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Abstract—Timely identification of cardiac arrhythmia (abnor-
mal heartbeats) is vital for early diagnosis of cardiovascular
diseases. Wearable healthcare devices facilitate this process by
recording heartbeats through electrocardiogram (ECG) signals
and using AI-driven hardware to classify them into arrhyth-
mia classes. Spiking neural networks (SNNs) are well-suited
for such hardware as they consume low energy due to event-
driven operation. However, their energy-efficiency and accuracy
are constrained by encoding methods that translate real-valued
ECG data into spikes. In this paper, we present an SNN-based
ECG classification architecture featuring a new adaptive multi-
threshold spike encoding scheme. This scheme adjusts encoding
window and granularity based on the importance of ECG data
samples, to capture essential information with fewer spikes. We
develop a high-accuracy SNN model for such spike representation,
by proposing a technique specifically tailored to our encoding. We
design a hardware architecture for this model, which incorporates
optimized layer post-processing for energy-efficient data-flow and
employs fixed-point quantization for computational efficiency.
Moreover, we integrate this architecture with our encoding
scheme into a system-on-chip implementation using TSMC 40 nm
technology. Our approach provides up to 5.1× energy-efficiency
compared to state-of-the-art SNN-based ECG classifiers, with high
accuracy.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are a group of disorders
involving heart and blood vessels [1]. They are a leading cause
of global deaths, with the World Health Organization projecting
around 23 million deaths by 2030 [2], [3]. Given such high mor-
tality impact, early diagnosis of CVDs is essential for timely
medical intervention. This can be achieved by identifying
abnormal heart activity known as arrhythmia, which is prevalent
among CVD patients. There exist several types of arrhythmia
based on its underlying cause and classifying them is crucial
for CVD diagnosis [4]. Wearable healthcare devices offer the
most convenient solution for this task [5]. They contain sensors
to record the heart activity as electrocardiogram (ECG) signal,
which is then processed by a classifier hardware to identify
the arrhythmia class. This classifier hardware typically employs
neural networks as they inherently excel at classification.

Artificial neural network (ANN) based ECG classifier hard-
ware [6]–[9] consumes high energy due to its continuous

This work is partially funded by the European Union, DAIS (Grant No.
101007273), NEUROKIT2E (Grant No. 101112268), and is also supported by
the TU Delft AI labs program.

real-valued operation. In contrast, SNN-based ECG classifier
hardware achieves energy-efficiency because of its event-based
operation. Its performance mainly depends on the encoding
scheme used to convert real-valued inputs into spikes. This
scheme affects energy consumption by determining the number
of spikes. It also controls accuracy by governing the informa-
tion quality in the spikes. The encoding schemes in existing
SNN-based ECG classifier hardware limit either its energy-
efficiency or its accuracy. For instance, Poisson encoding [10]
generates long spike sequences, consuming higher energy.
Level-crossing encoding [11], [12] produces fewer spikes than
Poisson encoding, but still consumes significant energy due to
a high enough spike count. Dual-purpose binary encoding [13]
further reduces the spike count for better energy efficiency.
However, its aggressive data discarding causes information loss
and limits the classification accuracy on complex data with finer
important features (e.g. diverse patient groups). Hence, there
is a need for an SNN-based ECG classifier hardware that is
equipped with energy-efficient and accurate spike encoding.

In this paper, we present an SNN-based ECG classification
architecture that incorporates a new adaptive multi-threshold
spike encoding scheme. This encoding refines both its focus
region and granularity as per the significance of heartbeat
data samples, acquiring high quality information using fewer
spikes for robust classification. We create a high-accuracy SNN
compatible with this spike format, using a model development
technique introduced specifically for our encoding. We design a
hardware architecture for this SNN model, which includes opti-
mized layer post-processing for energy-efficient data-flow and
fixed-point quantization for computational efficiency. Finally,
we combine this SNN architecture with the encoding scheme to
implement an ECG classification system-on-chip using TSMC
40 nm technology. Our key contributions are as follows:

• Propose an adaptive multi-threshold spike encoding to
capture high quality information with fewer spikes.

• Introduce a technique to develop high-accuracy SNN
model customized for our encoding.

• Implement a system-on-chip optimized for our SNN-based
ECG classifier architecture with on-chip encoding.

