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SUMMARY

The human brain is a natural high-performance computing system with outstanding prop-
erties, e.g., ultra-low energy consumption, highly parallel information processing, suit-
ability for solving complex tasks, and robustness. As such, numerous attempts have been
made to devise neuromorphic systems able to achieve brain-akin computation abilities,
which can aid in understanding the complex human brain functionality and can be uti-
lized to solve complex problems, e.g., pattern recognition and data mining. However, the
fact that human brain comprises billions of neurons, which are the fundamental informa-
tion processing units, and trillions of synapses that interconnect them makes the design
and implementation of large-scale brain-inspired computing systems quite a challenging
task. Graphene appears to be a promising candidate for scalable neuromorphic imple-
mentations as it exhibits a wealth of outstanding properties, e.g., ballistic transport, ulti-
mate thinness, flexibility, and graphene devices are capable of emulating complex nonlin-
ear functions and can be readily tuned to provide various conduction dynamics while pre-
serving low energy operation and small footprint. Moreover, graphene is biocompatible,
which offers perspectives for graphene-based neuromorphic bio-interfaces. This thesis
aims to investigate graphene’s potential to enable scalable and energy effective neuro-
morphic computing. To this end, we first introduce an atomistic-level simulation model
for calculating graphene electronic transport properties, that captures the hysteresis ef-
fects induced by interface charges trapping/detrapping phenomena. Second, we propose
a generic graphene based synapse, which can be tailored to emulate different synaptic
plasticity types by properly modifying its Graphene NanoRibbon (GNR) shape and con-
tacts topology, as well as applying external voltages. Subsequently, we introduce a com-
pact graphene-based integrate-and-fire spiking neuron that mimics the basic spiking neu-
ronal dynamics. We further propose a basic Spiking Neural Network (SNN) unit, which can
be utilized to implement complex graphene-based SNN structures. Finally, we introduce a
reconfigurable graphene-based SNN architecture and a training methodology for obtain-
ing the initial SNN synaptic weight values. We demonstrate the feasibility of the synaptic
weights training methodology and the practical capabilities of the proposed SNN architec-
ture by applying them to solve character recognition and edge detection problems. Our
experiments clearly indicate that the proposed graphene-based neuromorphic approach
enables low energy operation at small chip real estate footprint, which are enabling factors
for the realization of scalable energy-efficient SNN implementations.
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SAMENVATTING

Het menselijk brein is een natuurlijk, krachtig computersysteem met buitengewone eigen-
schappen, zoals een ultralaag energieverbruik, gelijktijdige verwerking van veel verschil-
lende informatiestromen, uitvoering van complexe taken, en robuustheid. Er zijn dan
ook talrijke pogingen ondernomen om neuromorfische systemen te ontwerpen die in
staat zijn hersen-achtige rekencapaciteiten te bereiken, kunnen helpen bij het begrijpen
van de complexe functionaliteit van het menselijk brein, en kunnen worden gebruikt om
complexe problemen op te lossen zoals patroonherkenning en datamining. Echter, het
feit dat het menselijk brein miljarden neuronen bevat, de fundamentele informatiever-
werkende bouwstenen, en triljoenen synapsen die hen onderling verbinden, maakt het
ontwerp en de implementatie van grootschalige door het brein geïnspireerde comput-
ersystemen een nogal uitdagende taak. Grafeen blijkt een veelbelovende kandidaat te
zijn voor schaalbare neuromorfische systemen omdat het over tal van uitstekende eigen-
schappen beschikt, zoals ballistisch transport, extreme dunheid, en flexibiliteit, en omdat
grafeen devices complexe niet-lineaire functies kunnen nabootsen en gemakkelijk kun-
nen worden ingesteld om verschillende geleidingsdynamieken te bieden met behoud van
laag energieverbruik en een kleine voetafdruk. Bovendien is grafeen biocompatibel, wat
perspectieven biedt voor op grafeen gebaseerde neuromorfe bio-interfaces. Dit proef-
schrift onderzoekt het potentieel van grafeen om schaalbare en energie-efficiënte neu-
romorfische computers te maken. Hiertoe introduceren we eerst een simulatiemodel
op atomair niveau voor de berekening van de elektronische transporteigenschappen van
grafeen, inclusief de hysterese-effecten veroorzaakt door interfaceladingen. Ten tweede
stellen we een generieke op grafeen gebaseerde synaps voor, die kan worden ingesteld om
verschillende synaptische plasticiteitstypes na te bootsen door aanpassing van de vorm
van de Graphene NanoRibbon (GNR) en de topologie van de contacten , alsook door
toepassing van externe spanningen. Vervolgens introduceren we een compact grafeen-
gebaseerd integratie-en-vuur neuron dat de basis spiking neuronale dynamica nabootst.
Verder stellen we een basis Spiking Neural Network (SNN) eenheid voor, die kan gebruikt
worden om complexe grafeen-gebaseerde SNN structuren te implementeren. Tenslotte
introduceren we een herconfigureerbare grafeen-gebaseerde SNN architectuur en een train-
ingsmethodologie voor het verkrijgen van de initiële SNN synaptische gewichtswaarden.
We demonstreren de haalbaarheid van de trainingsmethodologie voor synaptische gewichten
en de praktische mogelijkheden van de voorgestelde SNN architectuur door ze toe te passen
op het oplossen van karakterherkenning- en randdetectieproblemen. Onze experimenten
tonen duidelijk aan dat de voorgestelde grafeen-gebaseerde neuromorfische aanpak een
laag energieverbruik met een kleine chip voetafdruk mogelijk maakt ten behoeve van schaal-
bare energie-efficiënte SNN implementaties.
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1
INTRODUCTION

Human brain is a natural high performance computing system, which due to its unique
and attractive properties, e.g., energy efficiency, real-time reaction, robustness, suitability
for complex task solving and highly parallel information processing ability, spurred the de-
velopment of a disruptive computing paradigm, the Neuromorphic Computing (NC). In the
past decades much effort has been made to develop brain-inspired computation paradigms
and biologically-inspired neuromorphic systems based on artificial neurons and synapses.
The NC development promoted research aiming at understanding brain’s fundamental op-
erational principles and achieving human brain comparable computation abilities. How-
ever, the fact that human brain comprises billions of neurons, which are the fundamental
information processing units, and trillions of synapses that interconnect them, makes the
design and implementation of large-scale brain-inspired computing systems quite a chal-
lenging task. Software simulation of neural networks on Turing-von Neumann computing
platforms offers flexible support for a wide range of neuromorphic models and have been
widely utilized to address machine learning issues and aid neuroscience research. However,
this is a power hungry approach and the fundamental incompatibilities between conven-
tional Turing-von Neumann architectures and the human brain, e.g., separate memory and
processing, limit the feasibility horizon of neuromorphic simulations. On the other hand,
much effort has been made to implement neuromorphic systems in hardware. However, in
most state-of-the-art neuromorphic systems, neurons and synapses are implemented with
complex CMOS circuitry, which results in high energy consumption and limited scalability
and integration density. More recently, emerging technologies, e.g., phase change mem-
ory, memristive and graphene devices, proved to be attractive candidates for the design
and implementation of neuromorphic systems. Among them, graphene appears to be the
most promising candidate as it exhibits a wealth of outstanding properties, e.g., ballistic
transport, high current density and good electrical conductivity. Additionally, graphene
devices are capable of emulating complex nonlinear functions and can be readily tuned
to provide various conduction dynamics while preserving low energy operation and small
footprints that make them ideal candidates for neuromorphic implementations. Moreover,
when compared with other emerging technologies, graphene is a biocompatible material,
which offers perspectives for graphene-based neuromorphic bio-interfaces. In view of this,
in this thesis we investigate graphene’s potential to enable scalable and energy effective neu-
romorphic computing.
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2 1. INTRODUCTION

1.1. MOTIVATION

For decades, devising a platform capable of processing information with brain-like com-
putation capacity has been a computing driving force. Software simulations of neural
models on Turing-von Neumann paradigm inspired computation platforms, e.g., GPUs
and multi/many cores, are widely utilized in various application scenarios, e.g., recogni-
tion of text [1–3], image [4–6], and speech [7–9], and neuroscience research [10–12]. How-
ever, substantial differences exist between the Turing-von Neumann computation model
and the human brain in terms of, e.g., organizational structure, power requirements, and
computation capability, which impede the realization of fast and energy efficient neural
systems software implementations. As a result, investigations on the possibility of de-
veloping alternative architectures based on brain-inspired models have been initiated
towards the end of the previous millennium, and Neuromorphic Computing (NC) has
emerged as a promising approach to obtain brain-akin processing ability with artificial
neural computation systems. Carver Mead invented the term “Neuromorphic Comput-
ing” in 1990 [13], and at that time, NC was referring to Very Large Scale Integration (VLSI)
with analog components that mimicked biological neural systems. More recently, the
term has evolved to encompass various artificial systems that are based on biologically-
inspired artificial neural networks [14–16]. These neuromorphic systems are notable for
their high parallelism and the ability to execute complex computations faster, more energy-
efficiently, and with a smaller footprint than traditional Turing-von Neumann counter-
parts. Furthermore, neuromorphic systems can be utilized to investigate the operating
principles of the human brain in neuroscience research [17, 18] and to implement ma-
chine learning algorithms to solve practical tasks [19, 20]. While intriguing on its own
merits, NC has received greater attention due to, e.g., increasing power limitations asso-
ciated with Dennard scaling, Moore’s law approaching end, and the von Neumann bottle-
neck [21], and various neuromorphic systems have been designed and implemented [22–
24].

Much of the early NC work aimed to design computation platforms capable of perform-
ing extremely parallel data processing [25–27], inspired by the parallelism observed in the
human brain. Neuromorphic systems comprise simple basic processing units, known as
neurons, and dense interconnections between them, known as synapses, and by their
very architecture exhibit intrinsic parallelism. Some early NC work also targeted the im-
plementation of neural network task specific accelerators [28–30], as due to their natural
parallelism and custom hardware support they can perform neural computation much
faster than conventional architectures. The study of neuromorphic systems with natu-
ral parallelism and fast computing prompted the development and implementation of
bio-inspired systems with real-time performance [31–33]. Currently, aside from enabling
parallelism, fast neural computation, and real-time performance, researchers pay special
attention on devising artificial neural systems that consume low energy [17, 20, 23] and
creating small footprint devices capable of delivering neural style behaviors [34–36], as
they can open the road towards the implementation of large-scale energy-efficient neu-
romorphic systems with brain-akin computation ability. To date, neuromorphic systems
have been utilized in a wide range of applications, e.g., brain-machine interfaces [37–40],
image [41–44] and speech recognition [45–48], and robotics [49–52].

NC encompasses a wide range of research areas, including materials science, electrical
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Figure 1.1: Research Areas Involved in Neuromorphic Computing.

engineering, computer science and engineering, and neuroscience, as depicted in Fig-
ure 1.1. Materials researchers investigate and develop new neuromorphic device tailored
materials, with special emphasis on obtaining characteristics that make them suitable for
mimicking biological neural behavior. Electrical and computer engineers work on new
neuromorphic computing devices, and devise non-traditional circuitry and architecture
for neuromorphic systems. Computer scientists and engineers focus on developing new
neural network models that can be utilized for biological and machine learning tasks, and
of the associated learning and training schemes. Neuroscience researchers investigate the
human brain functionality and develop bio-inspired models, and also make use of neuro-
morphic systems to aid their studies. The aforementioned research areas are clearly inter-
dependent and their synergy opens unexpected avenues towards the creation of novel NC
systems.

When developing new neuromorphic systems, the key question is: Which neural model
to utilize? Inspired from the biological brain, neural network models comprise neurons,
which are basic information processing units, and synapses, which are junctions connect-
ing them. Based on the neurone type (spiking or non-spiking), neural networks can be cat-
egorized into Spiking Neural Networks (SNNs) [53–55], and non-spiking neural networks,
which are called Artificial Neural Networks (ANNs) [56]. Generally speaking, spiking neu-
ron models capture more biological neuron features than the non-spiking ones. A broad
range of neuron models, from complicated biologically plausible to simple computation-
oriented ones, have been proposed [57–63]. A qualitative comparison [14] of different
neuron models in terms of biological plausibility and complexity is presented in Figure
1.2. McCulloch-Pitts models are derivatives of the original McCulloch-Pitts neuron [57],
which is non-spiking and is utilized in most computation-oriented ANNs. Integrate-and-
Fire (I&F) models [53, 58] are a category of simple biologically-inspired spiking neuron
models, which capture the essential neuron functionalities with low complexity. Further-
more, higher complexity models that emulate more biological neuron features include
Izhikevich [59], Fitzhugh-Nagumo [60], and Hindmarsh-Rose [61] models. The Hodgkin-
Huxley (HH) model [62] is the most popular biologically plausible neuron model. It is a
rather sophisticated neuron model and it is commonly utilized in neuromorphic systems
that try to accurately emulate biological neural systems. Morris Lecar model [63] is sim-
pler than HH, yet it has a similar biological plausibility as HH. When determining the ap-
propriate model for a neuromorphic system, one should consider the specific target, e.g.,
McCulloch-Pitts for computation-oriented applications and Hodgkin-Huxley for biologi-
cally plausible applications, while making the best tradeoff between biological plausibility
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and complexity.

SNNs are particularly appealing for NC research, as they capture the essential spiking
neuron features with low complexity. To illustrate SNN’s functionality, Figure 1.3 depicts
a small SNN example consisting of 3 spiking neurons (Ni , N j , and Nk ) that are connected
via 2 synapses (Synapseik and Synapsejk). Neuron Nk collects input spikes (Si and S j ) from
the other neurons, and generates an output spike Sk when the effect of the cumulated
input reaches its firing threshold. Immediately after the firing event, Nk enters a refrac-
tory period, during which it doesn’t react to incoming spikes. Synapses, while essentially
known as signal transmission between adjacent neurons media, assume a processing role
as well since their transmission efficiency (synaptic weight), governed by the so-called
Synaptic Plasticity (SP) process, can either enhance or inhibit the transported signals. SP
is believed to play a crucial role in human brain learning and memorizing processes [64,
65].

Various hardware technologies have been utilized to implement the aforementioned
neural network models, which can be categorized at the device and material level as con-
ventional, i.e., CMOS, and emerging, e.g., memristor [66], phase change memory [67],
and graphene [68]. As synapses and neurons are the fundamental neural network com-
ponents, devising appropriate artificial synapses and neurons is the primary focus of any
neuromorphic implementation. However, since the human brain comprises billions of
neurons and trillions of synapses, designing and implementing large-scale brain-inspired
computing systems is a huge challenge.

In general, the implementation of high complexity neuron models (depicted in Figure
1.2) and synapses with versatile plasticity require very complex circuitry, which is the case
for most state-of-the-art CMOS neuromorphic systems, e.g., [17, 19, 69, 70]. These sys-
tems suffer from high energy consumption and limited scalability. Besides, CMOS designs
rely on external control signals and additional circuitry to enable versatile synaptic and
neuronal functionalities, e.g., different SP types and I&F dynamics. More recently, emerg-
ing technologies have been utilized for neuromorphic system implementations as they
exhibit electronic properties that are more appropriate for SNN emulation. However, neu-
romorphic systems implemented with, e.g., memristor and phase change memory, are hy-
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brid, i.e., make use of emerging devices to simplify the designs of individual synapses and
neurons [71–74], and of additional CMOS circuitry to enable complete synaptic and neu-
ronal functionalities [75–78], which impedes their utilization for scalable energy-efficient
implementations.

Another emerging technology with great potential for NC implementations is graphene,
which is a two-dimensional carbon atom honeycomb lattice. An example of the crystal
structure of a graphene layer is illustrated in Figure 1.4, where the carbon atoms occupy
the hexagon vertices and the distance between two adjacent carbon atoms is 0.412 nm.
Graphene exhibits outstanding electrical and mechanical properties [79–83], e.g., ballis-
tic carrier transport, high current density, good electrical conductivity, ultimate thinness,
and flexibility. Graphene’s remarkable characteristics make it an appealing option for a
wide range of applications, e.g., spintronics [84, 85], sensors [86–88], biomedicine [89–
91], and electronics [92–94]. Specifically, previous work on graphene-based Boolean logic
gates [95–98] indicates that graphene-based devices with simple small footprint structure
and operating under low power supply voltage can exhibit complex nonlinear functional-
ities. Besides, graphene-based devices are quite versatile in the sense that different con-
duction dynamics can be achieved by carving the graphene sheet geometry and altering
the contacts topology [99]. Moreover, graphene is a biocompatible material, which of-
fers perspectives for bio-interface applications. These properties make it a particularly
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promising candidate for scalable energy-efficient neuromorphic implementations. Some
preliminary research on graphene-based synapses [100, 101] demonstrated that graphene
devices can be utilized in neuromorphic implementations, and that synaptic plasticity
can be emulated with a single graphene-based device. However, these designs operate at
high voltage and can only provide limited synaptic plasticity types while the feasibility of
implementing artificial neurons and SNNs with graphene devices has not been investi-
gated. Therefore, in this thesis we make use of graphene’s benefits to design and imple-
ment graphene-based synapses, spiking neurons, and SNNs.

1.2. OPPORTUNITIES AND CHALLENGES

Due to its exceptional characteristics, graphene has enormous potential for the imple-
mentations of large-scale energy-efficient neuromorphic systems, and graphene devices
can be utilized as fundamental building blocks for constructing artificial synapses and
neurons. The graphene benefits can be stated from the standpoint of neuromorphic im-
plementations as follows: (i) capability to emulate complex non-linear functionalities, (ii)
capability to deliver various conduction dynamics by carving the graphene sheet shape
and adjusting the contacts topology of the device, (iii) low energy operation and small
footprint, and (iv) biocompatibility, which offers perspectives for neural interfaces. How-
ever, despite the fact that graphene exhibits excellent properties for implementing neuro-
morphic systems, state-of-the-art research on graphene-based neuromorphic computing
was mainly concentrated on synapses, while the feasibility of graphene-based neurons
and all graphene-based SNNs has not been investigated. Therefore, further research into
the possibility to implement SNNs with graphene devices is required to take full advantage
of graphene’s aforementioned potential to enable scalable energy-efficient neuromorphic
computing. Thus, en route to graphene-based neuromorphic systems, some challenges
must be addressed.

From the artificial synapses perspective, previous work on synapses [100, 101] demon-
strated that synaptic plasticity can be emulated by a single graphene device. However,
these designs have many limitations. In [100], the proposed graphene-based synapses
operate with prohibitively large back-gate (20 V and 40 V) and input signal voltages (2 V),
which make them power hungry and inappropriate for energy effective implementations.
In [100] and [101], only restricted synaptic plasticity types are provided and the obtained
synaptic transmission efficiency change is small (< 0.01% in [100] and < 2% in [101]).
Therefore, further investigation on graphene-based synapses is required to harness graphene’s
great characteristics. To implement scalable energy-efficient neuromorphic systems with
graphene devices, the synapses should exhibit low energy operation and small footprints.
To enable the utilization of graphene-based neuromorphic systems for diverse application
scenarios, the synapses should be programmable and able to emulate versatile plasticity,
i.e., the same synapse can be programmed to deliver different plasticity types.

From the artificial neuron perspective, no prior work on graphene-based neurons has
been reported. The basic spiking neuron functionality, e.g., I&F dynamics, is too complex
to be achievable with one single graphene device, thus a circuitry comprised of multiple
devices is required. The key challenge in developing graphene-based neurons relates to
the identification of appropriate devices, e.g., with properly adjusted graphene sheet ge-
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ometry and contacts topology, that, when assembled together, can jointly mimic the neu-
ronal functionality. Furthermore, the resulting graphene-based neuron should operate at
low voltage and have a small footprint.

From the neural network perspective, the input-output compatibility of graphene-based
synapses and neurons must be assured in order to implement SNNs, as only in this case,
artificial synapses and neurons can be directly interconnected to form application tailored
SNN structures.

This thesis aims to address the aforementioned graphene-based neuromorphic imple-
mentations associated challenges by providing answers to the research questions stated
in the following section.

1.3. RESEARCH QUESTIONS
In its most general form, the research question addressed by this thesis can be expressed
as:

• Can graphene pave the way towards scalable energy-efficient neuromorphic com-
puting that goes beyond the CMOS and other emerging technologies horizon?

To answer this fundamental question, we conduct a complex study, in which we address
six related questions that are critical in relation to the general one.

When employing graphene for neuromorphic computing, the first issue is how to use
graphene devices, as basic building blocks for artificial synapse and neuron implementa-
tions, to obtain the required nonlinear conduction dynamics. Such a generic graphene-
based device structure is depicted in Figure 1.5. It relies on a Graphene NanoRibbon
(GNR), which serves as a conduction channel when the device is subjected to a drain-to-
source bias voltage Vd −Vs . The device conduction profile is determined by the nanorib-
bon geometry and contacts topology, while the actual conductance value is modulated by
exerting external voltages on the top and/or back gates. To enable complex synaptic and
neuronal behaviors, different nonlinear functionalities are required, and for every such
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functionality, a GNR device with a different shape and contacts topology ought to be de-
vised. Thus, the first research question can be formulated as:

• Can we identify appropriate graphene structures, which conduction can emulate
given synaptic and neuronal functionalities, while maintaining the potential for
scalable energy-efficient neuromorphic implementations?

To address this question we should be able to identify the nonlinear functionalities re-
quired for emulating synaptic and neuronal behaviors, and perform a Design Space Ex-
ploration (DSE) by changing GNRs geometry, contacts topology, and bias voltages, to ob-
tain a set of devices capable to deliver the targeted behaviors. Moreover, to enable scalable
energy-efficient implementation, the obtained GNR devices should operate at low voltage
and have small footprints.

To facilitate the appropriate GNR devices identification, and to enable the design and
evaluation of graphene-based neuromorphic systems, a simulation framework able to ac-
curately model GNR specific physical phenomena, as well as to perform SPICE circuit-
level simulations is required. Moreover, to fully comprehend GNRs behavior and their
potential benefit in circuits, such a framework ought to be able to preserve high accuracy
GNR modelling during circuit-level evaluations. Thus, the next research question that
needs to be addressed can be formulates as:

• Can we devise a graphene-based neuromorphic systems evaluation framework
able to combine high accuracy physical-level simulation of graphene-based de-
vices with fast circuit level SPICE simulation?

In such a simulation framework, the GNR device electronic transport properties calcu-
lation should be carried out by using an atomistic-level graphene model to ensure high
precision and to support the simulation of a wide range of GNR shapes and topologies,
which are needed to emulate complex synaptic and neuronal functionalities.

Equipped with the GNR device identification method and the simulation framework
we can now proceed with the design and implementation of fundamental neural network
components, i.e., synapses and neurons.

The synapses should be able to emulate basic synaptic functionalities, i.e., Spike-Timing-
Dependent-Plasticity (STDP) and Long-Term Plasticity. To satisfy the requirements for
diverse application scenarios, GNR synapses should be programmable and have versa-
tile synaptic plasticity, i.e., the same device should be able to emulate different plasticity
types. Moreover, given that synapses are the most abundant element in neural networks,
they should operate at low voltage and have small footprints to enable scalable energy-
efficient implementations. Thus, the next research question formulates as:

• Can we devise single device programmable graphene-based synapses with versa-
tile plasticity while preserving their suitability for scalable neuromorphic system
implementations?

