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Summary

In seismic acquisition a source wavefield is fired at or close by the surface and its
response is then recorded by receivers usually located also at or close to the surface.
The reflection response can be decomposed in three different types of wavefields,
namely, primaries, internal multiples and surface multiples. Primaries are wavefields
with only one bouncing point in the subsurface. Internal multiples are wavefields
with at least one downward bouncing point in the subsurface and can be regarded as
primaries in many processing schemes. Surface multiples are wavefields with at least
one downward bouncing point at the surface and generally have strong amplitudes
in the recordings. These strong amplitudes tend to hinder structurally important
information, therefore, surface multiples are commonly regarded as noise and a large
effort is then put in surface multiple prediction and subtraction.

In this thesis we present a new method for surface multiple estimation which might
be regarded as an inversion-oriented version of the well-known Surface-Related Mul-
tiple Elimination (SRME) method. The proposed algorithm (known as Closed-Loop
SRME, or CL-SRME) presents practical advantages over its predecessor, the most
important one being the ability to easily allow built-in extensions, making it possible
to use multiples, rather than to eliminate them.

In this research we will be specially interested in performing multiple separation (i.e.
separating multiples from primaries) given incomplete datasets. This means that we
will concentrate on extending the CL-SRME method to include data reconstruction.
This is particularly useful as most of the acquisition techniques in the industry nowa-
days involve the recording of incomplete datasets due to coarse sampling. Coarse
sampling is motivated by economic constraints.

Our interest in reconstruction will lead us to the implementation of the focal trans-



form in the CL-SRME scheme. The focal transform is known to have reconstructive
properties when applied to seismic data. This extension will allow CL-SRME to
reconstruct over relatively large acquisition gaps. The information in the multiples
will prove to be very useful when reconstructing the near-offset section of shallow
reflection events.

The algorithm capabilities in terms of reconstruction and multiple separation is pre-
sented via synthetic and field data examples in both the 2D and 3D cases. Promising
results are obtained in terms of near-offset reconstruction with an important appli-
cation in shallow water scenarios. The current method is recommended for those
cases. Other multiple prediction algorithms are recommended whenever the data is
complete or the reconstruction effort is small.



Samenvatting

Bij seismisch onderzoek wordt een vanuit een bron een golf op of dicht bij het op-
pervlak afgevuurd. De weerkaatsingen van deze golf wordt door ontvangers dicht-
bij of op het oppervlak waargenomen. De waargenomen golven kunnen bestaan uit
drie verschillende soort aankomsten, namelijk primaire reflecties, interne meervoudig
weerkaatste golven en oppervlakte gerelateerde meervoudige reflecties. Primaire re-
flecties zijn de golven die nadat ze n keer weerkaatst zijn in de ondergrond aan
het oppervlak opgemeten worden. Interne weerkaatste meervoudige reflecties zijn
de golven die tussen de verschillende lagen weerkaatst zijn. Deze golven hebben
n of meerdere neerwaartse weerkaatsingen in de ondergrond voordat ze bij de ont-
vanger terecht komen. Door de meeste verwerkingsprogramma’s kunnen deze golven
hetzelfde als primaire reflecties beschouwd worden. De oppervlakte gerelateerde
meervoudige reflecties hebben minstens n neerwaartse weerkaatsing aan het aar-
doppervlak. Deze laatste categorie geven over het algemeen een hoge amplitude
uitslag in de metingen. Deze hoge amplituden zijn hinderlijk bij het interpreteren
van de metingen en worden over het algemeen als ruis beschouwd. Er wordt daarom
veel moeite gedaan om deze golven te voorspellen en uit de resultaten te filteren.

In dit proefschrift wordt een nieuwe methode beschreven om oppervlakte gerelateerde
meervoudige reflecties te voorspellen. Deze methode kan gezien worden als een
inversie georinteerde versie van de bekende ’Surface-Related Multiple Elimination’
(SRME) methode. Het voorgestelde algoritme, bekend als ’Closed-Loop SRME’
(CL-SRME), heeft praktische voordelen ten opzichte van zijn voorgangers. Het
belangrijkste voordeel is dat dit model gemakkelijk om kan gaan met uitbreidingen.
Hierdoor wordt het mogelijk de meervoudige reflecties te gebruiken in plaats van ze
te elimineren.

In dit onderzoek ligt het focus voornamelijk op het uitvoeren van de separatie van de



verschillende soorten reflecties (de primaire scheiden van de meervoudige reflecties),
met incomplete datasets als input. We concentreren ons op het uitbreiden van
de CL-SRME methode met data reconstructie. Dit komt goed van pas omdat de
meeste gebruikte data sets bestaat uit data die verkregen is via spatieel vrij grof
bemonsterde metingen. De metingen zijn over het algemeen grof bemonsterd omdat
het te duur is om meer metingen te verrichten.

Om deze data reconstructie te bewerkstelligen wordt de zogenaamde focale trans-
formatie aan het CL-SRME schema toegevoegd. Deze focale transformatie maakt
het mogelijk de seismische data te reconstrueren. Hierdoor worden de relatieve grote
gaten in de data opgevuld. Deze reconstructie van de data met kleine bron-ontvanger
afstanden is vooral nuttig bij het voorspellen van de meervoudige reflecties met kleine
bron-ontvanger afstanden.

De mogelijkheden van het algoritme op het gebied van reconstructie en scheiding
van golven wordt gedemonstreerd voor zowel gesimuleerde als velddata in zowel 2D
als 3D. Veelbelovende resultaten worden behaald voor de reconstructie van metingen
met kleine bron-ontvanger afstanden, speciaal voor ondiep water scenario’s. Deze
methode wordt vooral voor deze scenario’s aanbevolen. Voor complete of bijna
complete datasets kan men beter andere (goedkopere) algoritmen gebruiken.



Sinopsis

Durante la adquisición śısmica, un campo de onda es disparado en o cerca de la
superficie y su respuesta es medida en recibidores colocados también en o cerca de la
superficie. La reflexión de respuesta se puede descomponer en tres tipos de campos
de onda: las primarias, los múltiplos internos y los múltiplos superficiales. Las
primarias son campos de onda con solo un punto de reflexión en el subsuelo. Los
múltiplos internos son campos de onda con por lo menos un punto de reflexión en
el subsuelo (orientado hacia abajo) y pueden ser vistos como primarias en muchos
esquemas de procesamiento. Los múltiplos superficiales son campos de onda con por
lo menos un punto de reflexión en la superficie y generalmente tienen amplitudes
fuertes en las mediciones. Los múltiplos superficiales tienden a esconder información
estructural importante, por lo tanto, son comúnmente vistos como ruido y se realiza
un gran esfuerzo en su predicción y eliminación.

En esta tesis presentamos un nuevo método de estimación de múltiplos superficiales,
el cual puede ser visto como una versión ”orientada a la inversión” del método de
Eliminación de Múltiplos Relacionados a la Superficie (o SRME por sus siglas en
inglés). El algoritmo propuesto (conocido como ”SRME de Circuito Cerrado”, o
CL-SRME por sus siglas en inglés), presenta ventajas practicas sobre su predecesor,
siendo la más importante de ellas la posibilidad de admitir extensiones internas.
Estas extensiones hacen posible el uso de los múltiplos, en lugar de su eliminación.

En esta investigación estaremos especialmente interesados en desarrollar separación
de múltiplos (esto es, separar múltiplos de primarias) dados volúmenes de datos in-
completos. Esto implica que nos concentraremos en extender el método CL-SRME
para incluir reconstrucción de datos. Esto es útil ya que la mayoŕıa de técnicas de
adquisición en la industria hoy en d́ıa involucran medidas de volúmenes de datos in-
completas debido a la adquisición truncada. La adquisición truncada está motivada



por ligaduras económicas.

Nuestro interés en la reconstrucción nos llevara a la implementación de la transfor-
mada focal en CL-SRME. La transformada focal es conocida por tener propiedades
reconstructivas cuando se aplica a datos śısmicos. Esta extensión le permitirá al
método CL-SRME la reconstrucción sobre brechas de adquisición relativamente
grandes. La información en los múltiplos probará ser de gran utilidad al momento
de reconstruir las secciones cercanas de los eventos de reflexión superficiales.

Las capacidades del algoritmo en términos de reconstrucción y separación de múltiplos
son presentadas por medio de ejemplos sintéticos y de campo, en casos 2D y 3D.
Obtenemos resultados promisorios en términos de reconstrucción de las secciones
cercanas con una importante aplicación en escenarios de aguas superficiales. El
método actual es recomendado para estos casos. Se recomiendan otros algoritmos
de predicción de múltiplos cuando los datos están completos, o cuando el esfuerzo
de reconstrucción es menor.
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Introduction

1.1 The seismic method

In the industry, seismic exploration is used as a method to image the subsurface
of the earth in order to obtain its structural details, information that will later
lead to the finding or monitoring of e.g. potential hydrocarbon reservoirs to exploit
commercially. The first step in seismic exploration is acquisition. Here, sources and
receivers of acoustic/elastic wavefields are deployed in a grid configuration (see figure
1.1). Firing the sources generates a wavefield that propagates through the medium.
When reaching material discontinuities such as velocity and/or density contrasts,
the incoming wavefield gets reflected back to the surface, where it is recorded by the
receivers as a set of complicated interfering events.

The key idea behind seismic exploration is that, given the proper understanding of
the physics of wavefield propagation, scientists are able to translate the complicated
events in the seismic recordings into a structural image of the subsurface. This
process is called seismic imaging, and typically involves back-propagating the wave-
field recorded in the receivers into the subsurface, focusing it in the points where it
scattered from.

Most of today’s processing and imaging algorithms are based on data that have been
reflected only once in the subsurface. In practice, however, the injected wavefield
may reflect/transmit many times before reaching the receivers. Reverberations due
to reflections between the free surface and the first layer are typically strong in marine
data. In land data, internal reverberations between the layers of the earth can also
contribute noticeably to the energy of the recorded signal. Multiple reflection events
need to be separated from the recorded signal if accurate imaging results are desired.
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Figure 1.1: Schematic representation of the data acquisition method for marine environ-
ments. The vessel drags a set of cables containing hydrophones, together with an airgun
source. The source array generates a wavefield that is later recorded by the hydrophones.
The recordings capture the refleclected wavefield due to the contrasts in the medium elastic
parameters.

1.2 Primaries and multiples

Given that the data contains events with multiple reflection points, it becomes nec-
essary to separate the wavefields with one bouncing point (primaries) from the data
with multiple reflection points (multiples).

We might distinguish two types of multiples:

• Surface-related multiples are those multiples with secondary reflection points
at the surface. These multiples are generated from the air-water or air-earth
discontinuity and would disappear if such a boundary would become trans-
parent. Generally they present strong amplitudes, as the reflectivity of such
interface is close to −1.

• Internal multiples are those multiples with downward reflection points within
the subsurface. They are generated from the material discontinuities inside the
earth and would disappear if their associated generators would become trans-
parent. They generally present low amplitudes, unless they are generated
between two strongly reflecting bounduaries.

1.3 Multiple elimination in the literature

In this research we will concentrate on the separation of the surface-related multiples
from the data. Internal multiple separation might be achieved with other methods
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Figure 1.2: Schematic representation of the different types of reflection events. The (a)
primary event, together with some of its associated (b) surface-related multiples and (c)
internal multiples. As we can see, surface-related multiples have all reflection points within
the surface, while internal multiples have reflection points at the subsurface. The paths
(1,2,3) have all at least one reflection point at the surface. The paths (4,5) have no reflection
points at the surface.

[Araujo et al., 1994; Coates and Weglein, 1996; Weglein et al., 1997; Verschuur and
Berkhout, 2005; Ypma and Verschuur, 2013] or can be resolved during migration
[Staal and Verschuur, 2013; Davydenko and Verschuur, 2014].

Surface-multiple separation method can be divided in the following categories:

1.3.1 Move-out discrimination methods

These methods concentrate on exploiting the difference in the move-out behavior of
the multiples with respect to the primaries after CMP gathering and NMO correc-
tion. In a simple medium, if the NMO correction is done properly, primaries are
transformed into flat events and multiples are mapped into curved events. From here
several options are possible. Simple stacking would eliminate part of the multiple en-
ergy, as the multiples do not add coherently to the stack. Another option is to use a
transform domain to separate and later mute the undesired signals. Typical options
for the transform domain are the the parabolic radon domain [Hampson, 1986] and
the hyperbolic radon domain [Thorson and Claerbout, 1985]. The main draw-back
of these methods is the fact that they assume parabolic or hyperbolic move-outs in
the events, together with an increasing velocity profile in the subsurface.
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1.3.2 Predictive deconvolution methods

These method exploit the periodical nature of the multiples in order to subtract
them from the input1. Here, a prediction-error filter is used to remove all the signals
with a periodical structure [Robinson, 1954; Backus, 1959]. The procedure produces
better results if applied in the linear Radon domain, given a flat-layered medium.
Because it operates in a trace-by-trace fashion, the predictive deconvolution methods
tend to fail in removing multiples from complex layers, where more complex wave-
propagation effects might be present [Verschuur, 2006]. Because they are designed
to minimize the energy of the primaries, these filters can only eliminate part of the
primary energy, specially in the places where there is primary-multiple overlap.

1.3.3 Wavefield extrapolation methods

Multiples can be also predicted in a model-based fashion by adding multiple round-
trips in the water-layer to the input data. This process would reproduce multiple
reverberations. Thus, by adding one round-trip in the first layer we can transform
primaries into first-order multiples, second-order multiples into third-order multiples
and so on. This technique is used for reproducing peg-leg multiples and is partic-
ularly useful in cases in which the water-bottom has a more complex structure,
in which methods based on move-out discrimination and predictive deconvolution
produce insufficient results. An obvious limitation of this method is that it will
only produce multiples related with the bounduary or bounduaries provided by the
model [see Verschuur and Berkhout, 2015]. Furthermore, care has to be taken to
apply this method both to the source and receiver side of the data, in order to re-
produce source-side and receiver-side reverberations [for more details, see Berryhill
and Kim, 1986; Wiggins, 1988; Lokshtanov, 1999].

1.3.4 Scattering series methods

These methods are based on the prediction of the multiple wavefield via a scattering
series involving convolutions of the data with itself. The main representatives of this
category are the inverse-scattering series method ”ISS” [Weglein et al., 1997], and
the surface-related multiple elimination method ”SRME” [Verschuur and Berkhout,
1997]. Due to their physical background, these methods produce accurate multiple
predictions for all orders of multiples, and proof that no subsurface information is
needed for surface-related multiple prediction. The draw-back of these methods lie
however in the necessity of an accurate estimation of the wavelet, which leads to extra
processing steps or to additional constrains on the problem. These methods also rely
on a dense acquisition, as the recorded field is used as a secondary source for the

1In simple geometries and near-offsets, multiples can be considerated as periodic, however this
approximation breaks down for far offsets and more complex media.
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multiple wavefield. Other methods compute multiples via SRME-type convolutions
with model-based primary operators (Vasmel et al. [2016]). More of this in section
1.7.

1.3.5 Inversion methods

These methods use inversion to estimate the primaries and/or multiples. The best
representatives of this scheme are the EPSI method [van Groenestijn and Verschuur,
2009a], the Robust-EPSI method [Lin and Herrmann, 2013] and the CL-SRME
method [Lopez and Verschuur, 2014, 2015b]. These methods estimate the multiples
together with the primaries such that together they explain the input dataset. The
process is based on the multiple prediction equation developed by Berkhout and
Verschuur [1997] and driven by inversion theory. The main advantage of these
methods rely on their extended capacities for data interpolation and the inclusion
of sparsity as an extra constrain to eliminate/attenuate the dependency over the
minimum energy constraint, which is known to produce suboptimal results in SRME
[Guitton and Verschuur, 2004]. The main draw-backs would lie in the fact that these
methods are computationally more expensive than SRME and that they require a
larger degree of parameter tuning (coming from the sparsity constraints) to work
properly. Other methods using inversion for multiple separation can be found in van
Borselen et al. [1994]; Amundsen [2001]; Berkhout [2006].

1.4 From removing to using multiples

The idea of using multiples instead of removing them has grown a lot of acceptance
in the industry in recent years. After all, multiples have shown to provide better
illumination of the subsurface structures in many acquisition scenarios [Kumar et
al., 2015], thus helping the migration process. By having extra travel paths through
the subsurface, the multiples can also propagate though areas difficult to illuminate
by a primary wavefield (such as subsalt reflectors) [Soni and Verschuur, 2015].

There is, however, still an interest in separating primaries from multiples. If im-
aged separately, multiples can provide less acquisition imprint when compared to
the primaries [Berkhout and Verschuur, 1994; Lu et al., 2014; Davydenko and Ver-
schuur, 2014; Berkhout et al., 2015]. Thus, a more robust image can be produced
by combining the images obtained from from migrating primaries and multiples sep-
arately (figure 1.3). Techniques for including information about multiples in the
migration result are currently being researched [Berkhout, 2012; Wapenaar et al.,
2014; Berkhout and Verschuur, 2016].

With the later in mind, we will state the goal of this research to accurately separate
the multiples from the primaries, rather than removing them.
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Figure 1.3: Migration result from (a) primaries only data and (b) multiples only data. As
we can see, in the shallow part multiples provide a better migration result than primaries.
Courtesy of Mikhail Davidenko.

1.5 Sampling

To obtain quality images of the subsurface we need to acquire sufficient seismic data
to do the appropriated processing. In theory a wide grid fully filled with sources and
receivers is required in order to achieve proper multiple separation, and consequently
proper subsurface images. The problem resides, however, in the fact that in practice,
due to time and budget constraints, seismic data is acquired with grids a lot sparser
than those required for a proper processing (especially in the 3D case). To overcome
this limitation, typically, data interpolation must be done before any attempt on
multiple elimination.

This, however, presents a problem as generally the interpolation algorithms are



1.6 Reconstruction in the literature 13

based on mathematical/statistical properties of the seismic signal, rather than phys-
ical properties. Due to the physical inconsistency, the interpolated data tends to
produce artefacts when multiple removal algorithms are used. These artefacts can
manifest themselves as spurious events, small diffractions or poor primary/multiple
separation.

There are two main types of sampling gaps:

[1] Under-sampling gaps: Is when the data is acquired in a coarse sampling grid
(i.e. sparsely located sources and receivers), but a fine grid is desired for
data processing. Here, the missing data typically occurs periodically in the
dataset. Although some of the acquisition holes can be easily filled out with
the use of reciprocity, still the larger part of locations is uncovered by both
sources and receivers. We can easily assess the amount of interpolation required
by finding the under-sampling ratio to the desired grid. This is given by
ratio = Nin/Nout, with Nin the typical number of measured input traces
and Nout the number of desired output traces. This quantity can also be
expressed as ratio = Nin : Nout. If an under-sampled dataset is used in
multiple prediction process, the resulting dataset will present diffraction-like
artefacts related to aliasing.

[2] Near-offset gaps: Here the missing data is located in the near-offset part of
the data. This is due to acquisition constraints, where sources and receivers
cannot be brought too close together. Note that in this case, the information is
consistently absent in the entire dataset and it cannot be filled with reciprocity.
The near-offset traces typically contain the strongest energy as most of the
event apexes fall inside it. This area is the most relevant for multiple prediction
and also the most complicated to interpolate [see e.g. Dragoset and Jeričević,
1998; Verschuur, 2006].

