
MSc
Thesis
Learning Human Preferences
for Motion Planning in Robotic
Manipulation
A. Avaei

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

Learning Human Preferences for
Motion Planning in Robotic

Manipulation
by

A. Avaei

to obtain the degree of

Master of Science
in Mechanical Engineering at the Delft University of Technology,

to be defended publicly on Thursday November 25, 2021 at 10:00 AM.

Student number: 5048427
Supervisors: Dr. ing. J. Kober

Dr. L. Peternel
Ir. L.F. van der Spaa

An electronic version of this thesis is available at: http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
Conducting my master’s thesis at the Department of Cognitive Robotics for the past 8 months has been
one of the most fulfilling experiences of my life.

I would like to extendmy sincere gratitude towardsmy supervisors Jens Kober and Luka Peternel for
their enthusiastic guidance and constructive advice throughout the thesis. I am also extremely grateful
to have had Linda van der Spaa as a mentor, showing me the ropes for how to conduct research. Our
engaging discussions were instrumental to the development of the project, and I deeply appreciate
her belief in my work. I also wish to thank Giovanni Franzese for getting me started with the robot
controllers and providing me with insightful suggestions.

I had great pleasure of working alongside my friends Francesco, Alvaro, Anna, Irene and Sven at
the Cognitive Robotics Lab. Many thanks to them for the the occasional brainstorms and making the
lab a pleasant environment to be in.

Completion of this thesis would not have been possible without the support of my second family in
the Netherlands, Francesca, Joseph, Katherina and Stella, who were there for me during the highs and
lows. Finally, a heartfelt thank you to my dear family back home for their relentless support throughout
the years.

A. Avaei
Delft, November 2021

iii

Contents

1 Paper 1

A Appendix Feature Design and Cost Formulation 15
A.1 Human Features . 15

A.1.1 Distance to Obstacle . 15
A.1.2 Obstacle Side. 15
A.1.3 Height from the Table. 16
A.1.4 Velocity Features . 17

A.2 Robot Objectives . 17
A.2.1 Path Efficiency Cost . 18
A.2.2 Collision Avoidance Cost. 18
A.2.3 Slow Velocity Reward . 19

B Appendix Simulation and User Study Details 21
B.1 Contexts and Trajectories of the Convergence Test . 21
B.2 Proof of Concept Study and Dynamic Movement Primitives 21
B.3 User Study Details . 24

B.3.1 Modifications and Selfcollision Avoidance . 24
B.3.2 Additional Results from Experiment 2 . 25

v

1
Paper

1

1

Learning Human Preferences for Motion Planning
in Robotic Manipulation

Armin Avaei
Supervisors: Linda van der Spaa, Luka Peternel, and Jens Kober

Abstract—Humans often demonstrate diverse behaviours due
to their personal preferences, for instance related to their individ-
ual execution style or personal margin for safety. In this paper,
we consider the problem of integrating such preferences into
planning of trajectories for robotic manipulators. We first learn
reward functions that represent the users path and motion pref-
erences from kinesthetic demonstration. We then use a discrete-
time trajectory optimization scheme to produce trajectories that
adhere to both task requirements and user preferences. Our
work goes beyond the state of art by achieving generalization
of preferences to new task instances, and designing a large
feature set that enables capturing of the dynamical aspects of the
manipulation, such as preferences about the timing of motion.
We implement our algorithm on a Franka Emika Panda 7-DoF
robotic arm, and present the functionality and flexibility of our
approach by testing it in a user study. The results show that
non-expert users are able to teach the robot their preferences
with just a few iterations of feedback.

Index Terms—Learning from demonstration, planning with
preferences, human-robot cooperation

I. INTRODUCTION

AUTONOMY is increasingly being discussed under the
aspect of cooperation. A gentler breed of robots,

“cobots”, have started to appear in factories and workshops,
working together with humans. One challenge in deploy-
ment of such robots is producing desirable trajectories for
manipulation tasks. A desirable trajectory not only meets
the task constraints (i.e. collision-free movement from start
to goal), but it also adheres to human user’s preferences.
Such preferences may vary between users, environments and
tasks. Therefore, it is infeasible to manually encode them
without exact knowledge of how, with whom, and where the
robot is being deployed [1]. Manual programming is even
more detrimental in cooperative environments, where robots
are required to be easily and rapidly reprogrammed. In this
context, learning preferences directly from humans emerges
as an attractive solution [2].

We address the challenge of learning human preferences in
an individual context when the robot plan does not match the
execution style or safety standards of a specific human user
(e.g. robot carries the object closer to the obstacle than the user
prefers). In such cases the user prefers the robot to execute
the task in a different manner than originally planned. Fig. 1
illustrates an example where the user demonstrates multiple
preferences by demonstrating a preferred trajectory.

Authors are with the Department of Cognitive Robotics, Delft Univer-
sity of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (email:
s.avaei@student.tudelft.nl, {L.F.vanderSpaa, J.Kober, L.Peternel}@tudelft.nl).

Fig. 1. We show how to leverage demonstrations as means of understanding
the human’s preferences in a manipulation task. The robot originally plans the
blue trajectory without knowledge of human preferences. The user demon-
strates the orange trajectory which in this instance contains the following
preferences: “Stay close to the table surface”, “Keep larger distance from the
obstacle”, and “Pass on the far side of the obstacle”. We develop a method
for learning and generalizing these preferences to new task instances.

One method for adhering to such preferences is to achieve
adaptability on the lower control layer. To this extent, several
control-based approaches have been investigated since the
early 1990s [3]–[5]. These approaches share the same variable
impedance control structure that enables the robot to render
an apparent impedance when a user applies a force in their
desired direction of motion. While such strategies can ensure
safe and responsive adaptation, they suffer from being purely
reactive (i.e. they do not remember the the corrections). The
robot should not only conform to a new trajectory, but it
has to update its internal model in order to understand the
improvement of the corrected trajectory [6]. Hence, there
is a need for robots with knowledge of human’s desired
trajectories. In our approach, this knowledge is encoded as
a set of parameters that are incrementally updated based on
the corrected trajectory.

In this regard, Learning from Demonstration (LfD) is an
active area of research which enables robots to encode human
demonstrated trajectories [2], [7], [8]. LfD frameworks have
the advantage of enabling non-robotic experts to naturally
teach trajectories to robots. A widespread approach in LfD

2

is Dynamic Movement Primitives [9]. In addition to encoding
trajectories, DMPs have the ability to adapt the learned path
via updating an interactive term in the model [10], [11].
Additionally, they can adapt the velocity of the motion by
estimating the frequency and the phase of a periodic task
[12], or learning a speed scaling factor [13]. As a result,
they are able to implicitly capture human path and velocity
preferences. However, such parameters and factors still do
not contain any knowledge about the context of the task and
why the trajectory was adjusted in the first place. Hence,
such adaptations are limited to one specific task and user, and
trajectory corrections are often necessary. Accordingly, these
methods fail to generalize user preferences to new scenarios
due to the robot’s lack of a higher-level understanding of the
human actions. In comparison, our approach pairs parameters
with features that capture contextual information (e.g. distance
to obstacle), and utilises this information to find an optimal
solution in new scenarios.

One way of achieving such generalization is to learn a
model of what makes a trajectory desirable for a person. An
approach to this problem is Inverse Reinforcement Learning
(IRL), which is a paradigm for learning reward functions from
expert demonstrations [14]. Recently, to alleviate the issue of
dependence on expert knowledge, preference-based learning
algorithms have been proposed. These algorithms learn reward
functions by querying users for pairwise comparisons, asking
them to express preferences between different trajectories [15].
Work in this direction has explored a model-free approach
to learning complex non-linear reward functions in the Atari
domain [16], but such an approach suffers from requiring many
queries to learn from, which is time-intensive. Therefore, we
focus on approaches with a simple linear reward structure.
Coactive learning [17] is a method to learn such a reward
function. Unlike traditional IRL methods [18], [19], coactive
learning does not rely on optimal demonstrations (i.e. has
an upper boundary on regret, leaving room for noisy and
imperfect user feedback). It also benefits from being an online
learning algorithm (i.e. the system can learn incrementally
from sequential feedback).

An adapted version of coactive learning was applied in
[1] to learn preferences over trajectories in object manipula-
tion tasks. To this extent, users iteratively ranked trajectories
proposed by the system. Trajectories were sampled using
the Rapidly-exploring Random Tree (RRT) algorithm and the
highest scoring trajectory based on the learned reward was
selected to be the top trajectory. Using randomized sampling
of trajectories limits the generalization capability and quality
of preference quarries, which in turn increases number of
iterations of feedback necessary for convergence. In contrast,
we focus on learning from a few informative feedback, and
give special attention to the issue of trajectory sampling by
employing a model-based trajectory optimization. This facil-
itates the extraction of maximum amount of information out
of each feedback and generalization of preferences to entirely
new contexts. Furthermore, our approach enables learning of
preferences related to velocity.

A similar learning algorithm was used in [6] to adapt
the robot’s trajectory to user’s preferences based on force

feedback. While this approach employed a trajectory opti-
mization scheme, it only achieved in-task generalization (i.e.
preferences were only applied to to future time steps of the
current task). We go further by achieving generalization to
new task instances, while still formulating the problem in the
form of trajectory optimization.

In this paper, we propose a novel framework for optimiz-
ing trajectories in manipulation tasks that meet the user’s
path and velocity preferences. The objective function for the
optimization partly comprises a human preferences reward
function, and a fixed robot objective function that ensures the
safety and efficiency of the trajectories. The approach takes a
full demonstrated trajectory as the feedback for the learning
model, comparing it against the robot’s previous plan at each
step. A minimum acceleration trajectory model is used to
significantly reduce the size of the task space in which we plan
trajectories in, hence increasing the optimization efficiency.
Finally, we design an extensive set of features that correspond
to a variety path and velocity preferences. We evaluate the
proposed method both in simulation and user studies on a
Franka Emika Panda 7-DoF robotic arm, and we show that
the robot can learn and generalise human preferences from as
few as a single demonstration.

