
PHYSICAL REVIEW B 91, 195434 (2015)

Dynamics of parametric fluctuations induced by quasiparticle tunneling
in superconducting flux qubits
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We present experiments on the dynamics of a two-state parametric fluctuator in a superconducting flux qubit.
In spectroscopic measurements, the fluctuator manifests itself as a doublet line. When the qubit is excited in
resonance with one of the two doublet lines, the correlation of readout results exhibits an exponential time decay
which provides a measure of the fluctuator transition rate. The rate increases with temperature in the interval
40 to 158 mK. Based on the magnitude of the transition rate and the doublet line splitting, we conclude that
the fluctuation is induced by quasiparticle tunneling. These results demonstrate the importance of considering
quasiparticles as a source of decoherence in flux qubits.
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Superconducting qubits are one of the most promising
classes of candidate systems for the implementation of a
quantum information processor [1,2]. Developments in this
field depend critically on the qubit quantum coherence times.
Significant advances on improving coherence times were made
recently by the introduction of qubits in three-dimensional
cavities [3,4] as well as by optimization of the design of qubits
in a planar geometry [5–8]. Despite these advances, many
features of decoherence in superconducting systems are only
partially understood.

Decoherence of superconducting qubits is induced by
the noise generated in a complex solid-state environment.
Further understanding of the sources of decoherence requires
measuring the properties of the noise, which is done most
effectively by using the qubits themselves. This approach
requires the measurement of qubit evolution combined with
the control of the susceptibility to different noise channels.
Aside from the benefits for quantum information, using super-
conducting qubits to measure noise brings new and exciting
opportunities to experimentally investigate the physics of noise
in mesoscopic systems. As an example, qubits were used
to perform detailed measurements of the spectral density of
flux noise over a wide frequency range [9,10], considerably
expanding the spectral interval accessible by superconducting
quantum interference device (SQUID) measurements [11].

In this paper, we present experiments in which we probe
the dynamics of a two-state fluctuator (TSF) coupled to a
superconducting flux qubit. TSFs are a generic type of noise,
observed in many mesoscopic systems, with examples includ-
ing charge [12], flux [13], and critical current fluctuators [14].
In most of these experiments, TSFs are characterized using
classical detectors, such as single-electron transistors [12] or
SQUIDs [13]. In this paper, we present a method to determine
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the time scales of a TSF which relies on conditional excitation
and measurement of a qubit. Based on the parametric change
of the qubit frequency and the measurement of the TSF
time scales, we conclude that the TSF origin is tunneling of
quasiparticles through the Josephson junctions forming the
qubit. Our results provide new insight into the decoherence of
flux-type superconducting qubits.

The qubit used in our experiments is a persistent current
qubit (PCQ) [15], a flux-type superconducting qubit. This
qubit is coupled to a superconducting coplanar waveguide
(CPW) resonator, in a circuit-quantum electrodynamics-type
architecture [16–19]. The CPW resonator [see Fig. 1(a)]
has a resonance frequency νres = 6.602 GHz, significantly
lower than the qubit transition frequency, and a linewidth
κ = 1.67 MHz, dominated by coupling to the measurement
ports. The qubit is coupled inductively to the resonator with a
coupling strength g = 86 MHz [see Figs. 1(a) and 1(b)]. The
state of the qubit is measured by applying a microwave readout
pulse of duration Tr and frequency νr = νres to the CPW
resonator. After transmission through the CPW resonator, this
pulse is down-converted and its average, the homodyne voltage
VH, is kept as a qubit measurement record. The qubit is con-
trolled using microwave signals sent through a separate CPW
control line [Figs. 1(a) and 1(b)]. The device is microfabricated
on a silicon wafer, in a two-step process. In the first step,
optical lithography and liftoff are used to define a 200-nm-thick
aluminum layer containing the CPW resonator and the CPW
control line. In the second step, electron-beam lithography
followed by standard shadow evaporation of aluminum and
liftoff are used to realize the PCQ. The PCQ consists of a
superconducting ring interrupted by four Josephson junctions,
formed by two aluminum layers, with thicknesses 40 and
65 nm, respectively, separated by a thin in situ grown aluminum
oxide layer [see Fig. 1(c)]. All measurements are performed
using a custom-designed probe in a dilution refrigerator [20],
with a minimum attainable temperature of 40 mK.
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FIG. 1. (Color online) (a) Optical microscope image of a device
nominally identical to that used in this work. The resonator input and
output ports and qubit control port are indicated. (b) Scanning electron
microscope image of the region indicated by the rectangle in (a). The
qubit, which is the loop inside the rectangle, is embedded into a CPW
resonator. The CPW on the right is used for qubit control. (c) Zoom of
the region indicated by the rectangle in (b). The large superconducting
electrode is labeled M , and the qubit islands, shown in the inset,
are labeled by 1 to 3. (d) Inset: one example of spectroscopic
measurement, showing the qubit excited-state probability (arbitrary
units) versus applied frequency, at a magnetic flux � = �0/2. The
dots are the position of the spectroscopy doublet lines versus magnetic
flux. The continuous (dashed) line is a fit of the low- (high-)
energy doublet line frequency with the standard PCQ model; the
fit yields Ip = 138.6 nA and �qb = 10.11 GHz (Ip = 139.0 nA and
�qb = 10.14 GHz).

We first characterize the qubit by performing spectroscopic
measurements, with the results shown in Fig. 1(d). We expect
to observe a dip in the homodyne voltage VH when the
excitation frequency matches the ground- to first-excited-state
separation. However, our spectroscopic measurements reveal
a double, rather than a single, resonance line [see inset of
Fig. 1(d) for a typical spectroscopy curve].