Figures 1.5, 1.6 and 1.7 show the effect of missing data in the SRME multiple
prediction process. The model used for the synthetic data generation is shown in
1.4. Figure 1.5a depicts the fully sampled data, figure 1.6a depicts a dataset with
a 100m near-offset gap and figure 1.7a depicts a dataset with a 1:5 undersampling
ratio. Their associated SRME-primaries are shown in figures 1.5b, 1.6b and 1.7b
respectively. Several undersampling artefacts and multiples are seen in the primary
estimates of the under-sampled datasets. This examples show the importance on an
accurate interpolation for primary/multiple estimation.

1.6 Reconstruction in the literature

Due to economical constrains field data is often acquired in a sparse manner, mak-
ing data reconstruction a necessity. There are several types of data reconstruction
techniques in the literature. They can be grouped in the following categories:
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Figure 1.4: Velocity model used for the synthetic data generation using a salt model. The
first reflector is at 70m depth.

Figure 1.5: (a) Fully sampled dataset and its corresponding (b) SRME primary estimation.

1.6.1 Transformation-based reconstruction

These methods exploit the redundancy in the seismic data. They are based on
the selection of a transform that maps the input data to a transform domain in
which it can be represented more compactly. The transform is usually chosen such
that it exploits some physical, statistical or mathematical structures inherent in
the data. The transform parameters are typically found by inversion with a sparse
regularization or by iterative thresholding [Abma and Kabir, 2006].

Several transform domains could be used for reconstruction, namely the Fourier
domain [Duijndam and Schonewille, 1999], the parabolic Radon domain [Hugonnet
and Canadas, 1995], the hyperbolic Radon domain [Trad, 2000], the wavelet domain
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Figure 1.6: (a) Dataset with the near-offsets removed (100m gap) and its corresponding (b)
SRME primary estimation. Note that most of the multiple energy is not removed.

Figure 1.7: (a) Dataset with a 1:5 under-sampling ratio and its corresponding (b) SRME
primary estimation. Strong aliasing artefacts and wrong multiple prediction are observed.

[Gan et al., 2015], the curvelet domain [Hennenfent et al., 2010], or the focal domain
[Kutscha and Verschuur, 2012].

1.6.2 Filter-based reconstruction

Seismic data can be reconstructed using a convolution with an interpolating filter.
Probably the most well-known of these methods is the sinc interpolation based on
the Whittaker-Kotelnikov-Shannon sampling theorem [Gensun, 1996]. This method
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can be implemented in practice by taking the signal to the ω − kx domain, padding
with zeros and then transforming back to the x− t domain.

The generalized convolution method [Knutsson and Westin, 1993] uses gaussian win-
dows as interpolating filters. Prediction-error filters in the time and frequency do-
main are used to interpolate data of distinctive plane waves [Spitz, 1991]. Laplacian
filters [Briggs, 1994] or steering filters [Clapp et al., 2007] can also be used for in-
terpolation. Though simple and easy to implement, these methods cannot easily
overcome aliasing.

1.6.3 Wavefield-operator based reconstruction

These methods are based on the Kirchhoff integral for wavefield extrapolation. One
of the main advantages of using these operators is the fact that they can handle non-
uniform acquisition geometries. The disadvantage would lie in the aliasing artefacts
due to incomplete summations.

Several approaches are available, namely: offset continuation [Deregowski and Rocca,
1981; Bolondi et al., 1982], shot continuation [Spagnolini and Opreni, 1996], Azimuth
Moveout [Biondi et al., 1998] and Inversion to Common Offset (ICO) [Chemingui
and Baumstein, 2000].

1.6.4 Tensor completition-based reconstruction

If organized in a tensorial form, the seismic data can be represented in a low-
complexity form. The reconstruction is typically posed as an inversion problem
constraint with a minimum data complexity measure under a given tensor decom-
position. Matrix rank can be used as a measure of complexity [Candes and Recht,
2012]. Other methods allow different types of tensor decompositions such as High
Order SVD (HOSVD) [Kreimer and Sacchi, 2011] or the Canonical Decomposition
(CADECOMP) [see Kolda and Bader, 2009]. Another option is to flatten the tensors
into matrices and then computing the matrix rank [Gandy et al., 2011], or to use
the tensor SVD (tSVD) [Martin et al., 2013]. SVD-free methods can also be found
in Lee et al. [2010] and Kumar et al. [2013].

1.7 The problem with shallow water multiples

Marine shallow-water environments provide a challenging setting to multiple separa-
tion algorithms. The reason behind this is that the primary water-bottom reflector
in not always present in shallow-water data due to the near-offset gap. Without the
proper primary generator operator, algorithms like SRME are known to provide in-
accurate results if applied without any interpolation (figures 1.6 and 1.7). Dragoset



1.7 The problem with shallow water multiples 17

and Jeričević [1998] demonstrated the strong effect that missing near-offsets can have
in primary/multiple separation. If the sea-floor reflection is strong, water-bottom
multiples can become very problematic, as they may hinder many of the details in
deeper structures.

One simple strategy to overcome this limitation would be to interpolate the input
data first and then run the SRME algorithm to separate the multiples. The lim-
itation comes then from the fact that accurate near-offset interpolation remains a
challenge for most of the available reconstruction methods. The problem arises as the
data in the near-offsets can contain a lot of information about the angle-dependent
reflectivity of the reflected events. This information is not trivially encoded in far-
offset part of the data and cannot be accurately reconstructed by simple reconstruc-
tion methods. Effects like NMO wavelet-stretching can make the reconstruction
effort even more challenging, as many of the previously discussed reconstruction
methods are meant to be applied after an NMO correction. The challenge is larger
for data from shallow water enviroments, in which the relevant information concen-
trates more and more in the missing part of the data.

A possible strategy to solve this problem consists in doing an initial Radon interpo-
lation to the data, muting the post-critical reflections and then applying predictive
deconvolution to eliminate the water-bottom multiples. It is possible to use predic-
tive deconvolution to remove the water-layer reverberations, and then use SRME
to remove all the remaining surface multiples. Predictive deconvolution is known
to work reasonably well in the shallow-water scenarios [Verschuur, 2006]. The main
drawback of these approaches is the implied simplicity of the propagation medium
and the fact that the multiples are no longer periodic for offsets different than zero.

Another option is to use a sea-floor model to reproduce the first-reflector primary re-
sponse. Then the necessary primary information is calculated via forward modelling
of the wavefields in the model. Surface multiples are predicted after convolution
with the data. This model-based scheme for multiple prediction can be seen an al-
ternative method for fully data-driven multiple prediction, with the advantage that
it can be applied to data with limited offsets. In this way the water-bottom multiples
are eliminated. The former method is known as SWD (Shallow Water Demultiple)
[Hung et al., 2010]. Modifications of this method have also been proposed [Harg-
reaves, 2006; Sun and Wang, 2010]. Being a model-based scheme, the accuracy of
the predicted multiples will depend on the accuracy of the chosen subsurface model.

In this research we present an alternative approach for the proper separation of the
shallow water multiples. We propose a solution in which multiple estimation is per-
formed simultaneously with data reconstruction (such that data reconstruction helps
obtaining better multiple estimates) and in which the physical primary-multiple re-
lationship helps constraining the data interpolation process. The near-offset data is
reconstructed via back-projection of the multiples into the primaries. In this way,
we allow the information contained in the multiples to be used to reconstruct the
missing shallow primary information. This research can be seen as an extension
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of the previously introduced (robust) EPSI methodology. Here, we use a similar
multiple prediction machinery, but now we largely extend the interpolation capabil-
ities of (robust) EPSI, making the new algorithm capable of: (1) interpolation of
medium-large near-offset gaps, (2) interpolation of missing sources/receivers, (3) a
3D implementation.

1.8 Thesis outline

The main content of the present thesis is divided in the following chapters:

[1] Chapter 2 : In this chapter the forward model for multiple prediction is ex-
plained, together with some definitions, notational conventions and some elab-
oration on previously introduced multiple-separation methods, namely: SRME
and EPSI.

[2] Chapter 3 : The Closed-Loop SRME theory is defined here. A comparison is
made between CL-SRME, EPSI and SRME.

[3] Chapter 4 : Here the focal transform is introduced. We start by some basic
derivations to define the propagation operators and their inverses. The focal
transform is later introduced as a two-sided back-propagation of the data.
Some properties and uses are discussed.

[4] Chapter 5 : The Focal CL-SRME method is introduced here. The basic theory
is outlined together with some discussion about its characteristics.

[5] Chapter 6 : This chapter contains a set of results for both 2D synthetic and
2D field datasets.

[6] Chapter 7 : The 3D Focal CL-SRME method is introduced here. We devote
this chapter to introduce the basic concepts needed to grasp the extension of
the algorithm developed in Chapter 5 to the 3D case.

[7] Chapter 8 : This chapter contains a set of results from the 3D Focal CL-SRME
method.

[8] Chapter 9 : We provide general conclusions to the thesis together with some
discussion about its applications and suggestions for further research.
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The forward model for seismic data

In this chapter we will study a forward model for seismic data that suits the used
inversion methodology later on. First, we will concentrate on some definitions, no-
tation and properties of some of the quantities to be used in this thesis. Then, we
will describe the theoretical background behind multiple estimation and the various
relationships between primaries and multiples. Finally, we will describe some com-
mon algorithms used to estimate the primary dataset namely: SRME and EPSI.
The material follows closely the theory developed at Delft University for acoustic
and elastic wavefield description [Berkhout, 1982; Wapenaar and Berkhout, 1989;
Fokkema and van den Berg, 1993; Berkhout and Verschuur, 1997; Verschuur and
Berkhout, 1997].

2.1 Matrix representation of seismic quantities

To describe our multiple estimation methodology, it is convenient to represent dis-
crete seismic data and operators in a concise manner in data matrices.

2.1.1 The data matrix: P

2D

For our matrix notation, the reflected wavefields in a seismic experiment are assumed
to be generated and recorded over a coinciding grid of sources and receivers. The
measured wavefield p(xs, xr, t) depends upon the source position xs, the receiver
position xr and the measurement time t. If we assume an uniform acquisition, we
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Figure 2.1: Generation of the data matrix given the measured input data.

have xs = j∆x, xr = k∆x and t = l∆t, where ∆x is the source-source or the
receiver-receiver distance, ∆t is the sampling ratio and (j, k, l) ∈ Z are the indices
representing the position of the measurement p(xs, xr, t) in the grid.

In practice the quantities ∆x and ∆t should be set before-hand in order to avoid
aliasing. The coordinate origin for xs, xr and t is chosen arbitrarily, however, once
chosen, it must remain invariant for all processing steps. Note the xs and xr coor-
dinates are taken with respect to the earth and do not represent offset coordinates.

We are also assuming that the data is acquired at the surface at a common depth
level z = z0.

Taking the data to the frequency domain (t −→ ωl∆ω) and using the defined set
of coordinates, we can use the detail-hiding notation (Berkhout [1985]) to store
the information from all the measurements p(xs, xr, t) into a set of mono-chromatic
matrices P organized as depicted in figures 2.1 and 2.2.

In this convention, every column of P represents the wavefield of a single source
in all the receivers (for a given frequency), and every row represents the wavefield
measured from all the sources in a single receiver position (for a given frequency).

Furthermore, in figure 2.2 it is shown that diagonals and anti-diagonals contain
common offset or common midpoint data, respectively.

Note that, due to the orthogonally of the Fourier basis, all frequencies can be pro-
cessed independently of each other.

3D

By extending the dimensionality from 2D to 3D we are actually adding two new
spatial dimensions, namely ys = m∆y and yr = n∆y to our wavefield coordinates



2.1 Matrix representation of seismic quantities 21

Figure 2.2: Structure of the data matrix for one frequency component.

(cross-line source and receiver coordinates). Now ∆y is the receiver-receiver distance
in the y direction. Note that ∆y and ∆x can differ from each other as long as both
are constant [see Kinneging et al., 1989]. This extension will in principle yield a
5-dimensional entity p(xs, ys, xr, yr, t).

For convenience we want to organize the data such that we can still represent it
in terms of a set of 2-dimensional matrices in the frequency domain. An internal
arrangement will allow us maintain the same theoretical formulas for both the 2D
and the 3D cases.

To construct the desired 3D matrix organize the data in ’3D shot gathers’ as shown
in figure 2.3. Then the coordinate system inside each sub-matrix will follow figure
2.4. Note that in this 3D matrix one column still represents a 3D shot record with
all receiver positions of the 3D shot concatenated in one long vector.

Note that for practical acquisition geometries the data matrices (especially in 3D)
will never be fully filled with actual data.

2.1.2 The source matrix: S

The source wavefield is the total wavefield placed by the source devices in the sub-
surface. In the case that the source devices are located below the subsurface, this
wavefield includes a source-ghost that makes the input an effective dipole source
(assuming that the wavefield is measured at distances much larger than the effective
dipole separation).
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Figure 2.3: Organization of the 3D data into a data matrix by gathering the traces from all
the receiver lines of a given shot, where (xs,ys) are the source coordinates and (xr,yr) are
the receiver coordinates.

Figure 2.4: Structure of the 3D data matrix for one frequency component, where (xs,ys) are
the source coordinates and (xr,yr) are the receiver coordinates.

Every column of the S matrix contains a monochromatic component of the source
wavefield for a given experiment (determined by the lateral position). If S is a
diagonal matrix then the sources have a dipolar radiation pattern [see also Verschuur,
1991]. If S is non-diagonal then, the off-diagonal elements in every column account
for the shape of the radiation pattern (with respect to the horizontal coordinates) of
that particular experiment. Fully-filled S matrices are typical in blended acquisitions
[Berkhout et al., 2009]. If S is a Toeplitz matrix then all the source signatures
are identical. Note also, that S has no need to be square (i.e. there might be
less shot positions than receiver positions). Figure 2.5 depicts some the possible
configurations for the source matrix.
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Figure 2.5: Schematic representation of the source matrix structure for different source
configurations (blank spaces are zeros, filled spaces are non-zeros). (a) Source matrix for a
blended experiment, (b) source matrix for sources with a complex radiation pattern and (c)
source matrix for sources with a dipolar radiation pattern. Here, x is an index enumerating
the columns of the matrix (number of active sources in the experiment) and y is an index
enumerating the rows of the matrix (lateral acquisition grid coordinates). The source matrix
has no need to be square.

2.1.3 The propagation matrix: W

The W = W(zm, z0, ω) operator downward-propagates a monochromatic compo-
nent of a wavefield from a z0 depth-level to a zm depth-level. In this description,
every column of W contains the response of a dipolar impulsive source at a depth
level z0 measured in all the receivers at depth zm, here z0 < zm. We will discuss the
W operators in more detail in chapter 4.

2.1.4 The reflectivity matrix

At the surface z = 0: R∩: This operator transforms the up-coming wavefield at the
surface into a down-going wavefield. It is related with the discontinuity in the earth-
air or sea-air boundary. In the marine case this reflectivity is angle-independent
and the reflectivity matrix takes the form R∩(z0) ≈ −I (almost all the wavefield
is mirrored back to the subsurface). In the land case R∩(z0) is more complex [see
Wapenaar and Berkhout, 1989].

At a given depth-level z = zm: R∪m, R∩m: These operators transform the up-coming
wavefield at a depth-level zm into a down-going wavefield (R∩m) and vice-versa (R∪m).
They contain the information of the reflection properties of all lateral grid-point
positions along a given depth-level. Every element on these operators depends on
the material properties of the grid point in consideration. These matrices represent
convolution operators, where angle-dependent reflection information is included [de
Bruin et al., 1990].
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2.1.5 The detector matrix: D

This operator transforms the up-coming wavefield into the measured wavefield. In
general D contains the information of any directivity in the receivers, together with
the receiver response and the receiver acquisition geometry. Receiver-side ghosts are
also included in D.

2.1.6 The primary impulse response: P0

This is the up-coming wavefield obtained at the surface if we assume the water-
air or the earth-air discontinuity to be absent (transparent surface). It neglects all
the scattering related to the free surface. Note, however, that the internal multiple
scattering in the subsurface will be present.

2.2 Notational conventions

The following conventions will be assumed in this document

• We will assume D = I. Thus, we assume receiver directivity and ghosts have
been corrected for.

• We will loosely call P0 the ”primaries” given the understanding that we actu-
ally mean ”the primaries plus internal multiples”.

• Estimates of theoretical quantities will be denoted by ”hatted” symbols (e.g.

P̂0 will stand for ”estimate of the primaries”). Un-hatted symbols will refer
to theoretical quantities.

• Iteration dependent quantities will be labeled by their iteration number as a

super-script, e.g. P̂
(0)
0 will refer to the estimate of the quantity P0 at the

begining of the algorithm (starting value). Similary P̂
(n)
0 will refer to the

estimate of the quantity P0 after n iterations. For simplicity, we will drop the
iteration superscript whenever possible.

• We will omit the explicit reference to the frequency samples in the formulas
(e.g. P0 = P0(ω)).

• Sometimes we will also abbreviate the explicit reference to a given depth level
zm in our wavefield matrices by a using its label index m as a subindex for our
matrices. Together with the ommision of the explicit frequency variation, this
reduces to a simple subindexing, e.g. W(zm, z0, ω) = Wm. Note that we also
choose the acquisition surface to be at z0 = 0.
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• The data matrices P are assumed to be have a dipole character. A dipole
response is naturally created by placing a monopole source and a pressure-free
plane in close proximity to each other.

• The data matrices P are supposed to contain only up-going wavefields. This
means that laterally propagating wavefields like direct-waves, ground-roll must
be removed beforehand. Also it means that down-going wavefields like the
receiver-ghost must also be removed.

2.3 Forward model for primaries and multiples

2.3.1 Primaries

Following Berkhout (1985) we can express the primary up-coming wavefield at the
receiver level in terms of a convolutional propagation-reflection-propagation model
also known as the WRW-model. If we omit for the time-being all the multiple-
scattering phenomena and restrict ourselfs to a linear wavefield theory, we can write:

P0 =

∞∑
m=1

WT
mR∪mWmS = X0S, (2.3.1)

with

X0 :=

∞∑
m=1

WT
mR∪mWm, (2.3.2)

where X0 is the primary impulse response of the earth, Wm is the wavefield extrap-
olation operator and R∪m is the reflectivity operator. Equation 2.3.1 expresses the
propagation of the source wavefield to a given subsurface level zm, the reflection in
that level and the propagation of the reflected wavefield back to the surface. The
responses from all the depth levels stack up to the final reflected signal.

2.3.2 Primaries and surface multiples

To include the surface multiple reflections in our forward model (eq. 2.3.2), note
that once the reflected wavefield from the primaries has reached the surface, the
material discontinuity at the surface will reflect back the primary information into
the medium. In this way the surface itself becomes a secondary source for the down-
going wavefield. This secondary wavefield will be sent back into the subsurface for
an additional round-trip into the earth. Once the secondary wavefield has been
reflected in the medium, the free surface will reflect again this information into
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the subsurface for an extra round-trip. This process continues until the energy of
the multiple reflecting signals is exhausted. In this way, we expect to describe our
wavefield measured at the receivers as an infinite sum of multiple contributions.
The former can be expressed mathematically as [Verschuur et al., 1992; Fokkema
and van den Berg, 1993]:

P = X0S + (X0R
∩)X0S + (X0R

∩)2X0S + (X0R
∩)3X0S + · · · , (2.3.3)

where every successive term represents one additional order of scattering, namely:
X0S represent the primaries, (X0R

∩)X0S are the first order multiples, (X0R
∩)2X0S

are the second order multiples, etc.

