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GIMWVE ME A LIGHT,
that I may tread safely into the unknown

A General Introduction

1.1

The purpose of this chapter is to introduce the reader to the research reported
in this dissertation, which is a (partial) presentation of a systematic investi-
gation on the concept of “Multi-Signal Domain Modeling and Simulation of
Solid-State Transducers”. Obviously, such a broad objective involves many
different subjects, borrowing from physics, mathematics and computer sci-
ence. Moreover, the time needed to fully achieve such an objective may eas-
ily exceed the time available for a normal Ph.D. research project. In this
chapter we therefore try to establish a unified view of the subject and define
the context in which we wish to carry out the work. The emphasis is on the
extraction of the generic features that allow the definition of a general frame-
work for the modeling and simulation of solid-state transducers. Such a
framework can then be used as guidance in the definition of a tool kit on top
of which the framework can (partially) be implemented. Note that the defini-
tion of a generic tool kit supports the addition of yet unimplemented features
of the framework. This chapter is structured as follows. Section 1.1 discusses
the main reasons for carrying out this research. Section 1.2 presents a discus-
sion on the basic aspects of physically based modeling and simulation. Sec-
tion 1.3 discusses the topic of modeling and simulation in the context of
solid-state transducer research. Section 1.4 discusses the more specific aims
of this dissertation, which is the modeling and simulation of the thermoelec-
tric effects in silicon solid-state transducers. It also briefly discusses some
possible future research projects that lie within the scope of this field. Sec-
tion 1.5 gives an outline of the work presented in subsequent chapters. Sec-
tion 1.6 discusses some issues related to the notation used in this work.
Finally, Section 1.7 discusses some features related to the software (tool kit)
developed during the research.

Solid-State Transducer Research

In the past two decades we have seen a rapidly growing interest, from aca-
demic as well as industrial laboratories, in the field of solid-state transducer
research and development. This tendency has led to many new transduction
principles being described in the literature. For instance, timely information
on solid-state transducer research can be found in dedicated journals like
“Sensors and Actuators” and “Sensors and Materials”. Also the proceedings

MULT! SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 13



Chapter 1: A General Introduction

1.2

of the “Transducers” and “Eurosensors” conferences provide valuable infor-
mation. However, this wealth of information has also led to the problem of
the researcher and engineer loosing the overall view on the subject, making
it increasingly difficult to find one’s way in the transducer “forest”. It was
therefore only natural that, besides the more practical and experimental re-
search effort, a general science of transducers started to evolve with its main
objectives to compile, systematize and unify knowledge on transducing prin-
ciples. Noticeable examples are the “sensor effect cube” proposed in [Middel-
hoek 1981][Middelhoek 1986], the equilibrium thermodynamic treatment of
sensors in [Ylilammi 1989] and the thermodynamic systems approach in [Duyn
1990]. An excellent further elaboration on the thermodynamics of transduc-
ers was put forward in [Kirschner 1991]{Kirschner 1992].

In this dissertation it is argued that the merits of the previously mentioned
contributions to the general science of transducers, besides providing a uni-
fied view of the solid-state transducer field, also provides a systematic ap-
proach to the modeling and simulation of solid-state transducers [Duyn
1990). The impetus to solid-state transducer modeling and simulation is of
course, just as in the “plain” IC modeling and simulation field [Selberherr
1984], driven by the desire to be able to perform rapid prototyping of de-
signs, to reduce the costly trial-and-error fabrication cycles, and to obtain in-
sight into the physical properties of the device interior not readily accessible
by experiment. At present, despite the maturity of the modeling and simula-
tion of semiconductor IC devices, the field of solid-state transducer model-
ing and simulation is still in its infancy and has yet to achieve the same level
of maturity [Duyn 1992). Major difficulties are, of course, the diversity of the
transducer field and the complicated interrelationships between the various
signal domains [Middelhoek 1986][Duyn 1990].

Physically Based Modeling

In this section some considerations on basic modeling paradigms are dis-
cussed that may help to put the subject into perspective.

“Modeling” and “Model” are words with a remarkably broad range of mean-
ings and are likely to be interpreted very differently by people from different
disciplines. The reason for this is that the process of modeling is extremely
domain specific, that is, it is intricately tied to the particular discipline one is
in. To name a few: climate modeling, cosmic modeling, economic modeling,
performance modeling, cognitive modeling, etc. This fact makes it extreme-
ly difficult to devise generic (high-level) modeling strategies, and we usually
must be satisfied with a domain-specific approach to modeling. The model-
ing process usually starts out with some cognitive notion of the model. At
this stage it includes ideas and properties that are implicit, that is, they de-
pend on context and real-world experience in order to make sense. Gradual-

14
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Physically Based Modeling - 1.2

ly, a series of refinements is applied to this notion; these refinements pin
down the notion, transforming tacit properties into explicit ones and narrow-
ing the scope to focus on elements that are relevant to the purpose of the
model. This process can be formalized to some extend by identifying the fol-
lowing stages: abstraction!, representation and implementation.

The abstraction stage is concerned with the identification of the set of fea-
tures and characteristics of the entity to be modeled. The process results in
an abstract notion (abstraction) of the entity, which unavoidably involves
some form of idealization. We then proceed to a representation by formaliz-
ing the abstraction. Unlike the abstraction the representation should be con-
crete and precise, that is, it should not be a source of ambiguity. Hence, it
should provide sufficient information to create an actual implementation of
the model in some medium? (blueprint). Note that there is no one-to-one cor-
respondence between the three stages, for instance, it is possible to have
many different implementations of a single representation. Also many differ-
ent representations of a single abstraction may be possible. Which one to
choose is often a design decision guided by accuracy and reliability con-
straints. The ultimate aim is to support the modeling paradigm of a given do-
main by means of a computer program, where the user supplies the
abstraction and subsequently the computer chooses the representation and
implementation and proceeds directly to the simulation of the model3.

We may narrow down the field a little by interpreting the process of model-
ing as the creation of abstract mathematical models of observed or hypothet-
ical physical objects. We might call this physically-based modeling. The
resulting model may be used to predict the actual (real-time) behavior of a
physical object via (numerical) simulation. Note that, depending on the basic
physical modeling paradigm used, it is very likely that for a single physical
object there exists a whole hierarchy of models, each with its characteristic
complexity, reliability and accuracy. Which one to choose is often a design
decision dictated by complexity, accuracy and reliability constraints. Also
this process can to some extent be formalized (cf. Figure 1-1).

physical conceptual r__ mathematical posed

object ™| model model problem [~ implementation

Figure 1-1

The three stages in physically based modeling.

1. Abstraction: The act or process of separating the inherent qualities or properties of some-
thing from the actual physical object or concept to which they belong [TAHD 1978].

2. The medium we focus on is a computer program but, in general, this does not have to be the
case.

3. Obviously, such an approach has its merits and demerits. However, we shall not dwell on
this.

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 15



Chapter 1: A General Introduction

In this case, the choice of the physical modeling paradigm to a large extent
embodies the abstraction stage. Hence, the attention shifts to the representa-
tion stage. Essentially, the modeling process may now be seen as a series of
refinements to the representation, starting with a conceptual model of the
physical object to be modeled. The conceptual model is a (loose) description
of the properties, features, characteristics, etc. of the physical object. The
conceptual model may then be used to build an abstract mathematical model,
which essentially is a collection of mathematical equations and definitions of
terms that go into the equations, that describe the behavior of the model. The
equations are “context free”, that is, they are purely mathematical expres-
sions that are complete (closed) without requiring properties or definitions
from the conceptual model, neither do they depend on the (computer) imple-
mentation details*. Note that the physical interpretation of the mathematical
model is embedded in the conceptual model.

The mathematical equations stating the model are not “problems” in them-
selves but rather predicates, i.e. statements of relationships between entities
in the model. From a computer science point of view, a mathematical model
is declarative rather then procedural. In other words, the mathematical mod-
el does not contain any posed problems or instructions for solving problems,
but merely states equations. However, in general, we want a physically
based model to do something, i.e. simulate the behavior of the physical ob-
Ject being modeled. Mathematically, this translates into specifying and solv-
ing a posed problem. For this purpose we may formulate (procedural)
mathematical problems that more or less configure the mathematical model
for that problem. In general, a posed problem includes both a conceptual no-
tion of the task to be performed and a precise formulation of the correspond-
ing mathematical problem. The result of these three steps, going from a real
or hypothetical physical object to the implementation, is a physically based
model.

The separation of the conceptual model and the posed problems from the
mathematical model is in fact a matter of convenience; it allows a single
mathematical model to be reused for many conceptual models and posed
problems. The mathematical model can be implemented in such a way that it
is configurable and the configuration phase can be taken care of by means of
an interactive user interface or a simple file base interpretative interface.
This is the philosophy on which many existing programs which support
high- level computer based modeling are based. One and other is shown in
Figure 1-2.

Note that the above implies a separation between simulation, which empha-
sizes computation of the behavior of a given physically based model, and

4. The notion of an explicit mathematical modet of natural phenomenon, separate from both its
numerical solution and its physical interpretation, is well known in applied mathematics.

16
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human interaction human interaction

physically based model

conceptual model

posed problem

mathematical model

Figure 1-2 A physically based model basically consists of a conceptual model, a mathematical
model and a posed problem. The mathematical model may support a host of
conceptual models and posed problems.

modeling, which focuses on the creation and implementation of the (black-
board) model. Obviously, in order to perform simulations, the given model
has to be implemented in a computer program that can be executed by a
computer, i.e. it has to be transformed into a computational model. Opposed
to modeling, which is the field of physics and mathematics, the implementa-
tion of the model is the field of numerical mathematics and software engi-
neering. Numerical mathematics provides techniques to design procedural
descriptions which state how to solve the posed problem step by step. Since
programming languages are essentially procedural this is a great step to-
wards an actual implementation. More formally, one could say that numeri-
cal mathematics bridges the gap between the inherent continuous
formulation of the model and the discrete nature of the software and hard-
ware that is used to implement the model. Often a host of applicable numeri-
cal techniques is available, each with its specific merits with respect to the
problem to be solved. Which technique to choose is a design decision to be
taken by the modeler. Finally, software engineering provides the tools to ac-
tually implement the model. Various software implementation paradigms are
in existence, however, the recently introduced object-oriented programming
paradigm (OOP) has received much attention [Stroustrup 1991]. As is well
known, QOP can significantly enhance software development speed, ease of
software maintenance, reliability and reusability, however, we return to this
topic later.

In the following section we discuss the specific case of the modeling of solid
state transducers.

MULT! SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 17
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1.3 Modeling of Solid-State Transducers

The process of modeling solid-state transducers may be viewed as a domain-
specific application of physically based modeling. However, in addition we
can distinguish two basic approaches. On one side we have the approach
where we strive for “simple” analytical models. Here the abstract mathemat-
ical model consists of a set of equations which is explicit with respect to the
desired results. Such models can easily be implemented in some general-pur-
pose simulation programS. Such an approach can be very useful in gaining
an understanding of the basic operation principle of the transducing device
and is in fact an indispensable tool for checking the initial feasibility of an
idea. However, because of the numerous heuristic approximations needed to
keep the model analytical, this approach often is only reliable under very
special operating conditions and device conﬁgurations6.

On the other side we have the approach where as many as possible of the
physical principles are kept in the model, that is, as many as are needed to
achieve the desired level of realism. As a result, the abstract mathematical
model usually consists of a set of equations which is implicit with respect to
the desired results. Here we are usually dealing with a set of partial differen-
tial equations (PDE) with appropriate boundary and initial conditions de-
fined on some computational domain. The obvious choice to implement such
models is to use some variant of the finite element method (FEM)7. In fact
the FEM is a collective name for a host of numerical tools to solve PDEs.
For an introduction to this subject the reader is referred to [Becker
1981][Carey 1983][Oden 1983][Carey 1984])[Hughes 1987).

One may say that the current state of the art of the FEM has evolved to a fair-
ly advanced level in various fields, such as: fluid dynamics, structural engi-
neering, electromagnetics and semiconductor devices. However, in the field
of research on transducers these disciplines all come together and a flexible
unified approach is needed to deal with it. In such an approach one should be
able to deal, at the user’s choice, with a number of signal domains (cf. Sec-
tion 1.3.1) on an equal footing and, moreover, it should also be possible to
couple these domains, in order to evaluate the interactions between them.
This is an important feature since in transducers it is essential to couple one
or more signal domains to achieve transduction of information between
them. For instance, when dealing with a thermal acceleration sensor [Hiratsu-
ka 1991] [Hiratsuka 1992}, the electrical, thermal and mechanical domains are
involved. Another example is the evaluation of offset caused by thermal and
mechanical stress in the “spinning-current Hall plate” [Munter 1992]. Yet an-

5. For example MATHEMATICA, MATLAB or MATHCAD.
6. For instance 1-D models applied to truly 2-D or 3-D devices.

7. Other techniques for solving partial differential equations are, for instance, the finite differ-
ence method and the boundary clement method.
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Modeling of Solid-State Transducers - 1.3

other example is the thermal flow sensor [Oudheusden 1992} which basically
operates in the mechanical (fluid flow), thermal and electrical domain.

Although a generic high level interface to such modeling problems is yet out
of range, we may represent such a generic modeling and simulation system
by the diagram presented in Figure 1-3. The cycle usually starts with a sym-
bolic model formulation in terms of some high-level language. Next, the
model is interpreted and as a result the data structures for storing the physi-
cal interpretation, the geometric features, the desired results and the required
mathematical equations are specified. The cycle then proceeds to a configu-
ration stage, where the program is configured according to the specifications
and is subsequently solved. The configuration can either be carried out at
run-time or as a separate pre-compilation stage. Especially, the second meth-
od is interesting, because it allows the run-time program to be tailored to the
problem to be solved. The synthetic data produced by a simulation may be
compared with real-world measurements and the differences can be inter-
preted to adapt some details of the model.

In the next two sections we wish to present some paradigms that can aid in
the modeling of solid-state transducers. In Section 1.3.1 we discuss in great-
er detail the previously mentioned idea of the “signal domains” [Middelhoek
1986]{Duyn 1990]. In Section 1.3.2 we exemplify the basic strategy with re-
spect to the physical modeling of solid-state transducers and in Section 1.3.3
the basic strategy with respect to the numerical modeling is explained.
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Figure 1-3

Prototype modeling and simulation system.
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1.3.1

1.3.2

Energy-Domains

A convenient way of viewing the transduction process taking place in a
transducer is obtained by considering several energy domains. Based on
physical experience we may roughly distinguish between several macro-
scopic forms of energy, that is, thermal, chemical, mechanical and electro-
magnetic energys. For the sake of convenience, one also separates the
electromagnetic energy into radiant’, electrical and magnetic energy. Hence,
we have six basic energy domains between which transduction of informa-
tion can take place. Although the term energy domain seems more appropri-
ate, the name “signal domain”, is more commonly used. In the remainder of
this work we shall use both terms intermixed.

If we assume that each energy domain can be equipped with a complete set
of state variables describing its state, then these state variables are said to
represent its information content. From a theoretical point of view, the pro-
cess of information transduction can now be viewed as a coupling between
the states of two (or more) signal or energy domains. Therefore, if a change
of state of one energy domain affects the state of the other energy domain,
we say that the domains are coupled and that this coupling enables the trans-
duction of information. More specifically, the coupling establishes a func-
tional relationship between the numerical values and the physical
representations of the state variables, allowing the information modulated on
the numerical values to be transduced into different physical representations.
Using the six energy domains, the information transduction process taking
place in a transducer can be depicted by the general diagram given in Figure
1-4,

The question remains of how to conveniently define the state variables de-
scribing each energy domain and of how to describe the dynamic behavior of
the state variables. In the following section we discuss a powerful physical
modeling paradigm to answer the above question.

Physical Modeling

A convenient framework for the (phenomenological) physical modeling of
solid-state transducers in the space-time domain is the theory of non-equilib-
rium thermodynamics [Groot 1969][Gyarmati 1970][Duyn 1990]. In principle,
non-equilibrium thermodynamics is a serious attempt to link thermodynam-
ics'0 (thermal and chemical energy domain), mechanics (mechanical energy
domain) and electrodynamics (magnetic, electrical and radiant domain) into
a unified field theory.

8. This distinction may also be found in basic text books on eguilibrium thermodynamics.

9. Here we refer to a strictly classical interpretation of radiant energy, not including the o and
B types of radioactive radiation.

10. The name thermostatics is more appropriate, however, history has followed its own myste-
rious ways.

20

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS




Modeling of Solid-State Transducers - 1.3

We now give a rather heuristic description of the basic principles of non-
equilibrium thermodynamics and see how it fits into the signal or energy do-
main approach. For more detail the reader is referred to [Groot 1969]. The
starting point is the assumption of local equilibrium!! which allows the use
of all thermostatic relations such as the Gibbs relation and the fundamental
equations of state. The equations of state describe the relations between the
intensive and extensive state variables and are referred to as the equilibrium
thermodynamic equations of state!2. However, the equilibrium thermody-
namic equations strictly refer to the description of thermodynamic equilibri-
um, or at the most to quasi static or reversible processes. To extend the
theory to the case of truly dynamic processes, also called irreversible or dis-
sipative processes, the balance equation for the entropy plays a central role.
This equation expresses the fact that the entropy in a volume element of a
material changes in time for two reasons. First, it changes because entropy
flows into the volume element and, second, because of the entropy produc-
tion caused by irreversible phenomena inside the volume element. Only in
the case of reversible processes will the entropy production be zero, in all
other processes it is a non-negative quantity. In fact, the entropy production
is a local formulation of the well-known second law of thermostatics.

electrical

magnetic radiant

chemical mechanical

thermal

Figure 1-4 Diagram indicating the possible energy conversions in transducers

11.  Whether this assumption is justified is difficult to prove a priori, however, in many practi-
cal cases experimental justification has been shown.

12. For instance, the ideal gas law for the clectron gas in a solid.
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The aim is to connect the entropy source with the various irreversible pro-
cesses that occur in a true physical system. One way to proceed in this direc-
tion is to set up the macroscopic conservation laws expressing the
conservation of mass, momentum and energy in their local form!3. These
conservation laws contain a number of quantities which are related to the
transport of mass, momentum and energy. The entropy production can then
be calculated using the Gibbs equation from thermostatics which connects,
for instance, in an isotropic multi-component fluid, the rate of change of en-
tropy in each volume element to the rate of change of energy and the rates of
change in composition. The entropy production has a very simple appear-
ance: it is a sum of terms each of which are the product of a generalized flux
characterizing an irreversible process and a quantity called a generalized
Jorce. Moreover, each term can be assigned to one of the six energy domains.
The generalized forces are a measure for the non-uniformity of the system or
the deviations of the internal state variables from their thermal equilibrium
variables. In fact, the generalized forces appear as spatial gradients or local
differences of the intensive state variables and the generalized currents ap-
pear as the time rates of the extensive state variables [Li 1962].

Just as the thermostatic potential in the case of thermostatics, the entropy
production equation then guides us in setting up the non-equilibrium consti-
tutive relations. The simplest choice is to assume linear Markovian'* rela-
tions between the generalized currents and forces. With this choice the
entropy production is guaranteed to be a non-negative quantity, as it should
be. More complex choices are, of course, possible, but this largely depends
on the complexity with which we need to describe the material. One now has
at one’s disposal a consistent set of partial differential equations governing
the dynamic behavior of the state variables of a material system, which may
be solved using appropriate initial and boundary conditions.

It has to be emphasized that non-equilibrium thermodynamics does not make
any statements about the exact nature of the equilibrium and non-equilibri-
um constitutive relations. As far as non-equilibrium thermodynamics is con-
cerned, these relations must be obtained experimentally or by using a more
fundamental microscopic theory15 . However, some rather important state-
ments of a macroscopic nature can be made concerning the matrix of phe-
nomenological coefficients which relate the thermodynamic fluxes and
forces. First, the Onsager-Casimir reciprocity theorem [Miller 1974] gives rise
to a number of relations amongst these coefficients, thus reducing the possi-

13. In fact, this is what is commonly referred to as the hydrodynamic model which is exten-
sively used in fluid dynamics and recently also in the simulation of special semiconductor
devices. However, in the case of “simple” solids some additional simplifications can be
made.

14. In general, a Markov process is a process without memory.

15. Note that the use of Monte-Carlo simulations have made it possible to estimate the consti-
tutive parameters [Moglestue 1992).
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ble number of independent quantities and relating distinct physical effects to
each other. Second, the spatial symmetries of the material system may fur-
ther simplify the scheme of phenomenological coefficients (Curie’s theo-
rem).

Referring again to Figure 1-4, we can now view each sphere as representing
an energy or signal domain with its intrinsic and extrinsic state variables and
its generalized forces and fluxes. Moreover, the dynamic behavior of the
state variables in each energy domain is governed by a set of phenomenolog-
ical equations together with the equilibrium and non-equilibrium constitu-
tive relations. Let us, for example, consider the case of a piezoresistive
transducer, realized by means of a thin-film polycrystalline layer, which can
be used to convert a strain from the mechanical domain into the electrical
domain. The transducer is operated as follows, a constant electrical current is
forced through the device and the resulting electrochemical potential differ-
ence is measured. Since the mechanical strain (deformation) affects the pro-
portionality factor between the current and the electrochemical potential
difference, changes in the mechanical strain can be detected as changes in
the electrochemical potential difference. Now let us characterize the state
variables in the electrical energy domain. The energy in the electrical do-
main is proportional to the product of the charge carrier concentration and
the electrochemical potential which respectively act as the extensive and in-
tensive state variable. The entropy production is proportional to the product
of the electric current and the gradient of the electrochemical potential,
which respectively act as the generalized flux and force. The equilibrium
constitutive equation is a relation relating the charge carrier concentration to
the electrochemical potential. The non-equilibrium constitutive equation is a
linear Markovian relation relating the electrical flux to the gradient of the
electrochemical potentialm. The phenomenological equation is given by a
balance equation relating the time rate of the charge carrier concentration to
the divergence of the electrical flux. One now has at one’s disposal a consis-
tent set of partial differential equations governing the dynamic behavior of
the state variables which can be solved using appropriate initial and bound-
ary conditions!”.

1.3.3 Numerical Modeling

It is obvious that the space-time continuous mathematical models that
emerge from the physically based modeling discussed in the previous sec-
tions are not directly suitable for a numerical treatment using a computer. To
enable a numerical treatment the mathematical model first needs to be dis-
cretized in space as well as time. Subsequently, the resulting discrete mathe-

16. In fact this is the well known Ohm’s law.

17. Of course the entire set of cquations has to obey the Maxwell equations. In this case the
Poisson equation, which acts as a compatibility relation, is sufficient.
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matical model needs to be complemented with an algorithm for solving the
model. Finally, the model must be implemented into a computer program. It
is only after these steps that we may perform actual simulations.

With respect to the discretization in space, several methods can be found in
the literature, noticeably the finite difference method (FDM), the finite vol-
ume method (FVM) [Wesseling 1992], the finite volume element method
(FVEM) [McCormick 1989] and the finite element method (FEM) [Hughes
1987]. In the remainder of this work we prefer to use the FEM, because of its
advanced status with respect to both the theory and experiment. In some cas-
es the FVEM gives equivalent results and may also be considered as a seri-
ous candidate for discretizing. The main difference between the FEM and
the FVEM is that the FVEM starts from a physical conservation law in its in-
tegral form, whereas the FEM starts from the physical conservation law in its
differential form from which a weak (variational) form is obtained by means
of the (Petrov)-Galerkin method [Hughes 1987]. In a sense, the finite element
discretization can be regarded as more general because a particular finite
volume element discretization can always be obtained as a special case of a
finite element discretization. In this work we exclusively use the FEM. In
particular, we explore the use of the mixed-hybrid finite element discretiza-
tion method [Arnold 1985] which, besides allowing a more or less indepen-
dent numerical approximation of the intensive state variables and their
corresponding fluxes, also has some additional advantages, to be discussed
later.

Besides discretization in space we also need to discretize in time. Again sev-
eral methods can be found in the literature. Roughly we can distinguish be-
tween time-stepping methods and waveform relaxation methods'®. Of the
time-stepping methods we mention the well-known Runga-Kutta method,
the forward Euler method, the Crank-Nicolson method and the backward
Euler method. The waveform relaxation method is commonly used for the it-
erative solution of systems of ordinary differential equations and has been
used successfully in solving the systems of equations that arise in the simula-
tion of large and complex VLSI devices. Waveform relaxation has the ad-
vantage over time-stepping methods that it can be vectorized and
parallelized in a rather “trivial” way, moreover, the waveform method does
not suffer from error accumulation from previous time steps as in the time-
stepping methods. With respect to the time stepping methods, explicit time
stepping is fast but is not unconditionally stable, whereas the implicit time
differencing and Crank-Nicholson schemes are unconditionally stable but
are less fast. Runga-Kutta methods can be very robust, but stability is some-
what difficult to prove and in the context of multigrid (see next page) not
recommended [Brandt 1984].

18. Also called dynamic iteration or Picard-Lindelof itcration.
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If we reconsider the concept of “Multi-Signal Domain Modeling and Simu-
lation of Solid-State Transducers”, in particular the simulation part, we
should realize that this, in its complete or even partial generality, is a task of
considerable complexity demanding quite a lot of computational power. The
increasing availability of very fast vector and parallel computers at increas-
ingly lower prizes make these large-scale numerical computations more and
more feasible!®. However, the introduction of brute force computational
power alone is rather limited because the reduction in computation time be-
cause of faster hardware is “only” a constant factor. Consequently, with an
algorithm of O(n?) complexitym, the increase in the number of nodes is only
proportional to the cubic root of this constant factor. For example, to solve a
2D problem on a uniformly refined mesh in the same time it takes to solve it
on the unrefined mesh requires a computer that is no less then 64 times fast-
er. Further, the use of a Newton-Raphson algorithm in the case of a nonlinear
problem then also requires 16 times the storage capacity. Effectively this
means that if the hardware and the maximum allowed computation time are
fixed, the maximum problem size is also fixed. Increasing the problem size
by refining the grid, for instance to achieve additional accuracy, then re-
quires a computer that is 64 times faster with 16 times more storage. There-
fore, one should also pay considerable attention to the use of more efficient
numerical solution methods.

At this time a very promising technique, especially for non-linear elliptic
problems, is the multigrid (MG) technique. For an introduction to this sub-
Ject the reader is referred to [Briggs 1987] and {Wesseling 1992]. The applica-
tion of MG to a variety of problems is extensively described in [Brandt
1977}{Brandt 1979] .[Brandt 1984). Here we just present a brief outline of the
basic idea. The concept of multilevel?! fast solvers is based upon a certain
understanding of the convergence behavior of iterative solution processes
such as a simple Gauss-Seidel iteration. In many cases it can be shown that
error components with a wavelength of the order of the mesh size, that is, the
high frequency components, are efficiently reduced by the iteration process.
However, error components with wavelengths much larger than the mesh
size are hardly reduced and, consequently, after a few iterations convergence
slows down and the asymptotic convergence rate becomes very small. This
means that after a few iterations, the error in the approximation is smooth
compared to the mesh size. Obviously, the remaining error can be accurately
represented and solved on a coarser mesh. Therefore, instead of continuing
the relaxation process when, after a few iterations, convergence slows down,
one switches over to a coarser mesh. Once an accurate approximation to the

19. An interesting trend is the use of add-on boards for PC s and work stations offering multi-
and vector processing facilities.

20. For instance, if we use straight {*. -ward Gaussian elimination.
21. The preferred terminology of A. Brandt, one of the pioncers in this field.
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1.4

error is obtained on this mesh it is used to correct the solution on the fine
mesh.

Solving the error on a coarser mesh generally means solving a problem sim-
ilar to the original one and therefore the same iterative procedure can be
used. However, compared to the computational cost of iteration on the finer
mesh, the amount of work needed for the solution of the error on the coarse
mesh is much smaller. The first reason for this reduction is that the number
of elements on the coarser mesh is smaller and consequently one iteration
sweep on this mesh requires fewer operations. The second reason is that, be-
cause of the larger ratio between wavelength and mesh size, the iterative pro-
cess on the coarser mesh converges faster and, hence, a given error reduction
requires fewer iterations.

The same line of reasoning applies to the error on the coarse mesh. If the
number of elements on this mesh is still relatively large, the convergence
will slow down again after a number of iterations. The remaining error on
this mesh will be smooth and can be accurately approximated and solved on
an even coarser mesh. This process can be repeated until a mesh is reached
on which the problem can be solved in only a few iterations. The results are
then used to correct the solution of the problem on the next finer mesh and so
on until the finest mesh is reached again. Hence, to solve the problem on a
certain mesh, a sequence of coarser and coarser meshes is used. On each
mesh only a few iterations are carried out and only on the coarsest mesh is
the problem accurately solved. Usually the number of elements on the coars-
est mesh is very small so this problem can be solved with virtually no effort.

The total number of operations needed to solve a problem up to the level of
the discretization error®2 with the above-mentioned procedure is generally
equivalent to the amount of work of 10 to 23 iterations on the finest mesh,
independent of the number of elements used in that grid. Hence, a respect-
able reduction in the computational cost can be achieved.

The Objective of the Dissertation

As will be obvious to the reader, the normal duration of a Ph.D. research
project is not sufficient to implement the entire scheme as presented above.
We, therefore, must confine our global goal to something more comprehensi-
ble, however, by conforming as much as possible to the basic principles as
set in the previous sections, in order to allow for future extensions. This
work and the accompanying software are therefore confined to the modeling
and in lesser extend to the simulation of silicon transducers in the thermal
and electrical energy domain [Duyn 1992]. It presents a survey of basic mod-
els and a mathematical toolkit to tackle these models numerically. The mod-

22. truncation error ~ discretization error

26

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS




The Organization of the Dissertation - 1.5

1.5

els are based on the general principles of non-equilibrium thermodynamics
providing a modular and extensible framework. The mathematical toolkit is
based on the finite element method using mixed-hybrid finite elements and
multigrid acceleration techniques. The type of computers we have in mind
are work stations with a computing power comparable to a SUN SPARC 2.
We do not assume special hardware such as add-on boards offering vector
and/or parallel processing facilities.

The results of the work presented should enable full simulation of silicon
thermopile sensors, such as the thermal acceleration sensor [Hiratsuka
1991][Hiratsuka 1992]. Also the evaluation of thermal offset causes in the
spinning-current Hall plate becomes feasible [Munter 1992]. Obvious future
projects are the inclusion of other energy domains, of which the mechanical
domain in the form of structural and fluid-flow models is the most interesting
from both practical and theoretical point of view.

The Organization of the Dissertation

Taking the above into consideration, this work is roughly split into two main
parts. The first part (Chapters 2 and 3) deals with the construction of a phys-
ical model of the thermoelectric effects in the continuous space-time do-
main. The second part (Chapters 4, 5 and 6) deals with the implementation
of the thermoelectric model. This work is, therefore, organized as follows. In
Chapter 2, we discuss some generic aspects of physically based system mod-
els that can be used to model the (real-time) behavior of solid-state transduc-
er configurations. In particular we discuss the abstract representation of a
generic transducer configuration. We also discuss the operation of transduc-
ers when viewed from the thermodynamic perspective. Moreover, we dis-
cuss the idea of abstract mathematical models as an organizing tool for the
representation of model equations. In Chapter 3, a concrete example of the
considerations presented in Chapter 2 is discussed, which is the modeling of
the thermal and electrical energy domain for the case of a generic semicon-
ductor. The result of this chapter is a rigorous thermoelectric model for semi-
conductors that can be used for simulation purposes. Note that the general
ideas presented in this chapter are not strictly reserved to the thermal and
electrical energy domain. In Chapter 4, we discuss the transformation of the
continuous space-time model into its discrete equivalent. To achieve this we
use the finite element method in combination with mixed-hybrid finite ele-
ments which have very attractive properties with respect to the thermoelec-
tric model. The result of this chapter is a fully space-time discrete equivalent
of the space-time continuous thermoelectric model. Next, in Chapter 5 we
discuss a rather unconventional method for solving these discrete equations
numerically. The method is based on the multilevel concept and is capable of
solving the discrete model in linear time. Chapter 6 deals with some of the
practical implementation issues. Our implementation is based on the object
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1.6

oriented programming method. Finally, in Chapter 7 we give an illustrative
examples. Also there are several appendices to introduce the reader to some
related subjects he might not be familiar with.

Some Remarks on the Notation

1.7

Before we move on to Chapter 2, it may be instructive to set out some rules
on the notation used in this thesis:

® All abbreviations used in the text are explained the first time they are
used. An explanatory list of abbreviations is given on page 247.

® For the meaning of all the used symbols, physical as well as mathematical
we refer to the list of symbols starting on page 241.

® For the physical models the notation is mainly in cartesian tensor nota-
tion, with the notion that tensor subscripts are always in Greek and im-
plicit use of the summation convention is assumed. Occasionally, position
and velocity are denoted as 7 and v, to avoid superscripts and subscripts
where they are not necessary.

m Partial differentiation is denoted by the symbol 9; 9, denotes differentia-
tion with respect to the position coordinate x,, and d, denotes differentia-
tion with respect to the time coordinate #. The thermodynamic partial
differentials are usually written in full.

& Tensors sampled in space and/or time are denoted as: Co. . g(Fm: tn) =
Op..p(m, n)

B For the discrete models we use a combination of tensor and matrix nota-
tion. Matrices and vectors resulting from discretizations are always writ-
ten in upper case, e.g. the matrix A. The individual elements of A are
referred to by means of [A] j OF @y

B Approximate quantities in the space-time domain (x,) are indicated by
the subscripts or superscripts / and z. For example, u(x, t) = Up -

Software

Most of the material presented in this work is implemented in a C++ class li-
brary which was developed by using the public domain GNU G++ compiler
in a UNIX SVR4 environment. Note that the library is not a “press a button
and go” simulation package, the ultimate aim is rather to provide a well-or-
ganized programming interface for fast and efficient prototyping of generic
solid-state transducer problems. It is emphasized that at the current revision
(1.0) is still an experimental package, because it uses several unconventional
but powerful features, such as mixed finite elements, multigrid and a system-
atic use of the object-oriented programming features of the C++ language.
These three topics are research goals in themselves, leaving room for many
improvements and fine tuning. The current revision implements the electric
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and thermal signal domain, and provides simple file based graphical output
that can be used by the MATHEMATICA™ program. Likely a future release
will incorporate a graphical interface based on the industry standards X
{Windows), the Motif Toolkit and 2-D and 3-D graphical output using the
PEX library. However, at the present time our focus is more on the physical
and numerical aspects.
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Generic Aspects of
Physically Based Models

2.1

Introduction

The aim of this chapter is to discuss some generic aspects of physically
based system models that can be used to model the (real-time) behavior of
solid-state transducer configurations. The considerations presented in this
chapter follow the basic ideas presented in Chapter 1. We emphasize that in
order to manage the complexity of the models, we first should try to create a
logical modeling framework, which helps to replaces a vague or amorphous
modeling problem with one that is well organized and based on universal
and not specific principles. In the terminology of Chapter 1, this stage can be
identified as the definition of a conceptual model for the specific class of ob-
served or hypothetical physical objects under consideration, in this case a ge-
neric solid-state transducer configuration. Such an approach also has the
advantage that future extensions to a model, e.g. in the form of additional
signal or energy domains!, can be made with relative ease. The availability
of a generic modeling paradigm also provides a powerful tool in dealing
with the problem of the organization of the computer programs that imple-
ment the model.

As discussed in Chapter 1, our physical modeling paradigm is based on the
thermodynamics of irreversible processes (TIP) [Duyn 1990}[Gyarmati
1970][Groot 1969]. In other words, we view the solid-state transducer config-
uration as a physical object that can be described by means of the basic mod-
eling principles from TIP. Unfortunately, TIP is a rather abstract theory and
therefore somewhat difficult to grasp at first, however, mastering the princi-
ples of TIP, can be rewarding as we show in this chapter. Within the realm of
TIP, it is easily possible to develop models way beyond what is commonly
accepted as computationally feasible, however, with the tremendous de-
crease in the price performance-ratio of computing power over the last years,

1. For example the mechanical domain in the form of the Navier-Stokes equations to model
convective cooling effects at device surfaces, or equations describing the deformation of
matter due to thermally generated mechanical forces.
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2.2

it will only be a matter of time before even the more computationally de-
manding models can be solved in reasonable computing times?.

The structure of this chapter is as follows. In Section 2.2 we discuss an ab-
stract geometrical representation of a generic transducer configuration. Es-
sentially, the idea is to divide the entire configuration into a number of
regularly shaped regions separated by interfaces and boundaries. Each re-
gion, interface and boundary is associated with its characteristic set of model
equations, based on the notion of the energy domain(s) a region operates in.
In Section 2.3 we discuss the generic properties of the class of thermody-
namic system models. In Section 2.4 we discuss the generalized mathemati-
cal form of the models to be defined on the regions of a configuration. This
section is particularly helpful in abstracting the common properties of vari-
ous apparently different types of models. Certainly, the model equations in
the electrical, thermal and mechanical domain conform to this generalized
mathematical model. In Section 2.5 and Section 2.6, we respectively discuss
the treatment of interface and boundary conditions. Finally, in Section 2.7
some concluding remarks are made.

Description of the Configuration

In this section, an abstraction of a generic solid-state transducer configura-
tion is developed. There are a number of reasons why such an abstraction is
necessary. First, abstraction is needed to reduce the complexity of the actual
geometrical configuration. For instance, by approximating it with a polygo-
nal surface or polyhedronal volume. We might even consider applying a co-
ordinate transformation, or reducing a two- or three-dimensional
configuration to one of lower dimensionality. Second, geometrical abstrac-
tion is needed with respect to the binding of appropriate models to the con-
figuration; often different parts of the configuration need different
characteristic sets of model equations and parameters to describe the prob-
lem adequately.

We shall take the physical domain, occupied by the transducer configuration,
as a time-invariant, (possibly) multiple-connected region X, with a piece-
wise smooth boundary 0Z. It is assumed that  is a bounded portion of a 1D,
2D or 3D universe U, thatis, Xc R? (d = 1,2,3). The interaction of  with the
remaining part of the “universe” is taken into account by specifying known
boundary conditions on 0X. Essentially, this means that any physical model-
ing problem first has to be reduced to some bounded physical domain for
which the boundary conditions are known. The physical domain X is then di-

2. An interesting trend is the use of add-on boards for PCs and work stations, offcring multi-
and vector processing capabilities.

3. Time invariance of a physical domain implies that its geometry is not explicitly parame-
trized by the time coordinate.
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boundary: 0%

e

transducer configuration:

interface: I'

/

transducer: Q

environment: @

Figure 2-1

An abstract geometrical representation of a generic transducer configuration.

vided into two (possibly) multiple-connected regions Q and ©, such that T =
Q U 0O, where Q represents the space occupied by the actual solid-state
transducing device and © represents the space occupied by the environment
of the transducing device*. The transducer is assumed to interact with its en-
vironment (and vice versa) through the interface between regions Q and ©.
The interface is denoted as I" and is assumed to be piecewise smooth, more-
over, the nature of the interaction is indicated by the specification of inter-
face conditions on I'. In the simpler case where we already know the
boundary conditions on T, it is perfectly legal to shrink the environment @ to
zero. In this case the interface I simply becomes the boundary of Q. The
above definitions are exemplified in Figure 2-1.