We rule out microscopic quantum two-level systems (TLSs)
nearly resonant with the qubit as the source of the observed
doublet, as coupled TLSs produce an avoided crossing in the
spectrum [21,22]. Contrary to the case of TLSs coupled to
a qubit, our observations portray a picture where there are
two sets of parameters describing the qubit, resulting in two
transition frequencies. We start by presenting our experimental
results without any assumptions on the mechanism for the

(a)

(d) (e) (f) (g)

(b) (c)

FIG. 2. (Color online) Characterization of selective excitation
experiments at � = 0.5057 �0. (a) Sequence used for qubit state
preparation and readout. The readout time is Tr = 520 ns and the
repetition time is Trep = 10 μs, significantly longer than the relaxation
time T1 = 1.23 μs at this operation point. (b) Spectroscopy of the
qubit. The doublet lines are labeled S1 and S2. The continuous lines
are a fit with a model based on two Lorentzians, yielding the two
doublet line frequencies 11.238 and 11.283 GHz, respectively. (c)
Rabi oscillations for strong excitation at frequency fc in (b) (setting
RC) and weak excitation at lines S1 and S2 (settings R1 and R2,
respectively). (d)–(g) Histograms of the homodyne voltage values VH

for no qubit excitation (d), and π pulse excitation at settings RC,
R1, and R2 [(e), (f), and (g), respectively], for 105 repetitions. The
vertical dashed line at 8.95 mV indicates the position of the threshold
used to separate the readout values labeled r = 1 and −1.

observed parametric change. Next, a method is developed to
extract the time scales associated with the parametric changes
of the qubit frequency. In the last part of the paper, we discuss
the possible physical origin of these effects.

The observed spectroscopy doublet suggests a two-state
fluctuator acting on the qubit. Indeed, let us assume that the
two states of the TSF, labeled in the following as S1 and
S2, result in two different qubit transition frequencies. In
spectroscopy experiments, a point at one given frequency is
obtained by averaging typically 104 repetitions of a sequence,
shown in Fig. 2(a), consisting of qubit excitation by a weak
pulse followed by readout. If the average dwell time for each of
the two TSF states is much longer than the sequence repetition
time, yet much shorter than the time required to complete
all the repetitions, we expect the average signal to display a
resonance at both transition frequencies.

The hypothesis of a qubit transition frequency which
changes between two values is further confirmed by the
following experiments. We measured Rabi oscillations in
three different settings: strong driving with a microwave
frequency corresponding to the center of the doublet, with
a Rabi frequency significantly larger than the doublet splitting
(setting denoted RC), and weak driving with a frequency
corresponding to either doublet line, with a Rabi frequency
much smaller than the doublet separation (settings denoted
R1 and R2, respectively). The Rabi oscillation amplitude
for setting RC is approximately equal to the sum of the
Rabi oscillation amplitudes for settings R1 and R2 [see
Fig. 2(c)]. This is consistent with full excitation of the qubit
for RC, as opposed to partial, TSF-state dependent, excitation
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for R1 and R2. This conclusion is further supported by a
measurement of readout homodyne voltage histograms, for no
qubit excitation [Fig. 2(d)] and π pulses for settings RC, R1,
and R2, respectively [Figs. 2(e)–2(g)]. The histograms show a
bimodal distribution; a threshold is used to separate intervals
corresponding to the ground (g) and excited (e) states of the
qubit, labeled as r = 1 and −1 respectively. The weight of the
r = −1 part for RC has a value close to the sum of the r = −1
weights for R1 and R2.

To unveil the dynamics of the TSF, we perform an
experiment in which we repeat a sequence formed of qubit
excitation with an R1 π pulse followed by measurement. Let
us first consider the ideal case of perfect Rabi rotations and
readout fidelity. If the TSF is in state S1 (S2) during the
excitation pulse, then, after the Rabi pulse, the qubit is in
state e (g), and therefore the readout result is r = −1 (r = 1),
respectively. The qubit readout result is in a one-to-one
correspondence with the TSF state, and therefore it allows
probing of the TSF dynamics. However, due to decoherence
and nonideal pulses and readout, this correspondence is not
exact, yet statistical correlations exist between the TSF state
and the readout result. Therefore, we analyze the experiment
based on the correlation of measurement results. We introduce

cj ≡ 1

N − j

N−j∑
i=1

riri+j , (1)

where ri , with 1 � i � N , is the ith result in a series of N

repetitions.
The correlation is shown in Fig. 3 as a function of the time

τ = jTrep, with Trep the repetition time. The correlation decays
exponentially with a rate �c1 = 15 kHz, a signature of transi-
tions between the states of the TSF over the corresponding time
scale. We can quantitatively relate the observed decay function
to the TSF dynamics, if we assume that the dynamics of the
TSF is described by a random telegraph noise process. With
transition rates between the TSF states denoted by γS1→ S2

FIG. 3. (Color online) Correlation of readout results versus the
time difference τ for qubit ground state (g, full dots), excited state
(e, full triangles), and partial excitation at lines S1 (empty dots)
and S2 (empty triangles). The solid lines are fits with exponential
decay functions c(0)e−�∗τ + c(∞), with the decay rate � = 15 (17)
kHz for setting S1 (S2). The values of the correlation amplitudes
c(0) and c(∞) at zero and long times, respectively, are discussed in
Appendix A.

and γS2→S1, the correlator is expected to decay exponentially
with a rate �c1 = γS1→S2 + γS2→S1. When the qubit is excited
with an R2, instead of R1, π pulse, an exponential decay is
observed as well, with a rate �c2 = 17 kHz close to �c1. This
result is consistent with the assumption of telegraph noise:
�c2 = γS2→ S1 + γS1→S2. We also find that for no excitation
of the qubit or excitation using an RC π pulse the correlation
function has no time dependence, consistent with the qubit
state being independent of the TSF state for these cases.