The convergence of this series is guaranteed by the fact that the energy measured
in P is finite. A formal proof of the convergence of the series can be found in
Fokkema and van den Berg [1993]. Recognizing equation 2.3.3 as a geometric series
and defining the surface operator A as A = S−1R∩ and P0 = X0S we can rewrite
equation 2.3.3 into1

P = P0 + (P0A)P0 + (P0A)2P0 + (P0A)3P0 + · · · (2.3.4)

P = (

∞∑
m=0

(P0A)m)P0

P = (I−P0A)−1P0

P0 = P−P0AP

P = P0 + P0AP

P = P0(I + AP)

P0 = P(I + AP)−1

P0 = P(

∞∑
m=0

(−AP)m)

P0 = P−P(AP) + P(AP)2 −P(AP)3 + · · · .

From these equations we can recognize the following set of equivalent expressions
for the total and primary wavefields

• Series:

P = P0 + (P0A)P0 + (P0A)2P0 + (P0A)3P0 + · · · (2.3.5)

P0 = P−P(AP) + P(AP)2 −P(AP)3 + · · · ; (2.3.6)

1Even though the definition of A involves the inverse of S, in practice A is never calculated like
that. After some assumptions, A can be calculated as the optimal filter matching the measured
data with the predicted multiples. This will be further explained in section 2.4.1.
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• Recursive:

P = P0 + P0AP (2.3.7)

P0 = P−P0AP; (2.3.8)

• Inverse space:

P−1 = P−10 −A (2.3.9)

P−10 = P−1 + A. (2.3.10)

All these expressions are equivalent to each other, but they provide different means to
reach the desired result and bring different insights into the solution. An equivalent
set of expressions in the (X0,S) parameterization is given in Appendix A.

Equations 2.3.5 and 2.3.6 provide an explicit interpretation of the scattering at the
surface via a scattering series, every term accounts for one order of scattering. Here
both the forward (equation 2.3.5) and the inverse (equation 2.3.6) series can be
computed.

Expressions 2.3.7 and 2.3.8 provide a more practical way of accounting for the mul-
tiple scattering via single matrix products [Berkhout and Verschuur, 1997]. From
equation 2.3.7 we can conclude that surface multiples M may be written as M =
P0AP. Equation 2.3.8 is the basis for the SRME method, while equation 2.3.7 is
the basis for the CL-SRME method.

Equations 2.3.9 and 2.3.10 represent the solution in the so called ”inverse space”
[Berkhout, 2006; Verschuur and Berkhout, 2006]. Though cumbersome to use in
practice (typically P and P0 are not invertible), these set of equations provide
the theoretical advantage of solving for the quantity A in terms of P and P0, by
A = P−10 − P−1. However, this method of solution is complicated to achieve in
practice.

Though comprehensive and intuitive, the derivation 2.3.5 is by no means detailed.
A more formal derivation of these expressions, based on the principle of acoustic
wavefield reciprocity, can be found in Fokkema and van den Berg [1993], which is
an excellent reference for addressing these topics. The previous derivations follow
closely the ones in Verschuur et al. [1992]; Verschuur and Berkhout [1997]. For a
more intuitive undestanding of these expressions, the reader is referred to Dragoset
and Jeričević [1998] and Dragoset et al. [2010].

2.4 Methods for multiple elimination: SRME and EPSI

Now that the basic theory behind multiple scattering is in place, we can revisit the
SRME and EPSI methodologies which make use of the equation 2.3.3 to obtain
estimates of the primary response of the earth.
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2.4.1 SRME

Surface Related Multiple Elimination (SRME) was introduced by Verschuur et al.
[1992] as a method to carry out equation 2.3.6. Later on, Berkhout and Verschuur
[1997] redefined it as an iterative method of primary estimation. In principle the
algorithm works by estimating the multiples and then subtracting the estimated
multiples from the input data to obtain an estimate of the primaries. The method
is based on the iterative version of equation 2.3.8, namely:

P̂
(k+1)
0 = P− P̂

(k)
0 Â(k+1)P, (2.4.11)

and the constraint

Â(k+1) = arg min
Â(k+1)

∑
ω

||P− P̂
(k)
0 Â(k+1)P)||2, (2.4.12)

where k represents the iteration number. Here, Â is replaced by an angle-independent

approximation Â(ω)I. Since there are more unknowns: P̂
(k+1)
0 and Â(k), than

knowns: P, in equation 2.4.11 the extra constraint 2.4.12 is needed.

The process goes as follows: Starting from P̂
(0)
0 = P and Â(0) = 0 we estimate

the multiples M̂(k+1) = P̂
(k)
0 Â(k+1)P in each iteration. This involve two steps:

(1) calculate the product P̂
(k)
0 P, and (2) estimate Â(k). The last step is done by

regarding Â(k) as an adaptive filter and finding the optimal solution for 2.4.12 in
the time domain [see Verschuur and Berkhout, 1997]. The former is equivalent to
assume that the primaries have minimum energy (in the L2 norm), and holds exactly
only when the primary and multiple events are non-interfering. This assumption
provides satisfactory subtraction results, but does not work properly in all cases [see
Nekut and Verschuur, 1998]. Guitton and Verschuur [2004] and van Groenestijn and
Verschuur [2008] have shown that other minimization norms, like the L1 norm or a
sparseness norm, can lead to different, and sometimes better, subtraction results.

Once a multiple estimate is available, we can use equation 2.4.11 to obtain a new P0

estimate. This new P0 estimate will allow us to calculate as well a new M estimates,
thus generating an iterative process.

It can be shown that every iteration in this process will actually add one extra order
of scattering to the scattering series solution equation 2.3.5. At the same time, every
iteration will push the previous A estimates towards correspondingly higher orders
in the scattering series, in this way the iterative process actually ”cleans itself”
from the influence of the non-very-accurate initial A estimates. The SRME primary
estimate after n iterations is then:
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P̂
(n)
0 = P−PÂ(n)P+PÂ(n−1)PÂ(n)P−PÂ(n−2)PÂ(n−1)PÂ(n)P+ · · · , (2.4.13)

where Â(k) denotes the k-th iteration estimate of the surface operator. Note that
the predominant terms of the series (the lower order ones) are always given by the
latest A estimations, which are always more accurate.

For a detailed description of the SRME algorithm refer to Verschuur [1991]; Ver-
schuur and Berkhout [1997]; Weglein et al. [1997]; Berkhout and Verschuur [1997];
Verschuur [2006]; Dragoset et al. [2010].

2.4.2 EPSI

To describe the Estimation of Primaries by Sparse Inversion algorithm (EPSI) [van
Groenestijn and Verschuur, 2009a] we should rewrite equation 2.3.9 in the (X0,S)
parameterization. If we take S(ω) = S(ω)I (i.e. a constant source wavelet for all
shots and no directivity) and we assume the surface reflectivity to be a scalar R∩

(being equal to −1) we get:

P = X0S + X0R
∩P. (2.4.14)

In EPSI we use full waveform inversion to estimate the unknown primary impulse
response X̂0 and source wavelet Ŝ such that the estimated primaries X̂0Ŝ together
with the corresponding surface multiples X̂0R

∩P can explain the total upgoing data
P. The unknown dataset X̂0 is parameterized in the time domain with spikes. The
objective function to minimize in EPSI is built by calculating the Frobenius norm
of the difference between the estimated dataset X̂0Ŝ + X̂0R

∩P and the measured
dataset P for all frequencies ω as2

J =
∑
ω

||P− X̂0(Ŝ +R∩P)||2. (2.4.15)

The EPSI algorithm calculates X̂0 and Ŝ such that J is driven to zero. This is done
in an iterative way where the primary impulse response data volume X0 is built up
slowly during the iteration process in the time domain (causality constraint) and
sparsity is imposed on the updates of X0 (sparsity constraint). In this way the
adaptive subtraction is avoided and interference between primaries and multiples is

2Equation 2.4.15 provides the objective function that is used for calculating the gradient in
EPSI. However, for the algorithm to work properly, causality and sparsity constratints need to be
applied to the gradient. These operations are applied in a element-wise fashion over the gradients
and are not represented in equation 2.4.15. We also require S to be a compact filter in time.
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better handled. Furthermore, missing near-offset data can be interpolated simulta-
neously with multiple elimination, improving the results especially for shallow water
situations.

For a detailed description of the EPSI algorithm please refer to van Groenestijn and
Verschuur [2009a,b, 2010, 2011]

Figure 2.6 compares the results of SRME and EPSI when applied to a shallow marine
dataset from the North Sea. Due to the sparsity constraint and the involved near-
offset reconstruction, the EPSI algorithm tends to produce primary estimates with
a larger degree of multiple suppression [van Groenestijn, 2010].

A better alternative to the EPSI algorithm was introduced by Lin and Herrmann
[2013]. This methodology (called robust-EPSI) presents advantages over the initial
EPSI formulation [van Groenestijn and Verschuur, 2009a], namely a better esti-
mation of deep primaries and a more robust inversion, allowing also a near-offset
interpoaltion extension [Lin and Herrmann, 2016]. The main draw-back of this algo-
rithm is its expensive computational efficiency, that make a possible 3D application
unfeasible.

Figure 2.6: Primary stacks from a moderately shallow water dataset acquired in the North
Sea. (a) SRME primaries and (b) EPSI primaries. As we can see EPSI presents better
multiple suppression when compared with SRME. Taken from van Groenestijn (2010).
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Closed-Loop SRME

In this chapter we will introduce the Closed-Loop SRME method which will serve as
a theoretical frame-work for the next chapters. The basic theory, implementation,
comparison with other methods and possible extensions are discussed.

3.1 Introduction

The Closed-Loop SRME algorithm combines the inversion (or ”closed-loop”) ap-
proach of EPSI with the simplicity of the SRME algorithm. The theoretical frame-
work developed here can be used to generate many extensions to the presently de-
scribed algorithm. For example, if additional sparsity requirements are added to the
scheme, the minimum energy constraint (typical from SRME-related algorithms)
might be dropped, providing better primary estimates. Little advantages are seen
in 2D CL-SRME when compared to an algorithm like EPSI, however, important
benefits will arise in the 3D case, were the EPSI algorithm is expected to have some
practical difficulties.

In the following sections, we will introduce the CL-SRME method, discuss its prop-
erties and applications, as well as its similarities and differences with respect to
both SRME and EPSI. By itself, the CL-SRME algorithm can be considerated as a
inversion-based version of the SRME algorithm.
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3.2 Theory

Let P describe the up-going wavefield at the surface, in the detail hiding notation
[Berkhout, 1982; Kinneging et al., 1989] we can write the data P as a function of
the primaries P0 and the surface operator A via

P = P0(I + AP), (3.2.1)

were A is is related to the inverse of the source signature S and the reflectivity of
the surface R∩ by

A = S−1R∩. (3.2.2)

In expression 3.2.1 the total up-going wavefield is represented as a product of a down-
going wavefield (I+AP) and an up-going wavefield P0. Alternatively, equation 3.2.1
can be seen as expressing the total wavefield P as a sum of the primary wavefield P0

and the surface-related multiple wavefield P0AP. Here, by ’primaries’ we actually
mean all possible events with no bouncing points at the surface. This category
includes primaries, internal multiples, converted waves and all other up-going events
that are not related with scattering at the surface.

Closed-Loop SRME (CL-SRME) proposes an inversion-based method to obtain the
primary response P0 from the measured data P in a fully data-driven manner.
The strategy is to build an objective function J = J(P̂0, Â) that is minimized

when the inversion parameters (P̂0, Â) accurately describe the input dataset P via
equation 3.2.1. The solution must fulfill equation 3.2.1 for all frequencies ω. Using
a Frobenious L2 norm we can express J as:1

J =
∑
ω

Jω =
∑
ω

||P− P̂0(I + ÂP)||2. (3.2.3)

The goal of the inversion within J is to find the set of parameters (P̂0, Â) that

minimizes the residual. The process starts from the initial value P̂0 = 0, Â =
ASRME , where ASRME is the result of optimally matching the wavefields P and
PP, just like the first iteration of SRME2. The initial guesses for P̂0 and Â are

1We will use the symbols P̂
(k)
0 and Â(k) to refer to the parameter estimations in the k-th

iteration of the algorithm. In order to avoid overloading the notation, we will intentionally drop
the iteration superscript whenever possible. Then, the symbols P̂0 and Â will refer to the parameter
estimates in the current iteration.

2The selection of the initial estimates P̂0 = 0 and Â 6= 0 is necessary to obtain a correlation-
type of update for P̂0 in the first iteration of the algorithm. Using equation 3.2.4 the update takes

the form ∆P
(1)
0 = 2P(I + ÂP)H . This type of update is important for near offset interpolation, as

it produces a back-projection of the multiples into the primaries. Where this back-projection will
allow the estimation of the near-offset data.
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updated every iteration in such a way that J decreases.

Note that the J function given in equation 3.2.3 is not enough to fully constraint
the solution of the inversion problem. Thus an additional constraint needs to be
included to solve the inversion in a more unique way. We will discuss this later on.

The algorithm uses a descent method based on a first order Taylor expansion of
Jω to obtain the appropriated descent directions that correspond to the updates
of the inversion parameters. For these parameters the update process is done in
a flip-flop manner, alternating the estimation of P0 and A as the algorithm pro-
gresses. The appropriated descent direction ∆P0 for the inversion of P0 is cal-
culated using the extremallity condition of Jω: ∇P̂0

Jω(P0,A) = 0 to obtain the

update ∆P0 = −∇P̂0
Jω(P̂0, Â), where the negative sign stands for the selection of

a descent direction in Jω. The gradient for P0, therefore, is given as:

∆P0 = 2[P− P̂0(I + ÂP)](I + ÂP)H . (3.2.4)

Note that the term in the square brackets represents the current L2 inversion resid-
ual, which should be minimized. The (ÂP)H terms represent back-projection of the
multiples into primary updates. This mechanism will allow multiple information to
contribute to primary estimation, even at offsets originally not measured.

Given ∆P0, the primary estimate P̂0 can be updated in every iteration k by:

P̂
(k+1)
0 = P̂

(k)
0 + α∆P

(k)
0 , (3.2.5)

where the step length α is chosen using a line-search, such that the scaled update
α∆P0 minimizes the residual J(P̂0 + α∆P0) −→ min. Here, α is given by:

α =

∑
ω Re(Tr(V

HK))∑
ω Tr(K

HK)
, (3.2.6)

with residual data

V := P− P̂0(I + ÂP) and K := ∆P̂0(I + ÂP). (3.2.7)

In the former equations we have dropped the explicit mention of the iteration index
k to avoid unnecessary clutter. The procedure is shown for a steepest descent im-
plementation. For a faster algorithm, a conjugate gradients implementation can be
easily deduced from these equations, as will be shown later on.

For sake of simplicity, we will assume in the following that the surface operator
A = S−1R∩ is angle-independent, so the Â matrix is diagonal (no directivity in
neither R∩ nor S). For simplicity we will also assume that the source signatures of
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all the shots are the same, such that we can write Â = A(ω)I . This assumption
can be easily dropped in a practical implementation by making a shot-dependent
calculation of A.

Then the inversion equation for A(ω) becomes that of an optimum filter in the L2
norm, which is typically solved in the time domain by using

Â = arg min
Â

∑
ω

||P− P̂0ÂP||2, (3.2.8)

where Â is forced to be a short convolutional operator in the time domain (Verschuur

and Berkhout [1997]). Here, Â can be easily solved by pre-computing P̂0P and then
solving a matching problem in the time domain. The fact that Â is short in the time
domain can be thought of as prior-knowledge.

Note that the non-directivity assumption (Â being diagonal) is not necessarily met
in practice, and it corresponds to a very common simplification present in both
EPSI and SRME algorithms, which have been shown to perform successfully in
many datasets [Verschuur, 1991; van Groenestijn and Verschuur, 2009b; Baardman
et al., 2010]. The objective behind this assumption is to simplify the processing and
remove all the unnecessary degrees of freedom, which might map to larger cardinality
of the residual null space if left unconstrained in the inversion3. In theory effects like
ghosts can be included in the forward model [Verschuur, 2013; Vrolijk and Verschuur,
2015], but here we assume ghosts effects are removed in advance.

For the estimation of A(ω), no updating process is necessary. Instead Â(ω) is ob-

tained in every iteration using the present value of P̂0 and equation 3.2.8, the latter
corresponding to the minimum energy constraint on primaries. In the following
chapter we will relax this assumption by introducing a sparsity constraint in the pri-
mary estimate. Note that in order to solve the inversion problem for P̂0 and Â, two
independent constraints are required, namely equation 3.2.1 and 3.2.8 or equation
3.2.1 and a sparsity constraint.4

3The residual null-space is the set of model space vectors (P̂0, Â) that make the residual zero.
A larger cardinality of this set implies more non-uniqueness in the solutions. Note for example that
the undesirable model space vector (P̂0, Â) = (P̂,0) makes the residual in equation 3.2.3 equal to
zero. Thus, this solution vector belongs to the global minimum set of the objective function. We
will address this problem in the next chapter by introducing an extra constraint in the inversion.

4Unfortunately, equations 3.2.8 and 3.2.3 are not enough to obtain a unique solution. This
implies that the present scheme might converge to solutions with some small degree of multiple
leakage in the primaries. We will attenuate this problem in the following chapter by introducing
extra constraints over J , together with smart starting points for P̂0 and Â. However, even then,
the solution will remain non-unique. Multiple-leaking solutions are present up to some extent in
all current multiple prediction algorithms.
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3.3 Conjugate gradient implementation

Given the parameterization of CL-SRME in P̂0 and Â, the algorithm might become
vulnerable to instabilities as the ones described by Nekut and Verschuur [1998].
These instabilities are generated when the descent scheme finds itself trapped be-
tween two instable solutions in the vicinity of an objective function minimum. Then
the solution jumps back and forth between two undesirable model space solutions
without efficiently reaching the minimum. In order to avoid this, we use a conju-
gate gradient approach such that the updates are always orthogonal (or at least as
orthogonal as possible) and less dependent on the local structure of the objective
function. A conjugate gradient approach is also more computationally efficient.

A Fletcher-Reeves [Aster et al., 2013] implementation of the conjugate gradient
algorithm can be easily obtained by including

∆P̂
(k+1)
0,CG = ∆P̂

(k+1)
0 + β∆P̂

(k)
0,CG, (3.3.9)

and

β =
Tr(∆P̂

(k+1)
0 ∆P̂

(k+1)
0 )

Tr(∆P̂
(k)
0 ∆P̂

(k)
0 )

. (3.3.10)

The condition ∆P̂
(0)
0,CG = ∆P̂

(0)
0 will provide a starting point for the algorithm.

From here it is easy to follow the standard implementation of the conjugate gradient
algorithm [Tarantola, 1987; Aster et al., 2013].

Figure 3.1 depicts a typical CL-SRME example from a simple two-layered synthetic
model (shown in figure 4.1). The CL-SRME algorithm separates the multiples after
20 iterations.

