicability and recommendations for future research.

Problem analysis and research objective

13

2 Problem analysis and research objective

2.1 Max-plus algebra in railways
The structure of a railway network contains many interdependencies between train movements.
These interdependencies consist of passenger transfer connections between trains, constraints
caused by the infrastructure and the rolling stock circulation, etc. Such a system can be
effectively modelled using a scheduled max-plus linear system [7].
In order to create a max-plus model of a railway system, all train runs are broken down into series
of processes and events. Furthermore, all constraints that have to hold for the events are
expressed in max-plus algebra. This yields a max-plus linear system in which the event times and
the timetable are expressed in vectors and the constraints caused by the structure of the network
and the timetable are captured in the system matrix. The max-plus model can be used to calculate
several characteristics of the system behaviour such as the stability of the timetable, the
propagation of delays, etc. The max-plus model can be translated to a graphical representation in
the form of a timed event graph, which is exactly equivalent with the max-plus model it
represents.

2.2 Dispatching actions in max-plus algebra
In case of delays conflicts can occur between trains hindering each other. Traffic control and
rescheduling actions can be carried out by dispatchers [12] in order to prevent delays from
propagating to other trains on the network.
Some typical examples of rescheduling actions are:

• Switching the sequence order of two trains (i.e. letting another train depart before a
delayed train).

• Change the location of a planned overtaking.
Control actions refer to traffic management actions in which the original train schedule is
maintained, such as:

• Cancel a transfer connection between two trains.

Max-plus linear systems are based on a timetable with a basic hourly pattern. This means that the
order of the trains on the tracks, the transfer connections, the train routes, etc., are exactly the
same each hour. Railway traffic management actions as depicted above cannot be modelled
within such a framework.
A railway system in which dispatching actions can take place can be considered as a system that
can operate in different modes. In max-plus systems for railways each mode refers to a set of train
sequences, transfer connections, etc. A system that can switch between different modes of
operation can be modelled using switching max-plus linear systems [3]. In a switching max-plus
linear system each mode of operation is represented by a different system matrix. With this
extension, the model can be used to calculate the effectiveness of different dispatching actions
with regard to the settlement of delays, or more general, to some objective function. In the end, an
optimization algorithm can be implemented in order to find an effective (combination of) traffic
management actions in case of delays.

Problem analysis and research objective

14

2.3 Problem description
To model the switching structure of the system in case of a dispatching action, different system
matrices for each given dispatching action are needed. The generation of all different system
matrices in advance would lead to a combinatorial explosion of the amount of data if all
hypothetical combinations of possible actions have to be taken into account. This means that new
system matrices have to be generated ‘on the fly’ in the calculation process when the
effectiveness of a dispatching action has to be calculated.
In most cases a discrete choice for a control action or rescheduling measure leads to implied
changes in the structure of the model. For example: when at some station the order of two trains
is changed, a sequence of changes along the railway line is implied until the location where the
order is restored to the situation as scheduled. The implications of railway dispatching actions on
the structure of the system matrix are the main subject of this project. This leads to the following
problem question:

 “How can a max-plus model be used to calculate the impact of dispatching actions in railway
systems?”

To solve this problem, a research objective has to be achieved. In this project, the research
objective is formulated as follows:

 “To create a description of all relevant dispatching actions that can be modelled in switching
max-plus linear systems, and to obtain an inventory of the implications of dispatching actions on
the model which can be used to produce an algorithm to calculate the effectiveness of dispatching
actions.”

Dispatching actions in rail traffic management

15

3 Dispatching actions in rail traffic management

3.1 Introduction
Before the implications on the max-plus model when dispatching actions are applied, the main
subject of this thesis, are discussed, an overview and description of the most important
dispatching actions and the railway system will be given in this chapter.
The outline is as follows. The next section describes the railway system as modelled in this thesis.
All terms used in this subject referring to railways are defined here. Then, the enormous amount
of possibly imaginable dispatching actions will be divided into two main groups: traffic control
actions, which will be described in section 3.3, and rescheduling actions, to which section 3.4 is
dedicated. In section 3.5, an overview of the literature on recent research on railway operations
modelling and online rescheduling will be presented. Section 3.6 contains a brief conclusion of
this chapter.

3.2 The railway system: definitions
In this section, the type of railway systems modelled in this thesis will be defined. Definitions are
important for two reasons:

• A model cannot be built if the system to be modelled is not defined clearly.
• In the different fields of railway operation and research, some terms are defined slightly

different, which can lead to confusion.

3.2.1 Train route and interlocking route
In Figure 3.1 a part of an example train trip via stations A and B is shown. In the station, the train
can go to different tracks using switches and/or crossings. The exact route of the train through the
station is defined as the interlocking route. Switches and crossings are assumed to occur only at
stations (including their yards) and at junctions, so a track connecting the stations and/or
junctions with each other is assumed to have no switches and crossings. Such is track is called the
open track.
The term train route refers to the route of the train on network level (note the difference with
interlocking route). A train run is the part of a train trip between to subsequent stations, and the
running time is the time it takes to complete a train run. The term train trip refers to the journey
of a train from its starting station to its terminal station (i.e. along its entire route through the
network). The dwell time is the time between the arrival and departure of a train in the station (i.e.
how long the train is standing still).

3.2.2 Timetable path and train lines
The trains modelled in this project are assumed to run according to a timetable created in
advance. The path through time and space that each train is scheduled to follow is called the
timetable path. The timetable is assumed to be periodic, which means that train trips with the
same route, speed and stopping pattern occur repeatedly during the day, separated by fixed time
intervals. An hourly timetable is obtained when these intervals amount exactly one hour. In this
project, hourly timetables are used to develop and demonstrate the algorithms, but although other
period lengths are rare in reality, the theory can be easily adapted to any other period length. A

Dispatching actions in rail traffic management

16

group of periodically occurring train trips with the same route on network level, as well as the
same interlocking route, speed and stopping pattern is called a train line. An example of a train
line is the intercity connection from Amsterdam to Brussels, running every hour, each trip
connecting the same stations. Note the difference with the term railway line, which refers to the
rail infrastructure connecting two stations.
At the terminal station of a train trip, the rolling stock of that train will usually turn and perform a
train trip in the opposite direction. This is called a turn.

Figure 3.1 Part of an example train trip with definitions.

3.2.3 The dispatcher and dispatching actions
In this thesis, the train traffic is assumed to be centrally controlled by a dispatcher. The term
dispatcher as used in this thesis refers to the employee who supervises and controls the train
movements, as described in Pachl (2004). This is in accordance with the way most railway lines
in Europe are operated.
Although a timetable is originally intended to be conflict-free, conflicts may arise between trains
in case of delays. Using dispatching actions, the dispatcher has to solve the occurred conflicts,
while minimizing the delay and the propagation of delays. A dispatching action is defined as
follows:

A dispatching action is an intervention in the rail traffic system with the purpose of solving a
conflict between train runs, thereby aimed at reducing delays and their propagation.

Dispatching actions in rail traffic management

17

Dispatching actions can be divided in a group of traffic control actions and a group of
rescheduling actions, which will be described subsequently in the next two sections.

3.3 Traffic control actions
Traffic control actions are small interventions in the rail traffic system. They are used to prevent
delays from propagating through the network and to make the rail traffic more fluently. In this
thesis, traffic control actions are defined as follows:

Dispatching actions in which the line routes and sequence orders of trains are not changed.

Traffic control actions have the following characteristics:

• A traffic control action can be carried out last-minute in most cases.
• The original schedule is not necessarily maintained.
• The relative positions of the trains in the network (i.e. their route and order) are

maintained.

The most common examples of traffic control actions are:

1) Cancel a transfer connection between two trains.
2) Increase the running time.
3) Change the duration of a stop.
4) Modification of the stopping pattern (e.g. a stopping train becomes an express train and

vice versa).
5) Assign another open track to the train (e.g. in a four-track section).
6) Assign another platform track to the train in a station.
7) Change the interlocking route of a train in a station.

Note that the route of the train on network level (the line route) is not changed by the 7th traffic
control action. Only the interlocking route through the station is concerned here.

3.4 Rescheduling actions
Most conflicts cannot be solved effectively by using traffic control actions only. Rescheduling
actions provide many more possibilities for solving those conflicts. In this thesis, rescheduling
actions are defined as follows:

Dispatching actions in which the line routes and/or sequence orders of trains are changed.

The following characteristics can be assigned to rescheduling actions:

• In most cases, more time in advance is needed to enable a rescheduling action than in the
case of a traffic control action (e.g. a transfer connection can be broken at all times, while
an overtaking has to be planned before the trains actually have arrived at the station).

• By definition, the original schedule is not maintained.
• The relative positions of the trains in the network (i.e. their route and order) are changed.

The rescheduling actions will be divided into three groups:

• Rescheduling actions changing the order of trains.
• Rescheduling actions changing the line routes of trains.
• Change to an emergency timetable.

Dispatching actions in rail traffic management

18

3.4.1 Rescheduling actions changing the order of tr ains
This type of dispatching actions is often carried out in case of bigger delays. By changing the
order of trains, a delayed train can be prevented from propagating its delay to on-time trains
hindered by it. Examples are:

1) Change the sequence order of trains by planning an overtaking.
2) Change the location of a planned overtaking.
3) Cancel an entire train run.
4) Insert an on-time train and cancel the delayed train.
5) Insert an extra train.
6) Short-turn a train (i.e. let a delayed train turn at a station before its terminal station).
7) Change the order of arrivals and/or departures at a station.
8) Cancel a planned coupling of two trains and let them continue as two separated trains.
9) Couple two trains that run on the same route.
10) Let a delayed train continue in the path of the next train of the same type (e.g. exactly

half an hour later).

3.4.2 Rescheduling actions changing the line routes of trains
Changing the line route of a train on network level can be a convenient rescheduling action in
case of big disruptions (e.g. closure of a track due to rolling stock or infrastructure failure). The
line route of a train is changed by the following rescheduling actions:

11) Redirect a train to a different route through the network (while maintaining the starting
and terminal stations).

12) Redirect a train to a starting and/or terminal station outside its regular route.

3.4.3 Change to an emergency timetable
In case of big disruptions in the rail network, more complex rescheduling actions are applied.
These rescheduling actions are often part of a scenario that is available at the traffic control
centre. Therefore, these rescheduling actions can be seen as a change to an emergency timetable:

13) Make an inventory of trains that can continue running or that can be re-routed, cancel all
other trains.

14) Use measure 13, and improve the service level by inserting extra trains.
15) Go back and forth with one train through the bottleneck caused by the disruption.
16) Let trains with the same direction pass the bottleneck as a group in order to increase the

capacity of the bottleneck.

Some (combinations of) rescheduling actions can cause the rolling stock circulation to become
disrupted. In such cases, the rolling stock circulation has to be adjusted to the rescheduled
timetable. This can be done using the aforementioned rescheduling actions (e.g. cancelling a train
run for which no rolling stock is available). Additionally, the following complex rescheduling
actions to create a feasible rolling stock circulation are:

17) Cancel an entire train line during a disruption, and re-insert the trains while assigning the
correct rolling stock units to every train run after the disruption.

18) Exchange train units between trains at turn-around stations.
19) Couple or de-couple train units to a train in order to get the correct amount of seats.
20) Insert an empty run in order to create a feasible circulation of rolling stock.

In practice, a lot of different combinations of traffic control actions and rescheduling actions are
applied in order to optimize the rail traffic and make the process more smoothly.

Dispatching actions in rail traffic management

19

3.5 Review on online dispatching
After the discussion of different categories of dispatching actions in the previous sections, the
question remains: which (combinations of) dispatching actions have to be applied in order to
solve conflicts in an optimal way? During the last decades, research has been carried out to find
methods for answering this question in practice. In this section, some results with relevance for
this project will be reviewed.

3.5.1 Modelling rail traffic using blocking time di agrams
A straightforward way of modelling the rail traffic makes use of blocking time diagrams, which
has been extensively described in the German literature. On lines where train separation in block
distance is used, the track is divided in block sections which may be exclusively occupied by one
train [12]. A blocking time diagram is a graphical representation of the blocking times of block
sections due to train traffic, enabling easy detection of conflicts and their solutions. Note that this
technique can also be used in combination with modern safety and signalling systems using
moving blocks, such as ECTS level 3.
A method which makes use of a detailed calculation of blocking times for detecting conflicts is
proposed by Jacobs [9]. Conflicts detected by a detailed calculation of running times in which
specific characteristics of each train in the network are taken into account, are solved by locally
rescheduling conflicting trains in such a way that the propagated delays are as small as possible.
In case of different priorities of trains, the train with the lowest priority is postponed.
DisKon [8] is a system which is currently in development in Germany. DisKon is able to detect
and solve conflicts on a railway track. The traffic situation and the calculated dispatching actions
are graphically displayed using blocking time diagrams. The system is aimed at handling one
railway line, so a focus on network level would mean that the network has to be split up in several
railway lines. The dispatching actions used for solving conflicts are: changing the route of a train,
changing a scheduled overtaking station, planning extra stops, cancelling a train or cancelling
transfer connections.

3.5.2 Creating a model using graphs
Modelling the rail traffic system as a system of processes and events can yield powerful
algorithms for real-time conflict detection and resolution. Such a system can be visualized using
an alternative graph or a Petri net, or more specifically, a timed event graph.
D’Ariano et al. [5] use an alternative graph model in which sets of alternative arcs represent the
possibilities for rescheduling the train traffic operations. From the graph, boundary conditions for
train movements can be derived, which can then be used for conflict detection and resolution. A
branch-and-bound algorithm is used to calculate an optimal solution to solve conflicts.
Furthermore, speed profiles of the trains in the model are adjusted according to actual signal
aspects to make the conflict detection and resolution more accurate. The system works on the
level of a dispatching area (i.e. the area that is controlled by one dispatcher).
Another description of the alternative graph model can be found in Mazzarello et al. [11], where
the alternative graph model is used to predict and solve conflicts in a case study at the Dutch
Schiphol railway line and tested in a pilot for making the train traffic on the railway lines near
Lage Zwaluwe more fluently. The latter is done by communicating speed advices to train
engineers. However, the sequence order of trains on the railway lines remains the same, so no
specific modelling system as discussed in this thesis is needed to represent this.

Dispatching actions in rail traffic management

20

3.5.3 Methods using integer programming
Aside from rail traffic models using blocking time diagrams or graphs, a great variety of other
ways for solving conflicts in real time has been proposed. Some different strategies will be
shortly reviewed in this section.
Törnquist [13] proposes a heuristic method for solving conflicts by assigning new timetable paths
(i.e. time-distance paths) to all trains, independent on which tracks were originally assigned in the
timetable. In some cases, the order of trains is changed as well, as delayed trains can be allowed
to stand back (i.e. wait on a siding track) for a number of other trains. A case study indicated that
a planning horizon of 60 minutes is sufficient for achieving solutions which are good on the
longer-term.
Adenso-Díaz et al. [1] present a method in which the traffic system is modelled using integer
programming in order to calculate optimal rescheduling actions in case of disruptions affecting
the train circulation. The rescheduling actions considered here are: 1) cancelling the affected
service, in which case the effects on following services of the same unit have to be calculated, 2)
sending another unit to carry out the service. A heuristic procedure for reducing the solutions
space is presented.

3.5.4 Max-plus models with control possibilities
Max-plus algebra is a powerful tool to calculate delay propagation. However, only few
publications are known in which max-plus algebra is used for calculating the impact of railway
rescheduling measures on network level. Van den Boom & De Schutter [3] describe a way of
modelling discrete event systems in which control actions are possible using a switching max-
plus linear system. They allow the system to operate in different modes, whereby each mode can
refer to a certain set of train orders and transfer connections. Goverde [6] uses max-plus algebra
to calculate the consequences of breaking a transfer connection with regard to waiting times for
passengers.

3.6 Conclusion
A dispatching action is an intervention in the rail traffic system with the purpose of solving a
conflict between train runs, thereby aimed at reducing delays and their propagation. Dispatching
actions can be divided into two groups: traffic control actions are dispatching actions in which the
line routes and sequence orders of trains are maintained, while by rescheduling actions the line
routes and sequence orders of trains are changed.
During the last decades, research has been carried out to find ways for improving dispatching
procedures during disruptions in railway operations. Mainly, models using blocking time theory,
graph theory or linear programming are used to find optimal dispatching actions.
Although most research on online rescheduling aims at systems that can operate in one
dispatching area, one line of even one station, some delays and dispatching actions can have
network-wide effects. However, no online tool able to calculate the network-wide effectiveness of
dispatching actions in railway systems has been developed yet.

Timed event graphs for railway operations

21

4 Timed event graphs for railway operations

4.1 Introduction
How can railway operations, with all their interdependencies and constraints in space and time, be
modelled? The scheduled max-plus linear system, or its graphical equivalent in the form of a
timed event graph, possesses properties making it a powerful tool to do this. In this chapter, the
concept of timed event graphs will be explained using an example of two trains crossing each
other at a station.
The outline is as follows: In section 4.2 will be explained why timed event graphs are used
instead of the mathematical representation using max-plus equations. In section 4.3 will be
explained how railway operations are broken down into processes and events, which is used in
section 4.4 to explain the basic concept of timed event graphs. How a timed event graph can be
used to model a railway system is shown in section 4.5. As stated in section 2.2, the periodic
model of a railway system cannot be used to represent dispatching actions, which will be shown
in section 4.6. This section will deal with a modification of the timed event graph such that the
model is no longer periodic. This enables the implementation of dispatching actions. Section 4.7
is dedicated to the limitations of the presented model. Section 4.8 contains the conclusion of this
chapter.

4.2 Why use timed event graphs?
A timed event graph and a max-plus model are equivalent in the sense that a timed event graph
can be translated directly into a max-plus model, and vice versa. Consequently, two approaches
for implementing dispatching actions in the model, the goal of this project, are possible. One
approach is to represent the railway system as a timed event graph. When doing so, dispatching
actions can be implemented by changing the timed event graph accordingly. The other approach
involves representing the railway system as a system of max-plus equations. Dispatching actions
are in that case implemented by changing the affected elements of the max-plus matrix
accordingly.
For the development of the algorithms for this research project, the representation using timed
event graphs is used, for the following reasons:

• Visualising the system using timed event graphs gives insight in the behaviour of the
system.

• Implications of dispatching actions on the model are translated more easily to timed event
graphs then to systems of max-plus equations.

• Algorithms handling timed event graphs are transparent in the sense that it is clear to see
what they are doing and why they are doing that.

It should be remarked that the choice for modelling the system as a timed event graph does not
necessarily have implications for later compatibility with algorithms based on pure max-plus
theory. Since a max-plus matrix of a railway system is sparse, it is often represented as a list of
the nonzero elements. Such a list principally matches the arclist representation used for storing
timed event graphs in this project, which will be presented in the subsequent chapters. Therefore
the timed event graph representation can merely be regarded as a temporary stage in the
algorithm development process. The final result, a model with the ability to implement
dispatching actions, remains the same and can be translated back to max-plus algebra when
necessary. A way of representing dispatching actions as a switching max-plus linear system is
shown in section 6.6.

Timed event graphs for railway operations

22

4.3 Railway operations broken down into processes a nd events
In Figure 4.1, a small example network with two trains is shown. Train 1 is scheduled to go from
station A to station C. After the departure of train 1, train 2 is scheduled to go to station B. In this
example only the shown part of the railway network is considered and the possible processes and
events before the departures of trains 1 and 2 are omitted. The interlocking routes of trains 1 and
2 are crossing each other when leaving station 1 and 2.

Figure 4.1 Small example network with crossing train movements.

In order to understand the concept of timed event graphs, one has to realize that railway
operations can be broken down into a set of processes p, which take a certain amount of time to
be completed, and a set of events x, which form the beginning or the end of a process.
To illustrate this, three processes and four events from the example of Figure 4.1 are identified in
Table 4.1 and Table 4.2 respectively. Note that in reality this example can be part of a much
bigger network of events and processes, but for the sake of simplicity only three processes and
four events will be taken into account.

Table 4.1 Three processes from the example.

Process Description
1 Train 1 runs from A to C
2 Train 2 waits until train 1 has left the station.
3 Train 2 runs from A to B

Table 4.2 Four event from the example.
Event number Description

1 Departure of train 1 from A
2 Arrival of train 1 at C
3 Departure of train 2 from A
4 Arrival of train 2 at B

All identified processes and events are interrelated with each other. In the next section will be
explained how this can be modelled using graph theory.

Timed event graphs for railway operations

23

4.4 Basic concepts of timed event graphs
In this section, the example of section 4.3 will be translated to a timed event graph, while
simultaneously the basic concepts of timed event graphs will be explained.

4.4.1 Places and transitions representing processes and events
Timed event graphs are bipartite directed graphs which form a subclass of Petri nets. This means
that a timed event graph consists of a set of places and a set of transitions, which are connected by
arcs. Graphically, the places are represented by circles and the transitions by rectangles, or bars.
In a timed event graph, each place has exactly one incoming arc from a transition and one
outgoing arc to a transition. As a consequence, each place together with its incoming arc and its
outgoing arc can be interpreted is an arc itself, connecting two transitions directly, as can be seen
in Figure 4.2. Therefore, the example described in section 4.3 consists of four transitions x1…x4,
connected by three arcs t1…t3.
When railway operations are modelled, the transitions in the graph represent events, and the arcs
represent processes (see section 4.3 for an explanation of events and processes). Since processes
are obviously time-consuming (e.g. running time between two stations), each arc r in the timed
event graph has a minimum time delay tr attached to it. In the literature, this time delay is often
referred to as the arc weight or holding time.

Figure 4.2 Graphical representation of transitions and arcs.

Recall the example from section 4.3. The processes and events identified in the example can be
translated to sets of transitions and arcs. The resulting timed event graph is shown in Figure 4.3.
Here the arc weight t1 represents the running time from A to C, t2 represents the waiting time for
train 2 until train 1 has left the crossing and t3 represents the running time from A to B.

Figure 4.3 Timed event graph of example network.

Timed event graphs for railway operations

24

How can one tell from a timed event graph which processes are active, and which are not? In
other words: what is the actual state of the system? This is represented by the marking of the arcs,
which will be explained in the next section.

4.4.2 Markings representing the actual state of the system
The marking of an arc is represented by drawing µr dots (tokens) in the circle which stands for
place pr. A token in a place represents an active process. When modelling of railway operations, a
token in place pr means that a train is actually performing process pr at the represented time
instant. In Figure 4.3 no tokens are present at all, which means that none of the three drawn
processes is active. This corresponds to the situation in Figure 4.1, where no train has departed
yet. In Figure 4.4 the same timed event graph is shown, but in this case the arcs 1 and 2 are
marked. This means that process 1 and process 2 are active, which represents train 1 running from
A to C, and train 2 waiting for the crossing to get clear.

Figure 4.4 Timed event graph with marked arcs.

Firing rule
After the departure of train 1 from station A, train 2 has to wait long enough for the crossing to
get clear. To model this, a correct timing and sequence of the events is guaranteed by the
following two step firing rule, which each event has to obey:

i. A transition x is enabled if each incoming place contains a token and the associated
holding times have elapsed.

ii. A firing of an enabled transition x removes one token from each incoming place and adds
one token to each outgoing place.

The firing rule enables tokens to move over the places, thereby reflecting the dynamic behaviour
of the system. An example of an event firing is shown in Figure 4.5.