Our proposed design achieves up to 5.1× energy-efficiency
compared to state-of-the-art SNN-based ECG classification
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Fig. 1. ECG signal with ‘PQRST’ cycle annotated for one of its heartbeats.

hardware, while also ensuring high classification accuracy.
The rest of the paper is organized as follows: Section II

presents the basics of arrhythmia classification and spiking
neural networks. Section III provides details of the proposed
encoding and ECG classifier design, followed by simulation
results in Section IV. Finally, Section V concludes the paper.

II. BACKGROUND

A. Arrhythmia and its Classification

Electrocardiogram (ECG) signal shown in Fig. 1 records the
heart activity as voltage changes over time. It captures multiple
contraction-relaxation cycles of the four heart chambers, known
as heartbeats. A heartbeat begins with contraction of the upper
two heart chambers called atria, marked as ‘P’. This is followed
by atrial relaxation and contraction of the lower two heart
chambers called ventricles. The three phases of ventricular
contraction are indicated as ‘Q’, ‘R’, and ‘S’. Finally, the
heartbeat ends with relaxation of ventricles denoted as ‘T’.

Arrhythmia refers to the deviation of a heartbeat from
its expected (normal) pattern. There exist various arrhythmia
classes based on the nature of such deviation. Thus, arrhythmia
classification can help in identifying underlying heart issues
and aid in the diagnosis of cardiovascular diseases. The most
widely used dataset in arrhythmia classification research is the
MIT-BIH arrhythmia dataset [14] with 15 arrhythmia classes.
These classes are further grouped into five super-classes by
Association for the Advancement of Medical Instrumentation
(AAMI) [15] shown in Fig. 2. However, AAMI grouping
does not account for severity impact of these classes. This
is addressed by severity-based super-class organization in [9]
depicted in Fig. 2. As the severity-based grouping offers
better practical utility for both the patients and the medical
professionals, we adopt it in the context of this work.

B. Spiking Neural Networks

Spiking neural networks (SNNs) perform computations only
during discrete events called spikes and remain idle otherwise,
unlike conventional artificial neural networks (ANNs) which
operate continuously [16]–[19]. This event-driven nature saves
energy, making SNNs suitable for energy-constrained health-
care devices like wearables [20]. SNNs use spiking neurons
as their building blocks, with the integrate-and-fire (IF) neuron

Fig. 2. AAMI and severity groupings for 15 MIT-BIH classes in [14].

Fig. 3. Fundamentals of spiking neural networks.

variant being the most widely used [21] as shown in Fig. 3.
It accumulates the input spikes through weighted connections.
When this accumulation exceeds a pre-defined threshold, it fires
an output spike. These neurons can be organized into layers and
joined by weighted connections to create an SNN as shown in
Fig. 3. Input layer feeds the input spike patterns to subsequent
layers. The hidden and output layers process these patterns
while communicating via spikes. Once all the input spikes are
processed, output layer determines the predicted class.

III. PROPOSED SNN-BASED ECG CLASSIFICATION

A. Overview

SNN-based ECG classification, as shown in Fig. 4, involves
two key steps: (i) encoding the ECG data into spikes, and
(ii) performing classification with SNN hardware. Conventional
encoding methods like [10], [11] generate long encoded spike
sequences. This leads to high energy consumption and reduced
battery life in wearable healthcare devices. In contrast, methods
like [13] reduce the spike count by encoding very few samples
of the original data. This degrades the information quality in the
spikes and limits classification accuracy on complex data (e.g.
varied patient demographics) that requires attention to finer
details. Additionally, conventional SNN hardware cannot over-
come these issues, leading to suboptimal ECG classification.

We propose an adaptive multi-threshold spike encoding to
overcome these challenges. It achieves this by adjusting the
region of interest within the heartbeat and the encoding gran-
ularity. First, it performs fine-grained encoding on a broad
important subset of the heartbeat. This captures subtle data
variations as high quality information and needs fewer spikes
due to using a subset of the total data. Next, it re-encodes a
smaller and more important region within the broad subset in
a coarse-grained manner. This adds new critical information

Fig. 4. Overview of conventional and proposed SNN-based ECG classification.
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Fig. 5. A basic example of threshold-based encoding.

and reduces noise through regularization, further improving
information quality. Moreover, coarse-grained approach uses
less spikes to encode this new information. Thus, we represent
the heartbeat using fewer spikes and high quality informa-
tion. This provides high energy-efficiency and robust accuracy
against data complexity/diversity. Moreover, we optimize the
SNN hardware for this encoding to further enhance the energy-
efficiency, resulting in optimal ECG classification. We now
describe our encoding scheme in the next subsection.