We now discuss the possible physical origin of a TSF
consistent with our observations. We consider first a TSF
which acts on the qubit via magnetic flux. For a flux qubit,
the transition frequency νge depends on the magnetic flux � as

νge(�) =
√

�2
qb + ( 2Ip

h
(� − �0

2 ))2 [23], where �0 is the flux
quantum and �qb and Ip are parameters which depend on the
qubit junctions. It is not possible to explain the spectroscopic
doublet as originating from a flux-coupled TSF. Indeed, with a
flux-coupled TSF, the doublet lines would depend on magnetic
flux as νge(� + �S1) and νge(� + �S2), respectively, with �S1

and �S2 the magnetic flux induced by the TSF in the states
S1 and S2, respectively. Such a dependence would lead to
two crossing curves in Fig. 1(d), in disagreement with the
experiment.

We consider next the possibility of a TSF coupled to
the qubit via electric field. For each island i in the circuit
[i = 1,3, see Fig. 1(c)], we model the effect of electric fields
by offset charges, generalizing the model of a two-island
Josephson junction qubit in [23]. The Hamiltonian acquires
a dependence on the offset charges ngi , corresponding to
islands i = 1,3. In mesoscopic devices, the offset charge
displays random fluctuations of microscopic origin. The
transition frequency of the qubit νge(�,ng1,ng2,ng3) may have
a significant dependence on the offset charges ngi associated
with the three qubit islands. For given values of the offset
charges, the qubit spectrum can be well approximated by the
relation νge(�) introduced above, with the parameters Ip and
�qb dependent on the offset charges. This is indicated by the
fits in Fig. 1(d). The two values of �qb determined from the
fit are different by 30 MHz. This difference is well within
the range δ�qb,c = 207 MHz of modulation of �qb by the
variation of offset charges, calculated numerically.

We performed spectroscopy experiments on five qubits,
fabricated using the same procedure and measured using very
similar setups. The results are summarized in Table I. We
indicate the Josephson energy EJ = �0Ic/2π and the charg-
ing energy Ec = e2/2C, with Ic and C the critical current and
capacitance for each of the two nominally identical junctions in
each qubit [the first and the third junctions in Fig. 1(c), from top
to bottom]. For three of the measured devices, characterized
by a relatively low Josephson to charging energy ratio EJ /Ec,
we observe a doublet. In two other devices, with larger EJ /Ec,
we observe no doublet within the precision determined by the
intrinsic qubit linewidth, of 790 and 680 kHz, respectively (see
Table I). We note that for the three devices where we observe a
doublet, the splitting changes over long periods of time; the
maximum value of the observed splitting is indicated in the
table. Nevertheless, the splitting was stable over typically a
few days, during which reliable data can be extracted using
spectroscopy and coherent control.
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TABLE I. Summary of calculated charge modulation (δ�qb,c) and maximum observed doublet splitting for five qubit devices. For
W37_C2d_Qb1 and W37_C2d_Qb3, no doublet is observed; we indicate the measured linewidth as an upper bound. The transition rate
measurements presented in this paper are performed on sample W33_B1b.

Sample EJ /Ec Calculated δ�qb,c (MHz) Maximum observed splitting (MHz)

W33_B3d 12 1228 244
W33_B1d 20.8 378 275
W33_B1b 22.4 207 52
W37_C2d_Qb1 85.6 0.083 <0.79
W37_C2d_Qb3 90.4 0.052 <0.68

For the three devices where we observe a doublet, the
maximum observed splitting is a significant fraction of the
calculated maximum charge modulation δ�qb,c (see Table I).
While two-state fluctuations in the offset charge were observed
in experiments on single-electron tunneling devices, the
amplitude is usually small [12]. In our experiment, such a
small fluctuation would lead to a transition energy change
significantly smaller than what we observe in the experiment.
This suggests that the observed splitting is most likely due
to quasiparticle tunneling across the qubit junctions [24,25].
Indeed, the transition frequency νge(�,ng1,ng2,ng3) is periodic
with periodicity 1 for each ngi , i = 1,3. When quasiparticles
are present on the three islands, the offset charges are given
by ngi = ngi0 + 1/2 ∗ nqi , i = 1,3, with ngi0 a random offset
charge corresponding to a slowly varying background of
trapped charges and nqi the number of quasiparticles trapped
on island i. For most values of the offset charges, a change in
the quasiparticle numbers on one or more islands will induce
a change in �qb comparable with the maximum modulation
δ�qb,c.

Next, we discuss a model for the dynamics of quasiparticle
tunneling in the PCQ. Due to the large size of island 3, the
changes in energy induced by changes in ng3, and hence by
the change of quasiparticle number on this island, is negligible.
Therefore, we only consider the dynamics of ng1 and ng2

in the following, connected with quasiparticle tunneling events
through junctions M1, 12, and 23 [see Fig. 1(c)]. We performed
numerical calculations of the rates of quasiparticle tunneling
events iα → jβ, with i and j the initial/final conductor
occupied by the quasiparticle and α/β the initial/final state
of the qubit (i,j ∈ {M,1,2,3} and α,β ∈ {g,e}). We find that
in the approximation of low-energy quasiparticles the allowed
transitions at the qubit symmetry point (� = �0/2) are as
indicated in Fig. 4(a): the only allowed processes are those
accompanied by a change in qubit energy for M1 and 13
tunneling and those that maintain the qubit energy for 12
tunneling (see Appendix C). The same type of selection
rules were predicted in [26] for a PCQ with three Josephson
junctions.