Figure 4.5 Timed event graph after firing event x2.

The basic concepts described above can be used to model entire railway networks with all their
interdependencies in time. In the next section will be discussed how all these interdependencies
can be included in the model.

Timed event graphs for railway operations

25

4.5 Modelling a railway network
A timed event graph is constructed in three phases, which reflect the different types of
dependencies existing between the events in a railway network. In this section will be explained
how all dependencies between train movements can be modelled using a timed event graph.

4.5.1 Modelling all train lines
In the first stage of constructing a timed event graph, the train lines themselves are constructed.
Obviously, a train cannot arrive at a station before it has departed from the preceding station. This
is modelled by a string of arcs, connecting all subsequent events a train line consists of. The arc
weights between two stations reflect the minimum running time (i.e. the shortest time in which
the train can cover the distance between the stations, not the scheduled running time). Arcs
running from an arrival to a departure event reflect the dwell time. An example of this is shown in
Figure 4.6, where the timed event graph of a train line from station A to station C, with an
intermediate stop in station B is shown. When a train line is running f times per hour, the
described procedure is repeated f times.

Figure 4.6 Timed event graph of an example train line.

4.5.2 Modelling infrastructure constraints
All trains sharing the same infrastructure are protected from collisions by signalling and safety
systems [12]. These systems make sure that a minimum space separation between trains using the
same infrastructure is assured. The space separations are translated into time separations so that
they can be modelled using a timed event graph. In the second stage of the construction of a
timed event graph, these time separations, called infrastructure constraints, are modelled. Two
types of infrastructure constraints exist: headway constraints and hindrance constraints.
Before headway constraints and hindrance constraints are described, the modelling of stations as
timetable points will be explained.

Modelling with timetable points
Each location where trains can interact with each other via headway or hindrance constraints is
defined as a timetable point. This involves the following parts of a railway network:

• all stations,
• all junctions.

Block signals, only contributing to the space separation of trains on the open track, are not
modelled. Since this model is constructed with the purpose of studying the arrival, departure and
through times at stations, the train movements on the open track are insignificant. Feasibility at
the open track and a fixed ordering of the trains on the open track and at timetable points are
ensured by considering the time separations at the beginning and at the end of the open track [7].

Timed event graphs for railway operations

26

All timetable points are modelled as ‘black boxes’, meaning that the topology of the tracks and
the platforms in the station itself is not considered. An example is shown in Figure 4.7, where a
schematized double track line with a platform between the tracks is shown (one railway track is
represented by one line). The translation of this station to a timetable point is also depicted. Points
where trains can enter or leave the station are called in/out-points (or short: IO-points).

Figure 4.7 Translation of a station S into timetable point T.

Headway constraints
Headway constraints ensure the time spacing between trains running behind each other on the
same railway track. They are modelled by arcs between subsequent departure or arrival events at
the same IO-point of a station. Hence the following definition:

A headway constraint arc connects two events occurring at the same IO-point, thereby
originating at the preceding event and ending at the successive event according to the schedule.

An example is shown in Figure 4.8, where three train lines are running from station A to station B
(the black arcs). In order to model the required time spacing between the trains, the red arcs have
been added to ensure the minimal headway times h.

Figure 4.8 Example of headway constraints at two stations. The headway constraints are coloured red

and marked by their headway times h.

In an hourly timetable the headway constraints have to form cycles in order to allow the same
events to continue being fired in the next periods. An example of such a cycle, including its
marking (see section 4.4.2 for an explanation of marking), is shown in Figure 4.9. Note that with
the shown marking, x2 would have to occur before x5.

Timed event graphs for railway operations

27

Figure 4.9 Headway constraints at the entrance of station B for an hourly timetable with two lines.

Hindrance constraints
Whereas headway constraints ensure time separation between events using the same IO-points of
a station, hindrance constraints are used to model conflicts between events using different IO-
points. Interlocking routes using different IO-points can conflict with each other when they use
the same infrastructure on their route through the timetable point (e.g. when crossing each other).
An example is shown in Figure 4.10. Although the trains use different IO-points, a time
separation has to be included in the model because the trains cannot depart at the same time. Note
that for modelling this, it has to be known whether the interlocking routs cross before of after the
platform, since this yields different hindrance constraints.

Figure 4.10 Hindrance conflict between departures of train lines.

As the interlocking route of trains through timetable points is not modelled in this project, it is
assumed that every train line has its own fixed routing through the timetable point. Therefore it
can be stated that hindrance conflicts occur between conflicting train lines. Hence, the following
definition describes hindrance conflicts as implemented in this project:

A hindrance conflict arc connects two events of different, conflicting train lines, occurring at
different IO-points but at the same timetable point, thereby originating at the preceding event and
ending at the successive event according to the schedule.

Often, one train line conflicts with two or more other train lines. To assure a correct modelling of
all time separations caused by hindrance conflicts, each event should be connected by hindrance
arcs to the events corresponding to all train lines it is conflicting with. This means that if a
movement of train line L causes hindrance to n other train lines, n outgoing hindrance arcs have
to be added to the timed event graph for the corresponding event of this train line. An example is
shown in Figure 4.11, where three train lines are scheduled to depart in the order 1, 2, 3. The
departure of line 1 is hindering the two other lines by crossing them while departing from station
S, which is why two hindrance constraint arcs originate from the departure event of line 1.
Note that in a periodic timetable, this implies that the departure of line 1 has n incoming
hindrance arcs as well.

Timed event graphs for railway operations

28

Figure 4.11 Example of hindrance arcs. Line 1 is hindering two other train lines. The corresponding

hindrance arcs are shown on the right.

Since hindrance constraint arcs have to run in the direction of the scheduled order of events, this
order has to be known for all events at a timetable point when generating hindrance arcs. The
timetable vector d cannot be used for this purpose, since the scheduled event times only represent
the correct order of all events in the original timetable. The scheduled order of events may be
changed by dispatching actions, e.g. when trains overtake each other, making the scheduled order
of events in the timed event graph differ from the order in the timetable. This means that the order
of events occurring at the same timetable point has to be stored separately, which is implemented
by using a linked list. For each event x, the preceding and the successive event are stored in such
a linked list. The system with linked lists is chosen for its low complexity and its high flexibility,
since only a few entries of the linked list have to be changed when the scheduled order of events
is changed.
Note that the presence of hindrance arcs in the timed event graph does not necessarily imply that
the corresponding hindrance conflict will actually occur in the railway system. Usually, the time
separation between conflicting train movements is accounted for in the timetable and the trains
are scheduled in such a way that no actual conflicts occur. However, in case of delays and/or
dispatching actions the hindrance constraint arcs can become significant and conflicts can occur.

Redundant constraints are maintained
When including hindrance constraints in the model as described above, some infrastructure
constraints in the model can become redundant. A constraint is called redundant when the time
separation it represents is already assured by other constraints, an example of which is shown in
Figure 4.12. In this example, events x1 and x3 necessarily have a time separation of 6 minutes via
the constraints connecting event x2. This makes the constraint between x1 and x3 redundant. In a
real railway system, this situation would for example occur when two train movements in the
same direction are separated by a third, crossing train movement. The headway constraint
between the two trains in the same direction is likely to become redundant since sufficient time
separation is already assured by the crossing train movement.

Figure 4.12 Example of a redundant infrastructure constraint.

Timed event graphs for railway operations

29

Redundant headway arcs are maintained in the timed event graph, although they are irrelevant for
the dynamic behaviour of the model. In this way, hindrance arcs and headway arcs are treated as
two separate groups without affecting each other’s topology in the timed event graph. This has
been done for the following reasons:

• Hindrance and headway arcs can be generated without knowledge about the topology of
the timed event graph. This yields quick and simple algorithms for implementing
dispatching actions.

• The topology of headway arcs in the timed event graph contains information about the
order in which the trains are running along the track, which is used by some algorithms.

• When events are postponed, redundant headway constraints can become active again.
When redundant headway arcs are kept in the timed event graph, the correct time
separation between trains is always assured, also when dispatching actions changing the
timed event graph are carried out.

4.5.3 Modelling synchronization constraints
Two types of synchronization constraints are distinguished: passenger transfers and rolling stock
connections. In the literature, this is sometimes referred to as soft synchronization constraints (as
they can be broken without implications for the schedule) and hard synchronization constraints
respectively (since a connecting train trip can simply not depart if its rolling stock has not arrived
yet).

Passenger transfers
At many stations, trains are waiting for each other to enable passenger transfers. In the 3rd phase
of the construction of a timed event graph, these connections are modelled. This is done by
connecting the relevant events with an arc, where the arc weight is the transfer time. An example
is shown in Figure 4.13, where the train at platform 2 is the feeding train, while at platform 1 the
connecting train is scheduled. The red arc, representing the synchronization constraint, ensures
that the departure of the connecting line at platform 1 can take place only after the arrival of the
feeder line, after the transfer time tsynchronization has elapsed.

x5 x6 x7 x8

Departure Arrival Departure Arrival
running time dwell time running time

Station A, platform 1

x1 x2 x3 x4

Departure Arrival Departure Arrival

running time dwell time running time

Station A, platform 2

tsynchronization

Figure 4.13 Example of a transfer constraint between two trains.

Timed event graphs for railway operations

30

Rolling stock circulation
The rolling stock circulation is modelled in this stage in the same manner. In the case of rolling
stock circulation, the departure of a train line has to wait for the arrival of the previous train line
for which the same rolling stock is used. In most cases this will correspond to a turn at the end of
a train line.

4.5.4 Determining the initial marking
In order to get a working timed event graph, the marking has to be set correctly. Recall from
section 4.4.2 that the marking represents the present state of the system. When constructing a
timed event graph, the state of the system at t = 0 (the beginning of a period) is calculated. The
marking of the arcs at the reference time instant t = 0 is called the initial marking. The initial

marking of an arc (i, j) can be calculated with the following formula, where x   denotes the least

integer not smaller thanx∈ℝ (i.e. x is rounded up):

i ij j
ij

d t d

T

+ − 
µ =  

 

in which:
µij = initial marking of arc (i, j),
tij = scheduled process time of arc (i, j),
dj = scheduled time of event j,
di = scheduled time of event i,
T = cycle time (60 minutes in case of an hourly timetable).

4.6 Timed event graph without periods

4.6.1 Algorithms become complex when periodicity is maintained
Modelling a railway system using timed event graphs as described above is suitable for studying
periodic timetables (e.g. an hourly timetable) but this becomes problematic when dispatching
actions have to be modelled. In particular, changing the sequence order such that the k-th
occurrence of an event is postponed after occurrence k+1 of another event is difficult, which will
be illustrated in the following example:
Consider Figure 4.14, where postponing event i1 to the next period would lead to the situation that
event 1 is not present in period 1 at all, while period 2 contains the same event twice. This would
be no problem if the scheduled order of events remains fixed, but events in period 2 may precede
events in period 1 when the order is changed, or more general, occurrence k+1 of an event may
precede the k-th occurrence of such an event. This is problematic since arcs have to run to
previous periods, which is difficult to implement. The problem is solved in this project by
creating an acyclic model out of a periodic model, which will be explained in the next section.

Timed event graphs for railway operations

31

Figure 4.14 Postponing an event to the next period, leading to the situation that an event precedes an
event from the previous period.

4.6.2 Unfolding periodic events during the day
The problems concerning the implementation of dispatching actions within a periodic
environment have been solved by giving each periodic event a unique number for each period
over the entire day. This can be described in two steps, shown in Figure 4.15. As input, the
periodic model is used. In the first step, each event is stored separately for each period, implying
that each event is identified with its event number i and its period number k. This step can be
visualised as ‘unfolding’ the periodic events to unique events (i, k). The purpose of the second
step is to prevent the algorithms from getting unnecessarily complicated. In this step, each event
(i, k) gets a unique event number i.

Figure 4.15 Unfolding periodic events to obtain unique events during the day, shown as an example of
three periods.

The model used to perform the calculations can thus be regarded as one big period. However, the
periodicity of the hourly timetable is still present in the model, as events of the same train line

Timed event graphs for railway operations

32

occur periodically. This property is important for the generation of hindrance constraints, as will
be described in section 5.3.4.
Using a timed event graph without periods has several effects on the properties of the model, and
thus on the algorithms. The implementation of a system without periods is motivated by the
following advantages of such a system:

• Postponing an event to the next hour can be implemented without ambiguous
implications such as arcs running to a preceding period.

• Changes in the timetable during the day (e.g. slight differences in running times and
stopping patterns of the first and last train trips of the day) can be modelled easily.

• The algorithms become less complex due to neglecting periods.
• The graph becomes acyclic for which fast critical path algorithms exist.

On the other hand, discarding periodicity comes with a negative aspect too. A periodic max-plus
model has structural properties which can be exploited by advanced optimization algorithms. An
example is the critical path, from which the minimal cycle time can be derived. This property can
be used as a first indication of the stability of certain dispatching actions. However, advanced
optimization algorithms are a subject beyond the scope of this research project, which is why
periodicity can be discarded without implications for this research project.

4.6.3 Methods for implementing the system without p eriods
A non-periodic (acyclic) model as described in the previous section will be used as input for the
algorithms presented in this thesis. For an implementation using a periodic model, several
methods to create an acyclic system can be adopted. Three of them will be explained briefly in
this section. The first method is used in the remainder of this thesis.

1. Create a non-periodic model in advance
This method involves defining each event in advance, after which the timed event graph is
generated. After generation, this timed event graph can be used to carry out the required
calculations. This method is suitable for creating small hypothetical networks and for offline use,
and is therefore used in this project to develop and test the algorithms. Since the non-periodic
model is created in advance, a non-periodic list of events is considered as input in chapter 5 when
generating the timed event graph.

2. Create a non-periodic model from a cyclic timed event graph
When a cyclic timed event graph is available, the steps described in section 4.6.2 as the
‘unfolding’ process, can be adopted to create a non-periodic model for an entire day. This method
is useful to make offline calculations with dispatching actions if a cyclic timed event graph is
already available, for instance when dispatching actions are to be implemented in software like
PETER [7].

3. Create a non-periodic model for real time use
A way to implement the non-periodic model in a real time environment is depicted in Figure 4.16.
Within the planning horizon, dispatching actions have to be evaluated in a model without periods,
for the reasons described in section 4.6.2. The model is constructed from one period which is
stored separately. During the day, periods are added to the model in order to maintain the desired
planning horizon. At the same time, the periods laying in the past can be deleted from the model
for the obvious reason that dispatching actions cannot be carried out for events that occurred in
the past, and therefore do not need evaluation. Of course, the deleted parts of the model can be

Timed event graphs for railway operations

33

stored separately for later analysis, as they contain the railway operations as actually carried out
including the dispatching actions.

Figure 4.16 Model consisting of several periods.

4.7 Limitations of the model
Although the model described above allows a detailed representation of large scale railway
networks with great computational power, it has some limitations too. The most important
limitations of the model will be reviewed in this section.

Interlocking routes through stations are not modelled
By modelling all stations as timetable points, no possibility is left to include the routings through
stations as a variable in the optimization process. The routings are regarded as a fixed property of
a train line. The disadvantage of this is that dispatching actions regarding the interlocking routes
cannot be modelled. However, optimizing the interlocking routes at bigger stations is very
complex and adding this possibility to the optimization framework presented in this thesis is
considered a subject beyond the main goal of this project.

Minimal running times are fixed
The minimal running times t for each train run are included as a fixed property of the
corresponding arc (the arc weight) in the model. However, a fixed minimal running time is
sometimes inconsistent with the real situation. Consider for example Figure 4.17, where the time-
distance curve of a hindered train is shown. In the model, the waiting time for the signal is
included via headway and hindrance constraints, but the additional time loss due to the
acceleration of the train is not included.

Timed event graphs for railway operations

34

Figure 4.17 Running time increase due to acceleration after waiting for a signal.

This time loss depends on many factors, such as the rolling stock, weather, personal driving style
of the train driver, whether the train came to a full stop or not, etc., and can only be included in
the model with complex calculations of the train dynamics. A practical suggestion for a less
complex implementation of this is to include an extra penalty for dispatching actions causing a
through train to be hindered, such that this penalty accounts for the running time increase of this
train while evaluating such a dispatching action.

Block or track occupation is not modelled explicitly
Modelling the headway constraints as described in this chapter leads to a clear and
comprehensive model. However, a limitation of this way of modelling the time separation
between trains is that the actual occupation of a bock by a train is not modelled explicitly. In case
of delays, this can sometimes lead to the situation in the model that two trains seem to occupy the
same block.
Although this looks like a big limitation of the model, the influence on the outcomes of the delay
propagation algorithm (see section 5.4) is not necessarily big. Since the minimal headways are
always assured via the appropriate constraints in the model, conflicts between trains in case of
delays will become apparent correctly by using the delay propagation algorithm. Therefore, this
limitation is no problem for the analysis and control purposes for which the model is used in this
project. Moreover, the question actually relevant in this context is whether this limitation
influences the outcome of the optimization algorithm when calculating the optimal combinations
of dispatching actions. In the remainder of this thesis this is assumed highly unlikely. An
investigation of the exact influence of this limitation on the algorithms ranges beyond the scope
of this project. It is recommended for all future research on this subject to carefully consider the
level of detail of the model in relation with the purpose it is used for, as has been done in this
section.
A much more detailed model in which block and track occupation is modelled indeed, intended
for calculating optimal dispatching actions on smaller parts of a railway network, such as a station
or a dispatching area, is proposed in [5].

Deterministic running times are used
The last limitation discussed here concerns the fact that only deterministic (i.e. not stochastic)
running times are used in this model. In reality, the minimal running time is never the same since
it depends on many factors not accounted for in the model. Some of these factors can be
controlled, for example by communicating advised speeds to train drivers, which can lead to the
situation that the running times in reality are highly deterministic indeed. However, the
introduction of a stochastic component of the running times in the model can lead to more
realistic results when the running times realized in reality are partly stochastic.

Timed event graphs for railway operations

35

4.8 Conclusion
Railway systems modelled as discrete event systems can be represented by systems of max-plus
equations, which can be visualized as timed event graphs. For the development of algorithms in
this thesis, the timed event graph representation will be used. This chapter explained the concept
of timed event graphs. Railway operations are broken down into processes and events, which are
represented in a timed event graph by arcs (places) and events (transitions) respectively.
Subsequently, train lines are modelled as strings of processes and events.
In order to model the correct infrastructure constraints, timetable points are used to model stations
as a black box where trains can enter and exit via IO-points. The infrastructure constraints are
modelled as arcs between events of train lines using the same IO-points (in case of headway
constraints) or using conflicting interlocking routes (in case of hindrance constraints).
Synchronization constraints ensure that trains in the model wait for transfer connections and that
the rolling stock circulation is modelled correctly.
To evaluate the impact of dispatching actions, the periodicity of the model is abandoned, so one
day is regarded as one big period.

Data structure for timed event graphs

36

5 Data structure for timed event graphs

5.1 Introduction
A suitable data structure is essential for the development of efficient algorithms. In this project,
the data structure means: the way in which the timed event graph is stored in the computer.
Since the system presented in this thesis is aimed at assisting the dispatcher while deciding which
dispatching actions to carry out, calculations have to be performed quickly (i.e. the system has to
operate in real time).
Recall the explanation of timed event graphs from chapter 4. The data structure has to be suitable
for performing the following operations efficiently:

• Finding all arcs starting at event i (i.e. all arcs with tail i).
• Finding all arcs ending at event i (i.e. all arcs with head i).
• Deleting an arc from the timed event graph.
• Inserting an arc in the timed event graph.

An algorithm is stated to be efficient if the time it takes to perform one of the above operations is
independent of the size of the model (i.e. the size of the modelled railway network). This can be
achieved using a data structure with adjacency lists, which is why this data structure has been
implemented in the algorithms presented in this thesis.

The goal of this chapter is to define and explain the used data structure and to introduce
algorithms using this data structure to calculate the delay propagation in the railway network and
the capacity consumption of a railway line. The outline is as follows: The variables making up the
model in the computer memory are introduced in section 5.2, where the adjacency lists will be
explained as well. When the data structure is defined, section 5.3 describes how the model is
generated. Calculating the delay propagation in the network is important for the evaluation of
dispatching actions. In section 5.4, a time efficient delay propagation algorithm using the
described data structure is presented. Another useful parameter when evaluating dispatching
actions is the capacity consumption. An algorithm for calculating this is presented in section 5.5.
The conclusion can be found in section 5.6.

5.2 Variables for storing and editing the timed eve nt graph

5.2.1 The matrix Event
The matrix Event contains characteristic information of each event present in the model. Since
each event has to be stored separately, as explained in section 4.6, one row of the matrix Event
represents one unique event during the day. Hence, an event occurring n times a day is present n
times in the Event matrix. For each event x, a row of the matrix Event contains the following
objects:

Event(x) = (TN, LN, TTP, IO, type, P, N)

where:
TN = unique train number of a train trip,
LN = line number,
TTP = timetable point,
IO = IO-point,

Data structure for timed event graphs

37

type = type of event,
P = preceding event scheduled at TTP (linked list),
N = next event scheduled at TTP (linked list).

The variable type in de matrix Event can have the following values:
1 = arrival,
2 = departure,
3 = arrival at the end of train run,
4 = departure at the start of a train run.

The purpose of the Event matrix is twofold. Most importantly, it is used by the algorithms
presented in this thesis to identify characteristics of events relevant for applying dispatching
actions correctly. The second purpose is to create output and give a meaning to it, for instance by
relating delays to the corresponding train numbers.
Why storing a line number when each train has its unique train number anyway? Although an
acyclic timed event graph is used, periodicity of the timetable is assumed (see section 4.6). Each
train in the network can be assigned to a group of equivalent trains having the same properties.
Each of those groups has a unique line number LN. This property is used by the algorithms to
identify trains which have the same:

• interlocking route,
• stopping pattern,
• line route through the railway network.

The first property is used in the optimization process to derive hindrance constraints when
dispatching actions are applied (see section 5.3.4 for the algorithm generating hindrance
constraints). The second and third properties are used to calculate the delay of travellers who have
to wait for the next train of the same type when their train is cancelled.

5.2.2 The arclist
The interdependencies between events are represented by arcs forming a timed event graph, as
explained in chapter 4. This is implemented by storing all arcs in a list, called A. The arclist is
stored as a matrix of which each row r represents one arc and contains the following objects:

A(r) = (j, i, t, type)

in which:
j = head event (i.e. the event to which the arc is running),
i = tail event (i.e. the event from which the arc originates),
t = holding time of the arc,
type = activity type.

The variable type can have the following values:
1 = running time arc,
2 = dwell time arc,
3 = headway arc,
4 = turning arc,
5 = hindrance arc,
6 = through arc.

Data structure for timed event graphs

38

Note that the marking of the arcs is not present here. Since the periodic events of the timetable are
modelled and stored separately during one day (‘unfolded’, see section 4.6), the model has
become acyclic. Consequently, markings loose their meaning, as they represent the possibility
that arcs can run from one period to another.

5.2.3 The timetable vector d
The timetable vector d contains the times at which each event x is scheduled to occur. So:

d(x) = the scheduled event time of event x.