B. Adaptive Multi-threshold Spike Encoding

As our encoding uses a threshold-based approach, we start
with a basic example of thresholding in Fig. 5. The horizontal
lines denote thresholds separated by a consistent gap. The
signal generates a spike when it crosses any of the thresholds.
They are categorized as rising or falling spikes, based on
whether they occur during a rising or a falling signal transition
respectively. This approach exhibits a trade-off between energy
and information, influenced by two main factors. The first
factor is the number of data samples used for spike conversion.
More samples preserve the information, but cause more spikes
and higher energy consumption. Fewer samples lead to less
spikes and save energy, but lose information about subtle
details in the data. The second factor is the threshold gap.
A larger gap produces less spikes and conserves energy, but
misses out on subtle data variations. A smaller gap captures

Fig. 6. Proposed adaptive multi-threshold spike encoding scheme. It encodes
a broad region of interest with ∆S and re-encodes its critical subset with ∆L.
The resulting spike slots are merged into two timesteps for SNN inputs.

Algorithm 1: Adaptive multi-threshold spike encoding.
input : Heartbeat data samples (H), small threshold

gap (∆S), large threshold gap (∆L)
output: Spike encoded heartbeat HS

1 TS, TL ← threshold sets(H , ∆S , ∆L);
2 Sbroad, Scrit ← important subsets(H);
3 RS, FS, RL, FL ← ∅ ∅ ∅ ∅;
4 foreach sample in Sbroad do
5 Srise, Sfall ← gen spikes(sample, TS);
6 RS.insert(Srise), FS.insert(Sfall);
7 if sample ∈ Scrit then
8 Lrise, Lfall ← gen spikes(sample, TL);
9 RL.insert(Lrise), FL.insert(Lfall);

10 end
11 end
12 HS ← split and concat(RS, FS, RL, FL);
13 return HS ;

these finer variations, but generates more spikes causing high
energy consumption. Thus, balancing energy-efficiency with
information quality is a challenge in threshold-based approach.

Our proposed spike encoding shown in Fig.6 addresses this
challenge, by adapting to the relative importance of heartbeat
data samples. We begin by analyzing the heartbeats in our
ECG dataset and make two key observations. First, 60 tail-
end samples (total at both ends) have minimal impact on
classification. Second, 60 samples in QRS region are most
critical for classification. Leveraging these insights, we develop
a two-pass adaptive encoding process. The first pass maximizes
information coverage, while maintaining high information qual-
ity and lower spike count. It discards the 60 tail-end samples
and encodes the remaining 190 samples using a small threshold
gap (∆S). Thus, it covers a broad important subset and capture
subtle data variations as high quality information. It produces
fewer spikes despite a small ∆S by encoding just a subset of the
heartbeat. The second pass extracts additional critical informa-
tion with fewer spikes. It revisits the 60 more important samples
in QRS region and re-encodes them with a larger threshold
gap (∆L). This captures broad variations in this critical region
and also reduces noise impact through regularization effect.
Thus, we obtain new critical information of high quality. The
number of spikes still stays small due to high ∆L. Thus, our
encoding captures high quality information from the heartbeat
using fewer spikes. We use two spike slots per sample to cover
both rising and falling spike possibilities, leading to 500 spike
slots per heartbeat (190×2 + 60×2). We split them into two
timesteps of 250 spike slots each as shown in Fig. 6 for feeding
to our SNN model in Section III-C. The encoding process is
summarized in Algorithm 1 and the next subsection describes
SNN model development using this encoded data.

C. Encoding-Aware SNN Model Development

We develop our SNN model using ANN-to-SNN conversion
approach [22], [23] as it achieves (i) higher accuracy than
unsupervised SNN learning [24], [25], and (ii) comparable
accuracy to supervised SNN learning without the associated
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Fig. 7. Three-stage SNN-based ECG classifier model (ANN baseline in [9]).

training complexity [26], [27]. We select ANN model from [9]
in Fig. 7 as our baseline for SNN conversion. It uses severity-
based arrhythmia classes in Fig. 2, to help users with timely
medical attention and doctors with faster diagnosis. Moreover,
it saves energy by deactivating sub-classifiers 2 and 3 for
prolonged periods as more severe heartbeats occur infrequently.