Based on the selection rules for tunneling processes, we
consider the block formed by islands 1 and 2 separately from
the rest of the circuit. Within this block, fast exchanges of
quasiparticles can take place. We find that a quasiparticle
in this block undergoes transitions between the islands at a
rate in excess of 100 MHz, assuming that the quasiparticle
energy does not exceed the superconducting gap by more than
10%. This assumption on the energy is reasonable given the
temperature at which experiments are performed, which ranges

up to 158 mK. Quasiparticle transitions within this block
are fast and therefore one peak is observed in spectroscopy
due to motional narrowing [27]. Tunneling of quasiparticles
between this block and the neighboring conductors (M and
3) is a slow process which is observed spectroscopically. The
measured TSF rate is therefore attributable to tunneling of
quasiparticles between the block formed by islands 1 and 2
and the rest of the circuit. The thermal equilibrium tunneling
rate of quasiparticles between the block 12 and the neighboring
junctions is plotted in Fig. 4(b), assuming a superconducting
gap of 220 μeV. At zero-temperature transitions between
block 12 and the neighboring islands are forbidden, whereas
the rate is finite at finite temperatures due to the energy
dependence of coherence factors [28–30], resulting in a finite
value of the transition rate (see Appendix D).

While at low temperatures the calculated rate is significantly
lower than the measured rate, at high temperatures the calcu-
lated rate is in reasonable agreement with the measured rate.
This indicates the presence of nonequilibrium quasiparticles
in the circuit, as previously identified in phase, charge, and
transmon qubits [24,25,31,32] and recently in a fluxonium
qubit [33]. Nonequilibrium quasiparticles are also important
in superconducting devices other than qubits, such as single-
electron current sources [34]. At the lowest temperatures in our
experiment, the measured value of the qubit energy relaxation
time at the symmetry point T1 = 4.6 μs allows extracting an

(a) (b)M    1, 2    3

1    2

e

g

e

g

FIG. 4. (Color online) Selection rules and the temperature de-
pendence of the transition rate at the qubit symmetry point � =
0.5 �0. (a) Representation of the allowed transitions for quasiparticles
through different junctions, in the low-energy approximation. The
other transitions are suppressed due to destructive interference
between quasiparticle and quasihole amplitudes. (b) TSF transition
rate vs temperature extracted by excitation at lines S1 (squares) and
S2 (circles), and a calculation of the rate for tunneling resulting in a
change of the number of quasiparticles on islands 1 and 2.
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upper bound for the density of nonequilibrium quasiparticles
nqp < 0.7 μm−3. The measured quasiparticle tunneling rate is
consistent with this density of quasiparticles and an effective
temperature of quasiparticles in the range 120–140 mK (see
Appendix E). Optimization of decoherence of superconducting
flux qubits will have to be addressed both through large
values of the EJ /Ec ratio, to reduce dephasing, and through
suitable shielding techniques to decrease the nonequilibrium
quasiparticle density [35,35,36], to reduce energy relaxation.

We have presented experiments in which we extract the
time scales associated with a two-state fluctuator coupled to a
flux qubit. Using the correlation function of readout results, we
extract the transition rates of the TSF over a wide temperature
range. We conclude that the source of these fluctuations
is tunneling of nonequilibrium quasiparticles, a source of
decoherence previously unexplored experimentally for persis-
tent current qubits. These results demonstrate the importance
of considering the role of quasiparticles in decoherence of
superconducting qubits and will stimulate future theoretical
and experimental work on understanding the dynamics of
nonequilibrium quasiparticles in complex, multiple-island,
superconducting devices.
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APPENDIX A: ANALYSIS OF THE SELECTIVE
EXCITATION EXPERIMENTS

In this appendix, we present the details of the quantitative
analysis of the selective excitation experiments. For each
repetition of the experimental sequence indicated in Fig. 2(a),
the qubit readout result is labeled r = −1 (r = 1) if the
homodyne voltage VH is smaller (larger) than the chosen
threshold (see Fig. 2). An ideal readout would give result
r = −1 (r = 1) with certainty if the qubit state prior to
measurement was e (g). However, errors are present: the wrong
result is obtained with probability δe (δg) if the initial qubit state
was e (g). If the qubit state prior to measurement has a weight
of the excited state Ps,e, the probability to obtain the readout
result r = −1 is given by Pr,−1 = (1 − δe)Ps,e + δg(1 − Ps,e).
In the experiments, the qubit state is prepared by waiting a
time much longer than the energy relaxation time, which leads
to an incoherent mixture of the ground and excited states,
characterized by a small excited-state probability Ps,e0. A Rabi
oscillation pulse leads to a swap of the probabilities to find
the qubit in the ground/excited state, with a swap probability
ps ; this assumption is justified due to the fact that energy
relaxation is negligible during the short Rabi pulses used
in the experiments. The swap probability is ps = e−Tπ /Tφ,Rabi ,
where Tπ is the duration of the π pulse, and Tφ,Rabi is the
experimentally measured decay during the Rabi oscillations.