The event times are expressed in minutes starting from midnight, so for example 6:40 hours
becomes 6 ⋅ 60 + 40 = 400 minutes. The timetable vector is regarded as input for the algorithms
presented in this thesis.
The timetable vector is not changed when dispatching actions are carried out. The dispatching
actions for which algorithms will be developed in the next chapter are aimed at changing the
scheduled order of events. The underlying target is to minimize the delays in the network
resulting from a given set of initial delays. By regarding the timetable vector as a constant, it can
be used to calculate the delays of all events in the network as it corresponds to the original
timetable.

5.2.4 Adjacency lists
The algorithms developed in this research project are capable of exploring the timed event graph
without scanning the entire arclist for each operation. This capability is obtained by storing
adjacency lists together with the arclist. For each event i two node-arc adjacency lists are
generated. The first list contains all arcs r starting at event i, whereas the second list contains all
arcs k ending at event i.
For an illustration of this, consider the example of a timed event graph shown in
Figure 5.1. This graph consists of 6 events and 5 processes (the arcs). The arclist representing this
is shown in Figure 5.2. For the sake of a clear example, the holding times and activity types of the
arcs are omitted in this example. The adjacency lists belonging to this arclist are shown in the
figure as well. Now suppose that an algorithm needs to ‘know’ which arcs have their ending (i.e.
their head) at event 3. This can be found by looking at the 3rd row of the adjacency list for the
heads. As can be seen in the figure, this row contains the numbers 2, 5 and 0, which means that
the 2nd and the 5th arc in the arclist point to event 3. A zero in the adjacency list means that no
(more) arcs start at the according event. The same can be done for the tails in the other adjacency
list.

1 2

3

4 5

6 tail i head j

Figure 5.1 Example of a timed event graph.

Data structure for timed event graphs

39

 Arclist

heads j

Adjacency lists

arcs r →

tails i

Adjacency lists

arcs r →

 heads j tails i

 ↓ 1. 0 ↓ 1. 1 0 1. 2 1
2. 1 0 2. 2 0 2. 3 2
3. 2 5 0 3. 3 0 3. 6 3
4. 0 4. 4 0 4. 5 4
5. 4 0 5. 5 0 5. 3 5
6. 3 0

6. 0
Figure 5.2 Adjacency lists and arclist of example.

As can be seen in the example, a lot of information about the structure of the graph can be
retrieved without scanning the entire arclist, which would obviously be very time consuming
when big graphs are concerned.
The adjacency lists are generated using Algorithm 5.1, which scans the entire arclist once, while
storing each row number in the corresponding adjacency list. The adjacency lists are unsorted,
hence the running time is linear and depends on the number of rows n of A, which is denoted by
O(n) in the algorithms literature. For very big arclists, this can become time consuming. This is
why the adjacency lists are created before the optimization process starts.

Algorithm 5.1 (ARCLIST2ADJ)
Input:
 A
Output:
 Adjtail
 Adjhead

= list of all arcs

= adjacency lists containing arcs starting at event x
= adjacency lists containing arcs ending at event x

1. m ← highest event number occurring in A ;
2. Adjtail ← zeros (m) ; Adjhead ← zeros (m) ;
3. for each row r of A do
4. Adjtail (ir) ← Adjtail (ir) ∪ r ; % store row number for tail event
5. Adjhead (jr) ← Adjhead (jr) ∪ r ; % store row number for head event
6. return Adjtail, Adjhead

Adjacency lists become useless if the arclist is modified in order to represent a dispatching action.
This problem is solved by keeping the adjacency lists up to date when modifying the arclist, for
which the algorithms presented in the next sections are used.

5.2.5 Deleting an arc
In order to keep the data structure working while deleting an arc from the timed event graph, the
routine DELARC has been developed. A key idea behind the DELARC algorithm is that the
remaining arcs are kept at their original locations in the arclist. This minimizes the number of
changes required to keep the adjacency lists up to date, as the adjacency lists contain pointers to
the locations of arcs in the arclist. Obviously, an empty row remains in the arclist after deleting
an arc. The row numbers r of those empty rows are stored in the vector Empty so that these
locations can be used to construct new arcs when necessary. The pseudocode of the DELARC
routine is shown below.
Note that keeping the adjacency lists up to date when deleting an arc is just a matter of removing
the pointers from the adjacency lists. This is implemented by moving the values from positions
beyond the deleted value one position ahead in the vector, so that the last value remains zero. The

Data structure for timed event graphs

40

worst case running time of this algorithm thus depends on the size of the biggest adjacency list.
However, when modelling railway networks, an event having more than around 10 successor
events or preceding events will be extremely rare.

Algorithm 5.2 (DELARC)
Input:
 A
 Adjhead
 Adjtail
 Empty
 r
Output:
 A
 Adjtail
 Adjhead
 Empty

= list of all arcs
= adjacency lists containing arcs starting at event x
= adjacency lists containing arcs ending at event x
= vector containing empty row numbers
= row number of arc that will be deleted

= updated list of all arcs
= updated adjacency lists containing arcs starting at event x
= updated adjacency lists containing arcs ending at event x
= updated vector containing empty row numbers

1. A(r) ← [0 0 0 0] ; % replace arc by a row of zeros in Arclist
2. Empty ← Empty ∪ r ; % add r to vector of empty rows
3. adjhead(jr) ← adjhead(jr) \ r ; % remove pointer k from adjacency lists
4. adjtail(ir) ← adjtail(ir) \ r ;

5.2.6 Inserting an arc
The routine ADDARC has been developed for inserting an arc into the arclist while keeping the
adjacency lists up to date. The new arc is input for the algorithm, and is a vector of the same
format of the rows of A, so:

arc = (j, i, t, type).

Algorithm 5.3 (ADDARC)
Input:
 A
 Adjhead
 Adjtail
 Empty
 arc
Output:
 A
 Adjtail
 Adjhead
 Empty

= list of all arcs
= adjacency lists containing arcs starting at event x
= adjacency lists containing arcs ending at event x
= vector containing empty row numbers
= arc that will be inserted

= updated list of all arcs
= updated adjacency lists containing arcs starting at event x
= updated adjacency lists containing arcs ending at event x
= updated vector containing empty row numbers

1. if Empty ≠ ∅ then
2. r ← Empty(1) ; % use empty row of arclist
3. Empty ← Empty (2, … , size(Empty)) ; % remove used entry of Empty
4. else
5. r ← size(A) + 1 ; % use new row of arclist
6. A (r) ← arc ;
8. Adjhead(jarc) ← Adjhead(jarc) ∪ r ; % add pointers to arc
9. Adjtail(iarc) ← Adjtail(iarc) ∪ r ;

Data structure for timed event graphs

41

Whenever possible, the new arc is inserted in an empty row in the arclist. When no empty rows
are present, the arclist is extended with a new row to create space for the new arc. The routine is
shown below. Since no loops are present, the running time is approximately constant.

5.2.7 Conflict matrices
Lists of conflicting train movements are needed for two reasons:

• When generating the timed event graph, hindrance constraint arcs have to be derived and
incorporated in the model to ensure time separation between conflicting train movements,
as explained in section 4.5.2.

• When implementing dispatching actions, new hindrance constraint arcs have to be
derived and kept up to date with the new situation.

Conflict data
The conflicting train movements are stored in the variable Conflicts, which is a set of matrices
containing all data needed for constructing hindrance conflict arcs. This is implemented using the
cell-array notation of Matlab.
Recall from section 4.5.2 that hindrance conflicts are defined to occur between conflicting train
lines LN, using different IO-points of the same timetable point. Consequently, for each
combination of line number, timetable point and IO-point a matrix Conflicts{ LN, TTP, IO}
containing all line numbers of trains that are conflicting with the combination of LN, TTP and IO
exists. Each row r of such a matrix contains the following objects:

Conflicts{ LN, TTP, IO}(r) = (LNconflicting

r , IO
conflicting

r , tr)

where for each row r:
LNconflicting = line number of the conflicting line,
IOconflicting = IO-point used by the conflicting line,
t = minimal amount of time the conflicting train of LNconflicting has to wait for LN.

An empty matrix, denoted by Conflicts{ LN, TTP, IO} = ∅ , means that no train movement is
conflicting with the combination {LN, TTP, IO}.
Note that the number of matrices in Conflicts can become very large. When for example a small
network consists of 4 train lines, running between 5 timetable points, of which the biggest
timetable point has 6 IO-points, the number of matrices in Conflicts equals 4 · 5 · 6 = 120.
However, most of these matrices are empty since many timetable points contain no conflicting
routes, or very small since it is highly unlikely that a train line is conflicting with 10 or more
other train lines at the same timetable point. A benefit of this data structure is that it yields quick
access to a list of conflicting train lines when the line number, timetable point and IO-point are
known, which is advantageous for the running time of the algorithm generating the hindrance
constraint arcs. Examples of conflict matrices can be found in the case study, presented in chapter
7.

Generating Conflicts matrices
The study of conflicting train movements and (optimization of) interlocking routes through
stations is an entire subject within the field of train operations research. Since this reaches beyond
the goal and the limitations of this thesis, no detailed attention is given to the generation of the
described conflict data. When testing the developed algorithms for this project in the case study,
the Conflicts matrices were generated by hand.

Data structure for timed event graphs

42

When applying the developed algorithms in practice, the Conflicts matrices have to be generated
using detailed knowledge about the system, such as:

• topology of tracks in the stations,
• routing of train lines through stations,
• running characteristics of the trains (e.g. speed, acceleration and decelaration rates, etc.).

5.3 Generating the timed event graph
In this section, an algorithm for generating the timed event graph will be presented. Three extra
input variables needed for the generation of the timed event graph are introduced first: Two
variables defining the passenger transfers and the rolling stock turns are introduced in section
5.3.1, and a vector containing the running and dwell times as defined in section 5.3.2. After this,
the ‘Generate TEG’ algorithm is presented in section 5.3.3. Extra attention is given to the
generation of hindrance constraint arcs, to which section 5.3.4 is dedicated.

5.3.1 Input data for synchronization constraints
Synchronization constraints are not created during the optimization process, so the information
about them is only needed in the generation process. Therefore they are defined in this section.

Rolling stock turns
The matrix Turn contains all data needed to generate synchronization constraints for turning
rolling stock. Each row r of the matrix Turn contains:

Turn(r) = (TNfeeding

r, TNconnecting
r, tr)

where for each row r:
TNfeeding = train number of the feeding train,
TNconnecting = train number of the connecting train,
t = minimal amount of time needed for turning.

Note that a turn always connects the end of the feeding train trip with the start of the connecting
train trip. Hence, the timetable points where the turn occurs do not need to be stored.

Passenger transfers
The passenger transfers are stored in the matrix Transfers. Passenger transfers can occur at
several timetable points during a train trip. So, as opposed to rolling stock turns, the timetable
point where the transfer occurs has to be stored as well. Each row r of the matrix Transfers
contains:

Transfers(r) = (TNfeeding

r, TNconnecting
r, TTPr, tr)

where for each row r:
TNfeeding = train number of the feeding train,
TNconnecting = train number of the connecting train,
TTP = timetable point where the transfer is scheduled to occur,
t = minimal transfer time.

Data structure for timed event graphs

43

5.3.2 Input data for running and dwell times
The running and dwell times are stored in the vector Arcweight. The value of an element
Arcweight(i) is defined as the process time of the process following event i. So if event i is a
departure, then Arcweight(i) is a running time, and if i is an arrival, then Arcweight(i) is a dwell
time.

5.3.3 The Generate algorithm
The timed event graph is used as input for the optimization process described in section 6.5, and
is therefore generated in advance using Algorithm 5.4. The input of the algorithm consists of the
sets Event, Turns and Conflicts, and of the timetable vector d, as described in section 5.2. The
matrix Event used as input for the ‘Generate_TEG’ algorithm has two additional properties when
compared with its definition in section 5.2.1:

1. The linked lists formed by the last two elements of each row r of the matrix
Event are not present yet.

2. All events belonging to the same train trip occur as a closed group in the list (i.e.
with no events of other train trips in between), and in chronological order
according to the schedule.

The output of the algorithm is an arclist A, containing the timed event graph of the railway
system, and the event matrix Event, completed with the linked lists. The algorithm works as
follows:
In lines 1 – 10, the running and dwell time arcs are generated by scanning all events. When an
event of the type ‘arrival’ or ‘end’ (of train trip) is found, a running time arc originating from the
previous event is generated (line 5). In case of an event of the type ‘departure’, the arc from the
previous event is a dwell time arc, which is generated in line 9. The type ‘start’ (of train trip) is
not regarded by the algorithm here, as no running or dwell time arcs end at such an event.
When all running and dwell time arcs are generated, the linked lists are created in lines 11 – 14.
Then, the synchronization constraints are added to the model in lines 16 – 22.
In lines 23 – 29, the headway arcs are generated. This is implemented by creating a list for each
IO-point, containing all events occurring there at their scheduled order. Then, all events are
connected by headway arcs ensuring the time separation needed for events occurring at the same
IO-points (line 27).
Finally, in line 31, Algorithm 5.5 is called for each event x ∈ Event, and the produced hindrance
constraint arcs are added to A. This algorithm produces the hindrance constraint arcs representing
the hindrance conflicts caused by event x, and will be described in the next section.

Limitation of this algorithm: standard headways are used
A limitation of this algorithm is that the value used for the headway times is always the same.
Obviously in reality the headways can differ depending on train types, the track layout of the
station, etc. When using the algorithm for modelling a real railway system, each headway time
should be calculated separately. However, the main subject of this thesis is how to implement
dispatching actions in the model, and therefore calculating specific headway times is considered
to be a subject beyond the scope of this thesis.

Data structure for timed event graphs

44

Algorithm 5.4 (GENERATE_TEG)
Input:
 Event
 Arcweight
 d
 Turns
 Conflicts
Output:
 Event
 A

= list of all events occurring in the network, without linked lists
= list of process times
= timetable vector
= list of turning trains
= lists of train lines hindering each other

= list of all events occurring in the network, with linked lists
= arclist of generated timed event graph

1. for each event x ∈ Event do
2. if typex = ‘arrival’ or typex = ‘end’ % arrival or end or train line
3. i ← x – 1 ;
4. j ← x ;
5. A ← A ∪ { j, i, Arcweight(i), ‘running’} ; % add running arc from previous event
6. elseif typex = ‘departure’
7. i ← x – 1 ;
8. j ← x ;
9. A ← A ∪ { j, i, Arcweight(i), ‘dwell’} ; % add dwell time arc from previous event
10. end
11. for event x ∈ Event do
12. find preceding event at the same timetable point Event_previous ;
13. find next event at the same timetable point Event_next ;
14. Event(x) ← (Event(x), Event_previous, Event_next) ; % create linked list
15. for each row r of Turns do
16. find arrival event xfeeding of TNfeeding

r ;
17. find departure event xconnecting of TNconnecting

r ;
18. A ← A ∪ { xconnecting, xfeeding, t turn

r , ‘turn’} ; % add turning arc
19. for each row r of Transfers do
20. find arrival event E such that TTPE = TTPr and LNE = LNfeeding

r ;
21. find departure event D such that TTPD = TTPr and LND = LNconnecting

r ;
22. A ← A ∪ { D, E, tr , ‘transfer’} ; % add transfer arc
23. for each timetablepoint TTP do
24. for each IO-point IO do
25. find first event scheduled Event_current ;
26. while next scheduled event Event_next exists
27. A ← A ∪ {Event_next, Event_current, theadway , ‘headway’} ; % add headway arc
28. Event_current ← Event_next ;
29. find next event scheduled Event_next ;
30. for each event x ∈ Event do
31. Arcs_hindrance ← generate hindrance forwards(x) ; % generate hindrance conflict arcs
32. A ← A ∪ Arcs_hindrance ; % add hindrance arcs

5.3.4 Generating hindrance constraint arcs
Hindrance constraint arcs between conflicting events (i.e. conflicting train movements) have to be
generated when building a timed event graph, as well as when implementing dispatching actions.
Two types of hindrance constraint arcs are distinguished: Forward hindrance constraints are arcs

Data structure for timed event graphs

45

originating from event x, running to events conflicting with x (i.e. events that have to wait t
minutes after event x has occurred). Backward hindrance constraints are arcs running to event x,
originating from events conflicting with x (i.e. when event x itself has to wait t minutes after the
conflicting event has occurred).
When generating a timed event graph, the algorithm ‘GenHindrance_Forwards’, creating the
forward hindrance constraints, is used. Since this algorithm is called for each event present in the
model, the incoming hindrance constraints do not need to be generated separately. The algorithm
works as follows:
In line 1, the number of rows of Hindrance{ LNx , TTPx , IOx}, which is the number of train lines
for which hindrance is caused by event x, is assigned to the variable Nconflicts. Recall from 4.5.2
that one outgoing hindrance arc for each hindrance conflict caused by event x has to be produced.
The counter Nbuilt is used to check if all hindrance conflicts are generated. In line 3 the vector
Notbuilt is created, containing the value ‘one’ for each row k of Hindrance{ LNx , TTPx , IOx}.
This vector is used to flag row k if its corresponding hindrance arc has been added. In line 4, the
next event scheduled after x is retrieved from the linked list.
In line 5, the actual loop starts. Via the linked list, all events E scheduled subsequent to event x at
the same timetable point are visited in the scheduled order. At line 6, the conflict matrix
corresponding to event x is scanned. Note that only the conflict matrix corresponding to the
combination {LNx, TTPx, IOx} has to be scanned. At line 7 each event E is checked for having a
hindrance conflict with x, using the aforementioned conflict matrix. If this is the case, the
corresponding row r of Hindrance{ LNx , TTPx , IOx} is flagged (line 8) and the hindrance arc is
added to the output matrix Arcs. The loop ends if no more events are scheduled at TTPx or if all
events hindered by event x are found, which is when Nbuilt equals Nconflicts (recall from section
4.5.2 that the number of outgoing hindrance arcs from an event equals the number of train lines
conflicting with it).

Algorithm 5.5 (GENHINDRANCE_FORWARDS)
Input:
 Event
 Hindrance
 x
Output:
 Arcs

= list of events
= lists of hindrance constraints between train lines
= event for which forward hindrance arcs have to be generated

= list of hindrance constraint arcs

1. Nconflicts ← size(Hindrance{ LNx , TTPx , IOx}) ;
2. Nbuilt ← 0 ;
3. Notbuilt = ones(Nconflicts) ;
4. E ← Nx ; % next event scheduled after x
5. while E exists & Nbuilt < Nconflicts
6. for each row r of Hindrance{ LNx , TTPx , IOx} % search conflict list
7. if LNE = LNr & IOE = IOr & Notbuilt (r) then
8. Notbuilt (r) ← 0 ; % flag corresponding row of Hindrance
9. Nbuilt ← Nbuilt + 1 ;
10. Arcs ← Arcs ∪ {E, x, tHindrance

r , 5} ; % add hindrance arc
11. E ← next event scheduled after E ;
12. return Arcs

A periodic timetable is important for this algorithm
Note that the algorithm works properly only when the timetable is periodic. As explained in
section 4.6, an acyclic timed event graph of a periodic timetable is used in this thesis to
implement dispatching actions. An example of what can happen when the timetable is not
periodic is shown in Figure 5.3. Suppose that train line 2 is a line that runs only once per day and

Data structure for timed event graphs

46

that the routing of its departure is conflicting with train line 1. Algorithm 5.5 would in this case
build hindrance constraint arcs from each departure event of train line 1 to the conflicting
departure event of train line 2, which is continuously the same event. This yields many redundant
arcs and an increased complexity of the graph, and is therefore undesirable. When the timetable is
periodic, conflicting events are always near each other (i.e. within one hour), and the described
problem can therefore never occur.

Figure 5.3 Bad hindrance constraints generated when a timetable is not periodic..

5.4 Calculating the delay propagation in topologica l order
In order to determine the effectiveness of dispatching actions, the propagation of delays in the
railway system has to be calculated. Goverde [7] developed an efficient algorithm to compute the
delay propagation in large scale networks. However, this algorithm only works under the
requirement that the timetable is periodic. Since an acyclic graph is used in this thesis, a new
algorithm has been implemented.
The algorithm makes use of the fact that the propagation of each delay scenario can be calculated
by observing each event only once, which is time efficient. The running time of the algorithm is
O(n), where n denotes the number of arcs in A. However, this is only possible if all events are
observed in the correct order, which is known in graph theory as topological order. For instance,
consider the timed event graph of Figure 5.4, where the delay of event 3 can only be calculated if
the delays of both event 2 and event 5 are known. To make sure that all delays are calculated in
the correct order, a recursive loop has been implemented. The algorithm consists of two parts and
is based on recursive depth-first search algorithms, examples of which can be found in [4].
The input of the algorithm is the arclist A, with the adjacency lists for the heads Adjhead,
timetable vector d and the initial delay vector Z. The output is an updated delay vector Z, with all
propagated delays and a vector Proparc, containing the row numbers r of arcs from the arclist
which are involved in propagating delays. This is used by the optimization algorithm (see section
6.5) to determine which trains are delayed, so that the appropriate dispatching actions can be
selected.
Algorithm 5.6 and Algorithm 5.7 show the pseudo code, and their behaviour is illustrated in
Figure 5.4. The corresponding arclist can be found in Figure 5.1. How would the algorithm
calculate the delay propagation in this graph? First, all nodes are marked ‘unvisited’, after which
Algorithm 5.6 will visit each event subsequently by calling Algorithm 5.7.

Data structure for timed event graphs

47

Algorithm 5.6 (PROPAGATE)
Input:
 A
 Adjhead
 d
 Z
Output:
 Z
 Proparc

= arclist
= adjacency lists for heads
= vector with all scheduled event times
= initial delay vector

= updated delay matrix
= list of arcs propagating delay

1. unvisited ← ones(size(d)) ; % mark all nodes unvisited
2. for each event x ∈ A do
3. if unvisited(x) = 1 % visit all unvisited nodes
4. Z, Proparc ← visit node (x, unvisited, Adjhead, A, Z, d) ;
5. return Z, Proparc

Algorithm 5.7 (VISIT)
Input:
 x
 A
 Adjhead
 d
 Z
 unvisited
Output:
 Z
 unvisited
 Proparc

= event that will be visited
= list of all arcs
= adjacency lists for heads
= vector with all scheduled event times
= initial delay matrix
= list of unvisited events

= updated delay matrix
= updated list of unvisited events
= list of arcs propagating delay

1. unvisited(x) ← 0 ; % mark node x visited
2. if Adjhead(x) ≠ ∅ then
3. for each preceding arc r ∈ Adjhead(x) do % check all preceding arcs
4. if unvisited(ir) = 1 then
5. visit node (ir , unvisited,Adjhead, A, Z, d) ;
6. delay ← d(ir) + Z(ir) + tr − d(x) ;
7. if delay > 0 then
8. Z(x) ← max(Z(x), delay) ; % update delay
9. Proparc ← Proparc ∪ r ;
10. return Z, unvisited

The key steps in Algorithm 5.7 are lines 2 and 3, where the algorithm checks whether any
preceding arcs are present. For event 1 this is obviously not the case (see situation I of Figure
5.4), so the delay is calculated and updated when necessary (lines 7-8). When a delay is
propagated via the arc under consideration, the arc is added to the vector Proparc in line 9. While
visiting event 2 (situation II), event 1 is found as a predecessor. Since this event is already
marked as visited, the delay can be calculated without problems, and the updated delay is
returned to Algorithm 5.6.
Now, the algorithm arrives at event 3, where two predecessors are found (events 2 and 5). Here,
the recursive loop comes into action. Since event 5 is still unvisited, the ‘Visit’ algorithm will call
itself (line 6 of Algorithm 5.7) to visit event 5 while still in the process of visiting event 3
(situation III). During the visit of event 5, the same will happen for event 4, because this is an

Data structure for timed event graphs

48

unvisited predecessor of event 5 (situation IV). During the visit of event 4, no more predecessors
are found, so Algorithm 5.7 proceeds with lines 7-10 (calculating the delay of event 4), after
which the delays of events 5 and 3 will be calculated as well (situation V). Finally, event 6 will be
visited. As can be seen, each arc is visited only once.