We use quantization clip-floor-shift (QCFS) approach [23]
to obtain equivalent SNNs for the three baseline ANN sub-
classifiers. It involves training an ANN with QCFS activation
and replacing QCFS with integrate-and-fire (IF) neurons to
create the SNN. However, this presents two challenges shown
in Fig. 8 (red). First, it only supports using real-valued data
directly as SNN input. This requires full-precision multipliers
instead simple gating logic. Moreover, it increases bit sizes for
membrane potentials and interim calculations. This increases
energy consumption due to higher computation and memory
demands. Second, it has no provisions to handle class imbal-
ance in ECG data. Hence, loss function biases the classification
towards majority classes (less severe heartbeats) with subpar
performance on minority classes (more severe heartbeats).

We address these challenges through encoding-aware ANN-
to-SNN conversion in Fig. 8 (green). It involves training QCFS-
based ANN by treating input spikes as real values. Spikes can-
not be considered as two-bit integers due to lack of positional
weightage. So, we treat them as two binary inputs and add
their outputs before backpropagation. This is consistent with
IF neurons which accumulate inputs into the same membrane
potential. We also use a weighted loss function, to penalize
mistakes on minority classes more heavily. This ensures fair
classification with good performance on minority (more severe)
classes. After the training, we replace QCFS with IF neurons to
obtain the SNN. This SNN seamlessly integrates our encoding
scheme, with high accuracy. After obtaining SNNs for three
sub-classifiers, we optimize them for hardware design next.

D. Optimizations for Hardware Design

1) SNN Dataflow: We present each heartbeat (T0 and T1)
twice to the SNN for improved accuracy as shown in Fig. 9,
with further repetitions offering no benefit. However, these
repeated computations increase energy consumption. We pro-
pose an optimized SNN dataflow to address this. It starts with
swapping T0 and T1 between the two input instances. This

Fig. 8. Standard (red) vs proposed (green) ANN-to-SNN conversion methods.

Fig. 9. SNN dataflow optimization to improve accuracy and preserve energy-
efficiency. Both T0’s hold identical data and both T1’s contain same data.

does not affect accuracy if the firing pattern of neurons remains
consistent. We confirm this by evaluating post-swap accuracy.
Next, we account for these post-swap pairs of identical inputs
using layer post-processing. Our SNNs (input→FC1→FC2)
have two layers: FC1 and FC2. We start with doubling the
weighted sum of spikes in FC1, needing a simple left-shift
in hardware. As FC1 neurons can spike up to twice over two
timesteps, we compare the new membrane potentials with both
the threshold and 2×threshold for the same effect. We extend
this to FC2, which multiplies weights with spike count (0, 1,
or 2) from FC1. The resulting FC2 output has three possible
values: zero, original weight, or double the weight. This needs
simple logic for inhibiting, passing, or left-shifting the weights.
Thus, we achieve the same outputs as sending the heartbeat
twice while sending it just once, with minimal hardware and no
extra design complexity. We also use FC2 neuron membrane
potentials directly for output classification, eliminating firing
and resetting operations to save hardware resources.

2) Fixed-point Quantization: Fixed-point format provides
energy-efficiency by allowing real number processing with in-
teger arithmetic. It expresses a real number as binary value with
an implicit radix point. As SNN inputs are spikes, we just quan-
tize the weights to fixed-point format. However, information
loss due to aggressive quantization can degrade the accuracy. To
mitigate this, we perform design space exploration to minimize
the weight bit sizes while maintaining high accuracy.

E. System Architecture Design

Our SNN-based ECG classification architecture in Fig. 10
consists of an encoding module, an SNN inference module,
and a global control logic to manage on-chip as well as
off-chip module interactions. ECG data is first sent to the
encoding module. It implements our adaptive multi-threshold
encoding using two sliding threshold windows (∆S and ∆L).
Each window internally employs two thresholds to detect both
rising and falling spikes. Hence, we use four comparators as
spike detectors using these four thresholds. The thresholding
logic adjusts these thresholds based on spiking event history
reported by spike collection unit. The spike collection unit also
inserts each spike in the heartbeat register of the inference
module, as per the encoding format in Fig. 6.
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Fig. 10. Proposed ECG classification system architecture.