The probability to obtain readout result r = −1, with
preparation by waiting followed by a swap of probability
ps , is given by Pr,−1 = (1 − δe)Ps,e0 + δg(1 − Ps,e0) + (1 −

2Ps,e0)(1 − δg − δe)ps . The probability Pr,−1 is measured
for the case of no control [Fig. 2(d)] and control with a
strong Rabi pulse: the RC setting [Fig. 2(e)]. These settings
correspond to ps = 0 and ps = e−Tπ,RC/Tφ,RC , respectively, with
Tπ,RC = 3.5 ns the π pulse duration and Tφ,RC = 52 ns the
measured decay time of the Rabi oscillations. Based on
the measurement of Pr,−1 at these two settings, the linear
coefficients of the Pr,−1(ps) function can be extracted. For
measurements with weak π pulses at the two qubit transition
peaks, settings denoted by R1 and R2, the measurement of
Pr,−1 allows extracting the swap probabilities ps,R1 = 0.47 and
ps,R2 = 0.23. These probabilities can be corrected by the decay
factors dRi = e−Tπi/Tφ,Ri , with Tπi the π pulse time and Tφ,Ri

the decay time at setting Ri, with i = 1 or 2, respectively. The
corrected values are given by psc,R1 = 0.62 and psc,R2 = 0.29
for settings R1 and R2, respectively. These probabilities should
sum up to one for the ideal selective excitation process
discussed in the main text. A possible explanation for the
smaller than 1 value of the sum is the fact that the Rabi
frequency for the selective excitation condition is very low, and
therefore inhomogeneous fluctuations of the qubit frequency
could lead to a reduced state transfer.

We next discuss the values of the correlation functions
obtained in the experiments. The correlation function is given
by

cj = 〈riri+j 〉i , (A1)

where the average is an ensemble average obtained by
summing over the i values in a long measurement sequence.
This expression can be rewritten as

cj =
∑

α,β∈{S1,S2}
ri(α)ri+j (β)PTLF,i,i+j (α,β), (A2)

where ri(STLF,i) is the average measurement result condition
on a particular state STLF,i of the TLF during repetition i and
PTLF,i,i+j (α,β) is the joint probability for the TLF state during
repetitions i and i + j of the experiment to be given by α and
β, respectively, with α,β ∈ {S1,S2}. This correlation function
can also be given as a function of the time τ between the
repetitions i and i + j of the sequence

c(τ ) =
∑

α,β∈{S1,S2}
r(α)r(β) × P̃TLF,0,τ (α,β), (A3)

where r(α) is the i-independent average of the readout result
given a TLF state α and P̃TLF,0,τ (α,β) is the joint probability for
the states of the TLF at times 0 and τ to be α and β, respectively.
The expression of the joint probability assumes stationarity
of the random noise process. The correlation function c(τ )
decays with a time constant given by the inverse of the sum of
the transition rates between the states S1 and S2 of the TSF.
The values of the joint probability at short and long times is
given by

P̃TLF,0,0(α,β) = wαδαβ (A4)

and

P̃TLF,0,∞(α,β) = wαwβ, (A5)

respectively, where wα , α ∈ {S1,S2}, is the probability to find
the TLF in the state α. This leads to correlation at long and
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TABLE II. Comparison between the results of the correlation measurements and predictions of the theory. Values of the readout correlation
functions are given for the settings: R1 (selective excitation at peak S1), R2 (selective excitation at peak S2), no excitation, and RC (nonselective
excitation using a high-power Rabi pulse). For settings R1 and R2, the values of the correlation times at τ = 0 and ∞ are extracted based on
an exponential fit of the correlation function, shown in Fig. 3. For settings RC and no excitation, the correlation function is extracted as the
average of the values for the time range in Fig. 3. The theoretical values are determined based on the model discussed in the text.

R1,τ = 0 R1,τ = ∞ R2,τ = 0 R2,τ = ∞ No excitation RC

Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

0.32 0.30 0.06 0.02 0.56 0.56 0.30 0.26 0.79 0.80 0.25 0.24

short times given, respectively, by

c(0) =
∑

α∈{S1,S2}
r(α)w2

α (A6)

and

c(∞) =
⎛⎝ ∑

α∈{S1,S2}
r(α)wα

⎞⎠2

. (A7)

For the correlation experiments performed either with no
Rabi pulse applied to the qubit or with a strong π pulse (setting
RC), the correlation function is time independent and given by

cns(τ ) = r2, (A8)

with r the average value of the readout result corresponding to
the given setting.

Given the fact that the sum of the corrected swap proba-
bilities in the selective excitation experiments psc,R1 + psc,R2

is slightly smaller than 1, we make the assumption that
errors which lead to imperfect conditional excitation are of
equal magnitude for the two types of selective excitation.
Therefore, we take wS1 = psc,R1/(psc,R1 + psc,R2) and wS2 =
psc,R2/(psc,R1 + psc,R2). More generally, rather than using
these assumptions of equal errors in the selective excitation
process, bounds can be determined based on the corrected swap
probabilities. However, with such bounds taken into account, it
is expected that the results will be close to the results obtained
with the assumption of balanced errors.

In Table II, we present a comparison between the results of
the correlation experiments and a calculation of correlations
based on the model described above. A very good quantitative
agreement is obtained between the experiments and the
predictions of the model discussed in this section.

APPENDIX B: FORMULATION OF THE
TUNNELING PROBLEM

In this appendix, we present a formulation of the quasipar-
ticle tunneling problem in the charge basis, which is used
to numerically calculate the transition matrix elements for
quasiparticle tunneling in a persistent current qubit. These
calculations will be used in Appendix C to derive selection
rules, relevant for the calculations of transition rates. In Ap-
pendix D, we find approximate expressions for the transition
rates. Finally, we discuss the predictions for the transition rates
and the comparison with experimental results in Appendix E.