3.4 Comparison with EPSI and SRME

CL-SRME shares the same forward model and the same parameterization as SRME,
so in many ways CL-SRME can be seen as a ’closed-loop’ or ’inversion-oriented’ ver-
sion of the SRME algorithm. Using the same reasoning, the SRME algorithm is
thought to operate in a ”input-output” approach which doesn’t involve a feedback
process. This type of algorithm can also be called an ”open-loop” method (to mark
the contrast with respect to the ”closed-loop” methods, i.e. EPSI and CL-SRME).
Besides, their resemblance, fundamental differences between CL-SRME and SRME
can be observed in the way the inversion estimates are obtained (inversion series).
The CL-SRME algorithm involves both convolution and correlation type of updates,
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Figure 3.1: Closed Loop-SRME algorithm used for multiple elimination. The model used to
generate the data is the same one as in figure 4.1. To illustrate the procedure the primaries
and multiples after the (a-b) first, (c-d) third and (e-f) and 20th iteration respectively.

see equation 3.2.4, while SRME involves only convolution-type of updates. Corre-
lation type of updates are important when considering interpolation in the scheme.
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Introducing a gradient-based process also opens the room for several upgrades and
extensions to the theory presented here. In the next chapter we will discuss an
important extension that will allow the CL-SRME algorithm to incorporate recon-
struction and multiple estimation in the same process. One of the key changes here,
will be the addition of an additional constraint (sparsity) to fully resolve J without
the need of equation 3.2.8. Note that if the minimum energy assumption on P0 is
used in CL-SRME as additional constraint, its solution will converge to the SRME
solution.

In a similar way as done in EPSI (van Groenestijn and Verschuur, 2009), in CL-
SRME the primaries are iteratively estimated such that they, together with their
associated multiples, explain the input data. However, in CL-SRME this is done in a
quite different way. Here, the input data P is parameterized via the surface operator
A and the primary wavefield P0, which is consistent with the parameterization
in SRME [Verschuur et al., 1992]. EPSI on the other hand describes the input
data P in terms of the source signature S and the primary impulse response X0.
Mathematically, these two parameterizations are equivalent, but practically they
involve quite different wavefields, thus different inversion strategies and different
results are expected. Note, for instance, that in contrast to P0, X0 is expected
to be spiky, thus justifying a sparsity constraint on X0. The relationship between
the inversion parameters (X0, S) in EPSI, and (P0, A) in CL-SRME is given by:
P0 = X0S and A = S−1R∩. More about EPSI and CL-SRME can be found in
chapter 9.

3.5 Conclusions

In this chapter we have introduced a new method for multiple estimation using
inversion that we have called Closed-Loop SRME. Even though by itself this new
method doesn’t provide better results than EPSI or SRME, we can use its mathe-
matical description to generate useful extensions to the algorithm shown here. In
many ways, the CL-SRME algorithm can be regarded as an inversion-based SRME
algorithm. In the following chapters we will use the theory shown here to achieve
data interpolation together with multiple separation. This development will have
interesting results and consequences for more realistic 2D and 3D geometries.

The inversion methodology in CL-SRME also allows other extensions to the tradi-
tional SRME algorithm. Some direct extensions might be: multiple elimination on
blended data, applications to passive data and internal multiple elimination with
missing data.
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The focal transform

In this chapter we will discuss the focal transform concept from both the theoretical
and the practical point of view. We will start describing the forward propagation
operators from the Raleigh integral concept. Then we will describe the inversion of
those operators using the matched-filter approach. Later, some explicit formulas to
calculate the operators will be given. Then we can describe the the focal transform
as a two-sided inverse propagation, and describe its properties and possible uses. In
the next chapter the focal transform will be integrated with the CL-SRME algorithm.

4.1 Propagation operators

The extrapolation of an acoustic wavefield inside a source-less, inhomogeneous and
isotropic half-space medium is given by the Rayleigh integral, which in 2D reads
[Wapenaar and Berkhout, 1989]1:

P (x, z;ω) =

∫
R
W (x, z, x0, z0;ω)P (x0, z0;ω)dx0, (4.1.1)

where P is the wavefield to extrapolate, W is the propagation operator, ω is the
frequency and {(x0, z0), (x, z)} are the initial and target extrapolation points. Note
that every point in the extrapolated wavefield is constructed by the summation of all
lateral contributions in the initial wavefield. The former equation can be extended
to 3D by adding an extra lateral dimension y:

1In order to provide a better link with other branches of Physics, we will start by describing our
propagation operators in a continious fashion.
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P (x, y, z;ω) =

∫∫
R2

W (x, y, z, x0, y0, z0;ω)P (x0, y0, z0;ω)dx0dy0, (4.1.2)

now (x0, y0, z0) is the initial point and (x, y, z) is the target point for extrapolation.
Note the summation over all secondary source points (lateral positions x0 and y0)
according to Huygens’ principle.

In practical applications, the wavefield is always measured in a discrete manner, by
placing receivers at the surface. So, it is convenient to discretize equations 4.1.1 and
4.1.2 such that we can apply them in practical circumstances. After discretization
equation 4.1.1 reads

P (xi, z;ω) =

Nx∑
k=1

W (xi, z, x0,k, z0;ω)P (x0,k, z0;ω)∆x0. (4.1.3)

Similary, equation 4.1.2 reads

P (xi, yj , z;ω) =

Nx∑
k=1

Ny∑
l=1

W (xi, yj , z, x0,k, y0,lz0;ω)P (x0,k, y0,l, z0;ω)∆x0∆y0,

(4.1.4)

where {xi, yj}(i,j) are now the discrete target positions, {x0,k, y0,l}(k,l) are the dis-
crete initial positions, (∆x,∆y) are the respective sampling intervals in each direc-
tion and (Nx, Ny) are the number of sampling points in each dimension.

Note that equation 4.1.3 and 4.1.4 apply now only for the discretized versions of the
field P (x, y, z;ω). Care must be taken while spatially discretizing a wavefield, as
aliasing might occur if the wavefields are too under-sampled.

4.2 Inverse operators

Together with the forward operators, expressions for their inverses are also necessary
in practical applications. In principle, the formulas for the inverse operators can be
obtained by directly calculating W−1, however, there are two important reasons to
avoid this:

[1] The exact formulation of the W operators for an arbitrary medium typically
depends on the exact medium parameters, which are unknown in practical
applications.

[2] The inversion of the forward extrapolation operators is typically unstable.
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Fortunately, if we concentrate on inverse operators to remove propagation effects,
only the low-frequency variations in the material parameters (i.e. the so-called
macro-model) are needed [see Wapenaar and Berkhout, 1989]. In this case we can
find an approximate inverse of the forward operator by just applying complex con-
jugation via:

W (x, z, x0, z0;ω)−1 ≈W (x0, z, x, z0;ω)∗ (4.2.5)

and

W (x, y, z, x0, y0, z0;ω)−1 ≈W (x0, y0, z, x, y, z0;ω)∗. (4.2.6)

The former approximation for calculating the inverse of W is known as the matched
filter approach [Wapenaar and Berkhout, 1989]. This approximation will limit the
maximum attainable resolution.

4.3 Matrix form for multiple experiments

As discussed in Chapter 2, the discretized version of the W operators (equations
4.1.3 and 4.1.4) can be organized in a matrix in order to account for the complete
seismic experiment with several sources and receivers in the acquisition grid. Then
we can express the set of propagation operators to a given depth level as W and
their approximate inverses as WH (equations 4.2.5 and 4.2.6). Using reciprocity it’s
possible to change the propagation direction of the W operator from down-going to
up-going, this is equivalent to take WT when an upward propagation is needed. Due
to the convolutional structure of wavefield propagation, the matrices W represent
spatial convolutions. If the propagation medium is laterally invariant, then W is a
Toeplitz matrix. Laterally variant media typically have W matrices with band-like
structures, representing generalized convolutions. The matrices W are related with
the more traditional monopolar Green’s functions G(z0, zm) via the scalar expression
[Wapenaar and Berkhout, 1989]:

W (x, y, zm, x0, y0, z0) =
2

ρ

∂G(x, y, zm, x0, y0, z0)

∂z0
, (4.3.7)

where ρ is the density. The derivative in the vertical direction z makes explicit the
fact that the W operator propagates dipole sources, as opposed to the G operator,
which is related to monopole sources2. As seen from equation 4.3.7, the W operators

2Note that in Rayleigh theory, only dipolar Greens functions are necessary to extrapolate the
wavefields. This is due to the following facts: (1) the integration is done over a flat surface and (2)
we have separated up-going waves from down-going waves. For more information see Gisolf and
Verschuur [2010].
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Table 4.1: Dipole responses for an isotropic homogeneous acoustic medium. Associated W
operators can be obtain from these expressions through a 2/ρ scaling factor (equation 4.3.7).
After discretization each of these values in the x− ω domain will correspond to entries in
the W matrix.

3D dipole 2D dipole

x− ω exact e−ikr

r −ikπ cosπH
(2)
1 (kr)

x− ω far-field ik
r cosφe−ikr

√
2πik
r cosφe−ikr

kx − ω exact 2πsign(z)e−ikz|z| 2πsign(z)e−ikz|z|

are calculated from the dipolar Green’s function with a 2/ρ scaling.

4.4 Explicit formulas for W

Finding explicit formulas for the propagation operators can be done analytically
in the case of a homogeneous medium, but there are no analytical solutions for
the general inhomogeneous case. Some expressions can be derived in the case of a
smoothly varying medium [Gisolf and Verschuur, 2010]. In practice, however, the
W ’s for arbitrary media typically have to be computed numerically. In the case of
an homogeneous mediums, expressions in table 4.1 can be used [Berkhout, 1982].

In table 4.1, r describes the distance between source and receiver, φ represents the
angle between the source-receiver vector and the z-axis, and k = ω/c is the magni-
tude of the wave-number vector k = (kx, ky, kz) (with c the propagation velocity).

Note that the kz is defined differently for the 2D and 3D cases. In 2D kz =
√
k2 − k2x,

whereas in 3D kz =
√
k2 − k2x − k2y. The function H

(2)
1 is a Hankel function of the

second kind.

Though simple, these expressions can be used to construct approximate propagation
operators (for an inhomogeneous medium) given some NMO velocities. This might
look like a rough approximation to the real propagators, but as we will see in Chapter
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5, for the current work, only this limited knowledge is required. The reasoning
behind this lies in the fact that we will be only interested in removing the phase (or
equivalently, the travel-time) information from selected events.

4.5 The focal transform

In the reminder of this chapter we will assume a given set of propagation operators
W to be known, either as prior information or estimated via the expressions in table
4.1. The user would typically calculate the propagation operators W to match the
most energetic reflectors in the data.3

The focal transform can be separated into two main types of transforms: the single-
level transform and the multi-level transform.

4.5.1 Single-level focal transform

The single-level focal transform can be understood as a redatuming operation to a
given layer. It comprises the propagation of a given wavefield measured at the surface
to given depth level or target layer. In principle, this operation can be loosely seen
as taking the whole acquisition, both sources and receivers into the subsurface up
to a given depth level, and repeating the seismic experiment there (see figure 4.1).
The transform domain here is just the redatumed dataset, and it can be calculated
numerically.

Assuming that P is the dataset to focus and X is the focused dataset (also known
as the focal domain), then the forward focal transform is given by4

X = W∗PWH , (4.5.8)

and the inverse transform is given by

P = WTXW. (4.5.9)

Note that if W and P have the same spectral support (i.e. no frequencies or wave-
numbers are being filtered out by the focusing) then P = WTW∗PWHW = P.

3To match a given W operator with a given reflector response in our dataset we just need to
match the travel-time curves of both events. This can be easily done by matching the velocities
(described by k = ω/c) and reflector depths (given by z) of our operator defined by table 4.1.

4Here we are using the relationship W−1 ≈WH , which follows from the matched-filter approx-
imation in equations 4.2.5 and 4.2.6.
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This implies that the single-level focal transform is fully invertible.5

The single-level focal transform will be used in this thesis to focus the first water
bottom primaries. This is done in order to produce better near-offset interpolations
for the shallow section.

Figure 4.1: The data acquired at the surface (a) is focal-transformed via the application
of the propagation operators related to the first layer. In the transformed dataset (b), the
primary event related with the first layer appears concentrated at t=0. The focal transform
has mapped the information of the first reflection into a compressed event in the transformed
domain. (c) Application of the focal transform related to one particular layer is equivalent
to redatuming the dataset to that layer.

4.5.2 Multi-level focal transform

The multi-level focal transform can be understood as a redatuming operation to a
given set of levels, where the energy from the input data is distributed over this set of
depth levels. Here, we express the input wavefield in terms of a linear combination
of transform domains and propagation operators. Because there are an infinite

5In general P = WT W∗PWHW = ΦT PΦ, where Φ = WHW is the ”resolution function”
[Wapenaar and Berkhout, 1989; Berkhout et al., 2001]. This function provides information about
the bandwidth of the maximum obtainable spatial resolution in the inversion, which can be proven
to be approximately 6/5kmax, with kmax the maximum wavenumber in the data.
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amount of possible decompositions of the input wavefield in terms of the output
variables, typically the output transform domains are calculated via inversion, by
exploiting some additional knowledge or assumption about the focal domains (very
often, sparsity).

Assuming a set of zm (m ∈ [1,M ]) reflectors of interest, we can write the forward
transform to a given layer zm approximately as

Xm ≈W∗
mPWH

m, (4.5.10)

where the approximation stands for the fact that each Xm needs to be calculated
from inversion (we will do this later by finding the set of Xm values that minimize
the functional given by equation 5.2.3).

The inverse transform can be deduced easily from the condition that all the focal
transforms must add up to the original data

P =

M∑
m=1

WT
mXmWm. (4.5.11)

Actually, given a set of Wm operators, this expression can also be considered the
definition of the multi-level focal transform.

Figure 4.2 depicts the decomposition of a dataset in terms of two focal domains.
Here a sparsity constraint on the focal domains is assumed in order to constraint
the inversion (see also section 5.2). Note that only primaries are used.

4.5.3 Properties and uses

Now we will list some of the most important properties and uses of the focal trans-
form.

[1] Event compression: Reflection events, specifically in the shallow part of the
data can be neatly compressed with the focal domain. A single element in the
focal domain maps to a full reflection event (a difractor response) in the direct
domain. The AVO behavior is then contained in the event tails. Figure 4.3
compares the focal transform with other types of transforms.

[2] Robustness: The focal transform is robust against focusing velocity errors.
This is show in figure 4.4, in which the focusing velocity is perturbed and the
resulting error in the data reconstruction is calculated.
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Figure 4.2: Schematic representation of the decomposition of the primary dataset generated
by figure 1.4 in terms of two focal domains. Sparsity is assumed when calculating the shown
focal domains. Here P represent the data, W1,W2 the propagation operators and X1,X2

the focal domains. Each panel shows one column of the corresponding matrix in the x-t
domain.

[3] Redatuming : As discussed above, the focal transform can be used for redatum-
ing up to a given target layer. A muting line needs to be imposed to eliminate
possible anti-casual events or any other form of undesired energy (see figure
4.1).

[4] ω−kx filtering : The focal transform, if used in a focusing/defocussing manner
(i.e. apply the forward transform and then the inverse), acts as a dip-filter,
with the propagation velocity providing the ”cutting-line” in the ω−kx domain
(see figures 4.5 and 4.6). This property might be important when designing
propagation operators, as the ω − kx filtering might be undesired.

[5] Other uses: Due to the previously mentioned properties, the focal trans-
form can be used for many other purposes, including: interpolation ([Kutscha
and Verschuur, 2012]), deblending ([Kontakis and Verschuur, 2006]), denoising
(from the ω− kx filtering), and also as a tool for primary/multiple separation.
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Figure 4.3: Schematic comparison between some of the major transform domains used in
the seismic literature for data reconstruction. A comparison is done between the different
transform with respect to the amount of compression that they have and with respect to
the a priori wavefield information they require. The compression can be understood as the
amount of parameters needed to describe a given dataset in the transform domain. The
smaller, the more compressed. The a priori information is the information that we need
to include in order to carry the transform, and is not directly contained in the data (e.g.
NMO times and velocities).

Figure 4.4: Reconstruction error on a simple two-layer example (figure 4.1) as a function
of the associated focal operator velocity. The true velocity c = 1500m/s is shown in the
dotted line. As we can see, errors in the operator propagation velocity do not produce big
errors in the reconstruction estimates. The higher velocities tend to be more sensitive than
the lower velocities, due to the mentioned ω − kx filtering effect.
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Figure 4.5: ω − kx filtering via the focal domain. (a) Input ω − kx spectra with a 10%
noise level and (b) ω−kx of the input after applying the forward single-level focal tranform
followed by its inverse tranform. As we can see a large amout of the initial noise has been
removed. The propagation velocity of the W operators here is choosen so that it corresponds
to the minimum velocity in the data.

Figure 4.6: ω − kx filtering via the focal domain. (a) ω − kx spectra of dataset with a 1:3
receiver under-sampling factor and (b) ω−kx spectra of the input after applying the forward
single-level focal transform followed by its inverse transform. As we can see a large amount
of the initial noise has been removed. The propagation velocity of the W operators here
is chosen so that it corresponds to the minimum velocity in the data. The sampling gaps
(regular undersampling) in the x− t domain map to blending noise in the ω − kx domain,
removing the blending noise produces interpolation (however, there will be aliasing artefacts
at the higher frequencies).
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Focal Closed-Loop SRME

In this chapter we will introduce an extension of the Closed-Loop SRME algorithm
presented in the previous chapter to include extended data interpolation capabilities.
We will re-parameterize the CL-SRME algorithm using the focal transform in order
to use some its interpolation capabilities. We will illustrate the theory with some
synthetic and field data examples.

5.1 Introduction

In order to use CL-SRME to accurately predict multiples in a coarsely sampled
dataset (e.g. for 3D application) a new parameterization must be adopted to allow
CL-SRME to efficiently reconstruct data over large gaps. In our new approach we
will use the focal transform [Berkhout and Verschuur, 2006; Kutscha et al., 2010;
Kutscha and Verschuur, 2012], which aims at focusing primary reflections into lo-
calized events. The focal domain can compress the primary energy, a property that
will be useful when separating primary signals from under-sampling noise in the
focal domain. A sparse norm regularization is used to remove the under-sampling
noise from the estimations and to eliminate the redundancy in the parameterization.
Note that the multi-level focal transform is a redundant parameterization because
every focal domain is as big as the input data. This implies that in a N -level fo-
cal transform, the number of inversion parameters in actually N times larger than
the number of measurement points in the input dataset. This redundancy can be
removed by applying an extra constraint.

Other parameterizations using the curvelet transform [Candes et al., 2006; Herrmann
et al., 2007, 2008; Herrmann and Verschuur, 2008] or the wavelet transform [Liu et
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al., 1995] are also possible candidates for a sparse representation of the seismic data.
Our choice of the focal transform is justified by the fact that, due to its focusing
characteristics, the focal transform is able to compress the energy of highly curved
events into localized events, making it ideal for shallow water layer applications,
where the events to reconstruct are strongly curved in the near offsets. For deeper
data and flatter events, other parameterizations like curvelets or linear Radon might
become more beneficial.

In the following sections we will provide some theoretical explanations along with
some practical 2D examples to explain the CL-SRME algorithm including the focal
domain parameterization. Special attention will be given to near-offset reconstruc-
tion in shallow-water environments.

5.2 Focal Closed-Loop SRME

Closed-Loop SRME proposes an inversion-based method to obtain the primary im-
pulse response P0(ω) from the measured data P(ω) in a fully data-driven manner.