The main idea behind this investigation is to incorporate complex synaptic functionalities
into an operating voltage and footprint confined single device, which potentially benefits
graphene neuromorphic implementation energy efficiency and scalability. Furthermore,
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GNR synapses should be programmable by adjusting the external voltages applied to the
device, e.g., via top/back gates.

The graphene neuron ought to be able to emulate the fundamental spiking neuron dy-
namics, i.e., collect input spikes from other neurons, generate an output spike when the
cumulated signal exceeds the firing threshold, and exhibit a refractory period after a fir-
ing event. Since neuronal functionalities are too complex to be achieved with a single
device, GNR-based circuits are required when devising graphene-based spiking neurons.
The neuron should combine multiple GNR devices and be able to emulate the aforemen-
tioned neuronal dynamics. In this context, the next research question can be formulated
as:

• Can we devise compact graphene spiking neurons, by means of multiple GNR de-
vices, that emulate the complex neuronal functionality, while exhibiting low en-
ergy consumption and requiring low area?

The main idea behind such a investigation is to identify appropriate GNR devices with cer-
tain nonlinear functionalities, which can be combined to build graphene-based circuitry
that can mimic the complex neuronal behavior. Moreover, graphene neurons should be
able to operate at low voltage and be compact in order to enable scalable and energy effi-
cient SNN implementations.

Following the identification of graphene synapses and neurons, the next stage of re-
search focuses on how to interconnect them in order to create SNNs. Since the plasticity
emulated by graphene synapses have a direct impact on SNN operations, a comprehen-
sive investigation on the effect of the graphene enabled plasticities and the acquired un-
supervised learning ability is necessary to demonstrate the feasibility of graphene-based
SNNs in practical applications. In view of this, the next research question formulates as:

• Can we interconnect GNR synapses and neurons to construct application specific
graphene-based SNNs with unsupervised learning capabilities?

To positively answer this research question, we need to assure input-output compatibil-
ity between synapses and neurons, such that they can be directly interconnected to form
SNN structures. Afterwards, the SNN operations and its unsupervised learning ability can
be explored by means of the aforementioned mixed atomistic-circuit simulation frame-
work.

Given that the SNN structure is dependent on the practical task it has to perform, SNN
implementations have to be tailored to the application they execute. To diminish the de-
sign overhead and facilitate the utilization of graphene-based neuromorphic systems in
various practical applications, a versatile SNN architecture capable of providing hardware
support for various SNN structures is necessary. Besides, investigations are required to re-
veal the potential capabilities of graphene-based neuromorphic systems to solve complex
practical problems, which raises the following research question:

• Can we devise a versatile graphene-based SNN architecture that provides hard-
ware support for various applications while being area and energy efficient?

Such an architecture ought to be reconfigurable to map different neural network struc-
tures. The comprising synapses should be programmable in terms of plasticity type and
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weight value. Moreover, an associated training methodology is needed to determine the
initial synaptic weight values. The architecture area and energy efficiency are obviously
determined by the figures of merit of the proposed graphene synapses and neurones.

In answering the above research questions, this thesis explores and demonstrates the
graphene potential to pave the way towards scalable energy-efficient neuromorphic com-
puting that goes beyond the CMOS and other emerging technologies horizon.

1.4. THESIS CONTRIBUTIONS
This section summarizes the contributions of this thesis towards GNR device simulation
and design and implementation of graphene-based synapses, neurons, and SNNs, as fol-
low:

• We introduce an atomistic-level graphene device simulation model, which can cal-
culate the electric transport properties of GNR devices with rectangular or non-
rectangular GNR geometries while capturing hysteretic effects caused by interface
charges trapping/detrapping phenomena. Specifically, we make use of the tight
binding Hamiltonian matrix to describe the interactions between carbon atoms and
external potentials, the Non-Equilibrium Green Function (NEGF) formalism to solve
the Schrödinger equation, and the Landauer-Büttiker formula to derive the GNR
current and conductance [102]. The GNR potential distribution profile is obtained
by solving a 3D Poisson equation self-consistently and the trapping/detrapping phe-
nomena are accounted for by calculating the equivalent voltage shift induced by in-
terface trapped charges. We apply the model on a rectangular graphene shape and
validate the results against experimentally measured data. Moreover, we demon-
strate model’s versatility by considering and investigating the hysteretic behavior of
two non-rectangular GNRs. The experiments indicate a good agreement between
simulated and measured data, which qualifies the model appropriate for traps-aware
evaluation of the conduction of graphene-based devices and circuits.

• We develop a hybrid simulation framework that embeds the high accuracy of physi-
cal level modelling of graphene conductance within the SPICE environment. Specif-
ically, we make use of a Verilog-A graphene device generic model [103], which in
order to enable time effective SPICE simulation of graphene circuits relies on GNR
topology specific precomputed lookup tables containing graphene conduction sim-
ulation data obtained with the aforementioned atomistic level simulation method.
This hybrid framework is utilized to provide circuit level evaluations for graphene-
based neuromorphic implementations, i.e., synapses, neurons, and SNNs.

• We present a methodology to emulate synapse and neuron functionalities by means
of graphene device conduction dynamics. For synapses, to identify a GNR topology
able to provide support for a targeted plasticity we perform a Design Space Explo-
ration (DSE) by changing GNR dimensions, shape, top-gates widths and positions,
and back-gate voltage. The synaptic transmission efficiency changes are mirrored
on the GNR conductance modifications and the DSE process continues until the
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targeted functionality is achieved. We utilize the same methodology to identify ap-
propriate GNR devices for the neuron implementation. As multiple GNR devices
are required to emulate the neuronal functionality, we perform the DSE process for
each of the constituent GNR devices. We note that this methodology is generic and
can be utilized to achieve other synaptic and neuronal functionalities with GNR de-
vices, potentially beyond the ones considered in the thesis.

• We propose generic one- and two- top gates graphene-based synapse structures,
which can emulate the fundamental synaptic functionalities, i.e., Spike-Timing-Dependent
Plasticity (STDP) and Long-Term Plasticity. Additionally, they are programable by
means of back-gate bias voltage and the same device can exhibit both Long-Term
Potentiation and Long-Term Depression. Our simulations indicate that the one-
top-gate synapse can achieve the 100% plasticity change provided by natural synapses.
The two-top-gates synapse exhibits STDP with spike duration dependent potenti-
ation/depression time scale while achieving a maximum of 30% synaptic weight
change and a potentiation/depression time scale range from [−1.5ms,1.1ms] to
[−32.2ms,24.1ms]. Furthermore, we explore the effect of two-top-gates synapse at
the SNN level by performing NEST [10] based simulations. Our experiments indi-
cate a strong corelation between the synaptic plasticity type, i.e., Hebbian and anti-
Hebbian, and the number of firing events occurring within the network and that the
number of SNN output firing events monotonously varies with respect to the input
spikes frequency. For Hebbian STDP and a spike duration of 20 ms we obtain an
SNN behavior similar with the one provided by the same SNN with biological STDP.
Given that the proposed graphene-based synapses have small footprints (30 nm2),
operate in the hundred millivolt range, and are versatile from the synaptic behav-
ior point of view, we strongly believe that they can be outstanding candidates for
implementing scalable energy efficient neuromorphic systems.

• We propose an entirely graphene-based ultra-compact and low voltage neuron, which
is able to emulate the essential features of spiking neurons, including the mem-
brane potential accumulation, the firing event, the refractory interval, and the out-
put spike generation. The proposed neuron operates at voltage ranges akin to those
of biological neurons, which makes it a good candidate for biologically plausible uti-
lization scenarios. It consists of 6 GNR-based devices controlled via top-gate volt-
ages, one of them emulating the membrane potential dynamics, and the remaining
5 generating the necessary control signals as well as the output spikes. We validate,
by means of SPICE simulations, the basic nonlinear Leaky Integrate-and-Fire (LIF)
neuron functionality under periodic input spike trains and noisy stochastic inputs.
Our results indicate robustness to neuronal signals variability, and regular output
firing rate statistics with a slowly decreasing trend and < 1 interspike interval varia-
tion coefficient, when increasing the input firing rate from 20 to 200 spikes per sec-
ond. For all simulation, we use spike duration and amplitude of 2 ms and 100 mV,
respectively, which are comparable to those observed in biological neurons. Note
that, the low area footprint (GNR-based device area of max. 36 nm2) and low oper-
ating voltage (200 mV supply voltage) prove the suitability of our proposal for large-
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scale integration.

• We introduce a basic SNN unit, which comprises a graphene-based synapse and a
spiking neuron with input-output compatibility, and can be utilized for the imple-
mentation of complex SNNs. An extension approach is provided to accommodate
larger than one fan-in, i.e., multiple synapses connected to the same neuron. We
first demonstrate the proper operation of the graphene SNN unit by relying on the
aforementioned hybrid simulation framework. Subsequently, we analyze the way
synaptic plasticity affects SNN behavior by making use of a 2-layer SNN example
consisting of 6 neurons. Our results indicate that LTP significantly increases the
number of SNN firing events while LTD is diminishing them, as expected. To get in-
side on the plausibility of the 2-layer SNN reaction to input stimuli we also simulate
its behavior by means of NEST, a well established SNN simulation framework. Our
experiments indicate that the SPICE obtained reaction is in close agreement with
the one reported by means of NEST based simulation, which clearly suggests that
the proposed design exhibit a proper behavior. Further, we demonstrate unsuper-
vised learning capabilities by considering a 2-layer SNN consisting of 30 neurons
meant to recognize vowel characters (and variations of them). The simulation re-
sults indicate that the graphene SNN is able to perform unsupervised learning and
that the enabled recognition ability is robust to input character variations. Finally,
we note that the proposed SNN unit requires a small real-estate footprint (max.
30 nm2 are required by one graphene-based device) and operates at 200 mV sup-
ply voltage, which suggest its suitability for the design of scalable energy-efficient
computing systems.

• We propose a reconfigurable graphene-based SNN architecture and an associated
training methodology for initial synaptic weight values determination. Specifically,
the reconfigurable SNN architecture comprises a synaptic array (consisting of graphene-
based programmable synapses) and a neuronal array (consisting of graphene-based
spiking neurons), onto which application dependent network structures can be mapped.
To reconfigure the proposed graphene-based platform for a practical application,
two ingredients are required: an SNN topology and an initial SNN state, e.g., ini-
tial synaptic weights. To demonstrate the validity of the synaptic weights training
methodology and the suitability of the proposed SNN architecture for practical uti-
lization, we consider 2 applications, i.e., character recognition and edge detection.
We map on the generic graphene-based platform a 2-layer SNN tailored for vowel
characters recognition and demonstrate by means of SPICE simulations that it can
achieve up to 94.5 % recognition accuracy for the considered training and evalua-
tion datasets, which is very close to the one achieved by a functionally equivalent
ANN counterpart. Further, we map and evaluate a 3-layer SNN to perform edge de-
tection on Lena and Cameraman images and demonstrate that the edge detection
result quality matches and even outperforms the one obtained with classical edge
detection operators. Our results suggests the feasibility and flexibility of the pro-
posed approach for various application purposes. Moreover, the utilized graphene-
based synapses and neurons operate at low supply voltage (200 mV), consume low
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energy per spike for both neuron (43 pJ and 5.2×10−7 pJ at 200 Hz and 20 GHz spike
frequency scale, respectively) and synapse (5.1 pJ and 6.0×10−8 pJ at 200 Hz and
20 GHz spike frequency scale, respectively), and a synapse occupies an active area
of ≈45 nm2 (2 GNR devices) and a neuron an active area of ≈176 nm2 (6 GNR de-
vices), which are desired properties for scalable energy-efficient implementations.

1.5. THESIS ORGANIZATION
The remainder of the thesis is organized as follows:

In Chapter 2, we present the atomistic-level hysteresis-aware electron transport model.
We apply the model on a rectangular graphene shape and validate it by comparing its
outcome with experimentally measured data. Moreover, we demonstrate the versatility
of the model by considering two non-rectangular GNRs and investigate their hysteretic
behaviour.

In Chapter 3, we propose generic one- and two- top gates graphene-based synapse
structures and investigate their capabilities to emulate various plasticity types. We further
investigate the two-top-gates synapse capability to achieve spike duration dependent po-
tentiation/depression time scale and explore the two-top-gates synapses’ effect at SNN
level by performing NEST based simulations. Moreover, we look into the potential area
and energy consumption of the graphene-based synapses.

In Chapter 4, we propose an ultra-compact, entirely graphene-based nonlinear Leaky
Integrate-and-Fire spiking neuron. We validate its basic functionality and investigate its
output response under stochastic noisy input spike trains with a variable firing rate by
means of SPICE simulations.

In Chapter 5, we propose a basic graphene-based SNN unit that comprises a graphene
synapse and a graphene neuron, which can potentially be utilized to implement complex
SNNs. An extension approach is provided to accommodate larger than one fan-in situa-
tion, i.e., multiple synapses connected to the same neuron. We demonstrate the proper
operation of the SNN unit and analyze the way the synaptic plasticity affects the behav-
ior of a 2-layer SNN example by relying on the hybrid simulation framework introduced
in Chapter 2. We further assess the plausibility of the graphene SNN reaction to input
stimuli by comparing SPICE with NEST simulation results. Moreover, we demonstrate un-
supervised learning capabilities of the proposed design when utilized for vowel characters
recognition.

In Chapter 6, we propose a reconfigurable graphene-based SNN architecture and a train-
ing methodology for initial synaptic weight values determination. We consider 2 applica-
tions, i.e., character recognition and edge detection, to demonstrate the validity of the
synaptic weights training methodology and the suitability of the proposed SNN architec-
ture for practical utilization. In each case, we evaluate the reaction of the reconfigured
graphene-based platform by means of SPICE simulations.

In Chapter 7, we conclude the thesis and discuss future research directions.





2
GRAPHENE STRUCTURES

ELECTRON TRANSPORT MODEL

Hysteretic behavior has been experimentally observed in graphene-based structures and has
a major influence on graphene surface potential and gate field modulation ability. Thus,
a graphene electronic transport modelling methodology, which incorporates hysteresis ef-
fects is crucial in order to properly assess gated-controlled graphene structures response and
performance. To this end, we propose an atomistic-level electronic transport model, which
is non restricted to rectangular graphene geometries and captures hysteretic effects caused
by interface charge trapping/detrapping phenomena. We apply the model on a rectangu-
lar graphene shape and validate our results against experimentally measured drain current
vs. top gate voltage hysteresis curves. Moreover, to demonstrate model’s versatility we con-
sider two non-rectangular Graphene NanoRibbons (GNRs) and investigate their hysteresis
behaviour. Our experiments indicate good agreement between simulated and measured re-
sults, which qualifies the model appropriate for traps-aware evaluation of the conduction
of graphene-based devices and circuits.

The content of this chapter is based on the following paper:

H. Wang, N. Cucu Laurenciu, Y. Jiang, and S.D. Cotofana, “Atomistic-level Hysteresis-aware Graphene Struc-
tures Electron Transport Model”, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5,
2019.
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2.1. INTRODUCTION
Hysteretic behavior in the transfer characteristics (drain current with respect to gate volt-
age) is frequently encountered [81], [104], [105], [106] for graphene-based structures, which
can be ascribed to, e.g., charge injection into trap sites situated at the interface between
the graphene sheet and the gate dielectric layer. Such hysteretic behavior changes the
graphene surface potential and affects the gate field modulation ability. Thus, a theo-
retical treatment of the electronic transport properties incorporating hysteresis effects in
the context of experimental measured data, benefits the investigation and a deeper un-
derstanding level of graphene gated structures operation. Up to date, there are very few
models able to evaluate graphene’s conduction while taking into account interface traps
caused hysteresis. Moreover they are restricted to rectangular graphene shapes and rely on
a high level transport modelling, e.g., [106], [100], [107], which provides limited accuracy.
The preponderant part of previous work is focused either on hysteresis analysis based on
in-field measured data [104], [108], or on hysteresis modelling relying on a rather large
amount of graphene and trap related measurements [109], [110].

In view of the previous discussion and because non-rectangular graphene topologies
appear to have interesting potential [111], [112] we propose an atomistic-level model which
can simulate the electronic transport properties of graphene-based structures while tak-
ing into account the hysteretic effects caused by charge traps situated at the interface be-
tween graphene and the oxide layer. Our model is able to simulate configurations with
different graphene geometries (e.g., rectangular or non-rectangular) and contact topolo-
gies (e.g., gate width and position relative to the source/drain contacts, multiple gates).
We use the Tight Binding (TB) Hamiltonian to model the system, the Non-Equilibrium
Green Function (NEGF) and Landauer-Büttiker formalism to model the transport prop-
erties, and a 3D Poisson solver to compute the graphene potential self-consistently. The
effects of the interface charge traps are reflected as a shift of the top gate voltage, which we
compute by relying on solely two trap profile related parameters: the trapping/detrapping
time constant and the density of interfacial traps. The two traps parameters are typically
extracted from in-field measurement data. To validate our model, we consider the top-
gated graphene FET in [113], which we subject to similar set-up conditions and simulate
with the proposed methodology. Our experiments indicate that the drain current versus
gate voltage characteristics obtained by means of simulation are in good agreement with
the reference counterparts reported in [113]. To demonstrate the versatility of our ap-
proach we further investigate the hysteretic behavior of two non-rectangular GNR struc-
tures with geometric properties that enable a wider energy bandgap, which benefits the
"ON"/"OFF" current and power ratio, while subjected to similar trapping conditions.

The remaining of the chapter is structured as follows: Section 2.2 is devoted to the de-
scription of the proposed model. Section 2.3 entails the experimental validation results,
and finally, Section 2.4 concludes the chapter.

2.2. HYSTERESIS MODEL FORMALISM
In this chapter we deal with the following problem statement: Given a graphene-based
structure with a specified stack of materials, graphene geometry (which can also be non-
rectangular), and interface traps profile (specified by, e.g., trapping/detrapping time con-
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Figure 2.1: Generic Graphene-based Device Structure.

stant, and interface traps capacitance or density of interface states), derive its electronic
properties (e.g., current, conductance), while taking into account the effects - degraded
graphene surface potential, hysteretic behavior of the current - of near-interfacial defects.
To this end, we present subsequently the underlying graphene-based structure, followed
by the simulation model of the electronic transport properties, while accounting for trap-
caused hysteresis.

Figure 2.1 presents a schematic cross-sectional view of a typical graphene-based struc-
ture that can be utilized as basic circuit building block. The channel consists of monolayer
graphene on top of an insulating layer, with a doped substrate serving as backgate. The
current flow in the graphene channel is induced by applying a bias voltage (i.e., Vd −Vs )
between the two end-point contacts (source and drain) situated on top of the graphene
sheet, and is modulated by an input voltage (i.e., Vg ) applied via the top gate.

For modelling the graphene electronic transport, we make use of the atomistic Tight-
Binding (TB) approach to represent the system Hamiltonian, the Non-Equilibrium Green
Function (NEGF) quantum transport model for solving the Schrödinger equation coupled
with the three-dimensional (3D) Poisson equation in a self-consistent manner, and the
Landauer-Büttiker formalism for deriving the graphene current [111], [102].

Specifically, the graphene is described by a Hamiltonian matrix H = H0+U , which mod-
els the interactions between neighbor carbon atoms (via H0) and incorporates all internal
and external potentials (e.g., top and back gate voltages) via U .

H0 =
∑
i , j

ti , j |i 〉〈 j | , (2.1)

where ti , j =
{
τ, if atoms i and j are adjacent

0, otherwise.
(2.2)

In our simulation we account for first nearest-neighbor (1NN) interactions, with hop-
ping energy between atoms τ=−2.7eV [102]. The potential distribution matrix U is deter-
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mined self-consistently as the solution of the 3D Poisson equation

∇· [ε(r) ∇U (r)] =−ρ(r)

ε0
, (2.3)

where r = xx̂+y ŷ+zẑ is a position vector in space, ρ is the net charge density distribution,
ε0 is the vacuum permittivity, and ε(r) is the dielectric permittivity of the materials at po-
sition r. The Poisson equation is numerically solved by making use of the finite difference
method [114].

Along the transport direction, on the graphene channel two sides, reside the drain and
source contacts with different electrochemical potentials q ·Vs , and q ·Vd , which sustain
the conduction. The interactions between the two contacts and the graphene channel are
modelled via the contact self-energy matrices Σ1 and Σ2, respectively. Having computed
H and Σ1,2, the transmission function T (E), which models the probability of one electron
being transmitted between the source and the drain contacts, is derived as a function of
energy as:

T (E) = Trace
[
Γ1 GR Γ2 G†

R

]
, (2.4)

where
GR (E) = [E I −H −Σ1 −Σ2]−1, (2.5)

Γ1,2 = i [Σ1,2 −Σ†
1,2]. (2.6)

The current then writes:

I = q

h

∫ +∞

−∞
T (E) · ( f0(E −µ1)− f0(E −µ2)

)
dE , (2.7)

where f0(E) denotes the Fermi-Dirac distribution function at temperature T , andµ1,2 rep-
resent the source and drain contacts electrochemical potential.

As a graphene structure with a few thousand atoms translates to a Hamiltonian with size
in the order of 106, in order to reduce the GR high computational complexity, we exploit on
one hand the block tri-diagonal structure of H for the calculation of matrix inversion, and
on the other hand the fact that only a single block from GR is needed for the computation
of T (E), as exemplified in Equation (2.8) for a very small graphene divided into 3 columns
along the transport direction, with each column containing N atoms.

Trace
[
Γ1 GR Γ2 G†

R

]
= Trace

γ1 0 0
0 0 0
0 0 0

∗ ∗ }
∗ ∗ ∗
∗ ∗ ∗


0 0 0

0 0 0
0 0 γ2

 ∗ ∗ ∗
∗ ∗ ∗
}† ∗ ∗

= Trace

� ∗ ∗
0 0 0
0 0 0


= Trace(�) . (2.8)

The ∗ blocks denote non-zero blocks which are irrelevant for the trace computation.
For deriving the GR block }, we rely on a computationally efficient method [115], which
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Figure 2.2: Equivalent Capacitive Circuit (a) without Interface Traps, and (b) with Interface
Traps.

operates solely on blocks (e.g., size N ×N in Equation (2.8)) of the original matrix, instead
of performing the full matrix inverse. Trace(�) is then derived based solely on 3 blocks
(i.e., γ1, γ2, and} blocks).

Thus far, we have presented the framework for deriving the transport properties. How-
ever, as the charge transfer to/from graphene due to near-interfacial traps will cause an
equivalent shift of the gate voltage, denoted thereafter as ∆Vg , we have to compute it and
update the potential profile U with Vg +∆Vg prior to deriving the current/conductance
characteristics.