We consider a Josephson junction, which is part of the
qubit, with electrodes denoted by L (left) and R (right). The

tunneling of electrons through this junction is described by the
usual transfer Hamiltonian [37]

HT =
∑
pp′σ

(tpp′c
†
L,pσ cR,p′σ + t∗pp′c

†
R,p′σ cL,pσ ), (B1)

where p and p′ are indices for the single-particle state
quasimomentum, σ = ±1 is a spin index, cL,pσ (cR,p′σ ′) is the
annihilation operator for an electron with orbital index p (p′)
and spin index σ (σ ′) in electrode L (R), and tpp′ a transition
matrix element for single-particle tunneling. The two terms in
the sum of Eq. (B1) correspond to transitions from R to L and
from L to R, respectively, as shown schematically in Fig. 5.

Since the electrodes are in the superconducting state,
it is convenient to express the single-particle creation and
annihilation operators in terms of quasiparticle operators. We
have [38,39]

cα,pσ = uα,pγα,pσ + σvα,pRαγ
†
α,−p−σ , (B2)

with γα,pσ a quasiparticle annihilation operator and Rα a pair
annihilation operator for electrode α (α = L or R). The factors
uα,p and vα,p are given by

uα,p =

√√√√1

2

(
1 + sign(ξα,p)

√
E2

α,p − �2
α

Eα,p

)
(B3)

and

vα,p =

√√√√1

2

(
1 − sign(ξα,p)

√
E2

α,p − �2
α

Eα,p

)
, (B4)

FIG. 5. Schematic representation of a Josephson junction. The
two arrows indicate different single charge-transfer processes, with
the operators corresponding to Eq. (B1) in the text.
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with ξα,p the single-electron energy referred to the chemical
potential and �α the superconducting gap for electrode α.

We consider a tunneling process in which one quasiparticle
is removed from lead R and one quasiparticle is created in
lead L, corresponding to the operator γ

†
L,pσ γR,pσ . This type

of process results from the coherent addition of two terms: (1)
the removal of one electron from R and the addition of one
electron to L, and (2) the removal of one electron from R and
the addition of one electron to L combined with the transfer
of one Cooper pair. These terms transfer charge in opposite
directions, and result from the two types of terms c

†
L,pσ cR,p′σ

and c
†
R,p′σ cL,pσ , respectively, present in the Hamiltonian (B1).

We are interested in the rate of this process, assuming that the
initial state of the qubit (before quasiparticle transfer) is |i〉
whereas the final state (after quasiparticle transfer) is |f 〉. The
rate for this process is given by

�
i→f

R→L = 4π

�

∫
dEL

∫
dERDqp,L(EL)Dqp,R(ER)fR(ER)

× [1 − fL(EL)]δ(EL+�ωif −ER)
∣∣MR→L

i→f

∣∣2
. (B5)

In this expression, Dqp,α(Eα) is the density of states and fα(Eα)
is the probability of occupation for quasiparticles at energy Eα

in electrode α. The qubit energy change �ωif = �ωf − �ωi

with �ωi(f ) the initial (final) qubit energy. Finally, the matrix
element ∣∣MR→L

i→f

∣∣2 = |t |2∣∣mR→L
i→f

∣∣2
(B6)

with |t |2 the average value of the coupling element tpp′ in the
coupling Hamiltonian (B1) and

mR→L
i→f = u∗

L,puR,p′ 〈f |OR→L
1 |i〉 − vL,−pv∗

R,−p′ 〈f |OR→L
2 |i〉.

(B7)

In Eq. (B7), the operators O1 and O2 act on qubit states in
the following way. The initial state of the qubit is represented
in the charge basis as

|i〉 =
∑
cL,cR

ai(cL,cR)|cL,qL; cR,qR〉. (B8)

This state is a superposition of states with different numbers of
Cooper pairs cL and cR , on the electrodes L and R, respectively.
The integers qL and qR are fixed integers representing
the number of unpaired quasiparticles on electrodes L and
R, respectively. The number of unpaired quasiparticles is
conserved under the action of the mesoscopic Hamiltonian
of the qubit, consisting of charging and Josephson tunneling
terms. Similarly to (B8), the final state, following the tunneling
of a quasiparticle through the tunnel junction between L and
R, is given by

|f 〉 =
∑
cL,cR

af (cL,cR)|cL,qL + δq; cR,qR − δq〉. (B9)

Here, δq is the change in the number of unpaired quasi-
particles; δq = 1 (−1) for a R → L (L → R) quasiparticle
tunneling event. The matrix elements of the operators O1 and
O2 for R → L tunneling are given by

〈f |OR→L
1 |i〉 =

∑
cL,cR

af (cL,cR)∗ai(cL,cR) (B10)

and

〈f |OR→L
2 |i〉 =

∑
cL,cR

af (cL − 1,cR + 1)∗ai(cL,cR). (B11)

Based on Eqs. (B7), (B3), and (B4), we can write∣∣mR→L
i→f

∣∣2 = |A1,if |2 + |A2,if |2 − 2
�L�R

ELER

Re(A1,if A∗
2,if ),

(B12)

where we introduced Ak,if = 〈f |OR→L
k |i〉, with k ∈ {1,2} and

i,f ∈ {g,e} the initial and final states of the qubit, respectively.

APPENDIX C: SELECTION RULES FOR THE FLUX QUBIT

We calculate the matrix elements Ak,if numerically. We
start by setting up a circuit model for a PCQ with Josephson
junctions which generalizes the model of Orlando et al. [23].
We include offset charges coupled to islands 1, 2, and 3
(see Fig. 1 in the main text) to represent both random
offset charges and unpaired charges due to quasiparticles.
The Hamiltonian is represented in the charge basis and
the eigenvalues/eigenvectors are determined by numerical
diagonalization. The matrix elements Ak,if = 〈f |OR→L

k |i〉 are
then calculated numerically. For a PCQ biased at the symmetry
point, and considering tunneling between islands M and 1 or
2 and 3 [see Fig. 1(c) in the main text] we find the following
selection rules:

(i) A1,gg = A2,gg and A1,ee = A2,ee. We denote these val-
ues by mc,gg and mc,ee, respectively.