The strategy is to build an objective function J = J(P̂0, Â) that is minimized when

the parameter estimates (P̂0, Â) accurately describe the input dataset P. Here the

symbols (P̂0, Â) represent the estimates of the true parameters (P0, A). A sparsity
constraint LS on the primaries can be added to the process to ensure the minimum
amount of multiple leakage in the estimates. Note that this constraint must be ap-
plied in the time domain. Using the Frobenious L2 norm together with the sparsity
promoting norm LS (yet to be defined) we can express J as

J =
∑
ω

||P− P̂0(I + ÂP)||2 + λLS(P̂0), (5.2.1)

where each data matrix contains one frequency component and LS acts over the
full data-cube of P̂0 (see figure 2.1). Using J in a least-squares iterative inversion
procedure, CL-SRME aims to estimate the primary wavefield P0 by a large scale
inversion in which the inversion parameters Â and P̂0 are estimated such that the
input data P is explained. In this way the multiples help to estimate the primaries.
Note that CL-SRME given by equation 5.2.1 will describe exactly the same problem
as traditional SRME under the condition LS = L2, where the L2 term represents
the minimum-energy condition over the primaries. In that case, both algorithms
tend to converge to the same solution. We will describe LS later in this chapter.1

In order to use CL-SRME to remove multiples from datasets with severe under-
sampling (which is typical for 3D geometries), we look for a way to very effectively

1As we will see in equation 5.2.3, LS(P̂0) =
∑

m ||x̂m||S . This term applies a sparsity con-
straint on the focal domains of the primaries x̂m. The terms x̂m contain the primary information
represented in a sparse domain.
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parameterize our primaries, such that both data reconstruction and multiple re-
moval are achieved. Our goal is to use CL-SRME to both remove the multiples and
reconstruct big portions of missing data. In order to create a proper reconstruction
algorithm, the following conditions must be met:

[1] The primary wavefield must be represented in a transform domain with the
smallest possible number of non-zero transform parameters, such that their
information is compressed and efficiently represented. Signals arising from
multiple reflections do not need to be represented in this way, as they simply
follow any parameterization of the primaries P0 via P0AP. Typically, the
data gaps are mapped to artefacts in the transform domain. Due to their lack
of coherency, these artefacts are often poorly compressed and are usually seen
as aliasing noise in the transform domain.

[2] A parameter selection method in the transform domain must be implemented
to separate the parameters representing the primary signals from the param-
eters accounting for the aliasing noise. Depending on the geometry of the
transform domain these methods might vary, where typical examples might
be: picking, thresholding, regularization, etc.

To fulfill the first condition we propose the use of the focal transform [Berkhout
and Verschuur, 2006; Kutscha et al., 2010; Kutscha and Verschuur, 2012; Lopez and
Verschuur, 2013] applied to the primary data. In this description, we will make use
of some rough NMO-velocity information to create propagation operators W that
will allow us to back-propagate the wavefields. If we select these operators to take
the reflected energy back to where it came from (i.e. a strongly reflective layer), then
the scattered energy will be focused in one small event in time and space. Focusing
brings strong compression and coherency in the data, in such a way that it will easily
allow reconstruction over large data gaps.

For the multi-level focal transform we consider the M strongest reflectors in the
data and extract their approximate RMS velocities. Then, we construct a set of
propagation operators from the surface to the selected reflectors. These operators
have no need to be exact, as they are expected to provide only an approximation of
the travel time information in our data. The set of operators for the whole seismic
experiment are written as {Wm}m∈[1,M ], and are expected to extrapolate the data
from the surface to a set of depth levels {zm}m∈[1,M ]. These Wm will be later used

to parameterize the primary estimates P̂0 into a set of focal domains X̂m such that

P̂0 =

M∑
m=1

WT
mX̂mWm. (5.2.2)

Note that each focal domain X̂m represents a full data volume (sources and re-
ceivers) for one frequency component. Thus the focal transform is redundant. The



52 Focal Closed-Loop SRME

relationship between the X̂m term of equation 5.2.2 an the X̂0 in EPSI is given by
X̂0S =

∑M
m=1 WT

mX̂mWm. So actually X̂0 can be interpreted as a special case of
equation 5.2.2 in which M = 1, the source wavelet is a Dirac delta function and the
propagation operators are chosen to be matrix identities (target propagation level
at the surface).

Despite their similar notation, the X̂m term of equation 5.2.2 is in principle not di-
rectly related with the X̂0 in EPSI (which represents the primary impulse response).

To fulfill the second condition above we require a method to eliminate the aliasing
noise from the transform domains X̂m. In addition, with such a condition, the
redundancy in the transform would be removed (e.g. non-sparse representations of
events will be removed/attenuated to favor the sparser, and typically more unique,
representations). We will use a sparsity-promoting regularization norm ||·||S applied

to the focal domains X̂m to do this. With this extra constraint we drive the algorithm
towards a sparse representation of the focal domains. This condition will remove the
energy from the aliasing artefacts to concentrate it in the main X̂m primary events,
thus obtaining a fully sampled representation of P̂0 via equation 5.2.2.

Using equations 5.2.1 and 5.2.2, the current algorithm can be described by minimiz-
ing the following objective function:

J = J (LS) + J (reg) (5.2.3)

=
∑
ω

||P−
M∑
m=1

WT
mX̂mWmQ||2 + λ

∑
m

||x̂m||S ,

with

Q = I + ÂP, (5.2.4)

where x̂m is the inverse Fourier transform of the data-cube2 of X̂m (see figure 2.1)
and λ is a user-defined regularization constant (typically λ ≈ 10−2). The norm
|| · ||S represents any sparsity-promoting norm of preference (e.g. L1), which applies
to every element in x̂m. Note that the regularization norm is applied in the time
domain, so sparsity is enforced in that domain.

The former equations represent the forward model for the unknown parameters
(X̂m, Â), such that J = J(X̂m, Â). Using gradient-based inversion we can find a

set of model parameters (X̂m, Â) that minimizes our objective function J .

The inversion updates for the focal domains X̂m are given by ∆X̂
(LS)
m = −∇X̂m

J (LS)

and ∆x̂
(reg)
m = −∇x̂m

J (reg), which leads to (proof in appendix B.1.2):

2This means that the quantity x̂m is actually a 3D matrix.
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∆Xm = ∆X(LS)
m + ∆X(reg)

m , (5.2.5)

in which ∆X
(LS)
m and ∆x

(reg)
m are given by

∆X(LS)
m = 2W∗

m(P− P̂0Q)QHWH
m (5.2.6)

and

∆x(reg)
m = −λ∇x̂m

||x̂m||S . (5.2.7)

Here ∆Xm is the total m−focal domain update, ∆X
(LS)
m is the portion of ∆Xm

associated to the least-squares part of J and ∆X
(reg)
m (the Fourier transform of the

data-cube of ∆x̂
(reg)
m ) is the portion of ∆Xm associated to the regularization part of

J . The super-scripts ·∗ and ·H refer to a complex conjugation and a conjugate trans-

pose operation respectively. Note that in equations 5.2.5, 5.2.6 and 5.2.7, ∆X
(LS)
m

and ∆X
(reg)
m are related with ∆Xm via an overall scaling factor λ which controls

the strength of the sparsity regularization.

The updates ∆Xm are used to renew the estimate of Xm in every iteration k via
the recursion formula

X̂(k+1)
m = X̂(k)

m + αm∆X(k)
m , (5.2.8)

where the scaling parameter αm is chosen by a line search such that J(X̂
(k+1)
m ) =

J(X̂
(k)
m +αm∆X

(k)
m ) is minimized. The surface operator Â is strongly dependent on

the estimate of P̂0, so it can be calculated in every iteration directly from the P̂0

estimate by

Â =

{
Â s.t. ||P− P̂0ÂP||2 → min in the early iterations

Â s.t. ||P− P̂0 − P̂0ÂP||2 → min in the rest of the iterations

(5.2.9)

The matching of Â is done in practice via a least-squares adaptive filter. The filter,
which is restricted to be short in time, is found such that the amplitudes of P (or P−
P0) and P̂0ÂP are matched, driving their difference to a minimum [Verschuur and
Berkhout, 1997]. Equation 5.2.9 provides an extra constraint (a-priori knowledge)
and cannot be derived from equation 5.2.1. More about equation 5.2.9 can be found
in section 5.4.
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5.3 Data interpolation

The Focal CL-SRME algorithm is constructed to include data interpolation in its
scheme. Two types of data interpolation are considered (see Chapter 1):

[1] Under-sampling interpolation: This type of interpolation is needed to remove
the aliasing artefacts produced by the data gaps. These artefacts will mainly
map to empty regions in the focal domain and they can be removed by imposing
sparsity in the solutions. Data gaps and non-regular under-sampling can also
be interpolated in a similar fashion. A reconstruction problem in the direct
domain is mapped to a de-noising problem in the focal domain. The de-noising
problem in the focal domain is solved by a sparsity constraint (see figure 5.1).

[2] Near-offset interpolation: This type of interpolation is needed to fill the near-
offset gap and provide a good multiple separation. Its strength lies mainly
in the back-projection of the multiples into the primaries (equation 5.2.6).
The regularization and the compression in the focal domain are then useful
to remove the cross-talk energy and to drive the solution closer to the true
values. Due to the back-projection, we require larger offset coverage compared
to the under-sampling case. Also, due to an initial amplitude difference in
the gradient between the back-propagated traces and the measured traces,
amplitude matching becomes necessary. The matching is done only in the
first iteration to the term [(P − P̂0Q)QH ](1) = P(I + ÂP)H to scale up the
amplitudes of the interpolated traces compared to non-interpolated traces. At
this point, the traces to interpolate are already roughly filled by the back-
projection mechanisim shown in equation 5.2.6 (see figure 5.3).

To interpolate the missing data, we replace the empty traces in our input dataset P
with the interpolated traces in out modeled dataset. The replacement is done only
for the traces to interpoalte, the measured traces are kept intact. The residual in
the interpolated traces is set to zero by construction via the following condition:

P′′ = (

M∑
m=1

WT
mX̂mWmQ)′′; (5.3.10)

where P′′ is the data to reconstruct and the double prime in the right hand side
means selecting only the data points corresponding to P′′ (missing data positions).

Equation 5.3.10 uses the prediction equation 3.2.1 to produce estimates of the miss-
ing data P′′ given the knowledge of the fully sampled primary wavefield P̂0. Note
that the relationship between P and P0 (equation 3.2.1), implies that the knowledge
of P0 and A fully determines P. This means that if we are able to reconstruct the
missing data in P̂0 (which we do via a sparsity constraint on the focal domain), then
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Figure 5.1: Reconstruction in Focal CL-SRME is achieved by using the focal domain to
transform an under-sampling problem into a de-noising problem. The de-noising problem is
solved by imposing a sparsity-promoting regularization in the inversion. (Left) focal domain
from under-sampled data, (right) focal domain from fully-sampled data. The dataset in the
right has all the noise removed so its fully sampled.

we automatically reconstruct P via equation 5.3.10. In fact, it can be shown that
P can be written fully in terms of P0 and A via a scattering series as shown by
equation 2.3.6. Note that equation 5.3.10 refers only to the missing data positions
in the input dataset, such that the original data P′ is kept intact.

Our initial guess for P̂
(0)
0 , Â(0), P′′(0), together with equations 5.2.5, 5.2.6, 5.2.7,

5.2.8, 5.2.9 and 5.3.10, constitute the essence of the proposed joint multiple predic-
tion and interpolation method.

In order to obtain a first interferometric estimate of missing data (especially in the

near-offsets), it is important to start the inversion with an initial Â value such that
the first P0 estimate contains dominant back-projections of the multiples into the
primaries. In the near-offset regions, the back-projection mechanism of equation

5.2.6 is the main mechanism driving the solutions. We will assume P̂
(0)
0 = 0, Â(0) =

Ainitial and P′′(0) = 0 at the beginning of the algorithm. The Ainitial term is
calculated using equation 5.2.9 and P̂0 = P.

Figure 5.2 depicts the current algorithm by showing the data to interpolate P to-
gether with the focal domain of its first primary X̂1 (only one focal domain in this
example). As we can see, as the algorithm progresses, the aliasing noise disappears,

P gets reconstructed and the multiple energy is eliminated from X̂1.



56 Focal Closed-Loop SRME

Figure 5.2: Focal CL-SRME algorithm used for under-sampling reconstruction over a 1:3
under-sampling ratio. The model used to generate the data is the same one as in figure 4.1.
The interpolated data P is shown next to the focal domain of its first primary X̂1 (only one

focal domain used here) for several iterations. At the beginning (a) P(0), (b) X̂
(0)
1 , after the

first iteration (c) P(1), (d) X̂
(1)
1 and after the 30th iteration (e) P(30), (f) X̂

(30)
1 . As the

algorithm progresses, the aliasing noise disappears, P gets reconstructed and the multiple
energy is eliminated from X̂1.
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Figure 5.3: The back-projected energy of the multiples can be used to interpolate missing
near-offset data. However, in order to do so, it is necessary to balance the amplitude
difference between the present and the missing data in the first iteration gradient. Here,
the defocused 1st iteration gradient [(P − P̂0Q)QH ](1) is shown (a) before and (b) after
amplitude matching. The interpolation will be improved with iterations until arriving to (c)
the final estimate of the data. The velocity model used here is shown figure 4.1. In this
example, a 320m near-offset gap over a 0.15s time range was interpolated.

5.4 Strategy for estimating Â

Equation 5.2.9 uses the minimum primary energy constraint [Verschuur and Berkhout,

1997] in the early iterations to estimate A (assuming Â = ÂI). This is necessary
to avoid the trivial solution given by Â = 0 and P0 = P. It is also necessary to
maintain the minimum energy constraint until the sparsity starts playing a relevant
role in the updates. Typically, the constraint can be dropped after

√
J has decayed

to 20% of its value at the initial guess.

Dropping the minimum energy criterium after some iterations is useful for the fol-
lowing reasons:

[1] Its theoretically more accuarate to minimize the residual P−P̂0−P̂0ÂP rather

than the estimated primaries P− P̂0ÂP.

[2] We can better resolve the residual if we drop the minimum energy criterium.
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In figure 5.4 we can see the comparison between the inversion residuals obtained by
starting with the minimum energy constraint and then relaxing it, and the residual
obtained by keeping the minimum energy constraint throughout the entire inver-
sion. The normalized input data is also shown. A lower residual is obtained when
we switch off the minimum energy constraint after a given number of iterations.
The switch-off strategy seems to perform better for this and most of the observed
examples.

5.5 Algorithm outline

We can outline the focal CL-SRME algorithm by resuming its main steps. The
iteration index has been omitted for simplicity. The M variable represents the
desired number of focal domains. The F operator represents a Fourier Transform
mapping time to frequency coordinates. Here P is the total data, P′ is the input
data (with zeros in the missing-data positions) and P′′ is the interpolated data (with
zeros in the measured data positions).

Focal Closed-Loop SRME algorithm

1. Calculate the Wm operators using NMO times and velocities.

2. X̂m ⇐ 0, P⇐ P′

3. Calculate Â via an optimum filter such that ||P−PÂP||2 → min

4. while (iter ≤ maxIterations) do

5. If iter = 1 then apply near-offset amplitude matching

6. while (m ≤M) do

7. ∆X
(LS)
m ⇐ 2W∗

m(P− P̂0 − P̂0ÂP)(I + ÂP)HWH
m

8. ∆X
(reg)
m ⇐ F{−λ∇x̂m

||x̂m||S} (Appendix C)

9. ∆Xm ⇐ ∆X
(LS)
m + ∆X

(reg)
m

10. X̂m ⇐ X̂m + αm∆Xm (αm s.t. J −→ min, Appendix B.2)

11. end while

12. P̂0 ⇐
∑M
m=1 WT

mX̂mWm

13. Find Â according to equation 5.2.9

14. P′′ ⇐ (P̂0 + P̂0ÂP)′′

15. P⇐ P′ + P′′

16. end while

5.6 Discussion

To allow efficient reconstruction, the chosen parameterization must represent the
wavefields with the smallest amount of non-zero parameters possible. Reconstruc-
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Figure 5.4: Spectral amplitudes of the central traces in the input data (black), the residual
obtained by switching off the minimum energy constraint after a given number of iterations
(red), and the residual obtained by keeping the minimum energy constraint for all iterations
(blue). To avoid interference effects, spectral amplitudes are calculated over a set of central
traces rather than a single trace. We computed these results using the dataset presented in
figure 1.5a.

tion is typically achieved after a thresholding/regularization process in which the
under-sampling artefacts are taken out of the estimates, leaving only the meaningful
parameters to describe the data. As a result, the data then becomes fully sampled
after the inverse transformation. Note that this type of reconstruction can be used
in both deep and shallow data reconstruction. The focal transform is especially
suited for shallow reflectors, as typically these event are strongly curved and can be
efficiently represented in the focal domain. Other parameterizations like curvelets
[Lin and Herrmann, 2009], Fourier [Zwartjes and Gisolf, 2006] or Linear Radon [Trad
et al., 2003] transforms are also possible, but provide poorer data compression when
applied to highly-curved events (e.g. around the near-offsets with shallow water
data).

In terms of computation cost, the Focal CL-SRME algorithm can be described as
relatively fast, with typically ∼ 30 iterations needed for convergence. The speed is in
principle directly affected by the number of focal domains used, but this is relaxed by
the fact that typically we don’t require many focal domains to achieve a good result
(1 to 3 focal domains are enough in most cases). When a single focal domain is used,
the current algorithm requires at least 6 data products per iteration, SRME on the
other hand, requires only one data product per iteration. A larger number of data
products is a consecuence of a more complex description, involving both correlations



60 Focal Closed-Loop SRME

and convolutions in the updates, together with the focus/defocus steps. With the
same settings, the algorithm seems to be around 10 times faster than EPSI. This
is due to the fact that EPSI requires a top-down approach in which the strongest
primaries are explained first. This process typically involves many more iterations
(∼ 100).

Though important in 2D, we expect the former method to have a stronger impact in
3D, as typically it is there where the data interpolation faces most of its challenges.
However, practical problems must be faced when handling 3D datasets, the most
important of them being the large data volumes present, and the fact that in Focal
CL-SRME we require to store in memory several datasets with dense sampling (i.e.
missing traces replaced by traces filled with zeros). A practical strategy to circum-
vent this issue would be to use an hybrid approach, such that the near-offsets in
the primaries are estimated by the accurate (but more expensive) Focal CL-SRME,
and the far offsets are estimated by a less accurate (but lighter) differential NMO
interpolation method. This idea will be developed in Chapters 7 and 8.

Note that the Focal CL-SRME algorithm is built to work in under-sampling scenarios
in which algorithms like EPSI would not be applicable (due to the large amounts of
missing data). Rather than competing with EPSI, we propose the Focal CL-SRME
algorithm as a method complementary to EPSI, to be used whenever EPSI fails to
apply properly.

Focal CL-SRME reduces to the previosly introduced CL-SRME if we choose only
one focal domain with W = WH = I.

5.7 Conclusions

In this chapter we have presented the theoretical basis of the Focal CL-SRME
method. This method incorporates data interpolation in the multiple prediction
process. Its most important achievement being the capacity of back-projecting the
multiples into the primaries to reconstruct missing information in the input dataset.
Examples of this algorithm will be presented in the next chapter.



6

Results of the 2D algorithm

We have designed two experiments to test both the under-sampling and the near-offset
interpolation capabilities of the present algorithm in the 2D case. Furthermore, we
show results for 2D field data.

6.1 Near-offset interpolation

6.1.1 30m sea-floor salt model example

In order to account for the near-offset reconstruction capabilities of the present
algorithm, a synthetic 2D model with a shallow sea-floor at 30m (figure 6.1) is used
for the generation of the synthetic data via an acoustic finite difference algorithm.
We remove entirely the information of the shallow reflector up to 0.18s, simulating
the situation that, in practice, for such a shallow water hardly any information
from the water bottom reflection is measured. We will concentrate our interpolation
efforts in the shallower zone of the data (early times), as the deeper parts of the
data can be accurately interpolated with other methods. Note that with a 30m
sea-floor depth, NMO-based interpolation methods would suffer from strong wavelet
stretching, rendering the interpolation very inaccurate.