The SNN inference module includes a memory subsystem,
a computing subsystem, and control logic. The control logic
manages interactions between these subsystems and sequences
relevant sub-classifier operation as per classification history.
The memory subsystem has four SRAMs: three for each sub-
classifier’s weights and one as scratchpad for interim calcu-
lations. The computing unit is shared by all sub-classifiers. It
features a heartbeat register, integrate-and-fire neuron logic, and
layer state machines with optimized dataflow in Section III-D1.
It first scans the encoded heartbeat to determine which data
slots contain spikes. It then retrieves the relevant sub-classifier
weights only for these slots from the memory subsystem. The
computing subsystem then processes these spikes through the
sub-classifier layers. Thus, we perform event-driven processing
to execute only the necessary computations. After this, layer-
2 neuron with the highest membrane potential determines the
output class. Once the appropriate sequence of sub-classifiers
is executed for the current heartbeat, the classifier module
becomes ready to process the next one. We further implement
this architecture into a system-on-chip in Section IV-C.

IV. SIMULATION RESULTS

A. Setup

We use MIT-BIH ECG database [14] with severity-based
class grouping in Fig 2. We divide it as 60% for training, 20%
for hyperparameter tuning, and 20% for testing the final model.
We integrate the baseline ANN [9], our encoding scheme,
and our ANN-to-SNN conversion method into the framework
from [23] to obtain the SNN models. We quantize the models
to 8-bit fixed-point and implement via RTL (Register Transfer
Level) to GDSII (Graphic Data System II) flow using TSMC
40 nm technology. We use Verilog for RTL design, Cadence
Genus for RTL synthesis and Cadence Innovus for physical
design. We verify the design through static timing analysis
at 100 MHz clock frequency in Cadence Innovus. It covers
global process variability by multi-corner analysis and local
intra-process variability via on-chip variation (OCV) analysis.

B. SNN Model Development

We assess the performance of ANN (floating-point) and
SNN (quantized) versions of the sub-classifiers from Fig.7,

Fig. 11. Accuracy comparison between baseline ANNs and converted SNNs.

using accuracy and critical accuracy as shown in Fig 11.
Here, accuracy measures the percentage of correctly identified
heartbeats out of the total heartbeats. Critical accuracy refers
to the accuracy of the most critical class within a sub-classifier,
which triggers the next stage (blue lines in Fig.7). This critical
classes in sub-classifier 1 and sub-classifier 2 are the abnormal
class and the severe class respectively. As sub-classifier-3 is the
final stage, it does not have a critical class and critical accuracy.

The quantized SNNs achieve comparable performance to
the baseline ANNs, with an average accuracy loss of 1%
across the three sub-classifiers. This is due to information loss
during spike encoding, activation-to-IF neuron replacement,
and weight quantization. The quantized SNN matches the
critical accuracy of the baseline ANN for sub-classifier 2, but
incurs a 5.6% loss in critical accuracy for sub-classifier 1.
However, this loss is acceptable as abnormal heartbeats occur
in sequences rather than isolated events. Thus, detecting 94
abnormal heartbeats out of every 100 (∼6% miss rate) is
sufficient to provide timely feedback to the user.

C. Hardware Design

The system-on-chip implementation for our architecture is
shown in Fig. 12, with core area of 0.36 mm2. SRAMs account
for 99.30% of this area, due to slower technology scaling of
memory compared to logic. Classification module and encoding
module occupy just 0.54% and 0.16% of the area respectively.
This highlights the area-efficiency of our encoding scheme.

Fig. 13 shows that higher severity heartbeats require more
inference energy, as they activate additional sub-classifiers. On
average, our design consumes 59.1 nJ per inference. SRAM
macros contribute to 69.02% of this energy reflecting the
memory wall, where data transfers consume more energy
than computations [28]. The classification module consumes
26.87% of the energy, while the encoding module just needs

Fig. 12. System-on-chip in TSMC 40 nm technology, with its area distribution.
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Fig. 13. Average inference latency and average energy consumption (with its
distribution) for various classes of heartbeats.

4.11% of the energy. This demonstrates the energy-efficiency
of our encoding scheme. Figure 13 also shows that latency per
inference increases with severity of heartbeats, due to usage
of more sub-classifiers. We achieve average latency of 90 µs,
with a maximum latency of 680 µs for a severe heartbeat that
uses all three sub-classifiers. With studies recording up to 600
heartbeats per minute [29], the maximum inference latency can
be 100 ms. As our maximum latency is much smaller than this
value, our design is suitable for real-time ECG classification.