In summary, this paper contributes by introducing a method-
ology that is able to: 1) learn different human preferences
from a single informative feedback; 2) optimally estimate
the preferred trajectory in new task instances by exploiting
a trajectory model; 3) execute the learned behaviour in a safe
and compliant manner. For this, we combined existing IRL,
optimisation, and control methods in a novel way.

The rest of the paper is organized as follows: in Sec. II, we
discuss the algorithm and methodology in detail. Sec. III and
IV show our experiments and results in simulations and a user
study, and Sec. V provides a comprehensive discussion on the
results. Finally, we present the concluding remarks and future
work in Sec. VI.

II. METHOD

The problem can be defined in the following manner. Given
a context C which describes the start, goal, and obstacle posi-
tions, the robot has to determine the trajectory ξ = sss1:T ∈ Ξ
(i.e. a set of state sequences) that conforms to the human
preferences and meets the task goals. The states are defined as
sss(k) = [xxx(k); ẋxx(k)] (position and velocity), with k indicating
trajectory samples.

We adopt the formalisation of this problem from [6] as
a Partially Observable Markov Decision Process (POMDP),
where the true reward functions are known by the user and
not the robot. This is on the account that our reward functions
have parameters that are part of the hidden state (i.e. not
directly observable), and the trajectories provided by the user
are observations about these parameters. Solving POMDPs
is challenging in robotics, where the control space is very
complex and high-dimensional. Therefore, we simplify the
problem through approximation of the policy by separating
the planning and control, and treating it as an optimization
problem. Furthermore, we make the problem tractable by

3

Coactive Learning Trajectory Optimization Impedance Control

Environment

Collect demo from human

Fig. 2. Schematic overview of the framework. The human user provides
demonstrations, which are used to learn a distribution over reward functions
via coactive learning. Then, we use the learned rewards to adapt the trajectory
planning strategy of the robot and optimize trajectories to maximise the
human preferences rewards. We then execute the resulting trajectory using
an impedance controller. We repeat this process of querying the human for
preferred trajectories until convergence, at which point the human can be
taken out of the loop.

going from the state space of the manipulator to a space of
viable smooth trajectories.

The resulting framework, as depicted in Fig. 2, first learns
the appropriate reward functions, then plans a trajectory that
maximises the rewards via optimization. Once the trajectory
is defined, we use impedance control to track it in a safe
manner. Notably, we separate the problem of path planning
and velocity planning in the learning and optimization steps.
As a result, users have the flexibility to demonstrate their path
and velocity preferences either simultaneously or in separate
demonstrations.

A. Learning human reward functions from demonstration

We follow previous IRL work [1], [18], [20] in assuming
that the reward functions are a linear combination of features
φ. Accordingly, we define the path and velocity reward func-
tions RP and RV as

RP (xxx(k); C,θHP) = θTHP ·ΦP (xxx(k); C), (1a)

RV (ẋ(r); C,θHV) = θTHV ·ΦV (ẋ(r); C), (1b)

where θHP and θHV denote the unknown weights that
respectively encapsulate the human path and velocity prefer-
ences. In case of the velocity reward, we divide the trajectory
into segments (i.e. range of samples) with equal lengths
indicated by r, with ẋ(r) indicating the average velocity
in each segment. ΦP and ΦV represent the total path and
velocity feature counts along the trajectory, such that:

ΦP =
N∑

k=1

φP (xxx(k); C) , (2a)

ΦV =
M∑
r=1

φV (ẋ(r); C) , (2b)

where N is the fixed number of samples every path is
resampled to, and M is the number of segments the trajectory
is divided to for forming the velocity reward. Importantly, to

have comparable rewards all trajectories need to be consisted
of the same number of states, hence the resampling to N . The
velocity however, inherently affects the number of samples
within a trajectory, which is why we opt for dividing the
trajectory into M segments and consider the average velocity
within each segment (M<N).

Features are directly computed from the robot state and
context of the task. We briefly describe them in the next
subsection and in more detail in Appendix A. Note that the
uncertainty over θHP and θHV is what makes the problem a
POMDP. The trajectory demonstrated by the human is taken
as an observation about these unknown parameters [6].

Assuming that the human behaviour is approximately op-
timal with respect to the true reward, we use a variant of
coactive learning introduced in [6] to learn the weights in θHP

and θHV . However, instead of updating the weights based
on an estimate of human’s intended trajectory from physical
interactions, we use a full trajectory from kinesthetic demon-
stration performed by the human after each task execution.
This provides the algorithm with high-quality feedback as
training data which leads to fast convergence of weights as
shown in III-A. The update rule is then given by

θi+1
H = θiH + α

(
Φ
(
ξiH ; Ci

)
−Φ

(
ξiR; Ci

))
, (3)

where θH can either correspond to weights for the path or
velocity preferences (we update these parameters separately),
i denotes the iteration number, ξiH and ξiR are respectively
the human demonstrated trajectory and the robot’s current
optimized trajectory, and α ∈ (0, 1] is the learning rate.
Note that in case of updating the path preferences, we only
use the position part of the state, and in case of updating
velocity preferences we only use the velocities. Intuitively, the
update rule is an online gradient that shifts the weights in the
direction of the human’s intended feature count. As we use
full new demonstrations at each iteration ξiH , this update rule
is analogous to an online version of the Maximum Margin
Planning algorithm [18], [6].

B. Features and Costs

We define the objective function for trajectory optimization
as a combination of human rewards and robot objectives.
The human rewards consist of features that capture human
preferences, whereas the robot objectives consist of costs that
define a basic behaviour for the robot in absence of any human
rewards. Moreover, robot objectives counter-balance the effect
of human rewards in the optimization. While we learn the
weights in the human rewards, the weights in the robot
objectives are hand-tuned. In this section we first describe
the features associated with the human rewards, and then we
describe the robot objectives.

The human preferences are captured via the four features
listed below (see Fig. 1 for an example of the listed path prefer-
ences). We chose these features as they characterize dominant
behaviours in manipulation applications that could vary from
one user to another based on their preferences. Additionally,
the features selected act along different dimensions of the

4

workspace, creating a complete definition for the behaviour
of trajectories.

Height from the Table: To capture the preference related to
the height from the table on a range of ‘low’ to ‘high’, we
designed a sigmoid function centered at a ‘medium’ height
above the table.

Distance to the Obstacle: We encode the user’s preferred
distance to the obstacle on a range of ‘close’ to ‘far’ using
an exponential feature. The value of this feature decreases as
the radial distance of the end-effector to the obstacle increases.
Beyond a predefined threshold the value of this feature drops to
0 and it no longer influences the behaviour of the optimization.

Obstacle Side: To capture which side of the obstacle to pass
from we created a tangent hyperbolic function centered at 0
lateral distance from the obstacle. We define this feature on
a range of ‘close side’ (the side of the obstacle closer to the
robot) to ‘far side’ (the side of the obstacle far from the robot).

Velocity: To encapsulate the user’s velocity preferences, we
adopt a different approach using a discretized linear combi-
nation of Radial Basis Functions (RBFs). For each segment
r, we map the average velocity onto an even distribution of
RBFs over a range of velocities (ẋmin - ẋmax). The RBFs are
given by:

ψj(ẋ(r)) = e−(εẋ(r)−cj)
2

, (4)

where ε is the shape variable that defines the width, and cj
defines the center of the jth RBF, with j = 1, 2, · · · , n (we
selected n=9).

Inspired by [21], we discretize the above feature to two
bins, based on the distance of the center of each segment to the
obstacle d. Hence, we have the two cumulative feature vectors:
ΦV 1 for d ∈ [0, dr) and ΦV 2 for d ∈ [dr,∞). This allows
us to approximate the speed of motion separately in areas
considered to be ‘close’ to the obstacle and areas considered
to be ‘far’ from the obstacle. However, an issue might arise
that the two trajectories might not have the same number of
segments in each bin (e.g. ξR having two segments close to
the obstacle while ξH only having one segment within the dr
threshold). In such a case, we employ feature imputation using
the mean of the available values.

The robot’s objectives are composed of the following costs
and rewards:

Path Efficiency Cost: This cost is calculated as the total
length of a trajectory and is essential in counter balancing
the human preference features in the optimization process.
Essentially, it pulls the trajectories towards the straight line
path from start to goal and rewards keeping them short.

Collision Avoidance Cost: This cost is defined based on the
obstacle cost formulation in [22], and increases exponentially
once the distance to the obstacle drops below a predefined
threshold.

Robot Velocity: We opt for a robot velocity reward that
achieves a low and safe velocity in absence of human velocity
preferences. This reward is defined based on (4) and is
centered at a low velocity. Furthermore, in IRL it is beneficial
to learn how people balance other features against a default
reward [23].

In the following subsection we will describe how the learned
rewards can be combined with robot objectives to produce
human-centered trajectories.

C. Motion planning via trajectory optimization

We discuss the problem of motion planning in two parts.
First, we address the optimization of the path which solely
defines the position of the trajectory samples in the workspace.
We then address the optimization of the velocity along this
path, defining the timing of the motion.

Solving the path optimization problem over the entire
Cartesian task-space would be very complex and inefficient.
As a result, we employ a trajectory planning algorithm [24]
that interpolates between a set of waypoints with piecewise
clothoid curves to create a trajectory. This algorithm minimizes
the acceleration which results in a smooth and realistic motion.
Hence, we exploit this algorithm to significantly reduce the
search space for the path optimization, and sample trajectories
using a vector of waypoint coordinates p and the correspond-
ing time vector t:

ξ = f(p, tP). (5)

We consider three waypoints p = [ps pm pg]T , corre-
sponding respectively to the start position, an arbitrary position
within the path, and the goal position. We further simplify
the problem by fixing the time vector to tP = [0 D(pm)

D(pg) tg]T ,
where D(p) indicates the Euclidean distance of a waypoint to
the start position, and tg is a fixed duration of time that, at
this step, we assume all trajectories take to finish1. An uneven
distribution of waypoints would lead to bias in the reward
value. Setting up the time vector in this manner ensures a
constant velocity is achieved throughout the trajectory, which
results in an even distribution of interpolated samples within
the path. Furthermore, in this manner trajectories can be
sampled only as a function of waypoint positions ξ = f(p).