Figure 2.2 depicts the equivalent capacitive circuit of the structure described in Figure
2.1, in the absence (a) and presence (b) of near-interfacial defects, where Ci t is the capac-
itance caused by interface traps, Cq and C ′

q are the quantum capacitances without and
with traps, respectively, and Cox is the gate oxide capacitance. In order to obtain the gate
voltage shift ∆Vg , we first compute the voltage drop across the graphene layer, Vc , in the
absence of interface traps, in a self-consistent manner using: Cq (Vc ) = q2 ·

∫ +∞

−∞
D(E) ·

(
−∂ f0(E −EF )

∂E

)
dE ,

Vc =Vg ·Cox /(Cox +Cq ).
(2.9)

where D(E) denotes the density of states and EF = Vc · q is the graphene Fermi energy
[105]. Once Cq and Vc are computed, Qq is derived as Qq = Vc ·Cq . As concerns the in-
terface traps charge, Qi t , it is computed as a fraction α of the net charge in graphene Qq ,
while taking into account the gate voltage sweep rate via current time moment t and the
trapping/detrapping time constant τtr ap :

Qi t =α ·Qq ·e
− t
τtr ap . (2.10)

In the presence of traps (Figure 2.2 b)), since Qox =Qi t +Qq , ∆Vc follows from:

∆Vc =Vg −Vc − (Qi t +Qq )/Cox . (2.11)
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Figure 2.3: IDS vs. VG for Proposed Model.

Based on Qi t = Ci t · (Vc +∆Vc ) and Equation (2.11), the value of α as a function of the
interface traps capacitance Ci t , becomes:

α(Ci t ) = Ci t · (Vg Cox −Qq )

Qq · (Ci t +Cox )
. (2.12)

Given that the interface traps capacitance Ci t (or the density of charge traps) is known
and typically extracted from in-field, e.g., capacitance-voltage (C-V) measurements [109],
[113], [116], ∆Vc translates to a variation of the gate voltage ∆Vg equal to:

∆Vg = (Vc +∆Vc ) · Cox +Ci t +Cq

Cox
−Vg , (2.13)

which completes our model.

2.3. SIMULATION RESULTS
To ascertain the validity of proposed hysteresis-aware model, we consider the top-gated
Graphene FET (GFET) structure in [113], similar the one depicted Figure 2.1.

The interface traps profile is characterized by a trapping/detrapping time constant of
100 ms and an interface state density Di t = 1.875·1012 cm−2(eV)−1 [113]. Based on Di t , the
interface traps capacitance Ci t is then obtained as Ci t = q2 ·Di t . In the simulation we bias
the GFET at 0.1 V and linearly sweep the top gate voltage Vg from −10 V to 10 V, with a rate
of 0.1 Vms−1 to mimic the measurement conditions reported in [113]. Based on this setup,
we construct the GFET system Hamiltonian and first compute the density of states D(E)
by using the NEGF-Poisson framework described in Section 2.2. The shift of the top gate
voltage ∆Vg is then derived. NEGF-Poisson is run to calculate the new graphene potential
profile U with the updated gate voltage Vg +∆Vg . Finally, the drain current is obtained.
Figure 2.3 presents the drain current-gate voltage characteristic in the presence of traps,
obtained with the proposed model while the reference hysteresis curves from [113] are
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Figure 2.4: IDS vs. VG for Reference Model [113].

Figure 2.5: Non-rectangular GNR Shape #1.

depicted in Figure 2.4. The Figures clearly indicate that the simulation results are in good
agreement with the reference data (i.e., we obtain a shift in Fermi level ∆VDi r ac = 2.2 V vs.
2.07 V in experimental measurements), which confirms the correctness of the proposed
model.

Contrary to conventional high-level hysteresis-based approaches, the proposed model
is able to simulate structures with different graphene geometries and contacts topologies.
To demonstrate this we consider two non-rectangular GNR channel shapes, illustrated
in Figure 2.5 and Figure 2.6, respectively, which trapezoidal shape can potentially open
a wider energy bandgap. Both GNRs have a length of 5 nm and a width of 3 nm. We as-
sume a density of interface traps Di t = 2.5 · 10−12 cm−2(eV)−1 and trapping/detrapping
time constant τtr ap = 70 ms, and subject the GNRs to a bias Vd −Vs = 0.1 V. As we would
like to investigate the non-rectangular shapes current behaviour in the presence of inter-
face traps, we change the top gate voltage in increments of 100 mV/ms, in a range which
might be of potential interest when using such shapes for building, e.g., logic circuits, case
in which negative voltages are of little use while smaller positive ones are. To this end and
in order to investigate different voltage ranges we choose a top gate voltage sweep range
of 0.7 V to 1.6 V, and of 1.2 V to 2.8 V, for the non-rectangular GNR #1 and #2, respectively.
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Figure 2.6: Non-rectangular GNR Shape #2.
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Figure 2.7: Non-rectangular GNR #1 I −V Transfer Curves.

We note that the curves can be shifted along Ox axis by back-gate bias, which allows for
the investigation of other input voltage ranges.

Figure 2.7 graphically illustrates the drain current vs. top gate voltage transfer curve for
the non-rectangular GNR shape #1. To gain some insight into the interface traps effect,
we note that the gate voltage corresponding to the minimum current value experiences
a voltage shift of 0.3 V in the presence of interface traps. Thus, without traps, the drain
current estimation may suffer a loss of accuracy, which can be regarded proportional to
the Vg magnitude shift corresponding to the minimum current point in the figure.

The drain current for the non-rectangular GNR #2 is depicted in Figure 2.8. The rather
different hysteresis loops relative to the conventional ones (around the Dirac point) can
be attributed to the heavy influence of GNR dimension and geometry on its conductance
behavior. We observe that the hysteresis minimum points (and maximum ones) - between
increasing curve and decreasing one - shift with 0.19 V (and with 0.22 V). If the traps are
ignored, a small shift of 200 mV, can translate into a current estimation error of up to 2
orders of magnitude. We note that the ability to capture such phenomena is of great im-
portance when designing low-frequency circuits (where the hysteresis effects are more
pronounced), e.g., for neuromorphic computing, which due to graphene’s biocompatibil-
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Figure 2.8: Non-rectangular GNR #2 I −V Transfer Curves.

ity could be of great research interest.

2.4. CONCLUSIONS
In this chapter, we proposed an atomistic level simulation model for graphene electronic
transport properties able to capture hysteresis effects caused by near-interfacial charge
traps. We demonstrated the capability of our model to accurately capture the traps-caused
hysteresis effects by comparing its outcome with actual experimental measurements per-
formed on a Graphene FET device. As opposed to state of the art counterparts which are
only applicable for rectangular topology the proposed approach can simulate hysteresis
effects on structures with various graphene geometries and we exemplified this for two
non-rectangular Graphene Nanoribbons. Our experiments suggested that the model can
be utilized for novel graphene-based structures conduction properties investigations in
the presence of traps, which require an accuracy degree closer to physical level not achiev-
able by other state-of-the-art hysteresis models.
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GRAPHENE-BASED SYNAPSES WITH

VERSATILE PLASTICITY

In this chapter we investigate the feasibility of graphene-based synapses to emulate various
synaptic plasticity behaviors and look into their potential area and energy consumption for
large-scale implementations. We propose generic one- and two- top gates graphene-based
synapse structures, which can emulate the fundamental synaptic functionalities, i.e.,Spike-
Timing-Dependent Plasticity (STDP) and Long-Term Plasticity. Additionally, they are pro-
gramable by means of back-gate bias voltage and the same device can exhibit both Long-
Term Potentiation and Long-Term Depression. Our simulations indicate that the one-top-
gate synapse can achieve the plasticity change of 100% provided by natural synapses. The
two-top-gates synapse exhibits STDP with spike duration dependent potentiation/depression
time scale while achieving a maximum of 30% synaptic weight change and potentiation/depression
time scale range from [−1.5ms,1.1ms] to [−32.2ms,24.1ms]. Furthermore, we explore the
effect of two-top-gates synapse at the SNN level by performing NEST based simulations. Our
experiments indicate a strong corelation between the synaptic plasticity type, i.e., Hebbian
and anti-Hebbian, and the number of firing events in the network and that the number of
SNN output firing events monotonously varies with respect to the input spikes frequency.
For Hebbian STDP and a spike duration of 20 ms we obtain an SNN behavior similar with
the one provided by the same SNN with biological STDP. Given that the proposed graphene-
based synapses have small footprints (30 nm2), operate in the hundred millivolt range, and
are versatile from the synaptic behavior point of view, we strongly believe that they can be
outstanding candidates for implementing scalable energy efficient neuromorphic systems.

The content of this chapter is based on the following papers:

H. Wang, N. Cucu Laurenciu, Y. Jiang, and S.D. Cotofana, “Graphene Nanoribbon-Based Synapses with Versa-
tile Plasticity”, IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 1-6, 2019.

H. Wang, N. Cucu Laurenciu, Y. Jiang, and S.D. Cotofana, “Graphene-based Artificial Synapses with Tunable
Plasticity”, ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 17, pp. 1-21, 2021.
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3.1. INTRODUCTION

The synapse, which is the most abundant components in neural systems, is a junction
connecting two neurons and sustaining the information transmission between them. The
synaptic transmission efficiency is variable and appears as the potentiation or depres-
sion of the transmitted signals[117, 118]. The synaptic transmission efficiency strength-
ening or weakening is known as synaptic plasticity, which is believed to be the basis of
learning and memory in human brain. From synaptic behavior point of view, an artificial
synapse ought to implement two basic functionalities: (i) Spike-Timing-Dependent Plas-
ticity (STDP), which changes the transmission efficiency depending on the relative timing
difference between the pre-synaptic and post-synaptic spikes [119], and (ii) Long-Term
Plasticity (LTP) in its two flavours, i.e., Long-Term Potentiation (LTP) and Long-Term De-
pression (LTD), which is a persistent synaptic transmission efficiency change [120].

Since there are trillions of synapses in the nervous system that are essential for sup-
porting the human brain complex functionality, designing and implementing artificial
synapses for any large-scale biological-inspired computation systems received massive
attention. In most state-of-the-art neuromorphic systems, the artificial synapses are im-
plemented with complex CMOS circuitry [18, 22, 121, 122]. However, as CMOS scaling is
approaching atomic feature size, which results in high power consumption and low re-
liability, CMOS-based synapses bring limitations to scalability, energy efficiency, and in-
tegration density of large-scale neuromorphic systems. Besides, CMOS-based artificial
synapses cannot efficiently mimic the analog synaptic behavior. Recently, emerging resis-
tive switching memory devices [66] attracted interest and have been used to implement
artificial synapses [34, 35, 72, 123]. The obtained artificial synapses exhibit outstanding
properties, e.g., inherently analog behavior, simple structure (one single or a few resis-
tive switching memory devices for one synapse), and good scalability potential. How-
ever, they suffer from temporal and spatial variability of the resistive states and undesired
stochastic behavior, which may cause neuromprphic system instability. They also need to
be operated at relatively high voltage, which precludes the implementation of energy ef-
ficient computation systems. Previous work on graphene-based synapses demonstrated
that graphene-based devices can emulate synaptic plasticity. In [100], the authors demon-
strated various synaptic plasticities, however, their proposed artificial synapses operate
with quite large back-gate voltage (20 V, 40 V) and input signals (2 V), which makes them
power hungry and inappropriate for energy effective implementations. Moreover, the ob-
tained synaptic transmission efficiency change is extremely small (< 0.01%) and only re-
stricted synaptic plasticity types are provided. In [101], a graphene-based synapse is pro-
posed that relies on changing the Li ion concentration between graphene layers to control
the device conductance. This synapse endows low-power switching ability, low variability,
and is potentially suitable for large-scale implementations. However the reported conduc-
tance change is small (< 2%) and the considered spikes timing difference around 1000 ms
is significantly different from the one observed in natural synapses (≈ 80ms).

In this chapter we propose two generic graphene-based artificial synapse structures,
which are implemented by graphene-based devices with one top-gate and with two top-
gates, respectively. Both structures consist of a single-layer Graphene Nanoribbon (GNR)
on top of an insulating material with a doped substrate serving as back-gate. The cur-
rent flow in the GNR channel is induced by applying a drain-to-source bias voltage. The
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synaptic transmission efficiency, which is reflected as the conductance of the proposed
synapses, can be modulated by means of external voltages, e.g., via the top-gate(s) and
back-gate. To mimic the synaptic behavior, we consider two fundamental synapse func-
tionalities, i.e., STDP and Long-Term Plasticity. By carving the GNR geometries and con-
tact topologies of the proposed structures, we successfully obtain various synaptic plas-
ticity including balanced Hebbian STDP, potentiation biased Hebbian STDP, potentia-
tion biased anti-Hebbian STDP, Long-Term Potentiation (LTP),and Long-Term Depres-
sion (LTD) for both structures and additionally obtain balanced anti-Hebbian STDP for
two-top-gates synapse. We also demonstrate that the same device can emulate both LTP
and LTD by simply changing the back-gate voltage. The GNR device is biased at 0.2 V
and operates on 110 mV inputs, which is consistent with measured biological synapses
data and makes it operation compatible with natural neural matter. For the one-top-gate
synapse,the simulations indicate that the plasticity change of 100% provided by natural
synapses can be achieved. Besides, by applying input spikes with different spike duration,
the two-top-gates synapses can emulate STDP with varying potentiation/depression time
scale without affecting the obtained amplitude of the synaptic transmission efficiency
change. We obtained a maximum 30% synaptic weight change and potentiation/depression
time scale range from [−1.5ms,1.1ms] to [−32.2ms,24.1ms]. Furthermore, we explore the
effect of two-top-gates synapse at the Spiking Neural Network (SNN) level by perform-
ing NEST [124] based simulations of a small SNN implemented with 5 leaky-integrate-
and-fire neurons connected via GNR-based synapses. Our experiments indicated a strong
connection between the synaptic plasticity type, i.e., Hebbian and anti-Hebbian, and the
number of firing events in the network. Moreover the number of SNN output firing events
monotonously varies with respect to the input spikes frequency. For graphene-based Heb-
bian STDP and spike duration of 20 ms we obtained an SNN behavior relatively similar
with the one provided by the SNN with biological STDP.

The proposed design and synaptic plasticity emulation methodology is generic and our
simulation results suggest that by changing the GNR shape and contact topologies vari-
ous synaptic plasticities can be obtained, potentially beyond the 6 reported cases. Given
that the proposed graphene-based synapses have small footprints (30 nm2), operate in
the hundred millivolt range, and are versatile from the synaptic behavior point of view,
we strongly believe that they can be outstanding candidates for implementing large-scale
energy efficient neuromorphic systems.

The remaining of this chapter is structured as follows: Section 3.2 presents the un-
derlying concepts about synapse and synaptic plasticity, and introduces the proposed
graphene-based synapse structures. In Section 3.3 we describe the simulation model for
graphene electronic transport properties calculation, and the simulation setup and em-
ployed methodology. In Section 3.4 and Section 3.5 we present the obtained simulation
results, investigate the impact of different spike duration on synaptic plasticity, and ex-
plore the effect of synaptic plasticity on neural networks behavior. Section 3.6 concludes
the chapter.
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Figure 3.1: Synapse-based Signal Transmission.

3.2. SYNAPTIC PLASTICITY AND GRAPHENE SYNAPSE
In this section we present the fundamental concepts underlying synaptic plasticity and
then introduce the proposed generic graphene-based synapses.

3.2.1. SYNAPSE AND SYNAPTIC PLASTICITY

Synapse is the most abundant component in human brain, which serves as the junction
connecting two neurons. In order to explain how a synapse affects the information trans-
mission between neurons, a small Neural Network (NN) is depicted in Figure 3.1. This NN
consists of three spiking neurons connected via two synapses. The post-synaptic neuron
Ni collects signals (pre-synaptic spikes S j and Sk ) from pre-synaptic neurons N j and Nk ,
and when the cumulated signals exceed a certain firing threshold, neuron Ni generates an
output signal (post-synaptic spike Si ), which transmits through all its terminations. From
the synapse functionality point of view (consider the synapse connecting neurons N j and
Ni ), there are: (i) two input signals: pre-synaptic spike S j , which is output spike of neuron
N j and post-synaptic spike Si , which is the output spike of neuron Ni , and (ii) one output
signal Sout

j , which will be transmitted to neuron Ni . The synaptic transmission efficiency

(synaptic weight) is a function of the two input spikes, denoted as W j i = f (S j ,Si ). In gen-
eral, the transmission efficiency is plastic and can either strengthen or weaken the signals
transmitted via the synapse. This property is known as synaptic plasticity which is funda-
mental synaptic functionality and is believed to be the basis of learning and memory in
human brain. There are two types of basic synaptic plasticity: Spike-Timing-Dependent
Plasticity (STDP) and Long-Term Plasticity (including Long-Term Potentiation (LTP) and
Long-Term Depression (LTD)). STDP is a widely used Hebbian synaptic learning rule [125],
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Figure 3.2: Biological Synapse STDP Measured Data [126].

which suggests that synaptic weight changes according to the relative timing difference
between pre-synaptic spike and post-synaptic spike. When the pre-synaptic spike arrives
at the synapse shortly before the post-synaptic spike, the synaptic weight increases, and
this may lead to a persistent efficiency increase (LTP); otherwise, the synaptic weight de-
creases, and this may lead to a persistent efficiency decrease (LTD). When the two spikes
are very close in time, i.e., very small timing difference, a large synaptic efficiency change
occurs. Figure 3.2 depicts a standard STDP behavior based on biological measured data
[126]. ∆W denotes the synaptic weight change and ∆t denotes the spike timing differ-
ence. We denote by tpr e and tpost , the arrival time of pre-synaptic spike and post-synaptic
spike, respectively. Thus the spike timing difference is calculated as∆t = tpost − tpr e . Even
though the biological synaptic weight change behavior illustrated in Figure 3.2 (a) exhibits
stochasticity, a widely accepted STDP interpolating model is as follows:

∆W (∆t ) =
{

A+ ·exp(−∆t/τ+), for ∆t > 0

−A− ·exp(∆t/τ−), for ∆t < 0,
(3.1)

where A+ and A− are parameters affecting the amplitude of synaptic weight change, and
τ+ and τ− are time constants reflecting the time scale in which the potentiation and de-
pression occurs.

3.2.2. GRAPHENE-BASED GENERIC SYNAPSE STRUCTURES

The proposed one-top-gate and two-top-gates graphene-based synapse generic struc-
tures are illustrated in Figure 3.3 and Figure 3.4 (a), respectively. They both consist of a
single-layer Graphene Nanoribbon (GNR) located on top of an insulating material and a
doped substrate serves as back-gate. When a drain-to-source bias voltage Vd −Vs is ap-
plied, the GNR constitutes a conduction channel. By shaping the GNR sheet geometry and
contact topologies as well as by applying external voltages (e.g., via top-gate(s) and back-
gate), the GNR conductance G can be modulated. Figure 3.4 (b) depicts a conductance
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Figure 3.4: (a) Two-top-gates Graphene-based Synapse Structure and (b) its Conductance
Map.

map (conductance vs. applied voltage) example of the proposed two-top-gates graphene-
based synapse generic structure.

From the synaptic behavior point of view, the top-gate(s) is used for applying synaptic
input spikes, e.g., for two-top-gates synapse, pre-synaptic spike is applied to top-gate-1
and post-synaptic spike to top-gate-2, corresponding to Vg 1 and Vg 2 in Figure 3.4 (b), re-
spectively. The synaptic plasticity is reflected by the induced GNR conductance change,
and the output spike current is represented by the drain-to-source current, which corre-
sponds to the synaptic output spike Sout

j in Figure 3.1.

A key element in our proposal is the fact that, as experimentally observed, graphene-
based device inherently exhibits interface traps [81], which are usually caused by defects
in the top-gate oxide, and charges can be trapped from graphene to the interface or re-
leased. These trapping and deptrapping phenomena affect the top-gates conductance
modulation ability, and as such, when applying an input spike the graphene-based device
conductance and output current will depend on the cumulated previous activities in the
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artificial synapse. This dependence can be naturally utilized to implement time varying
synaptic plasticity, e.g., STDP, LTP, and LTD. By carving the GNR geometry, the synapse
conductance can be modulated such that it reflects a certain functionality. Thus, for every
GNR topology a different conductance map can be obtained. As STDP weight change is
reflected by the change of the device conductance, with different conductance maps we
can have different STDP types. Furthermore, the GNR topology affects as well the trapping
mechanism, which is fundamental in inducing plasticity.

In Section 3.5 we demonstrate that by: (i) Shaping the GNR into non-rectangular forms
as well as changing the contact topologies, various synaptic plasticities can be obtained,
which is not the case for previously proposed rectangular graphene-based synapses [100]
(ii) Changing the back-gate voltage, we can emulate both excitatory and inhibitory synap-
tic behavior with the same graphene-based device, and (iii) Applying input spikes with
different duration, the graphene-based synapse can emulate STDP with varying potentia-
tion/depression time scale without affecting the amplitude of synaptic weight change.

3.3. SIMULATION FRAMEWORK
In this section we briefly present the simulation model for computing electronic transport
properties of the proposed graphene-based synapses, and describe the simulation setups
and employed methodology to emulate the desired synaptic plasticity (the GNR conduc-
tance change).

3.3.1. GNR ELECTRONIC TRANSPORT SIMULATION MODEL

In order to compute the GNR electronic transport properties, we make use of the atomistic-
level hysteresis-aware graphene structures simulation model presented in Chapter 2. Specif-
ically, we utilize the Tight-Binding approach to represent the system Hamiltonian, the
Non-Equilibrium Green Function (NEGF) quantum transport model to solve the Schrödinger
equation, and the Landauer-Büttiker formalism to derive the GNR current and conduc-
tance [102, 127]. The GNR potential distribution profile is obtained by solving a 3D Pois-
son equation self-consistently. Additionally, by calculating the equivalent voltage shift in-
duced by interface trapped charges we account for the trapping/detrapping phenomena
influence on the GNR device operation [128].

3.3.2. SIMULATION SETUP AND METHODOLOGY FOR ONE-TOP-GATE

SYNAPSE

In order to apply the input spikes to the one-top-gate graphene synapse, we employ a
single-input scheme, as exemplified in Figure 3.5. The signal applied as input to the
synapse is computed as a superposition of the pre- and post-synaptic spikes (i.e., the volt-
age difference between the two spikes). We define Toverlap as the arrival time of the sec-
ondly arriving spike. To perform biologically plausible simulations, we considered data
consistent with measured data from brain synapses: −50 mV to 50 mV pre- and post-
synaptic spikes voltage range, and −60 ms to 60 ms ∆t range (which covers the general
time range for biological LTP and LTD) [129], [126].

As concerns the GNR for the one-top-gate synapse, we define its topology in Figure 3.6.
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Figure 3.5: One-top-gate Synapse Single Input Spike Scheme.
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Figure 3.6: GNR Dimensions and Contacts Topology for One-top-gate Synapse.

In particular, W and L represent the GNR width and length, PVg signifies the distance
between the top-gate and the drain contact, and WVg denotes the width of the top-gate
contact. In our simulation, we considered multiple non-rectangular GNRs with differ-
ent shapes but the same overall W = 39a and L = 28

p
3a. For the top-gate contact we

set PVg = 8
p

3a and WVg = 6
p

3a, where a is 0.142 nm. Concerning the traps induced

hysteresis, we assume a density of interface traps of 2.5× 1012cm−2(eV )−1, and we set a
trapping/detrapping time constant of 20 ms [108, 113].

Subsequently, we present the overall design and simulation methodology. For a desired
plasticity behavior, we first determine a potentially appropriate GNR geometry and drain-
to-source and back-gate voltages. Subsequently, we subject the graphene synapse to a
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Figure 3.7: Spikes Timing Difference Indication for Two-top-gates Synapse.

train of spikes applied via the top-gate, one spike for each ∆t in the considered range.
Corresponding to each input spike, we then measured the synaptic weight change ∆W
(the difference between the GNR conductance values at two consecutive time moments,
i.e., Toverlap and the immediately previous time moment), and asses its compliance with
the desired∆W (∆t ) plasticity curve. If results are not according with the desired plasticity
we change the GNR geometry and bias voltages.