The next step of abstraction is the partitioning of Q and © into the union of a

number of disjoint regions R*, separated from each other by internal inter-

faces S§f, and from the outside world by boundary interfaces Sk, such that®

N
=R (2-12)

k=1
SH=RAR' kiI=1,..,N (2-1b)
Sk =RA(N\D) k=1,..,N 210)

Obviously, we must have

4. This separation is not necessary from a computational point of view, however, it does make
sense from a conceptual point of view.

5. Over bars are used to denote the closure of a region.
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N N
o = \UJSk,  or* = \USH (2-1d)
k=1 I=1

With respect to the complexity of each region, we assume that the geometry
is restricted to the use of straight lines in 1D, the use of polygons in 2D, and
the use of polyhedrons in 3D. Note that in the context of the finite element
method each region in its turn is partitioned (discretized) into a number of el-
ementary geometrical primitives called the elements. Commonly used ele-
ment types6 are edges in 1D space, triangles and quadrilaterals in 2D space,
and wedges, tetrahedrons and hexahedrons in 3D space. The above defini-
tions leave us with a set of regions, internal interfaces and boundary interfac-
€s.

A commonly used strategy to identify the regions is to divide the configura-
tion into regions of identical chemical phase, that is, the gas, fluid or solid
phase. This way, we take into account the solid-fluid, the solid-gas, and the
fluid-gas interfaces. In each region so obtained we then look for further re-
gions by examining the jump discontinuities in chemical composition. In the
case of the gas and fluid phase this does not make a lot of sense’, however,
for the solid phase it certainly does, for example, the discontinuity at a sili-
con-oxide interface or at an abrupt P-N junction. This way, the configuration
is constructed by patching together several regions, each region representing
a different type of material. The purpose is to confine the jump discontinui-
ties in the material parameters to the interfaces between the regions. Usually,
these jump discontinuities serve as indicators, where kinks and discontinui-
ties in the global solution can be expected. This can be taken care of by spec-
ifying the continuity properties of the state variables, in the form of interface
conditions, at the internal interfaces. Since within a region the material prop-
erties vary continuously with position, it is likely that the entire region can
be described by a characteristic set of model equations. In fact this can be
seen as another purpose of the partitioning into regions.

The first step, towards the binding of a characteristic set of model equations
to each of the regions, is to specify in which signal or energy domain each
region operates. In other words, the notion of the type of material, in con-
junction with the signal domain(s) the material operates in, may provide
some information towards making the choice of a characteristic set of model
equations. As discussed in Section 2.3, each signal domain implies a set of
state variables, from which the relevant ones can be selected. Hence, each re-
gion is characterized by a set of state variables, in terms of which the charac-
teristic set of model equations needs to specified. Moreover, for each internal

6. An obvious extension is the possibility to use curved geometrical primitives to accommo-
date curved boundaries and interfaces.

7. Mixtures of different fluids or gasses have the property to mix very quickly, which pre-
cludes the definition of a rigid interface.
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Figure 2-2

Abstract transducer configuration consisting of two regions: a solid region operating in
the thermal and mechanical signal domain, and a fluid region operating in the thermal
and electrical signal domain.

interface we must investigate whether a particular state variable is defined at
both sides of the interface or only at one side. In the former case interface
conditions and, in the latter case, boundary conditions need to be specified at
that internal interface. For example, the configuration shown in Figure 2-2
consists of two regions, one region is a fluid R"'9 and the other region is a
solid R°°", The regions are separated from each other by an internal inter-
face Sfp"®°¢ The boundary interfaces are Sls;‘;“d and Sgljid. The fluid region
operates in the thermal {ther} and mechanical {mech} signal domain, and
the solid operates in the thermal and electrical {elec} signal domain. Note
that the region R is closed with respect to the mechanical domain, hence,
the boundary 9R"Y'¢ must be a true boundary with respect to the state vari-
ables implied by the mechanical signal domain. This is also the case for the
boundary dR®°""¢ with respect to the state variables implied by the electrical
signal domain. As aresult, at interface § }',“id' solid houndary conditions for the
mechanical as well as the electrical state variables need to be specified.
However, the thermal state variables implied by the thermal signal domain
are present at both sides of the internal interface, hence, in this case interface
conditions for the thermal state variables need to be specified.

As a concrete example of the use of the above definitions, we loosely de-
scribe the thermal flow sensor, described in [Oudheusden 1992]. The actual
transducing device occupies the physical domain Q and operates in the ther-
mal and electrical domain, moreover, it is a composite of solid materials like
silicon, silicon dioxide and aluminum. Obviously, each composite can be
represented as separate region. The environment of the transducer is in the
gaseous phase and occupies the physical domain ©, moreover it operates in
the mechanical (flow) and thermal domain. The interaction between the
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transducer and its environment takes place at the interface I" between €2 and
©, is of thermal origin (convection and conduction), and must be specified
by means of interface conditions. With respect to the electrical signal do-
main the physical domain Q is closed, hence, electrical boundary conditions
need to be specified at the boundary 0Q = I'. With respect to the mechanical
signal domain the physical domain @ is closed, hence, mechanical boundary
conditions must be specified at the boundary dX. With respect to the thermal
signal domain the physical domain X is closed, hence, thermal boundary
conditions must be specified at the boundary 0% and thermal interface condi-
tions need to be specified at the interface I.

What we learn from the above example is that essentially we are dealing
with a layered problem, where all layers need to be adequately described in
terms of their model equations, boundary conditions and interface condi-
tions. Essentially, this is the idea of multi-signal domain modeling. Note that
above observations also give sufficient heuristic guidelines with respect to
the implementation of the data structures that implement a geometrical mod-
el of the transducer configuration, however, this is (in partial form) the sub-
ject of Chapter 6 and will not be discussed here. This concludes our
description of the transducer configuration.

Thermodynamic System Models®

2.3.1

In the previous section, we discussed the abstraction of the transducer con-
figuration and arrived at a description in terms of a set of regions each linked
to a characteristic set of model equations. In this section the emphasis is on
the physical modeling paradigm to be employed in the construction of the
model equations. In particular, we focus on the thermodynamic modeling
paradigm. As such it presents the basis of a general strategy towards the
physical modeling of complex processes occurring in solid-state transducers.

In Section 2.3.1, we deal with the equilibrium case and discuss an abstract
framework for the description of thermodynamic systems in equilibrium. In
Section 2.3.2, we deal with the non-equilibrium case, which deals with an
extension of the framework, in order to be able to describe thermodynamic
systems not in equilibrium. Finally, in Section 2.3.3 some conclusions are
stated.

The Equilibrium Case

This subsection deals with the description of the state of thermodynamic sys-
tems in equilibrium. First, the abstract concept of intensive and extensive
state variables and their general properties are introduced. Second, two in-

8. The material presented in this section also appeared, more thoroughly discussed, in [Duyn
1990].
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2.3.1.2

tensive state variables of strict thermodynamic origin are introduced; the
temperature and chemical potential. Third, we introduce Gibbs fundamental
relation and its properties. Finally, the abstract definitions of the intensive
and extensive state variables are linked to well-known physical variables.

Intensive and Extensive State Variables

Let us first consider a closed’ system with an adiabatic boundaryw, which is
in thermodynamic equilibrium. We assume that, due to the external work
done, the system is subjected to a reversible process. During the process the
work done on the system is reflected by a change of the energy stored in the
material of the system. Since, by definition, in a reversible process no work
is converted into heat, the stored energy should be independent of the path
followed by the process to get from state A to B. In this case the stored ener-
gy may, in analogy to conservative forces in mechanics!!, be written as a po-
tential function

U= UE, .. EY (2-2)

where U is the stored or internal energy and the E ‘the extensive state vari-
ables or work coordinates. The change in energy, when an infinitesimal tra-
jectory of the process is traversed, can be written as a proper total differential

N
oU
dU = zl"dE" with "=
oE"
n=1 (2-3)

where the 1" are called the intensive state variables and are defined as the
partial differentials of the internal energy function. The above equation is
commonly referred to as the first law of thermodynamics.

Before we can start identifying the physical nature of the intensive and ex-
tensive state variables, we need to introduce two special intensive state quan-
tities which are of strictly thermodynamic origin; the temperature and the
chemical potential.

Absolute Temperature

To introduce the notion of temperature we must remove the restriction of the
adiabatic boundary. In this case we also must deal with the possibility that
energy, in the form of heat, enters or leaves the system through the bound-
ary] . Let us write the change in the internal energy as

9. Aclosed system has a boundary that does not permit mass to cross it.
10. An adiabatic boundary by definition does not allow heat o pass.

11. dW = F.dr = &(r + dr) - §(r) = (3¢/0r)-dr.

12. We still assume the process itself does not convert work into heat.
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dU = dQ+dW (2-4)

This means that the change in internal energy consists of a change in the
thermal energy dQ plus a change dW because of the work done on the sys-
tem. Unfortunately, experience has shown that dU, as expressed in equation
(2-4), does not behave as a proper total differential'3, instead, it is commonly
referred to as a Pfaffian form [Minster 1970). Pfaffian forms can be integrat-
ed along a path in {E'} space but the value of the integral, in general, de-
pends on the path traversed. The question then is how to solve this problem.
In the axiomatic theory of thermodynamics [Miinster 1870] it is shown that,
based on an experience of fact, an integrating factor should exist such that

_dagQ '
ds = 2 (25)

where T is the absolute thermodynamic temperature and § the entropy of the
system. In contrast to dQ, the behavior of dS is that of a proper total differen-
tial, hence, the change in internal energy is again independent of the path tra-
versed by the process in {S,E g space, and may again be written as a potential
function. We may now write the internal energy and its total differential as

U=UGSE,.. ., EY (2-6a)
il U
—_ n n . _
dU = TdS+ 21 dE*  with T=5
n=1 (2-6b)

Chemical Potential

Up to now we have only dealt with closed systems without chemical reac-
tions. The extension of thermodynamic system theory to also include chemi-
cal reactions was first brought forward by the famous J.W. Gibbs. According
to Gibbs we may write the internal energy of an open system with M chemi-
cal components 14

U=U(SN, .. NMEL EY (2-7a)
M N
dU = TdS + Z O"dN™ + Zl"dE" (2-Tb)
m=1 n=1

13.  Although dQ and dW add together to give dU, there are no quantities Q nor W which have
separate meanings.

14. The line of reasoning does not necessarily hold only for true chemical components, but
also for the distribution of electrons over available encrgy states.
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where ¢* is the chemical potential of component k£ and N *the number of par-
ticles in component k. Note that ¢* may be viewed as the average energy per
particle in component .

Gibbs Fundamental Relation

Equation (2-8a) is commonly referred to as Gibbs’ fundamental relation in
the energy representation. According to the postulates of thermodynamics
Gibbs’ fundamental relation is a homogeneous, linear, single-valued, contin-
uous and differentiable function of the extensive state variables, in particular
it is a monotonic function of the entropy S. We may, therefore, invert equa-
tion (2-8a) to obtain a form where the entropy is on the left-hand side of the
equation, this is referred to as Gibbs’ fundamental relation in the entropy
representation

S =SUN', .., N E', . EM) (2-8)
1 oo Al
ds = (74U~ 21 () dN"~ Z{ () dE (2-8b)
= n=

When a complete set of extensive state variables for the system under con-
sideration is known, the Gibbs relation, in the energy as well as in the entro-
py representation, completely describes the system. Effectively, this means
that any possible statement to be made about the system can be deduced
from the fundamental equation.

Perhaps the most important (postulated) property of the Gibbs relation in the
entropy representation (equation (2-8a)) is that it has a well-defined extrem-
um (maximum), towards which the internal state of an isolated system tends
1o be driven. At the extremum the system is said to be in thermodynamic
equilibrium. The evolution towards the extremum is expressed by the second
law of thermodynamics

ds

i 20 (2-9)
which expresses the fact that the entropy in the system is an increasing quan-
tity during the evolution of the system towards the equilibrium state. Effec-
tively, this means that we can calculate the equilibrium state of a system by
calculating the extremum of the fundamental relation [Kirschner 1981][Duyn
1990][Minster 1970].

Equilibrium Equations of State

Obviously, the intensive state variables can be expressed in terms of the ex-
tensive state variables by means of the equilibrium equations of state, that is
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= 1%u,N', .., N E', .., EV) (2-10a)

where the symbol /* may stand for either the inverse of the temperature, the
ratio of the chemical potentials and the temperature, or the ratio of some oth-
er intensive state variable and the temperature. Since the differential form of
the fundamental relation (2-8b) is a proper differential, the equations of state
must satisfy the following reciprocal relations

o oF

— = — (2-11)

oF QJE
These are the reciprocal relations for the intensive and extensive state vari-
ables. In differential form the equations of state can conveniently be repre-
sented in matrix form

. (2-12)

a}K akl .. oK aé"
with the entries of the effect matrix defined as
. or
a’ = (—) (2-13)
oE' 0

Clearly, according to relation (2-11) the “effect” matrix relating the intensive
and extensive state variables must be symmetric. Moreover, the “effect” ma-
trix also has to be negative definite, as can be observed from the following
argument. If the fundamental relation in the entropy representation has an
extremum (maximum) we may expand it in a Taylor series around the equi-
librium state, that is

=1 iqEidE
ds = EZZ“ dEdE <0 (2-14a)
i

where

a’ = (ﬂ) = (ili) (2-14b)
oE9E ),  \oE'),

Clearly, because of the extremum property, the change in entropy must be
negative for a virtual deviation from the equilibrium state. However, this
proves the negative definiteness of the coefficient matrix given in equation
(2-14b), moreover, since this coefficient matrix is identical to the effect ma-
trix given in equation (2-13) it also proves the negative definiteness of the
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“effect” matrix. Specific examples of the effect matrix are given in Chapter
3.

Additional State Variables

Having described the general form of the Gibbs equation, let us now turn to
the identification of some additional intensive and extensive state variables.
Loosely speaking, extensive state variables can be identified as physical
quantities which obey some form of a conservation law, whereas the inten-
sive state variables are usually associated with some form of contact equilib-
rium!3, From our general knowledge of mechanics and electrodynamics we
may readily identify a number of pairs of intensive and extensive state vari-
ables that conform to the above theory {Minster 1970). In the following, we
shall associate each pair with an appropriate signal domain. Let us write
equation (2-8b) as a sum of energies (reversibly) stored in the signal domains
by means of a quasi-static process, that is

du = du™ +du + AduME + duFE + QM + duRt (2-15a)

where u is the total internal energy density!®, 47 the thermal energy density,
u®H the chemical energy density, uMF the mechanical energy density, uZ the
electrical energy density, 44 the magnetic energy density and u®4 the elec-
tromagnetic energy density”. As stated before, the thermal and chemical en-
ergy domains are characterized by

du™ = Tds (2-15b)
duttt = 2¢"dn" (2-15¢)
k

The mechanical energy domain is characterized by the mechanical deforma-
tion energy stored in matter. It is given by the tensor product of the mechani-
cal stress tensor G,g and the mechanical strain tensor € 44, that is

duM® = o pde o0 (2-15d)

The electrical energy domain is characterized by the electrostatic'® energy

stored in matter, and follows from the Maxwell equations. It is given by a

15. The term contact equilibrium must be interpreted rather loosely, because it may imply a
spatial form of contact equilibrium between two systems, it may also imply a local form of
contact equilibrium between two coexisting systems, or it may cven imply the deviation of
an intensive state variable from its rest value.

16. Note that in this case we have used quantities referred to the unit volume, which is allowed
because the Gibbs relation was assumed to be a homogeneous function of first degree.

17. 'We only consider radiant energy implied by the Maxwell cquations.

18. As long as the relaxation effects can be neglected, we speak of clectrostatic energy.
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sum of the products of the electrostatic potential ¢ and the electric charge
density &F of each (chemical) species £, that is

duft = Zq:d gk (2-15¢)
k

From a conceptual point of view, the magnetic energy domain is somewhat
difficult to introduce because we would expect it to be the dual of the electri-
cal energy domain, however, this is not the case!, Formally, the magnetic
energy domain is characterized by the magnetostaticw energy stored in mat-
ter, and follows from the Maxwell equations. It is given by a sum of products
of the magnetic vector potential @, and the microscopic magnetic-polariza-
tion current?! density E.,’(; for each species £, that is

duM = Zaudé’; (2-15f)
k

The Maxwell part of the radiant domain is characterized by the electromag-
netic energy22 stored in matter, and follows from the Maxwell equations. It
is described by the product of the electric field strength e, and the electric
polarization density p,, plus the product of the magnetic field strength k, and
m,, the magnetic polarization density, that is

dufM = ¢ dp, + hydm, (2-15g)

Note 2-1: When the chemical potential refers to a species consisting of
charged particles, say the electrons, then we do not consider the chemical
domain as a separate entity for that species. Instead, the so called
electrochemical potential is defined, and as a result the electrical and
chemical domain are merged. This matter is more explicitly discussed in
Chapter 3.

Note 2-2: The magnetic domain is in fact already implied by the radiant
domain, because the notation used in equation (2-15f) is just a dual
formulation of the notation used for the magnetic part in equation (2-15g). It
depends on the particular case we are studying whether we want to explicitly
consider a magnetic domain, or just leave it embedded in the radiant domain.
We might also choose to extract only that part of the magnetostatic energy

19. A magnetic domain dual to the electrical domain can only be defined in the case that mag-
netic mono poles exist.

20. As long as relaxation effects can be neglected, we speak of magnctostatic energy.

21. This is not a macroscopic current but it is of microscopic origin, ¢.g. electrons evolving
round the nucleus of an atom. Also macroscopically observable currents can be magneti-
cally polarized (Hall effect), however, in this case we enter the realm of irreversible ther-
modynamics, to be discussed in the next section.

22. We refer strictly to the microscopic electric and magnetic polarization energy stored in
each of the species.
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that can be ascribed to the free carriers. In the following section we see that it
is possible to define a separate magnetic domain when the system is not in
equilibrium.

Note 2-3: The effect matrix, in the differential form of the equilibrium
equations of state (cf. equation (2-12)), with the entries according to the
above results, reflects the various possible equilibrium physical effects
which are in existence. In particular, the diagonal entries represent the direct
effects taking place within a signal domain, and the off-diagonal entries
represent the cross effects taking place between signal domains.

The Non-Equilibrium Case

Local Equilibrium

The above line of reasoning is, in principle, only valid for systems in ther-
modynamic equilibrium or systems subjected to a quasi-static proces523.
What is needed is a framework that also can handle non-equilibrium situa-
tions. True non-equilibrium processes are characterized by the fact that dur-
ing the process entropy is produced, or equivalently, heat is generated. More
specifically, when a system is subjected to a process in {E‘} space, some of
the work done on the system is irreversibly transformed into heat (dissipa-
tion). In analogy with mechanics, the “forces” driving the process are non-
conservative and as a result the change in internal energy now depends on
the path traversed in {E'} space.

In order to describe non-equilibrium states we need to find the entropy pro-
duction. At least we should identify the general properties of this function,
just as we identified the general properties of the fundamental Gibbs relation
in the previous section. This is where the ideas of Non-Equilibrium Thermo-
dynamics or Irreversible Thermodynamics enter the picture. The key idea in
obtaining the entropy production is to realize that equations (2-8a) and (2-8b)
are valid for any subsystem which is internally in thermodynamic equilibri-
um. Dividing the system into a large number of small subsystems gives us a
possibility to describe non-equilibrium systems through the assumption of
local equilibrium24 [Groot 1969]. In the spatial domain, the local equilibrium
assumption can ag)roximately be assured by requiring the subsystems to be
sufficiently small“>. The internal relaxation time of each subsystem may then
be neglected with respect to the time needed to reach equilibrium with re-
spect to its nearest neighbors. In the case of coexisting subsystems, such as

23. Ina quasi-static process, it is assumed that the rate of the process is very slow. Since dissi-
pation is proportional to the rate of the process, we may assume that for such processes
negligible dissipation occurs, hence, the system may be assumed to be in thermodynamic
equilibrium during the entire process.

24. This is often called the hypothesis of cellular equilibrium. It has the important conse-

quence that all thermodynamic relations and statements are considered valid for each sub-
system.
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the electron and the hole system, the situation is more complex but often
similar assumptions can be made [Landsberg 1991]. In general, however, it is
not possible to give a decisive answer as to whether subsystems can be as-
sumed to be in internal thermodynamic equilibrium, the justification usually
has to be verified afterwards by experimentation. Nevertheless, the above as-
sumption is vital to the description of many aspects of the physical operation
of solid-state transducers.

Thermodynamic Flux and Force State Variables

The assumption of local equilibrium makes it possible to use the equilibrium
thermodynamic statements within each subsystem. In particular, it can be as-
sumed that in each subsystem a fundamental Gibbs relation holds. This as-
sures that each subsystem is thermodynamically stable by itself and that all
intensive and extensive state variables have a well-defined meaning, except
for the fact that they now have become field variables?. In particular, the ex-
tensive state variables are now treated as specific (volume density) quanti-
ties?”. Clearly, the assumption of local equilibrium shifts the concept of non-
equilibrium states to the local and spatial differences in the intensive state
variables, and the local deviations of the intensive state variables from their
equilibrium values. By local differences we mean the differences in inten-
sive state variables between two coexisting subsystems, for instance, the dif-
ference in the chemical potential of two chemical species. By spatial
differences we mean the difference in an intensive state variable between
two neighboring subsystems. We now proceed by introducing the general-
ized thermodynamic fluxes and forces describing the non-equilibrium state,

Since the dissipation or entropy production should be proportional to the rate
of change of the state of the system, it is obvious that we first should look at
the rate of change of the various (local) extensive state variables. We first no-
tice that in many cases the time rate of change of the extensive state vari-
ables can be related to generalized scalar, vectorial and tensorial
thermodynamic fluxes by means of balance equationszs. In the simple case of
a scalar extensive state variable we may write

de" = -3 eh+ Zé"‘_”‘ (2-16)
m

25. On the other hand we cannot choose a subsystem too small because its macroscopic prop-
erties are determined by averaging of the microscopic properties. The averages tend to be-
come less well defined for smaller and smaller subsystcms,

26. To indicate this, the field variables are written in lower case.

27. This is allowed because the Gibbs relation is a homogeneous function of first degree.

28. Certainly, in the thermal, electrical and mechanical domain this is possible, however, the
Maxwell equations in the radiant domain are somewhat stubborn and need special treat-
ment [Groot 1969] (Chapter 13),

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS




Thermodynamic System Models - 2.3

23.2.3

ne—m

where ej, is the spatial vectorial flux and ¢ the local scalar flux (of the
m’th reaction) associated with ¢". In the case of a vectorial extensive state
quantity we may write
d,6h = —dgehg+ D & 2-17)
m
where efg is the tensorial spatial flux and é5 ™ the local vectorial flux (of

the m’th reaction) associated with ef,. Similarly, we can also write down a
balance equation for general tensorial extensive state quantities.

The next step is to define the generalized scalar, vectorial and tensorial ther-
modynamic forces. The only “measure” of non-equilibrium we have at this
stage are the local and spatial differences of the intensive state variables. It is
therefore logical to take these as the thermodynamic forces. In the case of the
balance equation (2-16), we can write the forces associated with the spatial
vector flux and local scalar flux as

fo = 9," (2-18a)

fn(-—m= im__ln (2'18b)

In the case of the balance equation (2-16), we can write the forces associated
with the spatial tensorial flux and local vectorial flux as

fap = O4if (2-18¢)
pem= ik (2-18d)

Although not needed for our present objectives, it is sometimes convenient
to define a thermodynamic force as the difference between the equilibrium
value and the actual value of an intensive state variable. In this case, the as-
sociated flux is simply the time rate of the extensive state variable. Having
introduced the notion of generalized fluxes and forces we turn to the problem
of identifying the relations between these.

Entropy Production

Just as in the equilibrium case, we may postulate the existence of a charac-
teristic function o, called the entropy production function, which is a func-
tion of the generalized thermodynamic forces only, that is

6 = off, ... (2-19)

where the f* are the generalized thermodynamic forces, as discussed in the
previous section. Clearly, the above function must vanish when the forces
vanish. Just as in the case of the Gibbs relation, we postulate that the dissipa-
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tion function has the important property of having a well-defined extremum
(minimum), towards which the non-equilibrium state tends to be driven in
the case the constraints on the system are such that it cannot reach the equi-
librium state. At the extremum the system is said to be in a stable stationary
state. Note that this statement is true for a large class of systems, amongst the
ones we will study later on in this chapter, however, there are also real life
systems which do not comply to this property [Li 1962]. Later on in this chap-
ter we show that the above property 9yields models which in mathematical
language are called elliptic problems2 . The evolution of the state of the sys-

temn towards the extremum is expressed by the relation

do 0 (2-20)
dr ~
The above relation expresses the fact that the entropy production or dissipa-
tion in the system is a decreasing quantity during the evolution of the system
towards the stable stationary state. Effectively, this means that we can calcu-
late the stable stationary state of a system by calculating the extremum of the
dissipation function.

The change in the dissipation function, when an infinitesimal trajectory of
the (irreversible) process is traversed, can be written as

K

o0
do = Y j4d with k= —
;11 7 =5
The j* are the generalized thermodynamic forces and are defined as the par-
tial differentials of the dissipation function. At first sight, it might seem a bit
strange that the partial differentials of ¢ are equal to the thermodynamic
fluxes. However, [Li 1962] has shown, that in the “simple” case of scalar ex-
tensive state variables with scalar associated fluxes and forces the following

relation indeed holds

(2-21)

do = Zj"df“ <0 (2-22)
k

Note that by definition ¢ is a potential function, hence, do is a proper total
differential. This means that the following relations must hold
off _ off

o of

In fact these are Onsager’s reciprocal relations between the generalized ther-
modynamic fluxes and forces. We might also reverse the argument, that is,

(2-23)

29. Elliptic mathematical models have special features we can make use of,
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the experimental evidence of the validity of the Onsager relations proves the
existence of the entropy production. For a large class of systems, very con-
vincing evidence for this assumption can be found in [Miller 1974].
Non-Equilibrium Equations of State

In analogy with the definition of the equilibrium equations of state in equa-
tion (2-10a) we may now, based on equation (2-22), define the non-equilibri-
um equations of state as

=35 (2-23)

In differential form these can be represented as

d;t al . o'k df!

= : : (2-25)
de akl .. kK de
with the entries of the non-equilibrium effect matrix defined by
.. o
a’ = (lJ (2-26)
af' J,

The non-equilibrium effect matrix, reflects the various possible non-equilib-
rium physical effects which can occur. In particular, the diagonal entries rep-
resent the direct effects taking place within a signal domain, and the off-
diagonal entries represent the cross effects between the signal domains.
Clearly, by virtue of the previous assumptions the non-equilibrium effect
matrix, relating the generalized fluxes and forces, is symmetric and positive
definite (the derivation is similar to the one followed in Section 2.3.1.5).

Conclusions

Perhaps not so obvious at first sight, however, the balance equations together
with the equilibrium and non-equilibrium equations of state do constitute a
closed computational model. This leaves us the task of identifying the bal-
ance equations and equations of state for a particular configuration we want
to study. In Chapter 3, we will present a rigorous treatment of the thermal
and electrical domain, which yields a computational model that can be used
to simulate the behavior of semiconductors in the thermal and/or electrical
domain. However, I do wish to emphasize that the application of the theory
is not restricted to this particular case. Space and time limitations make it im-
possible to go beyond the present objective.

In order to somewhat lighten the future task of incorporating other signal do-
mains we conclude this section with Table 2-1, which heuristically indicates
the main state quantities in each signal domain.
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Table 2-1 The main state quantities in each signal domain.
chem. elec. magn. therm. mech. rad.
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In the chemical domain we have (from top to bottom) the chemical poten-
tials, the particle densities, the gradients and local differences of the chemi-
cal potentials, and the spatial and local particle fluxes. In the electrical
domain we have the electrostatic potential, the charge density, the gradient of
the electrostatic potential, and the current density. In the magnetic domain
we have the magnetic vector potential, the electric current density, the rota-
tion of the magnetic vector potential, and the magnetic field strength. Note
that this interpretation of the magnetic domain refers to the case of macro-
scopic electrical currents (Eddy currents). In the thermal domain we have the
temperature, the entropy, the gradient of the temperature, the entropy flow,
and the entropy production. In the mechanical domain we have the stress
tensor, the strain (deformation) tensor, the difference between the equilibri-
um stress and the actual stress, and the time rate of the strain. In the radiant
domain we have the electric and magnetic field strength, the electric and
magnetic polarization, the difference between the equilibrium {electric,mag-
netic} field strength and the actual {electric,magnetic} field strength, and the
time rates of the electric and magnetic polarization.

2.4 Generalized Mathematical System Models

In the previous section we discussed a physical modeling paradigm that pro-
vided us with some general insights into the construction of models, to be
linked to each of the regions in the configuration. In this section the focus is
on the formal mathematical representation of the model equations. In partic-
ular, we emphasize the similarities between apparently different models.

As discussed in the previous sections, each region of the configuration has to
be linked to a set of model equations, in the form of interior, interface and
boundary models. In our case we deal with models in the form of partial dif-
ferential equations (PDEs).
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A fact often overlooked is that in most physical disciplines, such as electrici-
ty, magnetism, fluid flow and heat flow, the various governing physical mod-
els show striking mathematical similarities. Hence, in order to reduce the
effort needed to translate the various models into computational algorithms
we should try to exploit these similarities. Following the ideas of [Tonti
1972][Penman 1986] we, therefore, develop a strategy based on the notion
that a large class of physical models, if not all, can be expressed in a canoni-
cal form. A formulation of the canonical model, expressing its mathematical
properties, can be given as follows [Penman 1986]

T(x, 1) - u(x, 1) = v(x, D —vx, 1)
M(x’ 1) - v(x, t) = w(x, t) } (x, e Qx [0, T]
T%(x, 1) - w(x, 1) = p(u)

B(x, 1) - u(x, ) = g(x, 0 (x,1) € BQDx [0, T]

BT (x,8) - wx,t) = hix, D (x, 1) € 0Q, x [0,T] (2-27)

The above equation is called the primal canonical form of the space-time
problem in the space-time variables u, v, p and w. Although [Penman 1986]
does not explicitly say so, the (full) canonical form of a model implicitly re-
lates the intensive, extensive, generalized flux and force state variables (cf.
Section 2.3). The operators 7, T° and M describe the interior properties of the
domain and the operators B and B* describe the boundary conditions at the
Neumann dQy and Dirichlett 0Q,, parts of the boundary (cf. Section 2.2). It
is important to observe that the operators 7° and B* are the adjoint operators
of resp. T and B (for an appropriate definition of adjoint operators consult
[Penman 1986]). This feature can be important in the discretization of the
model equations (cf. Chapter 4). Commonly encountered adjoined operator
pairs are given by

=-V "=V

T = Vx T = Vx (2-28a)
B=1 B"=-n

B =-nx BT = —nx (2-28b)

It can also be shown that equation (2-27) can be rewritten in a completely
equivalent form called the dual canonical form. The dual canonical form
can, for instance, be used to obtain a different type of discretization (cf.
Chapter 4). For more details on this subject the reader should consult [Pen-
man 1986].

Following the terminology of [Penman 1986], the relations appearing in
equation (2-27) are usually identified (from top to bottom) as the:
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# Compatibility relation

# Constitutive relation

# Equilibrium relation

# Dirichlett boundary condition
# Neumann boundary condition

In the terminology of thermodynamics of irreversible processes the equilib-
rium relations3® can be associated with the phenomenological equations (cf.
Section 2.3), which usually take the form of a balance or conservation law
(either vectorial or tensorial). The compatibility and constitutive relations
can be associated with the non-equilibrium thermodynamic equations of
state. If the physical domain Q on which the model is defined contains an in-
terface between two different materials, we should be aware of the continu-
ity properties of the relevant physical state variables at these interfaces. For
such cases we must add interface conditions to the problem definition given
in equation (2-27). In Chapter 4, we show that for a particular problem we can
(locally) choose the discretization such that the interface conditions are auto-
matically satisfied for that problem.

Example 2-1: Consider the set of model equations for solving the
electrostatic state variables on a domain Q with boundary 0Q = 9dQ, U 0Qy,
and interface I'*® connecting the regions R”* and R®. Assuming that both
regions can be linked to the same characteristic set of model equations, we
may write the model as

9oda=§

€qp¢p = o xe Q
—0,9 =¢q

¢ =g xe 909,

ny-dy, = h xeBQN

(2-29a)
where n is the normal vector at position x on the boundary. The interface
conditions to be added follow from the Maxwell equations and can be stated
as
N - [dalA—da|B] =0 xelI"8
5 (2-29b)
€opytp [eY|A - eYlB] =0 xeT

where n is the normal vector at position x on the interface. In equation (2-
29a), from top to bottom, we have the equilibrium relation relating the diver-
gence of the dielectric flux density d to the space charge density &, the con-

30. Note that the term equilibrium rclation is somewhat confusing because it implies that the
time dependence is not taken into account, which is not the case.
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2.5

stitutive equation relating the electric field strength e to the dielectric flux
density d, the compatibility relation, relating the gradient of the electrostatic
potential @ to the electric field strength e and two relations representing the
Dirichlett and Neumann boundary conditions. Equation (2-29b) expresses the
fact that the normal component of the dielectric flux density d and the tan-
gential component of the electric field strength e must be continuous when
crossing the interface. In thermodynamic terms, ¢ is an intensive state vari-
able, & is an extensive state variable, e is the thermodynamic force and d is
the thermodynamic flux.

Let us now pay a little more attention to the generic properties of the opera-
tors involved. For any particular problem we must identify the phenomeno-
logical operators: T, B and M of the model. This largely depends on the
physical modeling paradigm used. For instance, the thermodynamic method
leads to typical operators, which we encounter in Chapter 3. With respect to
the constitutive operator M, the following classification can be used [Hoop
1986],

# linear vs. non-linear
homogeneous vs. inhomogeneous
isotropic vs. anisotropic
locally vs. non-locally reacting
Markovian®! vs. non-Markovian
% time-invariant vs. time-variant

® % & &

Referring to the example given on the previous page, the relation between
the electric field strength and the dielectric flux density can be characterized
as a linear, homogenous, anisotropic, locally reacting, Markovian and time
invariant constitutive relation. It is clear that this is the most simple constitu-
tive relation conceivable, hence, we should pay considerable attention to the
range of validity of such a relation. In the following chapter, where we dis-
cuss a rigorous thermodynamic model for the thermal and/or electrical ener-
gy domain, we shall adopt parametrized, quasi-linear, inhomogeneous,
anisotropic, locally reacting, Markovian and time invariant constitutive rela-
tions. With respect to the parameters we refer to what is available in the liter-
ature, noticeably in physical data books such as Landold and Bomnstein.

Generic Interface Conditions

When a specific region of the transducer configuration (cf. Section 2.2) is
closed®? with respect to a set of state variables, we need to specify boundary
conditions at the boundary of this region. However, if this region is a com-
posite of several different materials, it will prove to be convenient to shed

31. A Markov type of constitutive relation is one that exhibits no memory effects. The termi-
nology is borrowed from the theory of random processcs.
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some light on the general continuity properties of the state variables, at the
interfaces between these different materials. We start with the Maxwell
equations.

It is well known that by means of the Stokes and Gauss theorems we can de-
rive the following interface conditions for the electromagnetic field state
variables

€y (hyl, — 1yl ) = gurface (2-30a)
Capyp ey~ ) = 0 (2-30b)
o (bal —by|) = 0 (2-30¢)
no (dy| —dy|)) = gourface (2-300)

where n, is the normal vector of the interface and is directed from material 2
to material 1. Equation (2-30a) states that the difference in the tangential
component of the magnetic field strength on both sides of the interface must
be equal to the surface current density 3, Equation (2-30b) states that the tan-
gential component of the electric field strength must be continuous upon
crossing the interface. Equation (2-30c) states that the normal component of
the magnetic flux density must be continuous upon crossing the interface. Fi-
nally, equation (2-30d) states that the difference in the normal component of
the electric flux density on both sides of the interface must be equal to the
surface charge density. Note that for our present purpose only equation {2-
30d) is relevant.

Similar equations are needed for the energy and particle balances. Since the
mathematical forms of the energy and particle balances are identical, we
only consider the general (scalar) form>* (cf. Section 2.3.2.2), that is

et = - aBeﬁ +éf (2-31)

32, In this context, “closed” means that regions immediately neighboring the one under con-
sideration do not possess the state variables of the region under consideration as free state
variables. For example, in an ideal oxide-semiconductor interface we need to solve the
Poisson equation in both the oxide and semiconductor, however, the current continuity
equations only need o be solved in the semiconductor. Obviously, with respect to the
Poisson equation, we need to specify interface conditions at the interface, and with respect
to the current continuity equation we need to specify boundary conditions at the interface.

33, The concept of surface charge and current is, of course, a mathematical idealization of the
problem.

34. Inthe case we want to study the mechanical domain we also necd to consider the vectorial
balance equations in order to reveal the continuity properties of the pressure tensor.
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2.6

We shall assume that both the extensive state variable in the left-hand side
and the scalar flux in the right-hand side can have a singularity in the form of
a Dirac delta function, that is

e = ebu1k+esurfacea(x_xsurface) (2-32a)

é = ébulk+ésurfac28(x_ xsurface) (2-32b)

Now by using the Gauss theorem on equation (2-31) together with equations
(2-32a) and (2-32b) we obtain the following result>,

Ny (eal] _ eulz) = _a‘esurface+é3urface (2-33)

When the surface contributions are zero, the above relation states that the
normal component of the flux through the interface must be continuous. In
fact, the above equation represents an ordinary differential equation with re-
spect to time and in order to solve it, it needs to be supplemented with yet
another constitutive model.

With respect to the interface conditions we can make life a little easier by as-
suming that the surface contributions can all be assumed zero. In this case
the normal components of the particle fluxes, the energy fluxes and the elec-
tric flux density are continuous.

Generic Boundary Conditions

As mentioned in the previous section, when a specific region of the transduc-
er configuration is closed with respect to a set of state variables, we need to
specify known boundary conditions at the boundary of this region. These
boundary conditions take into account the interaction of the transducer con-
figuration with the remaining part of the universe. Mathematically speaking,
boundary conditions can be of the Dirichlett, Neumann, Robin and periodic
types [Farlow 1982].