Figure 5.4 Calculating the delay propagation in topological order. Events are shown in green when
visited and in red while being visited at the moment. Recursive calls are shown as yellow arrows.

The recursive calls of events 5 and 4 are graphically represented in Figure 5.5. In this figure can
be seen that the recursive calls of Algorithm 5.7, resulting from its check for preceding events,
automatically lead to the correct, topological, order for calculating the delays. Note that the
example could have been calculated in many other ways. When for instance event 6 was visited
first, all other events would have been visited recursively, as they are all predecessors of event 6.

Figure 5.5 Graphical representation of recursive calls (yellow arrows) and their returns (red arrows) in
delay propagation algorithm 5.7.

Data structure for timed event graphs

49

5.5 Calculating the capacity consumption of a railw ay track
As a measure of the traffic density on a railway line, the capacity consumption may be used as an
indication of the amount of slack time in the schedule. This can be useful when evaluating
dispatching actions in order to reduce the delays on a certain railway track. Therefore, an
algorithm calculating the capacity consumption of a railway track has been developed.
Capacity consumption is a property of a railway line instead of one point along the railway track.
Before the algorithm is explained, the definition of capacity consumption is considered in more
detail. In Figure 5.6 a blocking time diagram with two trains is shown. The capacity consumption
can be visualized by moving the timetable paths as closely together as possible with regard to the
blocking times [14], which can be done by moving the trains together by tb

min minutes. The time
tb

min is defined as the minimum line headway, which is the smallest buffer time between trains on
a railway line. A minimum line headway exists between each subsequent pair of trains on a
railway line. The capacity consumption of a railway track during a period is defined as the sum of
the minimum line headways divided by the total duration of that period [12].
As explained in chapter 4, instead of modelling all blocks only the stations are modelled in the
timed event graphs used for this project. Furthermore, the time separation between trains on a
railway line is modelled in the timed event graph by including headway constraints between the
trains at timetable points. This simplified situation has been visualized in Figure 5.7, where the
red arrows denote the headways that have to be respected to get a conflict-free schedule. In order
to determine the minimum line headway, the scheduled buffer times have to be calculated first.
The algorithm calculates the scheduled buffer times with the following formula:

tb = d2 – d1 – h12 (5.1)

where:
tb = buffer time,
d2 = scheduled arrival, through or departure time of train 2,
d1 = scheduled arrival, through or departure time of train 1,
h12 = minimum headway between trains 1 and 2 (following from infrastructure constraints).

Figure 5.6 The time separation between trains

as modelled by a blocking time diagram.

Figure 5.7 The time separation between trains as
modelled in a timed event graph.

Data structure for timed event graphs

50

Now, the minimum line headway tb
min between two trains is the smallest value found for tb along

the considered railway line, as shown in Figure 5.7. Note that this calculation yields the same
results as the calculation using a blocking time diagram when the correct values for h (the
headways) are used. Furthermore note that this way of determining tb

min incorporates influences
on the minimum line headway (e.g. the presence of longer blocks along the line, etc.) as long as
those influences have been taken into account when determining the arc weights of the timed
event graph of the considered railway network.
When the minimum line headways for all trains at the considered railway line in the considered
time period are found, the capacity consumption η is calculated with:

min

1 b

p

t

t
η = −∑

where:
η = capacity consumption,
tb

min = minimum line headway,
tp = total time of considered period.

The required calculations are implemented in Algorithm 5.8 ‘Capacity_Consumption’. The input
of the algorithm contains the timed event graph represented by the variables A, Adjtail, d and
Event, and the variables determining at which railway track and time period the capacity
consumption has to be calculated. The variable x is the event number with which a train trip starts
its trip on the considered railway line before the considered period tp starts. An example of such a
train trip is train 1, shown in Figure 5.8, where the location in time of event x_begin is shown as
well. TTPend is the timetable point where the algorithm stops calculating, i.e. the end of the
considered train line, as shown in Figure 5.8. The start and the end of the considered period are
given by t_begin and t_end respectively.

Figure 5.8 Illustration of trains moved together by the algorithm 'Capacity consumption'.

Data structure for timed event graphs

51

The three following assumptions have to be true for the algorithm to work correctly:
1. The event x_begin is scheduled earlier than t_begin.
2. Each train trip starting between t_begin and t_end runs to TTPend.
3. The sequence order of the trains on the considered railway line stays the same,

i.e. trains do not overtake each other.
Figure 5.8 visualizes how the algorithm works. Starting at event x, the algorithm finds all events
starting at the considered railway line which are scheduled before a train starting within period tp.
In lines 1 – 5, the vector startevents is filled with these events. In the example of Figure 5.8, this
vector would contain the first events of trains 1, 2, 3 and 4. In lines 7 – 20, the algorithm ‘walks
along’ the train trips until the end of the considered railway line in order to determine tb

min for
each pair of subsequent trains. These minimum line headways are stored in the vector buffertimes,
which is used in line 25 to calculate the capacity consumption.

Algorithm 5.8 (CAPACITY_CONSUMPTION)
Input:
 A
 Adjtail
 d
 Event
 x
 TTPend
 t_begin
 t_end
Output:
 p

= list of all arcs
= adjacency lists for heads
= vector with all scheduled event times
= list of all events
= first event of a train trip starting before t_begin
= last timetable point of considered railway line
= start time of considered period
= end time of considered period

= capacity consumption

1. while x exists & d(x) < t_end do % search starting events
2. find next event x_successor scheduled after x at the same IO-point ;
3. if d(x_successor)>=t_begin & d(x_successor)<t_end
4. startevents ← startevents ∪ x ;
5. x ← x_successor ;
6. end
7. for each event x_start ∈ startevents do

8. tb_min ← inf ;
9. x ← x_start ;
10. while x exists do % follow train trip to calculate tb

min
11. find next event x_successor scheduled after x at the same IO-point, and headway h ;
12. if d(x) + t =< t_begin
13. tb_min ← min(tb_min, (d(x_successor) – t_begin)) ;
14. else
15. tb_min ← min(tb_min, (d(x_successor) – d(x) – h)) ;
16. if TTPx = TTPend do
17. break % stop if TTPend is reached
18. find next event x_next of the train trip ;
19. x ← x_next ;
20. buffertimes ← buffertimes ∪ tb_min ;
21. end
22. find next event x_successor scheduled after the last event x_start and the headway h ;
23. supplement ← t_end – (d(x_successor) + t) ;
24. buffertimes ← buffertimes ∪ supplement ;
25. p ← 1 – sum(buffertimes) / (t_end – t_begin) ;

Data structure for timed event graphs

52

Note that train 2 is moved up only until the start of the considered period tp (see again Figure 5.8).
This is compensated at the end of tp, where instead of the entire tb

min between trains 5 and 6, only
the time until the end of tp is considered. This is called the ‘supplement’ (see Figure 5.9), which is
calculated in line 23.

Figure 5.9 Detail of figure 5.7 illustrating the supplement.

The algorithm is able to handle delayed and/or rescheduled trains as well. When delays occur
and/or dispatching actions have been applied, the delay propagation through the network has to
be calculated with the algorithm ‘Propagate’, presented in the previous section. The event times
calculated with this algorithm can then be used as input for the ‘Capacity_Consumption’
algorithm, instead of the scheduled event times. Formula 5.1 then becomes:

tb = x2 – x1 – h12 (5.2)

where:
tb = buffer time,
x2 = calculated arrival, through or departure time of train 2,
x1 = calculated arrival, through or departure time of train 1,
h12 = time headway between trains 1 and 2.

Limitations of this algorithm
A limitation of this algorithm is that in some situations the timetable paths are moved closer
together then would have been actually possible in reality. This is caused by the fact that the
actual occupation of a block or track is not modelled, which is a limitation of the model itself
already discussed in section 4.7. In some situations this can lead to a slightly lower calculated
capacity consumption.

Data structure for timed event graphs

53

5.6 Conclusion
The ability to store and modify a timed event graph with minimal memory usage and optimal
time efficiency is crucial for the development of a system that can calculate the effectiveness of
dispatching actions quickly enough for real time operation. A data structure using adjacency lists
possesses these qualities, and has been presented in this chapter.
After defining the variables used for storing the timed event graph in the computer memory, an
algorithm for the generation of the graph was presented. Finally, algorithms for calculating the
delay propagation in the network and the capacity consumption of a railway line have been
discussed.

Implementing dispatching actions

54

6 Implementing dispatching actions

6.1 Introduction
Chapter 5 described how a timed event graph is generated and stored in the computer memory as
an arclist. A time efficient delay propagation algorithm has been introduced as well. The most
important question in case of delays is: which is the most effective dispatching action? To
determine the effectiveness of a dispatching action, it has to be implemented in the timed event
graph, after which the delay propagation can be calculated.
This chapter deals with algorithms that can change the timed event graph in order to represent
dispatching actions, and therefore contains the most important result of this research project. In
section 6.2, the algorithm ‘ChangeOrder’ is presented, with which the sequence order of two
trains running along a railway line can be changed. Aside of changing the sequence order of
trains, this can be used to:

• Move the location of a scheduled overtaking,
• Remove a scheduled overtaking,
• Introduce a new overtaking.

Section 6.3 is dedicated to an algorithm with which train movements at stations can be postponed,
which is used to reflect a change in the order of crossing train movements. A dispatching action
with more consequences for the travellers is to short-turn a train, which can be implemented in
the model by the algorithm presented in section 6.4. In order to find the effective dispatching
actions, a simple optimization algorithm will be described in section 6.5. As explained in chapter
2, the railway system as modelled by a discrete event system can be represented by a system of
max-plus equations. In section 6.6, a way of formally describing the possibility to apply
dispatching actions in max-plus algebra will be introduced. Section 6.7 contains the conclusion of
this chapter.

6.2 Change the order between trains
Consider the trains running from station 1 to station 3 depicted in the example of Figure 6.1,
where train 1 is scheduled to run before train 2. At station 1, the trains arrive at two different IO-
points, but they leave the station using the same IO-point (IO-point 3). This implies that the two
trains have merged to the same track. They continue using the same infrastructure until their
arrival at the terminal station, station 3. Now suppose that train 1 is delayed, and has to be
postponed on the route between station 1 and station 3. This dispatching action implies that at
four IO-points, namely IO-point 3 of station 1, IO-points 1 and 2 of station 2 and IO-point 3 of
station 3 their running order has to be changed.

Figure 6.1 Two trains sharing the same infrastructure between stations 1 and 3.

Implementing dispatching actions

55

The algorithm presented in this section starts working at the IO-point where the affected trains
leave the timetable point from which the dispatching action starts. Then, the algorithm works its
way along the train lines towards the end of the dispatching action. At each IO-point the same
modifications of the timed event graph are performed, namely changing the headway constraints
and changing the hindrance constraints. The modifications will be explained in the next two
sections, after which the actual algorithm will be explained.

6.2.1 Construction rule for changing headway constr aints
As described in section 4.5.2, all events occurring at the same IO-point of the same timetable
point are connected with headway constraints to ensure the correct time separation between
subsequent trains on the same track. When the order of two trains is changed, the headway
constraints change accordingly. Figure 6.2 shows the headway constraints between a series of
subsequent events in case of the originally scheduled order and in case of a changed order, in
which event 1 has been postponed. The event preceding event 1 is called xp and the event
subsequent to event 2 is called xn. For each IO-point where the order is changed, three headway
arcs have to be changed. The necessary changes are summarized in construction rule 1, shown
below.

Figure 6.2 Changing headway constraints when the order between trains is changed.

Construction rule 1
Given:

- event x2 scheduled after event x1.
- TTP1 = TTP2 and IO1 = IO2 (events x1 and x2 use the same IO-point at the

same timetable point).

When changing the running order of x1 and x2 three headway constraint arcs have to be changed
as follows:

 Arc in original graph Becomes arc in changed graph
1. preceding event xp to x1 preceding event xp to x2
2. x1 to x2 x2 to x1
3. x2 to next event xn x1 to next event xn

Implementing dispatching actions

56

6.2.2 Changing the hindrance constraints
At stations where hindrance conflicts can occur due to conflicting interlocking routes, the
hindrance arcs have to be updated in order to be consistent with the new situation. This is done in
two steps:

1. The first scheduled event x1 is removed from the linked list, and the hindrance constraints
are updated accordingly.

2. Event x1 is inserted in the linked list directly behind event x2, and the hindrance
constraints are updated accordingly.

For step one, an algorithm able to update the hindrance constraints when an event is removed
from the scheduled order of events has been developed. Step two is carried out by an algorithm
updating the hindrance constraints when adding a new event to the scheduled order of events.
These algorithms will be discussed in the next section before the actual ChangeOrder algorithm
using them will be discussed.

6.2.3 Construction rule for removing hindrance cons traints
Three different situations can occur when removing an event x from the sequence of scheduled
events at a timetable point:

• A pair of incoming and outgoing hindrance arcs can be deleted.
• A single incoming hindrance arc has to be connected with an event scheduled later than

event x.
• A single outgoing hindrance arc has to be connected with an event scheduled sooner than

event x.
All situations will be described with the example of two conflicting routings shown in Figure 6.3.
Each time, a departure event of line 1 will be deleted to show the implications in the hindrance
constraint arcs.

Figure 6.3 Example of conflicting routings.

A pair of incoming and outgoing hindrance arcs can be deleted
This situation occurs when the deleted event x has an incoming hindrance arc from an event i and
an outgoing hindrance arc to an event j where LNi = LNj and IOi = IOj (i.e. events i and j represent
events of the same train line using the same IO-point. When removing the conflicting event x
scheduled between i and j the hindrance constraints can be removed as well, since the time
separation between events i and j is still assured by headway constraints, as i and j occur at the
same IO-point. This is shown in Figure 6.4.

Figure 6.4 A pair of incoming and outgoing hindrance arcs is deleted (only hindrance arcs are shown).

Implementing dispatching actions

57

A single incoming hindrance arc
When event x has an incoming hindrance arc from an event i but no outgoing hindrance arc to an
event j such that LNi = LNj and IOi = IOj, the incoming hindrance arc has to be connected to the
next event y scheduled after x such that LNy = LNx and IOy = IOx. This is shown in Figure 6.5.
Note that the new hindrance arc is necessary to ensure the time separation between the two
remaining events, as these events are not separated by a headway constraint since they do not use
the same IO-points.

Figure 6.5 A single incoming hindrance arc is connected with another event (only hindrance arcs are
shown).

A single outgoing hindrance arc
This situation is similar to the previous situation, but in this case, only an outgoing arc is present.
The outgoing arc has to be connected to an event y scheduled preceding to x, such that LNy = LNx
and IOy = IOx, as shown in Figure 6.6. As with the previous example, this is necessary to ensure
the time separation between two conflicting events which are not separated by headway
constraints since they do not use the same IO-point.

Figure 6.6 A single outgoing hindrance arc is connected with another event (only hindrance arcs are
shown).

Construction rule
The necessary changes in the timed event graph when removing an event from the scheduled
order of events at a timetable point follow from the three examples described above, and are
summarized in the construction rule below.

Implementing dispatching actions

58

Construction rule 2
Given:

- event x
- Conflicts{ LNx , TTPx , IOx} ≠ ∅

When removing event x from the scheduled order of events at TTPx , the following situations with
their respective implications for the timed event graph can occur:

 Situation Implications
1. An incoming hindrance arc (i, x) and an

outgoing hindrance arc (x, j) exist such
that IOi = IOj & LNi = LNj.

Both hindrance arcs can be deleted.

2. An incoming hindrance arc (i, x) exists,
but no outgoing hindrance arc (x, j) such
that IOi = IOj & LNi = LNj exists.

The incoming arc (i, x) has to be connected to an
event y scheduled subsequent to x such that IOy =
IOx & LNy = LNx.

3. An outgoing hindrance arc (x, j) exists,
but no incoming hindrance arc (i, x) such
that IOi = IOj & LNi = LNj exists.

The outgoing arc (x, j) has to be connected to an
event y scheduled preceding to x such that IOy =
IOx & LNy = LNx.

Algorithm for removing an event from the scheduled order of events
Construction rule 2 has been implemented in the algorithm ‘Delevent_Hindrance’ shown below.
The input of the algorithm consists of the timed event graph represented by A, Adjhead, Adjtail
and Event, and the event x that has to be removed from the scheduled order of events. The output
consists of the matrix Arcs2add, of which each row is an arc that has to be added to the timed
event graph according to the construction rule, and the vector Arcs2del, containing the row
numbers of arcs that have to be deleted from A.
The algorithm works as follows: In lines 1 – 4, the linked lists containing the scheduled order of
events are updated. In lines 5 and 6 the headway constraints are explored to find the next and the
previously scheduled events n and p of the same train line. This is used in lines 7 – 17 to
implement the construction rule.
No big vectors or matrices have to be processed in this algorithm, so its running time depends
only on the complexity of the graph (i.e. the numbers of incoming and outgoing hindrance arcs to
and from x, and whether the next and previously scheduled events n and p are found quickly by
searching headway constraints in lines 5 and 6).

Algorithm 6.1 (DELEVENT_HINDRANCE)
Input:
 A
 Adjhead
 Adjtail
 Event
 x
Output:
 Arcs2add
 Arcs2del
 Event

= arclist
= adjacency lists for heads
= adjacency lists for tails
= list of events
= event that will be removed from the scheduled order of events

= arcs that have to be inserted in the timed event graph
= list of row numbers of arcs that have to be deleted
= updated list of events

1. if Px ≠ 0 % remove event from linked lists
2. N(Px) ← Nx ;

Implementing dispatching actions

59

3. if Nx ≠ 0
4. P(Nx) ← Px ;
5. find next scheduled event n such that IOn = IOx & LNn = LNx ;
6. find previous scheduled event p such that IOp = IOx & LNp = LNx ;
7. for each incoming hindrance arc r (i , x) to x do
8. Arcs2del ← Arcs2del ∪ r ; % construction rule 2.1
9. find outgoing hindrance arc u (x , y) to an event y such that IOy = IOi & LNy = LNi ;
10. if u exists
11. visited(u) ← 1 ; % mark outgoing arc visited
12. elseif n exists
13. Arcs2add ← Arcs2add ∪ {n , ir , tr , ‘hindrance’} ; % construction rule 2.2
14. for each outgoing hindrance arc u (x , j) from x do
15. Arcs2del ← Arcs2del ∪ u ; % construction rule 2.1
16. if visited(u) = 0 & p exists
17. Arcs2add ← Arcs2add ∪ { ju , p , tu , ‘hindrance’} ; % construction rule 2.3

6.2.4 Construction rule for inserting hindrance con straints
When inserting an event x into the scheduled order of events, the timed event graph has to be
updated with respect to two aspects:

• Hindrance constraints to and from x have to be inserted into the timed event graph.
• Some existing hindrance constraints can be deleted.

To illustrate this, the example shown in Figure 6.3 will be used once more.

Hindrance arcs have to be inserted
Hindrance arcs have to be added to the timed event graph when an event x is inserted between
two conflicting events, as shown in Figure 6.7. More precisely, for each line of the matrix
Conflicts{ LNx , TTPx , IOx}, an outgoing hindrance arc to the next scheduled conflicting event and
an incoming hindrance arc from the previously scheduled conflicting event has to be constructed.

Departure

of Line 2

Departure

of Line 2

Departure

of Line 2

Departure

of Line 2

Departure

of Line 1

Figure 6.7 Example of hindrance arcs that have to be inserted when the departure of Line 1 is inserted.

Existing hindrance arcs have to be deleted
An example of a situation where existing hindrance arcs have to be deleted is shown in Figure
6.8. When inserting a departure of line 1, no incoming hindrance arc is needed, since the time
separation between the two departures of the same train line is already assured by headway
constraints. An outgoing headway arc to the departure event of line 2 is constructed, and the
existing hindrance constraint can be deleted as the required time separation is ensured by the new
constraints.

Implementing dispatching actions

60

Departure

of Line 1

Departure

of Line 2

Departure

of Line 1

Departure

of Line 2

Departure

of Line 1

Figure 6.8 Example of a situation where hindrance arcs have to be deleted when inserting an event.

The necessary changes to the timed event graph described above are summarized in construction
rule 3. Construction rule 3.1 describes the construction of new outgoing (forward) hindrance
constraints, while rule 3.2 describes the incoming (backward) hindrance constraints. The situation
that a new hindrance constraint is not needed, as shown in the example of Figure 6.8, is reflected
by the event q in the construction rule. In the example, event q would be the previous departure of
line 1 in the upper right corner of Figure 6.8.

Construction rule 3
Given:

- event x
- Conflicts{ LNx , TTPx , IOx} ≠ ∅

When inserting event x in the scheduled order of events at TTPx , for each row of
Conflicts{ LNx , TTPx , IOx} the following hindrance arcs have to be inserted or deleted:

 Hindrance arcs to insert Hindrance arcs to delete (when existing)
1. An outgoing hindrance arc to the

conflicting event i scheduled subsequent to
event x, unless an event q such that IOq =
IOx & LNq = LNx is scheduled in between.

In incoming hindrance arc (j , i) running to i from
an event j such that IOj = IOx & LNj = LNx.

2. An incoming hindrance arc from the
conflicting event i scheduled preceding to
x, unless an event q such that IOq = IOx &
LNq = LNx is scheduled in between.

An outgoing hindrance arc (i , j) running from i
to an event j such that IOj = IOx & LNj = LNx.

Algorithm for inserting hindrance constraints
Construction rule 3 is implemented in the following algorithm. In lines 1 – 4 the linked lists
containing the scheduled order of events are updated. The variables created in lines 5 and 6 are
used to check whether all conflicts have been implemented, so that the algorithm can stop when
this is the case. In lines 8 – 19, the algorithm walks along the linked list of events (lines 7 and 18),
to build all outgoing hindrance arcs from x. In line 16 it is checked whether a hindrance arc exists
that has to be deleted according to construction rule 3.1. When an event q is found according to
the construction rule, the while loop started in line 8 is broken in line 9. The algorithm will then
continue with line 20.
In lines 22 – 32, the incoming hindrance arcs according to construction rule 3.2 are constructed.
Again it is checked whether existing hindrance arcs have to be deleted, this time in line 30. The
algorithm terminates via line 23 when an event q of the same train line LNx is found, or when no
previous event P is found anymore.