The results of the Focal CL-SRME algorithm applied to this dataset are displayed in
figure 6.3. As we can see, the Focal CL-SRME algorithm reconstructed the shallow
reflector information, providing also accurate multiple separation in the deeper parts
of the data. Only one focal domain was used here for inversion (centered in the first
reflector and based on NMO parameters). The ability of mapping the multiples into
the primaries inherent in CL-SRME, together with the sparsity promoting regular-
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ization in a compressed domain, are the keys for large-gap near-offset reconstruction
in this example.

Figure 6.1: Velocity model used for the synthetic data generation in the 30m sea-floor salt-
model example.

6.1.2 50m sea-floor salt model example

Next we will address the synthetic model shown in figure 6.2, with a shallow reflector
at 50m. We remove entirely the information of the shallow reflector, eliminating the
information in all offsets. In practice this is equivalent to not measuring the first
reflector primary at all. Again, traditional methods based on NMO or Radon recon-
struction are impossible to apply in these circumstances. The Focal CL-SRME algo-
rithm is used for primary estimation and near-offset reconstruction of this dataset.
The results are shown in figure 6.4.

Figure 6.4a depicts the input dataset and figures 6.4b and 6.4c depict the recon-
structed dataset and the estimated primaries. As we can see, the shallow event
has been reconstructed almost completely, and its associated multiples are largely
removed from the estimations. Some multiple leakage is still observed in the esti-
mates, but these effects are small if we consider the amount of interpolation that
had to be done. Note, in particular, that the multiples in the deeper regions of the
data are well removed.

6.1.3 100m sea-floor field data example

In this section we will show an example of the Focal CL-SRME algorithm applied
to a North-Sea dataset (courtesy of PGS). The data is taken from a 2D line from
which a subset is selected with 201 receivers and 201 sources, with a 12.5m receiver-
spacing. By applying reciprocity a split-spread dataset is obtained. Note that the
same dataset has also been used by Baardman et al. [2010]. In this example we use
Focal CL-SRME to generate a near-offset interpolation over the shallow part of the
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Figure 6.2: Velocity model used for the synthetic data generation in the 50m sea-floor salt-
model example.

data. A box of 375m in the near-offset and 0.24s in time will be interpolated from
the data. Other methods can be used to interpolate the data at the deeper times.
A dense grid of 300 sources and receivers is used.

Figure 6.5a shows the input dataset and figures 6.5b and 6.5c display the recon-
structed dataset and the estimated primaries. As we can see, the shallow event has
been reconstructed almost completely, and its associated multiples are largely re-
moved from the estimations. Again, the multiples in the deeper regions of the data
are largely removed. Only one focal domain was used here for inversion (centered
around the first reflector and based uniquely on NMO parameters). A zoom in the
shallow section can be seen in figure 6.6.
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6.1.4 Variation of the sea-floor depth

In order to better account for the differences in primary estimation of SRME (with
initial interpolation) and Focal CL-SRME, a new experiment is done for many mod-
els with several sea-floor depths and near-offset gaps. This, time, however we will
keep part of the input offset range and we will interpolate only up to 0.32s, such that
we focus our interpolation efforts in the shallow part of the data. We will generate
the synthetic data using the model shown in figure 6.2. In each experiment the
difference between the true primaries and the estimated primaries is computed and
the relative energy error E is calculated via

E =

∑
(P

(true)
0 − P (estimated)

0 )2∑
(P

(true)
0 )2

× 100%. (6.1.1)

The results are shown in figure 6.8. As expected, errors in both algorithms tend
to become larger when the water bottom becomes shallower. The Focal CL-SRME
tends to produce always better primary estimations, with less residuals for all wa-
ter depth values. The difference between the primary estimates of the CL-SRME
algorithm and the traditional SRME is larger for shallower models (where more in-
terpolation power is needed) and becomes less important for deeper models (where
the initial interpolation is accurate enough). Overall, the Focal CL-SRME algorithm
appears to better handle shallow data. Small differences in parameter settings (of
both algorithms) generate some of the variations observed in the shallower depths
in figure 6.8.

6.2 Under-sampling interpolation

Here we will use again the North-sea dataset from section 6.1.3. The data is taken
from a 2D line from which a subset is selected with 201 receivers and 201 sources,
with a 12.5m receiver-spacing. By applying reciprocity a split-spread dataset is
obtained. We have chosen sources to have a 1:5 irregular under-sampling ratio in
the sources. Then, a coarse NMO-based shot interpolation is applied to the data
as a pre-processing step to reduce the aliasing artifacts in the focal domain. The
initial interpolation does not have to be accurate, as the interpolation errors will
be mapped to aliasing artifacts in the focal domain, which will be removed later on
by the sparsity constraint. In this example we will use three focal operators which
are chosen to focus the energy of the three most prominent reflectors in the data.
The operators are calculated using the stacking velocities of the reflectors of interest
in the data, and assuming an homogeneous propagation medium for each operator.
The NMO times and velocities used here are tNMO=0.16, 0.52, 0.96 seconds and
vNMO=1500, 1600, 1800m/s. Besides the stacking velocities and the apex times of
the events of interest, no other model information is used to generate the operators.
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Figure 6.8: Relative energy error of SRME with interpolation (red) and Focal CL-SRME
(black) for different sea-floor depths. With (a) a 64m near-offset gap, (b) a 80m near-offset
gap and (c) a 96m near-offset gap.

Figure 6.9 shows the results of applying the Focal CL-SRME algorithm to this
dataset. Because the interpolation is done along the source coordinate, results are
presented in the common receiver gather domain. The input data is shown in figure
6.9a. The shot-interpolated data, primaries and multiples (at the first iteration)
are shown in figures 6.9b, 6.9c and 6.9d. The shot-interpolated data, primaries and
multiples (at the 30th iteration) are shown in figures 6.9e, 6.9f and 6.9g.

As we can see from figure 6.9, full data reconstruction has been achieved. By com-
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paring the input (figure 6.9a) and the output (figure 6.9e) datasets we can see the
effect of the interpolation in filling up the missing data. By comparing the first and
last iterations in the data, primaries and multiples, we can see how the amplitude er-
rors get healed, together with some phase errors. By comparing figures 6.9c and 6.9f
we can also see the multiple energy eliminated from the primary recordings. Note
that we have achieved a reasonably accurate primary-multiple separation, even in
the case of a very coarsely-sampled input dataset. By comparing the input dataset
(figure 6.9a) with the output primaries (figure 6.9f) we can note the appearance of
two weak primaries in the deep part of the recordings (between 1.4 and 1.8 seconds),
which are hardly visible in the input data. However, due to the huge interpolation
effort in this example, some minor aliasing/phase artifacts are still visible in the
output data, especially in the top part.

Figure 6.10 shows the associated primary focal domains, used for obtaining the re-
sults in figure 6.9. In this example three operators are chosen to focus the main
reflectors, thus compressing the largest amount of energy possible. The associated
energy of these events maps at zero time, while the other events map to either neg-
ative or positive times. The following remarks can be deduced from figure 6.10: (1)
The initial redundancy in the focal domains has largely reduced. This is impor-
tant for the uniqueness of the parameterization, as initially one single focal domain
contains the information of the entire dataset. The former can be seen by events
disappearing from one focal domain, as they are more effectively represented in an-
other focal domain. (2) The aliasing artifacts produced by the under-sampling have
been largely removed. This will produce data reconstruction in the original domain.
The interpolation errors (due to un-physical data) in the initial primaries (figure
6.9c), might be difficult to separate from the data in the original domain. However,
they become easy to separate in the focal domain (e.g. figure 6.10b) as they appear
as aliasing artifacts.

The kx-ω domain plots of the input and reconstructed data are presented in figure
6.11. As we can see the undersampling in the x-t domain is mapped to blending
noise in the kx-ω domain. After inversion the full reconstruction of the kx-ω response
is obtained with no visible presence of any remaining aliasing artifacts.
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Figure 6.9: Focal CL-SRME interpolation in a North-Sea dataset with a 1:5 shot under-
sampling ratio. A common-receiver gather is shown. Here we show the (a) original under-
sampled data, together with the first iteration (b) reconstructed data, (c) primaries and (d)
multiples, and the 30th iteration (e) reconstructed data, (f) primaries and (g) multiples.
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Figure 6.10: Focal domains of the primaries associated with the results in figure 6.9. Figures
(a),(b) and (c) represent the first iteration primary focal domains. Figures (d), (e) and (f)
represent the 30th iteration primary focal domains. A common-receiver gather is shown.
Some important differences can be appreciated between the upper panel (a-c) and the lower
panel (d-f): (1) the elimination of the aliasing artefacts (e.g. diffraction-like events around
t = 0), (2) the elimination of the multiples (events completely missing in the lower panel)
and (3) the sparse representation of the primaries (events present in both panels but sparsely
represented in the lower one).
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Figure 6.11: kx-ω domains of (a) the input under-sampled data and (b) the output recon-
structed data. Note that a 1:5 undersampling ratio in the sources was applied to the input.
Both figures have the same color scale.
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3D Focal Closed-Loop SRME

In this chapter we will present the 3D Focal CL-SRME algorithm. The fundamental
theory will still be the same as the 2D algorithm developed in Chapter 7, but now
practical considerations (regarding the data volume) will produce a different process-
ing strategy. We will start with an introduction and a literature review on the field
of 3D multiple separation. Then we will introduce the GSMP (’Generalized Surface
Multiple Prediction’) method. This method will allow the efficient calculation of large
matrix products. Two types of data products will be discussed, that play an important
role: the ’correlation product’ and the ’convolution product’. Once all tools are in
place, we can describe our scheme for the 3D Focal CL-SRME method. Without any
loss of generality, we will make constant emphasis on the shallow reflector geologies,
as this ones are the most relevant for the current work.

7.1 Introduction

In previous chapters we have introduced the 2D Focal CL-SRME algorithm. The
main limitation of the former approach is the fact that it requires dense source and
receiver coverage, with missing traces replaced by zero traces. Due to the huge data
volumes in typical 3D acquisitions, this requirement becomes cumbersome to fulfil
in practice. In order to overcome this issue we introduce here the 3D Focal CL-
SRME approach. In this new approach we combine the ideas used for 3D SRME
with the Focal CL-SRME method. We use the 3D SRME methodology to calculate
the necessary data products within the Focal CL-SRME scheme, technology that is
used to interpolate the sensitive near-offset information. Thus, near-offset multiple
prediction is done mainly by Focal CL-SRME interpolation while far-offset predic-
tion is based mainly on on-the-fly differential NMO (DNMO) interpolation. The
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result is an algorithm with the flexibility of 3D SRME and the built-in interpolation
capabilities of Focal CL-SRME.

7.2 Literature review of 3D multiple elimination

With the introduction of surface related multiple attenuation (SRME) [Berkhout,
1982; Verschuur et al., 1992; Fokkema and van den Berg, 1993; Berkhout and Ver-
schuur, 1997; Weglein et al., 1997] it became possible to estimate surface multiples
on a fully data-driven manner, for both 2D and 3D datasets. The 3D version of the
SRME algorithm would then follow the exact same equations as the 2D version, but
with extended data matrices [Kinneging et al., 1989]. The ideal 3D SRME algorithm,
however, posed a problem, as it required a dense coverage of sources and receivers
along the sampled areas. This was impossible due to economical constraints, making
data interpolation (prior to the application of SRME) a necessity.

The problem was resolved with the introduction of the 3D general surface multi-
ple prediction (GSMP) method [Bisley et al., 2005; Kurin et al., 2006; Dragoset et
al., 2008]. This method avoids any initial interpolation of the data before the pre-
diction process (thus keeping the data volume within acceptable bounds), choosing
instead an on-the-fly interpolation approach in which the multiples are predicted
using contributions coming from differential NMO-interpolated traces [van Dedem
and Verschuur, 1998]. The interpolation is done in a trace-by-trace fashion, such
that only the strongest contributing traces are convolved to produce the multiple
prediction result. Because there are no requirements on the ordering of the data
structure, this type of approach also extended the SRME algorithm to different
types of acquisition geometries.

Though very successful in a variety of scenarios, the 3D SRME method with interpo-
lation [van Dedem and Verschuur, 1998] also presents some practical short-comings.
Due to its reliance on DNMO interpolation, the method is sensitive to missing near-
offset data, especially in the case of shallow reflections. In that case, the event’s
DNMO interpolation becomes inaccurate, and after convolution, these inaccuracies
are mapped to wrong multiple (and primary) estimations. Additional errors in the
method are also brought by errors in the interpolation itself, which assumes a later-
ally invariant medium, and presents known deficiencies when interpolating reflection
data from dipping reflectors or complex structures.

To overcome the difficulties in near-offset interpolation when combined with multiple
estimation, the Focal CL-SRME algorithm was proposed (chapter 5). In this scheme
Closed-Loop SRME (chapter 3) is used to generate the primary predictions, such
that, in combination with the previously introduced focal domain parameterization
(chapter 4) we produce wave-equation-consistent data interpolation. The resulting
algorithm has the capacity of performing simultaneous multiple prediction and data
interpolation. The main advantage of this algorithm is the fact that interpolation
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in the near-offsets is done by back-projection of the multiples into the primaries,
being therefore more amplitude-consistent than other less physical methods. By
being wave-equation consistent, the algorithm also has the capacity of interpolating
missing data over larger data gaps with better precision than the traditional interpo-
lation. The disadvantage, however, is the fact that it required an input data matrix
with fully-sampled source and receiver positions (with missing traces replaced by
zero traces), thus making it cumbersome to apply to a real 3D dataset.

Here we introduce an extension of the Focal CL-SRME algorithm to make it fea-
sible in practical 3D scenarios. We use the GSMP technology to generalize the
possible acquisition geometries, such that we can generate all the necessary convo-
lution/correlation products even when the sampling is coarse and/or irregular. In
order to provide better interpolation results in the places where it is really needed, we
will use the interpolation of the Focal CL-SRME algorithm for the near-offsets (ac-
curate but computationally expensive), and a DNMO-based on-the-fly interpolation
for the far-offsets (less accurate but computationally inexpensive). This extension
will allow the estimation of primaries under generalized 3D acquisition geometries
in a computationally feasible way.

7.3 3D multiple estimation

The earth is a 3D environment, therefore the structural changes in the earth will
also have a 3D geometry. This implies that the primaries and the multiples will in
general have 3D propagation paths. In many cases, structural complexities in the
subsurface lead to multiples with propagation paths with bouncing points out of the
source-receiver plane (see figure 7.1). The problem with this type of multiples is
that, in order to be predicted, they require a source and receiver positions around
the bouncing point. These source and receiver combinations would be missing if the
processing is done in a 2D fashion (i.e. using only data along the source-receiver
line) or if there was no data acquired around the bouncing point. Therefore, the
need of a 3D multiple prediction scheme (to account for the geometry) and a fine
areal sampling (to measure all possible bouncing points).

In order to describe multiples in a 3D geometry let’s start with the description in
the 2D discrete situation. Then the multiple wavefield M due to a source at xs and
a receiver at xr can be written as

M(xr, xs, ω) =
∑
xk

R0X0(xr, xk, ω)P (xr, xs, ω) (7.3.1)

where R0 ≈ −1 is the reflectivity of the surface, X0 is the primary impulse response
and P is the up-coming wavefield. We can extend equation 7.3.1 to the 3D case by
adding extra lateral coordinates ys and yr such that
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M(xr, yr, xs, ys, ω) =
∑
xk

∑
yk

R0X0(xr, xk, ω)P (xr, xs, ω), (7.3.2)

which describes a convolution in the spatial coordinates. This process requires fine
sampling in both sources and receivers along the summation surface.

Because in practice a fine sampling in both sources and receivers is never achieved
in 3D acquisition, alternative solutions need to be found to generate the necessary
traces for multiple prediction. In the following section we will discuss one option, the
GSMP method, which we will later incorporate in the 3D Focal CL-SRME scheme.

Figure 7.1: A first order surface-related multiple for a model with a dipping reflector in the
cross-line. The bouncing point in the surface is located outside source-receiver line. This
means that this multiple will not be accurately predicted using a 2D prediction method in
the in-line direction, here a 3D multiple prediction is needed (after Verschuur [2006]).

7.4 The GSMP method

In order to properly discuss the 3D Focal CL-SRME algorithm, the general surface
multiple prediction (GSMP) method [van Dedem and Verschuur, 1998; Bisley et al.,
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2005; Kurin et al., 2006; Dragoset et al., 2008, 2010] must be outlined first.

The GSMP method extends the SRME algorithm to generalized acquisition geome-
tries via on-the-fly DNMO-interpolation for the missing traces in the dataset. In-
stead of trying to change the data to fit the algorithm, GSMP changes the algorithm
to fit the data. In general, the GSMP algorithm presents a way of calculating the
convolution of two large data matrices in a computationally efficient way, given that
the input matrices are sparse wavefields and using the fact that their convolution
represents the sampled version of a Kirchhoff summation.

Given an input dataset, the GSMP algorithm can be described as follows [Dragoset
et al., 2008]:

[1] Input the recorded traces with their corresponding NMO velocities. Compute
midpoint, offset and azimuth of each trace.

[2] Select a target trace and define the aperture of the computational grid for that
trace.

[3] For every grid node in the aperture, use a nearest-neighbor search to select
from the input traces the two best matching traces for that convolution.

[4] Compensate the two selected traces for offset errors using DNMO.

[5] Convolve the two traces and add to the current multiple prediction result.

[6] Go to step 3 until all grid nodes in the aperture are processed.

[7] Go to step 2 until the desired product is calculated for all input traces.

In step 3, the nearest-neighbor search is done by finding the input trace among all
input traces that has minimum error E. Several choices are available for E. A
typical implementation would include a Euclidean norm of the form:

E2 = [Whx(hxD − hxI)]2 + [Why(hyD − hyI)]2 (7.4.3)

+[Wx(xD − xI)]2 + [Wy(yD − yI)]2,

where (hx,hy) and (x,y) represent the two offset and midpoint coordinates respec-
tively. The subscripts D and I refer to the desired and input traces. The W factors
are weights that mediate the relative importance of the different terms in the overall
E value. The stronger the resemblance between the input trace and the desired
trace, the smaller the E value.

A comparison between ideal SRME and GSMP methodologies is given in figure 7.2.
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Figure 7.2: Plan views of ideal 3D SRME and GSMP. a) In ideal 3D SRME, data are
assumed to be completely regular so that the end points of R and S of each target trace
(yellow line) fall on the nodes of a fixed grid oriented in a fixed direction. Each grid node
in the aperture is considered a possible downward reflection point (DRP); There are three
DRP’s shown here, represented by X’s. The contribution of the nth DRP to an MCG is
computed by convolving the corresponding traces RXn and SXn (blue lines), both of which
must exist in the input dataset. b) In GSMP, the aperture grid is redefined for each target
trace, based on its midpoint (yellow circle) and azimuth. The input to GSMP is a non-
regularized, non-interpolated field dataset. Because, in general, the traces RXn and SXn

required for the nth convolution will not exist in the input dataset, a nearest-neighbor search
selects the most suitable alternatives (green lines) from among the traces that are present
(after Dragoset et al. [2010]).