(ii) A1,ge = −A2,ge and A1,eg = −A2,eg . We denote these
values by mnc,ge and mnc,eg , respectively.

These transition rules are shown schematically in Fig. 4(a)
of the main text.

With these selection rules, the transition rates can be
expressed as follows. For transitions in which the qubit remains
in a state with the same energy index, α = g or e, the transition
rate is given by

�α→α
R→L = 2GT

e2
|mc,αα|2

∫
dEL

∫
dER δ(EL + �ωαα − ER)

× dqp,L(EL)dqp,R(ER)fR(ER)[1 − fL(EL)]

×
(

1 − �L�R

ELER

)
, (C1)

where we introduced the normal-state tunnel conductance GT

of the junction and the normalized quasiparticle density of
states

dqp,α(Eα) = Eα√
E2

α − �2
α

(C2)

for the two electrodes (α = L,R).
For transitions in which the qubit changes the energy branch

from α to β (α 
= β), we have

�
α→β

R→L = 2GT

e2
|mnc,αβ |2

∫
dEL

∫
dER δ(EL + �ωαβ − ER)

× dqp,L(EL)dqp,R(ER)fR(ER)[1 − fL(EL)]

×
(

1 + �L�R

ELER

)
. (C3)
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APPENDIX D: TRANSITION RATES FOR DIFFERENT
TYPES OF PROCESSES

In this section, we present the expressions for the different
quasiparticles tunneling rates, corresponding to the different
combinations of initial/final states of the qubit.

1. Processes for e → g qubit transitions

The conservation law for this type of process is given by

ER = EL + �ωeg. (D1)

Here, ER is the energy of the quasiparticle in lead R, which
tunnels into a state with energy EL in lead L. The qubit changes
its energy by an amount

�ωeg = E
initial parity
qb,g − E

final parity
qb,e . (D2)

We used the superscript to indicate that the energy of the
qubit depends on the parity (determined by the number of
quasiparticles). We have

�ωif ≈ E
initial parity
qb,f − E

initial parity
qb,i ≈ E

final parity
qb,f − E

final parity
qb,i ,

(D3)

which holds because the qubit energy-level splitting is much
larger than the modulation of each energy by changes in
parity, for any value of the offset charges (as discussed in the
main text).

The expression for the transition rate for the e → g process
is given by

�
e→g

R→L = 2GT

e2
|mnc,αβ |2

∫ ∞

max{�R,�ωeg+�L}
dER

× (ER − �ωeg)ER + �R�L√
[(ER − �ωeg)2 − �2

L]
[
E2

R − �2
R

]fR(ER)

× [1 − fL(ER − �ωeg)]. (D4)

(Note that ωeg is a negative quantity.) As illustrated in
Fig. 6(a), this rate results from the tunneling of quasiparticles
which occupy energies just above the superconducting gap
in electrode R to states which are most likely empty into
electrode L. The states in electrode L which are occupied
after tunneling takes place are at energies �R − �L + �ωge

above the superconducting gap, where, assuming that the
qubit energy-level splitting is large compared to the imbalance
between the superconducting gaps in the two electrodes, the

density of states does not have any singularity. Therefore, it
is possible to factor out of the integral a contribution which
is proportional to the density of quasiparticles in the electrode
R, nqp,R , given by

nqp,R = 4
∫ ∞

�R

dER

ER√
E2

R − �2
R

DR(EF,R)fR(ER), (D5)

where DR(EF,R) is the energy density of states, normalized
to volume, in electrode R, at the Fermi energy EF,R . With the
approximation [1 − fL(ER − �ωge)] ≈ 1, we obtain

�
e→g

R→L = GT

2e2
|mnc,αβ |2 nqp,R

DR(EF,R)

√
�R − �ωeg + �L

�R − �ωeg − �L

.

(D6)

This relation holds when the superconducting gap values �L

and �R , as well as �R − �L + �ωge, are significantly larger
than the effective temperature of the quasiparticle distributions.

2. Processes for g → e qubit transitions

The configuration of levels for this case is illustrated by
the diagram in Fig. 6(b). If the temperature is low enough,
states in the electrode L are mostly unoccupied. The total
rate of tunneling from R to L is reduced, with respect to the
g → e case, due to the fact that only quasiparticles with energy
�L − �R + �ωge ≈ �ωge above the gap can tunnel out of R.
The transition rate depends, in this case, on the details of the
distribution of the quasiparticles over energy, and not only on
the total density. Qualitatively, we can argue that the rate of
this process is given by an expression of the form

�
g→e

R→L = �
e→g

R→Le
−�ωge

kB Teff . (D7)

Here, we assume that the quasiparticle distribution, which may
be in general a nonequilibrium distribution, is a Fermi distri-
bution with the effective temperature Teff. The relation (D7)
can be understood as a detailed balance condition: the ratio of
the rates �

g→e

R→L/�
e→g

R→L is equal to the ratio of probabilities of
occupation of the excited and ground states of the qubit, which
is the Boltzman factor with a temperature which corresponds
to the environment.