Implementing dispatching actions

61

Algorithm 6.2 (INSERTEVENT_HINDRANCE)
Input:
 A
 Adjhead
 Adjtail
 Event
 x
 a
 Conflicts
Output:
 Arcs2add
 Arcs2del
 Event

= arclist
= adjacency lists for heads
= adjacency lists for tails
= list of events
= event that will inserted in the scheduled order of events
= event after which x will be inserted
= conflict matrices for hindrance conflicts

= arcs that have to be inserted in the timed event graph
= list of row numbers of arcs that have to be deleted
= updated list of events

1. Na ← x ; % update linked lists
2. Px ← a ;
3. Nx ← Na ;
4. if Na ≠ 0 then P(Na) ← x ; end
5. Nconflicts ← size(Hindrance{ LNx , TTPx , IOx}) ;
6. Nbuilt ← 0 ; Notbuilt = ones(Nconflicts) ;
7. E ← Nx ;
8. while E exists & Nbuilt < Nconflicts % create forward hindrance arcs
9. if LNE = LNx & IOE = IOx then break ;
10. for each row r of Hindrance{ LNx , TTPx , IOx} % search conflict list
11. if LNE = LNr & IOE = IOr & Notbuilt (r) then
12. Notbuilt (r) ← 0 ; % flag corresponding row of Hindrance
13. Nbuilt ← Nbuilt + 1 ;
14. Arcs ← Arcs ∪ {E, x, tHindrance

r , 5} ; % add hindrance arc
15. for each incoming hindrance arc m from an event b to E do
16. if LNb = LNx & IOb = IOx then
17. Arcs2del ← Arcs2del ∪ m ;
18. E ← NE ;
19. end
20. Nbuilt ← 0 ; Notbuilt = ones(Nconflicts) ;
21. E ← Px ;
22. while P exists & Nbuilt < Nconflicts % create backward hindrance arcs
23. if LNE = LNx & IOE = IOx then break ;
24. for each row r of Hindrance{ LNx , TTPx , IOx} % search conflict list
25. if LNE = LNr & IOE = IOr & Notbuilt (r) then
26. Notbuilt (r) ← 0 ; % flag corresponding row of Hindrance
27. Nbuilt ← Nbuilt + 1 ;
28. Arcs ← Arcs ∪ {x , E , tHindrance

r , 5} ; % add hindrance arc
29. for each outgoing hindrance arc m from E to an event b do
30. if LNb = LNx & IOb = IOx then
31. Arcs2del ← Arcs2del ∪ m ;
32. E ← PE ;
33. end

Implementing dispatching actions

62

6.2.5 The algorithm ‘ChangeOrder’
The algorithm consists of two parts. In the ‘explore part’ (lines 1 – 33), the timed event graph is
explored and an inventory of all changes necessary to implement the dispatching action is made.
All necessary changes are stored temporarily in the vector arcs2del (row numbers in A of arcs
that have to be deleted) and in the matrix arcs2add (arcs that have to be inserted). After the
explore part, the actual changes are performed in the ‘graph update part’ (lines 34 – 44). The
separation in two sections is necessary since exploring and changing the timed event graph at the
same time causes the algorithm to work improperly (exploring a partly changed timed event
graph can lead to inconsistencies).
In line 1 the event x2 corresponding to the next train is found by looking for headway constraints.
Lines 2 – 33 contain the main loop of the algorithm. The new headway arcs, as explained in
section 6.2.2, are constructed in lines 9, 16 and 23. There are two occasions in which the
algorithm terminates before applying any changes to the timed event graph:

1. In line 18, when a headway arc from x2 to x1 is found (i.e. the running order is changed
already).

2. In line 32, when an outgoing running or dwell arc is missing for x1 or x2, which means
that line 1 or line 2 ends unexpectedly.

In such an occasion, Warning = 1 is returned, to indicate that the algorithm was unable to perform
the requested dispatching action. In line 26, events x1 and x2 are stored in the two column matrix
H, which will be used in the graph update part to generate new hindrance constraint arcs. In line
27, event x1 is removed from the scheduled order of events, while the implied changes for the
hindrance constraints are stored in line 28.
The ‘graph update part’ starts with carrying out all changes calculated in the ‘explore part’. The
necessary changes are performed in lines 35 and 37. After this, the structure of the timed event
graph is as follows:

• The topology of headway constraint arcs corresponds to the new situation (i.e. the events
of line 2 occur after the events of line 1).

• The topology of the hindrance constraint arcs corresponds to the situation in which the
events of line 2 are deleted from the scheduled order of events.

To complete the new timed event graph, the events of line 2 have to be inserted in the scheduled
order of events again. This is done in line 39, where the events of line 2, which were stored in
matrix H during the exploration phase, are inserted in the linked lists directly subsequent to the
events of line 1. The implied changes of the hindrance constraint arcs are carried out in lines 41
and 43. Note that the routines arcs2add and arcs2del are presented in sections 5.2.5 and 5.2.6.

Algorithm 6.3 (CHANGEORDER)

Input:
 A
 Adjhead
 Adjtail
 Event
 Hindrance
 x1
 n
 Empty
Output:
 A
 Adjhead
 Adjtail
 Event

= arclist
= adjacency lists for heads
= adjacency lists for tails
= list of events
= lists of hindrance constraints between train lines
= starting event
= number of IO-points where the order has to be changed
= list of empty rows in arclist A

= updated arclist
= updated adjacency list for heads
= updated adjacency list for tails
= updated list of events

Implementing dispatching actions

63

 Empty
 Warning

= updated list of empty rows in A
= 0 if dispatching action is possible, 1 = dispatching action is impossible

1. find event x2 of the next train scheduled behind x1 ; % explore part
2. m ← 0 ;
3. while m < n do % main loop
4. m ← m + 1 ;
5. for each outgoing arc r of x1 do
6. if typer = headway then
7. if successor event jr = x2 then
8. arcs2del ← arcs2del ∪ r ;
9. arcs2add ← arcs2add ∪ (x1 , x2 , tr , typer) ; % swap x1 , x2 (constr. rule 1.2)
10. elseif typer = running or typer = dwell then
11. x1

next ← successor event jr ; % store next event of train line 1
12. for each incoming arc r of x1 do
13. if typer = headway
14. if preceding event ir ≠ x1 then
15. arcs2del ← arcs2del ∪ r ;
16. arcs2add ← arcs2add ∪ (x2 , ir , tr , typer) ; % construction rule 1.1
17. else
18. warning ← 1 ; return % running order is changed already
19. for each outgoing arc r of x2 do
20. if typer = headway then
21. if successor event jr ≠ x1 then
22. arcs2del ← arcs2del ∪ r ;
23. arcs2add ← arcs2add ∪ (jr , x1 , tr , typer) ; % see constr. rule 1.3
24. elseif typer = running or typer = dwell then
25. x2

next ← successor event jr ; % store next event of train line 2
26. H ← H ∪ { x1 , x2 } ;
27. [add _temp, del_temp , Event] ← Delevent_Hindrance(x1) ;
28. arcs2add ← arcs2add ∪ add _temp ; arcs2del ← arcs2del ∪ del _temp ;
29. if x1

next exists and x2
next exists

30. x1 ← x1
next ; x2 ← x2

next ;
31. else
32. Warning ← 1 ; return
33. end
34. for each arc r ∈ arcs2del do % graph update part
35. (A , Adjhead , Aadjtail , empty) ← delarc (A , Adjhead , Adjtail , empty , r) ;
36. for each row r ∈ arcs2add do
37. (A , Adjhead , Adjtail , empty) ← addarc (A , Adjhead , Adjtail , empty , r) ;
38. for each row {x1 , x2} ∈ H
39. [arcs2add , arcs2del , Event] ← Insertevent_Hindrance(x1 , x2) ;
40. for each arc r ∈ arcs2del do % graph update part
41. (A , Adjhead , Aadjtail , empty) ← delarc (A , Adjhead , Adjtail , empty , r) ;
42. for each row r ∈ arcs2add do
43. (A , Adjhead , Adjtail , empty) ← addarc (A , Adjhead , Adjtail , empty , r) ;
44. return

Implementing dispatching actions

64

6.3 Postponing arrivals or departures at a station
At stations where hindrance conflicts can occur, hindrance constraints ensure that conflicting
train movements are separated in time. When the scheduled order of events would be strictly
maintained in case of delays, those delays can easily be passed on to crossing train movements
waiting for the delayed train. In such cases postponing the delayed event is an effective
dispatching action to reduce the amount of knock-on delays. To find the optimal postponing
actions, the algorithm ‘Postpone’, presented in this section, has been developed.

6.3.1 The definition of postponing in this project
An important difference with the algorithm ‘Change Order’ is that the sequence orders of trains at
the open track, and thus the headway constraints, stay the same. Only the order in which trains
enter and/or leave the timetable points is changed. This implies that only the hindrance
constraints are changed when postponing an event. In the remainder of this thesis, ‘postponing’
will be defined as follows:

Event x is called ‘postponed’ when it is moved ahead in the scheduled order of events of a
timetable point without implications for the headway constraints.

6.3.2 Check if postponing is possible
The developed algorithm postpones an event x1 by moving it one line ahead in the linked list of
scheduled events, which means that event x1 is moved immediately behind the next event x2. The
first question that has to be answered before the algorithm can carry out the actual postponing
action is: can event x1 be postponed after event x2 at all? Postponing event x1 is not possible in the
two following situations:

1. Event x1 is the last event scheduled at this timetable point. Obviously, it cannot be
postponed when this is the case.

2. Events x1 and x2 are using the same IO-point. This implies that the order of trains at the
open track has to be changed when postponing event x1.

When postponing is possible, two situations can occur: a situation in which hindrance constraints
are changing, and a situation in which they are not. This will be explained in the next sections.

6.3.3 Situation without changing hindrance constrai nts
Postponing an event does not necessarily mean that hindrance constraints have to be changed.
Hindrance constraints do not change when events x1 and x2 are not conflicting. Consider for
example the situation shown in Figure 6.9. Suppose that line 2 has a delay, and that the departure
of line 2 has to be postponed after the departure of line 3. As can be seen, lines 2 and 3 only have
hindrance conflicts with line 1, but not with each other. As a result, the scheduled order of line 2
and 3 can be changed without any implications for the timed event graph. When this is the case,
only the linked list containing the scheduled order of events has to be changed.

Implementing dispatching actions

65

Figure 6.9 Hindrance constraints at station S.

6.3.4 Construction rule for changing hindrance cons traints
When event x1 has a hindrance conflict with x2, postponing event x1 implies changes in the timed
event graph. How the new hindrance constraint arcs are generated is explained using Figure 6.10,
where a station with two conflicting hourly train lines is shown. In the original order, the
successive departures of lines 1 and 2 can be seen, with their hindrance constraints arcs
connecting them. Suppose that line 1 is delayed (the red event in the figure) and will be
postponed.
First, the old hindrance constraint arcs have to be deleted, after which three new hindrance
constraint arcs have to be generated:

1. Hindrance constraint from event x2 to event x1.
2. Hindrance constraint from event x1 to the next scheduled event with the same line number

and the same IO-point as x2.
3. Hindrance constraint from the preceding scheduled event with the same line number and

the same IO-point as x1 to event x2.
However, numbers 2 and 3 are not necessary to construct when time separation is already assured
by headway constraints. This is illustrated in the case of Figure 6.10. In the new order of events
(after postponing the departure of line 1) two departures of line 2 are scheduled subsequent to
each other. Since two departures of the same train line use the same IO-point, these events are
separated by headway constraints anyway, and hindrance constraints are not necessary. The same
is applicable to the two subsequent departures of line 1. The only new hindrance arc that has to be
generated is shown on the right in Figure 6.10.
The necessary changes are summarized in construction rule 4.

Figure 6.10 Two lines with hindrance constraints in original order and when line 1 is postponed.

Implementing dispatching actions

66

Construction rule 4
Given:

- event x2 scheduled subsequent to event x1.
- events x1 and x2 have a hindrance conflict

When postponing x1 after x2 three new hindrance constraint arcs have to be constructed:
1. from x2 to x1.
2. from x1 to the next scheduled event N such that ION = IO2 and LNN = LN2 unless an event

Q scheduled between x1 and N exists such that IOQ = IO1 and LNQ = LN1.
3. to x2 from the previously scheduled event P such that IOP = IO1 and LNP = LN1 unless an

event Q scheduled between x2 and P exists such that IOQ = IO2 and LNQ = LN2.

6.3.5 The algorithm ‘Postpone’
Algorithm 6.4 implements the postponement of one event according to construction rule 4 in the
timed event graph, and works as follows:
In lines 1-5 is checked whether the postponement is actually possible (see section 6.3.2). Event x
is the event that will be postponed, while event E is the first event scheduled subsequent to x. In
line 6, the linked list is updated using the function ‘ChangeList’, which can be found in appendix
1. Whether events x and E are conflicting is checked in lines 7 and 8. In case of a conflict the
hindrance arcs relating to this conflict have to be updated and lines 9 – 39 are executed. In lines 9
– 30 the relevant hindrance arcs are deleted. In line 31, the hindrance arc from E to x is
constructed. In lines 32 – 34 a new hindrance arc from a previous train to event E is constructed
when necessary according to construction rule 2, line 3, and in lines 35 – 37, a new hindrance arc
from event x to a future train is constructed when necessary according to construction rule 2, line
2 (see section 6.3.4). Finally, the generated hindrance arcs are inserted in the timed event graph in
lines 38 and 39.

Algorithm 6.4 (POSTPONE)
Input:
 A
 adjhead
 adjtail
 Event
 Hindrance
 x
 Empty
Output:
 A
 adjhead
 adjtail
 Event
 Empty
 Warning

= arclist
= adjacency lists for heads
= adjacency lists for tails
= list of events
= lists of hindrance constraints between train lines
= event that will be postponed
= list of empty rows in arclist A

= updated delay matrix
= updated adjacency list for heads
= updated adjacency list for tails
= updated list of events
= updated list of empty rows in A
= 0 if dispatching action is possible, 1 = dispatching action is impossible

1. E ← next event scheduled after x
2. if E exists = 0
3. Warning = 1 ; return % no next event, so postpone is impossible
4. if IOE = IOx
5. Warning = 1 ; return % same IO-point, postpone implies order change
6. Event = changeList (Event , x , E) ; % change order in linked list

Implementing dispatching actions

67

7. find k such that Hindrance{LNx , TTPx , IOx}(k) = (LNE , IOE , t) ;
8. if k exists
9. for each outgoing arc m of x do
10. if typem = hindrance then
11. j ← successor event jm ;
12. if LNj = LNE then % j conflicts with x
13. arcs2del ← arcs2del ∪ k ;
14. for each incoming arc m of x do
15. if typem = hindrance then
16. i ← preceding event im ;
17. if LNi = LNE then % i conflicts with x
18. arcs2del ← arcs2del ∪ k ;
19. for each outgoing arc m of E do
20. if typem = hindrance then
21. j ← successor event jm ;
22. if LNj = LNx then % j conflicts with E
23. arcs2del ← arcs2del ∪ k ;
24. for each incoming arc m of E do
25. if typem = hindrance then
26. i ← preceding event im ;
27. if LNi = LNx then % i conflicts with E
28. arcs2del ← arcs2del ∪ k ;
29. for each arc k ∈ arcs2del do
30. (A , adjhead , adjtail , empty) ← delarc (A , adjhead , adjtail , empty , k) ;
31. arcs2add ← arcs2add ∪ (x , E , t , 5) ; % hindrance arc from E to x
32. find event P preceding E such that IOp = IOE & LNP = LNE ;
33. if no event Q such that IOQ = IOx & LNQ = LNx is found sooner do
34. arcs2add ← arcs2add ∪ (E , P , t , ‘hindrance’) ; % hindrance arc from P to E
35. find event N scheduled later than x such that ION = IOx & LNN = LNx ;
36. if no event Q such that IOQ = IOE & LNQ = LNE is found sooner do
37. arcs2add ← arcs2add ∪ (N , x , t , ‘hindrance’) ; % hindrance arc from x to N
38. for each row k ∈ arcs2add do
39. (A , adjhead , adjtail , empty) ← addarc (A , adjhead , adjtail , empty , k) ;

6.4 Short turning
Short turning can be a useful dispatching action in case of big delays or obstruction of the railway
line. To illustrate this dispatching action, a turning train is visualized in Figure 6.11. Suppose
train 1 has a big delay, or the railway line between stations 1 and 2 is (temporarily) obstructed.
Letting train 1 turn already in station 1 yields the situation shown in Figure 6.12. Carrying out
this dispatching action implies cancelling (i.e. deleting from the timed event graph) four events,
namely the departure of train 1 from station 1, the arrival at station 2, the departure of train 2
from station 2 and its arrival at station 1. In the next section, the implications on the timed event
graph when cancelling an event are explained. This is used in the subsequent section to develop
an algorithm for short turning.

Implementing dispatching actions

68

Figure 6.11 Rolling stock of train 1 running back as train 2 after turning at station 2.

Figure 6.12 Turn at station 2 moved to station 1 with four deleted events.

6.4.1 Cancelling an event
Cancelling an event has implications for all types of arcs in the timed event graph. Obviously,
running-, trough- and dwell time arcs to and from the event have to be deleted. However, the
implications on headway and hindrance constraint arcs are more complicated. In this section, the
implications will be investigated, after which the algorithm ‘Cancel Event’, able to implement
these implications in the timed event graph, will be presented.

Implications on headway constraints
The headway constraints have to be changed such that the time separation between the preceding
train and the successive train is still ensured. This is illustrated in Figure 6.13. Construction rule 5
describes the necessary changes in the timed event graph.

Figure 6.13 New headway constraint when an event x is deleted.

Construction rule 5
Given:

- event x scheduled between its preceding event xp and its successor event xn at
the same IO-point.

When deleting event x from the timed event graph, the headway arcs have to be changed as
follows:

1. delete arc from xp to x
2. delete arc from x to xn
3. create new arc from xp to xn

Implementing dispatching actions

69

Implications on hindrance constraints
When cancelling part of a train trip due the introduction of a short turn, the events modelling this
part of the train trip are simply removed from the scheduled order of events. An algorithm that
determines the implications on the timed event graph due to this operation has already been
discussed in section 6.2.3. This algorithm will be used to determine the implications for hindrance
constraints in case of short turning as well.

6.4.2 The algorithm ‘ShortTurn’
The algorithm ‘ShortTurn’ is able to change the timed event graph according to the situation that
a train turns earlier than scheduled. The input consists of the timed event graph, represented by
the variables A, Adjhead, Adjtail, and Event. The vector Empty, needed for the algorithms
‘Delarc’ and ‘Addarc’, for updating the graph, is input as well. The location of the new turn is
determined by x, which is the arrival event at the new turning station. In the example of Figure
6.11 and Figure 6.12 this would be the arrival of train 1 at station 1. The output is an updated
timed event graph and the matrix Cancelled, containing the numbers of all cancelled events, as
well as the numbers of the next scheduled events of the same train line. This is used for
calculating the passenger delay, since passengers have to wait for the next train if their train is
cancelled. The algorithm works as follows:
In line 1, the next event of the train trip is found. In Figure 6.11 this would be the departure from
station 1. The number of this event is assigned to the variable i. The dwell or through arc running
to this event has to be deleted, so it is stored in the vector Arcs2del for later deletion. In line 5, the
main loop starts. This loop ‘walks’ along the train trips until the algorithm arrives at the new
turning station again, which is checked in line 7. In Figure 6.11 this would correspond to walking
via the turn at station 2 until the arrival of train 2 at station 1. On its way along the train trip, the
algorithm stores all headway constraint arcs in the vector Arcs2del for later deletion according to
construction rule 5.1 and 5.2. The new headway arc between the previous and the next train
according to construction rule 5.3 is stored in line 22. The arcs of which the train trip itself
consists (i.e. running, dwell, through or turn arcs) are deleted as well. Hindrance constraint arcs
are investigated in line 23, where the algorithm Delevent_Hindrance, presented in section 6.2.3, is
called.
In line 25, the algorithm continues to the next event, which was found while scanning the
outgoing arcs (in line 16). Upon arrival at the new turning station, the loop ends and the algorithm
continues with lines 27 and 28. A new turn arc, connecting event x with the departure after the
newly scheduled turn, is created in line 27. The minimal duration of the new turn tturn is the same
as the turning time of the original turn, which was retrieved from the timed event graph in line 13.
In line 28 the timed event graph is actually updated, using the algorithms presented in sections
5.2.5 and 5.2.6.

Limitations of the algorithm
Two limitations of this algorithm deserve attention. The first limitation concerns the turning time
tturn used for the new turn arc. In the real railway system, this time would be called the ‘minimum
layover time’, which is the minimal time that has to elapse between the arrival and the departure
at the turning station. In the presented algorithm, the minimum layover time of the original turn is
used as tturn for the new turn (e.g. if the turn at station 2 in Figure 6.11 would take at least 10
minutes, then the new turn in Figure 6.12 will take at least 10 minutes as well). The limitation is
that in reality the minimum layover time can differ in case of dispatching actions. For example,
the minimum layover time in the original schedule can be relatively long (e.g. if the train has to
be cleaned, etc.), where this is not always necessary in case of dispatching actions (e.g. if
cleaning the trains has a lower priority in case of delays). Still, using the same minimum layover

Implementing dispatching actions

70

time for the new turn is considered realistic, since most factors affecting it remain the same in
case of dispatching actions. These factors are for example the length of the train (if the train
driver has to walk back to the other cab), the rolling stock (whether it takes some time to make
the train ready for a trip in the opposite direction), etc.

Algorithm 6.5 (SHORTTURN)
Input:
 A
 Adjhead
 Adjtail
 Event
 Empty
 x
 Output:
 A
 Adjhead
 Adjtail
 Event
 Empty
 Cancelled

= arclist
= adjacency list for heads
= adjacency list for tails
= list of events
= list of empty rows in A
= arrival event where the new turn will take place

= updated arclist
= updated adjacency list for heads
= updated adjacency list for tails
= updated list of events
= list of empty rows in A
= list of cancelled events and next scheduled events of same train line

1. find outgoing arc r of x such that typer = ‘dwell’ or ‘through’ ;
2. i ← successor event i of arc r ;
3. Arcs2del ← Arcs2del ∪ r ;
4. continue ← 1 ;
5. while continue do
6. Cancelled ← Cancelled ∪ { i , next event n at IOn such that LNn = LNi} ;
7. if typei = ‘arrival’ & TTPi = TTPx then % arrival at new turning station
8. continue ← 0 ;
9. for each outgoing arc r of i do % scan outgoing arcs
10. if typer = ‘headway’ then
11. Next ← successor event of arc r ; Arcs2del ← Arcs2del ∪ r ;
12. elseif typer = ‘turn’ then
13. successor ← successor event of arc r ; tturn ← tr ; % store min. duration of turn
14. Arcs2del ← Arcs2del ∪ r ;
15. elseif typer ≠ ‘hindrance’ then
16. successor ← successor event of arc r ;
17. for each incoming arc r of i do % scan incoming arcs
18. if typer = ‘headway’ then
19. Arcs2del ← Arcs2del ∪ r ;
20. Previous ← preceding event of arc r ;
21. if Next exists & Previous exists then
22. Arcs2add ← {Next, Previous, t, ‘headway’} ; % construction rule 5.3
23. [add _temp, del_temp , Event] ← Delevent_Hindrance(x1) ;
24. arcs2add ← arcs2add ∪ add _temp ; arcs2del ← arcs2del ∪ del _temp ;
25. i ← successor ;
26. end
27. Arcs2add = Arcs2add ∪ { i , x , tturn , ‘turn’} ; % new turn arc
28. Delarc(Arcs2del) ; Addarc(Arcs2add) ; % update graph

Implementing dispatching actions

71

The second limitation concerns the treatment of hindrance constraint arcs. The short turning
manoeuvre introduced in the new turning station (e.g. station 1 in Figure 6.12) can lead to new
hindrance conflicts, for instance if the turning train crosses some tracks used by other train lines
when changing to a track for the opposite direction. Creating new hindrance constraints in this
case is possible only with detailed knowledge about the topology of the station and the
interlocking route of the turning manoeuvre, which is not included in the presented algorithm.
Note that this is only the case for hindrance caused by the turning manoeuvre itself, the arrival
and departure from the new turning station are still secured by all headway and hindrance
constraints present in the model before the short turn was introduced. This is shown in Figure
6.14, which is based on the example presented in Figure 6.12.