The path optimization problem can then be solved by
finding the optimal waypoint vector p∗ using the following
non-linear program formulation:

p∗ = arg min
p

(
RP (p; C,θHP) + θTRP ·ΦRP (p; C)

)
,

subject to:
h(p) = 0,

plow ≤ p ≤ pupp.

(6)

Here, the objective function is composed of the path reward
function and the robot’s path objective which is a linear combi-
nation of predetermined weights θRP and the aforementioned
path cost functions ΦRP . The equality constraint is in place to
ensure the start and goal positions are met. As a result, we are
effectively searching for the waypoint pm that maximises the
objective function. The upper and lower boundaries plow and
pupp limit the trajectory to stay within the robot’s workspace.

1Within the range of time duration we carry out manipulations for, the shape
of the paths are not affected by the value of tg , and therefore we assume the
shape of the path to be independent of the velocity.

5

Fig. 3. An example of convergence towards the optimal path. The optimizer
places pm in different locations in the workspace to generate different paths.
The paths explored by the optimizer are indicated in grey. The orange path
indicates the output of the optimizer for path optimization, resulted from
placing the middle waypoint at the location indicated by the blue circle.

Once p∗ is found, we can construct the full trajectory using
ξ∗P = f(p∗, tP). Fig. 3 demonstrates an example of the
convergence of the optimizer towards a path that adheres to
the preferences shown in Fig. 1.

Having found ξ∗P with the optimal path, we divide the
trajectory into M segments similar to the learning step in
Sec. II-A. Next, we sample M waypoints at the end of
each segment. The positions of these waypoints are stored
in p∗

V = [p1 p2 · · · pM]T and are fixed to maintain the
shape of the trajectory. The corresponding timestamps for
these waypoints are stored in t = [t1 t2 · · · tM]T , which are
the variables we optimize for. Thus, trajectories sampled by the
optimizer are only a function of the time vector ξ = f(t). By
optimizing the time vector and keeping the segments fixed, we
are essentially optimizing for the average velocity over each
segment. The optimal time vector t∗ can be computed from

t∗ = arg min
t

(
RV (t; C,θHV) + θRV · φRV (t; C)

)
,

subject to:
g(t) ≤ 0,

t ≤ tupp,

(7)

where the objective function is composed of the velocity
preferences reward function RV and the robot’s velocity objec-
tive φRV , which provides a reward for manipulating objects at
ẋrobot with a fixed weight θRV . The inequality constraint g(t)
importantly acts as an upper and lower boundary on velocity,
not allowing the time stamps to get too close or too far from
each other (constraining the minimum and maximum speed
over each segment to ẋmin and ẋmax). The upper boundary
on t acts as limit on the total duration of motion (limiting tg

to 30 seconds).

Finally, the trajectory that adheres to both the path and
velocity preferences is constructed using:

ξR = f(p∗
V , t

∗). (8)

D. Impedance control

We control the robot to track the desired trajectory at the
end-effector via impedance control. This approach enables
proactive position control, while simultaneously governing the
compliance behaviour of the robot at the force level through K
and D, making it a safe strategy in cooperative environments.
The impedance control law can be described as

fimp = K (xr − x)−Dẋ, (9)

where fimp is the impedance force, K, D ∈ R6×6 are
respectively the Cartesian stiffness and damping matrices,
and xr is the reference position outputted from (8). In our
framework, the control damping matrix D is set to have a
critically damped response D = 2

√
K [25].

The total torque vector that is sent to the motor controller to
achieve the desired impedance force and robot configuration
can then be calculated from

τ = C(q, q̇)q + g(q) + JT fimp , (10)

where q and q̇ are the joint angles and velocities, J is the
robot’s Jacobian matrix, C is the Coriolis and centrifugal
vector, and g is the gravity vector.

During the kinesthetic demonstrations, the robot is set to
compensate for gravity with K = 0, which allows the users
to easily manipulate the robotic arm. When a demonstration
is intended to only update the speed behaviour of the robot,
we set the robot compliant along a straight line and stiff in
every other direction. This strategy is used in the user studies
described in IV, and allows the human demonstrator to easily
push or pull the robot’s end-effector in a single direction with
their desired speed.

Algorithm 1 Learning human preferences from kinesthetic
demonstration

1: Record ξ0H = {xxx(k), tk}Tk=1 using kinesthetic guiding and
obtain context C0

2: Differentiate xxx(k) to obtain ẋxx(k) and calculate average
velocity of segments ẋ(r)

3: Initialize θ0H , θR and ξ0R
4: Set i = 0
5: while cooperating do

if Received Human Feedback then
θi+1
H = θiH + α

(
Φ
(
ξiH ; Ci

)
−Φ

(
ξiR; Ci

))
p∗ ← Optimize(θi+1

HP ,θRP , Ci+1)
t∗ ← Optimize(p∗,θi+1

HV , θRV , Ci+1)
ξR = f(p∗, t∗)
τ ← Impedance(ξR)
i=i+1

6

III. SIMULATION STUDY

A. Evaluation of Convergence

We test the convergence of our algorithm for 10 different
simulated tasks in 5 different contexts (see Fig. B.1). To this
extent, we study the convergence of the learning algorithm to
a set of true weights θtrue , when an optimal demonstration is
provided (i.e. the demonstration is the output of the trajectory
optimization given the true weights). We use the expected
cosine similarity alignment factor m [26] between the learned
weights θHP and the true weight distribution as a measure for
convergence of the algorithm:

m = E
[
θHP · θtrue

|θHP | |θtrue |

]
. (11)

θtrue are hand-designed so that the trajectory output from the
optimisation lies strictly within the boundaries in (6).

The results in Fig. 3 show that in most situations the algo-
rithm converges remarkably fast. We further notice that when
the weights do not converge, further iterations of feedback
with the same trajectory can improve the results. However, for
the case shown in light blue, we see a slight divergence with
further updates. This is a particularly difficult case where the
intended trajectory lies very close and above the obstacle (see
Fig. B.1f). In such a region, the robot’s collision avoidance
objective heavily influences the result of the optimization,
yet the learning algorithm does not take this information into
account when updating θHP .

We further observe that for some of the cases the algorithm
does not fully converge (c, h and j). Scenario c for instance, is
associated with a situation in which the algorithm converges
to an identical trajectory as the input, but does so with a
slightly different distribution of weights (see Fig. B.1c). This is
because there is redundancy in the weights, where in certain
situations multiple weights push the trajectory in the same
direction. For scenarios h and j the resulting trajectories are
only slightly different in shape, but lie in the same region
of workspace associated with the path preferences in the
demonstration (see Fig B.1h and Fig. B.1j). While these results
imply that our framework does not perform consistently in
every situation in terms of convergence of weights, we believe
the impact of such inconsistencies is minimal in terms of
the user experience and satisfaction with the final trajectory
produced. We further support this claim in Sec. IV.

B. Proof of Concept

To demonstrate the potential of our framework for reducing
effort in cooperative settings, we compare it with the base-
line of Dynamic Movement Primitives (DMPs). DMPs are a
widespread LfD approach for encoding trajectories, capable of
generalising to different initial/goal states (refer to Appendix
B.2 for more details). We employ a variation of DMPs from
[27], and modify it by adding a potential fields obstacle
avoidance forcing term [28]. Hence, both methods have access
to and consider the obstacle position for planning.

We consider a situation where the user has a preference for
passing on the closer side of the obstacle due to existence of a
wall on the other side that the robot is not aware of (similar to

Fig. 4. The results of our convergence study, investigating how fast we can
learn the distribution over θHP . The dashed line represents the mean. Refer
to Fig. B.1 for the corresponding context and trajectories.

Fig. 5. We demonstrate generalisation by modifying the position of the goal,
start and obstacle positions respectively from the top row to the bottom row.
The red and orange trajectories respectively correspond to the output of the
DMPs and our framework. The black, blue and green circles respectively
represents the obstacle, goal and start positions. The thickness of the line
indicates the inverse of normalised velocity (i.e. the thicker the line, the slower
the trajectory).

Fig. 3). Furthermore, we want to remain close to the obstacle,
but to also slow down when we are in close proximity to
it. We do a single kinesthetic demonstration containing all of
these preferences, and use it as the input to our model. DMPs
however do not require knowledge about the position of the
obstacle in the learning phase. Therefore, in case of DMPs
we provide a straight line demonstration from start to goal in
absence of the obstacle. We still slow down in the middle area
of the trajectory when demonstrating for the DMPs to provide
both methods with similar velocity behaviours (see Fig. B.2b).

Fig. 5 displays trajectories reproduced by the two meth-
ods in 9 new situations. We can observe that the trajectory
produced by our method (shown in orange) passes on the

7

‘close’ side of the obstacle in every case, where as the DMPs
fail to realise this preference in 6 situations. Furthermore,
the aforementioned velocity preference is more consistently
achieved by our framework in every situation. This is because
our model is aware that the path and velocity behaviours
demonstrated are with respect to the the obstacle (context
aware model), while DMPs only react to the obstacle in the
trajectory reproduction phase. It should be noted that our
framework does take up to two minutes of optimization (total
for path and velocity), whereas the DMP trajectory is produced
instantly. However, the human would have had to adapt the
trajectory in all of the side preference failed cases, leading to
higher effort.

This comparison illustrates how lack of a higher level
knowledge about why the trajectory was demonstrated in a
specific manner leads to failure in generalization to new task
instances. These results emphasise the need for consideration
of internal human models, such as our reward in (1), in LfD
methods.