In the case of Dirichlett boundary conditions, we specify a model for the be-
havior of an intensive state variable at the boundary. For instance, at an ideal
voltage-controlled electrical contact, we can specify the values of the elec-
trochemical potentials36. In the case of Neumann boundary conditions, we
specify a model for the behavior of the flux at the boundary. For example, in
an ideal current-controlled electrical contact, we can specify the values of
the electrical currents. A more general type of boundary condition is the
Robin type, in this case we specify the flux in terms of the intensive state

35. Note that the symbol e refers t0 an extensive state variable, not to the electric field
strength.

36. A neat feature of the electrochemical potentials is that they are equal to the specified driv-
ing voltage at the contact.
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2.7

variables (or vice versa) at the boundary. For example, to take into account
the non idealities of an electric contact®’, we can specify a current-voltage
relationship. Periodical boundary conditions are convenient when it is
known that the solution at one surface is identical to the solution at an oppo-
site surface.

Concluding Remarks

In this chapter we have presented various aspects that are helpful to come to
a unified abstract description of a solid-state transducer configuration. In par-
ticular, we have discussed an abstract geometrical representation of a generic
transducer configuration, in terms of regions, interfaces and boundaries. In
order to describe their characteristic (physical) features appropriate model
equations are linked to each of the regions, interfaces and boundaries. With
respect to obtaining explicit model equations we have argued that the ther-
modynamics of irreversible processes provides a powerful physical model-
ing paradigm that can be applied to a variety of physical situations. In order
to manage the complexity somewhat we proposed the energy domains with
the tacit assumption that a certain region of a transducer configuration oper-
ates in one or more energy domains. We also discussed a generic abstract
representation of the model equations and argued that, for the sake of sim-
plicity, it is convenient to represent apparently different physical models in
the same abstract (canonical) mathematical form. Also some attention was
paid to the general treatment of interface and boundary conditions.

In the following chapter the objective is to use the formalism of the thermo-
dynamics of irreversible processes to derive the model equations for a cer-
tain region of the transducer configuration operating in the thermal and
electrical energy domain.

37. For instance, Ohmic and Shottky contacts.
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Tact is the ability to tell a man he has an open mind
when ke has a hole in his head.

A Thermodynamic Model for
the Thermal and Electrical
Energy Domains’

3.1

Introduction

The current trend in solid-state transducer research is to convert measurands
to the electrical energy domain, so that the response of a transducer can be
evaluated in terms of the electrical voltages and currents measured at the
contacted areas of the device. This has the advantage that an abundant col-
lection of electronic signal processing techniques is at one’s disposal, en-
abling the design and fabrication of “smart sensors? [Middelhoek 1989b}.
From this point of view, it is interesting to try to couple the electrical energy
domain to the various other energy domains discussed in the previous chap-
ter. As a specific example, we investigate the application of the framework
presented in the previous chapter to the construction of a computational
model capable of describing a region of the transducer configuration operat-
ing in the thermal and electrical energy domain. This means that the effects
of all other signal domains are by definition negligible. Of course, the ques-
tion as to whether this is true has to be decided a posteriori by experimenta-
tion, or a priori by using a more complex model which is subsequently
simplified by means of a number of well-chosen rules.

A number of basic phenomenological models can be found in the literature
for which a numerical treatment of the electrical signal domain is more or
less feasible, noticeably (in decreasing degree of complexity): (a) the Boltz-
mann equation approach, (b) the hydrodynamic approach and (c) the drift-
diffusion approach. The Boltzmann equation approach itself is derived from
the Liouville equation by using a truncated BBGKY hierarchy [Holt 1965].
The hydrodynamic approach is obtained by taking moments of the Boltz-
mann equation, usually the first three moments, although higher-order mo-

1. The material in this scction was also presented in [Duyn 1992].

2. This poses the idea of combining multi-signal domain transducer simulation with lumped
circuit models connected to the periphery of the transducer. Perhaps the basic models used
in the public domain electrical circuit simulation package SPICE could be merged with the
present models.
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3.2

ments> are also conceivable [Bringer 1990]. The drift-diffusion model was
originally brought forward by van Roosbroeck [Roosbroeck 1950] and is a
gross simplification of the hydrodynamic model, however, with remarkable
success in the field of semiconductor modeling and simulation.

As was pointed out in the previous chapter, we shall pursue a different line of
reasoning by putting the modeling process into the realm of thermodynamic
system theory. This gives us the advantage of a modular approach where
several building blocks can be distinguished, moreover, it leads to an exten-
sible framework. However, obvious extensions, such as the mechanical and
magnetic domain, will be the subject of future research. The apparent power
of the thermodynamic approach can be inferred from the fact that both the
hydrodynamic and the drift diffusion model can be viewed as special cases
of the thermodynamic model. Within the realm of thermodynamics of irre-
versible processes, several models with varying degree of complexity, de-
scribing the thermal, electric and thermoelectric features of a material, are
conceivable. In order to keep things tractable we' take the drift-diffusion
model as the point of departure and extend it to the thermal domain by using
the principles of thermodynamics of irreversible processes. Where appropri-
ate, we try to pay special attention to the set of constraints under which the
model is developed. This gives some guidelines in relaxing some of these
constraints in order to aid future extensions.

The structure of this chapter is as follows. Section 3.2 gives a description of
a semiconductor from the thermodynamic perspective. Section 3.3 deals
with the phenomenological model equations. Section 3.4 deals with the bulk
constitutive equations. In Section 3.5 a “simplified” version of the thermo-
electric model is summarized. Finally, in Section 3.6 we close the chapter
with some concluding remarks.

Semiconductors from a Thermodynamic Perspective

In this section, a description of a semiconductor, when viewed from the ther-
modynamic perspective, is developed. It is to be used in the next sections as
a basis for the discussion of the bulk phenomenological and constitutive
equations. Although we specifically pay attention to semiconductor materi-
als, descriptions for conductors and insulators follow as simplifications of
the semiconductor model. To make life somewhat easier we assume that the
entire configuration is of fixed chemical composition. This means, for in-
stance, that we do not take into account the redistribution of doping impuri-
ties because of chemical diffusion.

According to the principles of thermodynamics, we can view the total sys-
tem as a composite of a number of virtually independent thermodynamic

3. Higher order moments are usually needed to deal with ballistic effects in submicron devices.
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subsystems. According to the (simple) band theory of semiconductors we
may distinguish the following subsystems4: (1) the lattice, (2) the electrons
in the conduction band, (3) the electrons in the valence band, (4) the elec-
trons in the donor-like localized states, and (5) the electrons in the acceptor-
like localized states. The localized states® are capable of capturing (releas-
ing) electrons from (to) the conduction and valence bands. Note that all sub-
systems are governed by fermion statistics except for the lattice which is
governed by boson statistics.

As argued in Section 2.3.1, the next step is 10 assume that each of these sub-
systems is internally in local equilibrium [Holt 1965]. This means that, if we
divide the material into small volume elements, in each volume element the
subsystems are in internal equilibrium. Note that this does not necessarily
mean that they have to be in mutual equilibrium. Depending on the govern-
ing statistics® of a subsystem this assumption allows the definition of a local
temperature and a chemical potential. Since the lattice is governed by boson
statistics a local lattice temperature is defined. The remaining subsystems are
governed by fermi-statistics, which means that for each of these subsystems
a local temperature and a local chemical potential can be defined [Blakemore
1962][Landsberg 1991].

Note 3-1: For the valence band it is often more convenient to refer to the
number of vacant electron states. Such a vacant state is called a hole and the
collection of holes in the valence band is referred to as the hole system.
Likewise, the collection of electrons in the conduction band is referred to as
the electron system. However, one must take great care in dealing with
quantities defined for the hole system, because these quantities usually
implicitly refer to the electrons in the valence band.

In order to identify each of the subsystems we define the set
= {lLehd,a,} (3-1)

where / stands for the lattice system, ¢ for the electron system, 4 for the hole
system, d,, for the m’th donor-like localized state and a, for the n’th accep-
tor-like localized state. In the case an element from this set is used as a su-
perscript the corresponding quantity refers to that subsystem. For example,
A is the thermal energy density of the lattice, n° is the electron density in the
electron system, and n% is the density of positively charged donors. The

4. We can make it more complex by assuming that cach subsystem can be divided into other
subsystems, for instance, the holc system can be separated into heavy and light holes, the
conduction band can be split into six equivalent band minima, and for the lattice we may dis-
tinguish between several phonon modes.

5. We do not yet distinguish between donor, acceptor and trap-like states, instead, the traps are
considered to be special donor-like or acceptor-like localized states.

6. For systems governed by boson statistics we may only define the temperature. For systems
govemned by fermi statistics a temperature and chemical potential may be defined.
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subsystems relevant to the thermal energy domain are indicated by means of
the subset S = {/, e, h}. Similarly, the subsystems relevant to the electrical
domain are indicated by the subset N = {e, 4, d,,, a,}. As implicated by the
subsets § and N we do not explicitly deal with the thermal properties of the
localized states. Certainly, the localized states will have some influence on
the thermal properties (heat capacity and heat conductivity), however, for
the sake of simplicity, we consider the localized states as an integral part of
the lattice as far as the thermal properties are concerned’. We may now as-
sume that the following Gibbs relations are valid

ds' = (2) ! (3-2a)
T
ds® = (l)due— v dn® ds* = (i)du"— \—,_h dn* (3-2b)
T ¢ S ™
i Va; : N Vd:- a4
ds® = —( l)dn“" dsd"' = —(-—l )dn " (3-2¢)
T T

where T’, T¢ and T" are the temperatures of resp. the lattice, the electron sys-
tem and the hole system, v, VA V4, V4. are the chemical potentials of re-
spectively the electrons in the electron system, the holes in the hole system,
the negatively charged (occupied) acceptors and the positively charged (free)
donors. Moreover, s¥, u* and n* are the volume densities of resp. the entropy,
internal energy, particles in subsystem k. In the case of a donor-like localized
state, n?- refers to the density of positively charged (free) donors, and in the
case of an acceptor-like localized state n® refers to the density of negatively
charged (occupied) acceptors. In the above equations the definition of the
electrochemical potentials are such that they have equal sign. This for exam-
ple means that the chemical potential v# refers to the holes in the valence
band. The reason for this is that it greatly simplifies notation because we do
not have to deal with sign changes. However, in most cases we want to refer
10 the electronic chemical potentials. In that case we may use the following
transformation,

k
vk - LGk (3-3)

¢
Note that the above relation introduces a sign reversal for the electrochemi-
cal potential in case we are dealing with positively charged particles. For ex-
ample, the chemical potential of the electrons in the valence band is the

7. Anyhow, including these effects yiclds models for which it is very hard to find the appropri-
ate model parameters.
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negative of the chemical potential of the holes in the valence band. In cases
where we refer to the electronic chemical potential it is explicitly stated.

Note 3-2: In the above equations we have implicitly assumed that the
following relation holds,

Th= 7% = 1% (3-4)

The reason for this is that the (thermal) coupling between the lattice and the
localized states is so strong that it does not make any sense to define a sepa-
rate temperature for a localized state. Moreover, the thermal contribution of
the localized states to the entropy is assumed to be implicitly contained in
the lattice contribution to the entropy. Note that the definition of separate
temperatures for the lattice, electron and hole systems is questionable for
low carrier densities, however, at high carrier densities it can be a valuable
extension to the model.

Of course, the above Gibbs relation is only valid if the internal energy of
each component were of thermal and chemical origin alone. However, for
the present case this is certainly not so, hence, we should also include the
other forms of energy stored in the lattice, electron, hole and localized state
systems. According to the results stated in Section 2.3.1, this additional ener-
gy can basically be of mechanical origin (mechanical domain) and of elec-
tromagnetic origin (radiant, electric and magnetic domain). With respect to
the mechanical domain, we make the following two assumptions. First, we
assume that the host lattice is mechanically rigid, which, for instance, means
that effects such as thermal expansion of the host lattice are ignored. This as-
sumption tremendously simplifies the entire scheme. Second, we assume
that the electron and hole systems are in mechanical equilibrium. This means
that the time rates in the momentum and kinetic energy balances vanish®. As
a result the charge carriers instantaneously react to applied electromagnetic
forces and thus almost immediately reach the state where the supplied elec-
tromagnetic momentum and energy balances the loss caused by collisions
with the localized states (and imperfections) of the lattice. For most materi-
als this assumption is reasonable, however, exceptions such as GaAs do exist
[Bringer 1990]. To include these effects we also need to relax the assumption
of mechanical equilibrium in the electron and hole system, however, this is
beyond the present aim.

By virtue of the previous assumptions, we may ignore the mechanical energy
terms in the Gibbs relations. The only additional energy we have to take into
account is the energy of electromagnetic origin. As a further restriction, let
us now also assume that the transducer is not subjected to external electro-
magnetic fields. This means that we only have to take into account its “self

8. This is what essentially makes the difference between a hydrodynamic model and a drift-dif-
fusion model.
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induced electromagnetic field”. Moreover, if we assume that this field is qua-
si-static, the electromagnetic energy can be stored in the material as electric
and magnetic polarization energy and as the electrostatic energy of a charge
distribution in an electric field (cf. Section 2.3.1.6). In the following, we ig-
nore the electric and magnetic polarization9 energy of both the lattice and the
carrier systems. This leaves only the electrostatic energy to be discussed. Us-
ing the Maxwell equations and the assumption of an electrostatic field, this
additional energy can be written as

ueI, k _ nqu(P (3-5a)
The above relation relates the electrostatic energy in component £ to the
product of the carrier density, the charge of a particle and the electrostatic
potential. In differential form we may write

dutt* = gtodn* (3-5b)
Defining the electrochemical potentials10 as

k

vk = §*+ gko (3-6)

the Gibbs equations can be rewritten as

ds' = (il)du‘ (3-7a)
T
ds = (Lyaus— YVt dsh = Ly aur - v dn®  (3-b)
= T Tz - Th Th
. a, 5 . d:n +
s = —(\;I Jdna“ ds'm = _(\;T Jdnd’" {3-7¢)

The quantity v¥ is commonly referred to as the electrochemical potential. It
can be interpreted as the average chemical plus electrostatic energy of a par-
ticle in subsystem k. Note that in the above formulation the electrochemical
potential is defined in a similar fashion as in equations (3-2a)-(3-2¢). In order
to refer to the electronic electrochemical potentials we can use equation (3-3)
and (3-6) to arrive at the following transformation rule,

k k
Ve —Lovk = — L (k- |glg) (3:8)
e g4

9. The microscopic as well as the macroscopic magnetic polarization energy is ignored.

10. In all cases we strictly refer to electronic energies, even in the case of the hole system and
the donor-like localized states.
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Note that in cases where we refer to the electronic chemical potential it is ex-
plicitly stated.

In the following two sections we take the above Gibbs relations to set up the
frame of the phenomenological part of the model, according to the rules set
out in Section 2.3.

3.3 The Bulk Phenomenological Equations

If we take a look at the right-hand sides of the Gibbs relations stated in equa-
tions (3-7a), (3-7b) and (3-7¢), we immediately observe which phenomenolog-
ical equations we in fact need. First, in order to describe the thermal domain,
we need balance equations expressing the changes in the energy densities u*,
Second, in order to deal with the electrical domain, we need balance equa-
tions expressing the changes in the particle densities n*. Let us first consider
the energy balances, and then discuss the particle balances. Third, as indicat-
ed in the previous section the phenomenological equations should be com-
patible with the Maxwell equations. This will yield an additional
phenomenological equation, which according to the theory in Section 2.4 ac-
tually should be viewed as a non-local constitutive relation.

3.3.1 Thermal Energy Balances

The Gibbs relation, stated in equations (3-7a)-(3-7¢), implies that there are
three major contributions to the internal energy u* of each component, that
is, the thermal, chemical and electrical (electrostatic) energy

k

ut = uth,k+uch,k

k

+ uth (3-9)

The only knowledge we have of the total internal energy , is that it must be
a conserved quantity. The balance equation for the total internal energy may
then be written as!!

du = _aB“B (3-10a)
The term on the left-hand side represents the time rate of the internal energy
and the first term on the right-hand side represents the divergence of the total
internal energy flow. However, the balance equations for the internal energy
of each component may then be written as
k

Ak = —dgug+u (3-10b)

11. With respect to the used notation, the flux quantity associated with an extensive state
quantity can immediately be recognized because of the rank one tensor subscript. For ex-
ample if e is some extensive state quantity, then ey is the associated vectorial flux and é
can be recognized as the associated scalar flux, also called the source term of extensive
quantity e.
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The additional source term on the right-hand side is because of the possible
exchange of thermal, chemical and electrical energy between the compo-
nents. Obviously, when equation (3-10b) is summed over the individual com-
ponents, we necessarily obtain equation (3-10a). What we also know are the
balance equations expressing the rate of chan%e of the chemical and electri-
cal energy. These equations can be written as’

Quetk = — 3y (nfq*e) + nfded 0 + kg (@-11a)

QUM = — 3y (nkV%) + nkd vk + nkVE (3-11b)
1 BB BYB

Note that here, the part that is operated on by the divergence operator is
purely convective. Subtracting equations (3-11a) and (3-11b) from equation (3-
10b) and using equation (3-6) we may derive the balance equations for the
thermal part of the internal energy (heat) of each component

duhk = 3 h* = =3y (uf - nfvh) + i - ngdgvE— itV (@3-11c)
Clearly, the part operated on by the divergence operator represents the total
heat flow in component k. Obviously, in the case where in equations (3-11a)-
(3-11c) the superscript & refers to the donor or acceptor-like localized states,
the corresponding flux must be set to zero, because we assume that no con-
duction caused by electron or hole hopping can take place in the localized
states. The balance equation for the total thermal energy can be obtained by
summing over the individual components in equation (3-11c). This results in

Q= =9 (uy= Y vk = Y mfapvE-Y e @)
N

k=e, k=e, ke

Clearly, the part operated on by the divergence operator must represent the
total heat flow in the system. The second term on the right-hand side is the
Joule heat. Essentially, this is the energy supplied to the carriers by the elec-
tric field. This energy is subsequently lost as heat to the lattice, because of
the collisions of the carriers with the localized states and the lattice imper-
fections!3. The third term on the right-hand side represents the heat produc-
tion caused by carrier exchange between the electron, hole, and localized
States subsystems.

12, In deriving these relations we have alrcady implicitly used the particle balances.
13. Note that because we ignore the momentum balance this loss of energy is instantaneous.
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3.3.2

3.3.3

Particle Balances

For each component“ a particle balance equation can be identified. First, we
have the electron and hole particle balances governing the number of elec-
trons and holes in the conduction and valence band

.d, ,
0,n° = —d ng+ [ﬁh_’e+2n "‘_”+Zna"_'e:[ (3-12a)
m n

h—od h
on" = -3 nh+ [ﬁ""% Zn - "‘+zn _"'"} (3-12b)
m n

Note that in the above notation, the arrow superscript to indicate the local
fluxes always refers to the exchange of an electron. For example, h — e
means the net flux of electrons from the hole system (valence band) to the
electron system. In equation (3-12a) the first term on the right-hand side rep-
resents the divergence of the electron particle flux, the second term repre-
sents the rate at which electrons move to the hole system (creation and
annihilation of electron hole pairs), the third and fourth terms respectively
represent the rates at which electrons are trapped in the donor and acceptor-
like localized states. A similar argument holds for equation (3-12b).

Next, we have the particle balance equations for the localized states in the
band gap. Distinguishing between several non-interacting donor and accep-
tor-like localized states (as already implied by equations (3-12a) and (3-12b))
we may write

i .d h . d
atnd"' = g g T (3-12¢)

on =i’ 7 - p* (3-12d)

Note that in equations (3-12¢) and (3-12d) we have omitted the transport
terms. This corresponds to the assumption that no conduction caused by
electron or hole hopping between localized states takes place [Barrie 1987).
This assumption is valid in the case where the quantum wave functions of
the trapped electrons in two nearest neighbor localized states do not signifi-
cantly overlap. For impurity densities' that are not too high, or operating
temperatures that are not too low this is a good approximation.

Maxwell Equations

As said earlier, the above-stated phenomenological equations must be com-
patible with the Maxwell equations. To put it more clearly, the Maxwell

14. Except the lattice of course, because nothing is assumed to be movable in the lattice.

15. For silicon the critical impurity density lics somewhere around 3.10'8 cm™3. This is known
as the Mott transition.
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equations impose an additional relation between the electrostatic potential
and the electric charge. In a strict thermodynamic sense, such a relation
should be classified as a non-local equilibrium constitutive relation (cf. Sec-
tion 2.3.2.4), however, we shall not do so, instead we shall interpret it as a
special phenomenological equation. In order to find this relation we proceed
as follows.

In the case of zero external electromagnetic sources the Maxwell equations
are given by

d,dy = § (3-132)

9y = Op &g,y =&y (3-13b)
d,by = 0 (3-13¢)

O,bg = =0 €45,8y (3-13d)

where, d, is the electric flux density, e, the electric field strength, b, the
magnetic flux density, 4, the magnetic field strength, & the electric charge
density and &, the electric current density. Next, we introduce the magnetic
vector potential 4, and the scalar electric potential ¢ through the relations

by = 9 (3-142)

B apy?y
e, = —0,a, 9,0 (3-14b)

It can easily be verified that the above two definitions are compatible with
the Maxwell equations (cf. Appendix A). Now, vsing the electromagnetic
constitutive equations

ba = Hephp = Vaphs (3-152)
dy = €,g6p (3-15b)

the Maxwell equations can be rewritten into an equivalent set of equations
relating the magnetic and electric potentials

ao €ocw —at Vot 0 ) av €1vp 0 .[a[il _ {

guzl
- (3-16)
0 _aa 0 _EO’B ax aB (p —é

In fact, the above expression represents the Maxwell equations in terms of
two wave equations. Note that the above equation conforms to the canonical

16. These constitutive relations should be characterized as: linear, inhomogeneous, anisotro-
pic, locally-reacting, Markovian and time-invariant.
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form of a model equation as discussed in Section 2.4. Now, if we assume that
the wave phenomena, described by equation (3-16), travel with infinite
speed17 the time derivatives can be set to zero. This yields the following set
of equations

9p €apyhy = &g (3-17a)
hy = Vopds €pgyfly (3-17b)
9,dy = § (3-18a)

dy, = ~£,3050 (3-18b)

Equations (3-17a) and (3-17b) describe the magnetostatic behavior of the ma-
terial (e.g. Eddy currents). Equations (3-18a) and (3-18b) describe the electro-
static behavior of the material. The second set is referred to as the Poisson
equation. Moreover, note that both sets of equations conform to the canoni-
cal form of the model equation as discussed in Section 2.4. If we interpret
the above equations in a thermodynamic sense then (3-17a) and (3-18a) are the
phenomenological equations and (3-17b) and (3-18b) are the non-equilibrium
constitutive relations (cf. Section 2.3.2.4).

We shall now make another simplifying assumption. If the drift velocity of
the charge carriers is not too high, the force on the carriers caused by the
“self induced” magnetic field is always orders of magnitudes smaller then
the “self induced” electric field. Therefore equations (3-17a) and (3-17b) can
usually be ignored when the current densities are not too high and no exter-
nal magnetic field is present.

In order to relate equations (3-18a) and (3-18b) to the energy and particle bal-
ances, we proceed as follows. By taking the divergence of equation (3-13b)
and then using equation (3-13a) we obtain the charge balance equation

& = - &, (3-19)

Obviously, this equation expresses the conservation of electric charge. Now
if we multiply each of the equations (3-12a) to (3-12c) by their corresponding
“particle” charge ¢* and take into consideration that the sum of all carrier
production terms or local fluxes must be zero because of the conservation of
the total number of electrons, we end up with the following equivalent
charge balance equation

9,(¢°n+ '+ qhznd‘" + q"Zna;) = —d, (q"ngL +q°ng, (3-20)
m n

17. In semiconductors this is usually valid up to a few gigahertz.

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 65




Chapter 3: A Thermodynamic Model for the Thermal and Electrical Energy Domains

By comparing equations (3-19) and (3-20), we observe that the space charge
and the corresponding electric current are given by the relations

&= ¢*n°+q"n" + thnd:‘ + q"Zna; (3-21a)
m n

— L h h
, = q'ng+q°ng (3-21b)

Note that in our case, the electric current is taken positive in the direction
where the holes flow and negative (¢°<0) in the direction where the elec-
trons flow. The space charge density is the sum of the individual charge den-
sities in the conduction and valence band and in the discrete energy levels of
the localized states in the band gap.

3.4 The Bulk Constitutive Relations

The equations presented in the previous sections do not yet form a closed
computational model. To achieve this we need additional information in the
form of constitutive relations. According to Section 2.3, these can be of two
types: (a) equilibrium relations defined in equilibrium thermodynamics,
which express the relation between the intensive and extensive state vari-
ables, and (b) non-equilibrium relations defined in irreversible thermody-
namics, which express the relation between the thermodynamic forces and
fluxes. Usually, a whole range of such constitutive relations, with varying
degrees of complexity, is conceivable (cf. Section 2.4), however, in this sec-
tion we restrict ourselves to (quasi) non-linear, inhomogeneous, anisotropic,
locally-reacting, Markovian, and time-invariant constitutive relations!8.
Moreover, in the semiconductor field, the refinement of the constitutive rela-
tions is still an active field of research, therefore, we restrict ourselves to the
general framework and exemplify it with some of the more established con-
stitutive models. In Section 3.4.1 we discuss the equilibrium equations of
state and in Section 3.4.2 the non-equilibrium equations of state.

| 3.4.1 Equilibrium Equations of State

| The purpose of this subsection is to express the intensive state variables in

| terms of the extensive state variables. In the spirit of thermodynamics that
“everything depends on everything” the Gibbs equations (3-7a)-(3-7¢) imply
the following equations of state [Minster 1970]

T8 = Ths! 52 s":n8 nt 0™ 0™ k = {1 e, h} (3-22a)

18. The formal treatment of more general constitutive relations is a very interesting research
subject, however, the theory as presented in this chapter already presents severe numerical
implementation difficultics that first need to be overcome.
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honf nb n'm 0™ k= {e h d,a} (3-22b)

vk = Vi 5% s
These equations are valid for each volume element in local thermodynamic
equilibrium and express the local temperatures and electrochemical poten-
tials as functions of the entropy of the lattice, electron and hole systems, and
“particle” densities in the electron, hole and localized state systems.

However, in order to use a statistical theory to find explicit relations for the
above equations, it is more convenient to rewrite them as expressions relat-
ing the extensive to the intensive state variables. The formal procedure is to
apply a Legendre transform [Munster 1970] to the fundamental equation to
obtain the grand potemiallg, that is

dQ¥ = —s5dT* + nkd v* (3-23)

where it is implicitly assumed that the volume is constant. We may then
write the equations of state as

st = siT (3-24a)
sk = 5T Vh k= {e h} (3-24b)
nk = M@V k= {eh d,a)} (3-24c)

Note that we have already tremendously simplified the equations by assum-
ing that certain dependencies are not present. Explicit expressions for the
above equations of state can be obtained for simple systems by means of
equilibrium  statistical thermodynamic principles [Toda 1983][Kubo
1985][Blakemore 1962][Landsberg 1991]. As far as the electrical domain is
concerned, the usual approach is to treat the electrons and holes as ideal Fer-
mi-Dirac gases moving in a vessel determined by the physical boundaries of
the host lattice. The effect of the periodic lattice is taken into account by
means of the effective mass approximation. For non-degenerate semicon-
ductors, the electrons and holes can be treated as a Maxwell-Boltzmann gas.
We shall not (yet) simplify the statistics to Maxwell-Boltzmann but rather
use the Fermi-Dirac statistics. This, in principle, validates the use of the rela-
tions in the low temperature regionzo. As far as the thermal domain is con-
cerned, the usual approach is to assume that the lattice can be represented as
a phonon gas21 (boson statistics) moving in a vessel determined by the phys-
ical boundary of the host lattice.

19. The grand potential is used to link thermodynamics with statistical thermodynamics.

20. Apart from some parameters which should be experimentally or theoretically determined
at low temperatures.

21. For this, a technique called second quantization is used [Ashcroft 1976)
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3.4.141

Let us now give the explicit forms of the commonly used equilibrium equa-
tions of state. First, we give the ones of the electrical domain and, second,
those of the thermal domain.

Electrical Domain

In the following, we ignore heavy doping effects. The “electrical” equations
of state for the electron and hole systems can be written in terms of the Fer-
mi-Dirac integrals (cf. Appendix D). Below, these are written in a form relat-

ing the carrier densities to the temperature and electrochemical potential22

V€ — Ecb
n® = N°bF (———) (3-25a)
1/2 kTe
Evb —yh
h vh
n" = N*F ( ) (3-25b)
1/2 kTh

The conduction band density of states N°® and the valence band density of
states N*” can be expressed as

3
2 Cb kT[ i
Nt =2 (—n-m—z——] (3-26a)
h
3
2 vb le 2
Nt =2 (—”ﬁz——) (3-26b)
h

where k is the Boltzmann constant, A is the Planck constant, and m® and m*
respectively are the conduction band and valence band effective density of
states mass, which can be expressed as [Barber 1967]

m = m° [1.045 + 4.5x107*- T] (50<T<350K) (3-27a)

m"® = m®[0.523 + 1.4x1073T - 1.48x10°° - T2]  (50<T <350 K) (3-27b)

The band edge energy of the conduction band £, and the band edge energy
of the valence band £*°can be expressed as [Marshak 1989]

1
E® = E’~q¢ = Ey—X+3E¥ 49 (3-28a)

E" = Ef—qp = Ej-X- %Eg” -q¢ (3-28b)

22. Note that in the second equation the sign of the electrochemical potential is reversed be-
cause we refer to the electronic electrochemical potential.
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where E is an arbitrary reference level, X is the electron affinity, and E®? is
the bandgap defined as E®” = E°®— E*®. The electron affinity is usually
needed to model hetero-structures (e.g. Ge-Si). In the literature, there is still
much controversy with respect to an appropriate model for X, valid for sev-
eral types of semiconductor materials. As long as we do not need to model
hetero-structures, we may set X to zero.

The bandgap for silicon can be expressed as a temperature-dependent func-
tion [Bladau 1974][Selberherr 1989]

1.1700 + 1.059x107> . T— 6.05x10~" - T?] (T<170K
5o {q[ x 1 ) a9)

q[1.1785-9.025x10™° . T=3.05x107" - T}] (T >170K)

The equations of state for the donor- and acceptor-like localized states can be
written in terms of the Fermi-Dirac distribution function. Below, these are
written in a form relating the number of electrons and holes in the donor- and
acceptor-like localized states to the temperature and electrochemical poten-
tials {Landsberg 1991]%3

n™ = n* _ (3-30a)

nm=n" . (3-30Db)
1+ g%mexp (vd"'— Ed’")
eX —_—
kT

where n% and n% respectively are the densities of the free donor-like local-
ized states and the occupied acceptor-like localized states, n~ and n% are
the densities of the donor- and acceptor-like localized states, E“" and E* are
the (discrete) energy levels of the m’th donor-like localized state and the n’th
acceptor-like localized state. The factors gd"' and ga" are the spin degeneracy
factors of the donor and acceptor localized states. In the case of silicon with
phosphor as donors and boron as acceptors, the spin degeneracy factors take
the values 2 and 4.

Note 3-3: Equations (3-25a) and (3-25b) are only valid for parabolic band
edges, and can be evaluated analytically only in the non-degenerate or the
highly degenerate case. In the intermediate region, it is best to use a look up
table to calculate the Fermi-Dirac integrals (cf. Appendix D). For non-

23. Note that in the second equation the sign of the electrochemical potential is reversed, be-
cause we refer to the electronic electrochemical potential.
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34.1.2

parabolic band edges, one can treat the electrons and holes as a Kane gas, for
which analytical expressions can be found in the non-degenerate case
[Landsberg 1991]. The degenerate case has to be tabulated, just as in the case
of the Fermi-Dirac integrals. An alternative approach could be to
approximate the band non-parabolicity in terms of powers of the energy. The
carrier densities can then be obtained as an expansion in Fermi-Dirac
integrals of various orders [Blakemore 1962].

Note 3-4: Equations (3-30b) and (3-30a) are only valid for a set of non-
interacting monovalent localized states [Landsberg 1991]. When several
interacting localized states are present, the situation becomes extremely
complex. In this case it is not sufficient to just account for other impurity
levels by compensation as usually is done with semiconductors with donor
and acceptor states. This viewpoint is only justifiable when the Fermi level is
either far above or far below all other kinds of impurity levels. Especially,
when the temperature behavior must be modeled accurately over a wide
range, a more appropriate model of the localized states is important.

Thermal Domain

As already assumed in equation (3-24a), the effect of the localized states on
the lattice entropy can usually be neglected, because in most cases the num-
ber of lattice atoms is much larger than the number of localized states. Fur-
ther, the contribution to the entropy of the electrons and holes trapped in the
localized states is usually negligible.

In differential form, the equation of state for the lattice entropy can formally
be written as

dh' = Tlds' = chaT! (3-31a)
with the heat capacity of the lattice at constant pressure defined as

[ os'
=T |5 . (3-31b)

At this stage, we should perhaps address an important issue concerning the
fact that here the heat capacity referred to corresponds to the heat capacity at
constant pressure. However, when the experimental configuration corre-
sponds to the situation that the volume instead of the pressure is constant, we
should use the heat capacity at constant volume. The two are related to each
other by24

24. This can easily be proven by using the Maxwell relations for transforming thermodynamic
partial differentials.
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2
Tv(xP

(3-32)

where v is the specific volume, o, the thermal expansion coefficient of the
lattice at constant pressure, and y the compressibility at constant tempera-
ture. These are defined by

1, 0v -1 ,0v

a =152 K= = (5p)
P T

v T’ p v 0P, (3-33)
Fortunately, in the case of solids, the correction factor as expressed in equa-
tion (3-32) is usually very small, therefore, the difference between ¢y and cp is
negligible.
Data for the lattice heat capacity at constant pressure as a function of the
temperature can, for silicon, be found in Landolt and Bornstein on page 398-

399. For temperatures well below the Debye temperature ®p, a simple power
law will do (Debye interpolation scheme)

! T! 3 J
cp(T) = c- [@)_D} (T « @D) [K-cm3} (3-34a)

The Debye temperature depends weakly on the temperature and the density
of the localized states. For silicon, the following values can be taken

©,=645 K
c=16.27

(3-34b)

When the internal deviation from the operating temperature is not too large,
we may simply evaluate the lattice heat capacity at the operating tempera-
ture. For instance, at 300 K we have cp = 1.637.

In order to derive some useful formulas for the “thermal” equations of state
of the electron and hole systems we proceed as follows. In differential form
we may write

s ds
k _ kg k _ ok k -
dh* =Tds" =T [(—-—aT)deT+ (a——vk)Tdv } k=eh (3-35a)

Using the Maxwell relations for transforming thermodynamic partial differ-
entials [Callen 1960] we may transform the above relation to a form

vk
dit = Thds* = ckdT-T* (a—;k] it k= e h (3-35b)

nk

25. We implicitly assume the relations to hold at either constant pressure or constant volume.

MULT! SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 7




Chapter 3: A Thermodynamic Model for the Thermal and Electrical Energy Domains

where ci is the heat capacity at constant charge carrier density of either the
electron or the hole system. The carrier heat capacity at constant carrier den-
sity can be approximated by a linear temperature dependence (free electron
heat capacity) [Ashcroft 1976]

k kask krk
c"=T(aT") =T k=eh (3-35¢)

where c* approximately equals 2.5x107% in the case of silicon. Note that the
carrier heat capacities can safely be neglected with respect to the lattice heat
capacity. The second term on the right-hand side of equation (3-35b) is more
important, using the Maxwell relations and equation (3-25a) and (3-25b) it can
(in the non-degenerate case) be written as

k cb
an ve-E‘b+T"’(a~E—) + (3/2)kT
L[V Tt ) s T ).,
T (‘7) = Tk = (3-35d)
aT* J , dn - JEYE
" o VE-E" 4T ( = | +(3/2)kT
A\ T* oT vk

For parabolic band edges, the “thermal” equations of state for the electron
and hole systems can be represented in terms of the Fermi-Dirac integrals,
that is

cb
(3-36a)

b VéE—E ve— E®
K = (kT*)N° F3,2( — )

chasch
)+E N Fl/z( e

vb h vb h
he Vb E7+v v E”+v
W = (kTN F3,2( o )-E"N“l’F1 /2( ) (3-36b)

where, h° and 2" are the thermal energy densities. Note that the above rela-
tions can be used to calculate equation (3-35a).

Note 3-5: Equation (3-35a) relates the change of the thermal energy, stored in
the electron and hole systems, to the change in temperature and
electrochemical potential. Similarly, equation (3-35b) relates the change in
thermal energy to the change in temperature and carrier densities.

Note 3-6: In most attempts to model the thermal signal domain, the effect of
the second term in equation (3-35a) is not taken into account. In time-
dependent processes, this contribution should not be neglected, because it
enters the equations when transforming the term E),u”’ = d,h, in the total
heat balance equation (3-11¢), to an expression explicit in the thermodynamic
state variables, e.g.

o, (W +h+h"y = (' +cc+ch 9,T+a;d,n°+a,dn" (3-37)
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34.2

According to equation (3-35d) the proportionality factors a,, a, are of the or-
der of the bandgap, hence, for rapid transient processes, that is, large 9 n°
and d, n* a significant amount of heat can be produced.

Note 3-7: Equation (3-35d) implicitly contains the derivative of the
electrostatic potential with respect to the temperature. In principle, this
quantity behaves as a non-local constitutive parameter. It can be evaluated
by taking the partial differential with respect to T on both sides of the
Poisson equation and then solving for d¢/0T. This term becomes important
in the case of fast transient processes. However, since the inclusion of this
term in the model severely complicates the numerical scheme we leave it for
future research.

Non-Equilibrium Equations of State

In the previous section, we identified the equilibrium equations of state. Sim-
ilarly, we must also identify the non-equilibrium equations of state, relating
the scalar and vectorial fluxes to their appropriate thermodynamic forces.

As discussed earlier, a proper way to set up the non-equilibrium equations of
state is to use thermodynamics of irreversible processes {Duyn 1990][Duyn
1992][Callen 1948][Li 1962][Groot 1969][Gyarmati 1970]. According to the
central theorem of irreversible thermodynamics, the proper fluxes and forc-
es, for which the Onsager-Casimir reciprocal relations (cf. Section 2.3.2.4)
hold, can be found by calculating the entropy production {Groot 1969]. More-
over, the requirement of positive definiteness of the entropy production term,
discussed in Section 2.3.2.3, then gives us a clear guideline in choosing the
constitutive relations between the thermodynamic fluxes and forces. Further,
the entropy source term multiplied by the temperature is an explicit form of
the dissipation function discussed in Section 2.3.2.3. In other words the en-
tropy production can be used to calculate the total heat production in a ther-
modynamic system in an unambiguous manner. This opposed to the rather
heuristic models usually encountered in device physics [Selberherr 1984).