Figure 6.14 Schematic representation of turning manoeuvre not secured by infra constraints.

6.5 Optimization framework
In order to find effective dispatching actions, a greedy optimization algorithm has been
implemented. The optimization algorithm calculates the effectiveness of each dispatching action
from a list of possible dispatching actions created beforehand. In the end, the optimization
algorithm returns the dispatching action with the greatest effectiveness. By applying this
algorithm several times and storing each optimal dispatching action, a greedy approach yielding
effective combinations of dispatching actions is obtained.

6.5.1 Dispatching actions have to be combined with postponements
Often, one dispatching action is not enough to reduce occurring delays. In such cases, a
combination of different dispatching actions proves to be much more effective. In particular, a
dispatching action is likely to be most effective when it is combined with one or more
postponements of events from the delayed train trip. For example, suppose that train 1 has a
delay, which is propagated to train 2, running behind it. In this case, changing the order between
trains 1 and 2 seems to be an effective dispatching action. But suppose that train 1 has a
hindrance conflict with train 3 as shown in Figure 6.15. When the order between trains 1 and 2 is
changed, train 3 still has to wait for its departure until train 1 has passed. As a result, delays keep
being propagated through the network and the effectiveness of a dispatching action is not
maximized. Clearly, the solution to this problem is to let train 3 depart before train 1 has passed,
i.e. the departure of train 1 has to be postponed (recall the definition of postponing posed in
section 6.3.1. In that case, changing the order of trains 1 and 2 is effective indeed. As a
consequence, the positive effect of each dispatching action has to be maximized by combining it
with appropriate postponements. This has been implemented in the optimization algorithm, as
will be described in the next sections.

Implementing dispatching actions

72

Figure 6.15 Delayed trains at a station.

6.5.2 Making an inventory of possible dispatching a ctions
Before the actual optimization process can start, an inventory has to be made of all dispatching
actions to be taken into consideration. To this end, the algorithm ‘Generate_Inventory’ is used.
The input for this algorithm consists of the timed event graph represented by the arclist and its
adjacency lists, and the matrix Event. The output is a matrix Choice containing all possible
dispatching actions recognised by the algorithm. This matrix is used as input for the optimization
algorithm described in section 6.5.4. Each row of the matrix Choice describes a dispatching
action as follows:
In case of an order change, a row r contains the following elements:

Choice(r) = {type , x , amount}

where:
type = ‘OrderChange’,
x = event from where the order change starts,
amount = amount of IO-points where the order is changed.

The variables x and amount are input for the ChangeOrder algorithm (see section 6.2.5) when
implementing this dispatching action in the timed event graph.

In case of a short turn, a row r contains the following elements:

Choice(r) = {type , x }

where:
type = ‘ShortTurn’,
x = arrival event where the new turn will take place.

The variable x is input for the ShortTurn algorithm (see section 6.4.2) when implementing this
dispatching action in the timed event graph.
The algorithm works by investigating the possibilities for dispatching actions for each event x
separately. If event x is a departure of a start of a train trip, the possibilities for changing the
sequence order are investigated in lines 2 – 11. This is done by following the (events of the) train
trip through the graph (line 6). For each arrival at a station where overtaking is possible, the
corresponding dispatching action is stored in the Choice matrix (line 11). If the train running
behind the train under investigation ends or continues in a different direction, changing the order
is not possible anymore. This is accounted for by the if-statement in line 10.
If event x is an arrival event at the end of a train trip, the possibility of short turning is
investigated. If the train is scheduled to turn (which is checked in line 13), the train trip is tracked
back through the timed event graph to search for short turning possibilities. Each arrival event at

Implementing dispatching actions

73

a timetable point where turning is possible represents a possibility to short-turn a train, and is
stored in the Choice matrix (line 16). Note that it is assumed that each train turns at a train with
the same route (but obviously in the opposite direction), since short turning is impossible if a train
continues at a different route after turning.

Algorithm 6.6 (GENERATE_INVENTORY)
Input:
 Event
 A
 Adjhead
 Adjtail
Output:
 Choice

= list of events
= arclist
= adjacency list for heads
= adjacency list for tails

= list of possible dispatching actions

1. for each event x ∈ Event do
2. if typex = ‘departure’ or typex = ‘start of train trip’ then % explore order changes
3. amount ← 0 ;
4. find train number TN_next of the train scheduled to run subsequent to TNx …
5. … by exploring headway constraint arcs ;
6. for each following arrival event a of train trip TNx do
7. amount ← amount + 2 ;
8. if overtaking at TTPa is possible
9. find train number TN_next of the train scheduled to run subsequent to TNx ;
10. if TN_next is the same as in the previous step
11. Choice ← Choice ∪ {‘ChangeOrder’ , x , amount} ;
12. elseif typex = ‘end of train trip’ then % explore short turns
13. if an outgoing arc r exists such that typer = ‘turn’ then
14. for each preceding arrival event a of train trip TNx do
15. if short turning at TTPa is possible
16. Choice ← Choice ∪ {‘ShortTurn’ , a} ;

6.5.3 The objective function: total passenger delay
Many considerations play a role when choosing an objective function for the optimization
process. In the optimization framework used in this project, the total passenger delay is used as an
optimization function. In order to calculate the total passenger delay, a number of passengers is
attached to each event in the railway network. For example the number of passengers attached to
an arrival event x reflects the number of alighting passengers at TTPx. The total passenger delay is
then calculated by multiplying the delay vector created by the delay propagation algorithm with
the vector containing the numbers of passengers attached to each event, as shown by the next
formula:

Z_total = Z * P’ , (6.1)

where:
Z_total = total passenger delay in minutes,
Z = delay vector,
P = vector containing the number of passengers attached to each event.

The main reason for choosing the total passenger delay as an objective function is that the impact
of dispatching actions for the passengers is considered more important than the impact on the

Implementing dispatching actions

74

trains themselves. For instance introducing a short turn may be very effective to restore the train
service to the scheduled situation. For passengers however, this is an unpopular measure causing
large passenger delays at the stations where the turning train is cancelled, particularly when the
considered train line runs at a low frequency (e.g. hourly).
Since cancelled events are no longer part of the timed event graph, they are not visited by the
delay propagation algorithm presented in section 5.4 anymore. Each cancelled event x is
registered in the matrix Cancelled, along with the next scheduled event of the same train line n.
Before formula 6.1 can be used, the delays of all cancelled events x ∈ Cancelled are calculated as
follows:

Z(x) = d(n) – d(x) + Z(n) (6.2)

where:
Z(x) = delay of a cancelled event x,
d = timetable vector,
n = next event scheduled at IOx such that LNn = LNx.

This way of calculating the passenger delay incorporates:

• Arrival delays of alighting passengers,
• Departure delays of embarking passengers,
• Delays of passengers who have to wait for the next train since their train is cancelled due

to short turning.
This is sufficient for a correct evaluation of the dispatching actions considered in this thesis.
However, more elaborate ways of calculating passenger delays exist, for instance including
origin/destination matrices for an accurate calculation of the passenger delays caused by broken
transfers, etc, a description of which can be found in [10].

6.5.4 Finding the most effective dispatching action
Figure 6.16 shows a flow diagram explaining the optimization algorithm ‘Dispatch_optimal’,
which evaluates all dispatching actions from the list of possible dispatching actions created by the
algorithm ‘Generate Inventory’. After calling the algorithm, a delay vector is generated from the
initial delays (the initial delays are input data). This vector is used to calculate the delay
propagation through the network in the situation without any dispatching actions. During the
calculation of the delay propagation, a list of delayed trains is produced. After these initial steps,
the actual loop starts. To speed up the algorithm, dispatching actions regarding on-time trains are
omitted. That is why in the loop each dispatching action is checked for being associated with a
delayed train.

Implementing dispatching actions

75

Figure 6.16 Diagram of algorithm ‘Dispatch_optimal’ to find the most effective dispatching action.

When a dispatching action relates to a delayed train, the dispatching action is implemented, using
one of the algorithms presented in this chapter. Using the changed timed event graph, the optimal
postpone actions are calculated. After implementing the dispatching actions, the delay
propagation is calculated. Finally, the calculated delay is compared with the smallest delay found
so far. If the calculated delay is smaller, the timed event graph and the performed dispatching
actions are stored, after which the loop continues. When no more dispatching actions are
available for testing, the loop ends and the most effective dispatching action is returned, along
with the changed timed event graph.

Implementing dispatching actions

76

This algorithm yields only one optimal dispatching action. In order to get a set of dispatching
actions forming a complete tactic to revert to the scheduled situation, several iterations have to be
done, which is implemented in the algorithm ‘Dispatch’. The adapted timed event graph
according to the dispatching action of iteration one is then used as input for iteration two, etc. A
flow diagram of this algorithm is shown in Figure 6.17.

Store best dispatching action

total passenger delay

<

previous total

passenger delay

Return

Output: - stored Timed Event Graph;

- list of stored dispatching

actions.

Dispatch_optimal

Generate delay vector Z

Generate list of delayed trains

Start

Input: - Timed Event Graph;

- List of initial delays;

- List of possible

 dispatching actions.

Yes No

Figure 6.17 Flow diagram of the algorithm 'Dispatch', calculating a combination of dispatching actions.

Note that this algorithm contains similarities to a greedy algorithm, as the most effective
dispatching actions are stored during the iterative process. Greedy algorithms are used frequently
in the literature to solve similar problems, see for instance [5], where a greedy algorithm is used
to find effective dispatching actions in a model using the specific properties of an alternative
graph formulation. However, the philosophy behind the approach proposed in [5] is aimed at
detailed modelling of railway operations (each block signal is modelled), used for calculating
accurate speed profiles of the trains. This differs from the idea behind this research project, which
is aimed at a quick, network wide, evaluation of the impact of dispatching actions.

Different approaches can be evaluated
The output of the algorithm described here consists of one combination of dispatching actions
found during the optimization process. In practice however, situations can occur in which a
dispatcher is interested in comparing different approaches to react on the given delays in a
network. Particularly with respect to the dispatching actions investigated in this thesis, it may be
interesting to compare an approach in which short turning is allowed with another approach in
which short turning is not considered as an option to restore a delayed train service. This can be
implemented by running the algorithm ‘Dispatch’ twice, where the second time a modified
version of the Choice matrix, from which the dispatching action ‘short turning’ has been
removed, is used. If this case, the dispatcher gets an overview of both options, and he can choose
which approach to follow depending on the situation.

Limitations of this optimization approach
Some limitations to the described optimization approach deserve attention. The most important
limitation is that the possibility to carry out dispatching actions regarding on-time trains is
omitted during the optimization process. The choice for this methodology is based on the fact that
all dispatching actions regarded in this thesis (change order, postpone and short turning) are
aimed at reducing the delay propagation caused by a delayed train. Hence it is logical, and in

Implementing dispatching actions

77

most cases effective, to try applying these dispatching actions to delayed trains only. However,
situations in which it is effective to apply one of the aforementioned dispatching actions to an on
time train can theoretically exist, which could theoretically lead to a sub-optimal solution.
Nevertheless, it is highly unlikely that postponing an on-time train is an effective dispatching
action, so it is assumed that this limitation of the algorithm will not lead to a considerable
discrepancy between the dispatching actions advised by the algorithm and the dispatching actions
that are advisable in reality.
Another limitation is related to the complexity of the problem that the optimization algorithm has
to solve. Even in small networks an enormous combination of dispatching actions is theoretically
possible. For large scale networks, this leads to a combinatorial explosion of the solutions space
for the problem. It is therefore of importance to develop intelligent optimization strategies for
finding effective combinations of dispatching actions. Some ideas for this will be discussed in
section 8.3.

6.6 Dispatching actions in max-plus notation
Timed event graphs can be translated into systems of max-plus equations and vice versa. Since
most theory, algorithms and literature about modelling a railway system as a discrete event
system makes use of the max-plus notation, the notations of a switching max-plus system (i.e.
with the possibility to represent dispatching actions) will be briefly discussed in this section.

6.6.1 Max-plus algebra: definitions
The following definitions of max-plus algebra were published in [3], while a more detailed
description of max-plus algebra for railways can be found in [7].
First, the set of real numbers is extended for use with max-plus algebra. Define:
ε = −∞

{ }ε ε= ∪ℝ ℝ

The two basic operations in max-plus algebra are the max-plus algebraic addition and
multiplication, which are defined as follows for numbers ,x y ε∈ℝ :

max-plus addition: max(,)x y x y⊕ = ,
max-plus multiplication: x y x y⊗ = + .

Matrix operations are defined as follows for matrices , ,m n n pA B Cε ε
× ×∈ ∈ℝ ℝ and vector nx ε∈ℝ :

max-plus addition: [] max(,)ij ij ij ijij
A B a b a b⊕ = ⊕ = ,

matrix – vector multiplication: []

1,...,1

max ()
n

ik k ik ki k n
k

A x a x a x
==

⊗ = ⊗ = +⊕ ,

max-plus multiplication: []

1,...,1

max ()
n

ik kj ik kjij k n
k

A C a c a c
==

⊗ = ⊗ = +⊕ .

Implementing dispatching actions

78

6.6.2 Max-plus linear systems
The dynamics of a discrete-event dynamic system (such as a railway system), modelled so far by
timed event graphs, can be described by recursive equations in max-plus algebra [7]. These
equations can be put together to a max-plus linear system. First, the following variables are
defined:

x(k)

= The state vector, where xi(k) denotes the actual time at which event i occurs for the
k-th time (recall that a periodic timetable is concerned).

A

= The system matrix, where [A] ij denotes the time that has to elapse after the occurrence
of event j before event i can occur. In the timed event graph, this is equivalent to the
arc weight of the arc originating from event j and ending at event i (recall the firing
rule for events, explained in section 4.4.2). If no arc (j, i) exists, then [A] ij = ε. Since
the timetable is periodic, A is the same for each period k.

d(k)

= The timetable vector, where di(k) denotes the scheduled time for the k-th occurrence
of event i.

A homogeneous max-plus linear system has no inputs from a timetable. The recursive state
equation, with which the event times in period k can be calculated when the event times in period
k – 1 are known, is:

0() (1), (0)x k A x k x x= ⊗ − = , (6.3)

where x0 is the initial state vector, containing the event times of the first occurrences of all events.
Since the timetable is not included in the system, its dynamic behaviour depends on the
eigenvalues of A and the initial state vector x0. In the real railway system, this can be viewed as
the situation that each train would depart and arrive as early as possible in the scheduled order,
instead of waiting for their scheduled departure times.
Of course, in a scheduled railway system, each train runs according to a timetable. The timetable
is introduced in the model as a timetable vector d(k). The periodic timetable with cycle time T
(which usually equals 60 minutes) is modelled by:

0() (1) , (0)d k d k T d d= − ⊗ = , (6.4)

where d0 is an initial timetable vector. A scheduled railway system can be represented by a
scheduled max-plus linear system, according to the following recursive equation:

() (1) ()x k A x k d k= ⊗ − ⊕ . (6.5)

6.6.3 The switching max-plus system
In a switching max-plus system, the system matrix A can be different for each period. In the
preceding sections, algorithms for changing the timed event graph according to a given
dispatching action are discussed. As a timed event graph is equivalent to a max-plus system, the
algorithms can in fact be used to adapt the system matrix A, given a set of dispatching actions.
The ability to change the system matrix can be included in equation (6.5) by introducing a new
input variable u(k), representing the possible changes that can be carried out in A. This can for
example be implemented as a binary vector with length n, where n is the number of possible
dispatching actions. In that case, ur(k) = 1 means that dispatching action r is implemented in

Implementing dispatching actions

79

period k. Since dispatching actions affect the system matrix, A becomes dependent of u. When
writing k + 1 instead of k, this yields:

(1) (, ()) () (1)x k A k u k x k d k+ = ⊗ ⊕ + . (6.6)

Note that some dispatching actions could also affect the timetable vector (for example when
changing a dwell time). However, in this project dispatching actions affecting the timetable
vector are not considered, since the goal of carrying out the dispatching actions is to revert to the
original timetable.
Since dispatching actions are carried out with the purpose of reducing the delays in the system, a
delay vector z(k) is introduced. The delay vector z(k) is defined as the difference between the
scheduled event time and the actual event time, and is never smaller than zero:

() (() ())z k x k d k= − . (6.7)

Note that z(k) cannot be negative, since in equation 6.6 the scheduled event times d(k + 1) are
added to the calculated event times x(k + 1).
When no delays are present in the system the system matrix is not changed in that period, so:

() 0z k = , which implies () 0u k = , (6.8)

and therefore:

(,0)A k A= . (6.9)

6.7 Conclusion
This chapter contains the main result of this thesis, which is description of algorithms able to
change the timed event graph according to given dispatching actions. These are:

• ChangeOrder, for changing the sequence order of two trains,
• Postpone, for postponing the arrival or departure of a train at a station with conflicting

interlocking routes,
• ShortTurn, for applying a short turn.

Construction rules describing the necessary changes to reflect dispatching actions in the timed
event graph have been described and implemented in these algorithms. The algorithms
ChangeOrder and ShortTurn make use of two other algorithms for calculating the implications on
the hindrance constraints when deleting or inserting an event in the scheduled order of events.
Furthermore, a simple optimization algorithm using a greedy approach has been described, which
will be used in the case study to calculate effective dispatching actions in a testing network.
Finally, the possibility to apply dispatching actions in max-plus algebra has been formally
described, yielding a switching max-plus system.
The consistency of the algorithms presented in this chapter will be tested in a case study, which is
the subject of the next chapter.

Case study

80

7 Case study

7.1 Introduction
This chapter is dedicated to the application of the theory presented in the preceding chapters to a
test case. In many fields of research, the test case is used for the calibration and/or validation of
the model. However, since this thesis is aimed at showing how dispatching actions can be
implemented in an existing model (i.e. the max-plus model), the purpose of the case study in this
thesis is to illustrate how the algorithms can be used in practice, and to examine the consistency
and plausibility of the results.
The outline of this chapter is as follows: In section 7.2 a fictive testing network with a timetable
is presented. Section 7.3 explains the way in which this network is used to test the algorithms. In
section 7.4 the results are presented and interpreted. Section 7.5 contains a brief conclusion.

7.2 Testing network

7.2.1 Considerations leading to the used testing ne twork
In order to demonstrate all characteristics of the developed algorithms, a small testing network
has been made up. The choice for a hypothetical network instead of (a part of) a real world
railway network is based on the following considerations:

• The algorithm ‘Postpone’ can only be demonstrated when stations with hindrance
constraints exist (e.g. stations with crossing interlocking routes). However, in the Dutch
railway network such stations typically have a complicated track layout (i.e. Den Haag
HS). Stations with a simple track layout are more suitable for easy interpretation of the
test results.

• Modelling a real world network requires a thorough calculation of all headways, turning
times, running times etc., which is considered not feasible for this research project.

A testing network is considered useful if it provides the possibilities to apply the presented
algorithms in their full functionality, suggesting that the following elements have to be present in
the test network:

• Trains with different operational speeds (i.e. intercity and local trains) are required since
changing the sequence order of such trains is a particularly useful dispatching action.

• A rolling stock circulation modelled by trains turning at their terminal stations is needed
to enable short-turning of trains.

• A station with crossing train lines is needed, in order to get hindrance constraints
allowing the ‘Postpone’ algorithm to be useful.

• A longer railway line with one or more stations where it is possible to change the
sequence order of trains is needed, so that different (combinations of) order changes can
be tested.

Furthermore, the following characteristics for the timetable are required:

• The timetable has to be simple enough for easy interpretation of the test results.
• The timetable has to offer possibilities for dispatching actions, which implies that the

traffic has to be dense enough to enable dispatching actions. However, the capacity
consumption has to be low enough to offer the flexibility needed to implement
dispatching actions.

Case study

81

• Just as in a real railway system, time supplements (i.e. slack time) have to be included in
the timetable to enable small delays to settle without the need for dispatching actions.

7.2.2 The used testing network and timetable
Based on the considerations in the preceding section, the testing network shown in Figure 7.1 has
been produced. As can be seen, stations 1, 6 and 7 form the end of a railway line. The trains turn
here. The track layout of these stations is not shown. Stations 2, 4 and 5 are stations with
overtaking possibilities along the railway line. Station 3, where two railway lines merge (without
flyover) forms the heart of the testing network.

Figure 7.1 Testing network for the case study.

Figure 7.2 Schematization of the timetable used
for the test case.

Figure 7.2 contains a schematization of the line plan of the test case. A thick line denotes a train
line running in a 30 minutes service. One intercity line runs between stations 7 and 6, via station
3. Another intercity line connects station 1 with station 6. A local service runs between stations 1
and 6 as well. Note that all train lines share the same infrastructure between stations 3 and 6.
The hourly timetable of the train lines running in north – south direction are shown in Table 7.1,
while the trains in the opposite direction can be found in Table 7.2. A through train is indicated
by italic print of the departure time. In the testing timetable, each train line runs 6 times in total;
hence, with a 30 minutes service on each line, approximately 3 hours are simulated.
A time-distance diagram of the corridor between stations 1 and 6 is shown in Figure 7.3. The
individual train trips are numbered with three-digit train numbers, where the first digit
corresponds with the line number. Note that in station 4, direction north – south, line 5 (local
service) is scheduled to be overtaken by line 1 (intercity), and in direction south – north, line 6
(local service) is scheduled to be overtaken by line 2 (intercity). Note also that the local trains
have longer scheduled running times than the intercity trains (i.e. the local trains are slower).

Case study

82

Table 7.1 Timetables of trains in north - south direction in test network (d = departure, a = arrival).
 Line 1: Intercity

Station 7 –
Station 6

Line 3: Intercity
Station 1 –
Station 6

Line 5: Local
Station 1 –
Station 6

Station 1 d. .15 .45 .21 .51
Station 2 a.

d.
 |

.20
|

.50
.28
.29

.58

.59
 Station 7 d. .00 .30 | | | |
Station 3 a.

d.
.11
.13

.41

.43
.26
.28

.56

.58
.36
.38

.06

.08
Station 4 a.

d.
|

.18
|

.48
|

.33
|

.03
.45
.51

.15

.21
Station 5 a.

d.
.28
.30

.58

.00
.43
.45

.13

.15
.04
.05

.34

.35
Station 6 a. .36 .06 .51 .11 .13 .43

Table 7.2 Timetables of trains in south - north direction in test network (d = departure, a = arrival).
 Line 2: Intercity

Station 6 –
Station 7

Line 4: Intercity
Station 6 –
Station 1

Line 6: Local
Station 6 –
Station 1

Station 6 d. .16 .46 .01 .31 .09 .39
Station 5 a.

d.
.22
.24

.52

.54
.07
.09

.37

.39
.17
.18

.47

.48
Station 4 a.

d.
|

.34
|

.04
|

.19
|

.49
.31
.37

.01

.07
Station 3 a.

d.
.39
.41

.09

.11
.24
.26

.54

.56
.44
.46

.14

.16
 Station 7 a. .52 .22 | | | |
Station 2 a.

d.
 |

.32
|

.02
.53
.54

.23

.24
Station 1 a. .38 .08 .01 .31

Figure 7.3 Time-distance diagram of hourly schedule in test network. Local trains are coloured blue. For

clarity, only one direction is shown. Note that the trains of line 1 merge with the corridor at station 3.