3.3.3. SIMULATION SETUP AND METHODOLOGY FOR TWO-TOP-GATES

SYNAPSE

In order to emulate STDP behaviors with the two-top-gates synapse, the pre-synaptic
spike and post-synaptic spike are applied to Vg 1 and Vg 2, respectively. As exemplified
in Figure 3.7, when the pre-synaptic spike arrives before the post-synaptic spike, the spike
timing difference ∆t > 0, and ∆t < 0 when they arrive in inverse order. We define Tfirst

as the arrival time of the first arriving spike and Tsecond as the arrival time of the second
arriving spike. We assume that the applied input spikes lay into 70 mV to 180 mV voltage
range and a spike duration of 2 ms. When no spike arrives the two top-gates are subjected
to 70 mV voltage, mimicking the rest potential in biological spike trains. Thus for different
spikes timing difference, the voltages applied on two top-gates varies at specific time mo-
ment, causing a time varying conductance change. Additionally, the long-term plasticity
behavior is naturally captured by charge trapping/detrapping phenomena.

In Figure 3.8, the GNR dimension and contacts topologies are graphically defined for the
two-top-gates synapse. Specifically, W and L represent the GNR sheet width and length,
PVg 1 indicates the distance between top-gate-1 and the drain contact, PVg 2 indicates the
the distance between top-gate-2 and the source contact, while W Vg 1 and W Vg 2 signify
the width of top-gate-1 and top-gate-2, respectively. Note that a = 0.142nm denotes the
distance between two adjacent carbon atoms. Concerning the traps caused hysteresis, we
assume a density of interface traps 2.363×1013cm−2(eV )−1, and the trapping/detrapping
time constant is set to 1 ms [108, 113].

To identify a GNR topology able to provide support for a targeted plasticity we perform a
Design Space Exploration (DSE) by changing GNR dimension, shape, widths and positions
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Figure 3.8: GNR Dimensions and Contacts Topology for Two-top-gates Synapse.

of the two top-gates, and back-gate voltage. For each relevant ∆t value, we apply a pair of
spike trains (pre-synaptic spike and post-synaptic spike) to the two top-gates and measure
the synaptic weight change ∆W (the difference between GNR conductance values at time
moments Tfirst and Tsecond, where Tsecond −Tfirst = |∆t | as illustrated in Figure 3.7). We
assess the resemblance of the obtained synaptic weight change with the desired ∆W (∆t )
plasticity and if this is not satisfactory we continue DSE by changing the GNR topology
parameters.

3.4. ONE-TOP-GATE GRAPHENE-BASED SYNAPSE EVALUATION

To evaluate the capabilities of proposed one-top-gate graphene synapse, we target 3 com-
mon plasticity types underlying balanced and potentiation dominated learning [130], [131]:
Hebbian STDP with balanced LTD and LTP (Figure 3.9 (a)), LTP-biased Hebbian STDP (Fig-
ure 3.9 (d)), and LTP-biased Anti-Hebbian STDP (Figure 3.9 (g)).

Figure 3.9 (b) depicts the GNR synapse shape we obtained for the Hebbian STDP with
balanced LTD and LTP scenario, biased at Vd =0.2 V and back-gate voltage Vback =0.2 V.
The simulated synaptic weight change (conductance change) (Figure 3.9 (c)) indicates a
good resemblance with the Hebbian STDP with balanced LTD and LTP weight change
trend. In biological models, there is a certain randomness in the synapse reaction. We seek
a synaptic reaction tendency closer to the plasticity models. When fitting the simulated
conductance change with the canonical model in Equation 3.1, we obtained τ+ =23 ms
and τ− =37 ms. Since for a biologically plausible input, we obtain an amplitude of the
conductance change around 100%, which is consistent with biological synapse measured
data shown in Figure 3.2, the proposed graphene synapse can enable potentially biologi-
cally plausible implementations (artificial synapses which can be interfaced with biologi-
cal neurons in the context of, e.g., neural prosthetics).

Figure 3.9 (e) and (h) illustrate the obtained GNR synapse shapes for LTP-biased Heb-
bian STDP and LTP-biased anti-Hebbian STDP, respectively. The drain voltage Vd is set
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Figure 3.9: GNR Synapse Shapes and Corresponding STDP.

to 0.1 V for both shapes, while the applied back-gate voltage is 0 V and −0.5 V, respec-
tively. The simulated synaptic weight change (conductance change) in Figure 3.9 (f) and
(i) is temporally asymmetric, being dominated by (LTP) potentiation for both graphene
synapses. When fitted with the model in Equation 3.1, we obtained τ+ =21 ms and τ− =10 ms
for the LTP-biased Hebbian synapse, and τ+ =19 ms and τ− =15 ms for the LTP-biased
Anti-Hebbian synapse.

A synapse can either exhibit excitatory behavior (i.e., synaptic weight potentiation when
the pre-synaptic spike arrives before post-synaptic spike) or inhibitory behavior (i.e., synap-
tic weight depression when the pre-synaptic spike arrives before post-synaptic spike). Tra-
ditionally, 2 artificial synapses are employed, but we are able to obtain both excitatory and
inhibitory behaviors with a single synapse, which is beneficial from the area and energy
standpoints for large-scale integrations. For instance, the GNR synapse shape illustrated
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Figure 3.11: Output Spike Current for Long-term Plasticity.

in Figure 3.9 (b) exhibits an excitatory behavior but by simply changing the biasing gate
voltage Vback from 0.2 V to 0.5 V, while the other GNR applied voltages (Vd and Vg ) are
identical the inhibitory counterpart is obtained, as depicted in Figure 3.10.

Apart from STDP, Long-Term Plasticity is a fundamental synaptic functionality, domi-
nant for how the brain stores information, which is obtained when applying an identical
spike consecutively. In our experiments we considered the GNR synapse shape from Fig-
ure 3.9 (h) and applied 50 mV input spikes with an intermission period between the spikes
of 1 s. For each spike, we measured the GNR drain to source current, which represents the
current of the output spike generated by the graphene synapse (e.g., Sout

j in Figure 3.1).

The long lasting potentiation and depression are successfully emulated for the consid-
ered time range with positive and negative back-gate voltage, respectively, as illustrated in
Figure 3.11.
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Table 3.1: Two-top-gates GNR synapses topologies

Plasticity Type W [a] L [a] PVg 1 [a] W Vg 1 [a] PVg 2 [a] W Vg 2 [a]

Hebbian STDP 23 25
p

3 9
p

3 3
p

3 2
p

3 6
p

3

LTP-biased
Hebbian STDP

29 30
p

3 3
p

3 3
p

3 10
p

3 3
p

3

anti-Hebbian STDP 29 30
p

3 3
p

3 6
p

3 7
p

3 6
p

3

LTP-biased
anti-Hebbian STDP

23 25
p

3 9
p

3 3
p

3 2
p

3 3
p

3

3.5. TWO-TOP-GATES GRAPHENE-BASED SYNAPSE

EVALUATION
In this section we evaluate the capability of the proposed two-top-gates graphene-based
synapses to emulate various plasticity types and investigate how input spike duration af-
fects the achieved synaptic plasticity. Finally, we explore the effect of the obtained synap-
tic plasticity on the behavior of an example spiking neural network.

3.5.1. SPIKE-TIMING-DEPENDENT PLASTICITY AND LONG-TERM

PLASTICITY

In order to evaluate the ability of the proposed graphene-based synapse to emulate vari-
ous plasticity types, we considered 4 different STDP types underlying balanced and poten-
tiation dominated learning [130, 131]: Hebbian STDP with balanced LTP and LTD (Figure
3.12 (a)), LTP-biased Hebbian STDP (Figure 3.12 (d)), anti-Hebbian STDP with balanced
LTP and LTD (Figure 3.13 (a)) and LTP-biased anti-Hebbian STDP (Figure 3.13 (d)). The
GNR topologies (overall GNR width and length as well as the widths and positions for two
top-gates) for the considered STDP types as determined by means of DSE are summarized
in Table 3.1, where all values are expressed in term of a = 0.142nm, which is the distance
between adjacent carbon atoms in a graphene unit cell. The GNR shapes for the 4 con-
sidered cases are depicted in Figure 3.12 (b) and (e), and Figure 3.13 (b) and (e), which
capture their actual dimensions in term of carbon atoms.

Figure 3.12 (b) depicts the obtained GNR shape for Hebbian STDP with balanced LTP
and LTD plasticity, with drain-to-source bias voltage Vd = 0.2V and back-gate voltage
Vback = 0V. The simulated synaptic weight change (conductance change) as presented
in Figure 3.12 (c) has a good resemblance with the ideal Hebbian STDP with balanced
LTD and LTP behavior trend (Figure 3.12 (a)). One can observe that the range of the ob-
tained synaptic plasticity change is around 30%. To properly evaluate the obtained synap-
tic behavior, we define the STDP potentiation and depression time scale ( t+ and t−, re-
spectively) as the spikes timing difference ∆t range in which the corresponding synaptic
weight change ∆W is significant, i.e., larger than 0.1%. Thus, when for t− < ∆t < t+ the
synaptic weight change |∆W | > 0.1%. For the simulated Hebbian STDP, we obtain a po-
tentiation time scale t+ = 2.6ms and depression time scale t− = −2.5ms, which indicates
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Figure 3.12: GNR Synapse Shapes and Obtained Plasticity Corresponds to Hebbian STDP
and LTP-biased Hebbian STDP.

that the synaptic weight change is tiny when the spikes timing difference is beyond this
range([−2.5ms,2.6ms]). We further investigate how different input spikes duration affects
the obtained STDP potentiation/depression time scale in Section 3.5.2.

Figure 3.12 (e), Figure 3.13 (b), and Figure 3.13 (e) illustrate the obtained GNR shapes
for LTP-biased Hebbian STDP, anti-Hebbian STDP with balanced LTP and LTD, and LTP-
biased anti-Hebbian STDP, respectively. In all these cases, the drain-to-source bias voltage
is Vd = 0.2V and the back-gate voltage Vback = 0V. For LTP-biased Hebbian STDP, the sim-
ulated synaptic plasticity in Figure 3.12 (f) is temporally asymmetric, and we observe that
the amplitude of synaptic weight potentiation is about 3 times larger than synaptic weight
depression, which results in a LTP-biased behavior. Compared with the amplitudes ob-
tained for Hebbian STDP with balanced LTP and LTD, the amplitudes in this case are rel-
atively smaller. For obtained anti-Hebbian STDP with balanced LTP and LTD in Figure
3.13 (c), the synaptic weight potentiation amplitude is around 2.5% while the depression
amplitude is around 1.5%, which is approximately symmetric and exhibits a good resem-
blance with the ideal behavior depicted in Figure 3.13 (a). As for the simulated LTP-biased
anti-Hebbian STDP in Figure 3.13 (f), the synaptic weight potentiation amplitude is about
30% while the depression amplitude is about 5%, thus exhibiting the obvious LTP-biased
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behavior. Note that for these 3 cases (LTP-biased Hebbian STDP, balanced anti-Hebbian
STDP and LTP-biased anti-Hebbian STDP), the obtained plasticity has similar STDP po-
tentiation/depression time scale which is around [−2ms,2ms].

With the proposed two-top-gates graphene-based synapses, we are able to obtain both
excitatory and inhibitory synaptic behaviors with the same graphene-based device by
changing the back-gate voltage. For instance, the GNR synapse shape illustrated in Fig-
ure 3.12 (b) exhibits an excitatory synaptic behavior. By simply changing the back-gate
voltage from 0 V to −0.15 V while keeping the GNR shape, contact topologies, and applied
voltages identical, the inhibitory synaptic behavior is obtained as depicted in Figure 3.14
(a). Similarly, the GNR shape depicted in Figure 3.13 (e) exhibits an inhibitory synaptic be-
havior. By simply changing the back-gate voltage from 0 V to −0.05 V, the corresponding
excitatory synaptic behavior is obtained as illustrated in Figure 3.14 (b).

To obtain Long-Term Plasticity, an identical spike is applied to the top-gate-1 consec-
utively while a constant voltage (the rest potential) is applied to top-gate-2. The applied
spikes and the voltage mimicking the rest potential are consistent with the ones used in
STDP simulations. In our experiment we considered the GNR synapse shapes from Fig-
ure 3.12 (b) and Figure 3.13 (e) and apply an input spike train consisting of identical spike
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Figure 3.14: (a) Corresponding Inhibitory Synaptic Behavior for Synapse Shape Depicted
in Figure 3.12 (b), and (b) Corresponding Excitatory Synaptic Behavior for
Synapse Shape Depicted in Figure 3.13 (e).

*10
-7

Spike number

O
u
tp

u
t 

sp
ik

e 
cu

rr
en

t 
[A

]

*10
-7

(a) (b)

Spike number

O
u
tp

u
t 

sp
ik

e 
cu

rr
en

t 
[A

]

Vback= 0V
Vback=-0.05V

0 2 4 6 8 10 12 14 16 18 20
2.9

3

3.1

3.2

3.3

3.4

3.5

2

2.1

2.2

2.3

2.4

Vback= 0V
Vback=-0.05V

*10
-8*10

-8

0 2 4 6 8 10 12 14 16 18 20
7

7.5

8

8.5

9

9.5

10

10.5

8.5

9

9.5

10

10.5

11

Figure 3.15: Output Spike Current for Long-term Plasticity. (a) Graphene-based Synapse
Illustrated in Figure 3.12 (b). (b) Graphene-based Synapse Illustrated in Figure
3.13 (e).

with inter-spike period 1 ms. For each spike, we measure the GNR drain to source cur-
rent, which represents the output spike current generated by the synapse (e.g., Sout

j in

Figure 3.1). The long term potentiation and depression are obtained by properly chang-
ing the back-gate voltage for the two GNR synapse shapes, respectively. For both GNR
synapse shapes in Figure 3.12 (b) and Figure 3.13 (b), LTP is obtained with back-gate volt-
age Vback = 0V and LTD is obtained with back-gate voltage Vback =−0.05V, as illustrated
in Figure 3.15 (a) and (b), respectively.

Our simulation results demonstrate the capabilities of the proposed artificial synapses
to emulate various types of synaptic plasticity. The design and simulation methodology
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Figure 3.16: Simulated STDP with Input Spike Duration (a) 1 ms, (b) 10 ms, and (c) 20 ms.

is generic, more synaptic plasticity types can be potentially obtained beyond the afore-
mentioned ones. The proposed graphene-based synapses have small area (max. 30 nm2)
and operate with low operating voltage (0.2 V drain-to-source bias voltage and max. 0.18 V
input spike voltage), which are desired properties for large-scale neuromorphic computa-
tion systems. To get further inside into our proposed graphene-based synapses, we inves-
tigate in the following subsection how input spikes with different spike duration affect the
obtained synaptic plasticity.

3.5.2. SPIKE-TIMING-DEPENDENT PLASTICITY TIME SCALE VARIATION

To investigate the effect of varying input spike duration on obtained STDP, we consider
the GNR synapse in Figure 3.12 (b) and apply input spike with duration of 1 ms, 10 ms, and
20 ms. For each case input spikes with the specific duration are applied to the graphene-
based synapse and the resulting plasticity are recorded. The GNR geometry, contact topolo-
gies, drain-to-source biased voltage and back-gate voltage are identical with the previous
STDP simulation. The obtained STDPs are depicted in Figure 3.16. The simulated STDP
in Figure 3.16 (a) corresponds to spike duration 1 ms. The obtained potentiation and de-
pression time scale t+ = 1.1ms and t− = −1.5ms, which is smaller than the one obtained
with a spike duration of 2 ms. We observe the amplitude of synaptic weight potentiation
and depression is around 20% and −30%, respectively, and are almost identical with the
ones obtained with a spike duration of 2 ms. The obtained STDP for 10 ms and 20 ms
spikes are illustrated in Figure 3.16 (b) and (c), respectively. In both 10 ms and 20 ms cases,
the amplitude of the synaptic weight change is around 30%, while the STDP time scale is
[−13.3ms,11.5ms] and [−32.2ms,24.1ms], respectively. The simulation results suggest
that the input spike duration can affect the obtained STDP potentiation/depression time
scale, while having little effect on the synaptic weight change amplitude.

Figure 3.17 statistically illustrates the relation between the input spike duration and ob-
tained STDP potentiation/depression time scale, when considering [1ms,2ms,5ms,10ms,15ms,20ms]
spikes. One can observe an approximately linear relation between the input spike dura-
tion and obtained STDP potentiation/depression time scale. The synaptic weight change
amplitudes in all cases are identical. Thus we conclude that by changing the input spike
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Figure 3.17: STDP Potentiation and Depression Time Scale vs. Input Spike Duration.

duration, the proposed synapse can achieve STDP with different potentiation/depression
time scale without affecting the amplitudes of synaptic weight change.

3.5.3. SPIKING NEURAL NETWORK IMPACT

To get some preliminary inside on the implication of our proposal at the higher level we
consider a small Spiking Neural Network (SNN) with GNR-based synapses and simulate
its behavior by means of the NEST simulator [124]. As illustrated in Figure 3.18 (a), this
SNN has a fully connected network topology, and consists of five leaky-integrate-and-fire
neurons connected via synapses. Since in a given neural network the spikes are alike, the
form of a single spike doesn’t carry any information, but the number and timing of spikes
matter [53], we concentrate on investigating how the proposed graphene-based synapse
affects the SNN’s firing behavior. As a thorough analysis of any synaptic plasticity influ-
ence on neural network’s behavior is out of the scope of this chapter, we restrict the inves-
tigation to the cases when the simulated SNN is constructed with the biological synapses
(as illustrated in Figure 3.2) [126] and proposed graphene-based synapses. The plasticity
model described in Equation (3.1) is utilized as standard STDP model in the NEST sim-
ulator and we specify synaptic behaviors in SNNs by fitting plasticity data (e.g., biologi-
cal measured data and simulation results with graphene-based synapses) with the STDP
model for different cases. For simplicity, we call the SNN with synaptic behavior speci-
fied by biological measured data as SNN with biological STDP, and the SNN with synaptic
behavior specified by graphene-based synapses simulation data as SNN with graphene-
based STDP (e.g., SNN with graphene-based Hebbian STDP, SNN with graphene-based
anti-Hebbian STDP). For the SNN simulation, an input spike train (with spike times sam-
pled from a Poisson distribution) with a firing frequency of 10 kHz is applied to all neurons,
and the firing events are recorded. Figure 3.18 depicts the inter-spike interval distribution
of the input spike train. Every simulation is performed with one specific synaptic behavior,
while the other settings are keep consistent. The overall simulation time is set to 500 ms.

We consider SNN with biological STDP as baseline and then perform simulations for
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Table 3.2: SNN Total Output Firing Number

Synaptic Plasticity Number[#]

STDP with biological STDP 220
Graphene-based Hebbian STDP (2 ms) 820

Graphene-based anti-Hebbian STDP (2 ms) 80
Graphene-based Hebbian STDP (1 ms) 290

Graphene-based Hebbian STDP (20 ms) 200

SNN with graphene-based Hebbian STDP (in Figure 3.12 (c)) and anti-Hebbian STDP (in
Figure 3.13 (c)), which correspond to excitatory and inhibitory synaptic behaviors, respec-
tively. Furthermore, graphene-based Hebbian STDPs obtained with different input spike
durations (e.g.,spike duration 1 ms in Figure 3.16 (a) and spike duration 20 ms in Figure
3.16 (c)) are also utilized to perform the simulation. Table 3.2 summarizes the obtained
total number of firing events for all cases. The graphene-based synaptic plasticity types
are indicated by the applied spike duration in previous GNR simulations, e.g., graphene-
based Hebbian STDP (2 ms) indicates the corresponding plasticity obtained with input
spike duration of 2 ms.

Figure 3.19 illustrates the simulation results for SNN with biological STDP. The top panel
shows a raster plot for firing events belonging to the five neurons. Each dot in the plot
indicates the occurrence time of one firing event and all dots in the same row belong to
the same neuron. The histogram plot in the bottom panel represents the SNN firing rate
at each time moment. As the simulated SNN has fully connected topology and inputs
are applied to all neurons, the firing events for all neurons are identical, which can be
observed through the same firing events distribution for the five neurons. As for the firing
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Figure 3.19: SNN Firing Events with Biological STDP.

rate in the histogram plot it exhibits a sparse distribution and there is no obvious tendency
to increase or decrease. The total firing events number in this case is 220.

Figure 3.20 (a) depicts the simulation results for SNN with graphene-based Hebbian
STDP (2 ms). One can observe a dramatic increase of the firing rate during the first 100 ms
and then the SNN keeps a relatively high firing rate until the end. The total firing events
number is 820, which is 3.7 times larger than the one obtained in SNN with biological
STDP, which suggests that the graphene-based Hebbian STDP is able to exhibit significant
strengthening effect on the SNN’s firing events.

The simulation results for SNN with graphene-based anti-Hebbian STDP (2 ms) is il-
lustrated in Figure 3.20 (b). One can observe that the general firing rate is smaller than
the aforementioned two SNN simulations, and it exhibits a sparser firing events distribu-
tion. The total firing events number is 80, which suggests that proposed graphene-based
anti-Hebbian synapse can properly emulate inhibitory synaptic behavior and suppress
the SNN’s firing events.

To evaluate the implications of the spike length we perform simulations also for SNNs
with graphene-based Hebbian STDP (1 ms) and with graphene-based Hebbian STDP (20 ms),
which results are illustrated in Figure 3.21 (a) and (b), respectively. We observe that for the
SNN with graphene-based Hebbian STDP (1 ms), there is a gradually increase of the fir-
ing rate, and the total firing events number is 290. Compared with SNN with biological
STDP, this graphene-based synapse can exhibit strengthening effect, but is weaker than
the one observed in Figure 3.20 (a). As for the SNN with graphene-based Hebbian STDP
20 ms, the firing events have sparse distribution and don’t exhibit any strengthening or
weakening tendency, which is similar to the response of the SNN with biological STDP. As
presented in Section 3.5.2, graphene-based Hebbian STDPs with spike duration (1 ms) and
20 ms have identical synaptic weight change amplitude and the potentiation/depression
time scales are different. The firing events observed in two cases indicate that the poten-
tial/depression time scale has an obvious influence on the SNN’s behaviors.

In order to investigate how input spike frequency affects the SNN output firing events,
we consider 3 different STDP types, i.e., biological STDP, graphene-based Hebbian STDP
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Figure 3.20: SNN Firing Events with Proposed Hebbian STDP and Anti-Hebbian STDP

(2 ms), and graphene-based Hebbian STDP (20 ms), and vary the SNN input spike fre-
quency from 10 kHz to 30 kHz. Simulation results are presented in Figure 3.22 and indi-
cate that the number of SNN output firing events for all 3 STDP cases monotonously varies
with respect to the input spikes frequency. Specifically, we observe: (i) an increase of 13%
in the SNN output firing rate for the graphene-based Hebbian STDP (2 ms), and (ii) ≈ 2×
increases for both biological STDP and graphene-based Hebbian STDP (20 ms)). Further-
more, we notice a close resemblance between the SNN firing rates for the biological and
the Hebbian 20 ms STDP cases for all input spike frequencies, which is consistent with the
results reported in aforementioned simulations.