The entropy balance and consequently the entropy production can be calcu-
lated by substituting the particle and energy balances, discussed in Section
3.3, in the Gibbs relations given in equations (3-7a)-(3-7¢c). After some
lengthy but straightforward algebraic manipulations we then find for the to-
tal entropy balance

az a Sq +svector+s‘.\'calar (3-38a)
with
hk
Sy = (—i) (3-38)
ke T
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3, T 3oV
gvector _ _ Z nk (Li)_ 2 nk ("‘7] (3-38¢)
K Sht \(TY k=eh
scalar - Z i ( Z (Vk) (3-38d)
=eh,l keN rt

Clearly, equation (3-38a) relates the time rate of the entropy density to the di-
vergence of the entropy flux and the entropy production or source term. As
can be observed, the entropy production is split into a vectorial part and a
scalar part. Equation (3-38b) must be interpreted as the total entropy flow. It
consists of the sum of the heat flow in the electron, hole and lattice sub-
systems divided by the temperature of each subsystem. These heat flows are
respectively defined as

hg = uf—veng h{; = ug—v"ng hy = ué (3-39)

The first summation in the vectorial entropy production given in equation (3-
38c) is the sum of the products of the vectorial heat fluxes and their associat-
ed vectorial thermal forces in the electron, hole and lattice subsystems. The
| second summation in equation (3-38c) is the sum of the products of the vecto-
| rial carrier fluxes (electrons and holes) and their associated vectorial electri-
‘ cal forces.

To interpret the scalar entropy source term in equation (3-38d), we first write
the carrier and energy source term in each component as a sum of scalar

fluxes
|
7 = Zﬁ“—”‘ :(me N) (3-40a)
} mre
\
| at = Z A"7™ S (me N) (3-40b)
m#h
+ . koo .4, . o
’%dm - nd,,.—’ +ndm_“" n“m - n“m‘_ +nam‘——e (3-40¢)
ik = Zu"‘“"‘ i (k,me S) (3-400)
m#k

Now, using the above relations and the fact that a scalar flux from compo-
nent k to component m must be the opposite of the flux from component m to
component k, we may rewrite the scalar entropy production in equation (3-
38d) as
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s«scalar - Z z [ﬁkem(v_k_ﬂ):[
k
ke NmeN T ™

m>k

. 1 1
+ E: E: [uk—am(_m___z]
k=Tehm=Teh ™ T
m>k
(3-41)

where the electrochemical potentials now refer to the electrons. Clearly, the
scalar entropy production as expressed in the above equation is now in the
form of a sum of products of respectively scalar fluxes with their associated
scalar forces. Note that with respect to the first double summation in equa-
tion (3-38d), we implicitly assume relation (3-4) to hold. The various vectorial
and scalar fluxes are respectively summarized in Table 3-1 and Table 3-2.

In the remainder of this section, we identify the scalar and vectorial non-
equilibrium equations of state26. First, we discuss the vectorial phenomena
and second the scalar phenomena.

Table 3-1

Summary of the main thermal and electrical scalar fluxes and forces (the Fermi levels
refer to the electrons).

thermal domain electrical domain
fluxes: forces: fluxes: forces:
de—)h (L_l ﬁe—)h Ve vh
™ 7
ue—»l (l_i ’.‘e—)d,‘ Ve Vd"
T ot
T T
Pl (l__l_) T ve v

1<
~|

<
x

=
>
4
f
N ~~ —~ I
<
_
~— — ~— Nt

s

3

26. Note that we implicitly assumed Curie’s principle to hold, which states that the vectorial
and scalar effects do not mix in isotropic materials.
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Table 3-2

34.2.1

Summary of the main thermal and electrical vectorial fluxes and forces (the Fermi
levels reter to the electrons).

thermal domain electrical domain

fluxes: forces: fluxes: forces:

A 3,T° n:, )
(r* T
hf, _ 3,1
(™?
ke _ 3T
(T?

Vectorial Phenomena

The purpose of this subsection is to set up the general form of the non-equi-
librium equations of state for the carrier flows in the electron and hole sub-
systems, and the heat flows in the electron, hole and lattice subsystems (cf.
Table 3-2).

Remembering the remarks made on the general form of the constitutive
equations, (cf. Section 2.4) let us assume that the vectorial non-equilibrium
equations of state relating the carrier and heat fluxes to the vectorial thermo-
dynamic forces may be written as Markov expressions in terms of the forces,
that is

Jh = SR ) (3-42)

where it is assumed that the /g’ are the vectorial forces and the j% are the vec-
torial fluxes listed in Table 3-2. The question as to whether or not the above
relations can be assumed to be truly Markovian is hard to justify in advance,
however, some specific remarks can be made. Consider, for instance, the
physical effect of velocity overshoot of the charge carriers upon the sudden
application of a force. In this case the flux cannot be Markovian with respect
to the applied force. This is not a deficiency in the basic thermodynamic
framework we have used, on the contrary, this shortcoming can be traced
back to the omitting of the momentum balance equation for the charge carri-
er systems (assumption of mechanical equilibrium). In almost all practical
cases this is a valid assumption because momentum relaxation typically
takes place on a time scale of pico to femto seconds. There is a general rule
in irreversible thermodynamic system theory which states that whenever a
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constitutive relation is encountered that is non-Markovian we must remedy
the problem by looking for hidden state variables, hence, to remedy the
problem of velocity overshoot, the momentum balance together with its as-
sociated state variables should be taken into account. Effectively, this proce-
dure leads to a hydrodynamic model and the constitutive relations then
emanating can again assumed to be Markovian.

Since each vectorial flux is known to vanish as the forces vanish, we can re-
late the fluxes to the forces by means of the following quasi-linear expansion

6= X Dl ) = YA (343

Note that the expansion coefficients in general are non-linear functions of the
intensive state variables and the generalized forces. Also note that the expan-
sion coefficients must be chosen such that the entropy production §"¢*°",
discussed in Section 3.4.2, is positive (aa‘é" >0). We now rewrite equation
(3-43) in the form of a matrix equation relating the vectorial fluxes to the
forces (cf. Table 3-2) by means of the transport matrix, that is

[ 8(1\1"zj
S
_ M ] A
nt ags ach| lash agkl ach a“:
i b g |
hg| = it gl onnt st o newll el (3-44)
) dgp Bgp aaB g 8op ()
Yo et o o o oty | aur
Yo s ) Loty ot oy |
] 3T
(h?

The upper left block in the transport matrix describes the electrical domain,
the upper right block describes the cross effects between the electrical and
the thermal domain, the lower right biock describes the thermal domain and
the lower left block describes the cross effects between the thermal and the
electrical domain. If we assume the Onsager reciprocal relations and the pos-
tulate of minimum entropy production (cf. Section 2.3.2.3) to hold, the trans-
port matrix is symmetric:27 and positive definite. The property of positive

27. More precisely, it is antisymmetric when an external magnetic field is present.
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3.4.2.141

definiteness guarantees that the problem has a stable steady-state solution. In
mathematical terminology these types of problems are called elliptic (cf.
Chapter 4).

We now describe each block of the transport matrix in more detail. First, the
electrical domain, followed by the thermal domain. However, we simplify
the discussion to the case that the lattice, electron and hole temperatures are
equa128, thus equation (3-44) can be simplified to

_aave
ng, ath ath| |ath aT"
" v
ot = |l ot )|, 2 (49
h
° Lot eag ] | 2T
B2

Electrical Domain

In practical cases the off diagonal entries or cross terms of the upper left
block in the transport matrix (3-44) can be neglected. In principle, these cross
terms are caused by the momentum exchange between the electron and hole
systems caused by electron-hole scattering; it is as if the electrons (holes) are
dragged along with the holes (electrons). However, these effects are usually
very small.

This leaves us to give a description of the diagonal terms of the upper left
block and the entries in the upper right block of equation (3-44). Note that for
a cubic material, such as silicon, the entries in the transport matrix do not
have to be tensors. Only when some symmetry-breaking external force is
present, such as a magnetic field or mechanical stress, does the resulting
anisotropy reflect itself in the tensorial behavior of the transport matrix.
Since we have already assumed that no magnetic field or mechanical stress is
present, we assume that the entries of the transport matrix are scalars. Thus
we can link the above abstract formulas to some well-known experimental
parameters, as shown below

= g lnfper (3-46a)
a' = g lnhptt (3-46b)
2% = n®uer’pe (3-46¢)

28. This assumption is valid when (he carrier densities are not 0o high (< 1017 cm'a)
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™ = nPphT?ph (3-46d)

where the experimental parameters p¢ (> Q) and u (> 0) are defined as the
electron and hole mobilities, and P® (> O)29 and P* (> 0) as the electron and
hole thermoelectric powers. According to the general principles outlined in
Section 2.3, we have written these parameters as functions of the intensive
state parameters and the thermodynamic forces. These dependencies are de-
termined by carrier-ionized impurity, carrier-neutral impurity, carrier-
phonon and carrier-carrier scattering processes. For the readers convenience
we list some of the more well-known models for the mobilities and thermo-
electric powers.

Mobility

When going through the literature, many papers can be found which try to
express the mobilities in terms of the intensive state parameters and the forc-
es. A very popular model which is commonly used for simulation purposes
is the empirical model described in [Caughey 1967]. It includes the effects of
phonon and impurity scattering and can be summarized in the following re-
lations

uk _ uk
k k phon min
uphon imp =Mt eat ok (3-47a)
1+ [n°“%/N, ef]
T ™
k — 1k
Hoin = uO,minl:ref] (3-47b)
T 71T
£ — nk
uP*“On - uO,phoul:Tef:l (3-47c)
T‘k
Nf, = NE ,ef[ T } ’ (3-47d)
T, ref
—n
a* = aﬁ[TT‘} ' (3-47¢)
re

d a
SRR WAEDY (3-47f)
2" 2

where the index k& can take the values e and A, HS min 18 the minimum mobil-
ity as expected at the highest doping densities, u’é phon is the maximum mo-
bility as expected at the lowest doping densities, N is a reference
concentration, T, is the reference temperature of 300K, n“a' is the total

29. Note that the definition of the sign of P* is the opposite of what is usually encountered.

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 79



Chapter 3: A Thermodynamic Model for the Thermal and Electrical Energy Domains

number of ionized scattering centers, which at room temperature is equal to
the total impurity concentration.

The empirical parameters must be obtained by fitting the model to experi-
mental data. A table of commonly used values for silicon is given below.

Table 3-3

Coefficients of the Caughey-Thomas model for phonon-impurity scattering.

k uO, min “’0, phon NO, ref ) T]] 1]2 T]3 ']4

electon (188 | 1340 | 1261017 [0.88 [233 [0.57 [24 [0.146

hole 54 461 |[2351017 | 0.88 | 223 | 0.57 |24 |0.146

Two important deficiencies of the Caughey-Thomas model can be identified.
First, the effect of carrier-carrier scattering and, second, the effect of velocity
saturation of the electrons and holes.

Carrier-carrier scattering is the cause of a reduction in mobility at high injec-
tion levels, for instance, injection across a PN junction. A common approach
in modeling the effect of carrier-carrier scattering on mobility is to use a
modified Caughey-Thomas model where the total number of scattering cen-
ters in equation (3-471) is replaced by an effective number also involving the
carrier concentrations, that is

nz}fat = oan* + (1-a) (ne + nh) (3-48)

According to [Engl 1981] the parameter o equals 0.34 for silicon.

The velocity saturation effect can be qualitatively explained as follows. In
our line of reasoning we have implicitly assumed that the continuous feed of
momentum and energy to the electrons and the holes by the application of an
external electrostatic field is quickly released to the lattice by means of colli-
sions, that is, upon the application of an electric field the carriers quickly
reach a steady state velocity proportional to the applied field. However, for
increasing electrostatic fields the carriers, instead of quickly being accelerat-
ed to their new steady state velocity, are now heated up. In this situation the
carriers are no longer in thermal equilibrium with the lattice. The effect can
be summarized in the following empirical formulas

ki k
lJvk - o uphon, imp (3-49a)

1/p*
akpk,  E B
k phon, imp ™~ eff
5% + [] + (__7.._)

sat
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k
Ny 0,
Egy= —— (3-49b)
e
T 7Y
V§at = Vg’sal[T—f:l (3‘49(:)
re

where E, is the effective applied electric field, and v'g’ <ar the saturation ve-
locity at the reference temperature. Again the empirical parameters must be
obtained by fitting the model to experimental data. A table of commonly
used values for silicon is given below.

Table 3-4

Coefficients of the velocity saturation model.

k o4 B ) Vo, sarlemis] Y
electrons 2 2 1 1.07 107 0.87
holes i 1 0 8.34 10° 0.52

Thermoelectric Power

Let us now continue with the thermoelectric powers P and P". A very clear
qualitative description can be found in [Middelhoek 1983b]. For a non-degen-
erate semiconductor with dominant scattering mechanism, described by,
1-E”, we may use the following simple relations

ch e
e - K[E_:V_ 5_} -
P_+q( T )+2 s (3-50a)
h vbh
b K VIET é,} i
oo

For acoustic phonon scattering, the coefficient s is equal to 1/2 and for ion-
ized impurity scattering it is equal to -3/2 [Nag 1972][Nag 1980]. The corre-
spondence of the above relations to experiment is reasonable, provided the
sample is non-degenerate and the operating temperature is not too low. At
low temperatures, the discrepancy between theory and experiment is attrib-
uted to the phonon drag effect. The phonon drag effect causes the thermo-
electric power to increase rapidly at low temperatures [Geballe 1955]. The
phonon drag effect is believed to be caused by the increased mechanical cou-
pling between the electron gas and the (lattice) phonon gas, at low tempera-
tures. In the scattering process between the charge carriers and the (thermal)
phonons, the exchange of momentum is not completely randomized, there-
fore, because of the much larger effective mass of the phonons, some of the
momentum of the phonons is transferred to the electrons and thus the elec-
trons are dragged along with the phonon flux.
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3.4.21.2

Usually, the phonon drag effect is taken into account by adding an extra term
between the brackets of equations (3-50a) and (3-50b), however, we will not
do so because a useful model of the phonon drag contribution is not yet
available. An extension to equations (3-50a) and (3-50b), which makes these
also valid in the case of a degenerate semiconductor, can be found in [Nak-
waski 1983]. However, this model seems computationally too involved to be
of practical use.

Thermal Domain

With respect to the lower left block of the transport matrix describing the
cross effects between the thermal domain and the electrical domain, we can
be brief. Because of the supposed symmetry of the transport matrix, the fol-
lowing relations must hold

1
t

a“ = @ = n°uepeT? (3-51a)

a“h = a" = phuhphr? (3-51b)

This leaves only the lower right entry of the transport matrix to be identified.
This entry represents the relation between the gradient of the temperature
and the total heat flux in the lattice, electron and hole system, when the gra-
dients in the electrochemical potentials are zero. To make this term some-
what more transparent we proceed as follows. First, we calculate the heat
flux in the case when both the electron and hole particie fluxes are zero, then

we have
AUereu slthahu 0T
- [(55) ()] () = o
= a a
0

where X, is defined as the total heat conductivity in the absence of the parti-
cle fluxes. Note that x, is a measurable quantity30 and is the sum of the lattice
thermal conductivity and the (diffusion) thermal conductivities of the elec-
tron and hole system. Using the above relation and the original definition of
the heat flow as implied by equation (3-44) we can write 2*“ as

(3-52)

2" = T2k, +qnu® (P) T+ qn'nh (PH’T) = T5el (389

A simple model for calculating «, can be found in [Prakash 1978][Glassbren-
ner 1964] and is given below

(3-54)

K, = KO.[I—a( T )

30. This is the quantity that is usually measured in thermal conductivity experiments.
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|
|
3.4.2.2
|
|
|

For silicon: & = 1.093, B = 0.8705 and Ko, = 1.56 W/cm K. Note that at
room temperature and with rather large estimates for the mobilities, the ther-
moelectric powers, and carrier densities we can neglect the second and third
term within the brackets of equation (3-53), hence «, = Kfff . Only in the case
of extreme high carrier densities (> 10?") some effects will be noticeable. At
such high carrier densities we should also extend the theory to include heavy
doping effects [Wachutka 1990].

This concludes the discussion on the non-equilibrium vectorial phenomena,
next we discuss the scalar phenomena.

Scalar Phenomena

The purpose of this subsection is to set up the general form of the non-equi-
librium equations of state for the scalar fluxes as given in Table 3-1. As in
the case of the vectorial fluxes, we assume that the lattice, electron and hole
temperatures are equal. In this case the heat fluxes between the lattice, elec-
tron and hole systems vanish. We also assume that the scalar phenomena do
no not couple to the vectorial phenomena discussed in the previous section.
For large electric fields this is not a realistic assumption, because of impact
jonization or avalanche multiplication. Within the realm of the present
framework, these effects can be interpreted as a coupling between the scalar
fluxes and the vectorial forces. This leaves us to give a description of the sca-
lar carrier fluxes between the electron, hole and localized state systems.

Usually, these scalar fluxes are interpreted as pseudo chemical reactions tak-
ing place between the free charge carriers and the localized states in the band
gap. In the literature, these are also commonly referred to as generation/re-
combination processes. Recapitulating, we have (1) a net flux of electrons
from the conduction to the valence band, (2) a net flux of electrons from the
conduction band to the donor-like localized states, (3) a net flux of electrons
from the conduction band to the acceptor-like localized states, (4) a net flux
of holes from the valence band to the donor-like localized states and (5) a net
flux of holes from the valence band to the acceptor-like localized states. The
above local fluxes are schematically represented in Figure 3-1.

As stated earlier, the above point of view ignores the possible interaction
(electron fluxes) between the localized states in the band gap. For complex
localized states configurations this is not a valid assumption, especially in
the case of multiple interacting multivalent flaws [Landsberg 1991]. In
[Otaredian 1992] it was shown that even for high quality processed silicon
semiconductors the assumption of non-interacting localized states does not
always hold.

According to [Landsberg 1991], each of the above-mentioned transition rates
consists of contributions of transitions involving two particles and transi-
tions involving three particles. The three-particle processes are usually
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Figure 3-1

Pseudo chemical reactions occurring in semiconductors represented in a simple band
diagram.

called Auger transitions. For instance, in the case of a band-to-band Auger
transition, an electron drops from the conduction band to the valence band
thereby transferring its excess energy to another electron in the conduction
band. This electron is thus brought into a higher energy level of the conduc-
tion band, where it subsequently loses its excess energy because of scatter-
ing. The other Auger processes all operate according to the same principle.

The band-to-band transitions can be written in terms of chemical reaction
equations

b

e +h ¢ (3-55a)

e +e +h oel+e (3-55b)

e +h +h @e+h (3-55¢)

Similarly, the transitions of electrons from the conduction band to donor-like
localized states can be written as

+ X
e +d, od, (3-56a)
e +e +d, =d,+e (3-56b)

e +h +d, e dy+h (3-56¢)

For the transitions of electrons from the conduction band to acceptor-like lo-
calized states we have

e +a, oa, (3-57a)
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e +e +a:<::>a;+e (3-57b)

e +h +a, @a, +h (3-57c)

For the transition of holes from the valence band to donor-like localized
states we have

h +dyed, (3-58a)
h+e +d, od, +e (3-58b)
h+h +dy od, +h (3-58¢)

Finally, for the transition of holes from the valence band to acceptor-like lo-
calized states we have

h +a, oa, (3-59)
h +e +a, @a, +e (3-59b)
h +h +a, a,+h (3-59¢)

To also assume linear constitutive relations between the scalar fluxes and
forces, just as in the case of the vectorial phenomena, is not a good approxi-
mation, except in the case of minute excursions from the thermal equilibrium
state. Further, because of the assumption of non-interacting localized states
the matrix relating the local fluxes to the forces is diagonal, hence

-’ie S| P&eh 0 0 0 0O ] —ve - V}J
e—d, 0 aedm 0 0 1 Ve — yin
2% =10 0 2™ 0 0| Fve-v® (3-60)
i 0 0 0 &% o vhi— v
A7 Lo 0 0 0 M [vi-v

where it is understood that the matrix entries are non-linear operators operat-
ing on the right-hand side vector, and the electrochemical potentials refer to
the electronic energy scale. Note that the matrix entries must be chosen such
that the entropy production $°°**%’ is positive, hence & >0. Because the
scalar fluxes are supposed to vanish at thermal equilibrium, we expect the
scalar fluxes to be vanishing functions of the differences between the electro-
chemical potentials. Skipping the tedious details [Landsberg 1991] we end up

with the following general model
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V‘Y—Vk
ks - Ck—’s'”k'"s'[l—cxP(_/}T_)] (3-61a)

where the reaction coefficients ¢ are defined as,

ks = cﬁ””+nec’1"”+n"c'2‘“” (3-61b)

and it is understood that

k,se {ehd,a,} (3-61c)

The above equations describe band-to-band transitions, Auger-assisted
band-to-band transitions, band-to-localized-states transitions, and Auger-as-
sisted band-to-localized-states transitions. Note that for very small devia-
tions from thermal equilibrium, equation (3-61a) indeed reduces to linear
constitutive equations just as in the case of the vectorial fluxes. Often, the
expansion coefficients in the reaction coefficients (3-61b) can be treated as
constants, however, for degenerate semiconductors, they depend at least on
the carrier concentrations. Here we treat the expansion coefficients as empir-
ical parameters which have to be determined for each material and each type
of localized state.

In principle, if the reaction coefficients ¢ are known, we have a closed com-
putational model with respect to the scalar fluxes. However, we can go one
step further and assume steady-state conditions with respect to the scalar
fluxes. Steady-state implies that the time rates occurring in the balance equa-
tions (3-12¢) and (3-12d) are supposed to vanish, hence

e—d h—>d

n "= -n " (3-62a)

e—>a h—>a

A7 g T (3-62b)

According to [Landsberg 1991] the characteristics of band-to-localized-states
transitions then reduce to a generalized Shockley-Read-Hall recombination
process, given by

h e
vi—=V
nenh[l —exp (——-—)]

.e—od kT
A7 = e (3-63a)
r;mln +n] +‘tdm[n +ny]
where

d d,. "1
8 = [n'c® 7% (3-63b)

d d —h "]
o= [T (3-63c)
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d d, q e
e _ e n"—-nn vom—y
np=n (———d; )exp (—kT J (3-63d)
n
VS NV
ny=n (—HT) exp (T] (3'63e)

A similar expression holds for an acceptor-like localized state. In contrast to
the standard SRH model, the above model also accounts (if necessary) for
direct band-to-band transitions and Auger-assisted transitions. Note that the
assumption of the steady-state condition is only valid if the recombination
process is much faster than the other processes taking place. The recombina-
tion process usually takes place on a time scale of micro-seconds, hence, for
fast transient simulations, this assumption likely no longer holds.

3.5 Scaled Thermoelectric Model Equations

In this section, we summarize a scaled version of the simplified thermoelec-
tric model. In order to keep things tractable we use the following simplifica-
tions: (a) a single shallow donor level of density n?, which is in
thermodynamic equilibrium with the conduction band, (b) a single shallow
acceptor level of density n?, which is in thermodynamic equilibrium with
the valence band, and (c) a single steady-state deep-level trap of density ’,
for which the generalized SRH model can be assumed to hold. Taking into
account more complex doping and deep-level traps configurations is not ex-
pected to add significant difficulties other than implementation overhead.

Basically, the scaling of the model equations is used to serve three purposes:
(a) to avoid numerical overflow, (b) to reduce the number of floating point
operations, and (c) to keep the order of magnitudes of the parameter of the
PDE in the same range. Obviously, this involves a compromise, since it is
difficult to satisfy all requirements simultaneously. In respect of requirement
(a) we can state that with the current generation of computers (work stations)
with floating point co-processors with standard double precision arithmetic,
the danger of numerical overflow is significantly reduced. Hence, we can fo-
cus on requirements (b) and (c). Various scaling methods are known
[Markowich 1990], however, for the full thermoelectric model the usual scal-
ing methods tend to complicate the model equations because the temperature
now is a degree of freedom and not a constant. We use the following almost
trivial scaling (probably does not work at low temperatures)

RS = +qnt A= +qnt (3-64a)
h
— kT — E; - Ef B
7= EpE=1 =1 = (3-64b)
q =g r=q 97°
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3.5.1

n=qn p=qp Rl=qn® 1=qn® A =gqn (3640
off
pe_ a7 ph_aPt Ly 1N
Pe= P'= T R = (3-644)
dy = €5ld, & =g5lE (3-64¢)

where it is assumed that the quantities with the overbars are the scaled quan-
tities. Note that € = g€, where €, is the permittivity of the vacuum and &,
the relative permittivity of the material. Now all equations proposed earlier
in this chapter need to be rephrased in terms of the scaled quantities. Clearly,
this is a rather trivial task and therefore we only state the main resuits.

In Section 3.5.1, we summarize the scaled bulk equations. In Section 3.5.2
the thermodynamic equilibrium solution is discussed. Finally, in Section
3.5.3, the boundary conditions are discussed.

Scaled Bulk Equations

The scaled Poisson equation, and the scaled electron, hole and heat balances
are taken as

0=-3,dy+& (3-65a)
o,n° = 0 ng +n’ (3-65b)
oah = -9 mlh+i" (3-65¢)
dh = -0 hy+h (3-65d)

The corresponding non-equilibrium constitutive equations are taken as

dy = ~€,9,0 (3-66a)
ng = —n°p® (9 Ef + P9, T (3-66b)
nh = +atuh (9 Ef - P T (3-66¢)
ho = [-n°weTP19,Ef + [W*WATP" 3 Ef - k9 T (3-66d)
The source terms are taken as
&= (" +n’ —a7) (3-672)
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3.5.2

h_pe
Ef-E
ﬁeﬁh[l—cxp( f_ fﬂ
-h T

—e y
=it = - (3-67b)
T [5" + 7t} + T [0 + 77
h= [-n0 Ec+n"d Ef—#°ES+H'EN] (3-67¢)
aa™f T "aYa"f ! f
where
-1 ho ]
Te - ceT‘nt T - ;l——-Tnt (3‘68)
BB B-F
af=n%e T at=nte T (3-69)
Finally, the equilibrium equations of state are taken as
oy - (1/2) E®” + (E +
it = NYDF, ,2( 172) - i (p)) (3-70a)
b — (1/2)E®* — (E+¢)
wh= N ”(7)17],2( (172 = 1+ (3-700)
nd =l L (3-70¢)
Ee-E
!
1+ 2exp (
—a 1
% =7 E— (3-70d)
E'-Ef
1 +4exp =
T

In the above model equations we assume that the mobilities p¥, the thermo-
electric powers P* and the reaction coefficients ¢~/ are constants. Taking
into account the more complex models, as discussed in this chapter, is not
expected to add significant difficulties other than implementation overhead.

Thermodynamic Equilibrium

The thermodynamic equilibrium solution is defined by setting the Dirichlett
and Neumann boundary conditions (cf. Chapter 2) to zero. Essentially, this
action forces the device into the state of thermodynamic equilibrium. Since,
no currents flow through the device, the Fermi-levels as well as the tempera-
ture must be constant. In particular, the temperature is set to the ambient
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temperature and the Fermi-levels are set to zero. This means that we only
need to solve for the electrostatic potential at thermodynamic equilibrium.
For this we need to solve the non-linear Poisson equation. However, for uni-
formly doped semiconductors with completely ionized doping levels, the
trivial solution to the Poisson equation is found by setting the space charge
density to zero and solving for the built-in electrostatic potential

ECP EEP
d_  a\ — d_ a\2 — vb
0, = (%)m % ("Ncb" JCHT*J(”NC: ) ekT+4(%) (3-71)

Note that for uniform temperature, completely ionized uniform doping, and
position independent bandgap, the built-in potential ¢, , is indeed the trivial
solution of the Poisson equation. In the case the doping levels are not com-
pletely ionized the above equation does not hold and ¢,; needs to be calcu-
lated (iteratively) from the full form of the zero space charge condition (cf.
equation (3-21a)). If ¢, also becomes position dependent we cannot escape
the solution of the non-linear Poisson equation, however, we can use ¢,; as a
good initial guess.

Note 3-8: Although equation (3-71) arises naturally from the zero space
charge condition it is not numerically well conditioned, e.g. equation (3-71) is
not usable at low (77 K) temperatures due to cancelation errors. However, by
means of some algebraic tricks it is possible to rewrite equation (3-71) to

9y = E;+ 0, 372)
with
_ 1 kT [N . _ kT [n?-n®
E = 5(7)1n [W} 05 = (7)asmh{ 2, } (3-73)
and
ESP

n; = JNENVPe 2T (3-74)

Clearly E;, n; can respectively be recognized as the intrinsic Fermi-level and
the intrinsic carrier density. Moreover, ?;; is the definition of the built-in po-
tential one usuvally encounters in the standard treatment of semiconductor
theory. The above set of equations does not suffer from cancelation errors
and performs very well at room temperature (300 K) as well as liquid nitro-
gen temperature (77 K).
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353

3.6

Boundary Conditions

For simplicity we assume that the silicon semiconductor is embedded in ox-
ide and metal surface layers. Hence, we only have to deal with silicon-metal
interfaces and silicon-oxide interfaces. We deal with these interfaces by
specifying boundary conditions (cf. Chapter 2).

At the metal-silicon interfaces we assume ideal properties, that is, thermal
equilibrium and zero space charge. At the voltage controlled metal-silicon
interfaces the following Dirichlett boundary conditions are used

e Th _
¢ = @y Er =V Ef = -V

appl (3-75)

where the built-in potential ¢,. is obtained by setting the space charge to
zero and solving for the electrostatic potential, and Vapp is the applied bias
voltage. Note that in this case the build-in potential is different from the one
discussed in Section 3.5.2, because the Fermi-levels are now equal to the ap-
plied bias voltage.

At the current controlled metal-silicon interfaces the following Neumann
boundary conditions are used
.

o

— _ J€ h _ qh

=0 & ong=1J,,, Eang=Jg, (3-76)
At the silicon-oxide interfaces we also assume ideal properties, that is, no in-
terface charge and no interface recombination effects (cf. Section 2.5).
Moreover, we assume that the normal components of the dielectric flux den-
sity and the electron and hole current densities are zero, hence, the following
Neumann boundary conditions hold

=0 Eng=0 & .n,=0 (3-77)
This leaves us to specify the thermal boundary conditions. Also in this case
we choose for the simplest versions. At the parts of the boundary that act as a
heat-sink we specify the temperature (Dirichlett boundary). At those parts of
the boundary where heat is extracted at a certain rate we specify the normal
component of the heat flux (Neumann boundary).

Concluding Remarks

In this chapter we have presented a basic framework for the modeling of sol-
id-state transducer configurations. It was argued and shown that the model-
ing framework can conveniently be based on the thermodynamics of
irreversible processes (TIP). As such TIP provides a modular and extensible
physical modeling paradigm of great power. In particular, the modeling of
the thermal and electrical energy domain was thoroughly discussed, under
the simplifying assumptions of
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fixed chemical composition
isostress

mechanical rigidity
mechanical equilibrium
zero magnetic field
electrostatic conditions

® ® F S £ B

Using the principles of TIP a closed mathematical model, in terms of balance
equations, equilibrium equations of state, and non-equilibrium equations of
state was derived. Although not explicitly stated the derived model conforms
to the generic mathematical model as discussed in Chapter 2. Where appro-
priate, we have also compiled several useful (parametrized) constitutive
models from the available literature, however, it should be mentioned that
most of these models have not been tested for their compatibility with the
available fabrication process. Essentially, this means that for each semicon-
ductor fabrication process the parameters of each constitutive model should
be calibrated to that particular process. This is an aspect often neglected in
device modeling.

Future research in this field should obviously be directed towards the relax-
ation of the various simplifying conditions. This way we hopefully evolve
towards a complete modular computer implementation of the model, which
can be applied to various practical cases. As argued earlier the implementa-
tion of such a model should be modular, in a sense that the apparent com-
plexity of the model should be configurable. Perhaps the rather new object
oriented programming techniques could be applied for this purpose. Also the
use of high level compilers that compile the actual simulation program from
a high level problem definition language are expected to be useful.

Despite these interesting aspects we tend to digress from the present subject,
because we feel that more substantial knowledge is necessary with respect to
the implementation of the models. Therefore, in the following chapter the
objective is to define a convenient framework for the discretization of the
thermoelectric model equations. The proposed framework can later on be ex-
tended to cope with more complex physical models.

92
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Only the ignorant exactly Know what they are doing /!

A Mixed Finite Element
Discretization Method for the
Thermoelectric Problem

4.1

Introduction

In order to be able to calculate a numerical solution to a given model, the
model first needs to be mapped on to an approximately equivalent discrete
model. Basically, such a mapping is defined by a discretization of the spatial
as well as the time coordinate. The purpose of this chapter is, therefore, to
present a number of useful tools for the discretization of the thermoelectric
model. Before we discuss the details, we give some general background in-
formation on spatial and time discretization.

Spatial Discretization

A bird’s-eye view of the various methods that can be used for the purpose of
discretization in space are, with increasing degree of complexity, the finite
difference method (FDM), the finite volume method (FVM) [Wesseling
1992], the finite volume element method (FVEM) [McCormick 1989], the fi-
nite element method (FEM) [Hughes 1987] and the boundary finite element
method (BFEM). In the remainder of this chapter, we use the FEM, because
of its advanced status with respect to both theory and numerical experiment.
In some cases the FVEM gives equivalent results and may also be consid-
ered as a serious candidate. The main difference is that the FVEM starts
from a physical conservation law in its integral form [McCormick 1989],
whereas the FEM starts from the physical conservation law in its differential
form, from which a weak (variational) form is obtained by means of the
(Petrov)-Galerkin method [Hughes 1987]. In a sense, the FEM can be regard-
ed as more general because a particular finite volume discretization can usu-
ally be obtained as a special case of a finite element discretization.

The key idea behind the FEM is first to divide the computational domain into
a number of subdomains, called the finite elements. These finite elements
usually are edges in the case of 1D models, triangles and quadrilaterals for
2D models, and tetrahedrons, hexahedrons and wedges for 3D models. To
complete the task of discretization, the restriction of the (yet unknown) exact
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global solution on each element is approximated by expanding it in terms of
a set of local element basis functions'. By choosing appropriate basis func-
tions the expansion coefficients may represent the (discrete) solution in, for
instance, the vertices of the element. On each element one then can set up a
local matrix equation in terms of the expansion coefficients. The global sys-
tem of equations can be assembled from the individual element contribu-
tions. The global matrix equation is sparse and can be solved, for the globat
(approximate) solution, by a direct solution method of O(n?), where 7 is the
number of interior elements. Essentially, this procedure transforms the space
continuous problem into the algebraic (discrete) problem of determining the
expansion coefficients.

The BFEM is rather different from the FEM, because it needs the problem to
be reformulated into a boundary integral form, moreover, the spatial discret-
ization only needs to be defined for the boundary and not for the interior. Ap-
parently this reduces the problem size to a lower dimensional manifold,
however, one must keep in mind that the resulting global matrix equation is
not sparse, hence a direct solution method is of O(n?), where # is the number
of boundary elements.

Within the context of the FEM a vast number of different discretization
methods, differing in the way the original equations are approximated, can
be found in the literature. However, this dissertation is exclusively based on
the mixed finite element method and its hybridization (mixed and hybrid-
mixed finite elements). This method is particularly interesting because it pro-
vides the possibility to independently approximate the thermodynamic state
variables and the thermodynamic fluxes so that both can be approximated
with the same degree of freedom.

Time Discretization

With respect to the discretization in time, several methods can be found in
the literature. Roughly, we may distinguish between two fundamental class-
es, which are the time-stepping method (TSM) [Hughes 1987}, and the wave-
form relaxation method? (WRM) [White 1985]. Of the TSM we mention the
well-known generalized trapezoidal family of methods, with special cases:
forward Euler (explicit scheme), Crank-Nicolson (midpoint rule) and back-
ward Euler (implicit scheme). The explicit scheme is very efficient but not
unconditionally stable, whereas the implicit scheme and Crank-Nicolson
scheme are unconditionally stable? but less efficient. Moreover, the Crank-
Nicolson scheme has an accuracy of O(h?), whereas the other two schemes
have an accuracy of O(h), where 4 is the size of the time step. In contrast to

1. Usually, low-order polynomial functions, however, other elementary functions are also con-
ceivable.

2. Also called dynamic iteration or Picard-Lindelof iteration.
3. At least for linear problems they are.
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the TSM, which calculates the solution at the current time step using the so-
lution at the previous time step, the WRM starts with a global approximation
of the solution in a specified time slot and subsequently improves this ap-
proximation by a global iterative method. The advantage of this method with
respect to the TSM is that the WRM has the potential of a much better per-
formance on muitiprocessor systems4, moreover, it does not suffer from er-
ror accumulation from previous time steps, as in the TSM. However, a major
drawback is the need to store> the solution at all time steps in the time slot,
whereas in the TSM, only the solution at the previous time step needs to be
stored. In this chapter, for reasons of simplicity, we only briefly discuss the
use of the TSM, in particular the Crank-Nicolson method.

Of course, the details of the above topics are well known within the context
of the FEM®, however, the implementation of specific problems, such as the
one discussed in the previous chapter, still remains a challenge. In Section
4.2, we discuss our motivation for using the mixed finite element discretiza-
tion method. We also present a comprehensible outline of this method. Next,
in Section 4.3 the hybrid variant of the mixed method is discussed. In Sec-
tion 4.4, we present a method for the time discretization of the mixed meth-
od. Next, Section 4.5 deals with the non-linear aspects of the model
equations and how these can be incorporated into the mixed method. Finally,
in Section 4.6 some concluding remark are given.

4.2 Mixed Finite Element Discretization

In this section we pay attention to the discretization of the spatial part of a
model problem which reflects the essential features of the thermoelectric
model equations as discussed in Chapter 2. Loosely, we may distinguish a
number of essential steps:

% transform the original equations into a variational form

% discretize the variational equations

# partition the computational domain into a set of disjoint elements

# define a set of element basis functions

# expand the exact solution in terms of the basis functions

% set up the element contributions to the global system of equations

# set up the global system of equations

In the literature, an overwhelming amount of spatial discretization methods
can be found that more or less follow the above procedure. However, one
particularly neat method is the use of mixed finite elements. The use of this
type of element dates back to 1967, where the term was first used on a course

4. For instance, the Convex C3 series. However, it will only be a matter of a short time before
PCs and work stations offer standard vector and parallcl processing capabilities.

5. In this context storing means to kecp the data in core.
6. For a prototype of a finite element program the rcader may consult [Hughes 1987}.
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on “Variational and Matrix Methods in Structural Mechanics” at M.I.T. [Pian
1977]. Unfortunately, the available literature on the mixed finite element dis-
cretizations is very theoretical, which hampers its application to practical
problems, such as the problem discussed in Chapter 3. In this section, we try
to boil down this rather abstract theory to a more comprehensible, though not
mathematically rigorous, form. For the more fundamental aspects, such as
error estimates and stability criteria, of mixed finite element discretizations
for elliptic and parabolic type of problems we refer to [Raviart 1977][Johnson
1981][Arnold 1985][Cristina 1987][Chou 1992).