IV. USER STUDY

To validate our framework we conduct two user experiments
on a Franka Emika Panda 7-DoF robotic arm. Thereby we
show a proof-of-concept of our approach in a real world
robotic scenario with non-expert users2. In both experiments
we use a set of three pick and place tasks in an agricultural
setting. Each task has a distinct start, obstacle, and goal
position. The task setups are shown in Fig. 6. The primary
goal of each task was moving the tomatoes from the initial
position to the goal without any collisions with the obstacle.

Each user first took approximately 10 minutes to get familiar
with physically manipulating the robot in the workspace.
In this period, we also instructed users about the goal of
the task and the preferences the robot could capture. Users
then proceeded with the two experiments. To subjectively
assess whether the framework can capture different ranges
of behaviours, in the first experiment we let the users freely
define their path and velocity preferences. Once users were
more familiar with the framework, in the second experiment
we assessed how effectively could the users teach a set of pre-
defined preferences to the robot. The overview of the whole
study is provided in Fig. 7.

We recruited 14 participants (4 women and 10 men) between
23 and 36 years old (mean = 26.8, SD = 3.6), six of whom
had prior experience with robotic manipulators, but none of
whom had any prior exposure to our framework. We discuss
each experiment in more detail in the following subsections.

A. User-Defined Preferences

Users demonstrate different trajectories depending on their
experience and preferences. Hence, it is important to inves-
tigate how our framework performs when users can openly
choose their set of preferences. We are specifically interested
in assessing how well the robot plans motions in new task in-
stances with a context it has not seen before (i.e. generalization

2For video footage of the experiment, see: https://youtu.be/hhL5-Lpzj4M

Fig. 6. From left to right tasks 1-3. The orange star indicates the start
position, and the red start the goal position. The obstacle to be avoided is
the bag of tomatoes. Task 1 and 2 shared the same starting positions, and
Task 3 and 4 shared the same obstacle positions. Notice the difference in
height of the goal position in Task 1 compared to Task 2 and Task 3.

of preferences). Furthermore, in terms of the user experience it
is essential to investigate the acceptability and effort required
from the user’s perspective. Accordingly, our hypotheses for
the first experiment are listed below:
H1. The proposed framework can generalize user preferences
to new task instances.
H2. Users will believe the robot understood their preferences.
H3. Users feel a low level of interaction effort.
Procedure and Measures. Users first performed a demonstra-
tion in Task 1 for path preferences with the robot in gravity
compensation mode. Notably, users could freely decide a wide
range of behaviours with respect to each preference. For in-
stance, instead of asking users to pass on either the close or far
side of the obstacle, we asked them to intuitively demonstrate
how far to each side of the obstacle they would prefer to
pass (i.e. we did not limit users to discrete preferences). The
implication was that they could, for example, decide to pass
right above the obstacle. This would then correspond to a “stay
to the middle of the obstacle” for the “obstacle side” path
preference.

We then collected a second separate demonstration for the
velocity preferences. During velocity demonstrations, the robot
was only compliant along a straight line path above the obsta-
cle in Task 1, and stiff in other directions. This line covered
a range of distance to the obstacle in the range of “close”
to “far”. This allowed the users to focus on demonstrating
their preferred speed without having to concern about the path
taken. To reduce the time required for optimization, the method
for learning and planning velocity preferences was modified
from that described in Sec. II (see Appendix B.2).

Users were given maximum of 10 minutes per task and
were instructed to provide corrections via additional kines-
thetic demonstrations until they were satisfied with the result.
However, users were informed that the speed of the trajectory
can only be trained once via the initial demonstration and
no further feedback could be given for velocity preferences.
In order to evaluate the adaptability of the framework, once
users were satisfied with the trajectory achieved in Task 3,
they were asked to adapt their preferences to a different set of
their choice and provide one additional demonstration.

Since we do not have direct access to the user’s internal
preferences, we quantify the quality of learning by asking each

8

Task 1

TrainingFamiliarization

Workspace
Exploration

Q

Experiment

User-De�ned Preferences

Task 2 Task 3 Task 1 Task 2 Task 3

Q

Correction

Dummy

Traj

Pref.

Optimized

Pre-De�ned Preferences

Q

Pref.

Optimized

Pref.

Optimized

Dummy

Traj

Dummy

Traj

Dummy

Traj

Dummy

Traj

Dummy

Traj

Collect Demonstrations Play TrajectoriesTask 1 Task 2 Task 3

Ground Truth

QQQ

Fig. 7. The experimental protocol. Users started with workspace familiarization, then went through the first experiment assessing the performance of the
framework in understanding their preferences. Finally, in the last experiment they provided ground truth demonstrations and evaluated the demonstrated
trajectories in adhering to the set of pre-defined preferences. The order in which the dummy trajectories were shown to the users was different in every task.
The ‘Q’ symbols indicate when participants were provided with questionnaires.

#
 o

f
F

e
e

d
b

a
c
k
s

(a) (b)

Fig. 8. Results of the first experiment. (a) Average number of feedback provided to the system for each task. The dot represents mean score, the error bars
represent standard deviation, and the crosses indicate individual data points. (b) Results of Likert questionnaire for the first resulting trajectory in every task
(i.e. prior to any additional demonstrations) - the error bars correspond to standard deviation.

user to evaluate their own trajectories. After observing each
trajectory, users filled out a subjective questionnaire to rate the
following statements on a 7-point Likert scale:

1) The robot accomplished the task well.
2) The robot understood my path preferences.
3) The robot understood my motion preferences.

If corrections were applied:
4) The robot learned from my correction.

We also evaluate the total number of times a user provided
feedback to the system in each task as a measure of effort
to achieve desired trajectories. Furthermore, at the end of this
scenario they were asked to fill out the NASA Task Load
Index (NASA-TLX) [29] for assessing workload. While we
do not compare results with a baseline here, NASA-TLX is
still appropriate since it can capture absolute results.
Results. While the majority of the users intuitively preferred
to pass above the obstacle and to the middle, users still
demonstrated a multitude of different “close/far” to obstacle,
“left/right” side of obstacle, and “low/high” height from the
table preferences. Similarly, for motion preferences, while the
majority opted for a constant ”medium” speed, both preference
of going “slower when close to the obstacle” and “faster when

close to the obstacle” were demonstrated at least once.

We present our results in Fig. 8. We observe that the average
amount of feedback given to the system after the first task
drops, with the majority of the users satisfied with the results
of generalisation with just a single iteration of weight update
(we count the training step in Task 1 as a feedback). This result
is also reflected in Fig. 8b, showing that the users subjectively
scored the first trajectory produced in every task consistently
high, supporting the claim that the framework can generalise
both path and motion preferences to new task instance. This
provides strong evidence in favor of both H1 and H2.

In regards to the workload associated with the method, the
NASA-TLX results in Fig. 9 show that users experienced low
mental and physical demand. Although kinesthetic teaching is
normally associated with high effort, it is noteworthy that our
frameworks effort scores remain on the lower side of the scale,
with the exception of a few outliers. The user associated with
3 iterations of feedback in Task 1 (see Fig. 8a) corresponds
to the high performance, frustration and effort scores. This
user was particularly strict with their height preference, which
the algorithm failed to capture, and over-corrected for in the
updates. However, in general the results in Fig. 9 support H3.

9

Fig. 9. Results of the NASA-TLX questionnaire after the first experiment.

B. Pre-Defined Preferences

To empirically evaluate the accuracy of trajectories planned
by our framework, we conduct an experiment were we de-
fine the desired behaviour for the users. Correspondingly, all
the users were asked to teach the robot the following path
preferences (we did not consider velocity preferences in this
experiment):

• Pass on the side of the obstacle that is closer to the robot.
• Stay far from the obstacle.
• Keep a high elevation from the table.

As a measure for generalization, we evaluate if the method
remains consistently accurate throughout the different tasks.
Additionally, we investigate how well can users detect the
instructed path preferences in trajectories. Therefore, we define
the following hypotheses:
H4. The method remains consistently accurate throughout the
3 tasks.
H5. Users can clearly distinguish that the output of the
framework is following the specified preferences.
Procedure and Measures. In this experiment, we first col-
lected four demonstrations per task to obtain statistical mea-
sures on participants kinesthetic demonstration behaviour. For
half of the participants, we trained the model on the mean of
the four demonstrations from the first task, and for the other
half we used the mean of data from the third task. This is to
establish that we can still generalise between different tasks,
even when changing the set used as the training data.

After collecting the data, users were shown 3 trajectories
per task, one of which was the output of our framework, and
the other two were pre-defined dummy trajectories (see Fig.
7). The dummy trajectories were designed to adhere to 2 out
of 3 path preferences, and are shown in Fig. 10a. This allowed
us to observe if users could distinguish our method’s results
compared to sub-optimal trajectories.

We take the mean of the trajectories demonstrated by the
user to be the ground truth, with respect to which we can
objectively measure the accuracy of our method. Hence, we
compute the total Euclidean distance of samples within each
trajectory to the samples within the mean of the four demon-
strations in each task (we used N=80 in this experiment).
Furthermore, we evaluate the total feature count along each

TABLE I. Average distance error of trajectory samples w.r.t the ground truth,
normalized w.r.t distance of start to goal (in meters) - mean [min max].

Task 1 Task 2 Task 3
Optim 0.14 [0.09 0.18] 0.20 [0.12 0.27] 0.17 [0.13 0.24]

Dummy 1 0.24 [0.13 0.34] 0.26 [0.16 0.38] 0.30 [0.21 0.41]
Dummy 2 0.27 [0.18 0.33] 0.39 [0.28 0.47] 0.23 [0.18 0.28]

trajectory and measure the error with respect to the ground
truth in the feature space.