3.5.4. SYNAPSES IMPLEMENTATIONS IN CURRENT TECHNOLOGIES

To have a better view of the synapse designs landscape, and investigate in this context
the potential of using graphene-based synapses for large scale neuromorphic systems, we
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Figure 3.21: SNN Firing Events with Proposed Hebbian STDP Obtained with Different
Spike Duration.

consider different technologies, i.e., CMOS, memristor, and evaluate comparatively the
synaptic implementations summarized in Table 3.3.

From the large-scale implementations’ suitability point of view, we look at the synapse
footprint and operating voltage. Area-wise the synapse designs based on emerging tech-
nologies, i.e., memristors [132, 133] and graphene [101], have generally compact imple-
mentations, and are thus better equipped than CMOS-based counterparts [69, 134] for
a high density of integration. The proposed GNR synapse design has 30 nm2 footprint,
which is 2 orders and 5 orders of magnitude smaller than memristor and CMOS designs,
respectively. Furthermore, our GNR synapse operates at low voltage (0.2 V), at least 5×
smaller than memristor and CMOS based counterparts, which is essential when striving
for brain-akin energy efficiency envelopes. From the functionality point of view, to em-
ulate abundant enough neural network dynamics, synapse designs require flexibility for
mimicking an enriched repertoire of synaptic plasticities. Memristor and CMOS synapse
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Figure 3.22: SNN Output Firing Events Number with Different Input Spike Frequencies.

designs, in order to adapt to different STDP types, rely on external control signals and
additional circuitry that generates for each STDP type, input spikes with the required
shapes [69, 135]. Differently from the aforementioned adaptation approaches, the pro-
posed GNR-based synapse structure can accommodate various STDP types within a single
graphene-based device simply by carving a different GNR geometry for each STDP type.
So, for different plasticity types, we have different devices, i.e., the same single graphene-
based synapse structure but with another GNR geometry. The fact that the STDP adap-
tation ability is obtained with the same input spike shapes for all STDP types and that
the entire synaptic functionality can be encapsulated within a single device, makes the
proposed GNR-based synapse structure a versatile modular plug-in component for neu-
ral network implementations. When compared to existing graphene-based synapse de-
signs [100, 101], our proposal outperforms its counterparts by requiring 30× to 5 orders
of magnitude less area and by straightforward emulation of different plasticity types. The
comparison clearly indicates that the proposed GNR-based synapse, by its low real-estate
requirements, small operating voltage, as well as adaptation versatility to different synap-
tic plasticity types, exhibits a high potential for large scale and functionally diverse neuro-
morphic computing platform implementations.

3.6. CONCLUSIONS

In this chapter we proposed generic one- and two- top gates graphene-based synapse
structures. We demonstrated that by properly changing the GNR shape and contact topolo-
gies, and applying external voltages, the proposed graphene-based synapses are capable
of mimicking various synaptic plasticity types. We successfully emulated two fundamen-
tal synaptic functionalities: Spike-Timing-Dependent Plasticity (STDP) and Long-Term
Plasticity, including Long-Term Potentiation (LTP) and Long-Term Depression (LTD), which
are foundational for human brain learning and remembering capabilities. Moreover, the
same graphene-based synapse can emulate both LTD and LTP by simply changing its
back-gate voltage. Given that we relied on a generic methodology to identify the appropri-
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Table 3.3: Synapse Implementations with Different Technologies

Synapse Type Operating Voltage Area
STDP Type
Adaptation

Biological [126] Spike: [−40,70]mV - -

CMOS [69] Spike: 1 V - Yes

CMOS [134] Supply:1 V ≈ 1.3×107nm2 No

Memristor [132] Spike: [−1,1]V - No

Memristor [133] Spike: [−5,1.5]V ≈ 1.0×104nm2 No

Graphene [100] Supply:0.1 V, Spike: 2 V ≈ 9.0×106nm2 No

Graphene [101] Supply:0.1 V ≈ 9.0×102nm2 No

Proposed Design Supply:0.2 V, Spike: 0.18 V ≈ 3.0×101nm2 Yes

ate GNR topology for a desired synaptic plasticity our proposal is by no means restricted
to the 4 STDP types and 2 LTP types considered in the chapter. Our simulations indi-
cate that the one-top-gate synapse can achieve the plasticity change of 100% provided by
natural synapses. The two-top-gates synapse exhibits STDP with spike duration depen-
dent potentiation/depression time scale without changing the obtained synaptic weight
change amplitude while achieving a maximum of 30% synaptic weight change and po-
tentiation/depression time scale range from [−1.5ms,1.1ms] to [−32.2ms,24.1ms]. This
property makes the proposed synapses versatile in emulating various plasticity types suit-
able for different application scenarios. Furthermore, we explored the effect of two-top-
gates synapse at the SNN level by performing NEST based simulations. Our experiments
indicated a strong corelation between the synaptic plasticity type, i.e., Hebbian and anti-
Hebbian, and the number of firing events in the network and that the number of SNN
output firing events monotonously varies with respect to the input spikes frequency. For
Hebbian STDP and a spike duration of 20 ms we obtained an SNN behavior similar with
the one provided by the same SNN with biological STDP. The proposed graphene-based
synapses have small area (30 nm2), operate in the 100 mV bias and input range, and can
emulate various plasticity types, which are making them very promising candidates for
scalable energy-efficient neuromorphic system implementations.
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GRAPHENE-BASED NONLINEAR

LEAKY INTEGRATE-AND-FIRE

SPIKING NEURON

In this chapter, we propose an ultra-compact, all graphene-based nonlinear Leaky Integrate-
and-Fire spiking neuron. We validate, by means of SPICE simulations, the basic nonlinear
Leaky Integrate-and-Fire (LIF) neuron functionality under periodic input spike trains and
noisy stochastic input. Our results indicate robustness to neuronal signals variability, and
regular output firing rate statistics with a slowly decreasing trend and < 1 interspike in-
terval variation coefficient, when increasing the input firing rate from 20 to 200 spikes per
second. For all simulation, we used spike duration and amplitude of 2 ms and 100 mV, re-
spectively, which are comparable to those observed in biological neurons. Moreover, the low
area footprint (GNR-based device area of max. 36 nm2) and low operating voltage (200 mV
supply voltage) prove the suitability of our proposal for large-scale integration.

The content of this chapter is based on the following paper:

H. Wang, N. Cucu Laurenciu, Y. Jiang, and S.D. Cotofana, “Ultra-compact, Entirely Graphene-based Nonlinear
Leaky Integrate-and-Fire Spiking Neuron”, IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1-5, 2020.
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4.1. INTRODUCTION

Since the nervous system, which supports the human brain complex functionality, com-
prises billions of neurons, it makes the design and implementation of large-scale neuro-
morphic computing systems an extremely challenging task. State-of-the-art CMOS-based
artificial neurons use complex CMOS circuitry and have a relatively high power consump-
tion [136], [137], which limit the complexity, scalability, and energy efficiency of achiev-
able neuromorphic system implementations. Besides, CMOS-based neurons cannot in-
trinsically mimic the analog behavior of biological neurons. Recently, emerging resis-
tive switching memory devices [66] attracted interest and have been utilized in spiking
neurons implementations [138], [71], due to their analog behavior, ability to restore the
state memory, and good scalability. However, they suffer from resistive state temporal
and spatial variability and undesired stochastic behavior, which may cause neuromor-
phic systems instability. Artificial neurons based on the phase-change devices were also
proposed as an alternative for scalable neuromorphic systems [36], [139] as their accumu-
lation property can provide a proper electronic mimicry of spiking neurons membrane
potential dynamics. However, phase change neuron implementations require additional
CMOS circuitry to emulate the neuron functionality and rely on externally generated aux-
iliary signals that control the basic functionality of phase-change devices. They also oper-
ate at relatively high voltages, which impede the implementation of energy efficient neu-
romorphic systems.

In this chapter we investigate graphene’s potential towards low cost and energy effec-
tive implementations of spiking neurons. Specifically, we propose an all graphene-based
ultra-compact and low voltage neuron, which is able to emulate the essential features of
spiking neurons, including the membrane potential accumulation, the firing event, the
refractory effect, and the output spike generation. The proposed neuron is operated with
voltage ranges akin to those of biological neurons, which makes it a good candidate for
biologically plausible utilization scenarios. The neuron consists of 6 GNR-based devices
controlled via top-gate voltages, one of them emulating the membrane potential dynam-
ics, and the remaining 5 generating the necessary control signals as well as the output
spikes. We validate the basic nonlinear Leaky Integrate-and-Fire (LIF) neuron functional-
ity with periodic input spike trains. We further evaluate the neuron output spike response
when subjected to noisy stochastic input. All experiments are carried out by means of
SPICE simulation. The obtained results indicate robustness to neuronal signals variability,
and regular output firing rate statistics with a slowly decreasing trend and < 1 interspike
interval variation coefficient, when increasing the input firing rates from 20 to 200 spikes
per second. For all simulation, we used spike duration and amplitude of 2 ms and 100 mV,
respectively, which are comparable to those observed in biological neurons. Note that, the
low area footprint (GNR-based device area of max. 36 nm2) and low energy consumption
(200 mV supply voltage) prove the suitability of our proposal for large-scale integration.

The remaining of this chapter is organized as follows: Section 4.2 explains the basic
concepts of nonlinear leaky integrate-and-fire neuron, and introduces the basic building
block for graphene-based neurons. In Section 4.3 we describe the design of the proposed
graphene-based neuron and explain its operation principle. Section 4.4 presents simula-
tion results and Section 4.5 concludes the chapter.
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Figure 4.1: Neuron Structure.

4.2. BACKGROUND
In this section we introduce the neuron structure, the nonlinear Leaky Integrate-and-Fire
(LIF) model, and the fundamental building block for the proposed graphene-based neu-
ron.

As illustrated in Figure 4.1, a neuron comprises: (i) a soma, which is the neuron’s cell
body where the main neuronal dynamics occur (e.g., membrane potential evolution, spike
generation, and refractory effect), (ii) dendrites, which connect the neuron with other
neurons, receive and process input spikes, and generate neuronal input trains to the soma,
and (iii) an axon, which is a long nerve cell, that transmits the output spike generated by
the soma to neighbouring neurons. Various neuron models are proposed to describe the
behavior of biological neurons, among which the Integrate-and-Fire neuron model at-
tracts particular interest, due to its low complexity that makes it easy to analyze neuronal
behavior while being able to capture the essential properties of biological neurons. In a
standard nonlinear Leaky Integrate-and-Fire (LIF) neuron, the membrane potential evo-
lution is in line with the following equation:

du/d t = F (u)+G(u) · I , (4.1)

where u is the membrane potential, F (u) denotes a voltage-dependent leak term, and
G(u) is the voltage-dependent input resistance, which accounts for the membrane poten-
tial accumulation due to the neuron input current I . The neuronal dynamics of a non-
linear LIF neuron can be described via: (i) an integration process, when the membrane
potential u increases continuously (starting from the resting potential urest) due to input
spikes contributions, (ii) a firing event that generates a neuron output spike when the
membrane potential reaches a certain firing threshold θ and then immediately resets to a
new value ureset < urest, and (iii) a refractory period, during which the neuron cannot fire,
and the membrane potential is reset to the resting potential urest.

To implement the nonlinear LIF neuron with graphene-based devices, we rely on the
basic building block, illustrated in Figure 4.2 (a), which consists of a monolayer Graphene
Nanoribbon (GNR) located above an insulating material and a doped substrate that serves
as back-gate. The GNR works as a conduction channel when applying a bias voltage Vd-
Vs between the source and drain terminals. The GNR conductance can be modulated by
changing the graphene sheet geometry and the contacts topology as well as by means of
external voltages via the top/back gates. Figure 4.2 (b) illustrates the equivalent capacitive
circuit of the device in Figure 4.2 (a), where Cox is the top gate oxide capacitance, Cq the
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Figure 4.2: Graphene-based Device for Artificial Neurons: (a) Basic GNR-based Device,
and (b) Equivalent Traps-aware Capacitive Circuit.

GNR quantum capacitance, and Cit the capacitance caused by interface traps. Note that,
it was experimentally observed that GNR devices inherently exhibit near-interface traps
[81], which will trap/release charges via capacitance Cit in an analogue manner with the
membrane potential accumulation. When applying a top gate voltage, Vg, charge transfer
to/from graphene to the interface traps causes an equivalent shift of Vg, with a quantity
denoted as ∆Vtraps [128]. Considering a piece-wise linear Vg, when the GNR surface po-
tential Vc changes from V t1

c at time moment t1 to V t2
c at time moment t2, the interface

traps charges can be obtained as:

Qit(t ) =Cit · [(V t1
c +α · t −α ·τ)+e−

t
τ · (α ·τ−V t1

c +V t1
it )], (4.2)

where V t1
it is the accumulated voltage drop on Cit at time moment t1, τ is the trapping/detrapping

time constant, and α is the Vc ramp slope from t1 to t2. Thus with a single graphene de-
vice, the membrane integration features are naturally captured by the interface charge
trapping/detrapping phenomena.

4.3. GRAPHENE-BASED NEURON
In this section we introduce the proposed graphene-based nonlinear LIF neuron circuit
and describe its operation.

As illustrated in Figure 4.3 (a), the graphene-based neuron comprises six GNR-based de-
vices, which can be divided into 2 blocks: the integrate-and-fire block, which mimics the
membrane potential dynamics and the output block, which generates the output spikes.
To aid the explanation, we make use of the basic operation example depicted in Figure
4.4. The neuron kernel is GNR2

up, which captures the membrane potential dynamics via
its conductance. Due to the GNR inherent interfacial traps, electrical charges proportional
to the GNR applied voltages can be accumulated or released. Starting from the membrane
resting level, such behavior can be observed until reaching the membrane firing thresh-
old, at which point, there is a maximum accumulation of charges (which corresponds to
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Figure 4.3: GNR-based LIF Neuron: (a) Neuron Structure, and (b) GNR Topologies.

a maximum conductance value). We denote this integrate-and-fire region as Stage I. Fur-
ther, to emulate the membrane potential reset, most of the trapped charges need to be
released, situation which happens only when the GNR2

up top gate voltage is very small
(e.g., ≈ 100× smaller Vin) - Stage II. Then, during the refractory period, a gradual accu-
mulation of charges should follow in order to reach the membrane resting level, situation
which is achieved when applying a slightly bigger top gate voltage (but smaller than the
membrane resting level), e.g., ≈ 2× smaller Vin - Stage III. The sub-circuit composed out
of GNR1

up and GNR1
dn, receives the neuronal input spike train Vin and controls the top gate

voltage of GNR2
up via Vinternal (it either directly outputs the neuron input Vin during Stage

I or a magnitude down-scaled neuron input, i.e., ≈ Vin/100 during stage II and ≈ Vin/2
during Stage III). The output block containing GNR3

up and GNR3
dn devices generates the

neuron output spike Vout.
As illustrated in Figure 4.4, initially, Vinternal follows Vin and Vstage values are afferent to

Stage I. When Vinternal +∆Vtraps reaches the firing threshold, Vstage switches to Stage II and
Vinternal becomes equal to Vin/100. Charges are depleted, the membrane potential resets,
and an output spike Vout is triggered. When Vinternal +∆Vtraps reaches the voltage value
which corresponds to the end point of the neuron input spike Vin, Vstage transitions to
Stage III, and Vinternal is generated equal to Vin/2. When Vinternal +∆Vtraps reaches a fixed
out of refractory threshold voltage level, Vstage switches back to Stage I, and the neuron
activity resumes.

To obtain the desired GNR topologies, we performed a design space exploration, by
changing the GNR geometry, and the width and position of the top-gate, such that for ev-
ery up/down pair of GNRs the in-between voltage follows the aforementioned behavior.
The in-between voltage can be calculated by using a voltage divider VDD ·Gup/(Gdn+Gup),
where Gup and Gdn represent the conductance of GNRup and GNRdn, respectively, and
VDD = 0.2 V denotes the supply voltage. Figure 4.3 (b) depicts the obtained GNR topolo-
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Figure 4.4: GNR-based LIF Neuron Basic Operation.

gies, with W ×L dimensions 23a×30
p

3a and 35a×30
p

3a for GNR1
up and GNR1

dn, respec-

tively, 23a × 30
p

3a and 29a × 25
p

3a for GNR2
up and GNR2

dn, and 35a × 30
p

3a for both

GNR3
up and GNR3

dn, where a =0.142 nm is the distance between 2 adjacent carbon atoms.

4.4. SIMULATION RESULTS
In order to model the graphene electronic transport properties we make use of the atomistic-
level tight binding Hamiltonian matrix to describe the interactions between carbon atoms
and external graphene potentials, the Non-Equilibrium Green Function (NEGF) formal-
ism to solve the Schrödinger equation, and the Landauer-Büttiker formula to derive the
GNR current and conductance [102]. As interface traps profile, we employed a trapping/detrapping
time constant of 1.6 ms and an interface trap density of 2.363·1013 cm−2(eV)−1 [113] , [140].

The neuron circuit was functionally validated and evaluated by means of SPICE simu-
lation in Synopsys HSPICE [141]. In order to preserve the GNRs physical simulation accu-
racy degree, we developed a Verilog-A SPICE compatible generic model, which relies on
look-up tables containing GNRs conductance values for varying input profiles, which are
obtained with aforementioned atomistic-level formalization. For instance, to calculate
the GNR2

up conductance for a certain top gate voltage Vg and drain-to-source potential
Vds at the current time moment ti in the presence of traps, we rely on the previously ap-
plied Vg at time moment ti−1, on the time difference between the sampling points ti −ti−1,
as well as on the traps-induced accumulation ∆Vtraps at moment ti−1. All these values are
then logged in the GNR2

up corresponding table for a wide range of scenarios.
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Figure 4.5: Integrate and Fire Dynamics.

To validate the integrate-and-fire behavior of the proposed graphene-based neuron, we
applied as indicated in Figure 4.5, a deterministic periodic neuronal input Vin with 2 ms
spike duration and 5 ms inter-spike intervals and gradually increased the Vin peak ampli-
tude from 100 mV to 180 mV. We observe that individual Vin spikes contributions are grad-
ually accumulated and proportionally reflected in the GNR2

up conductance G increase.
Also, we see that for smaller Vin spikes (<180 mV), the conductance increase saturates at a
level below the firing threshold, while for 180 mV Vin spikes it can reach the firing thresh-
old, and as a result an output spike event is triggered and reflected in the Vout value.

As biochemical processes of individual neurons, as well as surrounding neuronal net-
work activities exhibit stochasticity, the neuronal spike trains exhibit inherent variability.
To evaluate the proposed neuron behavior in such conditions, we considered a stochas-
tic input spike train (sampled from a Poisson distribution) with a firing frequency of 50
spikes per second (comparable scenario with that of biological neurons), and added a
white Gaussian noise floor with signal-to-noise ratio SNR = 17. Figure 4.6 illustrates the
neuron corresponding firing response. We note that every firing event is triggered by an
input spike and not by the noise, even though the noise does contribute to the membrane
potential accumulation. This suggests that the proposed neuron is robust to input noise.
To gain better insight and quantify the variability of the output spike train produced by the
proposed neuron, we consider a range of input firing rates from 20 to 200 spikes per sec-
ond and calculate the output mean firing rate and the variation coefficient CVISI, which is
equal to the standard deviation of the inter-spike timing intervals divided by their mean.
Simulation results, depicted in Figure 4.7, indicate a steady linear increase of the mean
output firing rate, suggesting a regular firing behavior for the proposed graphene-based
neuron. The output spike train propensity for regularity is also confirmed by a slightly
decreasing and < 1 inter-spike interval coefficient of variation.

In retrospective, the proposed graphene-based neuron exhibits a small footprint (max.
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Figure 4.6: Graphene-based Neuron Dynamics Under Random Input.
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Figure 4.7: Output Spike Statistics For Variable Input Firing Rate.

36 nm2 per GNR device), and low voltage operation (e.g., 200 mV), which are desired char-
acteristics for artificial neural networks large-scale implementations. Our simulations in-
dicate regularity of firing events under noisy stochastic input spike trains. Furthermore,
the considered 2 ms spike duration and 100 mV spike amplitude are comparable with that
observed in biological neurons, suggesting the potential to fabricate biologically plausible
artificial neurons potentially interface-able with biological tissues.
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4.5. CONCLUSIONS
In this chapter, we proposed a compact, all graphene-based nonlinear leaky integrate-
and-fire neuron. By means of SPICE simulation, we demonstrated that the proposed neu-
ron can properly emulate the basic spiking neuron dynamics under periodic input spikes.
We further investigated the output spikes’ behavior under stochastic noisy input spike
trains. Our simulation results indicated variability resilience and neuronal output firing
regularity for a varying input firing rate (from 20 to 200 spikes per second). The small area,
low energy (inherent to the 200 mV supply voltage) are certainly enabling factors for the
potential implementation of large-scale artificial neural systems.





5
GRAPHENE-BASED SPIKING

NEURAL NETWORK

In this chapter, we introduce a basic SNN unit, which comprises a graphene-based synapse
and a spiking neuron with input-output compatibility, and can be utilized to implement
complex SNNs. We first demonstrate the proper operation of the graphene SNN unit by re-
lying on the mixed simulation approach that embeds the high accuracy of atomistic level
simulation of graphene structures conductance within the SPICE framework. Subsequently,
we analyze the way graphene synaptic plasticity affects the behavior of a 2-layer SNN exam-
ple consisting of 6 neurons and demonstrate that LTP significantly increases the number of
firing events while LTD is diminishing them, as expected. To assess the plausibility of the
graphene SNN reaction to input stimuli we simulate its behavior by means of both SPICE
and NEST, a well established SNN simulation framework, and demonstrate that the ob-
tained reactions, characterized in terms of total number of firing events and mean Inter-
Spike Interval length, are in close agreement, which clearly suggests that the proposed de-
sign exhibits a proper behavior. Further, we prove the unsupervised learning capabilities of
the proposed design by considering a 2-layer SNN consisting of 30 neurons meant to recog-
nize the characters "A”, "E”, "I”, "O”, and "U", represented with a 5 by 5 black and white pixel
matrix. The SPICE simulation results indicate that the graphene SNN is able to perform
unsupervised character recognition associated learning and that its recognition ability is
robust to input character variations. Finally, we note that the proposed SNN unit requires
a small real-estate footprint and operates at 200 mV supply voltage, which suggest its suit-
ability for the design of large-scale energy-efficient computing systems.