Before we proceed to the theory let us give a list of the main heuristic rea-
sons’ for choosing the mixed method in relation to the thermoelectric prob-
lem:

# In the mixed method the second order elliptic partial PDE is formulat-
ed in terms of two first order PDEs. Mixed finite element discretiza-
tions, therefore, naturally fit the way we have represented the model
equations in Chapter 2, that is, in terms of balance equations together
with non-equilibrium constitutive equations.

# Instead of first eliminating the thermodynamic flux state variables from
the original model equations and then approximating the intensive
state variables in terms of conforming basis functions, as is done in a
conforming finite element discretization, the mixed finite element dis-
cretization approximates both the intensive (or extensive) state vari-
ables and the thermodynamic fluxes separately, and retains the original
form in which the problem is stated. Opposed to a conforming discreti-
zation, this allows the intensive state variables and the generalized
fluxes to be approximated with the “same” degree, reflecting the equal
importance of each.

# Mixed finite elements are current preserving, which means that the dis-
cretized problem, just like the continuous problem, obeys a (discrete)
current conservation law. Obviously, this must be because in the mixed
finite element discretization the original continuous balance equation is
rewritten in a discrete form. In a conforming finite element discretiza-
tion the current preservation property is lost, which in many cases may
give rise to loss of accuracy and numerical instabilities.

& Particular mixed finite element discretizations provide discretizations
for which the normal component of the flux on an interface between
two elements is continuous. If the physics of the problem indicates that
the normal component of the thermodynamic flux to be approximated
is continuous when crossing an interface, using mixed finite elements
is a great advantage, because then no special interface condition needs

7. Some of these arguments may not be directly clear, however, as we proceed they will start
to make more sense.
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to be spcciﬁeds. In the case of Si-Ge interfaces in semiconductor hete-
ro structures this is very convenient.

& In contrast to the more conventional control volume approach (classi-
cal box method) [Polak 1987], the flux variables are well defined on the
interior of an element instead of only at the edges. This makes it more
easy to calculate right-hand sides which depend on the fluxes. This is
particularly convenient in the case of the thermoelectric model, be-
cause it allows a consistent treatment of the source terms.

# Mixed finite element discretizations appear to be more accurate then
the box method often used for the discretization of the semiconductor
equations [Polak 1988].

# Mixed finite elements can be designed such that they exhibit upwind
characteristics similar to the Scharfetter-Gummel discretization, often
used in one-dimensional semiconductor device simulation [Brezzi
1989a][Brezzi 1989b).

Of course, the use of mixed-hybrid finite elements also has its difficulties.
The major difficulty is to predict whether the model equations in mixed form
satisfy the LBB (Ladyzhenskaya-Babuska-Brezzi) compatibility condition
[Brezzi 1990], which ensures the theoretical stability of the model equations.
The LBB condition depends on the operators involved in the model equa-
tions and in principle has to be checked for each different type of operator
involved. In the discrete domain, the LBB condition requires the approxima-
tion of the intensive state variable and the flux variable to be compatible.
This means that the discrete spaces in which both approximations are sought
cannot be chosen truly independent, however, they can usually be chosen
such that the degree of approximation for both state quantities is the same.
Fortunately, for most elliptic PDEs the LBB condition can be proven to hold
and during the course of this chapter we rely on these results.

4.2.1 A Model Problem

In this section, we discuss a model problem representative of the problem
defined in Chapter 3. Note that for the sake of simplicity, this section only
discusses the case of a single set of state variables, that is, a single potential
and flux. Apart from some algebraic details this simplification is not a limit-
ing factor.

We assume the problem is defined on a bounded computational domain Q in
R* (d=1,2,3) with a smooth boundary 6Q. The boundary consists of a part
0%, on which Dirichlett boundary conditions are prescribed, and a part 9Qy,
on which Neumann boundary conditions are prescribed. Moreover, we as-

8. Note, however, that in the case where the thermodynamic flux is not continuous, as for in-
stance the normal component of the diclectric flux density upon crossing an interface con-
taining surface charge, special measures must be taken.
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sume that 0Qp, N dQy = 0 and 92y U dQy = 0 Further, the vector n is de-
fined as the outward normal vector on the boundary 0Q.

The model problem to be solved is represented by the following nonlinear
parabolic PDE in mixed form’

2y p(X;0) O Jugtx, 9] _ 0 } .
9y d(x)9,+c(x)| | o(x, 1) = A, 130, u) (x,1) € Qx [0,T] (41a)

with the initial condition and the Dirichlett and Neumann boundary condi-
tions given by

o(x, 0) = Oy(x) xe€ Q (4-1b)
ox, ) = gp(0  (x,1) € 0Qx [0, 7] (4-1¢)
ug(x, ny(x) = gy (x,1) € BQNX [0, T] (4-1d)

In the above model, it is assumed that the symmetric part of the tensor func-
tion d,g is uniformly positive definite, the functions ¢ and d are smooth func-
tions bounded below by a positive constant. Although not discussed in
Chapter 3, the anti-symmetric part of the tensor function g,y could arise from
the application of a magnetic field or a mechanical stress field [Duyn
1991][Munter 1992][Callen 1960]. In the following, we try to retain a formula-
tion where the tensor function a,g is permitted to be asymmetric. However,
the possible physical reasons for this are not discussed.

With respect to the physical interpretation of the above model, the symbol ¢
stands for some intensive thermodynamic state variable, for instance the
electrostatic potential, the electron or hole Fermi level or the absolute tem-
perature. The symbol ug stands for the corresponding vectorial thermody-
namic ﬂuxlo, for instance, the dielectric flux density, the electron flux, the
hole flux or the heat flux. Using the results from Chapter 3, it should not be
too difficult to figure out that, in fact, the above-stated problem is a simpli-
fied form of either the Poisson equation, the carrier continuity equations or
the heat flow equations.

Note 4-1: The initial condition ¢(x) as stated in equation (4-1b) is usually
first calculated by solving the corresponding elliptic problem (d, = 0) with
appropriate Dirichlett and Neumann boundary conditions.

9. In contrast to the usual formulation of elliptic second order partial diffcrential equations,
the mixed formulation states the problem in terms of two first order partial differential
equations, which opens up many interesting algorithmic propertics.

10. Model equations in terms of tensorial thermodynamic state variables can also be casted in
this form, however, because of the tensorial nature of the state variables, the numerical
treatment requires some additional features not discussed in this work.
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Note 4-2: In the following we shall discuss the so-called semi-discrete
problem, where the discretization of the o, operator is omitted. In other
words we may either omit d, from equation (4-1a) or just treat it as a
symbolic constant. A method for dealing with the time-dependence is briefly
discussed in Section 4.4.

Note 4-3: The coefficients appearing in the above model problem are at this
stage treated as quasi non-linear. In principle, this means that the coefficients
are calculated using the result of the previous iteration (successive
substitution). A method for treating the non-linearity is discussed in Section
45.

4.2.2 Dual Mixed Variational Formulation

In order to exploit the discrete properties of the computational domain and to
construct the finite element approximations, we recast the original formula-
tion in equations (4-1a) to (4-1d) into a variational or weak form!l, A popular
method to achieve this is Galerkin’s method for which the trial functions are
chosen in the same spaces as the test or weight functions [Becker
1981][Hughes 1987]. For the above case, this method leads to a variational
problem of the form!?2 [Huijben 1987][Kaasschieter 1990]:

Find (u, ¢) € V,.(Q) x W(Q) such that
a(u, v) + b(9, ) = @p.0)y, Vve Vy(Q)

(4-2)
bu, W) +c(0, ) = fy)g  Yye W(Q)

For the dual mixed method, the function spaces V and W are defined as

V(Q) = H(div;Q) W(Q) = LXQ) (4-3)

Note 4-4: The notation V. means that this function space satisfies the
Neumann boundary conditions (if present) and the notation Vy means that
this function space satisfies the homogeneous Neumann boundary conditions
(if present). Both are subspaces of V, that is V. c Vand Vy c V.

The bilinear mappings a: VxV—R, b: VxW—R and ¢: WxW—R appearing in
equation (4-7) are defined as

11. The weak or variational form also has the advantage of being capable of dealing with gen-
eralized functions, such as the Dirac delia function, in a natural way.

12. For a notion of the various function spaces involved, the reader is referred to Appendix B.
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aww) = [(agupwads  b(w,&) = =[ @uq) 8dx
Q Q

(4-4)
c(o, &) = —jcwédx
Q
and the right-hand sides as
@pyg = - J' SpValads  (FW)g = - j Fydx (45)
20, Q

4.2.3 Discrete Mixed Variational Formulation

In this section, we discuss a semi-discrete formulation of the mixed varia-
tional problem stated in the previous section. In order to do so it is necessary
to define finite-dimensional subspaces of the spaces V(Q2) and W(Q). For-
mally, we may write these finite-dimensional subspaces as

VieVv (dim(V*) « )

(4-6)
WEew ,(dim(V*) « o)

where & is some discretization parameter. Denoting the discretized quantities
by a superscript h, the discrete variational problem can then be written as:
find (u*, ") € V* x W such that

a(u” v*) + b(o", W = (g'l'),vh)m,. vt e V;:,
° (4-7)
b(u®, yh) + (o, wh) = (yh o Vyte W

To bring the above discrete variational formulation to an equivalent set of
matrix equations which can be tackled numerically, we must choose a finite
basis for V" and W” that is

Vi = span(w)) ;i=1,...,1

(4-8)
wh = span(E_,j) Jg=1,..,7

Now we expand u”, v*, ¢* and " into their corresponding global basis func-
tions, that is

!

h _ h _

u = Zu‘-wi vV = Z\lkwk
k=1

J J
h _ h _
o= 20k vi= DV
j=1 =1 (4-9)
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4.2.4

Substituting equation (4-9) into equation (4-7) then, after rearranging terms
and noting that the equations must be valid for any choice of v* and ¢*, we
obtain an equivalent matrix equation

o [

where, the matrix and vector entries are given by

(Ul = u [@]; = ¢,
[Aly; = a(we, w) (Bl = bw,, &) [Cl; = cGp&) (a1
[G]; = Ghwlye  [F1;= ("8),,

Note 4-5: In equation (4-10) the matrix A is positive definite and the matrix C
is negative definite.

In the above formulation the Neumann boundaries have not been taken into
account. This is because we have expanded both #* and v* in terms of the ba-
sis functions of V instead of V, and V. In practice, this means that in equa-
tion (4-10), the rows corresponding to the known degrees of freedom in the
solution vector U should be removed from the system of equations, and the
columns corresponding to the known degrees of freedom in the solution vec-
tor U should be brought to the right-hand side. We do not dwell on this be-
cause in the local relaxation solver, to be discussed in Chapter 3, this process
is easily carried out locally.

Finally, since the matrix A is invertible, we can eliminate the solution vector
U from equation (4-10), that is

BTA'B-C)® = BTA"'G-F (4-12)

After calculation of the solution vector @, the solution vector U can be re-
constructed by using the relation

U=A"G-Bd) (4-13)

Element Basis Functions

In this section, we address the ch01ce of the basis functions w; and §; of the
approximation funcnon spaces V" and W" For convemence the problem is
only stated in R% In principle, the equivalents in R' and R® can be obtained
in the same way.

Let us assume that the set S” is a quasi-regular partition of Q such that S € S*

is either a triangle or a quadnlateral It is assumed that: (1) all vertex angles
satisfy some lower bound!3 , thatis 8> 8, > 0, and (2) the ratio of the length
of the edges of the quadnlaterals is bounded below by a positive constant,
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4.2.4.1

and (3) A is a measure for the maximum size of the elements. The union of
these elements is an approximation " to the computational domain Q. The
corresponding approximation to the boundary 9Q is denoted as 0Q". The set
E"is the collection of all the edges E e E* of the elements. For the sake of
convenience we distinguish between the set of internal edges E; ={EeE k)
E ¢ 0Q") and the set of boundary edges E% = {E € E”| E e 9Q”"}. Moreover,
the edges lying on the Dirichlett part of the boundary are denoted by the set
E'L‘,= {Ee E*" E e 9Q2 }. Similarly, the edges lying on the Neumann part of
the boundary are denoted by the set £ = (E € E*| E € 3Qy ).

The general idea is to approximate the restrictions ug(x) = u(x) « [1(x; x € S)
and ¢5(x) = ¢(x) * [I(x; x € S) of the global solution on each element in terms
of an expansion in a set of local basis functions, usually low-order polynomi-
als. The global basis for the approximation function spaces V* and W* can
then be constructed from the local basis. In the literature, an abundant collec-
tion of possibilities can be found [Raviart 1977][Nedelec 1980][Brezzi 1985]
[Nedelec 1986], which can all be fitted into the general framework discussed
in Section 4.2.2 and Section 4.2.3.

Raviart-Thomas Basis Functions
The local Raviart-Thomas basis functions of order & for the vector and scalar
degrees of freedom can be constructed according to the following rule
P"(S) = Polynomials of degree k on S
P (s) = PXS) x PXS) (a-14)
RTHS) = {ul |ul = p(x) +xq(x), pe P(S), qe PXS)}

which is valid for any integer £ > 0 and for any domain Q RY d=1,2,3.The
global basis can now be constructed as follows. First, we define the global

Raviart-Thomas space obtained by patching together the local Raviart-Tho-
mas spaces, that is

RT (S = {u*|u"e LXAQ), ul e RTXS) vSe §*} (4-15)
1 S

Then in order to enforce the continuity of the normal component of the flux-
es, the following subspace is defined

RTg(Sh) = {uh | u' e RT'_‘I(S"), the normal component is continuous
across the interelement boundaries } (4-16)

Finally, the multiplier space is defined as

13. This condition is intended to restrict the use of degencrate triangles and quadrilaterals.
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M (Sh) = {0*] 9" e LAQ), 0k e PS) VSe S'} (4-17)

Using the above results the £’th order Raviart-Thomas mixed formulation is
equivalent to equation (4-7), however, with the abstract spaces v* and W re-
placed by
VH(Q) = RT¥(SM
Vi(Q) = RT; (8"

" . A (4-18)
whQ) = Mk (s
with
RTG (8" = {u"|u" e RTiSY), n-u"=0 VEe E}} (4-19)
RT‘(‘,’*(S") = {u"‘u’x € RT’B(S"), n-ut= g,':, VE e E,'\', } (4-20)

As an example we give the lowest order (k = 0) Raviart-Thomas basis func-
tions on the reference triangle and quadrilateral”.

reference triangle

From equation (4-14) we find that the approximation to the vector quantity ug

can be written as
h
u a
ug =1 = I:O]HIZB (4-21)
h a

To ensure the continuity of the normal component of the flux across the inter
element boundaries we proceed as follows. The approximation ug is defined
such that the restriction of its projection on to the normal vector of each of
the edges is constant (cf. Figure 4-1), that is

(uh- nl)\E1 =-a
h
(u”-ny) |E2= ~%o (4-22)

1
(u*- ns) |E3 = —=(ag+a,+a,)

2

The net flux U; crossing each edge E; is formally given by

14, As pointed out in Appendix C, it suffices to deal with the reference elements.
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Uy = [u*-nas (-23)
E;

7

Obviously, we then must have

U,=-a

Uy =-aq (4-29)

U3 = ao + al + a2
Now by taking the net fluxes U, U, and U, as the basic degrees of freedom !>
and by assigning these to the midpoints of the edges (cf. Figure 4-1), the
continuity of the normal component of the flux is guaranteed. That this must
be the case is simply because of the fact that a degree of freedom defined on
an edge is shared by its two neighboring elements.

Some care must be taken in defining the orientation of the net flux through
an edge. In the above line of reasoning, the fluxes are by definition taken
positive when directed outward from the reference element (cf. Figure 4-1),
however, in the global mesh this can no longer hold because the flux through
an edge is shared by the two elements that share that edge. Hence, some sign
convention should be defined. We shall use the following convention. Each
edge is defined by the nodes it connects and the orientation of the edge is
from the first node to the second node. An element may use this edge in or-
der to define its boundary. However, when an element uses an edge, a sign
should be specified that indicates the orientation of the edge with respect to
the orientation of the boundary of the element which is defined by traversing
the edges of the element in an anti-clockwise fashion. This way elements
that share an edge always do this with opposite signs. Hence, the sign can be

0.1

U.
Uy z
T
0,0) (L0
U,
—_—X
Figure 4-1 Definition of the local vertex numbering, local edge numbering and local degrees of
freedom on a triangular reference element.
15. Note that in contrast to some other approaches we take the net flux through an edge as the
degree of freedom, not the flux density U /NE]-
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used to uniquely define the orientation of the flux through an edge used by
the element.

Taking the U; as the basic degrees of freedom on the element, we may re-
write equation (4-21) as an expansion in terms of a set of local basis functions

u" -
; =U1[Vf1]+U2[’j+U3[xy:] (4-25)
)

Hence, the local basis functions (on the reference element) are identified as

W, = [x)’“ﬂT
W,=[xy] (4-26)
Wy=[e-1y]

The global approximation u"(x) can now be written as
ut(x) = zU Wi(x) (4-27)
k

where k runs over all edges in the grid. The basis functions w,(x) are con-
structed according to

Sgn(k, DW, ; +Sgn(k, 2)W, , (E e E?)
w(x) = { (4-28)

Sgn(k, )W, ,  (E < Eb)

where Sgn(k, /) is defined as the sign with which element S; uses edge E, to
define its boundary, that is, if the sign is positive (negative) then the orienta-
tion of the edge is equal (opposite) to the orientation of the boundary of the
element. Moreover, W, , and W, , are the basis functions associated with
edge E, of the two elements that have edge E, in common.

According to equation (4-17), the scalar quantity ¢g should be chosen con-
stant on the interior of the element. This means that the global approximation
¢" is piecewise constant and can be written as

0hx) = Y D50 (+29)
k

where k runs over all elements in the grid and @, is taken as the degree of
freedom on element S,, and § (%) is the local basis function such that
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1 xe§;
Ex) = { (4-30)
0 xef,;

reference quadrilateral (parallelogram, rectangle, square)

In the case of a quadrilateral, the procedure is essentially the same. Accord-
ing to equation (4-14), the approximation to the vector quantity ug can be

written as
uh a aHX|
ug= | N = [0+|2 (4-31)
uy| |Gy [93Y

Note that we now have four degrees of freedom instead of three as in the pre-
vious case. As in the previous case, the restriction of the projection of ug
onto the normal vector of each of the edges is constant (cf. Figure 4-2).

Us
oy A" ay
4 E; 3
U
yr 44— E4 [} Ez—> U2
T 1 Ey 2
0.0) ; (1,0)
U —%x

‘ Figure 4-2

Definition of the local vertex numbering, local edge numbering and local degrees of
freedom on the quadrilateral reference element.

The net fluxes across the edges can be calculated as

U,=-a,

Uy=ay+a, @32)
Uy=a,+a,

U4=-—(10

Taking the U; as the basic degrees of freedom on the element, we may re-
write equation {4-21) as an expansion in terms of the local basis functions

A
“ =U1LO}+U2H+U3H+U{X‘1} (4-33)
ug -1 0 0

Hence, the local basis functions (on the reference element) are identified as
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42,5
!
i

4.25.1

W1=|:0y—1]T
T
W,=|x0
2 [x]T (4-34)
W3=[0)]
Wa=lx-1q"

The global approximations of the vector quantity u”(x) and the scalar quan-
tity ¢*(x) are, just as in the triangular case, given by equations (4-27)-(4-28)
and (4-29)-(4-30).

Assembling the Global System of Equations

Now that the (global) basis functions are defined, we are in a position to cal-
culate the global system of equationslé, as stated in equation (4-10). There
are several ways to achieve this: analogously to the finite difference method,
in which the equations are assembled pointwise, or as in the finite element
method where the assembly is performed elementwise. For the mixed dis-
cretization elementwise assembly seems the most appropriate. This means
that for each element we calculate its contribution to the global system of
equations by means of equation (4-11) and subsequently add this contribution
to the global system of equations. For this scheme to work, we need to know
how to add an element contribution to the global system of equations. One
way to achieve this is to use a unique global numbering of the degrees of
freedom, hence, each element and edge needs to be given a unique identifi-
cation number!”. By using the global numbering of the degrees of freedom,
we know where to add the element contribution to the global system of equa-
tions. As an example, let us calculate the contributions of the reference trian-
gle and quadrilaterallg.

Triangles

In the following order, we discuss the contributions to the submatrices A, B,
C and subvectors G and F. In doing so we shall for the sake of simplicity
only consider the simplest possible quadrature rules. Note, however, that for
practical cases more accurate quadrature rules might be necessary.

16. Note that, if we have a total of Ny, edges and Ng elements, we also must have N, vectorial
degrees of freedom and Ng, scalar degrees of freedom. This means that in equation (4-10)
the length of the vector U is N, the length of the vector @ is Ng, the size of the matrix A is
NyxNy, the size of the matrix B is NyXNg, and the size of the matrix C is NgxNg This
makes the total size of the system of equations (Ny+Ng)X(Ny+Ng).

17. 1f we also have degrees of freedom associated with the vertices, then the vertices also need
unique identification numbers.

18. As pointed out in Appendix C, it suffices to deal with the reference elements.
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The contribution A, of an element S, to the submatrix A can be written as fol-
lows (cf. equations (4-4), (4-5) and (4-11))

A, = j apIWhIWE e (i) € {1,2,3} (4-35)
Sl

According to the contravariant transformation rules discussed in Appendix
C, the above integral can be transformed to the reference element as follows

A, = Ja'(,,(x')w'i(x')w"o(x‘)dx' (i,j) € {1,2,3} (4-36)
$
with the basis functions w'i(x') as in equation (4-26) and
o (x) =T (x') boo(x) ayp(x") by (x") (4-37)
with
aop(x') = agp(F(x") (4-38)

where F(x') is the transformation carrying the reference element to the actual
element in the mesh, b, (x ) the functional matrix of the transformation and
J}(x') the functional determmant of the transformation (cf. Appendix C).

Now let us assume that a,g(x') can be written as

Bop(®) = AE') (8o~ Hx) €4p) (4-39)
with
10 01
welod w0
b lo1 P |-10 (440)

The above form is, for instance, useful when the application of a magnetic
field or a mechanical stress field induces an antisymmetric part (cf. Appen-
dix A). Now the element matrix A, can be split into two parts, one symmetric
and the other antisymmetric

A} = J'a T [bggbyel whiwi dx' (4-41)
M
Al = jnu J! [b(me aﬁbﬁt] w'i w'/ dx' (4-42)

The part between the square brackets in equation (4-41) can easily be recog-
nized as the metric of the transformation (cf. Appendix C, equation (C-4)). In
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equation (4-42), the part between the square brackets is recognized as the de-
terminant of the transformation (Jacobian) multiplied by the Levi-Civita ten-
sor of rank 2 (cf. Appendix A). Hence

i L?
8ot = bacbor = | (4-43)

Assuming that A(x") = n, and i(x") = p, are piecewise constant!? and using
equations (4-26) and (4-41)-(4-44), the element matrix can be calculated as

. (B+382-3L% (P-B-1% (-B-1+3L%
A=l B-B-LY  (B+B+LY) (-B+B-LY (4-45)

bac€ agbpe = J€ oo (4-44)
’ (~B-2+3L% (-B+B-LY) (3B+E-3L7%

0 1/6 -1/6
Ay = (mp)|-176 0 1/6 (4-45)
1/6 -1/6 0

where [, is the length of edge i of element S, and L = JI,/5c0s9.

Each entry of equations (4-45) and (4-46) should be added to the matrix A ac-
cording to the global numbering of the edges of the element, and according
to the sign with which the element uses the edge. To give an example, sup-

‘ pose the edges of triangle S; have global edge numbers (+86, -67, -45),
where the signs indicate the orientation of the edge with respect to the orien-
tation of the boundary of triangle S,. A plus sign means that the net flux
through the edge is directed outward and a minus sign means that it is direct-
ed inward. Moreover, suppose the calculated element matrix is given by

o= Wl =
O\ e W = N [ 9]
=

—

>
G
]
(D= | —

(=

(a-47)

19.  For the semiconductor equations we need to use more sophisticated quadrature rules, how-
ever, this is irrclevant at this point of the discussion.
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where the additional row and column indicate the local edge numbers. Now
the above element matrix should be added to the global matrix as follows

86 67 45

86

+
o

W) —

>
>~
I
|
+
+

LR = N =

67

S o=

+
N = W = O

+

45

(4-48)

where the additional row and column are used to indicate the global edge
numbers and should be used to add the entry to the corresponding entry in
the global matrix A. Note that each entry now has a sign corresponding to the
product of the signs of the corresponding global edge numbers.

The contribution B, of an element S, to the submatrix B (or B") can be writ-
ten as follows (cf. equations (4-4), (4-5) and (4-11))

B, = -J [aaWZ;(x)]éi(x)dx = —J [aaw'&(x')]g-j(xv)dxv (4-49)

5 5

Note that we have already carried out the transformation to the reference ele-
ment. Since only basis function &* differs from zero on element S,, the above
integral is easily calculated to be

141
B, =-11|2
(4-50)

where the additional column indicates the local edge numbers and the addi-
tional row indicates the local element number. As in the previous case, the
above contribution should be correctly added to the global matrix B. Follow-
ing the same procedure, assuming the global edge numbers are (+86, -67, -
45) and the global element number is (33) we arrive at

33

‘ +1(86
By = ~|-1)67

-1)45 @s)

’ The contribution C, of an element §, to the submatrix C can be written as fol-
lows
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C= —JC_(x)E..‘(x)E_.j(X)dx = —fE(x')é'i(x')é'j(x')J(X')dX' (4-52)

5 5§

Also here we have already carried out the transformation to the reference el-
ement. Assuming &(x') = c, is piecewise constant we arrive at

J 33
C,= (=3)|c,| 33
where J is the functional determinant which equals two times the area of ele-
ment S, and we have used the global element number (33) as in the case of
the contribution to B.

Now the left-hand side of the global matrix equation is completely deter-
mined. The next step is to determine the right-hand side. For this we need to
determine the element contributions to the vectors G and F in equation (4-
10).

The contribution G, of an element S, to the subvector G can be written as (cf.
equations (4-4), (4-5) and (4-11))

G, =- J. ngfxnads = — J ng'fxn'ads' (4-54)
(38,0 09,) (38’ JaQ,)

Note that the surface integral is only to be taken over those edges of the ele-
ment that lie on the Dirichlett part of the boundary. We now assume
8p(s) = g’b is piecewise constant on the Dirichlett boundary edge E i More-
over, we split the integral into the contributions of each of the edges of the
element. This yields the following expression

1
S &p

Ge=-Y, ghw'inlds' = —| g2 (4-55)
J (B uoy) 3
&p

where it is understood that gfb is taken to be zero if the corresponding E;
edge does not lie on the Dirichlett part of the boundary. Also in this case
each entry of equation (4-55) must be added to the global vector G according
to the global numbering of the edges of the element, and according to the
sign of each edge. Suppose we have a triangle with the second edge (local
numbering) on the Dirichlett boundary, moreover, assume the global edge
numbers are (+86, -67, -45) (as in the previous cases). We then have
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4.25.2

+0 (86
Gy =- —g%, 67

-0 )45 (4-56)
The additional column indicates where to put the entries in the global vector
G, also note the change in sign of the entries of G, according to the signs of
the boundary edges.

The contribution F, of an element S, to the subvector F can be written as
Fy = = [fimar = - [fgiewar (@-57)
5, 5

Again the basis function &'%(x") is equal to one on element Sy If we assume
that f{x) is piecewise linear on the element, we can, because the coordinate
transform is linear, also assume that f(x') is piecewise linear on the reference
element. Thus we can expand it in terms of the conforming basis functions of
the reference triangle (cf. Appendix C, equation (C-2))

3
oy = > fwi () (4-58)

i=1

where the f; are the values of f(x) at the vertices x; of the triangle in the mesh.
Now because the Jacobian J(x') does not depend on x, in the case of the
transformation for triangles (cf. Appendix C, equation (C-6)), the integral can
easily be evaluated to

Fy = -[Z Jithaths +f3)]

5 3 (4-59)

How to add the contribution F, to the global vector F should be obvious
from the preceding discussion. However, note that in this case we do not
have to deal with sign changes.

Quadrilaterals

In the case of arbitrary quadrilaterals, the coordinate transformation is no
longer linear, that is, the functional matrix and determinant depend on the lo-
cal coordinates. This significantly complicates the evaluation of the element
contributions to the global system of equations. For the sake of simplicity
we, therefore, restrict the elements in the mesh to parallelograms, rectangles
and squares. For these types of elements the coordinate transform reduces to
a linear transform very similar to the one used in the triangular case. The der-
ivation of the element contributions is now completely analogous to the tri-
angular case.
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The contribution A, of an element S, to the submatrix A can be written as fol-
lows,

812 —6L2 —412 6L*
ng |-6L* 815 6L* -4

T a 4-60)
k72T 42 12 op2 2 ¢
—4l; 6L° 8I; —6L
6L% -4} —6L* 812
[ 1 1]
0 "Z O +Z
+% 0 +}1 0
AL = (mn) 1 | (4-61)
0 -7 0 -3
1 1
3 0 +7 O_

where /; is the length of edge i of element S, and L = /;/,c0s0.

The contribution B, of an element S, to the submatrix B (or BT) can be writ-
ten as

B, = - (4-62)

[ R

Assuming ¢(x") = ¢, is piecewise constant, the contribution C, of an ele-
ment S, to the submatrix C can be written as

Co= -D[e] (4-63)

Assuming the contribution G, of an element S, to the subvector G can be
written as

&b

2

Gy = - &p (4-64)
3
8p

gh
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4.3

with g’b evaluated at the midpoint of the edge. It is also understood that gi,
is taken to be zero when the corresponding edge E; is not part of the Di-
richlett boundary.

Assuming that f{x) is piecewise bilinear on the element the contribution F,
of an element S, to the subvector F can be written as

where the f; are the values of f{x) at the vertices x; of the element in the mesh.

(4-65)

The Hybrid Formulation of the Mixed Method

4.3.1

In this section, we discuss the hybrid form of the mixed method. For the sake
of simplicity, we again omit the time dependence. The hybrid method was
originally developed to simplify the solution procedure for the large system
of equations obtained from the mixed discretization. The system of equa-
tions as expressed by equation (4-10) is large and is not positive definite. For
a computational domain containing N elements, using the Thomas-Raviart
discretization as discussed in Section 4.2.4.1, the size of the system can be
estimated as (5/2)N for the case of triangles, and 3N for the case of quadrilat-
erals. This is much larger than the actual number of degrees of freedom that
we eventually need to know. Further, the fact that the system of equations is
usually indefinite reduces the number of available solution methods. We
might remedy the problem by reducing the system to the form given in equa-
tion (4-12). In this case, we obtain a positive definite system of size N. Unfor-
tunately, the resulting system of equations is not sparse, which makes it
(almost) impossible to solve the equations efficiently by means of a direct
method. Hence, we must resort to iterative solution methods, however, this
is a topic to be discussed in the following chapter.

The key idea behind the hybrid method is to relax the continuity properties at
the interelement boundaries, as expressed by equation (4-16). In order to
compensate for the lack of continuity, Lagrange multipliers are introduced
which enforce the continuity of the normal component of the flux at the in-
terelement boundaries. Referring to the definitions stated in Section 4.2.4,
the method can be outlined as follows.

Lagrange Multipliers

First, we introduce the multiplier spaces of functions defined on the set of
edges E” of the partitioning

MY (EM = {M|Ahe PHE) VEe E*} (4-66a)

Mt o(EM = {Mh|Ah=0 VEe ED) (4-66b)
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where PX(E) is the space of polynomials of order k on edge E. The relation

between the Raviart-Thomas spaces RT fl(Sh) and RT N(S") defined by
equations (4-15) and (4-19), can now be stated as:

If u" € RT* (") then u" € RT( (8" if, and only if

2 J' (n-u*yphds = J gyihds wphe MfLD(Eh) (4-67)
Se s Q,

The proof is elementary and follows from

2 J(n-u") whds = J(" uMl ot i) whds
Se s*os EeE" E
+ Zj'(n whyhds+ Y [ (n-uhyutds
Ee E} EeEy E (4-68)

Obviously, the first summation on the right-hand side is zero if the continuity
property of RT'G *(S") is satisfied, and the second summation is zero because
phe M* e D(E ), finally, the third summation obviously equals the right-
hand side of equation (4-67).

Using the above result, we may reformulate the variational problem ex-
pressed in equation (4-7) as:

Find (i, ¢*, M) e RTX (%) x M¥ (8") x M*| (E") such that
au®, V%) + bk, oM + dOv", AP = (gD,vh)aQ,, vt e RT* (5%
b, y*) + c(@", v = (PP Yyt e ME (sh

The Hybrid Formulation of the Mixed Method - 4.3
h
dt, 1h) = @iy Vit e MYy H(EY)

(4-69)
with
a@h, v = Y J(aaBuB)v a bt g = Y J’ (W) Erds
S,e $*§, S,e S,
| (4-70)
dwh, &hy = J (ny whyEhds  c(oh M = —J'cma,dx
S e S Q

and
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g =~ ffwdx
Q
(4-71)
(gD’V)aQD == j &pValads (gl':l'uh)agz = ngu"ds
Q) N

Note 4-6: When the original mixed formulation yields a symmetric system of
equations the above formulation can easily be recognized as Lagrange’s
method of undetermined multipliers. For non-symmetric problems, the result
is essentially the same, however, the line of reasoning is somewhat more
involved.

Note 4-7: The Lagrange multipliers are not just mathematical parameters,
they can be given a very useful physical interpretation. This can be inferred
from the following argument. By using Green’s theorem on each element
separately, the first relation of the variational formulation in equation (4-7)
can also be rewritten as

aw”, v+ bty + Y ! (n-v%yohds = 0 (@72)
Se 5*aS

Now, by comparing equation (4-72) to the first relation in equation (4-69) it
seems that the Lagrange multiplier A on an edge E is an approximation of the
restriction of ¢ on that edge. For a more rigorous proof we refer to [Arnold
1985].

System of Equations

The equivalent system of equations can be obtained by choosing a basis for
the approximation spaces. For the Raviart-Thomas space RT ?I(S") we may
again use the basis functions as discussed in Section 4.2.4.1. However, we
must keep in mind that the dimension of the space is substantially enlarged,
because all local vectorial basis functions have now global status. Obviously,
this is because we relaxed the interelement continuity property. For the mul-
tiplier space Mfl(S”) the situation is also identical to the mixed case de-
scribed in Section 4.2.4.1. A basis for the lowest order multiplier space
M{_’L D(E") is spanned by the basis functions uf‘ given by

whx) = 8, xe E, V(E', F') € ENED (473)
Hence, we may write

I

J K
W@ = Y uv® 0w = Y owm Mo = Y Auw
k=1

i=1 j=1 (479)
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where K is the total number of edges, J the total number of elements, and /
given by the relation

J
I= Z Number of Edges of Element § ) (4-75)
j=1

Substituting the above relations into the variational form yields an equiva-
lent system of equations

A BD| (U G,
BTcol| |® =|F (4-76)
pTool A |5
where
(A1, = J'(aaﬂvg)vgd% (8], = —J (@,vi) Wdx
Q Q (4-773)
(€1, = _jcwiwfd3x 01, =Y J (nyvi) Wds
Q S, € §* 95, (4-77b)

(6], == | epvimads  [Ga), = [ gubids  (F], = ~[rvias
R, a, Q (477¢)

The important difference between the mixed-hybrid formulation (above) and
the mixed formulation is that in this case the matrices A and B are block di-
agonal. Hence, we can eliminate U from equation (4-76) by means of static
condensation, which results in

(BTA'B~C) (BTA™'D) ﬂ | (B'A7G,-F)
INE (4-78)
(0Ta'By  DTA7D | A | (D'AT'G,-6Gy
where U can be calculated using the relation
U=A"(G,~B®-DA) (4-79)

Note that the above condensation as well as the calculation of U can be car-
ried out at the element level by virtue of the block diagonality of A. This im-
plies that the inverse of A can be constructed from the individual element
contributions, which means that the above system of equations also can be
constructed from the individual element contributions. This is not the case in
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the original mixed formulation, where the condensation must be carried out
at the global level.

Also eliminating ¢ from equation (4-78) results in
A-A=F (4-80a)
with
A=D"(A"'-(a7'B) (BTA'B-C) ' (BTA)))D (4-80b)
F=(D"A™") (G,-B(B'A'B-C) "' (BTA"'G,-F)) -G, (4-80c)

where @ and U can be calculated afterwards using the relations

® = (BTA'B—C) ' (BTAT1 (G -DA) - G) (4-81a)
U=A"(G,-B®-DA) (4-81b)

The above condensation as well as the calculation of & and U can again be
carried out at the element level because the block diagonality of B implies
that BTA™!B is also block diagonal. Moreover, since C is diagonal the entire
matrix (BTA7'B-C) is block diagonal and its inverse can be constructed
from the individual element contributions. This implies that the above sys-
tem of equations can also be constructed from the individual element contri-
butions.

Element Contributions

The element contributions to the global system of equations can be calculat-
ed in a similar fashion to that described in Section 4.2.5. We shall not go
through the procedure again, instead we just simplify equations (4-77a) to (4-
77¢).

In the case of the contributions A,, B, and C, of an element S, to the matrices
A, B and C we may use the results from Section 4.2.5. However, we should
keep in mind that by virtue of the hybrid method, the element matrices A,
and B, do not overlap (block diagonality), that is, they do not share degrees
of freedom,

This leaves us to discuss the contribution of D, of an element S, to the sub-
matrix D. From equation (4-77b) we find

(4-82)

D, = j ngvlls,ds = 8,

S,
k
Ei
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The element contributions to the right-hand side of equation (4-76) are given
as

gpds

E h
Gh=-Bcb G = J' gy ds F* = —jfdx
Sk

ds E,c EY
EcEp (4-83)

Using the above element contributions the element matrices A ¢ and F x can
be calculated, from which the global matrices A and F stated in equations (4-
80b) and (4-80c) can be constructed.

Post-Processing

The post-processing technique was first introduced in [Arnold 1985] and was
intended to be used to obtain an improved approximation to the potential. In
our case it is used in a different context, because we use it to add upwinding
characteristics to the discretization (cf. Chapter 7), and to improve the order
of the prolongation operator in the multigrid method (cf. Chapter 5). The
technique is based on the fact that the Langrange multipliers are good ap-
proximations (O(hz)) to the potentials at the midpoints of the edges of a tri-
angle or quadrilateral. Here we discuss the case of the lowest order Raviart-
Thomas elements and restrict ourselves to the practical results. For more the-
oretical details we refer to [Arnold 1985]. First, the triangular case and, sec-
ond, the quadrilateral case is discussed.