Case study

83

7.3 Testing methodology

7.3.1 No real time simulation
Although the algorithms presented in this thesis are meant to operate in the real time environment
of the dispatchers’ office, no real time simulation is carried out for the test case. Instead, different
delay scenarios are used as input, and the evaluation of different dispatching actions, leading to a
(set of) dispatching actions yielding the best results is the output. This is schematized in Figure
7.4. The real time implementation of an evaluation tool for dispatching actions is a subject
beyond the goal of this thesis. Furthermore, the output of a simulation of a real time environment
would be less suitable for interpretation when one is mainly interested in the algorithms used for
the implementation of dispatching actions in the max-plus model.

Figure 7.4 Schematization of one test run.

7.3.2 Input data
All variables as defined in chapter 5 (Data structure for timed event graphs) are needed for
running the test case. This section explains how the required data is generated.

The matrix Event
The first 5 columns of the matrix Event are created before the actual timed event graph is
generated. For each train line 1…6 all events of one train trip are created by hand, after which a
small script is used to multiply the result six times (recall from the previous section that each train
line runs 6 times in the testing timetable, and recall from section 4.6 that the algorithms only
work in an acyclic model). As an example, the manual input for train line 5 is shown in Table 7.3.
When multiplying this data 6 times, the train numbers are increased every time.
The linked lists in columns 6 and 7, containing the scheduled order of events at a timetable point,
are generated automatically by the ‘Generate_TEG’ algorithm when building the timed event
graph.

Table 7.3 Example of manual input for one train line.
TN
(Train number)

LN
(Line number)

TTP
(Timetable point)

IO
(IO-point)

type

501 5 1 1 4 (‘start’)
501 5 2 1 1 (‘arrival’)
501 5 2 3 2 (‘departure’)
501 5 3 3 1 (‘arrival’)
501 5 3 5 2 (‘departure’)
501 5 4 1 1 (‘arrival’)
501 5 4 3 2 (‘departure’)
501 5 5 1 1 (‘arrival’)
501 5 5 3 2 (‘departure’)
501 5 6 1 3 (‘end’)

Case study

84

The timetable vector d
The same approach is followed when creating the timetable vector d: the scheduled event times
for one train run are created manually, after which a small script multiplies the input 6 times,
thereby increasing the scheduled event times with 30 minutes each time, such that each train line
runs in a 30 minutes service.

Amount of travellers
As explained in section 6.5.3, an amount of travellers is attached to each event in the model.
Tables containing the used amounts of travellers can be found in appendix 10.2.

Turn data
As in a real railway system, train turns are included in this model as well. The turns can be found
in Table 7.4. All turns have a minimum turning time of 6 minutes, but the actual layover times are
longer due to the schedule, yielding extra slack time for absorbing delays.

Table 7.4 Train turns in rolling stock circulation of the test case. The minimum turning time is 6 minutes.
Feeder
train

Connecting
train

Scheduled lay-
over time (min.)

 Feeder
train

Connecting
train

Scheduled lay-
over time (min.)

101 203 10 301 403 17
102 204 10 302 404 17
103 205 10 303 405 17
104 206 10 304 406 17
201 102 8 401 303 37
202 103 8 402 304 37
203 104 8 403 305 37
204 105 8 404 306 37
205 106 8 601 503 20
501 604 26 602 504 20
502 605 26 603 505 20
503 606 26 604 506 20

Hindrance conflict data
As can be seen in the testing network shown in Figure 7.1, conflicting train routings are possible
in station 3. In particular, trains departing in the direction of station 7 have to cross the incoming
track of the railway line from station 1. When one of the conflicting trains has passed the
crossing, the track is entirely free for the other train, which means that the conflict duration is
relatively short. A duration of 2 minutes is used for these crossing conflicts. The conflicts to be
included in the model are shown in Table 7.5.

Table 7.5 Conflicting train movements in testing network.
Train movement Conflicting train movement Conflict duration
Departure of line 2 to station 7 Arrival of line 3 from station 1 2 minutes
Departure of line 2 to station 7 Arrival of line 5 from station 1 2 minutes

Recall the implementation of conflict matrices and their notation explained in section 5.2.7. For
each combination of line number LN, timetable point TTP and IO-point IO a conflict matrix exists
in which each row represents a train movement conflicting with such a combination, containing
the following elements:

Case study

85

Conflicts{ LN, TTP, IO}(r) = (LNconflicting
r , IO

conflicting
r , tr)

where for each row r:
LNconflicting = line number of the conflicting line,
IOconflicting = IO-point used by the conflicting line,
t = minimal amount of time the conflicting train of LNconflicting has to wait for LN.

For the test network, this yields the following conflict matrices:

3, 3, 2
{2, 3, 2}

5, 3, 2
Conflicts

 
=  
 

Denoting that line 2 at timetable point 3 using IO-point 2 is conflicting with:
• line 3 using IO-point 3 with a conflict duration of 2 minutes
• line 5 using IO-point 3 with a conflict duration of 2 minutes

[]{3, 3, 3} 2, 2, 2Conflicts =

Denoting that line 3 at timetable point 3 using IO-point 3 is conflicting with line 2 using IO-point
2 with a conflict duration of 2 minutes.

[]{5, 3, 3} 2, 2, 2Conflicts =

Denoting that line 5 at timetable point 3 using IO-point 3 is conflicting with line 2 using IO-point
2 with a conflict duration of 2 minutes.

The other matrices Conflicts{ LN, TTP, IO} are empty, denoting that no other hindrance conflicts
occur in the network. Note that the headway conflicts are implemented later by the ‘Generate
TEG’ algorithm.

Generating the timed event graph
With the input data described above, a timed event graph is generated using the ‘Generate_TEG’
algorithm described in section 5.3.3. This yields the following data:

• The Event matrix, now completed with the linked lists.
• The arclist A.

After this, the adjacency lists Adjhead and Adjtail are created using the algorithm ‘Arclist2adj’,
described in section 5.2.4. Now, the timed event graph is ready to use for the case study.

List of possible dispatching actions
As explained in section 6.5.2, a list of possible dispatching actions has been created using the
algorithm ‘Generate_Inventory’. The output, the Choice matrix, was used as input for the
optimization algorithm ‘Dispatch’ described in section 6.5.4, yielding the results presented in the
next section.
Note that it is assumed that trains can overtake each other (i.e. the sequence order can be
changed) at each station in the testing network. Note also that short turning is considered possible
at each station in the testing network, although the switches and tracks needed for this are not
shown in the track layout of Figure 7.1.

Case study

86

7.4 Results
Two delay scenarios have been tested. The following sections contain descriptions of the delay
scenarios and the respective results. For each scenario, the following parameters are calculated:

• advised dispatching actions when no short turning is allowed, calculated by the
‘Dispatch’ algorithm,

• advised dispatching when short turning is allowed,
• the delay propagation when no dispatching actions are applied,
• the delay propagation when dispatching actions are applied,
• the first order delay (i.e. the delay resulting from initial delays),
• the consecutive delay (i.e. the delay caused by delay propagation).

In this project, first order delay is defined as follows:

First order delay is the delay resulting from a given set of initial delays. In the timed event graph,
the first order delay is transmitted via running time and dwell time.

The consecutive delay is defined as follows:

Consecutive delay is the delay resulting from delay propagation caused by headway constraints,
hindrance constraints, transfers and turns.

The results of each scenario are interpreted and discussed using time-distance diagrams.

7.4.1 Delay scenario 1: Departure of train 102 dela yed

Reason for this delay scenario
The rolling stock circulation of lines 1 and 2 has relatively short layover times (10 minutes at
station 6 and 8 minutes at station 7), which makes these lines interesting to compare the
dispatching actions ‘change order of trains’ and ‘short turning’ with the delay propagation when
no dispatching actions are applied.
Train 102 is the second train trip of line 1 departing from station 7, which is chosen for a delay
scenario since a delay of train 101 (the first train) would cause less delay propagation, which is
not insightful for a test case.

Expected results
The following results are expected:

• In case of small delays, it should be advised not to carry out any dispatching actions,
since slack times and layover times can make up for the delay.

• In case of bigger delays, order changes are expected. In particular, it is expected that the
local train, which is scheduled to be overtaken by the delayed train in station 4, is advised
not to wait for this train anymore.

• In case of severe delays, the advice to turn before the scheduled turn station is expected

Case study

87

Calculated results
Five different delays ranging from 5 minutes to 25 minutes are tested in this scenario. For each
delay, the advised dispatching actions minimizing the total passenger delay calculated using the
‘Dispatch’ algorithm are described in Table 7.6. The delay propagation in the situations with and
without dispatching actions are summarized in Table 7.7.
In case of initial delays of 5 minutes and 10 minutes, it is advised to apply no dispatching actions
at all. The delays will settle automatically by consuming the slack times in the timetable and at
the turning stations. The first dispatching action is applied when the delay amounts 15 minutes.
When a dispatching action is applied, the practical implications for the train service are described
between brackets.

Table 7.6 Advised dispatching actions (no short turning included) and total delays in scenario 1.
Delay
(min.)

Advised dispatching actions
(without short turning)

+5 Do nothing
+10 Do nothing
+15 1. Switch order train 102 and train 502 between stations 4 and 6.

 → (‘Cancel scheduled overtaking of train 502 by train 102’)
+20 1. Switch order train 102 and train 502 between stations 4 and 6.

 → (‘Cancel scheduled overtaking of train 502 by train 102’)
2. Switch order train 102 and train 303 between stations 3 and 5.
 → (‘Let train 102 run behind train 303 between stations 3 and 5’)
3. Switch order train 204 and train 604 between stations 4 and 3.
 → (‘Cancel scheduled overtaking of train 604 by train 204’)

+25 1. Switch order train 102 and train 502 between stations 4 and 6.
 → (‘Cancel scheduled overtaking of train 502 by train 102’)
2. Switch order train 102 and train 303 between stations 3 and 6.
 → (‘Let train 102 run behind train 303 until arrival at station 6’)
3. Switch order train 204 and train 604 between stations 4 and 3.
 → (‘Cancel scheduled overtaking of train 604 by train 204’)
4. Switch order train 105 and train 505 between stations 4 and 5.
 → (‘Move scheduled overtaking of train 505 from station 4 to station 5’)

Table 7.7 Summary of delay propagation with and without dispatching actions.
 Delay propagation without

dispatching actions
Delay propagation with dispatching
actions

Initial
delay

Total first
order delay

Total
consecutive
delay

Total
passenger
delay

Total first
order delay

Total
consecutive
delay

Total
passenger
delay

5 24 7 2600 - - -
10 64 31 8700 - - -
15 104 128 22010 104 62 15960
20 144 326 42970 144 132 29110
25 184 632 72960 184 229 41190

Short turning is a dispatching action with large consequences for the travellers, since they have to
wait for the next train. Therefore, the possibility to use this dispatching action is calculated
separately. When short turning is included in the calculation, the advice stays the same for the

Case study

88

delays of 5, 10, 15 and 20 minutes. Only the delay of 25 minutes yields better results when short
turning is applied, as shown in Table 7.8.

Table 7.8 Alternative dispatching action with short turning in scenario 1.
Delay
(min.)

Advised dispatching actions
(with possibility for short turning)

+25 1. Short-turn train 102 at station 3.
 → (‘Hence, train 204 is cancelled between stations 6 and 3’)

Table 7.9 Summary of delay propagation with and without dispatching actions, when short turns are
allowed.
 Delay propagation without

dispatching actions
Delay propagation with dispatching
actions

Initial
delay

Total first
order delay

Total
consecutive
delay

Total
passenger
delay

Total first
order delay

Total
consecutive
delay

Total
passenger
delay

25 376 440 72960 49 0 37700

Discussion of the results
The delay propagation when no dispatching actions are applied in case of a delay of 25 minutes
for train 102 is shown in Figure 7.5. Each train is forced to run in the scheduled order due to the
lack of dispatching actions, which can be clearly seen from the pattern of train 502. This train is
scheduled to be overtaken by train 102 at station 4, and therefore has to wait almost half an hour
for the overtaking to take place.
In contrast, the situation when the advised dispatching actions are applied is depicted in Figure
7.6. In this diagram can be seen that train 502 and train 303 are allowed to run before the delayed
train 102, and that train 102 gets an almost conflict-free path along the track.

Figure 7.5 Time-distance diagram of delay propagation without dispatching actions when train 102 has

25 minutes delay.

Case study

89

Figure 7.6 Time-distance diagram of delay propagation with dispatching actions (no short turns allowed)

when train 102 has a delay of 25 minutes.

Some other interesting observations can be made. For instance in case of a delay of 20 minutes,
the order of trains 102 and 303 is switched between stations 3 and 5, and not until the terminal
station of both trains, station 6, as shown in Figure 7.7. This can be explained when regarding the
scheduled layover times at station 6. Train 102 has a relatively short layover time (10 minutes),
while train 303 has a longer layover time (17 minutes). Hence, when train 102 can arrive at the
terminal station before train 303, less delay is propagated via the turn of train 102. This is a result
of the fact that the algorithms evaluate the effectiveness of dispatching actions on network level.

Figure 7.7 Time-distance diagram of train service with dispatching actions when train 102 has a delay of

20 minutes.

Influence on the capacity consumption
Note that due to the delayed train 102, between approximately 9:00 and 10:00 more trains run
along the track from station 4 to station 6 than in the situation without delays. This leads to a
higher capacity consumption, which has been calculated with the algorithm ‘ExploitationRate’
presented in section 5.5, leading to the following results:

Capacity consumption on the railway track between stations 4 and 6,
between 9:00 and 10:00 hours:
Original schedule: 37 %
In the disrupted situation: 45 %

Case study

90

Note that 45 % is still sufficient for a stable service. Obviously, the delayed train 102 is missing
in the hour between 8:00 and 9:00, which leads to a lower capacity consumption during that
period.

7.4.2 Delay scenario 2: Departure of train 502 dela yed

Reasons for this delay scenario
Train 502 is a local train of line 5 starting at station 1 and ending at station 6. The interlocking
route of this train line crosses the routing of line 2 at station 3. Therefore, this delay scenario
offers the possibility to study the ‘postpone’ algorithm, as well as the ‘change order’ algorithm.

Expected results

• In case of small delays, no advised dispatching actions are expected.
• In case of bigger delays, postponing actions are expected, since conflicting interlocking

routes with the delayed train at station 3 exist. Furthermore, order changes are expected.

Calculated results
As in the previous delay scenario, 5 different delays are tested. The advised dispatching actions
calculated by the optimization algorithm are shown in Table 7.10. A summary of the delay
propagations with and without dispatching actions for this scenario is shown in Table 7.11.

Table 7.10 Total delays with dispatching actions in scenario 2.
Delay
(min.)

Advised dispatching actions
(without short turning)

+5 Do nothing
+10 1. Switch order train 502 and train 102 between stations 3 and 4.

 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at
station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.

+15 1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at
station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.

+20 1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at
station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.
3. Switch order train 502 and train 303 between stations 4 and 6.
 → (‘Let train 303 overtake train 502 at station 4.’)

+25 1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at
station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.
3. Switch order train 502 and train 303 between stations 4 and 6.
 → (‘Let train 303 overtake train 502 at station 4.’)

Case study

91

Table 7.11 Summary of delay propagation with and without dispatching actions.
 Delay propagation without

dispatching actions
Delay propagation with dispatching
actions

Initial
delay

Total first
order delay

Total
consecutive
delay

Total
passenger
delay

Total first
order delay

Total
consecutive
delay

Total
passenger
delay

5 19 4 1230 - - -
10 50 62 8330 50 5 2870
15 98 198 24540 98 0 5080
20 148 460 52290 148 25 8930
25 198 910 96430 198 74 16930

When the possibility to schedule short turns (i.e. before the scheduled turning station) is included,
the advice stays the same. This can be explained by the fact that train 502 has a relatively long
layover time (26 minutes) so that a delay of 25 minutes can be absorbed almost entirely at the
turning station (the minimum layover time is 6 minutes).

Discussion of the results
A difference with scenario 1 is that dispatching actions are advised already for the relatively
small delay of 10 minutes in scenario 2, while this delay did not require dispatching actions in
scenario 1. Figure 7.8 shows a time-distance diagram of the delay propagation for this situation
(train 502 delayed by 10 minutes). It can be seen that train 102 is hindered by train 502 on the
track between stations 3 and 4. Figure 7.9 shows the situation with dispatching actions (i.e. order
change of trains 502 and 102 between stations 3 and 4). This is very effective, since train 102, an
intercity train, is not hindered anymore, and 5 minutes of the delay of train 502 are absorbed at
station 4 since the time-consuming overtaking is cancelled. The graph shows clearly that the
dwell time of train 502 is reduced to the minimum of 1 minute, instead of the scheduled 6
minutes including the overtaking action.

Figure 7.8 Time-distance diagram of delay propagation without dispatching actions when train 502 has a

delay of 10 minutes.

Case study

92

Figure 7.9 Time-distance diagram of delay propagation with dispatching actions when train 502 has a

delay of 10 minutes.

The results for the initial delay of 20 minutes are shown in Figure 7.10 and Figure 7.11, for the
situations without and with dispatching actions respectively. As with scenario 1, a fixed sequence
order of the trains causes heavy delay propagation (in this case from the initially delayed train
502 to trains 102 and 303).
Other causes of delay propagation are the hindrance constraints at station 3. The delay of train
103 is caused by the hindrance conflict between trains 502 and 202 at station 3. The delay of train
202 caused by this conflict is propagated to train 103 via the turn at station 1. In Figure 7.11 can
be seen that train 103 runs on time when the correct postponing actions are applied.
Finally note that the scheduled overtaking of train 502 by train 102 is in the rescheduled situation
replaced by an overtaking of train 502 by train 303.

Figure 7.10 Time-distance diagram of delay propagation without dispatching actions when train 502 has

a delay of 20 minutes.

Case study

93

Figure 7.11 Time-distance diagram of delay propagation with dispatching actions when train 502 has a

delay of 20 minutes.

7.4.3 Influence of the number of passengers
As explained in the description of the input data in section 7.3.2, amounts of passengers are
attached to each event in the model of the test case. In this section, the influence of the number of
passengers on the advised dispatching actions is briefly displayed using delay scenario 1.
In order to show the influence of the number of passengers on the results, it is investigated
whether the advised dispatching actions change if the amount of passengers in trains 102 and 204
is lowered.
The amounts of passengers used in the test case can be found in appendix 10.2, but for
completeness the amounts of passengers for trains 102 and 204 are shown here as well, see Table
7.12. In the table can be seen that a relatively large amount of passengers use train 102 between
stations 5 and 6 (200 passengers embarking in station 5, 300 passengers disembarking at station
6, which is the terminal station). Train 204, running in the opposite direction, is used by 200
passengers, embarking at station 6.

Table 7.12 Amounts of passengers for trains 102 and 204 in test case.
Train 102 Train 204

Station

Amount of embarking /
alighting travellers

Station

Amount of embarking /
alighting travellers

7, departure 200 6, departure 200
3, arrival 50 5, arrival 50
3, departure 50 5, departure 50
4 (through) 0 4 (through) 0
5, arrival 100 3, arrival 100
5, departure 200 3, departure 100
6, arrival 300 7, arrival 200

It is expected that short turning becomes more favourable when train 102 is delayed if less
passengers use trains 102 and 204 between stations 5 and 6. To investigate this, the amounts of
passengers are changed into the values shown in Table 7.13, where only 100 passengers
disembark from train 102 at its terminal station, and only 50 passengers use train 204 from its
start at station 6.

Case study

94

Table 7.13 Modified amounts of passengers for trains 102 and 204.
Train 102 Train 204

Station

Amount of embarking /
alighting travellers

Station

Amount of embarking /
alighting travellers

7, departure 200 6, departure 50
3, arrival 100 5, arrival 20
3, departure 50 5, departure 20
4 (through) 0 4 (through) 0
5, arrival 100 3, arrival 20
5, departure 50 3, departure 120
6, arrival 100 7, arrival 150

A test run using the algorithm ‘Dispatch’ shows that the advices have changed indeed, as can be
seen in Table 7.14, where the results with the lowered passenger amounts for trains 102 and 204
are shown. Note the two differences with the original test case of scenario 1 described in section
7.4.1:

1. When train 102 is delayed 10 minutes, an order change is advised, while in the original
test case ‘do nothing’ was advised.

2. When train 102 is delayed 20 minutes, a short turn is advised, while in the original test
case order changes were advised.

Difference 1 can be explained by the time-distance diagrams of Figure 7.12 and Figure 7.13. The
former shows the delay propagation when no dispatching actions are carried out (which is the
advice in the original test case for a delay of 10 minutes of train 102). It can be clearly
distinguished that train 502 has to wait more than 10 minutes at station 4 for train 102 to come
through.
When the amount of passengers in train 102 is lowered, train 502 gets more relative importance
in the calculation of the most effective dispatching actions, which leads to the new advice of
moving the overtaking to station 5, causing less delay for train 502. This is visualized in Figure
7.13.

Table 7.14 Advised dispatching actions with lowered passenger amounts for trains 102 and 204 (short
turning is allowed).
Delay
(min.)

Advised dispatching actions
(with short turning)

+5 Do nothing
+10 Switch order train 102 and train 502 between stations 4 and 5.

→ (‘Move scheduled overtaking of train 502 by train 102 from station 4 to
station 5’)

+15 Switch order train 102 and train 502 between stations 4 and 6.
→ (‘Cancel scheduled overtaking of train 502 by train 102’)

+20 Short-turn train 102 at station 3.
+25 Short-turn train 102 at station 3.

Case study

95

Figure 7.12 Time-distance diagram of delay propagation when train 102 as a 10 minute delay and no

dispatching actions are carried out.

Figure 7.13 Time-distance diagram of advised dispatching actions when train 102 has a 10 minute delay

and a lowered amount of passengers.

The comparison between the delays of the individual trains in Table 7.15 shows the difference.
With the lowered amount of passengers in trains 102 and 204, slightly more delay for these trains
is accepted, while the delay of train 502 is lowered considerably.

Original amounts of passengers

 Less passengers in trains 102 and 204

Train number Delay (min.) Train number Delay (min.)
102 64 102 67
204 3 204 9
502 27 502 10
303 1 604 1

Table 7.15 Comparison of individual train delays with different amounts of passengers.

The second difference can be explained directly from the fact that less passengers are affected by
a short turn, leading to the outcome that this dispatching action becomes more favourable when
the turning trains carry less passengers.