The content of this chapter is based on the following paper:

H. Wang, N. Cucu Laurenciu, Y. Jiang, and S.D. Cotofana, “Compact Graphene-Based Spiking Neural Network
With Unsupervised Learning Capabilities”, IEEE Open Journal of Nanotechnology (OJ-NANO), vol. 1, pp. 135-
144, 2020.
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5.1. INTRODUCTION
In previous chapters we proposed graphene-based implementations concentrated on in-
dividual synapse and neuron designs while disregarding input-output compatibility as-
pects, which preclude their direct utilization for the implementation of graphene-based
Spiking Neural Networks. In this chapter, we propose a graphene-based synapse (com-
prising 2 graphene devices) and a spiking neuron (comprising 6 graphene devices), which
form together a basic Spiking Neural Network (SNN) unit and can be utilized for the imple-
mentation of complex graphene-based SNNs. Specifically, the proposed artificial synapse
emulates two basic synaptic functionalities, i.e., Spike-Timing-Dependent Plasticity (STDP)
and Long-Term Plasticity, while the same synapse can exhibit Long-term Potentiation
(LTP) or Long-term Depression (LTD) by properly adjusting the back-gate bias voltage of
one of its composing graphene device. The proposed artificial neuron exhibits the es-
sential Leaky Integrate and Fire (LIF) spiking neuron behavior with post firing refractory
interval and provides the feedback signal required for the SDTP associated synaptic trans-
mission efficiency modulation.

We first demonstrate the proper operation of the graphene SNN unit by relying on a
mixed simulation approach that embeds the high accuracy of atomistic level simulation
of graphene structures conductance within the SPICE framework. Subsequently, we ana-
lyze the way the synaptic plasticity affects the graphene SNN behavior by making use of
a 2-layer SNN example consisting of 6 neurons and the obtained results indicate that LTP
significantly increases the number of SNN firing events while LTD is diminishing them, as
expected. To get some inside on the 2-layer graphene SNN reaction to input stimuli plau-
sibility we also simulate its behavior by means of NEST [124], a well established SNN simu-
lation framework. Our experiments indicate that the SPICE obtained reaction, character-
ized in terms of total number of firing events and mean Inter-Spike Interval (ISI) length,
is in close agreement with the one reported by means of NEST based simulation, which
clearly suggests that the proposed design exhibit a proper behavior. Further, we demon-
strate the unsupervised learning capabilities of the proposed design by considering a two
layer SNN consisting of 30 neurons meant to recognize the characters (and variations of
them) "A”, "E”, "I”, "O”, and "U", represented with a 5 by 5 black and white pixel matrix.
The simulation results indicate that the graphene SNN is able to perform unsupervised
learning and that the enabled recognition ability is robust to input character variations.
Finally, we note that our proposal results in a small real-estate footprint (max. 30 nm2 are
required by one graphene-based device) and operates at 200 mV supply voltage, which
suggest its suitability for the design of large-scale energy-efficient computing systems.

The remaining of this chapter is organized as follows: Section 5.2 presents the utilized
simulation framework. Section 5.3 introduces the graphene-based SNN design and its
basic operation. Section 5.4 presents the simulation results and Section 5.5 concludes the
chapter.

5.2. SIMULATION FRAMEWORK
In order to properly validate and evaluate the graphene-based SNN circuits, we rely on
a mixed simulation approach incorporating atomistic level graphene-based device mod-
elling and SPICE simulation in Cadence [142].
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Figure 5.1: Graphene-based Spiking Neural Network: (a) SNN Circuit, (b) Pre- vs Post-
Synaptic Spikes Timing.

To enable the desired synapse and neuron functionalities, we rely on instances of the
generic graphene-based device depicted in Figure 4.2 (a). For the graphene-based device
electronic transport properties calculation, we utilize the atomistic level Tight-Binding
Hamiltonian to model the carbon atom interactions and external potentials, the Non-
Equilibrium Green Function (NEGF) to solve the Schrödinger equation, and the Landauer-
Büttiker formula to calculate the GNR channel current and conductance [102]. The po-
tential distribution on graphene sheet is obtained by solving a 3D Poisson equation self-
consistently, and the effect of trapping/detrapping phenomenon on the device operation
is accounted for by calculating the equivalent voltage shift caused by interface trapped
charges [128].

To enable high accuracy circuit simulation, we make use of a Verilog-A graphene device
generic model [103], which in order to enable time effective SPICE simulation of graphene
circuit relies on GNR topology specific precomputed look-up tables containing graphene
conduction simulation data obtained with the aforementioned atomistic level simulation
methodology.

5.3. GRAPHENE-BASED SPIKING NEURAL NETWORKS
In this section we present the proposed graphene-based Spiking Neural Network design
and describe its basic operation principle.

The schematic illustration of the graphene-based SNN unit (consisting of one synapse
and one neuron) is depicted in Figure 5.1 (a) and comprises four blocks: (i) synapse,
(ii) integrate-and-fire, (iii) feedback, and (iv) output. Each block consists of two GNR-
based devices and its output voltage (Vin, Vinternal, Vfeedback, and Vout) is governed by the
VDD ·G i

up/(G i
up+G i

dn) relation, where VDD is the supply voltage (200 mV), and G i
up and G i

dn

denote the conductance of the i th GNRup and GNRdn, respectively.
The synapse receives input spikes Vspike from another neuron, potentiates or suppresses

them according to its transmission efficiency (weight), and generates Vin to be utilized
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Figure 5.2: Basic SNN Unit GNR Shapes.

as neuron block input. The initial synaptic weight value is determined by the Vsyn po-
tential applied on the back-gate of GNR1

up. The synapse exhibits two types of plasticity:
Spike-Timing-Dependent Plasticity (STDP) and Long-Term Plasticity. STDP modulates
the synaptic weight by accounting for the time difference ∆t = tpost − tpr e between the
input spike Vspike occurrence and Vfeedback transition from Vhigh to Vlow, as depicted in
Figure 5.1 (b). When ∆t > 0, i.e., Vfeedback is asserted before the end of the input spike,
the synaptic transmission efficiency is increased and Vspike contribution to Vin is strength-
ened. When ∆t < 0, i.e., the input spike occurrence is not generating a Vfeedback transition
to Vhigh, the synaptic transmission efficiency is decreased and Vspike contribution to Vin

is weakened. The input spike potentiation/depression is controlled by the Vfeedback sig-
nal, which by being connected to GNR1

dn top-gate modulates its conductance. The long-
term plasticity emulation relies on the fact that when applying input spikes on GNR1

up top-
gate trapped charges are accumulated and as such modulate its conductance persistently,
which depending on the Vsyn value results in Long-Term Potentiation (LTP) or Long-Term
Depression (LTD) of the synaptic weight, e.g., 0 mV for LTP and −100 mV for LTD.

The integrate-and-fire block is the kernel of the graphene spiking neuron and emu-
lates the main neuronal functionalities, including membrane potential integration and
the generation of the output firing events. The integrate and fire behavior builds upon the
interface trapping phenomenon, which results in charge accumulation when Vin spikes
are applied on GNR2

up top-gate. The trapped charges cause an equivalent shift ∆Vg of
the top-gate voltage Vg and when Vg +∆Vg reaches a certain level, i.e., the neuron firing
threshold, GNR2

up conductance increases abruptly, which triggers a firing event, i.e., gen-
erates a spike on the Vinternal signal.

While this is enough to emulate spiking neuron functionality Vinternal requires some ex-
tra processing in order to be compatible in terms of voltage levels and duration with the
input spike applied on Vspike, which assumes values between 20 mV and 180 mV and has
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Table 5.1: GNR Topologies
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Figure 5.3: GNR Geometry and Contact Topology.

a time duration of 2 ms. As such the output block further processes Vinternal and produces
Vout that is level and duration compatible with synapse input spikes, which enables the
direct cascading of SNN basic units. Moreover, as the neuron output is playing a crucial
role in the STDP process the Vinternal spike occurrence has to be signalled to the synapse
block. Again Vinternal cannot be directly utilized and the feedback block is responsible for
the generation of Vfeedback that is connected to GNR1

dn top-gate to internally signal the fir-
ing event occurrence. Apart of contributing to the synaptic weight adaptation Vfeedback is
also placing the neuron into the refractory state, which has to occur after any output firing
event. This is enabled by the Vfeedback transition from Vhigh to Vlow, which is increasing
GNR1

dn conductance resulting in a significant Vin magnitude reduction that inhibits the
trap accumulation and as such incoming input spikes cannot trigger a firing event while
Vfeedback = Vlow.

The basic SNN unit behavior is actually dependent on the conductance variation exhib-
ited by each of the GNRs it comprises. Thus to guaranty proper SNN functionality 4 GNR
geometry pairs, which conductance maps fit the variation profile required to achieve the
desired behavior of the Vin, Vinternal, Vfeedback, and Vout signals, respectively, should be
find.

Figure 5.3 illustrates the parameters related to GNR geometry and contacts topology.
Specifically, W and L denote the width and length of the graphene sheet, respectively,
PVg the distance between the top-gate and the drain contact, and WVg the top-gate width.
The distance between two neighbor carbon atoms is denoted as a = 0.142nm. Figure 5.2
depicts the GNR topologies we identified for the proposed SNN circuit, by means of an
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atomistic model based Design Space Exploration (DSE) process and Table 5.1 summarizes
their dimensions expressed in terms of the distance between adjacent carbon atoms in
the graphene sheet a = 0.142nm. Concerning the interface trap profile for the atomistic-
level graphene-based device modelling in DSE, we assume an interface trap density of
2.363 ·1013 cm−2(eV)−1 and a trapping/detrapping time constant of 1.6 ms [108, 113].

To provide inside on the relation between the chosen GNR topologies and SNN circuit
behavior we present in Figure 5.4 the conduction maps of GNR1

up and GNR1
dn that form

the synapse block. As one can observe in Figure 5.4 GNR1
up conduction is high under large

top-gate voltages and varies with back-gate voltage value thus can provide different ini-
tial synaptic weights. GNR1

dn conductance is high under low top-gate voltages and small
under high top-gate voltages, which allows Vfeedback to induce synaptic transmission po-
tentiation and depression when being Vhigh and Vlow, respectively. A similar analysis can
be carried on for the other GNR pairs in the circuit but we omit it in view of page limit.

SPICE simulation results concerning the SNN unit basic operation (with Vsyn = 0 mV)
are illustrated in Figure 5.5. As seen from the point of view of Vfeedback value the basic op-
eration follows three phases. In Phase I Vfeedback has an initial after circuit reset value and
the neuron input Vin follows the synapse input Vspike. When Vg +∆Vg of GNR2

up reaches
the firing threshold a spike is induced on Vinternal that makes Vfeedback to enter into Phase
II when Vin magnitude increases to Vspike ×1.1 for a short time period as result of the pre-
spike before post-spike ∆t > 0 induced STDP potentiation. Immediately after the firing
event Vinternal returns to its initial value and as the Vinternal induced trapped charges are
still present Vfeedback becomes Vlow and the SNN unit enters Phase III. In this period Vin

magnitude decreases to Vspi ke /2.2 as a result of pre-spike after post-spike ∆t < 0 induced
STDP depression. As no firing events can be triggered during Phase III, it accounts for
the spiking neuron refractory interval. When the feedback block trapped charges decay to
the initial level, Vfeedback returns to its after reset value, Phase III finishes and the circuit
switches back to Phase I. Related to the refractory interval influence on the neuron behav-
ior one can observe in Figure 5.5 that the first output spike is triggered by 2 input spikes
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while the second one occurs after 3 input spikes.

The basic SNN unit in Figure 5.1 (a) assumes that the neuron process input spikes com-
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Table 5.2: SNN Activity Overview

Input firing rate: 200 Hz Input firing rate: 250 Hz
Total Number Mean ISI Total Number Mean ISI

Graphene-based SNN 16 30 22 22.6
NEST simulator 17 28.5 22 22.3

ing from one previous neuron only, i.e., has a fan-in of 1, which is certainly not the case in
any relevant SNN. To accommodate for a fan-in of n we extend the synapse block by re-
placing GNR1

up with n GNRs as illustrated in Figure 5.6. In this case the in-between voltage
Vin is calculated as:

Vi n =VDD ·
G11

up +G12
up +· · ·+G1n

up

G11
up +G12

up +· · ·+G1n
up +G1

dn

, (5.1)

where G1n
up denotes the conductance of the nth up GNR.

5.4. SIMULATION RESULTS

To get inside into the actual capabilities of the proposed SNN unit we consider and evalu-
ate by means of SPICE simulation two graphene-based SNN examples. We first study the
effect of the graphene enabled synaptic plasticity on a 2-layer 6-neuron SNN and compare
its SPICE derived behavior with the one obtained by means of NEST based simulations
[124]. Subsequently, we demonstrate the capability of our proposal to perform unsuper-
vised character recognition. In all simulations, the input spikes are 2 ms long pulses vary-
ing between 20 mV and 180 mV, and VDD = 200mV. We note however that our proposal is
general and can be adapted to operate on different power supply values and input spike
formats.

5.4.1. GRAPHENE-BASED SNN BEHAVIOR EVALUATION

To evaluate how the long-term plasticity exhibited by the graphene devices modulates
the neuron input signal Vin, we consider a single synapse block comprising GNR1

up and

GNR1
dn, as depicted in Figure 5.1 (a), and set the feedback signal Vfeedback to the Phase

I value. In such a setup the synapse output magnitude follows the synapse input and if
Vspike receives a train of spikes Long-Term Plasticity should be observed. To capture this
phenomenon we apply a 200 Hz periodic input spike train with 180 mV peak amplitude on
the GNR1

up top-gate and simulate the circuit evolution for 300 ms. The obtained dynamics
of the synapse output signal Vin is depicted in Figure 5.7 (a) and (b) for Long-Term Poten-
tiation (LTP) and Long-Term Depression (LTD), respectively. Note that both LTP and LTD
are acquired with the same synapse by properly changing the back-gate voltage of GNR1

up,
i.e., 0 mV for LTP and −100 mV for LTD. As expected, we observe a continuous Vin mag-
nitude increase and decrease for LTP and LTD, respectively. After 300 ms the amplitude
potentiation and depression are around 3.3% and 4.5%, for LTP and LTD. respectively, and
exhibit an obvious saturation trend.
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To explore the implication of the obtained long-term plasticity on SNN’s firing events
profile, we make use of a 2-layer SNN consisting of 6 neurons as illustrated in Figure
5.8. The neuron in layer 2 is fully connected with all the neurons in layer 1 via identi-
cal synapses. In the simulations we considered three synapse types: (i) without long-term
plasticity (assuming that the trapped charges do not affect the graphene device conduc-
tance), (ii) with long-term potentiation, and (iii) with long-term depression.

To evaluate the SNN behavior in the previously mentioned conditions we perform SPICE
simulations assuming that all layer 1 neurons receive identical 200 Hz periodic input sig-
nals (Vspike) on their synapse block for 200 ms, thus all layer 1 neurons generate identical
firing events. Figure 5.9 (a) depicts the SNN output reaction with the synapses do not ex-
hibit long-term plasticity. We observe that periodic output spike trains are generated by all
neurons while layer 2 neuron firing rate of the neuron is lower than that of the layer 1 neu-
rons. During the simulation there are in total 12 output spikes for every neuron in layer
1 and 5 output spikes for neuron in layer 2. Figure 5.9 (b) depicts the SNN output firing
events with Long-Term Potentiation. As expected LTP induces an increase of the number
of firing events in both layers, which now raise to 15 and 13 for neurons in layer 1 and layer
2, respectively. Thus LTP induces a 25% firing event increase in layer 1 and 160% in layer
2. On the contrary, in the case of SNN with Long-Term Depression, the simulation result
is depicted in Figure 5.9 (c), we observe a significant decrease tendency of the number of
firing events in both layers. Specifically, the layer 2 neuron stops generating any fire event
after 60 ms, which is related to the fact that due to LTD layer 1 neurons are less active and
as such cannot trigger a firing event of the neuron in layer 2. The total number of firing
events for neurons in layer 1 and layer 2 are 9 and 1, which is equivalent with a 25% and
80% decrease, respectively.

To get some inside of the plausibility of the LTP and LTD influence on the considered
SNN example we implement it in NEST with standard leaky Integrate-and-Fire neurons
connected via synapses with Long-Term Potentiation, apply 200 Hz and 250 Hz periodic
input spike trains, and record its reaction a time period of 200 ms. The number of layer 2
neuron firing events as well as the mean Inter-Spike Interval (ISI) between output spikes
obtained by the SPICE simulation of the graphene-based SNN with LTD and the ones re-
ported by means of NEST simulation are summarized in Table 5.2. In terms of the total
number of firing events, the graphene SNN produces an almost identical response with
the NEST based simulation one, i.e., 1 spike difference at 200 Hz input and the same num-
ber at 250 Hz input. As for the mean ISI, which represents the average time interval be-
tween adjacent output spikes, the values are quite close with a maximum difference of 5%
(1.5 ms) between the SPICE and NEST predicted results. The obtained results clearly sug-
gest that the proposed graphene SNN exhibits similar behavior with the one predicted by
the well established NEST simulation framework.

5.4.2. UNSUPERVISED CHARACTER RECOGNITION

To demonstrate the learning abilities of our proposal, we consider a 2-layer SNN consist-
ing of 30 neurons as depicted in Figure 5.10 (a), which is meant to recognize the charac-
ters (and variations of them) "A”, "E”, "I”, "O”, and "U", represented with a 5 by 5 black and
white pixel matrix. Layer 1 comprises 25 neurons, which receive input spikes if the pixel in
their position is black and no spikes if the pixel is white, and layer 2 consists of 5 neurons
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meant to indicate the recognition result. We assume that: (i) LTP synapses with identi-
cal initial synaptic weight are utilized for every neuron in layer 1 and (ii) Every neuron in
layer 2 is connected with all the layer 1 neurons via LTP synapses with randomly initial-
ized synaptic weights. This is achieved by biasing Vsyn (the back-gate voltage of GNR1

up)
with fixed values between 0 mV and 100 mV, such that layer 2 neurons exhibit different
firing profile. For a given input character, we stimulate the layer 1 neurons correspond-
ing to black pixels with identical 200 Hz periodic spike trains as illustrated in Figure 5.10
(a). Each layer 2 neuron is meant to signal the recognition of one character in the vowel
set and to indicate that we employ the "time-to-first-spike” scheme [53], i.e., the layer 2
neuron that first fires is the one that recognized the input character.

To validate the learning ability of the proposed design, we apply the 5 characters "A”,
"E”, "I”, "O”, and "U", to the graphene-based SNN one at a time and the learning process
for each of them is depicted in Figure 5.10 (b), (c), (d), (e), and (f), respectively.

In each case, we observe that initially there are no firing events on any layer 2 neurons.
However, during the learning process, the connections corresponding to the layer 1 stim-
ulated neurons (the one driven by black pixels) are strengthened because of long-term
potentiation. Thus, after some time one neuron in layer 2 fires (indicating the recognition
result) and eventually other neurons in layer 2 may fire afterwards. Figure 5.10 (b), (c),
(d), (e), and (f), clearly indicate that characters "A”, "E”, "I”, "O”, and "U" are recognized by
Neuron1, Neuron2, Neuron4, Neuron3, and Neuron5, respectively. The learning time for
characters "A”, "E”, "O”, and "U” is around 125 ms while for "I” is around 165 ms as it stim-
ulates less layer 1 neurons than the other characters. As the result of this unsupervised
learning process each layer 2 neuron is labeled with the character which presence in the
input it recognizes and based on this labelling one can tell if a new unknown character is
one of the 5.

To test the recognition ability of the graphene SNN we make use of different variations of
the original characters as inputs. As an example, we present the recognition processes for
six character variations that gradually degrade from "E” to "O”, as illustrated in Figure 5.11.
When applying inputs that maintain the "E” character profile as depicted in Figure 5.11
(a), (b), (c), (d), and (e), one can observe that Neuron2 first fires, which indicates that the
graphene SNN correctly recognizes those inputs as character "E”. The time needed for the
SNN to recognize the inputs in each case are 125 ms, 135 ms, 155 ms, 135 ms, and 145 ms,
respectively, which is in line with the observation that when an input character stimulates
less input neurons in layer 1, the SNN recognition takes more time. When applying an
input that fundamentally deviate from "E” as depicted in Figure 5.11 (f), Neuron3 first
fires after around 125 ms, which indicates that the SNN recognizes the input character as
an "O” and not as an "E". The fact that the degraded character is closer to an "O" than to
an "E" is also obvious by visual inspection and as such the SNN made the correct decision.
The aforementioned results demonstrate the applicability of the proposed graphene SNN
for provide support for unsupervised character recognition, and that the learning ability
is robust.
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5.5. CONCLUSIONS
In this chapter we proposed a basic graphene-based Spiking Neural Network (SNN) unit
consisting of a synapse and a spiking neuron that can be utilized to implement com-
plex SNNs. The proposed design enables Spike-Timing-Dependent Plasticity (STDP) and
Long-Term Plasticity, and both Long-Term Potentiation (LTP) and Long-Term Depression
(LTD) can be induced in the same synapse by properly bias adjustments. By means of
SPICE simulation, we validated the basic operation of the proposed design and analyzed
how the enabled synaptic plasticity affects the SNN behavior. To this end we assumed a
2-layer SNN, derived its reaction to the same input stimuli by means of SPICE and NEST
simulations, and demonstrated the close agreement between the obtained results in terms
of total number of firing events and mean Inter-Spike Interval (ISI) length. Further, we
demonstrated the unsupervised learning capabilities of the proposed design by consid-
ering a two layer SNN consisting of 30 neurons meant to recognize the characters (and
variations of them) "A”, "E”, "I”, "O”, and "U", represented with a 5 by 5 black and white
pixel matrix. The simulation results indicated that the graphene SNN is able to perform
unsupervised character recognition and that its recognition ability is robust to input char-
acter variations.
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Figure 5.10: "A”, "E”, "I”, "O”, and "U" Recognition Associated Unsupervised Learning.
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RECONFIGURABLE

GRAPHENE-BASED SPIKING

NEURAL NETWORK ARCHITECTURE

To explore and enrich the potential of graphene-based neuromorphic computing, we pro-
pose a reconfigurable graphene-based Spiking Neural Network (SNN) architecture and a
training methodology for initial synaptic weight values determination. The proposed graphene-
based platform is flexible, comprising a programmable synaptic array which can be config-
ured for different initial synaptic weights and plasticity functionalities and a spiking neu-
ronal array, onto which application dependent neural network structures can be mapped.
To reconfigure the proposed graphene-based platform for a practical application, an SNN
topology tailored for the application and an initial SNN state (initial synaptic weights, plas-
ticity type), which can be determined by proposed training methodology are required. To
demonstrate the validity of the synaptic weights training methodology and the suitability
of the proposed SNN architecture for practical utilization, we consider 2 applications, i.e.,
character recognition and edge detection. In each case, the graphene-based platform is con-
figured according to the application tailored SNN topology and initial state and SPICE sim-
ulated to evaluate its reaction to input stimuli. For the first application, a 2-layer SNN with
30 neurons is used to reconfigure the proposed graphene-based architecture and perform
character recognition for 5 vowels, i.e., "A", "E", "I", "O", and "U" variations. Our simula-
tion indicates that the graphene-based SNN can achieve up to 94.5 % recognition accuracy
for the considered test datasets, which is comparable with the one delivered by a function-
ally equivalent Artificial Neural Network (ANN). Further, we reconfigure the architecture
for a 3-layer 13 neurons SNN to perform edge detection on 2 grayscale images, Lena and
Cameraman. SPICE simulation results indicate that the edge extraction results are close

The content of this chapter is based on the following paper:

H. Wang, N. Cucu Laurenciu, and S.D. Cotofana, “A Reconfigurable Graphene-based Spiking Neural Network
Architecture”, IEEE Open Journal of Nanotechnology (OJ-NANO), vol. 2, pp. 59-71, 2021.
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agreement with the one produced by classical edge detection operators, i.e., Canny, Roberts,
Sobel, and Prewitt, in terms of visual perception, Peak Signal-to-Noise Ratio (PSNR), and
Mean Squared Error (MSE). Our results demonstrate that the graphene SNN platform is
able to properly perform character recognition and edge detection tasks, which suggests
the feasibility and flexibility of the proposed approach for various application purposes.
Moreover, the utilized graphene-based synapses and neurons operate at low supply volt-
age (200 mV), consume low energy per spike for both neuron (43 pJ and 5.2×10−7 pJ at
200 Hz and 20 GHz spike frequency scale, respectively) and synapse (5.1 pJ and 6.0×10−8 pJ
at 200 Hz and 20 GHz spike frequency scale, respectively), and a graphene-based synapse oc-
cupies an active area of ≈45 nm2 (2 GNR devices) and a neuron an active area of ≈176 nm2

(6 GNR devices), which are desired properties for large-scale energy-efficient implementa-
tions.
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6.1. INTRODUCTION

Previous work demonstrated graphene’s suitability for artificial synapse [100, 143], neu-
ron [144], and SNN unit implementations [145], thus a versatile, generic graphene-based
SNN architecture that can be reconfigured for various practical tasks, would facilitate the
exploration of grahene-based neuromorphic computing capabilities. In this chapter, we
propose a reconfigurable graphene-based SNN architecture and an associated training
methodology for initial synaptic weight values determination. Specifically, the reconfig-
urable SNN architecture comprises a synaptic array (consisting of graphene-based pro-
grammable synapses) and a neuronal array (consisting of graphene-based spiking neu-
rons), onto which various network structures can be mapped for different application sce-
narios. Furthermore, the synapses can be configured for different initial synaptic weights
and plasticity, e.g., Long-Term Potentiation (LTP) and Long-Term Depression (LTD). To
reconfigure the proposed graphene-based platform for a practical application, two ingre-
dients are required: an SNN topology and an initial SNN state, e.g., initial synaptic weights.
The general flow for using the proposed reconfigurable platform for real-life scenarios is
as follows: For a given application and SNN topology, the SNN initial synaptic weight val-
ues are first determined by means of the specific training method described in Section
6.3.2. Subsequently, the SNN topology is mapped onto the graphene-based SNN architec-
ture by establishing the configuration of the programmable interconnect matrix, and the
synaptic array initial state (synaptic weight values and plasticity types).