Triangles

The basic procedure is to transform the sub-triangle, constructed by connect-
ing the midpoints of the edges of the triangle shown in Figure 4-3(a), to the

Figure 4-3

Improving the piecewise constant approximation for the potentials to a piecewise linear
approximation by means of the Lagrange multipliers at the midpoints of the edges.
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reference triangle (cf. Figure 4-1). On the reference triangle we construct the
piecewise linear function

"%, 9) = A+ (A=A )R+ (Ay=1))F (4-84)

such that at its vertices we have ¢"(%,, 9,) = A;. The affine transformation is
given by (cf. Appendix C)
Xy
+1_ (4-85)
y

y (iz"il) 63—?1) y
where the (x;,y;) are the midpoints of the edges on which the A, are de-
fined. Hence, by using the inverse of the above transform and equation (4-
84), the value of the potential at an arbitrary location of the triangle in Figure
4-3(b) can be evaluated in terms of the Lagrange multipliers. The approxi-

mation is linear, however, it is discontinuous (non-conforming) at the verti-
ces of the triangle.

We now calculate the potentials at some special locations of the triangle
shown in Figure 4-3(a). Skipping the tedious details, we end up with some
particularly simple results. The potentials at the vertices are given by

0 =R -4, +4,
Oy =A +A, =2y (4-86)
O3 =A,+h; -4,

The potentials at the barycenters of the sub-triangles in Figure 4-3(a) are giv-
en by

1
o = 5 [24, =2, +21;]

o5 = % [2X, + 24, - &;]
) (4-87)
93 = 5124, -4, +21;]

1
05 = 5 [, 42,44

The potentials at the circumcenters of the inner triangle in Figure 4-3(a) are
given by
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1
0= % (A, +4] (4-88)
05 =5 [y 4]

Quadrilaterals

In the case of a generic quadrilateral the situation gets severely complex be-
cause of the non-linear character of the affine transformation. We restrict
ourselves to the special case of parallelograms, rectangles and squares, for
which the transformation is linear (cf. Appendix C). The basic procedure is
to transform the parallelogram, constructed by connecting the midpoints of
the edges of the parallelogram shown in Figure 4-3(b), to the reference
square (cf. Figure 4-2). On the reference square we construct the piecewise
bilinear function

O, 9) = A+ (A=A E+ (A =A)9+ (A =X +Ay, =2 )29  (4-89)

such that at the vertices we have ¢*(, 9,) = A.. The affine transformation is
given by (cf. Appendix C)

X _ ()fz—fl) ()—C4——f1) x + X (4-90)
y (yz_y_1) @4‘51) y y]

where the (x;y;) are the midpoints of the edges on which the 7L‘. are de-
fined. Hence, by using the inverse of the above transform and equation (4-
89), the value of the potential at an arbitrary location of the parallelogram in
Figure 4-3(b) can be evaluated in terms of the Lagrange multipliers. The ap-
proximation to the potential is now “bilinear”, however, as in the triangular
case, it is discontinuous (non-conforming) at the vertices of the quadrilateral.

The values of the potentials at the special locations of the quadrilateral
shown in Figure 4-3(b) are listed below. At the vertices we have

1
0= 2130~y =, +30,)
1
¢2= 2[3}\-2—7\.3“";\,4+3}\.1]
1 (4-91)
03= 7 335 =, =4, +32))
1
00 = 3 [3h, =, — 1, +34y)

At the barycenters of the sub-quadrilaterals in Figure 4-3(b) we have
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(4-92)

o= 2 A +1y]

Although not shown in Figure 4-3(b), for parallelograms the circumcenters
¢ of the sub-parallelogram, constructed by connecting the midpoints of the
edges, (cf. Figure 4-3(b)) coincide with the barycenters given in equation (4-
92).

Conclusions

Essentially, we now have available the necessary techniques to improve the
approximation to the potential. As a result, we are able to add upwinding
characteristics to the discretization and to improve the prolongation operator
in the multigrid method (cf. Chapter 5). The technique is applicable to trian-
gles and parallelograms. The case of generic quadrilaterals was omitted, be-
cause of the complex and (yet) impractical results.

Time Discretization

4.4.1

In Chapter 3, it was shown that the time dependence of the thermoelectric
model equations is of the parabolic type. In this section, for the sake of com-
pleteness, we briefly discuss a well-known time discretization for this type of
time dependence and adapt it to the discrete mixed formulation. In Section
4.4.1 some general aspects are discussed and in Section 4.4.2, we specifical-
ly deal with the mixed case.

Parabolic in Time Operators
The general form of a parabolic in time PDE can be stated as below

0,u(x;1) + L(x)u(r;n) = flx;1) (4-93)

Where L(x) is a, possibly non-linear, elliptic operator containing the spatial
part of the PDE and u(x;f) a tensor of arbitrary rank representing the un-
known physical variable. A very popular method to discretize the above
equation in time is the generalized trapezoidal method [Hughes 1987]. The
generalized trapezoidal method can be made either implicit, explicit or a
combination of both (Crank-Nicholson), by means of an adjusting parameter
o.. The generalized trapezoidal method can be formulated as

(T+aAr,Lyut,, ) = fit, + oAt At + (1-(1 - ) Ar, L) ut,) (4-94)
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As is well known the easiest scheme is obtained by taking o= 0. In this case
a fully explicit scheme is obtained for which the solution may be advanced
in time without the need of matrix inversion. For o # 0 an implicit scheme is
obtained. Note that only for o = 1/2 the scheme is unconditionally stable. In
the case o < 1/2, it requires the condition At < 2/(1-2a)A,,,, to be satisfied,
where A, is the maximum eigenvalue of the discrete operator L, which is
usually of order O(A2). Further, the local truncation error of the scheme be-
haves as O(h) except in the case that o= 1/2 for which it behaves as O(h?).

Time Dependent Mixed Problems

In this section, we discuss in particular how to discretize in time the semi-
discrete equations as stated in Section 4.2.3. For this purpose we use the gen-
eralized trapezoidal rule discussed in the previous section. We start by reca-
pitulating the semi-discrete equations

A B U G
. = 4-95
L*T <C+Da,>} M M e
Do®- [BTAT'B-C1® = F-B"A"'G (4-96)

Now, by means of a straightforward generalization of the trapezoidal rule to
the mixed case we obtain the following general matrix-vector recursion

Ak— D)UK) = Blk— )U(k-1)+GK) (4-97a)
with
= _ U .
Uk = Lb(k)} (4-97b)
G = {OLG,C+ (1-a) Gk_{li {G(:k_lmm,‘_l)} a7
oF + (1-a)F,_,| |Fl,_,+ads_,)

-~ 0 0 o, 0||A (B,+B,)
Atk-1) = 1 1 2 :
(k-1 Ho DA:;I_J+ {0 aJ [3{ C H (4-979)

- 0 0 (1-a;) 0 A (B,+B,)
Bk-1) = _ .
k-1 HODA[ZI_J { 0 (l_az)H:B{ c H (4-97¢)

Since the boundary conditions G and the source terms F are assumed to be
known functions of time, the above formulation can be used as a guideline
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for a direct implementation of the time-dependent mixed formulation as a se-
quence of elliptic problems.

We may also choose to eliminate the flux variables in the global system of
equations. With , = o, = « we then arrive at the following matrix-vector
recursion

(AR \D+0A1®, = [aF + (1-0F, )] +

-1 _ "
[Ar,2D- (1 )Al®, _, (4-98a)

with
A — T,-1
A= (BJAT (B, +B,) -C)
. (4-98b)
Fy=F,-BTA"'G,

In the case of the mixed-hybrid form the procedure is analogous, except for
the fact that the entire matrix-vector recursion can be build from the individ-
ual contributions at the element level.

Non-Linear Systems of Equations

4.5.1

The thermoelectric model as discussed in Chapter 3 in principle is a non-lin-
ear problem. Using the quasi-linear approach as discussed in the previous
sections results in a large system of quasi-linear algebraic equations. In prin-
ciple such a system cannot be solved directly because the matrix entries de-
pend on the solution vector, which is not yet available. Such a system of
equations must be solved by means of an iterative technique. In Section
4.5.1, some basic iterative methods are discussed. In Section 4.5.2, we dis-
cuss iterative methods for the non-linear mixed model.

Basic Iterative Methods

In this section we summarize the basic principles for solving non-linear sys-
tems of equations. For more background information we refer to [Rheinboldt
1970][Rheinboldt 1974][Sherman 1978][Selberherr 1984].

Suppose that the discretized equations are given by the following matrix
equation

Fx) =0 (4-99)

Assume that the above equation has a unique solution for x*, then the itera-
tive method is based on the construction of a contractive mapping with
fixed-point x*

= Mo (4-100)
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such that
lim |x*-x*| =0 (4-101)
m— oo

The question is how to construct such a mapping and how to specify its ini-
tial guess x°. A sufficient condition for the mapping to be contractive is to as-
sume the existence of the Frechet derivative M’(x) at the fixed-point x* and
that the modulus of its eigenvalues are all less than one. Usually, the map-
ping is set up as follows

= o (B Fa™) (4102)

contractive. Taking the Frechet derivative of the right-hand side of the above
equation we arrive at
M) =1- ((B®)™)' FW) - (B@)™  F ) (4-103)

At the fixed-point we have

ME*) = 1- (BE) ™ F'R*)) (4-104)
From this equation we deduce that a variety of operators B(x*) exist such
that the mapping is contractive.

Next, we discuss four basic iteration methods that more or less fit into the
above theory. First, we discuss the successive substitution method, followed
by Picard iteration, Newton iteration and Gauss-Seidel iteration.

Successive Substitution

If the non-linearity of the PDE is restricted to non-linear coefficients, the
simplest iteration strategy follows from the natural form of the system of
equations that results after discretization, that is

Now we can evaluate the required properties of B(x) such that the mapping is
F(x) = A(x) - x~ b(x) (4-105)

| Choosing B(x) = A(x) the contractive mapping can be stated as
A - 8x™ ! = —F(x) (4-106)

Provided the eigenvalues of A™'F' evaluated at the fixed-point are larger
than zero, the method is convergent.

Picard Iteration

Picard’s method is defined by choosing B in equation (4-102) the identity op-
erator /, that is

B(x) = [ (4-107)
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This yields the following iterative scheme

Xt = o F(e™y (4-108)

According to equation (4-104), the Picard scheme is locally convergent if the
eigenvalues of the Frechet derivative of the operator F(x) are larger than zero
when evaluated at the fixed-point x*. Further, if the initial x° guess is suffi-
ciently close to the solution x*, the scheme results in linear convergence.

Newton Iteration
Newton’s method is defined by taking

B(x) = F'(x) (4-109)

This results in the following iterative scheme

F'(x™)-8x™ 1 = —F(™) (4-110)

For Newton's method we immediately see that the modulus of all eigenval-
ues of M’ in equation (4-104) is zero, which gives quadratic convergence for
an initial x° guess sufficiently close to the solution x*. Unfortunately, in most
cases the convergence range of the Newton method is not very large, choos-
ing a damped Newton scheme might cure the problem, for instance

Bx) = A F'(x) (4-111)

were A is the damping factor. Here the Frechet derivative evaluates to
M'(x) = (1—%) -7 (4-112)

The eigenvalues are readily obtained as (1~-1/A) and thus a locally conver-
gent iteration scheme is obtained when A € (0.5, o).

Block Gauss-Seidel lteration

In many cases the physical properties of the problem to be solved suggest a
grouping of the degrees of freedom into blocks, for example

Fi(x), x5, x3) =0
Fy(x,xy,x3) =0 (4-113)
Fa(x), x9,x3) =0

Now each block is solved for its primary variables by assuming the second-
ary variables are known, e.g, we can solve the first block in equation (4-113)
for x| by assuming that an initial guess for x,, x, and x, is available. In order
to do so we may either use Picard or Newton. We then proceed to the next
block and solve for x,, however, with the initial guess for x, replaced by the
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value of x, obtained from solving the previous block. A solution to the entire
system is obtained by repeating the above process until a certain accuracy is
obtained.

Conclusions

From the above discussion, it is obvious that the convergence properties are
significantly influenced by the choice of the contractive mapping and the
available initial guess, however, a “best” choice is difficult to give and usu-
ally trial and error are necessary to achieve the best results. From experience,
it is known that, although Picard’s method does not converge as fast as New-
tons’s method, the convergence range is usually larger, which makes it a
somewhat more robust iteration method. A good strategy is to use a few
Picard iterations to get the initial guess close to the actual solution and then
to proceed with Newton iterations. The block Gauss-Seidel method proves to
be a robust iteration method, however, quadratic convergence as in the New-
ton method cannot be expected. In isothermal semiconductor modeling the
block Gauss-Seidel method is also known as Gummel’s method. Here, the
first block corresponds to the discretized Poisson equation and the second
block corresponds to the discretized particle balance equations. For the ther-
moelectric problem Gummel’s method can obviously be extended to the
thermal domain by taking the discretized heat balance equation as the third
block.

In the next section we discuss the essential non-linearities of the thermoelec-
tric model equations in the mixed formulation. We get back to these non-lin-
ear aspects in Chapter 5, where we describe a multigrid solution method
using local linearization instead of global linearization.

Non-Linear Mixed Problems

We now deal with the essential non-linearities of the model problem stated in
equation (4-1a). As discussed in the previous sections, the basic tool for deal-
ing with non-linear problems is linearization and iteration. The linearized
problem should be formulated such that it fits into the framework of the
mixed method. Let us first recapitulate the mixed problem, making explicit
the essential non-linearities that appear in the thermoelectric model equa-
tions stated in Section 3.5

. = Q 4-114
3 | |00  |na®a 00 +fmo) @9

Clearly, we recognize the non-linearity of the transport parameters and the
non-linearity of the “thermal” and “electrical” source terms. The only non
standard term is the first term of the bottom entry of the right-hand side. We
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observe that this term in principle belongs to the lower right entry of the left-
hand side matrix. Hence, we can rewrite equation (4-114) as

qp(x:0) 9 qw@| [ 0] Lo (*115)
d  c(¥)~ U9, | ¢(x) x;0)

However, in formulating a modified mixed variational statement (cf. Section
4.2.2 and Section 4.2.3), the lower right entry of the left-hand side matrix
must be treated with care, as we show below.

The discrete variational formulation of equation (4-112) reads (cf. equation (4-

10))
A B lul_ e
[BT (C+Cl)} M M e

The additional contribution C; can be calculated from the variational form
(mind the sign reversal)

c)(6, ) = j (Ugl)D (X)) W(x)dx (@117)
Q

where it is understood that u,(x) is a given vector function. Clearly, if we
use the lowest order Raviart-Thomas discretization (cf. Section 4.2.4), where
the potential is approximated by a piecewise constant function, the gradient
of the potential equates to zero. This problem can be avoided by first using
Green’s theorem, that is

¢\ W) = j OOV U (x)n ds — j 003, (ugy(x) dx  (4-118)
o0 Q

Using the piecewise constant approximation for the potential ¢ and test
function v (cf. Section 4.2.4.1), given by

o) = Z<I>‘.§‘(x) y(x) = 2‘{".§i(x) @119)

and splitting the integrals in equation (4-118) into the element contributions
yields

c@w =Y YoEY | E@YueInds
L) k (3S,naQ)

Y Y 0, [, (rwtiw) ds
J k'3,

i

(4-120)
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The fact that the test functions £(x) are piecewise constant and unity yields

(6, ) = zszﬂg[
J

Ug(x)n ds — Iaaua(x)dx] 8, (a121)
‘ (3S; " aQ) S;

Since the variational statement must hold for any choice of y(x), the matrix
C, is given by

[, = { J' ua(x)nads—J.au(ua(x))dleSij @122)
(98;n Q) S,

which can easily be evaluated by using the piecewise linear approximation
of the fluxes as discussed in Section 4.2.4.

The above modification of the discrete variational formulation can conve-
niently be used in the successive substitution iteration method or the Picard
iteration method (cf. Section 4.5.1).

In the case we want to make use of the Newton iteration method we first
must evaluate the Frechet derivative or Jacobian of the differential operator
(cf. equation (4-1a)). A formal application of the Newton method yields

F'@™6z™ ! = —F(z™ (4-123)
with
= [u'ﬂ 82" = {Su'ﬂ R S 2% (@-124)
o 3™
and
; m a m
P = Aop(%:0™) o U] L{ 0 } @125
dg o) - Ug (x)0,, ¢”‘(x{ x;0™)
and the Frechet derivative or Jacobian given by
%)
aap(x;q)”‘) (au-i- % uZ‘(x))
F'(Z™ = o (4-126)
of(0)

(3g - 950"(x)) (c(x) - 103, ~

)

Assuming linear Dirichlett and Neumann boundary conditions, the resulting
discrete variational problem, which is no longer symmetric, now reads
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A (B+8B)) sumtl |G| |A B m
- : = -, ' (a127)
(B +B,) (C+C+Cy)| (™! F B (C+C)) "
where A, B, C, F and G are given by equation (4-11).The additional entries
Bl’ BQ_, Cl and C2 are given by

(c,1,, = { W) ds - J' Ba(u(';'(x))dx}ﬁij (4-128)
(35,1 300) 5,
of(d)
[c,), = { (—— )dx}&i, (4-129)
j ‘s[ ao o i

O™ ()E (X)) nods — J.¢’”(x)§i(x)BQV’;(x) dX}4-130)
(35, M 3Q) 5,

da(¢)
o, 35,

which can easily be evaluated by using the piecewise linear approximation
of the fluxes and piecewise constant approximation of the potentials, as dis-
cussed in Section 4.2.4.

.3

u(”;(x))v;afdx (4-131)

In this chapter a discretization method for a non-linear parabolic partial dif-
ferential equation, representative for the thermoelectric problem as defined
in Chapter 3, was presented. The discretization method was based on the
mixed formulation of the problem. The mixed discrete equations were ob-
tained by using the lowest order Raviart-Thomas element, which was dis-
cussed for triangular and parallelogramic elements. Moreover, all the
necessary tools for the successful application of the mixed discretization
method to the thermoelectric problem were discussed, including time-depen-
dence and non-linearity. The main reason for using the mixed discretization
method is that it naturally fits the form in which the problem is represented.
Since we now have at our disposal all the necessary tools for the discretiza-
tion of the thermoelectric problem, the following chapter must deal with an
effective numerical solution method for the resulting discrete model equa-

| tions. We do not wish to use the standard solution methods, because these
have proven to be rather ineffective. Instead, we focus on the formulation of
a multigrid method that can be used with the mixed discrete equations.

4.6 Concluding Remarks
l
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An Adaptive Multigrid Solution
Method for the Thermoelectric
Problem

5.1

Introduction

In this chapter, we deal with the solution method for the discrete form of the
thermoelectric problem, as presented in the previous chapter. Essentially, the
problem is a system of equations of the form

Au=»b (5-1)

where, A € R"xR" is the discretized differential operator, # € R" the dis-
crete solution and b € R" the right-hand side. Essentially, there are two more
or less classical methods for solving such systems: direct methods and itera-
tive methods. In a direct method, depending on the specific properties of the
matrix A, some variant of the Gaussian elimination algorithm is used. In an
iterative method, we rewrite the system as a contractive mapping with a
fixed-point equal to the solution of the original system. We then start with an
initial guess and successively improve this guess by iteration. For more de-
tailed information with respect to iterative methods we refer to [Young
1971][Hackbush 1991b]. Table 5-1 shows the relative merits of some direct
and some iterative methods in respect to computational effort and storage re-
quirement. In Table 5-1, the first two methods are direct methods and the re-
maining ones are iterative methods. The constant € < 1 is a factor with which
the initial error is required to be reduced after one iteration. The size of the
matrix is assumed to be nxn. The Gaussian method assumes no special prop-
erties with respect to the matrix A. The Band-Gauss method assumes that A
is a sparse band matrix. Clearly, the more advanced iterative methods, such
as SSOR-CG (Symmetric Successive Over Relaxation Conjugate Gradient)
perform very well. However, in our case, we are particularly interested in the
last iterative method listed in Table 5-1, which is the multigrid or multilevel
method (MGM). For large problems (n large), the multigrid method outper-
forms all other methods. Since the numerical solution of the full thermoelec-
tric problem is extremely demanding from the computational point of view
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[Polak 1988], the effort to investigate its application to the thermoelectric
problem seems worthwhile.

Table 5-1

Upper bounds in computational effort and storage requirements for some direct and
some iterative solution methods applied to a linear self-adjoint elliptic boundary value
problem with a large matrix of size n x n (e.g. the Poisson equation) in 2D.

method:

computational effort:

storage:

|

direct:

Gaussian

con?

s n?

Band-Gauss

¢ n?

5 0

iterative:

Gauss-Seidel

-¢, In(g) n?

S0

SOR

-¢; In(g) n**

sn

CG

-c, In(2¢) n'3

Sen

SSOR-CG

-¢s In(2€) n'

Ss

MG

-cs In(e) n

Sen

Besides the benefits in computational effort for linear problems, there is yet
another important reason for using the multigrid method. Let us therefore
consider some non-linear problem. When using a direct or iterative method,
the problem must first be globally linearized (cf. Chapter 4). Subsequently,
in order to obtain a solution to the non-linear problem, the linearized equa-
tions need to be resolved many times, each time using the previous solution
as an initial guess. Despite many clever schemes that have been developed
over the past decades [Rheinboldt 1970][Rheinboldt 1974][Sherman 1978], this
clearly involves a lot of computational work. However, in contrast to the
other methods, the multigrid method is directly applicable to non-linear
problems, in the sense that no global linearization of the system of equations
is required, instead, a local linearization can be used. The benefit of this fea-
ture is that both linear and non-linear problems can be treated with the same
efficiency. In other words, the computational effort needed to solve a non-
linear problem is still O(n) [Hackbush 1985].

According to [Brandt 1979] .[McCormick 1989] the multigrid method is also
perfectly suited for adaptive local mesh refinement. In this case we start with
a coarse partitioning of the computational domain (cf. Chapter 4), which is
subsequently locally refined at those places where it is needed. Local refine-
ment is achieved by subdivision of an element into a number of congruent
child elements. This way the computational effort is automatically directed
to those places of the computational domain where the solution shows sharp
shifts. Clearly for such problems a significant additional improvement in ac-
curacy and computational effort can be expected.

There are many ways to employ the multigrid method, i.e. in [Brandt 1977]
multigrid is used in the context of the finite difference method, and in [Wes-
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5.2

seling 1992] multigrid is used in the context of the finite volume method.
Since we have already invested much time and effort to apply the mixed fi-
nite element method to the thermoelectric problem [Duyn 1991][Duyn 1992],
this chapter builds upon the knowledge collected in Chapter 4. This ap-
proach is also followed in [Schmidt 1988] where multigrid is applied to reser-
voir simulation, and in [Molenaar 1992} where multigrid is applied to the
semiconductor problem. Essentially the thermoelectric problem is a superset
of the semiconductor problem and therefore we may build upon the research
results presented in [Molenaar 1992]. Although we discuss the multigrid
method in the context of the thermoelectric problem it is emphasized that in
principle it can also be used for many other problems arising in semiconduc-
tor device physics, i.e. the simulation of device processing and anisotropic
etching. Also more complex physical models such as the hydrodynamic
model and the Monte Carlo model lend themselves for multigrid.

The structure of this chapter is as follows. In Section 5.2 a general introduc-
tion to the multigrid method is presented. In particular, we introduce the ba-
sic multigrid cycling algorithms together with their key components: nested
grids, relaxation, prolongation, restriction and interpolation. The treatment
presented here is not rigorous and is intended to instruct the reader who is
not familiar with the multigrid principle. For more background information
we refer to [Brandt 1984][Hackbush 1985][Briggs 1987][Wesseling 1992]. In
subsequent sections the key components of the multigrid method in the con-
text of the mixed formulation are discussed. The aim is to arrive at a frame-
work that can be used to implement a fast adaptive multigrid solution
method for the mixed equations resulting from the discretization of the ther-
moelectric problem. Consequently, as much as possible we try to arrive at re-
sults that are close to the actual implementation. Moreover, in the derivations
of the results we keep in mind an object-oriented implementation strategy
(cf. Chapter 6).

We first discuss, in Section 5.3, the multigrid method on composite nested
grids. In Section 5.4, we discuss the relaxation method. Section 5.5 deals
with the intergrid transfer operators: prolongation, restriction and interpola-
tion. Next, in Section 5.6 we derive the error estimators that can be used for
multigrid on adaptive composite grids. Finally, in Section 5.7, we close the
chapter with some concluding remarks.

Basic Multigrid Techniques

Ever since the development of the first multilevel solvers for linear elliptical
partial differential equations, multilevel techniques have been developed for
the solution of a wide variety of other scientific problems, not only in the
field of partial differential equations, but also in fields such as image pro-
cessing, statistical physics and optimization problems. For an overview of
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5.2.1

recent developments in the field we refer to [McCormick 1987][Hackbush
1991a][Brandt 1992]. This section specifically deals with the basic theory and
techniques for the fast solution of non-linear elliptic PDEs.

Relaxation

To explain the basic idea behind the multigrid method, we proceed as fol-
lows. Let us assume that we are using some iterative method (e.g. 1-point
Gauss-Seidel) to solve the problem stated in equation (5-1). This means that
the matrix equation representing the discrete problem is rewritten as a con-
tractive mapping with a fixed-point equal to the solution of the original sys-
tem. We then start with a global initial guess for the solution and
successively improve this guess according to the rule characteristic for the
contractive mapping. This sequence is repeated until an approximation of the
solution is obtained that satisfies some prescribed tolerance.

However, it can be shown that for many iterative processes, the asymptotic
speed of convergence is small. Typically, the error reduction per iteration is
O(1-#*). Consequently, for small A, which means a large number of finite el-
ements, many iterations are necessary to solve the problem to the required
degree of accuracy. For simple problems1 it can be shown, by means of Fou-
rier analysis, that the slow convergence is caused by the fact that the iterative
method is only efficient in removing the high frequency error componentsz,
whereas it has severe problems with the removal of the low-frequency error
components [Briggs 1987]. This can clearly be seen from Figure 5-1 which
plots the amplification factor | of the Fourier components of the error, as a
function of the spatial frequencies 6, and 6,. Note that the amplification fac-
tor is defined as the reduction of a Fourier component after one iteration. The
figure shows that u—1 as (8,,8,)—(0,0), hence, the low frequencies are not
significantly reduced. A measure of the effectivity of the iteration to remove
the high-frequency components is given by the smoothing factor 1. The
smoothing factor is defined as the maximum amplification factor for those
Fourier error components 6, that cannot be resolved on the coarse grid, that
is,

i = sup {(©)[ 6 6} (52)

In the case of the above example {I = 0.5, this means that after three itera-
tions the high frequencies are reduced by almost one order of magnitude. In
other words, the error is smooth with respect to the grid size 4 and contains
only frequency components with periods which are large in comparison to
the mesh size A.

1. For example, the 2D Poisson problem on a square grid using the usual 5-point FD stencils.

2. In this context, high frequency means those frequencies that cannot be accurately resolved
on a grid with mesh size A.
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Figure 5-1

Error amplification factor for a 1-point Gauss-Seidel relaxation on a 2D Poisson
problem on a square domain.

The basic idea behind the multigrid method is to approximate the smooth er-
ror on a coarser grid with grid size 2A. Note that the definition of a coarse-
grid size of 2A (standard coarsening) immediately defines the high-frequen-
cy error components 9, on the fine grid. This can be argued as follows; ac-
cording to the Nyquist sampling theorem the largest spatial frequency 0 that
can be resolved on the fine grid is |8] < m/A. Since the sampling frequency is
effectively halved on the coarse grid, the largest spatial frequency that can be
resolved on the coarse grid is 8] < (1/2) (n/h) . Hence, the spatial frequen-
cies |8] > (1/2) (n/h) on the fine grid cannot be resolved on the coarse
grid, these must therefore be defined as the high-frequency components 6,
on the fine grid. The remaining frequencies, that is, |6 < (n/2k) are de-
fined as the low-frequency components. Note that a similar argument holds
for a 2D problem. Obviously, on a coarser grid the error appears less smooth,
and we may apply the same iteration strategy to reduce its high-frequency
components. Hence, after a few iterations, the error is also smooth with re-
spect to the grid size 2h. By going to coarser and coarser grids we eventually
reach the state where also the low-frequency components in the error are ef-
fectively reduced. Once an accurate approximation to the error is obtained, it
is used to correct the solution on the fine grid.

The process of reducing the high-frequency components at each grid is
called relaxation or smoothing. Most basic iterative methods can be used for
this purpose, however, we must keep in mind that in the context of multigrid
it is the smoothing property of the relaxation method which is important, not
the overall convergence properties of the iterative method. Or to put it more
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plainly, a good iteration method is not necessarily also a good smoothing
method. The schemes used to correct the solution on the fine grid can be
grouped into three variants, the correction scheme (CS) [Brandt 1984], the
full approximation scheme (FAS) [Brandt 1984] and the non-linear multigrid
scheme (NMGS) [Hackbush 1985]. The CS is only applicable to linear prob-
lems, whereas the other two are also applicable to non-linear problems. Both
non-linear algorithms (FAS and NMGS) are very similar, although the
NMGS has two extra parameters which can be adapted to the specifics of the
non-linear problem to be solved. So far, our experience is limited to the use
of the CS and the FAS, therefore, we restrict the discussion to these types.
Note that for the multigrid solution of the thermoelectric problem, we must
use the FAS. However, to introduce the FAS we first discuss the CS.

5.2.2 Correction Scheme

The correction scheme can best be explained by assuming that we are deal-
ing with two grids, the fine grid G* with mesh size h* and the coarse grid G*!
with mesh size 4%, Let the problem to be solved on G *be given as

LFu* = b* (5-3)

After a few relaxations of the above equation we obtain an approximation u*

to the exact solution . Let us define the error in the solution as

e = k-t (5-4)

Moreover, let us define the residue as

r* = pk— L*u* (5-5)

Clearly, by virtue of the linearity of the operator L the equation for the error
can be written as

Lte* = /* (5-6)

As stated in the previous section, after a few relaxations the error e will ap-
pear smooth compared to the mesh size #*. It may therefore be more eco-
nomically represented and solved on the coarser grid G*'. This can
symbolically be written as

| e 57

where, L~ is the matrix representation of the differential operator on the
coarse grid, Rf'l is a restriction operator transferring the residue from the
fine grid to the coarse grid. The operator L¥~! can be obtained completely
analogous to the way L* was obtained, in our case by means of the finite ele-
ment method (cf. Chapter 3). Clearly, the above equation can be solved for
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e~ once the restriction operator is defined, the result may then be used to

correct the solution on the fine grid
ub = wb ik 1 (5-8)
where, Ii_l is an interpolation operator transferring the error from the

coarse grid to the fine grid. The above line of reasoning may be summarized
in the linear two-grid algorithm shown in Table 5-2.

Linear two-grid algorithm.

(

Set the initial guess: #*

Relax L*u* = p* using &* as the initial guess
g

Calculate the residue: r* = b* - L

Calculate the right-hand side of the coarse-grid problem: 7! = RE™ 1/

Solve the coarse-grid problem: L¥~'g*~1 = p%-1

Correct the fine-grid solution: u* = &* +7%_ ¢~

Relax L*u* = b* using u* as the initial guess

5.2.3 Full Approximation Scheme

Let the non-linear problem to be solved on G*be given as
LYuh = b (5-9)

Here L* is a non-linear operator and the correction scheme can no longer be
used, since we no longer can express the error as in equation (5-6). To remedy
this problem let us start from equation (5-5). Substituting equation (5-3) into
equation (5-5) we obtain a relation for calculating the residue

r* = LKu®y - LYaY (5-10)
Using equation (5-4) we may also write
LKa* + % = LK@k -+ (5-11)
Now defining the coarse-grid variable as

- ~k—1-~ _
V=R, ut+et! (5-12)
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the coarse-grid representation of equation (5-11) reads

L@y = L TRE TR+ RE 1A (5-13)

where, ﬂ =1 is a restriction operator to transfer the solution from the fine
grid to the coarse grid. Note that it may be chosen different from R" 1
Clearly, the above equation can be solved for #*~! from which we then can
construct an approximation to the error &1 on the coarse grid

=t R (5-14)
This approximation is then used to correct the fine-grid solution according to

u = @tk & (5-15)

We may summarize the procedure in the non-linear two-grid algorithm
shown in Table 5-3.

Table 5-3 Non-Linear two-grid algorithm.
(
Set the initial guess: &*
Relax L*u*) = b* using u* as the initial guess and store the result in it
Calculate the residue: * = b* — LX@")
Calculate the restriction of the residue: r*~! = R¥~1r*
Calculate the restriction of the solution: &* ™' = R} ™ 'a*
Calculate the right-hand side of the coarse-grid problem: 5~ ' = L¥~ Y@t ™1 4 /!
Solve the coarse-grid problem: L*~ (% =1y = p*~!
Calculate the coarse-grid error: ¢~ = #*~ ' - "™
Correct the fine-grid solution: u* = &*+7%_ ¢~
Relax L*u*) = b* using #* as the initial guess and store the result in u*
}
The next step is to extend the algorithms presented in Table 5-2 and Table 5-
3 to the case where multiple grids are involved.
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5.2.4 Recursive Multigrid Algorithm

As discussed in the previous sections, applying the two-grid algorithm to the
problem on the fine grid effectively reduces only the high-frequency error
components. As pointed out in the previous sections, we must, therefore,
represent and solve the error on the coarse grid and use the result to correct
the solution on the fine grid. However, the number of elements on the coarse
grid may still be so large that the overall convergence stalls after a few relax-
ations. The problem is the same as that on the fine grid, that is, only the
coarse-grid high-frequency components are effectively reduced. Obviously,
the solution to this problem is to apply the same strategy as applied on the
fine grid, that is, after convergence stalls, we must represent and solve the er-
ror on an even coarser grid. Moreover, this process of coarsening can be ap-
plied recursively until a grid is reached where the number of elements is so
small that the problem can be solved very economically by means of a direct
method or in a few relaxations by means of an iterative method.

To describe the recursive multigrid algorithm, we assume that we have a se-
quence of nested grids G* with grid sizes B = (1/72)h*~ !, where k= 1 in-
dicates the coarsest grid and & = K indicates the finest grid. Since we are
dealing with a non-linear problem, we only discuss the recursive non-linear
multigrid algorithm. The basic recursive non-linear multigrid algorithm fol-
lows from the non-linear two-grid algorithm by replacing the coarse-grid so-
lution statement by 7y multigrid iterations. We then obtain the algorithm
described in Table 5-4.

Table 5-4

Recursive Non-Linear Multigrid Algorithm for V, W and F cycles.

Non_Linear_Multigrid( initial guess: ik,result: u*, right-hand side: b*, level: k)

{

if (k=1)
{

Solve the problem exactly by means of a direct method, or approximately by applying
v, relaxation sweeps

if(cycle="F") y=1

else

Relax Liuf) = b* v, times, using #* as the initial guess

Calculate the residue; r* = b* L"(u")

Calculate the restriction of the residue: 77! = RE~ 1/
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- . kot mk-1
Calculate the restriction of the solution: #° ' = R, u*

Calculate right-hand side of the coarse-grid problem: 5*~1 = Lt-1G* "1y 4 -1

for i=1;i<y;i=i+1) // note: vy, =1 by definition
{

Non_Linear_Multigrid( &* ™', «*~ ', p*~ 1, k-1)

. - 1 zk=1
Calculate the coarse-grid error: e¥~1 = y*~1-R,” o

Correct the fine-grid solution: #* = u* + If _ le"‘ !

Relax L") = b* v, times using u* as the initial guess

if (k=K &&cycle=F’) y=2

The relaxation sweep counts v; and v, are usually either 0,1 or 2 whereas v,
‘ in general is taken larger. The order in which the grids (levels) are visited is

determined by the cycle parameter y. The multigrid cycle for y = 1 is usually
‘ referred to as the V(v,v;)-cycle and in the case where y = 2, it is referred to

as the W(v;,v,)-cycle. Moreover, in the above algorithm an extra scheduling
parameter “cycle” was included. By setting “cycle” equal to F we obtain the

F(vy,v;)-cycle. Note that the F-cycle modifies the parameter y during execu-

tion. An example of the three cycle types for K = 4 is shown in Figure 5-2
| (a,b,c). A driver routine for the recursive non-linear multigrid algorithm is
‘ shown in Table 5-5.

‘ Table 5-5 Driver routine for the Non-Linear Multigrid Algorithm to carry out V, Wor F cycles.

Driver()

| {

Choose the initial guess on the finest grid K: 2%

if (cycle="W'||cycle="F’') (y=2)}else [ y=1}

‘ for(i=1;i<ng;i=i+1)

{

Non_Linear_Multigrid( #*, u¥, »%, k)

Let: &% = u
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5.2.5

}

Full Multigrid or Nested Iteration

The idea of nested iteration [Brandt 1984] is motivated by the following no-
tion. When no a priori information about the solution is available to guide us
towards a choice of the initial guess 2% on the finest grid GX, it is obviously
wasteful to start the computation on the finest grid and successively work
our way to the coarsest grid. It might even be the case that with an unfortu-
nate choice of &, the algorithm diverges for a non-linear problem. Since
computing on a coarse grid is much cheaper, it is much better to use a coarse
grid to provide an initial approximation to a fine grid. This first approxima-
tion is subsequently improved by multigrid cycles. Applying the idea recur-
sively yields a multigrid algorithm which is commonly referred to as the Full
Multigrid algorithm (FMG) or Nested Iteration. The algorithm is summa-
rized in Table 5-6. Figure 5-2 (d) shows an FMG cycle for the case where K
=4, ng =1 and y = 1. Note that the FMG algorithm starts at the coarsest grid
and provides an initial guess to a finer grid by prolongation of the coarse-
grid solution to a finer grid.

Table 5-6

The Full Multigrid Algorithm.

Full_Multigrid ()

{

Choose the initial guess on the coarsest grid: &'

Solve the coarse-grid problem exact by means of a direct method, or approximately by
applying v, relaxation sweeps

for(k=2;k<K;;k=k+1)

{

Prolongate: #* = PX_ " 7!

for(i=1;i<n;i=i+1)

{

Non_Linear_Multigrid( %, u*, b*, k )
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Figure 5-2

5.2.6

Examples of multigrid cycles: (a) V-cycle, (b) W-cycle, (c) F-cycle and (d) FMG V-cycle.