For our subjective measure, we asked users to rate each
7-point Likert scale based on the following statement:

• The robot adhered to the demonstrated preferences.
Results. Fig. 10b illustrates three successful trajectory gener-
ations by our method under the aforementioned path prefer-
ences for a single user. In this case, the model was trained
from Task 3, and Task 1 and 2 represent the framework’s
generalisation. It is worth highlighting that in this experiment,
both the human user and the robot are generalising the
instructed preferences to new task instances. The difference
is that the robot infers these preferences from a single tra-
jectory input (mean of demonstrations), while the user uses
the preference statements mentioned above. Therefore, as the
users demonstrate slightly different trajectories based on their
personal interpretation of high level statements such as ‘high’
and ‘far’, the robot attempts to capture and optimise for the
personal amplitudes of each user for these preferences (i.e.
one user’s definition of ‘high’ is different from another).

Similar results were obtained from other users, and we show
this by listing the min, max and mean of the average Eucledian
distances between the samples in the resulting trajectories and
ground truth trajectories in Table I. Note that these values
have been normalised relative to the length of straight line
trajectories in each task, in order to be able to compare
trajectories in different tasks with various distances from start
to goal. To provide an impression about the magnitude of
these errors, the straight line trajectories in task 1-3 were
respectively 1.08, 0.74 and 0.88 m. As expected, the trajectory
produced by the optimisation has a notable lower distance
error to the users demonstrations. Nevertheless, the results
suggest that H4 is only partially supported, as the mean
distance error in Task 2 and 3 is slightly higher than in Task
1. Task 1 has the longest distance between the start and goal
position, for which the framework seems to perform better.

The spider charts in Fig. 11 compare the mean error of the
trajectories in feature space for all participants. It is evident
that our optimisation results consistently occupy the least area
on the charts in all three tasks, indicating that overall the
optimised trajectories adhere to the preferences. However, the
area corresponding to the optimised trajectories in Task 2 and
3 is slightly larger than in Task 1, showing the same trend of
loss of performance in tasks with shorter lengths. Furthermore,
we see that in Task 2 and 3, dummy trajectories occasionally
perform slightly better for the ‘obstacle side’ and ‘distance to
the table’ preferences. Nevertheless, in Fig. 12 we can see that
users clearly score the output of our framework higher, which
strongly supports H5. This indicates that users prefer all of
the preferences to be approximately satisfied, rather than one
of the preferences to be wrong while the others are accurate.

10

(a) (b)

Fig. 10. (a) The dummy trajectories designed for the second experiment. The blue trajectories do not correctly follow the ‘obstacle side’ preference, and the
cyan trajectories do not follow the ‘height from the table’ preference. (b) Results of the second experiment for a single user. The dashed lines are the mean
of human demonstrations taken as ground truth, and solid lines represent the robot trajectories, the black spheres the obstacles, and the circles and the plus
signs are respectively the start and goal positions in each task. The framework uses the ground truth trajectory in blue to learn the human reward, but does
not have access to the demonstrations in green and red. The robot successfully follows the pre-defined trajectories listed in Sec. IV-B.

Fig. 11. Comparison of trajectories in terms of the error of total feature count of each path preference, with respect to the ground truth (i.e. smaller values
for each axis are favoured). The orange chart corresponds to the output of our optimisation.

The best performing dummy trajectory was dummy 3-2
(solid blue trajectory for Task 3 in Fig. 10a), for which we
can observe a correlation between a high rating in Fig. 12,
low occupied area in Fig. 11, and relatively low distance error
values in Table I. This correlation is also in support of H5,
suggesting that non-expert users can intuitively recognize such
preferences in trajectories.

V. DISCUSSION

A. Mode of Demonstration

One of the advantages of the proposed method is that it
learns fast. During the first part of the user study, participants
spent on average 16.5 seconds of interacting with the robot
before expressing satisfaction with the results. This is partially
due to having access to (near)optimal kinesthetic demonstra-
tions. This method of demonstration has been criticised as
being challenging in applications involving high DoF manipu-
lators [1], [30]. However, the separation of learning and control
in our framework means that users do not have to provide
the correct configuration of the arm in their demonstrations.
Furthermore, as a result of separation of path planning and ve-
locity planning, users are not required to provide a temporally

Fig. 12. Result of Likert questionnaire for experiment 2. Crosses indicate
individual ratings, while the the dot and error bar respectively represent mean
and standard deviation. Users clearly recognise and highly rate the output of
the framework in terms of adhering to the path preferences.(Will be updated
to include task colors)

consistent demonstration (i.e. velocity variations did not affect
the result of path preference learning). These features made it
significantly easier for the users to provide demonstrations, and
this is reflected in the low mental and physical loads reported
(see Fig. 9).

11

B. Trajectory Optimization

The separation of path planning and velocity planning has
additional benefits. Formulating the optimization as a multi-
objective problem with both position and velocity features re-
sults in undesirable interaction of objectives. For instance, we
observed that with such formulation, the optimizer attempts to
modify the total length of the trajectory. This would then affect
the distance between the samples and hence the velocity (e.g.
when velocity features rewarded high speeds, the trajectory
converged to a longer path). Conversely, path features with
high rewards in specific regions of space were impacting the
velocity. The optimizer slowed down the movement in such
regions to increase the density of samples and consequently
the overall reward. However, the separated format of trajectory
optimization has the limitation that it can not account for
dynamical quantities such as joint velocity and acceleration,
and therefore efficiency of movements in robot’s joint-space
can not be considered.

A challenge with trajectory optimization with user defined
objectives is that the outcome does not always align with task
requirements. For instance, in case of a strong “stay close to
the object” preference, a trajectory that is in collision briefly
can have a lower average cost than a trajectory that never
collides. Tuning of the collision weight can only partially solve
this issue, as at a certain point this cost can interfere with the
path preferences. In the first scenario of our experiments, we
had one case where a collision happened. This was however
fixed with one iteration of feedback, where the user slightly
increasing the distance of the end-effector to the obstacle.

C. Accuracy Trade-off

The results of the first scenario of our user study in IV-A
showed that users can intuitively use our method to quickly
teach a wide range of preferences to the robot. In this context,
the performance was defined based on satisfaction of users
with the resulting trajectories, which depends on personal
margins for error. While the results from the second scenario
show that we do not always reproduce trajectories with the
exact desired shapes in the workspace (see red trajectory
in Fig. 10b), the results from the first scenario show that
user’s still deem these trajectories to be highly suitable in
terms of task accomplishment and the preferences achieved
(see Fig. 8b). State-of-art LfD methods are very capable of
producing accurate and complex dynamic movements [31]
[32]. However, we argue that in tasks such as manipulation
where there are multiple ways of achieving the same goal,
we can trade-off accuracy of motion for achieving more
abstract planning propensities on a higher level (refer to [33]
for a discussion on the need for extension of human-robot
cooperation to the higher tactical layer).

D. Feature Engineering

Our approach inherits the limitations of IRL approaches
that require specifying reward features by hand. Both features
and costs depend on several parameters which require tuning.
The problem becomes especially difficult as our features

simultaneously govern the behaviour of the reward learning as
well as the trajectory optimizer. For instance, high gradients in
the feature function lead to erratic behaviour of the optimizer
leading to poor solutions and convergence to local minima.
Yet, for certain features a sufficiently high gradient is required
to facilitate the learning of preference weights that are large
enough to counterbalance each other. As a result, we had to
resort to further tuning of parameters, such as the learning rate
in (3).

A crucial aspect of feature engineering is defining the
context as it determines how expressive the features are.
We have considered a limited set of vectors as context in
this work (i.e. obstacle position, start and goal positions).
However, it is possible to include additional information in
the context such as object properties (e.g. sharp, fragile or
liquid) [1], human position [34], and number of objects. The
more rich the context, the more preferences the model can
capture in complex environments. However, training diversity
can become an issue with contextually rich features, as the
model would require more demonstrations to cover a wider
range of situations. This can lead to increased training time. An
evaluation of the trade-off between improved generalisation
and higher training time would be interesting, but is out of
the scope of this study and we leave it for future work.

VI. CONCLUSION AND FUTURE WORK

We presented a new approach for learning and executing
human preferences in manipulation tasks. Our simulation stud-
ies showed the fast convergence of the algorithm, as well as
the proof-of-concept for generalising path and velocity prefer-
ences. We further validated the efficiency and accuracy of our
approach in a user study in a real world scenario. Our results
suggest that user defined models can contribute to planning of
manipulation tasks through reduction of interaction effort and
achieving personalized trajectories.

Using a trajectory model allowed us to make the problem
tractable, however this model is quite simplistic and does not
describe human motion behaviour very well. Future research
could consider replacing this model with a library of motion
primitives generated from demonstrations to better capture the
shape of the trajectories. More accurate trajectory models can
enable the extension of the framework to settings where the
human and robot come to contact with each other through
a shared object (physical human-robot collaboration). We
believe the framework is specially effective in collaborative
settings where knowledge of preferences of a partner are
essential to execution of the task. Finally, it is of interest
to study whether more complex non-linear formulations of
the reward function using Gaussian Process [35] or Neural
Networks [16] can effectively capture such preferences without
the need for rigorous feature engineering.

REFERENCES

[1] A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learn-
ing preferences for manipulation tasks from online
coactive feedback,” The Int. J. of Robotics Research,
vol. 34, no. 10, pp. 1296–1313, 2015.

12

[2] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C.
Torras, “Learning physical collaborative robot behaviors
from human demonstrations,” IEEE Trans. on Robotics,
vol. 32, no. 3, pp. 513–527, 2016.

[3] R. Ikeura and H. Inooka, “Variable impedance control of
a robot for cooperation with a human,” in Proceedings
of 1995 IEEE Int. Conf. on Robotics and Automation,
IEEE, vol. 3, 1995, pp. 3097–3102.

[4] T. Tsumugiwa, R. Yokogawa, and K. Hara, “Variable
impedance control based on estimation of human arm
stiffness for human-robot cooperative calligraphic task,”
in Proceedings 2002 IEEE Int. Conf. on Robotics and
Automation (Cat. No. 02CH37292), IEEE, vol. 1, 2002,
pp. 644–650.