7.5 Generalization of the GSMP product for correlation and con-
volution

Due to the presence of multidimensional convolutions and correlations in the Focal
CL-SRME theory (chapter 5), the construction of such products is necessary in the
GSMP methodology. This implies the generalization of the concept to accommodate
a correlation-type of product.

In 3D SRME this is not necessary as the SRME estimate involves convolution-type
products only. This can be seen directly from the SRME prediction equation

P0 = P−P0AP = P−M, (7.5.4)

where P0 are the primaries, P is the input data, M are the multiples and A is the
surface operator [Berkhout and Verschuur, 1997]. The notation here is the same as
the one used in Berkhout and Verschuur [1997], were the bold quantities refer to
monochromatic data matrices with shot coordinates in their columns and receiver
coordinates in their rows.
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From equation 7.5.4 the multiples at a point (i,j) in the output matrix are given
by [M]ij =

∑
[P0A]ik[P]kj , and the set of contributing traces for each (i,j) trace is

given by1

ConvGather(i,j)(k) = [P0A]ik[P]kj . (7.5.5)

On the other hand, in CL-SRME (and later in its focal version), we estimate P0

via an iterative process such that these primaries P̂0 and their associated multiples
P̂0ÂP explain the input data. This is done by minimizing J = ||P− P̂0− P̂0ÂP||2.
This minimization involves the following update

∆P0 = 2(P− P̂0 − P̂0ÂP)(I + ÂP)H = 2V(I + ÂP)H , (7.5.6)

where V represents the residual data, i.e. the difference between the input data
P and the modeled data P̂0 + P̂0AP. From equation 7.5.6 the set of contributing
traces for each (i,j) trace is given by

CorrGather(i,j)(k) = 2[V]ik[(I + AP)H ]kj , (7.5.7)

which requires a correlation-type product.

In order to extend the GSMP concept to include also correlation, it is necessary to
change the convolution of the traces in step 5 of the previous section for a trace-
by-trace correlation. If a PH product is involved, it is also necessary to transpose
(exchange source and receiver coordinates) the corresponding dataset. The lateral
summation (index k in equations 7.5.6 and 7.5.5) can be done using one grid for the
correlation and another for the convolution as explained in section 7.7.

The result of a convolution PP and a correlation PPH can be seen in figure 7.3, the
velocity model for synthetic data generated in the figure 1.4.

The associated contribution gathers from the datasets shown in figure 7.3 can be
seen in figure 7.4. Only the casual components are kept.

7.6 Focal CL-SRME algorithm in 3D

Though successful in many scenarios, the original CL-SRME algorithm proposed
by Lopez and Verschuur [2015b] has practical limitations when working in realistic
3D datasets. The main problem resides in the fact that, in order to apply the
theory described there, the data must be organized inside a large dense data matrix
[Berkhout, 1982; Kinneging et al., 1989], with the traces to interpolate replaced by

1The ”set of contributing traces” is also known as the multiple contribution gather (MCG).
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Figure 7.3: Shot gathers from different types of products. (a) Input data P, (b) convolution
product PP and (c) correlation product PPH . Only the casual part of the datasets is shown
here.

zeros (or an initial interpolation). Taking into account that the data volume for real
3D acquisitions is generally very large (≈ 10Tb), and that the input data matrix
should be finely sampled, it becomes very unpractical to apply the former method
in 3D, as it would ”blow up” the memory just by creating the necessary matrix to
start the process. We want to generalize the Focal CL-SRME algorithm to account
for sparse trace distribution and generalized acquisition geometries.

In order to circumvent the former practical problems, we propose the 3D Focal CL-
SRME method, which can be described as the Focal CL-SRME algorithm with the
following adaptations:
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Figure 7.4: Contribution gathers of the central trace from the products shown in figure 7.3.
(a) Convolution contribution gather and (b) correlation contribution gather. The datasets in
figures 7.4a and 7.4b should reproduce the central trace of figures 7.3b and 7.3c, respectively,
when summed laterally. Only the casual components are shown.

[1] The matrix products in the theory (data-data convolutions/correlations) are
replaced by GSMP products.

[2] We generalize the notion of GSMP methodology to include both convolution
and correlation type of products. This implies the construction of secondary
wavefields by adding the contributions of two wavefields convolved or correlated
with each other.

[3] For efficiency, we use simplified two-way focusing operators (see Berkhout and
Verschuur [2006]). If the operator is assumed to be azimuth-invariant, it be-
comes is necessary to store only one finely-sampled shot gather. From which all
the necessary traces for the focusing/defocusing operations can be extracted.

[4] To accelerate the convergence, we mute out the auto-correlation energy gen-
erated in the back-projection process. This can be easily achived with a first-
break muting mask. See section 7.8 and figure 7.8.

[5] We apply a muting mask in noisy regions of the focal domain update (figure
7.8). This will eliminate extra aliasing noise to provide better convergence.

The most crucial shallow near-offset information is interpolated with the algorithm.
If only near-offset information is required, only one focal domain is necessary (focused
at the water-bottom). In this case, no additional data injection is required. Note
that the back-projection mechanism will only provide reliable results if enough far-
offset information is present (next section).
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7.7 Contribution grids

From the theoretical point of view, in order to construct appropriate products, a
summation must be done over all lateral coordinates to properly account for all
possible scattering points. In practice, however, this summation is done over a finite
grid in the lateral coordinates. The dimensions of this grid are important from a
computational point of view. The smaller the contribution grid, the more efficient
the calculation. However, if the grid is chosen to be too small, the resulting product
will be erroneous [see also Lopez and Verschuur, 2015a].

In order to study the effect of a limited summation grid size in the products, we
consider two data-product experiments using the dataset shown in figure 6.1. In the
first experiment, the summation will add contributions from the near-offset locations
only. In the second experiment, the summation will add contributions from the far-
offset only. As we will see, traces within the near-offsets are the most contributing for
convolution products, while traces within the far-offsets are the most contributing
for correlation products.

Figure 7.5 shows the convolution and correlation gathers of the central trace for the
synthetic shallow example shown in figure 6.1. Figure 7.5a,b shows the contribution
gathers with the complete summation aperture, figure 7.5c,d shows the contribution
gathers with the near-offsets removed and figure 7.5e,f shows the contribution gathers
with the far-offsets removed. The result of the incomplete summations can be seen
in figures 7.7 and 7.6. Convolution-products are strongly determined by the near-
offsets, while correlation-products are determined mostly by the far-offsets.

The results in figures 7.5, 7.7 and 7.6 suggest a differential treatment of the contribu-
tion grid geometry for 3D. The proposed geometry for this research is shown in figure
7.9. For efficiency, we advice the use of a near-offset summation for convolution-
products and a far-offset summation for correlation-products.
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Figure 7.5: Different summation apertures in the correlation and convolution contribution
gathers. Full summation aperture for (a) convolution and (b) correlation. Far-offset sum-
mation only for (c) convolution and (d) correlation. Near-offset summation only for (e)
convolution and (f) correlation. In experiments (c)-(f) 50% of the original summation
aperture is removed. The black line shows the summation limits.
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Figure 7.6: Convolution products with different summation apertures. (a) Full summation,
(b) Far-offset summation, (c) Near-offset summation.

Figure 7.7: Correlation products with different summation apertures. (a) Full summation,
(b) Far-offset summation, (c) Near-offset summation.
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7.8 Algorithm outline

We can outline the 3D Focal CL-SRME algorithm by resuming its main steps. The
iteration index has been omitted for simplicity. The M variable represents the
desired number of focal domains. The F operator represents a Fourier Transform
mapping time to frequency coordinates. Here P is the total data, P′ is the input
data (with zeros in the missing-data positions) and P′′ is the interpolated data
(with zeros in the measured data positions). The operator Fm is a two-way focusing
operator related to a given depth level [Berkhout and Verschuur, 2006].

3D Focal Closed-Loop SRME algorithm

1. Calculate the Fm operators using NMO times and velocities.

2. X̂m ⇐ 0, P⇐ P′

3. Calculate Â via an optimum filter such that ||P−PÂP||2 → min

4. while (iter ≤ maxIterations) do

5. VQH ⇐ (P− P̂0 − P̂0ÂP)(I + ÂP)H

6. Apply a first-break muting to VQH (figure 7.8)

7. If iter = 1 then apply near-offset amplitude matching

8. while (m ≤M) do

9. ∆X
(LS)
m ⇐ 2FHmVQH

10. Apply focal domain muting to ∆X
(LS)
m (figure 7.8)

11. ∆X
(reg)
m ⇐ F{−λ∇x̂m

||x̂m||S} (Appendix C)

12. ∆Xm ⇐ ∆X
(LS)
m + ∆X

(reg)
m

13. X̂m ⇐ X̂m + αm∆Xm (αm s.t. J −→ min, equation 7.9.9)

14. end while

15. P̂0 ⇐
∑M
m=1 FmX̂m

16. Find Â according to equation 5.2.9

17. P′′ ⇐ (P̂0 + P̂0ÂP)′′

18. P⇐ P′ + P′′

19. end while

7.9 Practical Considerations

The following considerations must be noted with respect to the 3D implementation
of the Focal CL-SRME algorithm

• Near-offset traces: Near-offset interpolation is necessary (up to zero-offset)
in order to properly apply the algorithm. The current algorithm interpolates
the data in the shallow near-offset region via back-projection. However, other
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method must be employed for interpolating the deeper parts of the data. In
most cases this is easily achieved.

• Interpolation: Due to its simplicity, we have chosen a DNMO interpolation
method to generate the necessary traces for the required products. However,
as noted in van Dedem and Verschuur [1998] this method might introduce
artefacts in the predictions, especially if the offset correction is large. Alter-
natives to DNMO interpolation can be implemented in the algorithm without
any significant change. Using a primitive on-the-fly interpolation method will
limit the bandwidth of the predicted primaries to low frequencies only.

Figure 7.8: Muting masks applied in 3D Focal CL-SRME (shaded area). (a) Muting over

the focal domain ∆X
(LS)
m , (b) muting over the VQH variable. The muting over ∆X

(LS)
m

eliminates some of the aliasing noise generated by an incomplete acquisition. The muting
over VQH eliminates the unwanted autocorrelation energy.

Figure 7.9: Proposed contribution gathers for both (a) correlation and (b) convolution. The
summation geometry is chosen to capture the largest contributions to the output products.
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• Processing time: The Focal CL-SRME algorithm requires more data prod-
ucts per iteration than conventional SRME. This implies a larger computa-
tional cost.

• Focal operators: We use a 3D homogeneous focal operator (see table 4.1)
which we create along a fine offset grid from cero to the largest offset in the
dataset. This operator is parameterized uniquely by the offset coordinate and
the target NMO parameters (appex travel time and velocity). Whenever a
focusing operation is needed, the GSMP product must be adopted to scan
the stored traces for the necessary offset. Other implementations are possible
(e.g. traces created on-the-fly inside the GSMP products), but they result less
practical in terms of memory and/or processing time.

• Step-lenght calculation: Calculating the optimal step-lenghts (see appendix
B.2) will be more efficient if all explicit data products are avoided. This can
be achieved by using the identity Tr(AAH) =

∑
i,j |Aij |2 (for any matrix A

with lateral indices {i, j}) to transform equation B.2.18 into the component
form

J(αk) =
∑
ijt

|F−1{P−
∑
m

FmX̂mQ− αkδkmFm∆X̂mQ}|2ijt (7.9.8)

+λ
∑
m

||x̂m + αkδkm∆x̂m||S ,

where the least-squares part of J(αk) is now calculated over space-time coor-
dinates.

7.10 Conclusions

We have introduced a primary estimation method aimed to applications in 3D data,
especially in those cases in which accurate data interpolation becomes important
(e.g. complex subsurface or shallow layers). The presented method brings computa-
tional advantages over the previously described Focal CL-SRME method, as it allows
a generalized acquisition and keeps the processing data volumes within reasonable
bounds. Examples of this method will be shown in the following chapter.
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Results of the 3D algorithm

In this chapter we will present some initial results of the 3D Focal CL-SRME algo-
rithm applied to both a 3D synthetic and a 3D field dataset.

8.1 3D synthetic example

Figure 8.1 shows the results applying the proposed method on a simple 3D dataset.
The data is obtained from a velocity model with flat reflectors at 100m and 350m.
The offset range is kept limited to prevent the data volume from growing too much.
Figures 8.1a and 8.1b show the input data and the primary estimation for one
selected 3D shot record. These figures are composed by a set of 2D panels placed
next to each other. Each of these panels represents a 2D subset (i.e. like data from
one streamer) from the full 3D shot, so they can be seen as transversal sections from
the set of 3D reflection events. A grid of 60× 60 shot positions and 60× 60 receiver
positions is used for the simulation, in which 2 out of 3 receiver positions are fully
reconstructed. As we can see from figure 8.1, after 3D Focal CL-SRME, missing
data is reconstructed and primaries are estimated. A slight multiple leakage in the
primaries is observed due to the limited aperture in the example. However, this
leakage will quickly disappear with growing acquisition apertures.
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Figure 8.1: Results from the synthetic 3D dataset generated using a velocity model with two
horizons. (a) Input data with a 1:3 under-sampling ratio, (b) estimated primaries using
3D Focal CL-SRME and (c) estimated total data. The depth and velocity of the first layer
(z=100m, c=1800m/s) were the only pieces of a-priori model information used to generate
the focal operator and to obtain the results shown here.
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Figure 8.2: A zoom from panels in figure 8.1 corresponding to (a) the input data with a 1:3
under-sampling ratio and (b) the estimated 3D Focal CL-SRME primaries.
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8.2 3D field example

A field data experiment is now presented. The dataset comes from a PGS marine
survey. A subset of 6 streamers with 153 channels and 30 sources is selected for
processing. The streamer in-line spacing is 12.5m and the cross-line spacing is 50m.
The sources are located over a single line with a source-source spacing of 50m (see
figure 8.4). The data corresponds to a relatively complex subsurface with an almost
flat 150m water depth section, as depicted in figure 8.3. We will apply 3D Focal
CL-SRME to this dataset in order to estimate primaries and multiples.

Figure 8.3: Common channel gather showing the selected area (rectangular box) for the
inversion. The water depth in the selected area is about 150m.

As pre-processing steps, data is taken to a regular grid and near-offsets are interpo-
lated with a parabolic-Radon technique [Kabir and Verschuur, 1995].

Here a single focal domain is calculated following the specifications in section 7.9.
The focal operator is chosen to be that of a 3D homogeneous medium. It’s inverse
operator is estimated using the matching filter approach (section 4.2).

The results of the inversion are displayed in figures 8.5, 8.6, 8.7. The input dataset
is shown in figure 8.5, the estimated primaries are shown in figure 8.6 and the
estimated multiples are shown in figure 8.7. As we can see primaries and multiples
are estimated in all cables.

Due to limited computational resources, the inversion was done over a relatively
small dataset (only one sail-line, limited number of shots). Better results will be
expected in a denser acquisition geometries. The inaccuracies introduced by the
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Figure 8.4: Geometry of the acquisition used in the 3D field dataset example. The stars
denote the sources and the circles the receivers. The figure shows 30 shots positions one
sail-line with 6 streamers, each streamer with 153 channels.

DNMO interpolation are also limiting factor for the primary/multiple separation, as
interpolation errors produce estimations with frequencies lower than those expected.
More advanced on-the-fly interpolation methods are expected to produce consider-
ably better results and can be incorporated in the 3D Focal CL-SRME context
without any significant change in the processing scheme.
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9

Conclusions, recommendations,
discussion and future research

9.1 Conclusions

We have introduced a new algorithm for primary estimation that uses inversion
to estimate the primaries P0 and the surface operator A. This algorithm uses
SRME’s decomposition of P into (P0, A). But instead of solving P0 via the iterative
reconstruction of the inverse scattering series of P, CL-SRME uses inversion to
estimate P0 from the data itself, choosing the prediction equation from SRME as
the forward model for the inversion of the (P0, A) parameters.

We have also extended the CL-SRME methodology such that it allows primary
estimation together with data interpolation. In order to achieve an accurate recon-
struction we take the primary wavefield P0 to a transform domain in which the data
gaps and/or interpolation errors are mapped to aliasing artifacts. The ultimate goal
of the transform domain is to represent the primary reflections with the smallest
possible number of parameters.

We use the focal domain, which is based on wavefield extrapolation operators, as
it provides a high level of data compression. Being the product of a physics-based
transform rather than a mathematical one, the focal domain also introduces ad-
ditional physical constraints on the estimations, namely: wavefield continuity and
wave-equation consistency. A sparse-promoting regularization is chosen as a method
to guide the estimates of the focal domain inversion towards the elimination of the
aliasing artifacts in these domains. Once all the artifacts have been cleared, the
primary estimate becomes fully sampled.
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Being a simultaneous reconstruction/multiple estimation algorithm, we expect the
proposed method to perform better than other methods based on interpolation prior
to the primary estimation. By allowing the missing data and the primary information
to be simultaneously estimated, we allow their estimations to be simultaneously
adjusted to optimally fit each other. Here, data reconstruction helps obtaining better
multiple estimates and the physical primary-multiple relationship helps constraining
the data interpolation. In other words, information from the multiples is used to
reconstruct the missing data.

Given an under-sampled dataset, the Focal CL-SRME (FCL-SRME) algorithm can
perform simultaneous data reconstruction and primary-multiple separation. The
required focal operators can be obtained via simple estimation of the RMS velocities
of the target reflectors.

In order to practically incorporate the large data volumes present in typical 3D
datasets we have modified the processing scheme of the Focal CL-SRME algorithm
in order to provide a practical solution for 3D datasets. The 3D Focal CL-SRME
algorithm is thus a primary estimation method aimed to applications in 3D data,
especially in those cases in which accurate data interpolation becomes important
(e.g. complex subsurface and/or shallow water). The presented method combines
the accurate interpolation advantages of the Focal CL-SRME algorithm with the
efficiency of the GSMP method. A more precise interpolation scheme gives the
current algorithm more advantages over traditional methods in the places where
accuracy is really crucial (i.e. at the near-offsets). In this way, the current scheme
provides more flexibility in the larger offsets while keeping the accuracy in the short
offsets, which are the most relevant in primary/multiple separation. The capacities
of the proposed algorithm have been demonstrated through several examples on
both synthetic and field data.

Besides the current reconstruction-oriented methodology, the mathematical theory
for multiple prediction presented in chapter 3 can serve as a starting point for many
applications seeking to use the information contained in the multiples without the
need of migration. An easy and efficient implementation should make the present
algorithm attractive for future applications. Also, the theory presented in the ap-
pendices might serve as useful background for future researchers, even beyond the
fields of multiple prediction or data reconstruction.

9.2 Recommendations

FCL-SRME has been shown to have very good interpolation capabilities, as it can
handle large near-offset gaps, very shallow data and large under-sampling reconstruc-
tion (see chapter 6 for examples). Therefore, it is possible to consider FCL-SRME
as an interpolation tool by itself. In this sense, FCL-SRME can be thought to be
a robust version of the algorithm presented by Kutscha and Verschuur [2012]. The
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advantage is that in FCL-SRME an initial multiple separation step is not neces-
sary. Actually, in FCL-SRME the primary/multiple relationship is used in to aid
the reconstruction.

9.3 Discussion: Which algorithm to use?

In the literature, there are currently two possible parametrizations for inversion-
oriented multiple estimation, namely: inverting for {P0,A} or inverting for {X0,S}.
The first one is used in the previously described robust EPSI (REPSI) algorithm1

[Lin and Herrmann, 2013, 2016] and the second one is presented in this thesis [see
also Lopez and Verschuur, 2015b]. It is important to compare this two methodologies
in order to decide which algorithm is more suitable for a given problem2.