Intergrid Transfer Operators

In the preceding sections we introduced three types of intergrid transfer op-
erators: restriction, interpolation and prolongation. Moreover, in the non-lin-
ear algorithm we defined different restriction operators for transferring the
residue and the solution. Although the intergrid operators we actually use are
somewhat more complicated, it is instructive to briefly discuss the essential
idea for a regular one-dimensional grid using finite difference discretization.
In the case a finite element discretization is used the situation is somewhat
different, because then we usually use the properties of the approximation
spaces (cf. Chapter 4) to design the intergrid transfer operators. This case
will be dealt with later on in this chapter.
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5.2.6.1

Restriction

The restriction operators Ri_ ! and Rf' ! are defined to transfer the fine-grid
solution and the fine-grid residue to the next coarser grid. Formally, the re-
striction operator is defined to transfer a fine-grid function to a coarse-grid
function, that is, if ukis a fine-grid function then R’,: Tyt isa coarse-grid
function. The most straightforward restriction operator is denoted as injec-
tion. In this case, the value of u*~! = R’,ﬁ' lukina coarse-grid point is sim-
ply the value of u* in the fine-grid point coinciding with the coarse-grid
point. Another method to obtain the value R',ﬁ ~14¥ in a coarse-grid point is to
use a weighted average of the values u* in the coinciding fine-grid point and
its nearest neighbors. This variant is usually called full weighting. Both vari-
ants are exemplified for the one-dimensional case in Figure 5-3.

1/4 12 1/4

Figure 5-3

5.2.6.2

Restriction operators for the one-dimensional case.

For regular grids, usually a stencil notation is used to characterize the restric-
tion operator, for example the stencils for the case of injection and full
weighting in the one dimensional case are

Ry ' =To10 (5-16a)

Ry = %[1 2 1] (5-16b)

The extension to two-dimensional regular grids is obvious and the injection
and full weighting operators read

., looo
Ri-'=1010 (5-17a)

0040

ko1 _ 1 121
= 242 (5-17b)
121

Interpolation

The interpolation operator 1’;* ! {5 defined to transfer the coarse-grid error to
the next finer grid, hence, if Pt represents the coarse-grid error then
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—_

1 12 12 1

Gk- 1

Figure 5-4 Linear interpolation for the one dimensional case.

l,'i_ le"‘1 is the fine-grid error. As such, it performs the opposite function of

the restriction operator. The interpolation is usually carried out according to
a multi-polynomial interpolation of some specified order, e.g., linear interpo-
lation in the case of a one-dimensional problem. An example of linear inter-
polation on a regular one-dimensional grid is shown in Figure 5-4. Note that
apart from a constant factor the interpolation operator is the transpose of the
restriction operator given in equation (5-16b). This will appear to be a general
feature of the (Galerkin) finite element approximations we use.

5.2.6.3 Prolongation

The prolongation operator P’,ﬁ“ essentially performs the same operation as

the interpolation operator, however, it is only used in the nested multigrid
method for transferring a converged coarse-grid solution to the next finer
grid. The reason for defining a separate prolongation operator is that it is
sometimes advisable to choose the order of the prolongation higher than the
order of the interpolation, for instance, linear interpolation and cubic prolon-
gation. Choosing a higher-order prolongation reduces the introduction of
high-frequency error components on the next finer grid.

5.2.6.4 Accuracy Conditions

In order to assure the mesh-size independent convergence rates, it has been
| shown that the orders of the transfer operators must satisfy the following
‘ condition [Brandt 1984][Wesseling 1992]

my+mg>2m (5-18)

where, m; is the order of the interpolation operator, my is the order of the re-
striction operator and 2m is the order of the partial differential equation. The
| order of an interpolation operator is defined as the highest degree plus one,
of polynomials that are interpolated exactly. For a restriction operator, the
order is similarly defined for the transpose of the restriction operator. For ex-
ample, in the case of a linear interpolation operator, the order is m; = 2. For
a restriction operator using full weighting the order is mp = 2, because the
transpose of the restriction operator is identical to linear interpolation (apart
from a constant factor). Note that the transpose of the restriction operator us-
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5.2.7

ing injection is not a well-defined interpolation, however, its order is

In [Brandt 1984][Wesseling 1992] it is argued that it advisable to choose the
order of the prolongation operator such that

m,>m

> m, (5-19)

where m, is the order of the prolongation operator and m, is the order of
consistency of the discretization. When the above condition is met it can be
shown that the full multigrid method reduces the algebraic error (cf. Section
5.2.7) to well below the truncation error in a small number of work units
[Wesseling 1992]. In the case a less accurate prolongation operator is used,
e.g.m, = m.itis still useful to apply the full multigrid, however, there is no
guarantee that the algebraic error will be much smaller than the discretiza-
tion error. In such cases we may improve the solution further by appending
the fult multigrid iteration with a few more plain multigrid iterations.

Convergence Criterium

To determine the convergence properties of the multigrid algorithm, we
should keep in mind the following definitions. First, the truncation error is
the norm of the difference in the exact solution of the original continuous
problem and the exact solution of the approximate difference problem on the
finest grid, that is

ef‘ = ”ef’" = ||u(xi) - u"‘“ SCH (5-20)

Note that depending on the type of discretization chosen, the truncation error
is of O(WP), as is also indicated in equation (5-20). The truncation error mea-
sures how well the solution of the discrete problem approximates the exact
solution of the original continuous problem.

Obviously, we cannot solve the discrete problem exactly by means of an iter-
ative method such as the multigrid method. For this purpose we must define
another quantity called the algebraic error

ez = ne’;“ = u* - @ (5-21)

The algebraic error measures how well the iterative solution " to the differ-
ential problem approximates the exact discrete solution u”. Obviously, it
makes no sense to try to get the algebraic error way below the truncation er-
ror. Consequently, any approximation that differs by less than the truncation
error from the exact solution of the discretized problem is as good an ap-
proximation to the solution of the continuous differential problem as the ex-
act solution of the discretized problem itself. Hence, an iterative algorithm
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has converged when the algebraic error is of the order of the truncation error.
Here we say that we have converged up to the level of truncation.

The property of the multigrid algorithm to reduce the algebraic error up to
the level of truncation has a few interesting consequences. If we take a look
at the FMG cycle in Figure 5-2 (d) and assume that at each shaded circle the
algorithm has converged up to the level of truncation (if not we may increase
the number of cycles per level, e.g., choose n, = 2 for each k) we can easily
check the order of convergence of the discrete approximation to the continu-
ous problem. For this purpose let us define an error measure

ERR(k, k—1) = |a*~ ' -Ry'at (5-22)
measuring the difference in the converged solutions on two consecutive
grids. The ratios ERR(k, k— 1)/ERR(k — 1, k- 2) should approach 277 for
increasing mesh size.

5.2.8 Performance

To estimate the computational work needed to perform one multigrid itera-
tion, we introduce the concept of a work unit (WU). Following [Brandt 1984]
a WU is defined as the amount of work involved to perform one relaxation
sweep on the finest grid. Assuming standard grid coarsening, a relaxation
sweep on grid G¥ then involves an amount of work equal to

w, = 2% Owu (5-23)

where d is the dimension of the problem. Using some elementary theory of
geometrical series, assuming that the cost of the intergrid transfers and the
calculation of the solution on the coarsest grid can be neglected, it follows
that the total amount of work W involved to carry out one V(v,,v,)-cycle (y=
1) or W(v,,vy)-cycle (y = 2) is bounded by

vV, +V, 4
W< " yZ_d wU (y<29 (5-24)

Using similar arguments the total amount of work involved to carry out one
F(vy,vy)-cycle is bounded by

Vl+V2

| ——=
{(1—2"52

] WU (5-25)

Finally, the total amount of work involved to carry out one FMG(v,,v,, v)-
‘ cycle is bounded by
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W< { (V1 +v) }WU (y<2% (5-26)
(1-y27% (1-27%

The work involved in carrying out the various multigrid cycles is shown in
Table 5-7.

Table 5-7

The work involved to carry out V, Wand F cycles (normalized to (v, + v,) WU).

d 1 2 3
V-cycle 2 4/3 8/7
F-cycle 4 16/9 64/49
W-cycle X 2 4/3

FMG V-cycle 2 16/9 64/49
FMG W-cycle X 8/3 48/21

Note that for 1D problems (d = 1), it usually does not pay off to use multi-
grid, except when we specifically want to make use of the additional advan-
tages of multigrid, such as local grid refinement and non-linear problems.
Also note that the work estimate given in equation {5-24) is out of range in
the case of a W-cycle applied to a 1D problem (cf. Table 5-7). It can be
shown that for such cases the amount of work becomes super-linear in the
number of unknowns [Wesseling 1992]. In practice, such situations should be
avoided. The important conclusion that can be drawn from the above theory
is that the total amount of work involved to carry out one multigrid cycle is
proportional to one WU, which in its turn is proportional to the number of el-
ements n in the finest grid. Hence, provided the convergence of the multigrid
algorithm is such that it reduces the algebraic error to the level of truncation
in O(1) multigrid cycles, the algorithm is of O(n). This leads us to a discus-
sion on the convergence properties of the multigrid algorithm.

As should be clear from the preceding sections, an important step in devel-
oping multigrid solvers is the design of an interior relaxation scheme with a
high smoothing factor p. Note that the reduction of the non-smooth error
components is basically a local task, that is, it can be done in a certain neigh-
borhood independently of other parts of the domain. This is the reason why it
can efficiently be done by relaxation, which essentially is a local process. An
estimate for the error reduction that is possible with a multigrid cycle can be
obtained by using local mode analysis [Brandt 1984][Wesseling 1992]. In a lo-
cal mode analysis, one assumes that the problem is posed in a homogeneous
unbounded domain. Hence, the effect of non-uniformities at boundaries and
interfaces are neglected. Usually, the smoothing factor deteriorates in the vi-
cinity of non-uniformities and must be compensated for by adding extra re-
laxations. Since a boundary or interface is on a lower dimensional manifold,
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the extra amount of work involved in relaxing a boundary or interface is still
small compared to the work involved in relaxing the interior. Note that in the
case of problems with variable coefficients, the smoothing factor j is posi-
tion dependent. Non-linear problems also can be treated by applying local
mode analysis to the linearized problem. For problems with weakly non-lin-
ear coefficients, a simple Picard linearization usually suffices, however, in
the case of exponential dependence, as for the problem defined in Chapter 3,
Newton linearization or some other variant is necessary.

The important conclusion to be drawn from the preceding discussion is that,
assuming the low-frequency components in the error are solved on coarser
grids, the error reduction is approximately determined by the efficiency of
the relaxation process to reduce the high-frequency components. Hence, the
error reduction factor per multigrid cycle is approximately,

=(v,+v,)

B (5-27)

where [1 is the asymptotic smoothing factor, defined in Section 5.2.1, and Vi
v, respectively are the number of pre and post relaxation sweeps. For the ex-
ample given in Section 5.2.1, the smoothing factor is equal to 0.5, hence, a
single multigrid cycle with v; = 2 and v, = 1 gives an error reduction of al-
most one order of magnitude, independent of the number of elements in the
finest grid.

Bearing the above in mind, we are now in a position to estimate the perfor-
mance of the various multigrid cycles. For example, by applying a V-cycle to
an initial approximation of order O(1), one needs O(In n) cycles to reduce
the algebraic error to the level of truncation O(4"). Hence, the multigrid al-
gorithm using V-cycles and solving up to the level of truncation is of O(n In
n). A similar argument holds for W-cycles. However, if we consider the
FMG algorithm, where a converged solution of the discrete problem on a
coarser grid is used as a first approximation, only O(1) multigrid cycles are
needed. Effectively, this means that the FMG algorithm is indeed of O(n).

5.2.9 Conclusions

In this section we have tried to justify the fairly large amount of effort that
needs to be spent in order to design and implement a suitable multigrid
method that can be used for solving discrete problems obtained by applica-
tion of the mixed discretization method. Although the multigrid method is
fairly intricate, its computational benefits are simply too significant for not
trying to apply it. Once a suitable version is developed it can be applied, with
some minor adjustments, to the thermoelectric problem. In subsequent sec-
tions the key components of the multigrid method in the context of the
mixed formulation are discussed. The aim is to arrive at a framework that
can be used to implement a fast adaptive multigrid solution method for the
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5.3

mixed equations resulting from the discretization of the thermoelectric prob-
lem. Consequently, as much as possible we try to arrive at results that are
close to the actual implementation. Moreover, in the derivations of the re-
sults we keep in mind an object-oriented implementation strategy (cf. Chap-
ter 6).

Composite Grids

From singular perturbation analysis it can be shown that the semiconductor
problem is singularly perturbed [Markowich 1983][Markowich 1990]. Since the
thermoelectric problem is a superset of the semiconductor problem it must
also be singularly perturbed. A singularly perturbed problem features sharp
regions of strong and of weak variation of its solution. In order to properly
resolve the regions of strong variation (boundary layers and junctions), these
regions need a much finer grid than the regions of weak variation. In this sec-
tion we therefore discuss the idea of composite grids [McCormick 1989] and
investigate how it relates to the mixed formulation of the problem to be
solved on the computational domain. It turns out that the mixed formulation
possesses some convenient properties with respect to the use of composite
grids.

In contrast to the treatment of composite grids in [McCormick 1989], where
only rectangular domains regularly partitioned into square elements are con-
sidered, we allow any shape of domain as long as it can be represented by a
quasi-regular partitioning into triangles and quadrilaterals. In principle the
partitioning should be chosen as crude as the irregularity of the computation-
al domain admits. However, at curved boundaries we need many elements in
the coarse grid in order to properly resolve the curvature of the boundary.
Unfortunately, for the multigrid method to be effective, we need coarse grids
in the proper sense. This means that the element sizes are not allowed 1o vary
rapidly over the coarse grid. However, if we use an adaptive grid strategy
anyway, an appealing solution to this problem is to use a partitioning that not
exactly matches the actual computational domain. We may organize the grid
adaptation in such a way that during the solution procedure the boundary is
resolved up to a specified accuracy3.

The multigrid algorithms discussed in Section 5.2 assume that so-called ho-
mogeneous grid refinement is used. In that case we start with a coarse grid
G° which is a rather crude quasi-regular partitioning of the domain € into
triangles and/or quadrilaterals (cf. Chapter 4). In order to obtain finer grids
each coarse-grid element is partitioned into a number of congruent sub-ele-
ments, that is, a triangle into four congruent sub-triangles and a quadrilateral
into four congruent sub-quadrilateral s (cf. Figure 5-5). This process is

3. In this dissertation we have not yet fully investigated the algorithmic aspects of this method
and therefore leave it for future research.
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called basic refinement. The additional elements created upon refining an el-
ement are called the child elements and the element generating the childs is
called a parent. The subdivision of elements can (recursively) be repeated
and in fact generates a sequence of nested grids {G,}icm, with
M = {0, ...,K~ 1} and k the level of refinement. Note that this type of grid
refinement reduces the average element size by a factor of two for each addi-
tional level of refinement, hence the corresponding sequence of grid sizes is
givenby {h, = h02”"} ke M-

When refining a grid G, it is not necessary to refine each element belonging
to that grid, instead, we may use a suitable error criterium to decide whether
an element needs to be refined. This process is called adaptive refinement
and results in nested locally refined grids. The set of elements created by re-
finement of grid G, is grouped into a set of disjoint grid patches
{Pl, }ien,WithN = {0,...,L~1} and/the patch number. The union of
the patches Pi +1 to grid G, constitutes grid G, , ;. An example of the above
procedure is given in Figure 5-6. The type of grids obtained in this way are
usually referred to as composite grids. Note that in contrast to more conven-
tional strategies of grid refinement we do not demand inter element continu-
ity at the artificial boundary of a grid patch. Instead, each grid patch is
considered as an independent grid together with boundary conditions, on
which a solution must be calculated. This greatly simplifies the grid data
structures that are needed to represent the grid.

The entire grid is organized as a multiple-rooted tree data structure (forest)
called the grid tree, where each root represents a coarse-grid element. The
nodes of the tree represent the elements, and the edges represent the parent-

(a) (b)

Figure 5-5 Basic refinement of (a) triangles and (b) quadrilaterals. A triangle is refined into four
congruent child triangles by connecting the midpoints of the edges of the triangle. A
quadrilateral is refined into four child quadrilaterals by connecting the midpoints of
opposite edges. The numbering of the elements, edges and vertices is also shown.

4. Higher order partitioning is also conceivable, for instance, the sccond order regular parti-
tioning of a triangle generatcs nine congruent sub-triangles.
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child relationship. The leaves of the tree at a certain level represent the unre-
fined elements of that level. In the case of 1D grids the tree is a binary tree,
in 2D grids it is a quad tree, and in 3D grids it is an octal tree. Also at each
level k of the grid tree the topology of grid G, is stored, which means that
each node of the tree contains pointers to its nearest neighbors at the same
grid level. Essentially, this additional feature makes the tree a graph with the
original tree as a minimum spanning tree. Note that a grid scanning algo-
rithm can be based upon the stored topology (cf. Chapter 6).

In order to manage the grid patches, we introduce an additional tree data
structure which is called the patch tree. The root of the patch tree contains a
pointer to the seed element of the coarse grid. Each node at a certain level in
the patch tree contains a pointer to an element at the corresponding level in
the grid tree. This element acts as a seed element for that grid patch. Note
that because the topology of the grid is stored, it is sufficient to point to the
seed element of a patch, the remaining elements of that patch can be found
by scanning. The edges of the patch tree represent the parent-child relation-
ship between the patches, expressing the fact that the region occupied by a
child patch is embedded in the region occupied by its parent patch.

Bl Bl

Bl Il

H 0

Bl Bl

Figure 5-6

Two simple exampies of locally refined computational domains: (a) 1D configuration
with four levels, (b) 2D configuration with four levels.
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A more detailed description of the way the composite grids are organized
and how grids are scanned can be found in Chapter 6.

Obviously, if we use the above procedure the locally refined grids that are
obtained are discontinuous, in the sense that there are interfaces that have
two fine-grid cells at one side and a coarse-grid cell at the other side (cf. Fig-
ure 5-6). Such interfaces are called green interfaces. In the case a conform-
ing finite element method is used, as in [Bank 1990] and [McCormick 1989],
we face the problem of having discontinuous potentials at the green interfac-
es. To get around this problem in [Bank 1990] and [McCormick 1989] the con-
cept of temporary green interface elements was used (cf. Figure 5-7).
However, if the mixed finite element discretization is used the situation is
rather different. Basically, the benefit is that we do not need to use the tem-
porary green interface elements which greatly simplifies the data structures
and algorithms needed to manage the composite grid (cf. Chapter 6). How to
treat grid patches in the context of the mixed finite element discretization is
discussed in the following section.

5.3.1 Nested Grid Patches

In order to calculate the solution on a grid patch we proceed as follows. Ba-
sically, we want to treat the grid patch as an ordinary grid for which we apply
the mixed discretization method. However, we then face the problem of what
boundary conditions to specify at the interface between the grid patch and
the coarse-grid cells (cf. Figure 5-8). Following [Bank 1990], the coarse and
fine-grid edges that coincide with the interface between the grid patch and
the coarse-grid cells are called the “green” edges. Formally, at the green
coarse-grid edges we have available the values of the fluxes. We could there-
fore take the linearly interpolated values of the fluxes at the green coarse-
grid edges as Neumann boundary conditions at the green fine-grid edges.
However, if the grid patch does not touch a part of the Dirichlett boundary of
the computational domain, we obtain a singular Neumann problem for which

Figure 5-7 An example of the treatment of locally refined grids with square elements by means of
temporary triangular green interface elements.
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5.4

the solution is only determined up to an arbitrary constant. Clearly, this is not
acceptable, because there is no way of determining this constant.

Fortunately, the mixed-hybrid discretization method (cf. Section 4.3) offers a
very elegant solution to this problem. Since the Lagrange multipliers are a
good approximation to the potentials at the edges, we can use these Lagrange
multipliers as Dirichlett boundary conditions at the green fine-grid edges. To
be more precise, we take the value of a Lagrange multiplier at a coarse-grid
green edge as the Dirichlett boundary condition for the two green fine-grid
edges that coincide with the green coarse-grid edge. In principle, the coarse-
grid Lagrange multipliers can be calculated by means of equations (4-80a)-(3-
80c). However, this procedure is a little cumbersome, because we need to
keep track of the entire mixed-hybrid formulation. In the next section where
we discuss a relaxation method for the mixed equations, we also discuss a
procedure to calculate the Lagrange multipliers from the results of the relax-
ation. Note that the accuracy of the Lagrange multipliers at the edges is of
the same order O(h?) as the approximation to the fluxes, hence the use of the
Lagrange multipliers does not at all involve an accuracy penalty.

Relaxation

A basic component in the multi-level method is the relaxation of the system
of equations on a particular grid level (cf. Section 5.2.1). Basically, a relax-
ation method should act as an error smoother. It is known that all basic itera-
tive methods (Jacobi, Gauss-Seidel, etc.) can be used as an error smoother,
provided that proper under or over-relaxation is used [Wesseling 1992]. In
this case the relaxation method is based on the mixed formulation introduced
in the previous chapter. This method was proposed in a different form by
[Vanka 1986] to solve the Navier-Stokes equations on a rectangular staggered
grid by means of finite differencing. In [Schmidt 1988] a superbox relaxation
method was used to solve the mixed equations for reservoir simulation by
means of multigrid. However, in [Molenaar 1992} it was shown that the Van-

Figure 5-8

The boundary conditions at the “artificial” boundary of a grid patch.
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ka type of relaxation is more efficient. In this section we will investigate if
the Vanka relaxation can also be used to resolve the peculiarities of the ther-
moelelectric problem.

In Section 5.4.1 we discuss some notational concepts. In Section 5.4.2 - Sec-
tion 5.4.4, we consider the case of mixed finite elements on (mixed) triangu-
lar and quadrilateral grids in 2D, for which we will derive a very compact
formulation of the relaxation operator. Next, Section 5.4.5 deals with the
treatment of the boundary conditions in the relaxation operator. In order to
get some impression of the obtainable efficiency of the relaxation operator,
in Section 5.4.6 a local mode analysis for the case of square grid cells is pre-
sented. Whether these results also approximately hold for the more general
case of triangular and quadrilateral grids is difficult to answer a priori, be-
cause the usual tools for checking the convergence of a relaxation method do
not generalize to quasi unstructured grids. However, for grids with triangles
and quadrilaterals that are not too weirdly shaped, likely similar convergence
results can be expected. If some regions behave badly we may add extra re-
laxation to these (localized) regions. Next, Section 5.4.7 deals with a non-
linear relaxation method. Finally, in Section 5.4.8, we discuss the calculation
of the Lagrange multipliers.

5.4.1 Preliminaries

Essentially a Vanka relaxation is a block Gauss-Seidel iteration applied to
the system of equations represented in equation (4-10), and arises naturally
from the mixed formulation (cf. Chapter 4). Basically, it means that when an
element is visited the fluxes and potentials are relaxed simultaneously. In or-
der to do so we must express the values of the unknowns in an element in
terms of the (known) values of the nearest neighbors. In what follows we
shall use the following labeling (cf. Figure 5-9 and Figure 5-10).

The element containing the unknown degrees of freedom is denoted as S,.
The potential5 on this element is denoted as ®,. The edges of S, are then la-
beled as, E, ..., EONO with Ny the number of edges of Sg. The corresponding
fluxes are denoted as Uy, ..., Upy, and are positive in outward direction.
The nearest neighbor element bordering edge E, then is denoted as S, and
the potential on this element is denoted as ®,. The edges or faces of S, start-
ing with the one that borders S, are labeled sequentially starting from one,
thatis, E,,, ..., Ey,» where N, is the number of edges of S,. The correspond-
ing fluxes are denoted as U, ..., U KN, and are positive in outward direction.
At first sight this labeling may seem a little complex, but it has the advantage
of making the derived relations very compact and close to an actual imple-
mentation.

5. This may actually be a vector of potential-like degrees of freedom.

154 MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS




Relaxation - 5.4

5.4.2 Grids with Triangles

In Figure 5-9 we show the basic relaxation subdomain in the case of a 2D tri-
angular grid. The goal is to express the degrees of freedom of element S, in
terms of the known degrees of freedom of the nearest neighbor elements S,

the source terms, and if present the boundary conditions.

For this purpose we may regard the relaxation domain as a tiny computation-
al domain for which we assemble the system of equations according to the
principles discussed in Section 4.2.5. This gives us a system of equations in

the well known mixed form

A Bl |U G
. = (5-28
[BT c} M M ’
with
U= [Uy,...UzlT D= [® .., D, (5-29)
The matrix entries can be calculated according to
(4] = [ (agpwp) whde (Bl = ~[ (3 ) Edx
Q Q
(5-30)
[C] ki = —I Cékéldx
Q
Figure 5-9 Relaxation subdomain on a triangular grid.
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and the right hand sides as

[G1; = - [ gpwaneds  [F1, = —[fEkdx (5-31)
o, Q

where according to Figure 5-9 the indices (ij) can take the values {01, 02,
03,11, 12, 13, 21, 22, 23, 31, 32, 33} and the indices (k,!) can take the values
{0,1,2,3}.

Note 5-1: In calculating the above matrix entries one must take great care
with respect to orientation of the fluxes associated with the edges. In
principle the same sign conventions hold as discussed in Section 4.2.5. In
short, the direction of the flux depends on with which sign the element uses
the edge. If the sign is positive the flux is directed outwards and if the sign is
negative the flux is directed inwards. Since elements sharing an edge always
use that edge with opposite signs, the orientation of the fluxes is always
consistent.

Since only the degrees of freedom on element S, are assumed to be un-
known, we may remove the relations associated with the other degrees of
freedom from equation (5-28). Expanding the remaining equations then gives

3 [4ly,, U1+ (Bl ,[®],= [Gl,, i={1,23)
i k (5-32)
Z[B]I:O[U]J+z [C]O’k[d)]k:[plo

Fi %

where the index j runs over all edges with index {01, 02, 03, 11, 12, 13, 21,
22,23, 31, 32, 33} and the index & runs over all elements with index {0, 1, 2,
3} of the relaxation subdomain. Now we may use equations (5-30) and (5-31)
to simplify equation (5-32) by eliminating the terms that are always zero in
the summations, e.g. edge E,; does not couple with edge E,. This yields

‘ p [A]Oi,oj'{U]OjfZ (Al ;U ;+ Y '[B]Oi,k[(p]k: [Gly;
j=1,273 j=23 k=0,i (5_33)

[Bly;, Ul g+ [Cly 0 [®14= [F1,
j=123

where index i can take the values {1, 2 ,3}. Next, we transfer all known de-
‘ grees of freedom in the left hand side to the right hand side and replace the
‘ summation indices by the ones indicated by Figure 5-9. This yields
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N, N,

_2 [A) ;0 [Ulgj+ [Bl g o [PT = [GIOI—Z (Al gy, [U) = [Blg ; [®];

j=1 N, j=2 (5_34)
Y [Blg; 4 [Uly+ [Clg 0[], = [F,
j=1

where index i can take the values {1, ..., Np}.

Next, we calculate explicit formulas for the remaining matrix entries in the
above equation. Starting with the simplest one, we observe that the entries of
the matrix B are +1 or -1 depending on the sign of the edge to which the ma-
trix entry belongs. Referring to Figure 5-9 we, for example, have

[B] o0 = 1 [Blg,, =1 (5-35)

Evaluating the entry of the matrix C is trivial and follows from

[Clyq =~ f c(x)dx (5-36)
S

[

Likewise the entries of the vectors G and F are trivial and follow from

(Glo = -] gpWangds  [Flg = ~[fxydx (5-37)

EO:'

The entries of the matrix A are a little more difficult, because several ele-
ments may contribute to an entry. According to equation (5-34) we only need
the entries [A] L with indices (i, ) € {01,02,03} . We therefore write the
submatrix A of A as

NO
A= Ag+ 3 Ay (5-38a)
k=1
with
Ay = j(aupwg)%dx (i,j) € {01, 02,03} (5-38b)
SO
Ar = [ (aggwh) whex  (i.j) € {01,02,03} (5-38¢)
S,

k

Assuming Aup = aSaB, equation (5-38b) is recognized as equation (4-46) in
Section 4.2.5.1, which in this case can be written as
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(I + 3123 ~3LY) (I -1y-L3) (—15 —15+3LY)

(1 - 03 ~LY) B+l (-1 L3y | (5-39)
(-l I +3L) (—Ig+15-L) (Bl + 103 -3LY)
The matrices Agin equation (5-38¢) only contribute to the diagonal entries of

A; to be more precise A contributes only to [A], ,. The result can be writ-
ten as

[A1+Ay+43], ; = [12] (5 +385-3LY) j% (ij) € {1,2,3} (5-40)

where, [;; i 1s defined as the length of the corresponding edge Ej;, and the pa-

rameter L,C = Lioli3c0s (8,) . Furthermore, J, is the Jacobian of element §,

and &, is a suitable average of a on element S,. Note that the inclusion of the
l contribution of an antisymmetric part of the tensor ag to A is straightfor-
‘ ward (cf. Section 4.2.5.1).

In principle the preceding discussion provides sufficient information to solve
for the unknown degrees of freedom on element S,. However, it is cheaper to

| first eliminate the fluxes from equation (5-34). For this purpose we rewrite
equation (5-34) (again) as a matrix-vector relation

4B H = H (5-41)
B¢ @ |F
with A a 3 x 3 matrix given by equations (5-39) and , Ba3x 1 matrix with
entries equal to +1 or -1 depending on the sign of the edge use, C a 1 x 1 ma-

trix given by equation (5-36), F a 1 x 1 vector given by equation (5-37) and G
a 3 x 1 vector given by

N,

i

[G]O‘ [G] 0i 2 [A]OI ij Jij_ [B]Oi,i[(bli i= 1;213 (5'42)
j=2

The fluxes may then be eliminated in the usual manner resulting in an equa-
tion explicit in the unknown potential

B A B-C)o =B A'G-F (5-43)

The fluxes can be calculated afterwards according to

U=A"(G-Bb) (5-44)
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5.4.3 Grids with Quadrilaterals

In Figure 5-10 we show the basic relaxation subdomain in the case of a 2D
quadrilateral grid. For simplicity we have shown the case of square ele-
ments. Not surprisingly the procedure is entirely analogous to the one shown
in the preceding section. Carrying out this procedure again results in equa-
tion (5-34) which we subsequently may simplify for this specific case. The
difficulty in this case is that it is rather difficult to obtain explicit results for
the generic quadrilateral case. This is because of the non-linear character of
the affine transformation (cf. Appendix C) for the case of quadrilaterals.
However, we are able to obtain explicit results for the case of grids with
square, rectangular and parallelogramic elements.

Next, we calculate explicit formulas for the matrix entries in equation (5-34)
for the case of parallelograms. The results for squares and rectangles follow
as simplifications. We only explicitly discuss the coefficients that are signif-
icantly different from the triangular case. In the case of the entries of the ma-
trix B the situation is identical to the triangular case. Also the calculations of
the matrix C and the vectors G and F are identical, so equations (5-36) and (5-
37) may be used for this purpose. The difference is in the calculation of the
matrix A. According to equation (5-34) we only need the entries [A] i with
indices (i,j) € {01,02,03,04} . We therefore write the submatrix A of A
as

4 Uz
23
Uz
"124 22 =
Un
iU32 0, 4 Uo AUy
32 02 0, 14
U33 U03
433 @) <Hos 0t 134>
Uy Uis
34 63 04 & 12
Uaj Um{ 84 Ulz{
Uy
4 )
-y 42 44 F[.].(M
43
Uik

Figure 5-10

Relaxation subdomain on a “quadrilateral” grid.
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A=Ag+ Y A (5-458)
with '
Ao = [ (aggwp) whdx (i, j) € {01,02,03,04} (5-45b)
So
Ay = J'(aaniB) whdx  (i,j) € {01,02,03,04} (5-45¢)
5

Assuming a,g = ad,, equation (5-38b) is recognized as equation (4-60) in
Section 4.2.5.2, Wthh in this case can be written as

2 2 2 2

812, —6L% -4, 6L

i M -6L3 812 6LE -4i%
([

240y |42, 6L§ 812, —6L0

l (5-46)
6Ly —4l5 ~6LY 815,

| The matrices A « in equation (5-38¢) only contribute to the diagonal entries of
A; to be more precise Ay contributes only to [A], ,. The result can be writ-
ten as

[A1+A+ A3+ Ag) ;= (241 (812 )) (L)) e {1,2,3,4) (547)

where, [; 1s defined as the length of the corresponding edge Ej;, and the pa-
rameter L,c = Iy li4c0s (6)) . Furthermore, J, is the Jacobian of element S,
and @, is a suitable average of a on element S,. Just as in the triangular case
the inclusion of the contribution of an antisymmetric part of the tensor a,g
to A is straightforward (cf. Section 4.2.5.1). In a similar fashion we can elim-
inate the fluxes, the results are identical to the triangular case.

The results get particularly simple if square elements are used. In that case
we may set L, = 0 and /;; = h, and consequently the following entries of
the matrix A are zero

| (A} 01,02 = =[Alg,u= [A]oz o = (Al 0,0 =0
‘ [A1 45,02 = [4] 93,04 = [A) gy, 1 = [Al gy g3 = 0

(A] 01,12 = [A] 01,14 = = [4] 02,2~ = [A] 02,24 = =0
‘ [A] 03,32 = [A] 03,34 = = [A] 04,42 = = [A] 04,44 =0

(5-48)
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5.4.4

5.4.5

Mixed Grids

Using the previous results it is not difficult to set up the equations in the case
of a mixed grid, for instance a triangular cell with two triangular and one
quadrilateral nearest neighbors. However, instead of deriving results for all
particular cases we shall give a heuristic description of an algorithm that can
be used to build the system of equations that needs to be solved when an ele-
ment is visited. Since our grids are indeed of mixed type this procedure is
also followed in practical cases. Again the starting point is equation (5-34)
which actually provides sufficient algorithmic detail for all encountered cas-
es. The information provided by the visited element® and its nearest neigh-
bors, in combination with equation (5-34) is then used to calculate the entries
of the vector-matrix equations shown in equation (5-41). These results are
subsequently used to solve equation (5-43). Next the fluxes on the edges of
the element are calculated by means of equation (5-42).

Note 5-2: All results of the relaxation are stored locally, that is, the potential
is stored in the element itself and the fluxes are stored in the edges. In other
words we do not build a global solution vector. More on this topic will be
discussed in Chapter 6.

Boundary Conditions

Until now we have not discussed how to incorporate the Dirichlett and Neu-
mann boundary conditions into the relaxation scheme. We may distinguish
three basis cases: (2) none of the edges in the relaxation subdomain coincide
with a boundary, (b) one or more of the nearest neighbor elements have edg-
es that coincide with the boundary, and (c) the visited element has edges that
coincide with the boundary. Note that it is possible that these cases occur si-
multaneously. Since the derivation of equation (5-34) is completely general
we may also use it for these cases. However, there are a few details that need
to be taken care of.

case (a):

Since we do not have to take into account any boundary conditions we may
set vector [G],; to zero in equation (5-34).

case (b):

Let us first assume that an edge of a neighbor coincides with a Dirichlett
boundary. Again we may set vector [G] ), to zero, because it only relates to
element S, which is assumed not to touch any boundary. No further actions
need to be taken. Next we assume that an edge of a neighbor coincides with
a Neumann boundary. Again we set vector [G] . to zero. The flux associat-

6. Each element is an object that encapsulates sufficient information to be “self supporting”
(cf. Chapter 6).
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ed with the edge is now evaluated from the Dirichlett boundary condition in-
stead of being generated by the previous relaxation sweep. For instance, if
edge E,; coincides with the Neumann boundary we may set

(Ulgy =— [ auds ==2N Iy (5-49)
Eq

In principle however nothing changes because we always assume the correct
value of the flux to be stored in the edge, which in this case is the Dirichlett
boundary condition.

Note 5-3: Care must be taken with respect to the appropriate sign of [U] ;.
As in previous cases the sign is determined by the sign with which the
element uses the edge. If the sign is positive then the flux associated with
that edge is directed outwards and equation (5-49) has the appropriate sign.
However, in case the sign is negative the flux is directed inwards and as a
result equation (5-49) needs a minus sign. Note that by definition the flux g,
is always directed outwards.

case (c):

First we assume that an edge of the visited element coincides with a Di-
richlett boundary. In this case the vector [G] o; becomes important. The ef-
fect of the boundary condition can be accounted for by calculating the
appropriate entry of [G] . For instance, if edge Ey, coincides with the Di-
richlett boundary we may set '

\ =
E .

‘ [Gly = -—j ngglnads =-2 s—gg‘ (5-50)

‘ Ey J ds

Ey

Moreover, since the edge has no neighbor we may leave out the remaining

terms of the right hand side of equation (5-34) for this edge. In the case the
| edge coincides with a Neumann boundary we simply “remove” the corre-
sponding equation and transfer the known value of the flux at that edge to the
| right hand side. The flux can be evaluated according to equation (5-49).

Note 5-4: Also in this case special care needs to be taken with respect to the

‘ sign of [G],. If the sign of the edge is positive the equation (5-50) has a
proper sign. However, in case the edge is negative the sign of equation (5-50)
needs to be reversed.

5.4.6 Local Mode Analysis

The reduction of the non-smooth error components is basically a local task,
that is, it can be done in a certain neighborhood independently of other parts
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of the domain. This is the reason why it can be done by means of relaxation,
which is in fact is a local smoothing process. The efficiency of the relaxation
method can be approximated by means of local mode analysis which aims to
produce an estimate of the smoothing factor [ (cf. Section 5.2.1). Once the
smoothing factor is known the efficiency of the multigrid method can be es-
timated as discussed in Section 5.2.8. Possible causes that deteriorate the ef-
ficiency, such as boundary conditions and local singularities, can be taken
care of by adding extra local relaxation at these areas. As long as these areas
are on a lower dimensional manifold the extra work involved is insignificant.
In this section we will present a local mode analysis of the relaxation opera-
tor, derived in the previous sections. We only carry out the analysis for grids
with square elements, since the analysis is virtually impossible to carry out
for the irregular finite element grids we actually use. The analysis of the con-
vergence of the relaxation operator on these types of grids uses tools that go
beyond the present scope of this dissertation.