D. Comparison with State-of-the-art

Performance comparison of our SNN-based ECG classifier
design with state-of-the-art is shown in Table I. Section IV-B
already covers accuracy comparison with [9] which served as
baseline for developing our SNN models. We cannot directly
compare our accuracy with the rest of AAMI-based works.
This is because MIT-BIH sub-classes in the same AAMI group
can map to different severity-based classes (Fig. 2), leading to
different classification boundaries. Instead, the focus should be
on the high classification accuracy achieved by our design.

We reduce energy per inference by nearly 2× compared to
the most energy-efficient ANN [9] in Table I. This shows the
energy-efficiency superiority of SNNs. Notably, we achieve
this despite using SRAMs which consume more energy than
memristors in [9]. SRAM’s lower scalability than memristors
however leads to higher area than [9]. Despite the benefits of
memristor-based design, challenges with their fabrication and
integration make our digital CMOS design the optimal choice.

We achieve lower energy consumption than works with
poisson [10] and level-crossing [11], [12] encodings, due to
fewer encoded spikes per heartbeat. The work in [13] achieves
a spike count similar to ours, by encoding just 74 samples
in QRS region. However, this degrades information quality by
missing useful data outside this region. In contrast, we encode
190 samples covering this important missing data, with similar
spike count. This makes our design robust to input variability
and noise. It also facilitates generalization to more complex
inputs (e.g. new patient demographics) that require finer details
for accurate classification. Moreover, their design consumes
higher energy despite the similar spike count due to several
reasons. First, their encoding scheme is more complex and
requires more energy. Second, they need higher bit precision
for weights. This increases the energy required for data storage,
data transfer, and computations. Third, they perform memory
accesses even for layer inputs containing no spikes, leading to
higher energy. Last, their on-chip learning involves sporadic
weight updates using manual labels from doctors. Thus, it just
consumes extra energy and is better managed off-chip. We
address these issues through simpler encoding, lower weight
precision and selective memory accesses for spike-containing
inputs. This leads 5.1× less energy than [13] despite using an
older technology node. Thus, our implementation outperforms
state-of-the-art ECG classification in terms of energy-efficiency.

V. CONCLUSIONS

We presented an SNN-based ECG classification architec-
ture based on a new adaptive multi-threshold spike encod-
ing method. This encoding captured key information using
fewer spikes, by adjusting its focus region and granularity.
We developed an SNN model compatible with this encoding
through our ANN-to-SNN conversion method. We created an
optimized system architecture integrating the SNN model with
encoding scheme, and implemented it using TSMC 40 nm
technology. Our design provides up to 5.1× energy-efficiency
compared to state-of-the-art SNN-based ECG classification.
This highlights its potential for AI-driven healthcare targeting
resource-constrained edge hardware.

TABLE I
COMPARISON OF OUR PROPOSED ECG CLASSIFICATION WITH STATE-OF-THE-ART. HERE, ‘BEHAVIORAL’ REFERS TO WORKS WITHOUT A PHYSICAL

LAYOUT. WE USE ‘–’ TO DENOTE UNAVAILABLE AREA VALUES AND ALSO TO INDICATE THAT SPIKE ENCODING IS NOT APPLICABLE TO ANNS.

Performance
Metric

Wu [6]
Access-2019

Lu [7]
TCAS-I-2022

Diware [9]
TBioCAS-2023

Liu [8]
CICC-2024

Amirshahi [10]
TBioCAS-2019

Chu [11]
TBioCAS-2022

Mao [13]
TBioCAS-2022

Tian [12]
ESSCIRC-2023 This Work

Implementation Digital ASIC Digital ASIC Mixed-signal ASIC
(Behavioral) Digital ASIC Analog ASIC

(Behavioral) Digital ASIC Digital ASIC Analog ASIC Digital ASIC

Technology 40 nm 40 nm 32 nm 55 nm 28 nm 40 nm 28 nm 40 nm 40 nm

Network Type ANN ANN ANN ANN SNN SNN SNN SNN SNN

Spike Encoding – – – – Poisson
encoding

Level crossing
encoding

Dual-purpose
binary encoding

Level crossing
encoding

Multi-threshold
encoding

No. of classes 5 5 11 5 4 5 5 5 11

Accuracy (%) 96.06 98.99 98.29 98.70 97.90 98.22 98.60 95.31 97.42

Area (mm2) 1.40 2.04 0.11 1.40 – 0.33 0.54 1.12 0.36

Energy per
inference (µJ) 2.78 3.93 0.11 0.18 1.78 0.75 0.30 0.48 0.059
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