Now, we will discuss the differences and similarities between REPSI and FCL-SRME.
The main properties of both algorithms are shown below:

REPSI

• Parametrization in terms of {X0,S}.

• Solves a basis persuit denoising algorithm.

• Uses an SPGL1 solver (based on local gradients) [van den Berg and Friedlander,
2008, 2011].

• Starts from a sparse unpopulated estimate for the primaries and move to more
populated solutions with iterations.

• Proposes an L1 convexification of the L0 norm in the original EPSI (better
mathematical properties).

• Minimum energy replaced by a sparsity constraint.

FCL-SRME

• Parametrization in terms of {P0,A}.

• Solves a L1-L2 regularized least squares problem3.

• Uses a conjugate gradients methodology (based on local descent) [Aster et al.,
2013].

1We address REPSI rather than the original EPSI as REPSI is known to be a more robust
algorithm, providing always the most possible sparse solution and presenting less artefacts than its
predecesor.

2This section provides a experience-based quantitative comparison between REPSI and FCL-
SRME. Most of the remarks are derived from our practical experience.

3Other norms are also possible, see appendix C.
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Table 9.1: Main benefits and limitations of REPSI and FCL-SRME

Algorithm Benefits Limitations

REPSI • Estimates the wavelet • Computationally expensive
• Near-offset reconstruction
for the entire time range

• No under-sampling
reconstruction
• Not applicable in 3D

FCL-SRME • Computationally efficient
(tens of iterations required)

• Uses minimum energy
in the firsts iterations

• Can handle data gaps
due to both near-offsets
and under-sampling

• Near-offset reconstruction
only for the early reflectors
(early times)

• Easy implementation

• Applicable for 2D and 3D datasets

• Starts with a primary estimate close to the input dataset and remove the
multiples with iterations.

• Requires a focal transform to impose sparsity in the solutions.

• Minimum energy present in the early iterations.

The main benefits and limitations of REPSI and FCL-SRME are given by table 9.1.

Which algorithm to choose will then depend on the application interest. If a method
for estimating Green’s functions (e.g. for interferometric applications) or source
wavelet (e.g. for imaging) is desired, then the REPSI algorithm is probably the best
choice. REPSI might be also very useful for 2D datasets. On the other hand, if
the application is tailored to 3D primary/multiple separation, then the FCL-SRME
algorithm is the best choice. Note that the differences between these algorithms lie
mainly in the shallow-data sections. For the deeper data sections the performance
of both FCL-SRME and REPSI is comparable to that of SRME.

9.4 Future research

For some applications the use of the FCL-SRME algorithm by itself may result
in a very useful framework to build extensions/improvements over the SRME algo-
rithm. The advantages of an inversion-type approach for SRME over the series-based
methodology are the following:
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[1] The convergence to the final solution might be controlled by manipulating the
gradient (pre-conditioning). This can improve the convergency to the desired
solution, e.g. applying lateral artefact-muting windows in the focal domain
gradients is known to boost-up the data reconstruction capabilities of FCL-
SRME (see figure 5.1).

[2] Joint parameter inversion becomes possible. This entails the use of the infor-
mation in the multiples to provide a better estimate of other parameters of
interest. For example, Vrolijk and Verschuur [2016] proved that a deghosting
algorithm can benefit from the information in the multiples using Closed-Loop
SRME with integrated deghosting.

[3] Multiple prediction with a complex source wavefield is also an option. This
might open the possibility of using multiples for improving deblending algo-
rithms. A similar extension was already developed for EPSI [van Groenestijn
and Verschuur, 2011].

[4] Prior-knowledge can be introduced by controlling the initial estimates of both
A and P0. This will guide the solution towards a different inversion path,
which will lead to different (and hopefully better) results. This is expected
from a local descent algorithm.

The disadvantage of FCL-SRME over SRME lies mainly in the fact that an inversion
scheme is typically more computationally expensive than its series-based counter-
part.

Compared with 3D SRME, the 3D FCL-SRME algorithm is still a computationally
expensive solution, due to a larger amount of necessary matrix products. This can
make the 3D algorithm impractical if limited computational resources are available.
Future research can be tailored in methods to relax these constraints.



104 Conclusions, recommendations, discussion and future research



A

Equivalent expression for the
multiple scattering wavefield

A.1 Expressions in the (X0,S) parameterization

The following list of equivalent expressions for the surface multiple scattering prob-
lem can be obtain directly from an similar list given in Chapter 2 (equations 2.3.5-
2.3.10) using the replacement P0 = X0S and A = S−1R∩. Here we are define
X as the total impulse response of the earth (i.e. primaries+multiples), such that
P = XS is fulfilled1.

• Series:

X = X0 + (X0R
∩)X0 + (X0R

∩)2X0 + (X0R
∩)3X0 + · · · (A.1.1)

X0 = X−X(R∩X) + X(R∩X)2 −X(R∩X)3 + · · · . (A.1.2)

• Recursive:

X = X0 + X0R
∩X (A.1.3)

X0 = X−X0R
∩X. (A.1.4)

• Inverse space:

X−1 = X−10 −R∩ (A.1.5)

X−10 = X−1 + R∩. (A.1.6)

1The replacements X0R∩ = P0A and XR∩ = PA might be useful here.
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A.2 Expressions in the (P0,A) parameterization

For completeness we also include the list of expressions in the (P0,A) parameteri-
zation. The derivation of these expressions can be found in Chapter 2.

• Series:

P = P0 + (P0A)P0 + (P0A)2P0 + (P0A)3P0 + · · · (A.2.7)

P0 = P−P(AP) + P(AP)2 −P(AP)3 + · · · . (A.2.8)

• Recursive:

P = P0 + P0AP (A.2.9)

P0 = P−P0AP. (A.2.10)

• Inverse space:

P−1 = P−10 −A (A.2.11)

P−10 = P−1 + A. (A.2.12)

For more details about these expressions, the reader is refered to Verschuur et al.
[1992]; Verschuur and Berkhout [1997]; Fokkema and van den Berg [1993].



B

Calculations on complex-valued
matrix functionals with the
Frobenius norm

In this appendix we will review the procedure to calculate the gradients and the
optimal-lenghts of complex-valued matrix functionals with the Frobeniuos norm.
These type of functionals are very common in the DELPHI literature, so its impor-
tant to be able to derive the expressions necessary for an inversion algorithm.

B.1 Gradients

B.1.1 General Theory

Let

J(Z) = Tr(V(Z)V(Z)H) = ||V(Z)||2Fr, (B.1.1)

be a matrix functional such that J ∈ Mn(C) → C where Mn(C) is the space of
n × n matrices over the complex field C. We choose V : Mn(C) → Mn(C) to be a
differentiable function of Z and || · ||2Fr to be the Frobenius norm. Typically V would
correspond to the inversion residual in a descent algorithm. We are interested in
calculating the gradient ∇ZJ(Z) such that we can use it in an inversion algorithm.
However, due to the appearance of both Z and ZH in the definition of J(Z), the
functional defined in equation B.1.1 is non-analytical, thus non-differentiable. This
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implies that we need to redefine the concept of gradient for this type of functionals.
We can resolve this problem by defining our gradient to be:

∇ZJ(Z) := 2
dJ(Z)

dZ∗
=

∂J

∂RZ
+ i

∂J

∂IZ
, (B.1.2)

whereRZ and IZ represent the real and imaginary parts of Z respectively. Equation
B.1.2 is equal to zero when J(Z) is an analytic function of Z and non-zero other-wise.

The gradient in equation B.1.2 applied to equation B.1.1 can be calculated using
the following algorithm:

[1] Take the exterior derivative of J : J −→ dJ .

[2] Use the linearity and the Leibniz rule to write dJ in dZ∗ terms. Note that the
gradient definition uses only dZ∗, so any dZ variation is zero:

dJ = dTr(VHV) = Tr(dVHV + VHdV) (B.1.3)

[3] Take dJ into a dJ = Tr(f(Z)dZ∗) form (with f a function of Z).

[4] Use the property:

dJ = Tr(f(Z)dZ∗) −→ dJ(Z)

dZ∗
= f(Z) (B.1.4)

to calculate the required derivative.

[5] Scale the result by 2 to obtain ∇ZJ(Z).

Note descent algorithms require the negative of the gradient −∇ZJ(Z) as descent
direction. Also note that if Z = ZT , Z∗ can be replaced by ZH in all the steps
above.

B.1.2 Proof of equation 5.2.6

In this section we will calculate the least-squares gradient of a functional J (in

equation 5.2.6) with respect to the variable X̂i(ω
′). Start by introducing the variable

j(LS) = ||P−
∑
m WT

mX̂mWmQ||Fr, then J (LS) can be written as

J (LS) =
∑
ω

||P−
∑
m

WT
mX̂mWmQ||Fr =

∑
ω

j(LS)(X̂m, X̂
H
m;ω). (B.1.5)

Taking the gradient ∇X̂i(ω′)
on this expression we get
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∇X̂i(ω′)
J (LS) =

2dJ (LS)

dX̂i(ω′)H

=
∑
ω

2dj(LS)(X̂i, X̂
H
i ;ω)

dX̂i(ω′)H

=
2dj(LS)(X̂i, X̂

H
i ;ω′)

dX̂i(ω′)H

= ∇X̂i(ω′)
j(LS)(X̂i, X̂

H
i ;ω′). (B.1.6)

The elimination of
∑
ω in the above expression is due to the fact that all the ω

frequencies are mutually independent, then the only non-zero contribution to the
derivative comes when ω = ω′. The calculation of the derivative of j(LS) will now
follow the steps outlined above (for simplicity we will drop now the explicit depen-
dence of ω′). Start rewritting j(LS) as

j(LS)(X̂i, X̂
H
i ) = Tr[(P−

∑
m

WT
mX̂mWmQ)H(P−

∑
m

WT
mX̂mWmQ)] = Tr[VHV],

(B.1.7)

where V := P −
∑
m WT

mX̂mWmQ is the data residual. Now taking the exterior
derivative in j(LS) we get

dj(LS)(X̂i, X̂
H
i ) = dTr[VHV] = Tr[dVHV + VHdV], (B.1.8)

where the last step corresponds to the Leibnitz product rule. Here, the variables X̂H
i

and X̂i can be taken as independent. Then, because we are considering variations
over the X̂H

i variable only (dX̂H
m = 0 if m 6= i), we can see that dV(X̂i) = V(dX̂i) =

0. Therefore we can write

dj(LS)(X̂i, X̂
H
i ) = Tr[dVHV]

= Tr[d(P−
∑
m

WT
mX̂mWmQ)HV]

= Tr[−(WT
i dX̂iWiQ)HV]

= Tr[−QHWH
i dX̂

H
i W∗

iV]

= Tr[−W∗
iVQHWH

i dX̂
H
i ]

= Tr[−W∗
i (P−

∑
m

WT
mX̂mWmQ)QHWH

i dX̂
H
i ],(B.1.9)
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so

dj(LS)(X̂i, X̂
H
i )

dX̂H
i

=
dJ (LS)(X̂i, X̂

H
i )

dX̂H
i

= −W∗
i (P−

∑
m

WT
mX̂mWmQ)QHWH

i ,

(B.1.10)

which leads to:

∇X̂i
J (LS) = −2W∗

i (P−
∑
m

WT
mX̂mWmQ)QHWH

i , (B.1.11)

which is the desired gradient. For more information about derivatives over complex
matrices please refer to Schreier [2010] and Hjørungnes [2011].

B.2 Optimal-descent lengths

B.2.1 General Theory

Calculating the step-length α ∈ R such that the updating Z(i+1) = Z(i) + α∆Z(i)

minimizes J is easily done by imposing the extremallity condition over J(α), i.e.
solving the scalar valued equation ∂αJ(Z + α∆Z) = 0. Given the function J(α)
other line-search methods are also avilable in the literature [Pedregal, 2013]. The
form of the solution will depend upon the particular structure of J(Z).

B.2.2 Step-lenght calculation with no sparsity

We will solve for αi value in equation 5.2.8 assuming that there is no sparsity con-
straint. The value found here will be used as starting value for a the line-searching
algorithm in the case of non-zero sparsity (next section).

Start with the objective function

J =
∑
ω

Tr[(P−
∑
m

WT
mX̂mWmQ)H(P−

∑
m

WT
mX̂mWmQ)], (B.2.12)

then J(X̂i + αi∆X̂i) can be written as

J(αi) =
∑
ω

Tr[(P−
∑
m

WT
mX̂mWmQ− αiWT

i ∆X̂iWiQ)H (B.2.13)

(P−
∑
m

WT
mX̂mWmQ− αiWT

i ∆X̂iWiQ)],
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choosing V := P−
∑
m WT

mX̂mWmQ and Ki := WT
i ∆X̂iWiQ this simplifies to

J(αi) =
∑
ω

Tr[(V − αiKi)
H(V − αiKi)]

=
∑
ω

Tr[VHV − αiVHKi − αiKH
i V + α2

iK
H
i Ki], (B.2.14)

imposing the extremallity condition we get

∂αi
J(αi) =

∑
ω

Tr[−VHKi −KH
i V + 2αiK

H
i Ki] = 0, (B.2.15)

αi =

∑
ω Tr[V

HKi + KH
i V]

2
∑
ω Tr[K

H
i Ki]

=

∑
ω Re{Tr[VHKi]}∑

ω Tr[K
H
i Ki]

. (B.2.16)

B.2.3 Step-lenght calculation with sparsity

In the case of a non-linear regularization like the one described in Chapter 5 our
objective function looks like

J =
∑
ω

Tr[(P−
∑
m

WT
mX̂mWmQ)H(P−

∑
m

WT
mX̂mWmQ)] + λ

∑
m

||x̂m||S

(B.2.17)

with x̂m is the inverse Fourier transform of the data-cube of X̂m and λ is a user-
defined regularization constant (typically λ ≈ 10−2). The norm || · ||S represents any
sparsity-promoting norm of preference (e.g. L1), which applies to every element in
x̂m.

If we include a variation J(X̂i + αi∆X̂i) our objective function becomes

J(αi) =
∑
ω

Tr[VHV−αiVHKi−αiKH
i V+α2

iK
H
i Ki]+λ

∑
m

||x̂m+αiδim∆x̂m||S ,

(B.2.18)

with

V := P−
∑
m

WT
mX̂mWmQ and Ki := WT

i ∆X̂iWQ. (B.2.19)
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To find the proper step-lenght we impose the condition J(X̂i+αi∆X̂i) −→ min and
then calculate the αi that satisfies such condition. Note that, the function J(αi)
above is a simple one-parameter function, which is in principle easy to minimize
using any line-search method. The value obtained in the no-sparsity constraint case
can be used as starting value for many of these algorithms.
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The sparsity constraint

A sparsity constraint is a condition applied to an inverse problem in order to drive the
solution towards a minimum in the objective function in which the energy appears
concentrated in a small number of parameters rather than spread around in many
them. Typically this type of constraint is used to regularize a problem, thus reduc-
ing the number of solutions available for convergence. Sparsity constraints usually
involve low-order norms (such as L1 or L0) applied to the inversion parameters.

In practice the sparsity constraints might be incorporated into the inversion problem
for several reasons. Sometimes they can account for additional knowledge about the
inversion parameters (for instance, in geophysics, the impulse response of the earth
X is assumed to be sparse). In other cases they can be used to select the solutions
with ”concentrated” parameters over the ”disperse” solutions (e.g. to eliminate
unwanted reverberations in the estimates). In the case of data reconstruction, a
sparsity constraint can be used to eliminate the aliasing artefacts in the estimations.

We know from inversion theory [Aster et al., 2013] that to incorporate an extra
constraint into our algorithm all we need to is include such a constraint in to objective
functional via Jnew = Jold + J , were Jold is the original objective function, Jnew is
the new objective function and J is the objective function of the extra constraint.
To solve our inversion problem, we need to be able to calculate the gradients of Jnew

with respect to the inversion variables and the scaling constant.

The implementation of a sparsity constraint can be achieved by using the following
generalized function:

J(x) = ||x||Sn =

{ ∑
ijk(|xijk|2 + ε2)−n+1 if n 6= 1∑
ijk ln(|xijk|2 + ε2) if n = 1

}
(C.0.1)
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Table C.1: Norms generated by variating the n and ε parameters in equation C.0.1

norm n ε

L2 0 0

L1-L2 1/2 R
L1 1/2 0

Cauchy 1 R
German 2 R

Where x is the model-space parameter array to sparsify and ε is a stabilization
parameter related with the noise level in x. By calibrating n and ε in equation C.0.1
we can obtain the set of norms shown in table C.2.

The calculation of the gradients might be cumbersome using the method described
in appendix B given that the point-wise operations in equation C.0.1 prevent J(x)
to be expressed explicitly in a matrix-form. If this is the case, a component-by-
component calculation of the gradient is required. Using equation B.1.2 and C.0.1
and assuming n 6= 1, the ∇xJ gradient is then given by

[∇xJ ]ijk = 2
d

dx∗ijk

∑
lmo

(xlmox
∗
lmo + ε2)−n+1 (C.0.2)

= 2
∑
lmo

xlmo
(|xlmo|2 + ε2)n

dx∗lmo
dx∗ijk

(C.0.3)

= 2
∑
lmo

xlmo
(|xlmo|2 + ε2)n

δliδmjδok (C.0.4)

= 2
xijk

(|xijk|2 + ε2)n
. (C.0.5)

Similarly, the ∂αJ(x+α∆x) term (which can useful in the calculation of the inversion
step-lenght) is given by

∂αJ(x + α∆x) =
∑
ijk

(xijk + α∆xijk)∆xijk
((xijk + α∆xijk) + ε2)n

. (C.0.6)

Note that equations C.0.5 and C.0.6 remin valid even when n = 1 (Cauchy-type of
constraint). A special case must be taken into account for the L1 norm (n = 1/2
and ε = 0) in which a discontinuity is found at x = 0. Thought presented here for
completeness, this discontinuity will limit the practical application of the gradient



115

Table C.2: Gradients for common regularizations

norm n ε gradient

L2 0 0 2xijk

L1-L2 1/2 R 2
xijk√
|xijk|2+ε2

L1 1/2 0 2sign(xijk)

Cauchy 1 R 2
xijk

(|xijk|2+ε2)

German 2 R 2
xijk

(|xijk|2+ε2)2

in equation C.0.5. More stable methodologies are recommended for such a case (see
for example van den Berg and Friedlander [2011]).
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Nancy, Gonzalo, Gonzalo D., Jacqueline, Catalina, Leonor e Israel. Siempre cargaré
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Front and Back Cover Plots

The front and back cover plots in this thesis are some examples of some of the fractal
art-work I developed as a hobby during my Ph.D. years in Delft University.

The fractals shown in the front and back covers depict the convergence set over
the complex plane of a couple of trigonometric generating functions, which become
chaotic after a large amount of auto-compositions. The outline of the figures is
formally known as the Julia set and its compliment is known as the Fatou set. I
generated these fractals myself after some research on their functional expressions.

These fractals represent complex and chaotic dynamics normally obtained in the evo-
lution of dynamical systems. These solutions typically arise in interacting regimes in
which the equations of motion of the system become non-linear. Systems with these
properties exist everywhere in Nature, from the triggering mechanism of earthquakes
till the patterns of climate dynamics.