[5] V. Duchaine and C. M. Gosselin, “General model of
human-robot cooperation using a novel velocity based
variable impedance control,” in Second Joint EuroHap-
tics Conf. and Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems (WHC’07),
IEEE, 2007, pp. 446–451.

[6] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dra-
gan, “Learning robot objectives from physical human
interaction,” in Conf. on Robot Learning, PMLR, 2017,
pp. 217–226.

[7] L. Peternel, N. Tsagarakis, and A. Ajoudani, “A
human–robot co-manipulation approach based on hu-
man sensorimotor information,” IEEE Trans. on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 7,
pp. 811–822, 2017.

[8] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov,
J. Peters, and G. Neumann, “Guiding trajectory opti-
mization by demonstrated distributions,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 819–826,
2017.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Move-
ment imitation with nonlinear dynamical systems in
humanoid robots,” in Proceedings 2002 IEEE Int. Conf.
on Robotics and Automation (Cat. No. 02CH37292),
IEEE, vol. 2, 2002, pp. 1398–1403.

[10] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite,
and F. Wörgötter, “Interaction learning for dynamic
movement primitives used in cooperative robotic tasks,”
Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1450–1459, 2013.

[11] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Cou-
pling movement primitives: Interaction with the envi-
ronment and bimanual tasks,” IEEE Trans. on Robotics,
vol. 30, no. 4, pp. 816–830, 2014.

[12] L. Peternel, T. Petrič, E. Oztop, and J. Babič, “Teaching
robots to cooperate with humans in dynamic manip-
ulation tasks based on multi-modal human-in-the-loop
approach,” Autonomous robots, vol. 36, no. 1, pp. 123–
136, 2014.

[13] B. Nemec, N. Likar, A. Gams, and A. Ude, “Human
robot cooperation with compliance adaptation along the
motion trajectory,” Autonomous robots, vol. 42, no. 5,
pp. 1023–1035, 2018.

[14] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse
reinforcement learning.,” in Icml, vol. 1, 2000, p. 2.

[15] C. Wirth, R. Akrour, G. Neumann, J. Fürnkranz, et al.,
“A survey of preference-based reinforcement learning
methods,” J. of Machine Learning Research, vol. 18,
no. 136, pp. 1–46, 2017.

[16] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg,
and D. Amodei, “Reward learning from human pref-
erences and demonstrations in atari,” arXiv preprint
arXiv:1811.06521, 2018.

[17] P. Shivaswamy and T. Joachims, “Coactive learning,”
J. of Artificial Intelligence Research, vol. 53, pp. 1–40,
2015.

[18] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Max-
imum margin planning,” in Proceedings of the 23rd Int.
Conf. on Machine learning, 2006, pp. 729–736.

[19] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K.
Dey, et al., “Maximum entropy inverse reinforcement
learning.,” in Aaai, Chicago, IL, USA, vol. 8, 2008,
pp. 1433–1438.

[20] M. Palan, N. C. Landolfi, G. Shevchuk, and D.
Sadigh, “Learning reward functions by integrating hu-
man demonstrations and preferences,” arXiv preprint
arXiv:1906.08928, 2019.

[21] M. Fahad, Z. Chen, and Y. Guo, “Learning how pedes-
trians navigate: A deep inverse reinforcement learning
approach,” in 2018 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), IEEE, 2018, pp. 819–826.

[22] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko,
M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. S.
Srinivasa, “Chomp: Covariant hamiltonian optimization
for motion planning,” The Int. J. of Robotics Research,
vol. 32, no. 9-10, pp. 1164–1193, 2013.

[23] D. Vasquez, B. Okal, and K. O. Arras, “Inverse rein-
forcement learning algorithms and features for robot
navigation in crowds: An experimental comparison,” in
2014 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IEEE, 2014, pp. 1341–1346.

[24] MathWorks. (2018). “Waypoint trajectory generator,”
[Online]. Available: https : / / nl . mathworks . com / help /
nav/ref/waypointtrajectory-system-object.html (visited
on 08/10/2021).

[25] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger,
“Cartesian impedance control of redundant robots: Re-
cent results with the dlr-light-weight-arms,” in 2003
IEEE Int. Conf. on robotics and automation, IEEE,
vol. 3, 2003, pp. 3704–3709.

[26] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia,
“Active preference-based learning of reward functions,”
2017.

[27] S. Calinon and D. Lee, “Learning control,” in Humanoid
Robotics: a Reference, P. Vadakkepat and A. Goswami,
Eds., Springer, 2019, pp. 1–52. DOI: 10.1007/978-94-
007-7194-9 68-1.

[28] O. Khatib, “Real-time obstacle avoidance for manipula-
tors and mobile robots,” in Autonomous robot vehicles,
Springer, 1986, pp. 396–404.

13

[29] S. G. Hart and L. E. Staveland, “Development of nasa-
tlx (task load index): Results of empirical and theo-
retical research,” in Advances in psychology, vol. 52,
Elsevier, 1988, pp. 139–183.

[30] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz,
“Keyframe-based learning from demonstration,” Int. J.
of Social Robotics, vol. 4, no. 4, pp. 343–355, 2012.

[31] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learn-
ing to select and generalize striking movements in robot
table tennis,” The Int. J. of Robotics Research, vol. 32,
no. 3, pp. 263–279, 2013.

[32] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot
motor skill coordination with em-based reinforcement
learning,” in 2010 IEEE/RSJ Int. Conf. on intelligent
robots and systems, IEEE, 2010, pp. 3232–3237.

[33] F. Flemisch, D. A. Abbink, M. Itoh, M.-P. Pacaux-
Lemoine, and G. Weßel, “Joining the blunt and the
pointy end of the spear: Towards a common framework
of joint action, human–machine cooperation, coopera-
tive guidance and control, shared, traded and supervi-
sory control,” Cognition, Technology & Work, vol. 21,
no. 4, pp. 555–568, 2019.

[34] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D.
Dragan, “Learning from physical human corrections,
one feature at a time,” in Proceedings of the 2018
ACM/IEEE Int. Conf. on Human-Robot Interaction,
2018, pp. 141–149.

[35] E. Bıyık, N. Huynh, M. J. Kochenderfer, and D. Sadigh,
“Active preference-based gaussian process regression
for reward learning,” arXiv preprint arXiv:2005.02575,
2020.

A
Appendix Feature Design and Cost

Formulation
Features are computed from robot’s state and context and are used to describe human preferences.
They simultaneously govern the behaviour of the learning algorithm, as well as the trajectory optimiza
tion. Cost functions are defined in the same manner, but they only influence the behaviour of the
optimization. The weights associated with the features are learned from demonstration via the IRL
algorithm discussed in Chapter 1, but the weights associated with the costs are handtuned.

A.1. Human Features
We employed 3 path features and 18 velocity features in our framework, all which had weights assigned
to based on human demonstrations. The 3 path features were unique and of different nature, while the
18 velocity features were all the RBFs with different centers. As these features are employed in an
optimization algorithm, we payed attention to defining them as smooth as possible to avoid undesired
behaviours such getting stuck in local minima.

A.1.1. Distance to Obstacle
For this feature we use an exponential function with a negative exponent as shown in A.1). We use
a simple radial definition for the distance to the obstacle, measured from the center of the obstacle.
This assumes that the shape of the obstacle is spherical. Although this is usually not the case, we
can approximate the obstacle by the smallest sphere that it can fit within. The feature 𝜙𝑑 can then be
defined as

𝜙𝑑 = 𝑒−𝛽𝑑
2 . (A.1)

where 𝑑 is the euclidean distance to the center of the obstacle, and 𝛽 is a parameter defining the shape
of the function.

In our experiments, we considered obstacles of about 12 cm wide (radius of 6 cm). If the size of the
obstacle is increased beyond this value, retuning of features is required (i.e. we do not generalize to
larger obstacle sizes).

As seen in Fig. A.1, the feature value drops to 0 at 30 cm away from the obstacle. This is a
threshold outside of which the behaviour of the trajectory is no longer affected by the distance to the
obstacle. Note that if a negative weight is learned associated with this feature, the trajectory is still
attracted towards the obstacle even if it initially lies outside of the 30 cm threshold. This is because our
optimization strategy explores different regions of the workspace, and in this case it would detect that
there is a reward associated with being closer to the obstacle.

A.1.2. Obstacle Side
For this feature we initially have to find out which side of the obstacle a trajectory sample lies on. To
this extent, we first define the plane that lies in the middle of the obstacle, is parallel to the axis that

15

16 A. Appendix Feature Design and Cost Formulation

Figure A.1. Exponential feature for learning the preferred distance to the obstacle. Based on the sign of the weight, we learn
to either attract the trajectory towards the obstacle or repel from it.

defines the direction of the motion, and is perpendicular to the horizontal plane (see Fig. A.2). Hence,
we find three points that lie on this plane based on the position of the obstacle and the direction of
the motion (This is defined as the line passing through the center of the obstacle and parallel to the
longest axis of the trajectory). Lets denote these points as A, B and C (order is not important). We
can then use the methodology in [1] to determine which side of the plane a trajectory sample lies on.
Accordingly, we define the following differences: B′ = B − A, C′ = C − A, and X = x − A, where x
is the trajectory sample position. Finally, the sign of 𝑆 = det([B′;C′;X′]) determines which side of the
plane the trajectory sample lies on. Importantly, the magnitude of 𝑆 also determines how far to each
side of the plane a sample point lies (linear relation).

While it is possible to directly use the lateral distance of each point to the obstacle’s center, this
method allows for generalisation to scenarios where the plane is not parallel to the reference axis. For
instance, the plane can be defined parallel to the line connecting the start and goal position. Therefore,
we recommend the above formulation.