To investigate the versatility and suitability of the proposed reconfigurable architecture
for practical applications, we consider 2 SNN topologies tailored for character recognition
and edge detection, map them on the proposed graphene neuro-platform, and evaluate
their performance by means of SPICE simulations. For the first application, a 2-layer SNN
consisting of 30 neurons is utilized to recognize the vowel characters, i.e., "A", "E", "I", "O",
and "U" (and their variations), represented by 5×5 black and white pixel matrices. The re-
sponse of the graphene-based SNN architecture, reconfigured according to the considered
SNN topology and different initial synaptic weight values is evaluated for multiple input
datasets comprising the original characters and their variations, is evaluated by means
of SPICE simulations. The obtained results indicate that a recognition accuracy of up to
94.5 % is achieved, which is in line (maximum 7.8% deviation) with the one obtained by
means of Matlab simulation of a functionally equivalent Artificial Neural Network (ANN).

For the second application, we consider a 3-layer SNN consisting of 13 neurons for per-
forming edge detection on 2 images, i.e., Lena and Cameraman. To this end, for each and
every image pixel, we should determine whether it belongs to an edge or not and this can
be done by sequentially analyzing the pixel configuration of the 3×3 grayscale pixel ma-
trix centered around it. To obtain the SNN initial synaptic weights, we make use of a set
of directional edge and non-edge 3×3 kernels. The graphene-based SNN architecture is
configured according to the SNN topology and initial state, and then SPICE simulations of
all possible 3×3 pixel matrix instances are performed to obtain the edge extracted output
image. Simulation results reveal that the graphene-based SNN platform delivers compa-
rable results when compared with to one produced by classical edge detectors, i.e., Canny,
Roberts, Sobel, Prewitt [146], which suggests good perceptual edge extracted image qual-
ity. If Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) are utilized as
evaluation metrics the SNN approach delivers slightly worse PSNR and MSE figures, i.e.,
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2.3% lower PSNR, and 3% higher MSE, for Lena, while for the Cameraman it marginally
outperforms the classical edge detectors by 2.7% for PSNR and 2.9% for MSE.

The simulation results demonstrate that the proposed SNN platform is able to properly
perform character recognition and edge detection tasks, which suggests the feasibility and
flexibility of the proposed approach for various application purposes. Moreover, the uti-
lized graphene-based synapses and neurons operate at low supply voltage (200 mV), con-
sumes low energy per spike for both neuron (43 pJ and 5.2×10−7 pJ at 200 Hz and 20 GHz
spike frequency scale, respectively) and synapse (5.1 pJ and 6.0×10−8 pJ at 200 Hz and
20 GHz spike frequency scale, respectively), and a graphene-based synapse occupies an
active area of ≈45 nm2 (2 GNR devices) and a neuron an active area of ≈176 nm2 (6 GNR
devices), which are desired properties for large-scale energy-efficient implementations.

The remaining of this chapter is organized as follows: In Section 6.2 we describe the
graphene-based SNN unit, and present a general view of the simulation framework. Sec-
tion 6.3 introduces the proposed reconfigurable graphene-based SNN architecture and
the associated training methodology for deriving the initial synaptic weight values. Sec-
tion 6.4 presents the simulation results for character recognition and edge detection ap-
plications, while Section 6.5 concludes the chapter.

6.2. BACKGROUND
In this section, we present the the generic graphene-based SNN unit and a brief account
on the utilized graphene circuit SPICE simulation framework.

6.2.1. GRAPHENE-BASED SNN UNIT

Figure 6.1 schematically illustrates the graphene-based SNN unit [145], which implements
a LIF neuron and a synapse with timing dependent plasticity via 4 pairs of GNR-based
devices.

The synapse core functionality is provided by Block 1, which receives input spikes from
both the pre-synaptic (Vspike) and post synaptic (Vfeedback) neurons, and generates the
post-synaptic neuron input signal (Vin). Initial synaptic weight values can be set through
GNR1

up and GNR1
dn back-gate bias voltages, Vup and Vdn, respectively. As for synaptic

plasticity, the GNR1
up cumulated trapped charges emulate long-term plasticity, while pair-

wise STDP modulates the synapse output signal Vin amplitude based on the timing dif-
ference between the pre-spike Vspike and post-spike Vfeedback occurrences. Furthermore,
by properly adjusting the back-gate bias voltage Vup, the same synapse can exhibit both
Long-Term Potentiation (LTP) and Long-Term Depression (LTD), e.g., 100 mV for LTP and
−100 mV for LTD. The GNRdn back-gate voltage controls the inhibitory synaptic ability,
i.e., 0 mV for no inhibition and 180 mV for inhibiting all incoming spikes.

The LIF neuron comprises the remaining blocks 2, 3 and 4. Block 2 receives Vin as input
signal from the synapse and is responsible for capturing the integrate-and-fire membrane
potential dynamics. Charges trapped into GNR2

up gate oxide can cause an equivalent volt-
age shift denoted as ∆V . When Vin +∆V reaches the firing threshold, block 2 signals a
firing event occurrence via the Vinternal signal. We note that block 2 suffices to emulate the
spiking neuron’s dynamics. However, since the neuron spike plays an important role for
the STDP process, Vinternal is further processed by block 3 in order to send a post-spike
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back to the synapse to activate the pairwise STDP plasticity. Furthermore, to enable direct
cascading of SNN units, Vinternal is also processed by block 4, which generates an output
spike Vout that is compatible with the input spike Vspike in terms of voltage range (20 mV
to 180 mV) and duration (2 ms). Note that the GNR topology details for all the SNN circuit
devices are presented in [145].
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As the basic SNN unit includes one synapse it can get input from one other neuron
only while in practically relevant SNNs a neuron can be connected to hundreds of other
neurons. To accommodate larger than one fan-in (i.e., n synapses connected to the same
neuron) situations, the synapse block can be extended by replacing GNR1

up with n GNRs
in parallel as illustrated in Figure 6.2 [145]. The synapses joint output voltage can then be
derived as:

Vi n =VDD ·
G11

up +G12
up +· · ·+G1n

up

G11
up +G12

up +· · ·+G1n
up +G1

dn

, (6.1)

where G1n
up denotes the conductance of the nth GNRup.

6.2.2. SIMULATION FRAMEWORK

A hybrid framework combining atomistic-level simulation for graphene-based devices
and circuit level SPICE simulation in Cadence [142] is utilized to properly evaluate the
proposed reconfigurable graphene-based SNN architecture.

For the GNR device electronic transport properties calculation we make use of: (i) the
Tight-Binding Hamiltonian to model the external potentials and the interactions between
Carbon atoms, (ii) the Non-Equilibrium Green Function (NEGF) to solve the Schrödinger
equation, and (iii) the Landauer-Büttiker formula to compute the graphene channel cur-
rent and conductance [102]. The GNR potential distribution profile is obtained by solving
a 3D Poisson equation self-consistently. Additionally, by calculating the equivalent volt-
age shift induced by interface trapped charges we account for the trapping/detrapping
phenomena influence on the GNR device operation [128].

For the graphene-based SNN circuit evaluation, a Verilog-A GNR device simulation model
[103] is employed. To enable high accuracy and time effective SPICE simulation, we make
use of precomputed look-up tables containing atomistic level GNR simulation data for the
utilized graphene-based devices. Additionally, we developed a Matlab simulation model
to allow for the determination of the initial synaptic weight values according to the train-
ing method described in Section 6.3.2. The obtained weights are subsequently converted
into appropriate bias values that are utilized to initialize the SNN synaptic weights (via
synapse GNRup back-gate voltage) in the SPICE circuit model.

6.3. RECONFIGURABLE GRAPHENE-BASED SNN
ARCHITECTURE

In this section we present the proposed reconfigurable graphene-based Spiking Neural
Network (SNN) architecture, explain the mapping methodology of a generic SNN struc-
ture onto the proposed platform, and introduce a general training method for the deter-
mination of the initial synaptic weight values.

6.3.1. ARCHITECTURE OVERVIEW

Figure 6.3 depicts a general overview of proposed reconfigurable graphene-based SNN
platform. It mainly comprises a neuronal array, a synaptic array, and a peripheral In-
put/Output (I/O) block, which allows for SNN’s communication with the computation
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Figure 6.3: Reconfigurable Graphene-based SNN Platform.

platform (application) it embeds it. Specifically, the neuron array consists of N graphene-
based spiking neurons, that can have their output connected either to the I/O block, when
the neuron resides into the output SNN layer, or to the synapse array, when connecting
with other layer neurons. The synapse array consists of N ×N programmable graphene-
based synapses, that can enable a connection either between neurons in different layers,
or between the I/O block and SNN input layer neurons. The platform reconfiguration
is enabled by means of: (i) a programmable switch matrix, which allows for SNN topol-
ogy mapping onto the neuronal and synaptic arrays and (ii) an initialization module that
programs the initial SNN network state (e.g., synaptic weights, plasticity types). The pro-
grammable switch matrix ensures that the signal routing within the neuronal and synap-
tic arrays is reflecting the desired SNN topology, by activating the appropriate intercon-
nect crossbar row/column connections. The initialization module comprises a memory
to store SNN’s initial status data and a bias generator that decodes status information into
voltage/current values to map the initial SNN status at electrical level. In particular, the
memory module stores the synaptic weight initial values and plasticity type (e.g., LTP, LTD)
for each SNN synapse while the bias generator converts these values into voltages to be
applied to the GNRup and GNRdn back-gates of the corresponding physical synapse (as
detailed in Section 6.2.1).
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6.3.2. ARCHITECTURE CONFIGURATION

To deploy a given application on the proposed reconfigurable graphene-based SNN ar-
chitecture we make use of the following approach. First, we identify by means of state
of the art approaches, e.g., [147], [148] an appropriate SNN topology for the considered
application (e.g., number of layers, inter-layer connectivity, number of neurons per layer,
synaptic plasticity types). Once the specific SNN topology is available, the SNN platform
is reconfigured accordingly via the switch matrix. Subsequently, we identify an appropri-
ate initial status of the SNN synaptic components by means of a training method able to
determine suitable initial synaptic weight values. Finally, the per synapse weight value
and plasticity type are transformed into bias voltages for the SNN synaptic array, and at
this point, the SNN architecture is fully configured and ready to be utilized for the given
application.

To have a better inside on the mapping process, let us consider a 2-layer SNN consisting
of 3 neurons in layer 1 and 1 output neuron in layer-2 as depicted Figure 6.4. To struc-
turally emulate this SNN on the proposed platform the neuronal array is configured such
that neurons N1, N2, N3 map the SNN layer 1 neurons and neuron N4 maps the SNN layer
2 neuron. The left most column of synapses are utilized for receiving SNN input and trans-
mitting it to the layer 1 neurons. The layer 1 to layer 2 connectivity is enabled by the row
of synapses corresponding to the N4 neuron. N4 is also connected further to the I/O block
for SNN output readout.

For the identification of the initial synaptic weight values we propose the general train-
ing flow summarized in Algorithm 1, which assuming a given SNN topology and applica-
tion specific input patterns, aims to identify the best set of initial synaptic weight values
that can generate the desired SNN reaction for the applied inputs, e.g., for classification
tasks, different inputs patterns should be discriminated by different output neurons. The
training process can be divided into two stages: (i) St ag e 1 (steps (1) to (4) in Algorithm
1), which concerns with the definition of the desired SNN reaction by labeling the out-
put neurons according to the input patterns they react or should react to, and (ii) St ag e 2
(steps (5) to (9) in Algorithm 1), during which the synaptic weight values are computed via
an iterative process that minimizes the difference between the obtained and the desired
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SNN reaction. The training according to Algorithm 1 is carried out by means of Matlab.

In St ag e 1, we define the desired SNN output response, e.g., which neuron should re-
act to which input pattern such that all input patterns can be properly discriminated. To
this end, we first instantiate the synaptic weights with random values (step (1)), apply the
input patterns and obtain the SNN output response (step (2)). We then match all output
neurons to the different SNN input patterns. Some neurons might already appropriately
fire for the assumed input patterns and thus labeling them is straightforward, while others
might not, case in which we enforce a label assignation. Once every output neuron has an
assigned label (a designation for an SNN input category), the SNN desired reaction has
been defined (step (4)).

In St ag e 2, we update the synaptic weights repetitively until the SNN exhibits the de-
sired output neuronal reaction for all input patterns. Specifically, the synaptic connec-
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Algorithm 1 Initial synaptic weight values determination.

Input: SNN topology & application specific input patterns
Output: Initial synaptic weight values

1: Randomly instantiate the synaptic weight values for the given SNN;
2: Apply input patterns to the SNN, and obtain the initial SNN output response;
3: Current SNN output neuronal response ← initial SNN output neuronal response from

(2);
4: Determine the desired SNN response (output neurons labeling);
5: while current SNN output response 6= SNN desired output response do
6: Update the synaptic weights based on the current and desired SNN output response

(inhibit connections that might trigger undesired SNN reaction and enhance con-
nections that help to produce the desired reaction);

7: Apply input patterns to the SNN with updated synaptic weights, obtain new SNN
output response;

8: Current SNN output response ← new SNN output response obtained from (7).
9: end while

tions that contribute towards the desired SNN reaction are potentiated, while the connec-
tions that might trigger an undesired SNN reaction are depressed. For the sake of simplic-
ity let us assume a 2 layer and 2 output SNN that has to classify input data according to two
patterns P1 and P2. After St ag e 1 the output neurons O1 and O2 are labeled as O1 should
react to P1, and O2 to P2 while the current SNN reaction is that both O1 and O2 react to
P1, which is not the desired behaviour. To determine which synaptic weights should be
potentiated and which ones should be depressed, we first determine the reaction of the
layer-1 neurons. In particular, we identify the set of input neurons that are stimulated by
P1 and P2, and denote them by G1 and G2, respectively. Since O1 is already reacting only
to P1 as it should, we are interested in changing only the O2 reaction via synaptic weights
modification. To this end, we determine the difference set G = G2 −G1, which includes
all input neurons that are excited by P2 and not excited by P1. Then, we: (i) potentiate
the synaptic connections between the neurons belonging to the difference set G and the
output neuron O2 (since we desire O2 to react for input pattern P2), and (ii) depress all
the synaptic connections between neurons belonging to G and output neuron O1 (as O1

shouldn’t react for input pattern P2). Figure 6.5 illustrates an example for the synaptic
weights updating process. To ensure the desired SNN reaction, i.e., O1 reacts for P1, and
O2 for P2, (i) the synapses between the input neurons excited solely by P2 and output
neuron O2 are potentiated (blue connections), and (ii) synapses from the input neurons
excited solely by P2 to output neuron O1 are depressed (red connections).

We note that for larger SNN and problem size dimensionality, the weights update method-
ology described above can be applied in a sequential pairwise manner. The synaptic
weights update is an iterative optimization process that ends when the difference between
the current and the desired SNN output neuronal response is minimal. When completed,
Stage 2 provides the set of initial synaptic weights values for the considered SNN topology.

Having generated the set of initial synaptic weights, the platform synapses GNR devices
are biased, as described in Section 6.2, with back gate voltages afferent to these weights,
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Figure 6.6: SNN for Character Recognition.

and at this point, the platform is fully configured.

6.4. SIMULATION RESULTS

To demonstrate the suitability of proposed reconfigurable graphene-based SNN architec-
ture for various application scenarios, as well as the plausibility of the synaptic weights
training method, we consider two SNN topologies that are particularly designed for char-
acter recognition and edge detection, respectively, map them on the proposed reconfig-
urable graphene-based SNN architecture, and investigate their run-time performance by
means of SPICE simulation. In both cases we make use of 2 ms input spike pulses varying
from 20 mV to 180 mV and a supply voltage VDD = 200mV. We note however that our pro-
posal is general and can be adapted to operate on different power supply values and input
spike formats.

6.4.1. CHARACTER RECOGNITION

For character recognition we rely on the 2-layer SNN comprising 30 neurons depicted in
Figure 6.6, intended to recognize the vowel (and their variations) "A", "E", "I", "O", and
"U". Each character is represented by a 5× 5 black and white pixel matrix. The 25 neu-
rons in layer 1 (L1) serve as input neurons and each neuron corresponds to a pixel in the
character matrix. For a given input character, each L1 neuron receives input spikes if its
corresponding pixel is black and no spikes if the pixel is white. The 5 neurons in layer
2 (L2) are output neurons, each one being meant to recognize a different character. In
the considered SNN, we assume that the input pixels are fed to the L1 neurons via LTP
synapses with identical weights. As concerns the L1 to L2 connectivity every L2 neuron
is connected with all the L1 neurons via LTP synapses with synaptic weight values deter-
mined by means of the proposed training method in Section 6.3.2. When applying an
input character, we stimulate the input neurons corresponding to the black pixels with
identical 200 Hz periodic input spike trains and employ "time-to-first-spike" scheme to
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(c) Character "E" (Neuron1). 
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(d) Character "I" (Neuron4). 
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(e) Character "O" (Neuron3). 
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(f) Character "U" (Neuron5).
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Figure 6.7: SNN Recognition Reaction for Original Vowel Characters.



6.4. SIMULATION RESULTS

6

85

(a) (b) (c)

Figure 6.8: "A" Variations with Additional Pixels.

indicate the recognition result, i.e., the output neuron that fires first is the one that recog-
nized the input character.

To determine the weights of the L1 to L2 synapses, we first randomly instantiate them
for every synapse. Then, we apply the 5 characters to the SNN one at a time and obtain
the initial recognition results depicted in Figure 6.7 (a). The Figure indicates that "E" and
"U" are both recognized by the same neuron Neuron1, while each of the other 3 charac-
ters is recognized by a different unique output neuron. Based on this initial recognition
results, we determine the desired SNN output neuronal response, i.e., characters "A", "E",
"I", "O", and "U" should be recognized by neurons Neuron2, Neuron1, Neuron4, Neuron3,
and Neuron5, respectively. Thus, we now need to adjust synaptic weight values such that
Neuron5 recognizes "U" instead of Neuron1 and preserve the SNN output reaction for the
other 4 characters. To achieve this we update the synaptic weights of connections be-
tween input neurons stimulated by "U" and not by "E", and the output neuron Neuron1

and/or Neuron5 (depression and/or potentiation). After we obtain the desired SNN out-
put neuronal response and so the initial values of the synaptic weights, we configure the
graphene-based SNN architecture and set the initial state of the synaptic array. We do
so, by adjusting the back-gate bias voltage (Vup in each synapse block, as detailed in Sec-
tion 6.2), which can take values between 0 mV and 200 mV with a 10 mV resolution. The
SNN reaction for each character obtained by means of SPICE simulation of the configured
graphene-based architecture is depicted in Figure 6.7 (b), (c), (d), (e), and (f), which clearly
indicate that the obtained results are in line with desired recognition behaviour. As can be
seen in Figure 6.7 (b) - (f), in all cases, initially, there are no firing events for the output neu-
rons. After some time, one L2 neuron fires (a different one for every character) and other
output neurons may or may not fire afterwards. The reaction time for input characters
"A", "E", "I", "O", and "U" are 135 ms, 135 ms, 180 ms, 150 ms, and 150 ms, respectively. As
expected, the SNN exhibits longer reaction time for character "I" as it stimulates less input
neurons in L1 than the other characters.

The aforementioned simulation experiments utilized the 5 initial characters as input
patterns. However, to get a more comprehensive assessment of the character recogni-
tion ability of the proposed graphene-based SNN, we extend the original 5 characters in-
put patterns, with additional datasets containing variations of the original characters, ob-
tained by adding 1, 2, or 3 extra pixels to the original characters, as exemplified in Figure
6.8 for "A". Specifically, for each original character we generate datasets corresponding to
each types of considered variation and Table 6.1 summarizes the dataset cardinality for
each character and variation type. To investigate the effect of the initial synaptic weights
values on the SNN recognition performance we derive 4 different initial synaptic config-
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Figure 6.9: SNN vs. ANN Character Recognition Performance.

Table 6.1: Extended Dataset Cardinalities.

Variation Type "A" "E" "I" "O" "U"
1 additional pixel 11 10 20 13 14
2 additional pixels 55 45 190 78 91
3 additional pixels 165 120 1140 286 364

urations based on the following training sets: (S1) - the 5 original characters, (S2) - (S1)
and 15 variations (1 new pattern per character for each variation type), (S3) - (S1) and
45 variations (2 new patterns per character for each variation type), and (S4) - (S1) and
75 variations (3 new patterns per character for each variation type). For each obtained
initial synaptic configuration we instantiate the corresponding graphene-based SNN ar-
chitecture and evaluate its recognition performance on a test dataset comprising all the
character variations input patterns not employed in the corresponding training set.