Case study

96

7.5 Conclusion
This chapter contains a case study in which the algorithms for evaluating dispatching actions,
presented in chapter 6, are tested on a fictive testing network to investigate the consistency and
plausibility of the results. As an objective function, the total passenger delay has been used.

The expectation was that in case of small delays, no dispatching actions can reduce the passenger
delay. When the delay gets higher, order changes are expected to be effective to reduce delay
propagation. Short turns are expected to be effective only in case of big delays (i.e. more than 20
minutes), since the objective function takes into account the fact that passengers have to leave the
train if a short turn is applied. The results of two delay scenarios met these expectations, showing
that:

1. The developed algorithms implement the dispatching actions in a consistent way.
2. The algorithms can be used effectively to evaluate dispatching actions.

One delay scenario has been used to test the effect of the chosen objective function on the
dispatching actions generated by the optimization algorithm. This showed that the amount of
passengers influences the results in such a way that the generated dispatching actions show an
emphasis on reducing the trains carrying passengers.

Conclusions

97

8 Conclusions

This chapter contains the conclusions of the research subject presented in this thesis. The main
goal was to implement railway dispatching actions in a max-plus model, and to create an
algorithm which can be used to evaluate dispatching actions.
Section 8.1 presents the main conclusions of this thesis. Section 8.2 offers an outlook on the
applicability of the developed theory in practice, where a distinction will be made between offline
and online applications. Some recommendations for future research will be discussed in section
8.3.

8.1 Main conclusions
A dispatching action is an intervention in the rail traffic system with the purpose of solving a
conflict between train runs, thereby aimed at reducing delays and their propagation. Dispatching
actions in which the line routes and sequence orders of trains remain unchanged are called traffic
control actions. The other dispatching actions, involving changes in the line routes and/or
sequence orders of trains, are called rescheduling actions.

Over the last decades, research has been carried out to develop tools able to calculate the most
optimal approach for solving conflicts in railway networks. Yet, a tool for quick evaluation of
dispatching actions on a network scale level acting as a real time decision support system for
dispatchers does still not exist.

In this thesis, algorithms that can be used effectively to evaluate dispatching actions on network
level using max-plus theory have been presented. It has been shown that the timed event graph
representation of a max-plus system is suitable for the development of such algorithms.
Particularly the advantage of being able to visualize the implications of dispatching actions on the
model has been proven useful for the development of the algorithms in this thesis. The detail
level of the model is aimed at a network wide evaluation, which means keeping the model and the
algorithms simple and time efficient. Using this model, the following dispatching actions have
been implemented as algorithms:

• Change the sequence order of trains.
• Short-turn a train (i.e. at a station before its terminal station).
• Postpone the departure or arrival of trains at stations with conflicting interlocking

routes.

For the development of these algorithms, so-called ‘construction rules’ have been specified for
each dispatching action. These construction rules describe the changes in the timed event graph
necessary to represent the corresponding dispatching action, and follow immediately from the
implications of the dispatching action on the model. In practice, more different dispatching
actions can be evaluated with the theory developed in this thesis. Changing the sequence order of
trains can for instance be used to move a scheduled overtaking to another station, which is
technically a different dispatching action. Furthermore, the described construction rules can be
used to develop other algorithms, for instance for cancelling train runs, introducing new train
runs, etc.

In order to use the algorithms for finding optimal dispatching actions for a given network and a
set of initial delays, they can be implemented in an optimization algorithm. In this project, a

Conclusions

98

greedy approach has been used. To maximize their effectiveness, order changes of trains have to
be evaluated in combination with the appropriate postponements of arrivals and departures of the
involved trains when conflicting interlocking routes are present in the network. The total
passenger delay in the network served as the objective function, thereby including the negative
effects for passengers when train trips are partly cancelled due to short turning of delayed trains.
Although global optimality has not been checked, a test case with two delay scenarios showed
that the generated dispatching actions are plausible and consistent.

8.2 Applicability in practice
The developed algorithms can change an existing max-plus model, represented by a timed event
graph, in order to evaluate dispatching actions. This can be used for offline and online
applications, as will be briefly described in this section.

Offline applications
Offline applications for the evaluation of dispatching actions are particularly useful for analysis
of railway operations and in the timetable design process. They enable a timetable designer for
example to:

• Assess the flexibility of a timetable with regard to the application of dispatching actions,
• Assess the stability of possible dispatching actions,
• Design emergency schedules in case of disruptions,
• Use the results of offline evaluations to decide whether certain timetable paths can be

inserted in an existing timetable or not.

For such applications, the developed algorithms could for instance be used in PETER, an offline
timetable evaluation tool described in [7], to calculate the delay propagation in situations where
dispatching actions are applied. PETER is originally intended to evaluate periodic timetables and
therefore makes use of a periodic max-plus model. However, an acyclic model is more suitable
for the operations needed for the evaluation of dispatching actions. Therefore, PETER is to be
expanded with the possibility to ‘unfold’ the cyclic timed event graph as described in section
4.6.2 before algorithms for modelling dispatching actions can be implemented.

Online applications
The ultimate goal of the research subject dealt with in this thesis is to enable real time evaluation
of dispatching actions to support the dispatcher. The algorithms developed in this thesis can be
used for this if the following requirements are fulfilled:

• A max-plus model of the existing railway system has to be available, which implies that
detailed knowledge of the timetable, minimum running and dwell times, and conflicting
routes of train pairs with headway times has to be available.

• The online application has to be provided with the actual delays in the network. Data
streams that can be used for this are already available in the TNV system at the Dutch
dispatchers’ offices.

• The online application has to be able to cope with all possibly occurring dispatching
actions and disruptions in the network, since the used max-plus model has to be kept
consistent with the real situation.

When the aforementioned requirements are fulfilled, the following online applications are
possible:

• Implementation as a tool for the dispatcher to evaluate and compare the effectiveness of
different dispatching actions when he has to choose between different approaches to react

Conclusions

99

on a disruption (e.g. one approach including short turns and another approach where short
turns are not allowed).

• Implementation as an online tool calculating the most effective approach for the
dispatcher to react on a disruption.

• Visualization of the train traffic including the dispatching actions in time-distance
diagrams to show dispatchers that the proposed dispatching actions are effective. A visual
representation makes it easier for employees to take a decision since they can
immediately recognize the impacts of the proposed dispatching actions, giving them the
knowledge and confidence needed to decide quickly in case of disruptions.

• The max-plus model which has been changed and updated according to the dispatching
actions during the day can be stored for later analysis, as it contains a model of the train
service as actually carried out.

8.3 Recommendations for future research
Carrying out this research project has brought about many ideas for future research. The most
important suggestions are discussed in this section.

Scale level of the used model
In the current model, stations are modelled as a black box (a timetable point), so what happens
inside is unknown. When dispatching actions regarding the interlocking routes of trains have to
be implemented (such as: changing the platform track of a train), the stations have to be modelled
in more detail. However, this can have implications on the running time of the algorithms,
endangering their ability to run in real time.
A possibility to avoid this problem could be to use a less detailed model to calculate dispatching
actions on network level, and to use a more detailed model to calculate dispatching actions on
station level afterwards when necessary. A more detailed model can for instance be obtained by:

• Modelling all different platform tracks of a station separately, instead of modelling one
timetable point as a black box,

• Modelling each switch and crossing separately, so that interlocking routes and the
conflicts between them can be modelled in great detail,

• Modelling all block signals separately.
The purpose of the model thereby determines which scale level should be used. As shown in this
thesis, control and analysis on network level does not require the aforementioned level of detail.
However, it is recommended for all future research on this subject to carefully consider the level
of detail of the model in relation with its purpose.

Modelling dispatching actions at network level
The dispatching actions implemented in this thesis mainly regard switching the sequence order of
trains, or letting a train turn before its scheduled turning stations. However, as described in
chapter 3, more dispatching actions are possible.
Dispatching actions with implications at a higher level, (i.e. at network level) can be effective in
case of bigger disruptions such as a blocked track, etc. It is recommended to investigate the
implications of such dispatching actions (e.g. re-routing a train on network level) on the max-plus
model, since the model has to be capable of representing these bigger dispatching actions when
used in practice. The construction rules and algorithms in this thesis may form a start for this.

Conclusions

100

Optimization strategy
In this thesis, a simple greedy approach has been used to find the most effective dispatching
actions for a given railway network, timetable and delay scenario. It is recommended to conduct
research to more powerful optimization strategies, while keeping in mind the online application
and the short calculation times required for this. The following approaches may be examined:

• Use the delay propagation algorithm in an optimization approach to return information
about occurring conflicts in order to choose dispatching actions that are likely to be
effective (e.g. when a delay is transmitted by a headway arc, changing the order between
the involved trains is likely to be effective). Note that this approach has already been
illustrated in this thesis by trying dispatching actions related to delayed trains only, but
could be improved further.

• Aim at the near-optimum instead of the overall optimum. When looking for effective
dispatching actions, near-optimality may be sufficient when this yields a substantial
improvement of the current situation.

• Use characteristics of the max-plus model, such as the cycle time, to get an indication of
the stability and effectiveness of selected dispatching actions, which can be used by the
optimization algorithm to work effectively and intelligently.

• Use the delay propagation algorithm to detect conflicts and resolve them within the delay
propagation algorithm using a branch and bound approach (branching on different
dispatching actions).

Case study on a (part of a) real railway network
It is recommended to carry out a case study on a (part of a) real railway network, such as for
example the Dutch railway line Den Haag – Dordrecht. It is expected that this yields valuable
insight in the requirements needed for the implementation in practice, such as:

• Which data is required, and how can this data be obtained?
• How should the model be adjusted or extended in order to work on a real railway

network?
For this analysis, the outcomes of the model could be compared to real-world data from situations
in which dispatching actions were carried out in reality.

Relate results to the duration of a disruption
In this research project, the dispatching actions were mainly aimed at reducing the effects of a
given set of initial delays in the network. However, in case of bigger disruptions, lasting for
example 8 hours, different strategies to reduce the effects on the train service can be adopted.
Offline investigation using real-world data and/or the algorithms presented in this thesis may
reveal a correlation between the duration of a disruption and the effectiveness of dispatching
actions. Such results can be used to adopt effective strategies that differ in case of shorter or
longer disruptions, which could be beneficial for the optimization algorithm. During the different
stages of a disruption, the optimization strategy could for instance be aimed on:

1. Reducing the effects on the train service during the disruption and,
2. Get the train service back to the scheduled situation when the disruption is over.

Note however that this is only useful when the theory and algorithms in this thesis are extended
with more dispatching actions to enable investigating the full range of possibilities from which a
real dispatcher can choose.

Bibliography

101

9 Bibliography

[1] Adenso-Díaz, B., Oliva González, M., González-Torre, P., “On-line timetable re-
scheduling in regional train services”, Transportation Research Part B, Vol. 33, pp.
387 – 398, 1999.

[2] Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, New Jersey, 1993.

[3] Boom, T.J.J. van den, De Schutter, B., “Modelling and control of discrete event
systems using switching max-plus-linear systems,” Control Engineering Practice, Vol.
14, Issue 10, pp. 1199 – 1211, 2006.

[4] Cormen, T., Leiserson, C., Rivest, R., Introduction to Algorithms, The MIT Press,
London, England, 1990.

[5] D’Ariano, A., Pranzo, M., Hansen, I., “Conflict Resolution and Train Speed
Coordination for Solving Real-Time Timetable Perturbations”, IEEE transactions on
intelligent transportation systems, Vol. 8, No. 2, 2007.

[6] Goverde, R.M.P., “Synchronization Control of Scheduled Train Services to Minimize
Passenger Waiting Times”, In: Proceedings of the 4th TRAIL Year Congress, part 2,
TRAIL Research School, Delft, 1998.

[7] Goverde, R.M.P., Punctuality of Railway Operations and Timetable Stability Analysis,
TRAIL Thesis series no T2005/10, Delft, 2005.

[8] Heller, S., Schaer, T., “DisKon – Disposition und Konfliktlösungsmanagement der DB
AG”, Eisenbahningenieur Vol. 55, Issue 9, pp. 102 – 122, 2004.

[9] Jacobs, J. “Reducing delays by means of computer-aided ‘on-the-spot’ rescheduling”,
In: J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Eds.), Computers in
Railways IX (pp. 603–612). Southampton, UK: WIT Press, 2004.

[10] Koopman, D.J., Vervoersprestatieverbetering van spoorwegen tijdens calamiteiten,
Delft University of Technology, Faculty of Civil Engineering and Geosciences, 2007.

[11] Mazzarello, M., Ottaviani, E., “A traffic management system for real-time traffic
optimisation in railways”, Transportation Research Part B, Vol. 41, pp. 246–274,
2007.

[12] Pachl, J., Railway Operation and Control, VTD Rail Publishing, Mountlake Terrace,
WA, USA, 2004.

[13] Törnquist, J. “Railway traffic disturbance management—An experimental analysis of
disturbance complexity, management objectives and limitations in planning horizon”,
Transportation Research Part A: Policy and Practice, Volume 41, Issue 3, pp. 249-
266, 2007.

[14] UIC 406R, Capacity, 2004.

Appendix

102

10 Appendix

10.1 Algorithm ‘ChangeList’
The algorithm ‘ChangeList’ changes the linked lists containing the scheduled order of events
when x and E, scheduled directly subsequent to each other, are swapped. This is the case when
event x is postponed after E. Recall from section 5.2.1 that for each event x the preceding event Px
and the next event Nx scheduled at the same timetable point are stored (thus forming a linked list).
This is illustrated in the table below.

Algorithm 10.1 (CHANGELIST)
Input:
 Event
 x, E
Output:
 Event

= list of events
= subsequently scheduled events that will be swapped

= list of events with updated linked lists

1. PE ← Px ;
2. NE ← x ;
3. Px ← E ;
4. Nx ← NE ;
5. if Px ≠ 0 then
6. N(Px) ← E ;
7. if NE ≠ 0 then
8. P(NE) ← x ;

Linked lists in original order:
Events: Px x E NE
Linked list: P(Px) N(Px) P(E) N(E) P(x) N(x) P(NE) N(NE)
Value: - x Px E x NE E -

The linked list as they are updated when events x and E are swapped is shown in the next table:
Events: Px E x NE
Linked list: P(Px) N(Px) P(E) N(E) P(x) N(x) P(NE) N(NE)
Value: - E Px x E NE x -

Appendix

103

10.2 Amounts of travellers used in test case

Line 1
Station Amount of embarking /

alighting travellers
7, departure 200
3, arrival 50
3, departure 50
4 (through) 0
5, arrival 100
5, departure 200
6, arrival 300

Line 2
Station Amount of embarking /

alighting travellers
6, departure 200
5, arrival 50
5, departure 50
4 (through) 0
3, arrival 100
3, departure 100
7, arrival 200

Line 3
Station Amount of embarking /

alighting travellers
1, departure 300
2, (through) 0
3, arrival 100
3, departure 100
4 (through) 0
5, arrival 100
5, departure 200
6, arrival 400

Line 4
Station Amount of embarking /

alighting travellers
6, departure 200
5, arrival 50
5, departure 100
4 (through) 0
3, arrival 50
3, departure 100
2, (through) 0
1, departure 300

Appendix

104

Line 5
Station Amount of embarking /

alighting travellers
1, arrival 100
2, arrival 40
2, departure 40
3, arrival 50
3, departure 50
4, arrival 30
4, departure 30
5, arrival 40
5, departure 40
6, departure 100

Line 6
Station Amount of embarking /

alighting travellers
6, departure 100
5, arrival 40
5, departure 40
4, arrival 30
4, departure 30
3, arrival 50
3, departure 50
2, arrival 40
2, departure 40
1, arrival 100

Appendix

105

10.3 Delay propagation in test case, scenario 1

Delay 5 minutes:

Delay propagation without dispatching actions:
Total first order delay: 24 minutes.
Total consecutive delay: 7 minutes.
Total delay of travellers: 2600 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 24 3,00
502 7 0,70

Advice without possibility for short turning:
No dispatching actions advised.

Advice with possibility for short turning:
-

Delay 10 minutes:

Delay propagation without dispatching actions:
Total first order delay: 64 minutes.
Total consecutive delay: 31 minutes.
Total delay of travellers: 8700 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 64 8,00
204 3 0,38
303 1 0,10
502 27 2,70

Advice without possibility for short turning:
No dispatching actions advised.

Advice with possibility for short turning:
-

Delay 15 minutes:

Delay propagation without dispatching actions:
Total first order delay: 104 minutes.
Total consecutive delay: 128 minutes.
Total delay of travellers: 22010 minutes.

Appendix

106

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 104 13,00
105 1 0,13
204 40 5,00
303 22 2,20
405 1 0,10
502 47 4,70
604 17 1,70

Advice without possibility for short turning:
1. Switch order train 102 and train 502 between stations 4 and 6.
 → (‘Cancel scheduled overtaking of train 502 by train 102’)

Delay propagation with dispatching actions:
Total first order delay: 104 minutes.
Total consecutive delay: 62 minutes.
Total delay of travellers: 15960 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 104 13,00
105 1 0,13
204 40 5,00
303 4 0,40
604 17 1,70

Advice with possibility for short turning:
-

Delay 20 minutes:

Delay propagation without dispatching actions:
Total first order delay: 144 minutes.
Total consecutive delay: 326 minutes.
Total delay of travellers: 42970 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 144 18,00
105 32 4,00
204 80 10,00
303 52 5,20
405 36 3,60
502 67 6,70

Appendix

107

505 11 1,10
604 47 4,70
605 1 0,10

Advice without possibility for short turning:
1. Switch order train 102 and train 502 between stations 4 and 6.
 → (‘Cancel scheduled overtaking of train 502 by train 102’)
2. Switch order train 102 and train 303 between stations 3 and 5.
 → (‘Let train 102 run behind train 303 between stations 3 and 5’)
3. Switch order train 204 and train 604 between stations 4 and 3.
 → (‘Cancel scheduled overtaking of train 604 by train 204’)

Delay propagation with dispatching actions:
Total first order delay: 144 minutes.
Total consecutive delay: 132 minutes.
Total delay of travellers: 29110 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 144 18,00
105 32 4,00
204 80 10,00
303 9 0,90
505 11 1,10

Advice with possibility for short turning:
-

Delay 25 minutes:

Delay propagation without dispatching actions:
Total first order delay: 184 minutes.
Total consecutive delay: 632 minutes.
Total delay of travellers: 72960 minutes.

Delayed trains:
Train number Delay (min.) Average delay (min.)

102 184 23,00
103 18 2,25
105 72 9,00
204 120 15,00
205 17 2,13
303 82 8,20
305 1 0,10
306 4 0,40
405 86 8,60
502 87 8,70
503 14 1,40

Appendix

108

505 31 3,10
604 77 7,70
605 23 2,23

Advice without possibility for short turning:
1. Switch order train 102 and train 502 between stations 4 and 6.
 → (‘Cancel scheduled overtaking of train 502 by train 102’)
2. Switch order train 102 and train 303 between stations 3 and 6.
 → (‘Let train 102 run behind train 303 until arrival at station 6’)
3. Switch order train 204 and train 604 between stations 4 and 3.
 → (‘Cancel scheduled overtaking of train 604 by train 204’)
4. Switch order train 105 and train 505 between stations 4 and 5.
 → (‘Move scheduled overtaking of train 505 from station 4 to station 5’)

Delay propagation with dispatching actions:
Total first order delay: 184 minutes.
Total consecutive delay: 229 minutes.
Total delay of travellers: 41190 minutes.

Delayed trains:
Train number Delay (min.) Average delay (min.)

102 184 23,00
105 72 9,00
204 120 15,00
305 1 0,10
405 25 2,50
503 1 0,10
505 10 1,00

Advice with possibility for short turning:
1. Let train 102 turn in station 3.
 → (‘Hence, train 204 is cancelled between stations 6 and 3’)

Delay propagation with dispatching actions:
Total first order delay: 49 minutes.
Total consecutive delay: 0 minutes.
Total delay of travellers: 37700 minutes.

Delayed trains:
Train number Delay (min.) Average delay (min.)

102 49 24,50

Appendix

109

10.4 Delay propagation in test case, scenario 2

Note: when short turns are allowed, the advised dispatching actions remain the same.

Delay 5 minutes:
Delay propagation without dispatching actions:
Total first order delay: 19 minutes.
Total consecutive delay: 4 minutes.
Total delay of travellers: 1230 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 3 0,38
502 20 0,70

Advice:
No dispatching actions advised.

Delay 10 minutes:
Delay propagation without dispatching actions:
Total first order delay: 50 minutes.
Total consecutive delay: 62 minutes.
Total delay of travellers: 8330 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 32 4,00
103 3 0,38
202 9 1,13
502 68 6,80

Advice:
1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.

Delay propagation with dispatching action:
Total first order delay: 50 minutes.
Total consecutive delay: 5 minutes.
Total delay of travellers: 2870 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
502 55 5,50

Appendix

110

Delay 15 minutes:
Delay propagation without dispatching actions:
Total first order delay: 98 minutes.
Total consecutive delay: 198 minutes.
Total delay of travellers: 24540 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 62 7,75
103 40 5,00
202 19 2,38
204 24 3,00
303 12 1,20
502 118 11,80
503 15 1,50
604 6 0,60

Advice:
1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.

Delay propagation with dispatching actions:
Total first order delay: 98 minutes.
Total consecutive delay: 0 minutes.
Total delay of travellers: 5080 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
502 98 9,80

Delay 20 minutes:
Delay propagation without dispatching actions:
Total first order delay: 148 minutes.
Total consecutive delay: 460 minutes.
Total delay of travellers: 52290 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 92 11,50
103 80 10,00
105 16 2,00
202 29 3,63
204 64 8,00
205 16 2,00

Appendix

111

303 42 4,20
304 8 0,80
405 16 1,60
502 168 16,80
503 35 3,50
505 4 0,40
604 35 3,50
605 3 0,30

Advice:
1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.
3. Switch order train 502 and train 303 between stations 4 and 6.
 → (‘Let train 303 overtake train 502 at station 4.’)

Delay propagation with dispatching actions:
Total first order delay: 148 minutes.
Total consecutive delay: 25 minutes.
Total delay of travellers: 8930 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
303 5 0,50
502 168 16,80

Delay 25 minutes:
Delay propagation without dispatching actions:
Total first order delay: 198 minutes.
Total consecutive delay: 910 minutes.
Total delay of travellers: 96430 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
102 122 15,25
103 120 15,00
105 56 7,00
106 9 1,13
202 39 4,88
204 104 13,00
205 56 7,00
303 91 9,10
304 34 3,40
405 66 6,60
406 9 0,90
502 218 21,80
503 57 5,70

Appendix

112

505 23 2,30
506 1 0,10
604 65 6,50
605 38 3,80

Advice:
1. Switch order train 502 and train 102 between stations 3 and 4.
 → (‘Let train 502 run behind train 102 and cancel the overtaking of train 502 at station 4’)
2. Postpone the arrival of train 502 at station 3 until train 202 has departed.
3. Switch order train 502 and train 303 between stations 4 and 6.
 → (‘Let train 303 overtake train 502 at station 4.’)

Delay propagation with dispatching actions:
Total first order delay: 198 minutes.
Total consecutive delay: 74 minutes.
Total delay of travellers: 16930 minutes.

Delayed trains:
Train number Delay (min.) Average delay

(min.)
303 53 5,30
502 218 21,80
503 1 0,10