We then define the feature with a tangent hyperbolic function given by

𝜙𝑠 =
2

1 + 𝑒𝛾𝑆 − 1, (A.2)

where 𝛾 defines the shape of the function. It should be noted that the sign of 𝛾 depends on the direction
of trajectory (i.e. we flip the function in case of planning in the opposite direction to stay consistent with
the definition of ‘close’/‘far’ side of the obstacle).

The resulting function can be seen in Fig. A.3. This feature spans over the entire workspace as
we want it to capture exactly how far to each side of the obstacle the user prefers the trajectory to be.
While the trajectory can never reach as far as 1 meter to one side of the obstacle due to the workspace
restrictions, we found the function with this shape to perform better compared to functions with higher
gradients that fit within a smaller distance range.

A.1.3. Height from the Table
To encode this preference, we designed a sigmoid function with the vertical distance of a trajectory
sample from the table ℎ as the input:

𝜙ℎ =
1

1 + 𝑒−𝜆(ℎ+𝑝) . (A.3)

Here, 𝜆 defines the shape of the function and 𝑝 determines the center of the function. The resulting
function is shown in Fig. A.4, and we can see that the slope gradually decreases at heights close to
the upper and lower height boundaries of the workspace which are respectively at 5 cm and 80 cm.
This is done to hinder the effect of a change in height on both the weight update and the optimization
close to these boundaries (i.e. A demonstration at 75cm above the table should not impact the weight

A.2. Robot Objectives 17

Figure A.2. The definition of the plane of the obstacle parallel to the longest axis of the trajectory. We define and use the three
red points on this plane to find out if trajectory samples lie on the close or far side of the obstacle.

update very differently to a demonstration at a height of 70cm). This gives the freedom to the other
objectives that are active in such areas (e.g. side feature) to have a higher impact on the optimization.
The algorithm learns either a positive or a negative weight related to this feature which can respectively
pull the trajectory to the table or push it away.

A.1.4. Velocity Features
The velocity features differ from the rest of the features in that they are, naturally, defined in the velocity
space. These features share the same structure based on RBFs, and are evenly distributed over a
range of velocities as shown in Fig. A.5. Each feature can be defined by the following expression:

𝜓𝑖(�̇�) = 𝑒−(𝜀�̇�−𝑐𝑖)
2 , (A.4)

where �̇� is the average velocity for a given trajectory segment, 𝑐𝑖 is the velocity the 𝑖𝑡ℎ function is
centered at, and 𝜀 is the variable defining the shape of the functions. Hence, the velocity feature vector
can be defined as 𝜙𝜙𝜙𝑣 = [𝜓1, 𝜓2, ⋯ , 𝜓𝑛]

We discretize these features in to two regions of the workspace: The region considered to be ‘close’
to the obstacle, and the region considered to be ‘far’ from the obstacle. The definition for ‘close’ and ‘far’
is based on a distance threshold 𝛿. If the center of a segment lies within a distance 𝛿 from the center
of the obstacle, we consider it to be ‘close’ and featurize its velocity in the vector 𝜙𝜙𝜙𝑣1, and otherwise
in 𝜙𝜙𝜙𝑣2. Therefore, we have in total 2𝑖 velocity features. As a result, in the optimization, the optimal
velocity is computed based on the distance to the obstacle and the corresponding feature vector.

A.2. Robot Objectives
We employ 2 costs in the path optimization and 1 reward in the velocity optimization which define the
behaviour of the robot in absence of any human learned weights. These objectives are essential in
counterbalancing the behaviours that emerge from the human features in A.1.

18 A. Appendix Feature Design and Cost Formulation

Figure A.3. Tangent hyperbolic function designed for the side feature. The large span of the function means that the function
is active in all regions of the workspace. However, as the gradient of this function decreases at larger lateral distances, so does
the influence of this function in the trajectory optimization.

Figure A.4. Sigmoid function defining the behaviour of the height from the table preference. Ideally the function should saturate
close to 0 cm from the table, but this would mean a higher gradient at heights in the middle range. We found a lower gradient to
improve the optimization behaviour with respect to counter balancing the other features.

A.2.1. Path Efficiency Cost
This cost is simply computed as the sum of Eucledian distances between every trajectory sample,
which add up to the total length of a trajectory

𝐽𝐸 =
𝑁−1

∑
𝑘=1

‖𝑥(𝑘 + 1) − 𝑥(𝑘))‖2 . (A.5)

The trajectory with the lowest 𝐽𝐸 is thus the straight line between the start and the goal positions. While
simple, this cost is critical as it moderates the behaviour of all human path features. In the absence
of this cost, the optimized waypoint 𝑝∗𝑚 that defines the path would always converge to the boundaries
defined in (6). For instance, a negative weight for the height feature would always push the trajectory
to the highest point, no matter the magnitude. As a result, the weight associated with this cost has to
be finely tuned.

A.2.2. Collision Avoidance Cost
As mentioned in A.1.2, the obstacle side feature can result in the trajectory being pulled towards the
obstacle. Furthermore, the path efficiency cost could also attract the trajectory towards an obstacle

A.2. Robot Objectives 19

Figure A.5. Velocity features (black: human, red: robot) defined over a range of velocities. Depending on the weight learned
by the algorithm, the features in black are stretched vertically to represent the corresponding reward/cost associated with each
velocity. The feature in red however is always multiplied by the same negative weight to encourage the convergence of the
optimization towards this velocity.

if the obstacle is placed close to the shortest path. As a result, we need a high cost associated with
trajectory samples that lie close enough to the obstacle to cause a collision. For this we use the following
collision cost formulation from [2]:

𝐽𝑐(x) = {
−𝐷(x) + 1

2𝜖 if 𝐷(x) < 0
1
2𝜖 (𝐷(x) − 𝜖)

2 if 0 ≤ 𝐷(x) ≤ 𝜖
0 otherwise

(A.6)

where 𝐷(x) is the distance of a sample from the surface of the obstacle, 𝜖 is the distance threshold
from which the cost activates (i.e. has a nonzero value). Fig. A.6 illustrates 𝐽𝑐, which has a high
gradient once the sample distance to the obstacle drops below the threshold.

Figure A.6. Collision cost as a function of distance to the center of the obstacle. Note that the function is smooth, and has no
impact on the trajectory outside of the threshold 𝜖 (here 𝜖 = 0.15).

A.2.3. Slow Velocity Reward
This reward is designed in to encourage manipulations at lower velocities. In absence of any human
demonstrations (𝜃𝜃𝜃𝐻𝑉 = 0), the robot should plan the task in a safe and slow manner. However, humans

20 A. Appendix Feature Design and Cost Formulation

can override this safetymeasure by providing demonstrations at higher velocities. The function employs
the same RBF structure as in (A.4), but with a different shape factor 𝜀 to increase its span over the
velocity space (see Fig. A.5).

B
Appendix Simulation and User Study

Details
In this chapter we provide practical details and additional results obtained from the two studies dis
cussed in the paper. Furthermore, we cover additional theory for the methods used in these studies.

B.1. Contexts and Trajectories of the Convergence Test
In Sec. IIIA, we discussed the convergence of path preference weights 𝜃𝐻𝑃. However, these weights
alone do not define the resulting trajectory from the framework, as the robot objectives and the trajectory
space used in the optimization also influence the output. This gives rise to situations where there is a
discrepancy between the convergence of the weights and convergence of the trajectory. As a result, it
is worth evaluating the resulting trajectory from the 10 tasks studied in Sec. IIIA.

Fig. B.1a. illustrates the resulting trajectories after 5 iterations of updating theweights from providing
the same demonstration (red trajectory). We tested the convergence in 5 different contexts (i.e. start,
goal, and obstacle positions), each with two different set of path preferences. Comparing the results
with the weight convergence curves in Fig. 4, we can see that failure to fully converge in weights
does not necessary mean failure in converging to the demonstrated trajectory. An example of this
is scenarios c. Conversely, nearfull convergence of weights also does not always result in accurate
reproduction of the trajectory provided as feedback. This can be seen in scenarios b and d. The
behaviour of the optimizer indicates that it is more sensitive to small differences in weight distribution
in certain regions of the space than others. Even though in both scenarios b and d the alignment factor
𝑚 reaches a value close to 1, the weights are still slightly different than those in 𝜃𝐻𝑃.

The results shown in Sec. IV showed that such small errors in the reproduced trajectory do not
significantly affect the subjective satisfaction of users with the results. In general, our framework is de
signed to produce trajectories that come close to those demonstrated by the user, and more importantly
adhere to the preferences. However, combination of the framework with other imitation learning algo
rithms that achieve high accuracy of motion on lower levels could be a promising direction of research
in the future to improve the behaviour.

B.2. Proof of Concept Study and Dynamic Movement Primitives
To compliment the discussion and results in Sec. IIIB, we begin by providing a more detailed descrip
tion of DMPs in this section. We use the DMPs formulation from [3], where for a discrete movement
(pointtopoint), acceleration �̈�𝑥𝑥 is modulated by equations

�̈�𝑥𝑥 = 𝑘𝑝(𝑔𝑔𝑔 −𝑥𝑥𝑥) + 𝑘𝑣�̇�𝑥𝑥 + f(𝑠), (B.1a)

�̇� = 𝛼𝑠𝑠, (B.1b)

where𝑔𝑔𝑔 is the attractor point (goal position in our case), 𝑘𝑝 and 𝑘𝑣 are the stiffness and damping factors
(we use ideal underdamped behaviour), 𝑠 is a sigmoidal decaying phase variable (starts from 1 and

21

22 B. Appendix Simulation and User Study Details

converges to 0 by the end of the motion) with 𝛼𝑠 as the decaying factor, and f(𝑠) is the nonlinear

(a) (b)

(c) (d)

(e) (f)

B.2. Proof of Concept Study and Dynamic Movement Primitives 23

(g) (h)

(i) (j)

Figure B.1. The context and trajectories from aj respectively correspond to the curves in Fig. 4. Each row of figures shows the
same context, but for two different path preferences. The preference optimized results (orange) are obtained after 5 iterations
of feedback.

forcing term that modulates the trajectory shape. The forcing term progressively disappears and lets
the springdamper system drive the behaviour to convergence to 𝑔𝑔𝑔 [4]. In our case, the forcing term
f(𝑠) is given by a linear combination of RBFs

f(𝑠) =
∑𝑁𝑖=1Ψ𝑖(𝑠)𝑤𝑖
∑𝑁𝑖=1Ψ𝑖(𝑠)

𝑠, (B.2)

whereΨ𝑖(𝑠) are fixed basis functions and𝑤𝑖 are adjustable weights. We use locally weighted regression
for training the weight parameters.