Furthermore, to put our results into proper perspective we compare the obtained classi-
fication capabilities against the ones of an Artificial Neural Network (ANN), paradigm that
is widely utilized for character recognition, trained (with the gradient descent method)
and evaluated on the same datasets. The Matlab modelled ANN is a 3-layer feed forward
network, with 25 input neurons, a hidden layer with 5 neurons, and an output layer with
5 neurons to indicate the recognized character. The ANN and graphene-based SNN char-
acter recognition performance is presented in Figure 6.9. As can be observed in the Figure
the recognition ability of both ANN and SNN improves for larger size training datasets,
which is expected, from ≈ 55% for training set S1 with cardinality 5, up to ≈ 95% for train-
ing set S4 that contains 80 input patterns. Moreover, the SNN approach exhibits similar
with ANN recognition performance (max. 7.8% variation), even outperforms ANN for the
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Figure 6.10: Edge Detection SNN Illustration, (a) SNN Structure, (b) Edge Patterns and
Non-edge Patterns.

training set S3, while benefiting of all spike and graphene induced energy consumption
and area advantages.

6.4.2. EDGE DETECTION

To further demonstrate the capabilities of the proposed reconfigurable SNN architecture
we consider the 3-layer SNN comprising 13 neurons depicted in Figure 6.10 (a) and em-
ploy it to perform edge detection on the celebrated Lena and Cameraman images. To this
end, for each and every image pixel, we should determine whether it belongs to an edge
or not and this can be done by sequentially analyzing the pixel configuration of the 3×3
grayscale pixel matrix centered around it. Each layer 1 (L1) neuron receives an input spike
train which frequency is determined by the grey levels of the 3×3 matrix pixel it connects
with. We assume that: (i) the input patterns are fed to the L1 neurons via LTP synapses
with identical synaptic weights, (ii) L1 and L2 neurons are fully connected via LTP synapses
with initial weight values determined based on a set of directional filters that detect 3×3
edge and non-edge patterns, and (iii) for L2 to L3 connectivity, LTP synapses with identi-
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Figure 6.11: SNN Reaction for Edge and Non-Edge Input Patterns.

cal synaptic weights are utilized to connect Neuron1 and Neuron2 to the output neuron,
while an inhibitory connection is in place between Neuron3 and the output neuron.

To determine the initial weight values for the synapses connecting L1 and L2, we first
assign them random values. We use as SNN input patterns a series of edge and non-edge
patterns [148] formalized as 3×3 grayscale pixels matrices, as depicted in Figure 6.10 (b).
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(a) Lena image (b) Edge extracted output 1, 2, and 3 for Lena image, which are obtained 
      with 4, 8, and 12 quantization gray levels, respectively.
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(c) Cameraman image (d) Edge extracted output 1, 2, and 3 for Cameraman image, obtained 
      with 4, 8, and 12 quantization gray levels, respectively.

Figure 6.12: Edge Detection Results.

To represent the 3 grey levels (white, grey, black) in the considered edge and non-edge
patterns, we use input spike trains with 0 Hz, 190 Hz, and 200 Hz frequency, respectively.
As desired SNN reaction, we would like the SNN output neuron to fire when an edge pat-
tern is applied as input, and to not fire for non-edge input patterns. To induce the desired
SNN output reaction, we need to update the L1 to L2 synaptic weights. As can be observed
in Figure 6.10 (b), the edge patterns and non-edge patterns stimulate different numbers
of input neurons. Specifically, the edge patterns stimulate 3 or 6 input neurons while the
non-edge patterns stimulate 0, 1, 8 or 9 input neurons. Thus, we expect the non-edge pat-
terns either to induce no firing event in L2 neurons, or to induce firing events in more L2

neurons than the edge patterns do. Therefore, we would like to take advantage of the L2

neurons that are firing only for the non-edge patterns in order to induce the desired SNN
output neuron reaction. Since this reaction for non-edge patterns is "do not fire", we can
exploit the spiking of the neurons in L2 that are firing only for non-edge patterns, in order
to inhibit the SNN output neuron. In particular, we designate Neuron3 in L2 to fire only
for non-edge patterns. Thus, we depress all incoming synaptic connections to Neuron3

and inhibit its outgoing connection to the SNN output neuron. Since for this particu-
lar application, the initial synaptic weights values for desired SNN reaction to edge and
non-edge patterns can be derived as previously described, we don’t need to make use the
methodology introduced in Section 6.3. After obtaining the initial synaptic weights, the
graphene-based SNN is configured accordingly, and the SNN reaction to the 18 3×3 edge
and non-edge input patterns evaluated by means of SPICE simulation. The SNN reaction
is summarized in Figure 6.11(a) and, for exemplification purpose, graphically presented
in Figure 6.11 (b) - (e), for edge pattern 1, edge pattern 5, non-edge pattern 2, and non-
edge pattern 6, respectively. We note that for edge patterns at least one L2 neuron is firing,
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Table 6.2: Edge Detection Results Quantitative Evaluation.

Lena Image Cameraman Image
PSNR MSE PSNR MSE

Canny 5.4486 1.8545E +04 4.6640 2.2217E +04
Roberts 5.5965 1.7924E +04 4.8678 2.1198E +04
Sobel 5.5718 1.8026E +04 4.8609 2.1232E +04
Prewitt 5.5708 1.8030E +04 4.8609 2.1232E +04
SNN 4 levels 5.1763 1.9744E +04 4.9972 2.0576E +04
SNN 8 levels 5.4381 1.8589E +04 4.8736 2.1170E +04
SNN 12 levels 5.4690 1.8458E +04 4.9798 2.0658E +04

which makes the SNN output neuron to fire while for the non-edge patterns, there are no
firing events for the SNN output neuron, either because none of the L2 neurons fire, or
because the inhibitory neuron Neuron3 fires and suppresses all the other L2 to L3 firing
activity.

To evaluate the edge detection ability of the obtained SNN, we consider two grayscale
images, i.e., Lena and Cameraman, depicted in Figure 6.12 (a) and (c), and rely on SPICE
simulation to obtain the detection results. Prior to image processing they are first quan-
tized in order to reduce the number of gray levels. Each pixel appurtenance or not to an
edge is determined by the SNN processing of the 3×3 window centered in that pixel and
after all pixels are scanned the edge detection result forms a black and white image, where
black pixels belong to edges and white pixels don’t.

To get inside on the way quantization affects the edge detection performance, we per-
form edge detection on 4-, 8-, and 12-levels quantized images. We encode each grey level
pixel as a spike train with a different frequency ranging from 0 Hz (white) to 200 Hz (black).
Figure 6.12 (b) and (d) present the edge extraction results for different quantization levels
for Lena and Cameraman, respectively. A visual inspection of Figure 6.12 images reveals
that 4 grey level quantization results in blurred edge images, while 8- and 12-level quanti-
zation in clear and sharp edges. Note that the image quality improvement becomes only
marginal beyond a certain number of quantization levels (e.g., the difference between 8-
level and 12-level quantized images generated edges are almost imperceptible).

To assess the quality of the SNN edge detection results we compare them against the
Matlab obtained results for 4 classical edge detection operators, i.e., Canny, Roberts, So-
bel, and Prewitt [149] applied directly on the original images (without prior quantization),
in terms of the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE),
which measure the perceptual distortion between the original images and the edge ex-
tracted counterparts [150]. We note that a higher PSNR indicates a higher quality image,
while a lower MSE value promises a better image quality. Table 6.2 presents a comparative
summary of the PSNR and MSE values computed for the edge extracted images, obtained
with the classical edge detection algorithms and with the proposed graphene-based SNN
when using different quantization levels. By inspecting the PSNR and MSE results for Lena
image in Table 6.2, we note that the best performing edge detector is Roberts and that the
SNN counterpart exhibit only slightly worse performance: (i) 7.5%, 2.8%, and 2.3% lower
PSNR values and (ii) 10%, 3.7%, and 3% higher MSE values, for the SNN with 4, 8, and 12
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Figure 6.13: SNN Unit Energy Consumption vs. Input Spike Train Frequency.

gray levels, respectively. Looking at the SNN results, we note that in general the finer the
gray level quantization the better the edge image quality, which is in agreement with the
visual perception one gets when inspecting Figure 6.12 (b). For the Cameraman image, the
SNN detector outperforms the classical counterparts, with Roberts fairing the best among
the classical detectors. In particular, when comparing to Roberts figures, the SNN pro-
vides (i) 2.7%, 0.1%, and 2.3% higher PSNR values and (ii) 2.9%, 0.1%, and 2.6% lower MSE
values for the SNN with 4, 8, and 12 gray levels, respectively. To conclude, the edge detec-
tion simulation results indicate that the graphene-based SNN platform delivers compa-
rable performance with classical edge detectors for the considered Lena and Cameraman
images, while providing all the benefits of SNN base processing paradigm.

6.4.3. AREA AND ENERGY EVALUATION

While an accurate evaluation of the area and energy consumption of our proposal is not
possible at this stage of development it is of interest to get some inside on those two as-
pects. As it concerns the SNN unit area, a graphene-based synapse occupies an active area
of ≈45 nm2 (2 GNR devices) and a neuron requires an active area of ≈176 nm2 (6 GNR de-
vices) [145]. To evaluate the energy consumption and get sight into energy expenditures
at different time scales, we considered an SNN unit and apply rectangular spikes with 40%
duty cycle as input, while varying the input spike frequency within the range of 200 Hz
to 20 GHz. We then measure the energy required by the SNN unit neuron to generate
a spike and by the SNN unit synapse to perform plasticity modulation and spike trans-
mission. The obtained results graphically presented in Figure 6.13 indicate ≈ 8 orders of
magnitude decrease in energy consumption per spike for both the neuron (from 43 pJ at
200 Hz to 5.2×10−7 pJ at 20 GHz) and the synapse (from 5.1 pJ at 200 Hz to 6.0×10−8 pJ at
20 GHz).
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Further, to have a better view on the potential of using the proposed graphene-based
SNN architecture for large-scale energy efficient implementations, we summarize in Ta-
ble ?? and ?? the area and energy consumption figures for biological and state-of-the-art
artificial neurons and synapses, respectively. We note that, the graphene-based SNN unit
(neuron+synapse) can potentially save at least ≈ 2 orders of magnitude area estate when
compared with both neurons and synapses state-of-the-art implementations.

From the energy standpoint, the proposed SNN unit can consume up to 1 order of mag-
nitude more than state-of-the-art counterparts if operated with spike pulse width in the
order of, e.g., µs due to leakage but can achieve up to 4 orders of magnitude energy sav-
ings if operated with short spike pulse width in the order of, e.g., ps. For the presented
applications, we considered a biologically plausible time scale, i.e., ms, and, as such, we
obtained an average energy consumption for the entire SNN architecture neuronal and
synaptic arrays of 1.98×104 pJ per character for the vowels recognition application, and
of 1.21×104 pJ and 1.39×104 pJ per edge pixel and non-edge pixel, respectively, for the
edge detection application.

Note that the proposed SNN unit is generic thus it is by no means restricted to the con-
sidered design constraints. The SNN architecture can be tailored to function under differ-
ent spike width scales by considering different trapping/de-trapping time constant values
for the GNRs of the neuronal and synaptic array devices. Thus, we can target both bio-
logical, which require low input frequency and a specific voltage ranges, and fast process-
ing scenarios for which a ns timing scale operation would be more appropriate from the
computation speed point of view. To accommodate different application targets, the SNN
architecture neuronal and synaptic arrays can be partitioned into different frequency is-
lands, i.e., for each frequency island the neurons and synapses GNRs are designed with
trapping mechanisms that match the island time scale. At run-time, depending on the
application constraints, one can map the SNN topology either to the higher frequency
islands for fast non-cortical processing, or to the lower frequency ones for bio-mimetic
processing.

6.5. CONCLUSIONS

In this chapter, we proposed a reconfigurable graphene-based Spiking Neural Network
(SNN) architecture and a training methodology for obtaining the initial SNN synaptic
weight values. The proposed architecture supports artificial synapses with programmable
plasticity and reconfigurable connectivity between the neuronal and synaptic arrays. To
investigate the versatility and suitability of the proposed architecture to accommodate
and evaluate the behaviour of different SNN topologies we considered 2 SNN applications
particularly designed for character recognition and edge detection. We mapped on the
generic graphene-based platform a 2-layer SNN tailored for vowel characters recognition
and demonstrated by mens of SPICE simulations that it can achieve up to 94.5 % recog-
nition accuracy for the considered training and evaluation datasets, which is very close
to the one achieved by a functionally equivalent ANN counterpart. Further, we mapped
and evaluated a 3-layer SNN to perform edge detection on Lena and Cameraman images
and demonstrated that the edge detection result quality matches and even outperform
the one obtained with classical edge detection operators. In summary, the proposed re-
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configurable graphene SNN architecture exhibits: (i) area and energy efficiency due to
effective graphene-based implementation of neurons and synapses, (ii) flexible support
for SNN applications mapping due to FPGA-alike reconfiguration feature, and (iii) train-
ing process simplicity due to Spike-Timing-Dependent Plasticity (STDP) and Long-Term
Plasticity support.



7
CONCLUSIONS

In this thesis, we first introduced an atomistic-level simulation model to calculate graphene
electronic transport properties, which captures the hysteresis effects induced by interface
charges trapping/detrapping phenomena. Second, we investigated the graphene potential
for artificial synapse and neuron implementations, and proposed generic one- and two-
top gates graphene-based synapse structures, as well as a compact entirely graphene-based
neuron that mimics nonlinear leaky integrate-and-fire spiking neuron dynamics. Subse-
quently, we introduced a basic graphene-based Spiking Neural Network (SNN) unit con-
sisting of a synapse and a spiking neuron with input-output compatibility, which can be
utilized to implement complex SNNs. An extension approach is also provided to accommo-
date larger than one fan-in situation, i.e., multiple synapses connected to the same neuron.
Finally, we proposed a reconfigurable graphene-based SNN architecture and an associated
training methodology for initial synaptic weight values determination. This chapter sum-
marizes the overall achievements of this thesis and highlights some future research direc-
tions.
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7.1. SUMMARY

Chapter 1 : Introduction
In this chapter, we briefly discussed the neuromorphic computing landscape and intro-
duced the research questions addressed in this thesis. We first presented the motiva-
tion for this thesis work. Subsequently, we presented the limitations of state-of-the-art
neuromorphic systems implemented with conventional and emerging technologies, and
the opportunities and challenges for graphene-based neuromorphic computing. Next, we
discussed the research questions and summarized the contributions of this thesis.

Chapter 2 : Graphene Structures Electron Transport Model
In this chapter, we introduced an atomistic-level graphene device simulation model that
can calculate the electric transport properties of Graphene NanoRibbon (GNR) devices
with rectangular or non-rectangular GNR geometries and capture hysteretic effects caused
by interface charges trapping/detrapping phenomena. We applied the model on a rect-
angular graphene shape and validated the results against experimentally measured data.
As opposed to state-of-the-art counterparts, which are only applicable for rectangular
topology the proposed approach can capture hysteresis effects on structures with various
graphene geometries and we exemplified this for two non-rectangular GNRs. The exper-
iments indicated good consistency between simulated and measured results, indicating
that the model is suitable for traps-aware evaluation of graphene-based device and circuit
conduction.

Chapter 3 : Graphene-based Synapses with Versatile Plasticity
In this chapter, we proposed generic one- and two- top gates graphene-based synapse
structures. We demonstrated that by properly changing GNR dimensions, shape, and
contacts topology, graphene devices are capable of mimicking various synaptic plasticity
types. We successfully emulated two fundamental synaptic functionalities: Spike-Timing-
Dependent Plasticity (STDP) and Long-Term Plasticity, including Long-Term Potentiation
(LTP) and Long-Term Depression (LTD). Moreover, the graphene synapses are program-
able by means of back-gate bias voltage and the same device can exhibit both LTP and
LTD. Our simulation results indicated that the one-top-gate synapse can achieve the 100%
plasticity change provided by natural synapses. The two-top-gates synapse exhibits STDP
with spike duration dependent potentiation/depression time scale without affecting the
obtained synaptic weight change amplitude while achieving a maximum of 30% synap-
tic weight change and potentiation/depression time scale range from [−1.5ms,1.1ms] to
[−32.2ms,24.1ms]. We note that given that we made use a generic approach to identify
appropriate GNR topology for a desired synaptic plasticity, our proposal is not limited
to the 4 STDP and 2 LTP forms discussed in the chapter. Furthermore, we investigated
the impact of two-top-gates synapse at the SNN level by performing NEST based simula-
tions. Our experiments indicated a strong corelation between the synaptic plasticity type,
i.e., Hebbian and anti-Hebbian, and the number of firing events occurring within the net-
work and that the number of SNN output firing events monotonously varies with respect
to the input spikes frequency. For Hebbian STDP and a spike duration of 20 ms we ob-
tained an SNN behavior similar with the one provided by the same SNN with biological
STDP. The proposed graphene-based synapses have small area (30 nm2), operate in the
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100 mV bias and input range, and can emulate various plasticity types, which is making
them very promising candidates for scalable energy-efficient neuromorphic system im-
plementations.

Chapter 4 : Graphene-based Nonlinear Leaky Integrate-and-Fire Spiking Neuron
In this chapter, we proposed an entirely graphene-based ultra-compact and low voltage
nonlinear leaky integrate-and-fire spiking neuron. It consists of 6 GNR-based devices con-
trolled via top-gate voltages, one of them emulating the membrane potential dynamics,
and the remaining 5 generating the necessary control signals as well as the output spikes.
We validated, by means of SPICE simulations, the basic neuron functionality under peri-
odic input spike trains and noisy stochastic inputs. Our simulation results indicated vari-
ability resilience and neuronal output firing regularity for a varying input firing rate (from
20 to 200 spikes per second). For all simulation, we utilized spike duration and amplitude
of 2 ms and 100 mV, respectively, which are comparable to those observed in biological
neurons. Moreover, the small area (GNR-based device area of max. 36 nm2) and low en-
ergy (inherent to the 200 mV supply voltage) are certainly enabling factors for the potential
implementation of large-scale artificial neural systems.

Chapter 5 : Graphene-based Spiking Neural Network
In this chapter, we introduced a basic graphene-based SNN unit consisting of a synapse
and a spiking neuron with input-output compatibility that can be utilized to implement
complex SNNs. An extension approach is provided to accommodate larger than one fan-
in, i.e., multiple synapses connected to the same neuron. We validated the basic operation
of the proposed design by relying on the mixed atomistic-circuit simulation framework
and investigated how the enabled synaptic plasticity affects SNN behaviour. To this end
we assumed a 2-layer SNN, evaluated its response to the same input stimuli by means of
SPICE and NEST simulations, and demonstrated a close agreement between the obtained
results in terms of total number of firing events and mean Inter-Spike Interval (ISI) length.
Further, we demonstrated the unsupervised learning capability of our proposal by consid-
ering a two layer SNN consisting of 30 neurons meant to recognize the characters "A”, "E”,
"I”, "O”, and "U" (and variations of them). Each character is represented with a 5 by 5 black
and white pixel matrix and the simulation results indicated that the graphene SNN is able
to perform unsupervised character recognition and that its recognition capacity is robust
to input character variations. Finally, we noted that the proposed SNN unit requires a
small real-estate footprint (max. 30 nm2 are required by one graphene-based device) and
operates at 200 mV supply voltage, which suggested its suitability for the design of scalable
energy-efficient computing systems.

Chapter 6 : Reconfigurable Graphene-based Spiking Neural Network Architecture
In this chapter, we proposed a reconfigurable graphene-based SNN architecture and a
training methodology for obtaining the initial SNN synaptic weight values. The proposed
architecture supports artificial synapses with programmable plasticity and reconfigurable
connectivity between its neuronal and synaptic arrays. To investigate the versatility and
suitability of the proposed architecture for practical utilization, we considered 2 SNN ap-
plications, i.e., character recognition and edge detection. We first mapped on the generic
graphene-based platform a 2-layer SNN tailored for vowel characters recognition and demon-



7

98 7. CONCLUSIONS

strated by means of SPICE simulations that it can achieve up to 94.5 % recognition accu-
racy for the considered training and evaluation datasets, which is very close to the one
achieved by a functionally equivalent Artificial Neural Network (ANN) counterpart. Fur-
ther, we mapped a 3-layer edge detection tailored SNN, evaluated it on Lena and Cam-
eraman images and demonstrated that its edge detection abilities matches and even out-
performs the one of classical edge detection operators. Our results demonstrated the fea-
sibility and flexibility of the proposed approach for various application purposes. More-
over, the proposed reconfigurable graphene SNN architecture exhibits area and energy ef-
ficiency due to effective graphene-based implementation of neurons and synapses, which
are desired properties for scalable energy-efficient implementations.

7.2. FUTURE RESEARCH DIRECTIONS
Subsequently, we discuss several future research directions that are suggested to further
explore and enrich the potential of graphene for neuromorphic computing implementa-
tions.

• Graphene-based biologically plausible neuromorphic systems that can aid neu-
roscience research.
One of the primary goals of neuromorphic computing is to develop neuromorphic
systems that can help the investigation of the complex human brain functionali-
ties by neuroscience researchers. Such neuromorphic systems ought to be capa-
ble of precisely emulating biological neuronal and synaptic dynamics. To this end,
spiking neuron models with high biological plausibility, e.g., the Hodgkin–Huxley
model, and synapses with accurate emulation of biological synaptic behaviors are
required. As graphene devices exhibit outstanding capability for complex func-
tionality emulation while preserving low energy operations and small footprints,
they are promising candidates for biologically plausible neuromorphic implemen-
tations. To this end, a more sophisticated graphene-based circuitry than the one
employed to mimic the Integrate-and-Fire spiking neuron presented in Section 4
may be required to emulate the complex biologically plausible neuron functional-
ity. The identification of biologically plausible synapse and neurone circuits can
certainly builds upon the work in this thesis and make use of the hybrid atomistic-
circuit level simulation framework.

• Graphene-based neuromorphic systems as neural interfaces.
Graphene’s outstanding electrical and mechanical properties, e.g., high current den-
sity, good electrical conductivity, ultimate thinness, and flexible, as well as its bio-
compatibility, make it an appealing option for building brain-machine interfaces.
The graphene-based neural interfaces may be inserted or worn as part of medical
care or tracking items, or they can interact directly with biological tissues. To al-
low these graphene-based neural interfaces must be capable of interacting with bi-
ological systems using the same protocol, e.g., receiving, decoding, and encoding
spike-based signals. Despite the fact that the capacity of graphene-based neuro-
morphic systems to process spike-based signals is validated in the thesis, the real
signals in the human brain are noisy and stochastic thus differ from the ones used
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in the proposed graphene-based SNN assessments. As such, further investigations
on graphene-based implementations for achieving the ability to process real hu-
man brain signals are required to enable the direct brain-machine interaction. This
research can further explore and enrich the potential of graphene for the implemen-
tations of various neuromorphic systems for diverse purposes.

• Investigation of graphene-based SNNs’ utilization for other application beyond
the considered image processing tasks.
In the thesis, we explored the capability of graphene-based SNNs to perform im-
age processing practical tasks, i.e., character recognition and edge detection. When
referring to other practical application types, e.g., speech and video processing, dif-
ferent SNN structures and associated learning abilities need to be investigated as
the to be processed data are fundamentally different, e.g., contain time series infor-
mation. Furthermore, to facilitate the utilization of graphene-based neuromorphic
systems for diverse applications, a generic methodology that can assist in determin-
ing the appropriate application-specific SNN configurations, e.g., network topology,
is required. This research can help to improve the capability of the graphene-based
neuromorphic system to solve various practical tasks.
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