3. Processes for g → g qubit transitions

We start with expression (C1) and we assume for definite-
ness �ωgg > 0 and also we take �L = �R ≡ �. We use, in

DOS

DOS

(a)

DOS
DOS

(b)

FIG. 6. (Color online) Representation of quasiparticle tunneling for e → g (a) and g → e (b) processes.
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addition, fR(ER) ≈ e−ER/kBT and 1 − fL(EL) ≈ 1 (which are
justified as long as the temperature is significantly below the
superconducting gap). The expression for the transition rate is

�
g→g

R→L = 2GT

e2
|mc,gg|2

∫ ∞

�

dEL

× EL(EL + �ωgg)−�2√
(E2

L−�2)((EL + �ωgg)2−�2)
e
− EL+�ωgg

kB T . (D8)

By using � � kBT and �ωgg  kBT , which are both justified
for typical experimental conditions, we obtain

�
g→g

R→L = 2GT

e2
|mc,gg|2kBT e

− �
kB T . (D9)

We assumed �ωgg > 0 to start with. If we assume instead
�ωgg < 0, the same result is obtained as long as |�ωgg| 
kBT .

4. Processes for e → e qubit transitions

The calculations proceed in a fashion fully similar with
those for the g → g in the previous section. With similar
assumptions, namely |�ωee|  kBT , � � kBT , and �L =
�R ≡ �, we find

�e→e
R→L = 2GT

e2
|mc,ee|2kBT e

− �
kB T . (D10)

5. Accuracy of the approximate expressions
for the transition rates

We checked expressions (D6), (D7), (D9), and (D10) for
the case of a thermal distribution of quasiparticles, for the
entire temperature range explored in the experiments (40 to
158 mK) against the rates calculated by numerical integration
in Mathematica using relations (C1) and (C3). The agreement
is within 5%.

APPENDIX E: APPLICATION OF THE THEORY
TO THE EXPERIMENTS

In this appendix, we discuss the application of the rate
model we have developed to a quantitative analysis of the
experiment with the goal of determining the quasiparticle
density and effective temperature. In this analysis, we employ
the measured value of the qubit energy relaxation rate and the
measured value of the parity change based on the selective
excitation experiments. We only discuss the case of the lowest
physical temperature used in the experiment, which is 40 mK.

We first discuss the information on the quasiparticle dis-
tribution that can be extracted based on the energy relaxation
rate. The energy relaxation time of the qubit, measured at its
symmetry point (� = �0/2), is T1 = 4.6 μs for the device for
which detailed measurements were presented in the main text.
In other experiments on similar devices we measured qubit
energy relaxation times ranging from a few μs to 10 μs at
the symmetry point. For all these cases, the calculated energy
relaxation rate induced by the resonator to which the qubit
is coupled, through the Purcell effect [40], was a negligible
contribution to the measured rate. We therefore believe that
quasiparticle tunneling is a substantial contribution to the

energy relaxation rate. Based on Eq. (D6) we can use the
measured value of the energy relaxation rate to determine an
upper bound on the quasiparticle density. To calculate the total
quasiparticle induced energy relaxation rate, we sum up the
rates corresponding to quasiparticle tunneling through the M1
and 23 junctions, which give the most important contributions
to energy relaxation. We emphasize that the qubit energy
relaxation rate depends only on the quasiparticle density and
not on the effective temperature [see Eq. (D6)]. We denote the
upper bound on the quasiparticle density by nqp,r.

We discuss next the relation between the parity change
rate measured in the experiment and the parameters of the
quasiparticle distribution. The measured rate in the correlation
measurement is the sum of the transition rates between the two
states of different parity, given by

�c = Pg(�̃g→g + �̃g→e) + Pe(�̃e→g + �̃e→e), (E1)

where each rate �̃α→β (with α,β = g or e) is a sum over all the
processes in which the qubit undergoes a transition from state
α to state β (α,β = g or e), accompanied by a change of parity
for islands 1 and 2 considered together. The probabilities Pg

(Pe) are the probabilities for the qubit to be in the g (e) state.
They are determined based on the histogram of readout results,
with the qubit prepared by waiting for a time significantly
longer than the energy relaxation time [as shown in Fig. 2(d)
in the main text]. Using Eqs. (D6), (D7), (D9), and (D10)
we find that the parity change rate �c depends both on the
quasiparticle density nqp and the effective temperature Teff.
Based on the measured value of �c, we determine a relation
between the quasiparticle density and the effective temperature
Teff denoted by nqp,p(Teff).

In Fig. 7, we plot three relations between the quasiparticle
density and effective electron temperature. First, we plot the
upper bound on the quasiparticle density nqp,r as determined
based on the qubit energy relaxation time (dashed line); as
discussed above, this upper bound does not depend on the

FIG. 7. (Color online) Relation between the quasiparticle density
nqp and the effective temperature Teff corresponding to the upper
bound on the quasiparticle density based on the qubit energy
relaxation time (red dashed line), the experimentally measured parity
change rate at 40 mK (black continuous line), and the density for a
thermal distribution at temperature Teff (red dotted line). The rhombic
blue markers indicate the intersection between the curves, which are
lower and upper bounds for the effective quasiparticle temperature in
the experiments.
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effective temperature. Second, we plot nqp,p(Teff), determined
based on the measured rate of parity change as discussed
in the previous paragraph (continuous line). Lastly, we plot
for reference the density of quasiparticles corresponding to a
thermal equilibrium distribution (dotted line). The following
parameters are used in these plots: T1 = 4.6 μs, � = 220 μeV
(assumed equal for all the electrodes), and Pe = 1%. The

transition matrix element amplitudes, determined based on nu-
merical calculations, are mc,gg = 0.93, mc,ee = 0.90, mnc,ge =
0.29, and mc,eg = 0.29 for M-1 and 2-3 tunneling. The tunnel
junction conductances are 0.97 k�−1 for junctions M-1 and
2-3 and 0.62 k�−1 for junction 1-2. The intersection between
the three curves in Fig. 7 implies that the effective temperature
is in the range 120–140 mK.
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