In order to equip the DMPs with obstacle avoidance capability during the reproduction phase, we
use the repulsive potential gradient term from [5] in the 𝑥 − 𝑦 plane

∇𝑈𝑈𝑈rep(𝑥𝑥𝑥) = {
𝑘𝑜 (

1
𝜏 −

1
𝐷(𝑥𝑥𝑥))

1
𝐷2(𝑥𝑥𝑥)∇𝐷(𝑥𝑥𝑥), 𝐷(𝑥𝑥𝑥) ≤ 𝜏

0, 𝐷(𝑥𝑥𝑥) > 𝜏,
(B.3)

where 𝜏 is a distance threshold outside of which the field had no influence, 𝑘𝑜 is the stiffness term that

24 B. Appendix Simulation and User Study Details

(a) (b)

Figure B.2. (a) The setup for the proof of concept experiment. The human prefers the robot to perform manipulations on the
close side of the obstacle to avoid risk of collision with the black wall on the other side. Furthermore, in the position shown, the
user demonstrates a slow velocity, informing the robot of the preference of slowing down when close to the obstacle. (b) The
demonstration provided to the DMPs and the resulting encoded trajectory. This demonstration was provided in the same setting
as (a), with the exception that the obstacle was removed. Note the higher density of gray points at the center shows that the
user slowed down in the middle of the trajectory.

defines the strength of the repulsive field, and 𝐷(𝑥𝑥𝑥) indicates the Euclidean distance to the center of
the obstacle in the 𝑥 − 𝑦 plane. Note that we set the third component of ∇𝑈𝑈𝑈rep to 0. We add this term
to (B.1a) as an additional forcing term that pushes the trajectory away from the obstacle

�̈�𝑥𝑥 = 𝑘𝑝(𝑔𝑔𝑔 −𝑥𝑥𝑥) + 𝑘𝑣�̇�𝑥𝑥 + f(𝑠) + ∇𝑈𝑈𝑈rep(𝑥𝑥𝑥). (B.4)

Fig. B.2 illustrates the demonstrations provided to our framework and the DMPs. DMPs do not
require previous knowledge of the position of the obstacle in order to later produce collisonfree trajec
tories. Nevertheless, this lack of knowledge is the underlying cause of the inability of this framework in
generalising the preference of staying on the closer side to different start, goal and obstacle positions.
Note that although we provided a demonstration to the DMPs where we slow down in the middle of the
trajectory, this is an unfair advantage because the model normally does not have the information that
the obstacle is located around the middle are of the trajectory.

B.3. User Study Details
B.3.1. Modifications and Selfcollision Avoidance
In this section, we first address the modification made to our methodology for learning and optimizing
of velocity preferences in the first user study experiment. We simplify the learning process to obtaining
the cumulative feature vectors Φ𝑉2 and Φ𝑉2 from the demonstration via (2b) (i.e. no weights or reward
functions calculated). The approximation of the preferred speed of motion within each distance bin
then simply amounts to sorting the vectors by the highest cumulative feature count:

�̇�∗(𝑟, 𝑑) = argmax
𝑐𝑗

Φ𝑉 . (B.5)

Here 𝑐𝑗 refers to the center of the RBFs described in (4). Note that Φ𝑉 = {Φ𝑉2, Φ𝑉2} and covers both
the “close” and “far” distance regions. Using this method we essentially discretise the desired velocity
to the centers of the RBFs shown in Fig. A.5 based on the demonstrations. The absence of weights
makes this a oneshot learning algorithm, as there is no mechanism to update the estimate. Compared

B.3. User Study Details 25

to (7), (B.5) can be solved much quicker, which was needed for making the user study viable. However,
with this method robot objectives or additional velocity preferences can not be addressed, and velocity
values between the centers of the RBFs 𝑐𝑗 can not be achieved. Hence, it is beneficial in future studies
to investigate how the method using optimization can be performed faster.

An additional scheme that was applied during the experiments was a feasibility function that worked
as a postfiltering step to assure trajectories were not falling into selfcollision or joint limits. This was
especially helpful in a case where a user provided a demonstration on the side of the obstacle closer
to the robot, which when generalised to another task was resulting in a selfcollision warning. In this
function we first converted the robot’s trajectory 𝜉𝑅 into a sequence of robot configurations q𝑅 using
the generalized inverse kinematics tool from [6]. If the tool is given a few centimeters of tolerance on
the endeffector position for solving the inverse kinematics, it automatically generates configurations
that are safe.

Having found the safe sequence of robot configurations q𝑅, we still need to find out the new safe
trajectory in the task space, since our impedance controller is defined within this space. Therefore, we
perform a forward kinematics sequence back to the Cartesian coordinates by first computing the 4 × 4
homogeneous transformation matrix T from the endeffector frame to the robot’s base frame for every
configuration in q𝑅. Taking the base frame as the origin of the task space, we extract the translation
vector from every T to obtain the Cartesian coordinates of our safe trajectory.

B.3.2. Additional Results from Experiment 2
In this section we present further results from the experiment described in Sec. IVB. The black circle in
the plot represents the obstacle. These results compare the resulting trajectories from our framework
with the ground truth demonstrations in Task 3, and are shown in Fig. B.3. Even though we instructed
the users to demonstrate the same set of preferences, we notice that different users exhibit different
behaviours in terms of “‘distance to the obstacle” and “obstacle side” preference. For instance, user 4
stays significantly closer to the obstacle and more towards the middle compared to user 6. It is evident
that our framework can capture such differences in amplitudes of the same preference, as the resulting
trajectories (shown in orange) remain close to the demonstrated trajectories (shown in blue).

We can see that the result is not always accurate in terms of the shape of trajectory, nor do the results
always lie within the uncertainty region demonstrated by the users (yellow area). As discussed in Sec.
VC, this is due to the fact that we are parametrizing the entire task space using only a few parameters.
Hence, our method does not achieve fully accurate imitation of movements. Nevertheless, this is not
the main objective of the method, and we observe that in terms of the adhering to the preferences
demonstrated, the robot performs well.

We notice that there is not a significant correlation between the accuracy of the trajectory and
whether it was the result of training on the same task or generalization from training on another task
instance. This indicates that our method is robust to learning in different context. Another point to note
is that while we resample the trajectories to extract an evenly distributed path for the learning stage,
there remain artifacts in the blue trajectory with density of samples higher in certain regions. This due
to the fact that some users perform demonstrations with inconsistent velocities which creates practical
issues for resampling of the trajectory. Such inconsistencies can affect the performance of the learning
algorithm as they affect the feature values used for the weight update. In future work better resampling
strategies might improve the performance of the framework.

26 B. Appendix Simulation and User Study Details

Figure B.3. Demonstrated and optimized trajectories seen from above (𝑥−𝑦 plane) in Task 3. Starting from the top left plot we
label the plots from 114 going through the rows. Plots with an odd number are result of generalization (model trained on Task
1), and plots with even number show results from learning preferences in the same task.

Bibliography
[1] Harald HancheOlsen (https://math.stackexchange.com/users/23290/haraldhancheolsen). Side

of a plane in 3D space. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/214194
(version: 20121015). eprint: https://math.stackexchange.com/q/214194. URL: https:
//math.stackexchange.com/q/214194.

[2] Matt Zucker et al. “Chomp: Covariant hamiltonian optimization for motion planning”. In: The Inter
national Journal of Robotics Research 32.910 (2013), pp. 1164–1193.

[3] S. Calinon andD. Lee. “Learning Control”. In:Humanoid Robotics: a Reference. Ed. by P. Vadakkepat
and A. Goswami. Springer, 2019, pp. 1–52. DOI: 10.1007/9789400771949_681.

[4] Matteo Saveriano et al. “Dynamic Movement Primitives in Robotics: A Tutorial Survey”. In: arXiv
preprint arXiv:2102.03861 (2021).

[5] Ji Lee, G.D. Hager, and Z. Dodds. Robotic Motion Planning: Potential Functions. URL: https://
www.cs.cmu.edu/~motionplanning/lecture/Chap4PotentialField_howie.pdf
(visited on 08/29/2021).

[6] MathWorks. generalized Inverse Kinematics. 2017. URL: https://nl.mathworks.com/
help/robotics/ref/generalizedinversekinematicssystemobject.html (visited
on 09/09/2021).

27

https://math.stackexchange.com/q/214194
https://math.stackexchange.com/q/214194
https://math.stackexchange.com/q/214194
https://doi.org/10.1007/978-94-007-7194-9_68-1
https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf
https://nl.mathworks.com/help/robotics/ref/generalizedinversekinematics-system-object.html
https://nl.mathworks.com/help/robotics/ref/generalizedinversekinematics-system-object.html

	Paper
	Appendix - Feature Design and Cost Formulation
	Human Features
	Distance to Obstacle
	Obstacle Side
	Height from the Table
	Velocity Features

	Robot Objectives
	Path Efficiency Cost
	Collision Avoidance Cost
	Slow Velocity Reward

	Appendix - Simulation and User Study Details
	Contexts and Trajectories of the Convergence Test
	Proof of Concept Study and Dynamic Movement Primitives
	User Study Details
	Modifications and Self-collision Avoidance
	Additional Results from Experiment 2