Discrete Fourier Transform

As usual in local mode analysis it is assumed that the problem is defined on
an unbounded rectangular domain with square grid cells and that the coeffi-
cients in the PDEs are frozen. Moreover, for non-linear problems the analy-
sis is carried out for the (Newton) linearized problem. Basically, the goal is
to relate the frequency components in the error before and after a relaxation
sweep. Our starting point is Figure 5-10 and equation (5-34). Next, we define
a rectangular grid with grid cells twice as fine as shown in Figure 5-10 and
expand the solution (u,, iy, 0) into a discrete Fourier series

N,~1N,-1
un,m) = Z 2 ah [€XP (} n) exp (]——m) (5-51a)
k=01=0 Ny
N,~1N,-1
uy(n, m) = 2 z ak‘ [EXP (1 n)cxp (}——m) (5-51b)
k=01i=0 Ny
N,-1N,-1
on,m) = kz IZ aj exp (1 A Zn)exp (J——m) (5-51¢)
01=0

Note 5-5: Since the Fourier transform is defined on a grid twice as fine as the
grid used for relaxation, all indices used in equation (5-34) can be related to
the Fourier grid by means of the following correspondence
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01—-i+1,j 02-oij+1 03-i-1,j 04-5i,j-1
135i+3,j 23 1i,j+3 335i-3,; 43-i,j-3
0-1i,j 1i+2,j 29i0,j+2
3i-2,j 4>i,j-2

(5-52)

Relaxation Operator

In order to proceed we shall make the following assumption with respect to
the order in which the grid cells are scanned. If we use the wavefront scan-
ning method, to be discussed in Chapter 6, the cells in the neighborhood of
the relaxation domain are scanned in the following order: 4 -3 -50-1 -
3. As a result the fluxes are updated in the order: (04), (03), (01,02,03,04),
(01) and (02) (cf. Figure 5-10). Hence, in a single relaxation sweep the fluxes
of a grid cell are effectively updated twice. When estimating the smoothing
factor we must take this behavior into account. Using these notions and the
results from Section 5.4.3 we may now rewrite the relaxation operator in
equation (5-41) to a form

Du = h(u) (5-53a)
with
- -
(g Uy i +3,)+ "1 +2.))
1, met1y Sy
(—g) iy ™G j+3) + ™71 j +2)
h= 1 . o (5-53b)
(—g) 234G =3, ) - 9"~ 2. ))
Lo o .
(—g) a4y, j = 3) = 67, j - 2)
L 0 i
and
ag+a, 2o |
3 0 % 0 1
0 3 0 z |
D=1 g ag+a, (5-53¢)
3 0 3 0 -1
&0 (‘20+?14
© % 3
|1 1 -1 -1 -y
and

164 MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS




Relaxation - 5.4

T
u o= @06+ 1) WG+ D) W= 1,0) WG, - 1) 676, )

(5-53d)

where it is understood that {u.(i, /), ﬁy(i, D, i ), uy (i, ), G, } refers to
the error in the solution instead of the actual solution, the superscript m re-
fers to the relaxation sweep count, that is, m-1 means a value from the previ-
ous sweep, and the overbar is used to indicate a quantity that has not yet been
seen by the current relaxation sweep (m).

Error Amplification Matrix

Substituting equations (5-51a)-(5-51¢) in equation (5-53a) and simplifying, re-
sults in a Fourier transformed relaxation operator

with

and

o0

Du=~h
[ 36,
4 1) om-1 48,
(—E)az;” e~ +a., e
a fe o
2 _ -
( F)a%;n le 2 +a2,;7l IGJ’
. 30,
a3 2 m 77 om 8,
(——6—)ak:;"e —c e
Py 30’
a, =5 _io
(~gakfe P —cple™
L 0 _
~ .ex
(2} iy
0 (e 2 0
N N ,ey .e)
agtay Jz ay. 3
e 0 —)e
( 3 ) (6)
ao+a3 12
(] 0
( 3
- -ey ~ ~ -e)
aO /7 a0+a4 !i
—)e 0
( 6) ( 3 )
9 0 )
8, 9, 8,
iz i =i
o 2 ) e 2

(5-54)

(5-54a)

5-54b
_ E59)

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS

165



Chapter 5: An Adaptive Multigrid Solution Method for the Thermoelectric Problem

and

T
W= Erararard (554

After elimination of {a", b} and solving for {a} T, a7, af'['} we ob-
tain a system of equations of the form

a7 ar!

apm = 50,0)- [ayr-! (5-55)
om o, m—1

o ¥ At

where S is defined as the error amplification matrix relating the Fourier error
components before and after a relaxation sweep. Following [Brandt
1984][Stiiben 1984] the smoothing factor is defined as

i = sup {p(S(©,,0))| (6,,8,) € O} (5-56)

with p(.) the spectral radius, and the set of “rough” frequencies 6 p defined
as (cf. Section 5.2.1)

2
T
6, =TNTy  Ty= (-mrl?  Ty= (5.7 | (5-57)
Next, we discuss some conclusions that can be drawn from the previous re-
sults.
Conclusions

In Table 5-8 the numerically evatuated behavior of the smoothing factor 1 is
shown for a number of values of the ratio ¢,/a. We observe that in the case
¢o = 0 the Vanka relaxation is a good smoother and for increasing values of
the source term the smoothing properties get better.

Table 5-8 Smoothing factor of the Vanka relaxation for a varying linear source term.
2o/ 0 0.1 1 10 100
i 0.58722 0.58137 0.53232 0.25586 0.09091

Whether the above results also approximately hold for the more general case

of triangular and quadrilateral grids is difficult to answer. However, for grids

with not too weirdly shaped elements, likely similar convergence results can

be expected. If some regions behave badly we may add extra relaxations to
‘ these (localized) regions.
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5.4.7

The above proposed relaxation method for the thermoelectric problem could
be improved somewhat by the introduction of under-relaxation for the flux
variables. In that case we make the following replacements in equation (5-
53a)

=l @r- (1-o)uth

"’fl 1 ! ’m (5-58)
- m 7

upj= o7 (= (- u)

We may then carry out a similar analysis obtaining the smoothing factor as a
function of the damping parameter o. For specific cases the optimum value
of o can be numerically evaluated, however, because of its limited general
scope we prefer not to use this technique.

Non-Linear Relaxation

In the case the set of equations to be solved is non-linear the relaxation meth-
od needs to be extended to the non-linear case. The principle for a non-linear
relaxation method is simple {Brandt 1984](pp. 36); each time an element is
visited a small system of non-linear equations of the form of equation (5-34)
needs to be solved. For this purpose the iterative techniques described in
Section 4.5 can be used. So, basically the relaxation equations are linearized
with respect to the unknown quantities on the element, in our case the four
fluxes at the edges and the potential at the barycenter, and subsequently
solved by iteration. Note that the FAS multigrid rate of convergence is not
constrained by the (global) convergence of the iteration method. It is still
mainly determined by the interior smoothing rate. The effectivity of the non-
linear relaxation method to reduce the high frequency error components can
be studied by means of a local mode analysis of the linearized relaxation
equations [Brandt 1984](pp. 84).

Note that the local linearization employed in the relaxation method has noth-
ing to do with the global linearization usually used to deal with non-linear
problems. It is by virtue of the multigrid method that such a complicated glo-
bal linearization of the problem is not necessary. As long as the smoothing
rate of the non-linear relaxation method is sufficient, non-linear problems are
solved as efficient as the corresponding linear problem.

For problems with weakly non-linear coefficients often the successive sub-
stitution strategy (principal linearization) gives good results. However, for
the semiconductor problem the exponential non-linearity of the coefficients
(cf. Chapter 3) is expected to pose severe problems [Brandt 1984](pp. 36).
For the relaxation of the thermoelectric equations we use a more sophisticat-
ed iteration method which is a combination of the Newton and the Gauss-
Seidel method. Basically, we first perform one Newton step on the non-lin-
ear relaxation equations arising from the Poisson equation to update the elec-
trostatic potential in the barycenter and the dielectric flux densities at the
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edges of the visited element. Subsequently, the result is used to initialize a
Newton step on each of the non-linear relaxation equations arising from the
carrier continuity equations to update the Fermi-potentials at the barycenter
and the carrier fluxes at the edges. This result is on its turn used to initialize a
Newton step on the non-linear relaxation equations arising from the heat bal-
ance equation to update the temperature at the barycenter and the heat fluxes
at the edges. This process is repeated until a certain (local) accuracy is
achieved, after which the next element is visited.

5.4.8 Calculation of the Lagrange Multipliers

In this section we derive a formula that can be used to calculate the Lagrange
multiplier A, on an edge E;. As discussed in Section 5.3.1, the purpose of the
Lagrange multipliers is to serve as fine-grid Dirichlett boundary conditions
when prolongating the solution to a fine-grid patch. In order to make the cal-
culations strictly local, we express the Lagrange multiplier on an edge Ej; in
terms of the fluxes and potentials on the elements S, and S, neighboring that
edge (cf. Figure 5-11).

The starting point is the mixed hybrid formulation discussed in Section 4.3.
We proceed in a similar way as with the derivation of the relaxation operator,
that is, we regard the relaxation domain as a tiny computational domain S for
which we apply the mixed-hybrid discretization method. On the edges of the

Figure 5-11  Domain for calculating the Lagrange multiplier on an internal edge. The numbers
located on the edges denote the identification number of the edge, whereas the
numbers shown off the edge denote the identification humbers of the element vectorial
basis functions.
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domain S, the vector of Lagrange multipliers A is formally given by (cf.
equation (4-79))

DA = G, -BO-AU (5-59)
with

® = [0 0, 0, 0,]
A= Thops Mg Aggs Ay Ays Ay Ay A Ags (5-60)
U= [Uy, Upp, Ups, Uyyy Uy, Uys, Uy, Uy, Ups, Usy, Usy, Ussl

and D, B, A and G, given by equations (4-77a)-(4-77¢).

If we assume that the solution vectors U and & on domain § are known vec-
tors obtained from the previous relaxation sweep, we can solve (5-59) for the
vector of Lagrange multipliers A. However, we observe that the matrix D is
not a square matrix, hence its inverse cannot be calculated. In order to get
around this problem, equation (5-59) is multiplied by the transpose of D. Now
the matrix D'D is square and invertible, hence

A= (D'D)”'D"[G, - B - ADU] (5-61)

By expanding the above equation we can evaluate the Lagrange multipliers
at the internal edges of the relaxation domain S

N, N,

Mok =% (O3 [AlgoilUlgi+ [®], =Y (Al (U),;| (562)
i=1 i=1

where the index k can take the values {1, ... ,Ny} and it is understood that the
value of each flux is taken according to the sign with which the element uses
the edge on which the flux is defined. For example, if element S, uses edge
Ey, with a positive sign and element S, uses edge E,; with a negative sign,
then

Uy, = —U,; = value of flux stored in edge (5-63)

It is not difficult to show that equation (5-62) is also valid for a quadrilateral
type of relaxation domain. Moreover, it can also be used on relaxation do-
mains consisting of triangles and quadrilaterals.

Note 5-6: In the special case where the edge on which we wish to evaluate
the Lagrange parameter is a Dirichlett edge, we can simply use the value of
the Dirichlett boundary condition at that edge, and in the case the edge is a
Neumann edge we can use
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Ny
Aoy = [¢10—Z [A]Ok,Oi[U] 0i (5-64)

i=1

5.5 Grid Transfer Operators

As discussed in Section 5.2.6 we need operators to transfer grid functions
between the coarse and the fine grids, that is, interpolation to transfer the
correction from the coarse to the fine grid, restriction to transfer the residuals
and solutions from a fine to a coarse grid, and prolongation to transfer the so-
lution from a coarse to a fine grid. In this section we will deal with these op-
erators in the context of the mixed formulation. In doing so there are a few
important considerations that need to be taken into account: (a) the intergrid
operators should be such that the accuracy conditions are satisfied (cf. Sec-
tion 5.2.6.4), and (b) the flux conserving properties of the discretization
should not be spoiled by the intergrid operators. In the remainder of this sec-
tion we will first discuss the interpolation operators for triangles and paral-
lelograms. Next, we will discuss the restriction operators for the above
mentioned cases. Finally, we discuss the prolongation operators.

5.5.1 Preliminaries

In principle we are free to choose the intergrid operators as long as they are
accurate enough, however, we notice that the fine grid is obtained from the
coarse grid by element-wise refinement as shown in Figure 5-5. This way
nested grids are obtained and as a result the Raviart-Thomas approximation
spaces (cf. Section 4.2.4.1) for the fine and coarse grid are also nested, i.e.
v(Q)  VH(Q) and W(Q) « WHQ). This means that we may use the inter-
grid operators that are suggested by the discretization method. For the Ravi-
art-Thomas elements of lowest order this comes down to piecewise constant
interpolation for the potential and piecewise linear interpolation for the flux-
es. The restriction operators can be obtained by transposing the interpolation
operators, because the test and trial functions in the mixed formulation are
identical (Galerkin method).

| Since the mixed formulation essentially consists of two coupled first order
PDE:s the accuracy conditions (cf. Section 5.2.6.4) can be formulated as

| mi+mg>1 mi=2,mp=

m?+mz>l m

(5-65)
Hence, in principle the natural interpolation and restriction operators satisfy
the accuracy conditions. Moreover, for a proper full multigrid algorithm we
at least need
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)

3
v

A~ IR ]

m.=2
(5-66)
mam. =2

© e
v
S e ow

Hence, for the prolongation of the fluxes we can use the natural interpolation
operator, however, for the prolongation of the potentials we need to construct
a higher order operator. For this purpose we use the post processing tech-
nique discussed in Section 4.3.4.

Interpolation Operators

We now discuss the natural interpolation operators suggested by the Raviart-
Thomas approximation spaces in more detail. We use these operators to
transfer the error on the coarse grid to the fine grid (cf. equation (5-15)). Since
the potentials are approximated by piecewise constant functions and the
fluxes by piecewise linear functions we may use piecewise constant interpo-
lation for the potentials and piecewise linear interpolation for the fluxes.
First, we discuss interpolation on triangular elements and, second, the inter-
polation on rectangular elements.

Interpolation on Triangular Elements

It suffices to consider a coarse-grid reference triangle refined into four con-
gruent fine-grid triangles. Figure 5-12 shows such a refinement together with
the local numbering of the elements, edges, fluxes and potentials. We first

Yy
3
2
U
U32 31
-y
® U
U |3 Us; 4
- - 3
1 3
U @ Un
1 b Uy,
ORE ®@
2 R 3
1 ; ; 2 X
Uy, Yy, Uy

Figure 5-12

Interpolation on a triangle, coarse nodal points are indicated with a dot and fine nodal
points are indicated with a cross. Also the local node numbering of the coarse and fine-
grid triangles are shown.
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discuss the interpolation operator for the flux part of the error, and, second,
the interpolation operator for the potential part of the error.

To design a proper interpolation operator I',} for the flux part of the error we
note that for the lowest-order Raviart-Thomas approximation (cf. Section
4.2.4.1) the flux utl (x, y) on a coarse-grid reference triangle can be written as
a linear combination of its three vectorial basis functions

uf(x,y) = UfoJ+U§E‘J +U§’[x“ } (5-67)
- y

where the Ui’ represent the net fluxes leaving the edges of the coarse triangle
on which they are defined. The interpolated value of the flux at edge E;; of a
fine-grid triangle can be calculated by projecting the coarse-grid flux on to
the normal vector n¥ of the edge E ij followed by integration along the edge,
hence

Ug. = J(uHmU)ds (5-68)
E;

where i indicates the child element and j indicates the edge. Evaluating the
above integral for all the child edges yields the following relation between
the coarse-grid and fine-grid fluxes

-
Ull
AN 1
12 0 0 1/2
Ut 172 0 0
-1/4 1/4 -1/4
h H
U l1i/2 0 ol U
vhl=10 12 o |-|U (5-69)
h -1/74-1/4 1/4 i
Uff 0 172 0 Us
Uy 0 0 1,2
Ut 174 -1/4-1/4
32 - -
h
Uy

The element-wise interpolation operator for the flux part of the correction
follows immediately from equation (5-69) and is given by

172
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-

0 0 1/2
172 0 0
-1/4 1/4 -1/4
1/2 0 1]
== 9 12 o (5-70)
-1/4-1/4 1/4
0 1/72 0
0 0 1/2
| 1/4 -1/4-1/4

Note 5-7: The above definition of the interpolation operator is not only valid
for the reference triangle but also for general triangles.

Note 5-8: The above definition of the interpolation operator clearly preserves
the current conservation property when going from the coarse grid to the fine
grid, because the total flux through the fine-grid edges that have a coarse-
grid edge in common equals the total flux through the coarse-grid edge.

To find the interpolation operator for the potential part of the error we note
that the Raviart-Thomas approximation to the potential ®f(x,y) on the
coarse-grid triangle is piecewise constant. This suggests the following rela-
tion between the coarse-grid and fine-grid potentials

h
q)l
1
o | i
el e
4ol
(D4

Hence, the element-wise interpolation operator I;', for the potential part of
the error is given by

=nt= (5-72)

[ VO e

Interpolation on Square Elements

It suffices to consider a square coarse-grid reference element refined into
four congruent fine-grid squares. Figure 5-13 shows such a refinement to-
gether with the local numbering of the elements, edges, fluxes and potentials.
The lowest order Raviart-Thomas approximation of the flux on the coarse-
grid element is given by
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Jotf o]

where the Uf , (k=1,2,3) represent the net fluxes leaving the edges of the
coarse-grid element. In a similar fashion as in the triangular case we obtain

0

ufl(,y) = UY [v (573)

for the relation between the coarse-grid and fine-grid fluxes

Ui

Ul

" 0 0 0 1/2]

B li2 0 0 0

Uh, 0 1/4 0 -1/4

gl (172 0 0 0 [m
: 0 12 0 0 .
Up| _ |-174 0 174 0 | |U2 (5-78)
Ut 0 1/2 0 0| |yt
o 0 0 172 01,
32 0 -1/4 0 1/4| [Y4
Uty 0 0 1/2 0

” 0 0 0 1/2

“a 1174 0 -1/4 0

U

Uty

Hence, the element-wise interpolation operator for the flux part of the error
];', is given by

Us
¢ Uy 4 U
41 32
A A
2 1]3 2
U42 @ Uﬁ @ »U:;]
U.
Us_ s ala A3 Uy
1 4[4 3l
YU,
Uy U U
@ r_» 13 Q b 22
2 3l1 2
Y Y x
Un v Un
U,
Figure 513  interpolation on square elements, coarse nodal points are indicated with a dot and fine
nodal points are indicated with a cross.
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5.5.3

0 0 0 1/2
172 0 0 0
0 1/4 0 -1/4
172 0 0 0
0 1/2 0 0
h _ k+1 _ |-1/4 0 1/4
IH Ik = 0 2 0 (5-75)

0 -1/4 0 1/4
0 0 172
0 0 0 1/2

(174 0 -1/4 0 |

0
0
0 0 172 0
/
0

Note 5-9: The above definition of the interpolation operator is also valid for
rectangles and parallelograms provided the basic refinement as shown in
Figure 5-5 is used.

Note 5-10: The above definition of the interpolation operator also preserves
the current conservation property.

For the interpolation of the potentials the result is the same as in the triangu-
lar case, that is, we can use equations (5-71) and (5-72).

Restriction Operators

In order to transfer fine-grid residuals, right-hand sides and solutions to the
coarse grid (cf. equation (5-13)), restriction operators need to be defined. The
natural restriction operators that come with the mixed discretization are in
principle, apart from a constant scaling factor, given by the transpose of the
interpolation operators. This property follows from the Galerkin type weak
formulation (cf. Section 4.2.2) [Wesseling 1992]. However, some care must
be taken because we cannot simply take the transpose of the local interpola-
tion operators as given in the previous section. For a proper definition of the
restriction operators we also must take into account the contributions of the
neighboring elements. For this purpose it suffices to consider the relaxation
subdomains as shown in Figure 5-9 and Figure 5-10. First, we discuss the re-
striction on triangular elements and, second, the restriction on square ele-
ments.

Restriction on Triangular Elements

Before the restriction operators Rif and 1321 can be defined, we need a con-
vention for the numbering of the coarse-grid and fine-grid elements, edges
and vertices. For this purpose we consider the relaxation subdomain in Fig-
ure 5-9, for which we assume that each element is refined as shown in Figure
5-12. We then proceed by constructing the interpolation operator for the en-
tire relaxation subdomain. From the transpose of this interpolation operator
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we can extract the natural restriction operator that comes with the mixed dis-
cretization. Using a scaling factor of 2 to make the fine-grid and coarse-grid
approximation to the flux consistent the natural restriction operator reads

H _ g0, 0 1 rrh 0, b0 k0 k1 gl gk
Un=Ujy +Usy —5 Uiy + Uy — Uy — Uy — Uy + Uz ]

H. 20, b0 om0, 40 0 ;ih2  prh2, prh 2

R LUl = UB + U ‘Q[Um + U - UB - Ul? - U2 + US?] (5-78)
H 2O, ;ph0 L orh0, b0 ;b0 ph3  ph3 L gk 3
Up=Us, +U7; ‘j[Uls +Up - Uz — Uy - Uy + Uy}

where the superscripts and subscripts must be interpreted as follows. Coarse-
grid quantities are indicated by a superscript H. Similarly, fine-grid quanti-
ties are indicated by a superscript 4. For the subscripts the first digit indicates
the element number and the second digit indicates the edge number. The ad-
ditional digit in the superscript for the fine-grid quantities indicates the par-
ent coarse-grid element.

We use the above defined restriction operator to transfer the residuals associ-
ated with the fluxes from the fine grid to the coarse grid. However, if the
same restriction operator is used to transfer the flux from the fine grid to the
coarse grid, it is important to notice that the restriction operator as proposed
above is not current preserving in the sense that the net flux through a
coarse-grid edge equals the net flux through its fine-grid child edges. This is
only the case if the second part of each of the right-hand sides of equation (5
76) vanishes, which holds for sufficiently smooth fluxes. For the choice of
the restriction operator Rf,’ for the vector part of the solution %", we use the
following heuristic argument. Recapitulating the construction of the right-
hand side in the coarse-grid correction (cf. equation (5-13))

Lty = LYRYEEY + RUP (5-77)

we observe that at convergence the residue is approximately zero and we
must have

uf! = R (5-78)

So, if we define izi{ by
=t
RY:{UB =ukO 4+ Ul (5-79)

yh0
| Uoz—U32 +U
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then at convergence the net flux through a coarse-grid edge equals the net
flux through its corresponding fine-grid child edges. This choice of R,, also
ensures current conservation at the green edges (cf. Section 5.3.1) of a grid
patch by ensuring that at a coarse grid edge that has two green child edges,
the net flux through the coarse-grid edge equals the net flux through its green
child edges.

The derivation of the restriction operators for the potential and the corre-
sponding residue is trivial and follows by transposing equation (5-71). Refer-
ring to Figure 5-12 the restriction operator is given by

0]

. @
RE Ry ot = %[1 111]- (5-80)

Al
1
h
2
Al
(D3
h
(D4

where the factor 1/4 is a suitable scaling factor. Note that we use the above
restriction for both the potentials and the corresponding residuals.

Restriction on Square Elements

As in the triangular case we need a convention for the numbering of the
coarse-grid and fine-grid elements, edges and vertices. For this purpose we
consider the relaxation subdomain in Figure 5-10, for which we assume that
each element is refined as shown in Figure 5-13. In a similar fashion as in the
triangular case the natural restriction operator RZ’ that comes with the mixed
discretization reads

= UL+ UL = 3U+ 3U0 Ul U]
ich UL+ U~ 5UE"+ 5 UL~ 5UL + UK (5-81)

" vt= v Uh°- U+ %Uﬁa‘)- SU + 5 V%

L

where the notation is similar to the one used in the triangular case. The above
restriction operator is used to transfer the vector residuals from the fine grid
to the coarse grid.

We use the above restriction operator to transfer the residue associated with
the flux to the coarse grid. To define the restriction operator for the vector
part of the solution we may proceed in a similar fashion as in the triangular
case. Skipping the details, the restriction operator R}, for the flux is defined
by
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H _ k0, 77,0
Ugp = Uy + Uy
w, | Un = Uz + U5
Ri:y n hO  y1h0 (>82)
Up=Usp +Uy

H _ b0, 77h0
Uy =Ugy +Up

The restriction for the potential and the corresponding residue is the same as
in the triangular case, hence, we can use equation (5-80).

5.5.4 Prolongation Operators

Taking into account the accuracy conditions discussed in Section 5.5.1, we
observe that the order of the natural interpolation operation for the potential
is too low. Hence, in contrast to the natural interpolation operator for the
flux, the natural interpolation operator for the potential cannot be used as a
prolongation operator. So, for the prolongation of the fluxes, we simply use
the natural interpolation operator that comes with the mixed discretization.
However, for the prolongation of the potentials we propose the following
construction.

An effective way to increase the order of the interpolation for the potential is
to use the post-processing technique introduced in Section 4.3.4. For the tri-
angular case, we calculate the Lagrange multipliers defined on the edges of
the triangle (cf. Section 5.4.8) and subsequently use these to construct a
piecewise linear approximation of the potential on the element (cf. Section
4.3.4). The potentials in the fine-grid elements can then be obtained by eval-
uating the piecewise linear potential at the barycenter of each of the child el-
ements. Using the results from Section 4.3.4 we define the prolongation
operator for the potential on triangular elements as

1
h_l £
D)= 3 [27J{+zxg— 13’]

Ph: | (5-83)
@F = 5 (20 - A7+ 21]]

1
ho_ H yH_ 2 H
<1>4-§[kx +7Lz+l3]

|

‘ For the quadrilateral case a bilinear approximation of the flux is constructed

by using the Lagrange multipliers at the edges. The potentials in the fine-grid
elements can again be obtained by evaluating the piecewise bilinear poten-
tial at the barycenter of each of the child elements. Using the results from

Section 4.3.4 we define the prolongation operator for the potential on quadri-

| lateral elements as
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1
o= Al

Dk = %[}»H+ Al
P} | (5-84)
@} = 5 [AH 428

=5 [xfj+x§']

This concludes the section on the intergrid operators. Basically, we now have
available a consistent and accurate set of intergrid operators on grids with tri-
angles and parallelograms.

5.5.5 Damping of the Restriction Operator

According to the Multigrid Guide [Brandt 1984] in some special situations
the dominant solution-dependent term in the coefficients of the PDE may
have the form g(u), where g is a sensitive function, that is, large variations in
g are caused by more-or-less normal changes in 4 over a meshsize. In such
cases the restriction operator should have the special form

= g 'R, HotuM) (5-85)

where Rf is the restriction operator. The above situation obviously applies
to the thermoelectric problem because the coefficients depend on the carrier
densities n® and n", which respectively are exponentially varying functions
of the Fermi-levels Ef and E}l

Effectively, equation (5-85) proposes to apply the restriction operator to the
carrier densities instead of the Fermi-levels. The Fermi-levels on the coarse
grid are then reconstructed by applying the inverse transform. However, for
some yet unknown reason this method does not seem to work properly for
the thermoelectric problem. A better method aiming at a damping of the re-
stricted residuals is described in [Molenaar 1992).

5.6 Adaptive Multigrid

There are several issues related to adaptive multigrid and in the literature
there seems to be some diversification with respect to this subject. In general
an adaptive multigrid algorithm may support a combination of (a) adaptive
grids, (b) adaptive cycling, (c) adaptive relaxation, and (d) adaptive order of
discretization. The grid adaptivity (a) refers to the local refinement of a grid
by using a suitable error criterium. The adaptive cycling (b) feature refers to
the capability of the algorithm to adapt its cycling parameters to the specifics
of the problem to be solved. The adaptive relaxation (c) feature refers to the
capability of the algorithm to (1) decide if the convergence rate of the relax-
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ation slows down and (2) to decide if certain areas of the domain need addi-
tional relaxation. Finally, the adaptive order of discretization (d) refers to the
capability of the algorithm to choose higher order discretizations in regions
where the solution is sufficiently smooth. In this section we are only con-
cerned with the subject of adaptive grids.

Note that in the case of singular perturbation problems, such as the thermo-
electric problem, the minimum amount of adaptivity that should be support-
ed, in order to achieve the optimal convergence bounds, is grid adaptivity
[Brandt 1979] .. The general guiding factor in adaptivity is that we must ques-
tion how much effort it takes to achieve a certain local accuracy. In other
words, in the case the local problem is already accurate the algorithm should
not spend a fot of effort to make it even more accurate, instead it should pay
attention to regions which are not yet accurate enough. The difficulty is in
finding suitable criteria that provide estimates for the already attained local
accuracy.

Although the adaptive cycling strategy potentially makes the method very
robust, it in general is a nuisance when checking the performance of the indi-
vidual multigrid components. Only after the various multigrid components
are tested for their performance we can think of adaptive cycling. We, there-
fore, consider fixed cycling strategies and leave the adaptive cycling strate-
gies for future investigations.

Moreover, we only deal with a special kind of adaptive grids which are
called composite grids (cf. Section 5.3). In contrast to the treatment of com-
posite grids in [McCormick 1989], where rectangular domains regularly parti-
tioned into square elements are considered, we allow any shape of domain as
long as it can be represented by a quasi-regular partitioning into triangles
and quadrilaterals (cf. Section 5.3).

The structure of this section is as follows. In Section 5.6.1, we discuss the
extension of the basic full multigrid algorithm (cf. Table 5-6) such that it
supports composite grids.

5.6.1 Adaptive Local Grid Refinement

In this section we discuss an extension to the basic multigrid algorithm such
that it supports composite grids. From the algorithmic perspective the basic
question to be answered is “when and where” to refine the grid at a certain
grid level k. The “when” refers to the actual place in the multigrid cycle
where the refinement should take place. The “where” refers to a suitable lo-
cal error criterium that we can use to decide whether an element needs to be
refined or not. The starting point of our discussion is the full multigrid algo-
rithm presented in Table 5-6. In Section 5.6.1.1, we discuss how to extend
this algorithm to support a given composite grid. Next, in Section 5.6.1.2, an
extension to the algorithm is discussed such that it also creates the composite
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5.6.1.1

grid during execution. In Section 5.6.1.3, the error estimators in the context
of the mixed discretization are derived. Finally, in Section 5.6.1.4, some con-
cluding remarks are given.

Fixed Composite Grids

In this section we extend the algorithm presented in Table 5-6 such that it
calculates a solution on a given composite grid. Such a composite grid could
be obtained by a careful analysis of the truncation error of the expected sin-
gularities (e.g. right-hand side singularities, structural singularities and
boundary layers) in the model equations [Bai 1987]. The extension to self-ad-
aptation is discussed in the following section. If we think about this problem
various possible ways, each with its specific advantages and disadvantages,
can be devised. In fact, we enter a rather difficult research field in computa-
tional mathematics where many basic issues have not been fully explored.
This fact makes it very difficult to select the most appropriate algorithm.
However, since it is not our intention to provide an optimal algorithm, we
follow an approach that is led by heuristics rather than mathematical rigor.

We first define the basic notations that we need. Let the sequence of nested
grids be given by {G,} e m, with M = {0,...,K -1} and £ the level of
refinement, Let the set of disjoint grid patches of grid level k be given by
{P{}1cn,With N = {0, ...,L~1} and ! the patch number. Obviously, the
union of the patches P, , to grid G, constitutes grid G, |, that is

L-1
Grey = uOPi+1 (5-86)
I=

Moreover, the grid ch obtained by restriction of grid G, to the region cov-
ered by a patch P}, | of grid G, , | is defined as

Gy = G,NP,, (5-87)

Obviously, grid ch contains those grid cells of G, that lie in the region cov-
ered by patch P! +1- Further, the part of grid G, not covered by grid patches
from the set {P;, ;};c v is denoted as

Gi = G\ (G,N Gy, y) (5-88)

The most obvious and perhaps the “safest” way of implementing the treat-
ment of the grid patches is to deal with all patches of a given grid level on an
equal footing7. This means that the prolongation, restriction and interpola-
tion operators effectively operate on all patches of a grid level simultaneous-
ly. The modification of the algorithm in Table 5-6 for the above case is

7. This method is used by most other approaches dealing with grid adaptivity.
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straightforward; all it needs is a redefinition on the grid transfer operators:
prolongation, restriction and interpolation.

Prolongation

The prolongation operator Pf“ must be redefined such that it prolongates

the converged solution at the subgrids G} of grid G, to each of the grid
patches P;‘ +1» hence

~k
W =P wel (5-89)

Note that the prolongation operator also should provide the boundary condi-
tions on the boundary of a grid patch. In Section 5.3.1 we discussed the use
of the prolongated coarse-grid Lagrange multipliers as Dirichlett boundary
conditions at those parts of the fine-grid patch boundaries which do not coin-
cide with the true boundary of the computational domain. For those parts of
the patch boundary the prolongation operator for the Lagrange multipliers is
defined by a straightforward piecewise constant interpolation, similar to the
prolongation operator for the potentials (cf. Section 5.5.4). At the part of the
patch boundary which coincides with the true boundary of the computational
physical domain we simply prolongate the values of the specified coarse-
grid boundary conditions. For the Dirichlett as well as the Neumann bound-
aries we use piecewise constant interpolationg.

The implementation is straightforward and is achieved by looping over the
elements of each of the fine-grid patches and carrying out the usual prolon-
gation (cf. Section 5.5.4) for each element. Note that the coarse-grid data
needed for the prolongation is available through a pointer that points to the
parent element. Moreover, for each fine-grid element that has green edges
we also calculate the Lagrange parameter on the corresponding coarse-grid
edge and subsequently prolongate it to the green edges of the fine-grid ele-
ment. In a similar fashion, when the fine-grid element has (true) boundary
edges, the appropriate boundary conditions are prolongated.

Restriction

The restriction operators kin and Ri +1 must be redefined such that they

restrict the solution and the residue on each of the fine grid patches Gi s 10

the corresponding Gi of the coarse grid G,. Moreover, the coarse grid prob-

lem needs to be redefined because no restrictions are available at the coarse-

grid region G. Therefore at the coarse-grid region G, the role of the coarse-

grid problem must be changed to the calculation of a solution instead of a
| correction. We now redefine the coarse-grid problem as

‘ 8. For the prolongation of the Neumann boundary conditions we must keep a scaling factor of
1/2 in mind in order to maintain current conservation. This fact is directly related to the fact
that a flux degree of freedom at an edge represcnts the net current through that edge.
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fk on Ek

L = kpk  k+1 ko k+1 !
LR " )+R, 1 on each G,

(5-90)

Clearly, on the parts Gi of G, we have the familiar correction scheme and
on G; we solve the plain coarse grid problem.

The implementation is straightforward and is achieved by looping over the
elements of each of the fine-grid patches and carrying out the usual restric-
tions (cf. Section 5.5.3). We can then relax on the coarse grid in the usual
manner by applying equation (5-34). However, in equation (5-34) the term
corresponding to the right-hand side of the coarse-grid problem should be
chosen in accordance with equation (5-90), that is, if the element which is
currently relaxed does not have childs we choose the upper term, and if the
element does have childs we choose the lower term of the right-hand side of
equation (5-90).

Coarse Grid Correction

The interpolation operator in the coarse-grid correction step must be re-
defined such that it provides an improved initial guess to the solution on a
fine-grid patch. Again the implementation is straightforward; we simply loop
over the elements of each of the fine-grid patches and carry out the coarse-
grid correction by means of usual interpolation operators (cf. Section 5.5.2).

k+1
[k

Note 5-11: The above schemes can operate very efficiently by virtue of the
advanced data structures we use to represent the grid levels and grid patches
(cf. Chapter 6).

Adaptive Composite Grids

In this section we extend the algorithm discussed in the previous section
such that it also creates the composite grid during execution. For many prac-
tical cases this is very convenient, because the order and location of the sin-
gularities are not known in advance, or because their behavior is of dynamic
nature. For these cases we need to extract criteria from the emerging solution
in order to decide when and where to create new grid patches. To be more
specific, we need some method that estimates the local error on an element.

In sophisticated traditional adaptive finite element methods the local error is
based on a residual analysis, that is, for a calculated discrete solution we
seek a posteriori global and local error bounds for the solution in terms of
computable element residuals. The grid refinement is then organized such
that the local error on each element is smaller than some prescribed tolerance
regardless of the amount of work needed to achieve it [Carey 1984]. It is also
possible to relate the error and the work needed to achieve it, and formulate
the refinement scheme such that it minimizes the error for a given amount of
expendable work [Bai 1987].
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An important advantage of the multigrid method is that it enhances the
choice of conventional error estimators; in addition to using the data on the
present level of refinement to solve the local error approximation equations,
the approximations on the various refinement levels can be used to quantify
the known form of the error. One could say that this method of local error es-
timation is more or less natural to the multigrid method. For example, if the
order of consistency (truncation error) of the discretization is of the form
¢h?, with ¢ an unknown constant, then approximations with two different
mesh sizes can be used to determine the constant ¢ and, hence, the error on
the finest level. In the case that the truncation error is of the general form
ch? with ¢ and p unknown, three levels can be used for the determination of
c and p. As pointed out in [McCormick 1989), care must be taken with this ap-
proach since in practice the error may not behave according to the form ch?,
even when the convergence properties of the discretization indicate that the
truncation error is bounded by such a form. This is especially true on very
coarse grids. In [McCormick 1989] it is proposed to use the multi-level error
estimation not as a replacement but rather as a supplement to the convention-
al local error estimators.

However, in practice we have obtained satisfactory results with the multi-
level error estimator, and we therefore confine the discussion to this type of
error estimation. An investigation towards the possible benefits of the use of
local error estimators is left for future research.

The multi-level error estimator is based on the dual representation of the full
approximation scheme (FAS) (cf. Section 5.2.3). Let us first recapitulate the
right-hand side used in the FAS scheme

L) = LR D+ RE, [ - L Tt ) (5-91)

The dual representation of the FAS scheme can now be obtained by rewriting
the above relation as

LAty = RE, STtk (5-92)

with ‘tk +1 defined by

k+] - Lk(Rk k+1) Rk+1Lk+l(uk+l) (5_93)

In order to interpret the quantity ‘rk 1 we proceed as follows. First, we ob-
serve that equation (5-92) without the ‘t term is the original coarse-grid
eq‘uatlcln 1Second we observe that the solutlon u¥ is intended to approximate
Ris lum_,w , and at convergence R,c+ ,u . Hence 1:’,2 +1 18 a fine-to-coarse
defect-correction, that is, a correction to make the solution of the coarse-grid
equations coincide with the fine-grid solution. According to [Brandt 1984)

this leads to a dual interpretation of the FAS scheme where, instead of re-
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garding the coarse grid as a device for accelerating convergence on the fine
grid, the ﬁne.grid is Yiewed as a device for calculating a correction ‘cf 41 10
the coarse-grid equations.

In the FAS-FMG algorithm the fine-to-coarse defect-correction t,’ﬁ +1 isused
as a Jocal error estimator which is motivated as follows. Basically, the fine-
to-coarse defect-correction is an approximation to the local truncation error

¥ on the coarse grid defined by

= LKR ) - RALG) (5-94)

where u is the true solution of the differential equation, and kk, R* are re-
striction operators that transfer the continuum solution to the coarse grid. Es-
sentially, t* is a defect-correction that makes the solution of the coarse-grid
problem coincide with the true solution of the differential equation. Note the
analogy between equations (5-83) and (5-94). According to [Brandt 1984] we
must have

k

=gkt 1y ok (5-95)

T k+1

up to high order terms in 4. In the case the order of consistency of the dis-
cretization is given by ch?, i.e. ©° ~ ckf, we can write

1
k+1 _ k
ol = [2;)_1}1“1 (5-96)

In the case of the mixed discretization we have p = 2. Because of the analo-
gy to the local truncation error, ‘ti +1 1s commonly referred 10 as the relative
local truncation error, that is, the local truncation error of the coarse grid rel-
ative to the fine grid.

Clearly, 1:’,2 .1 1s conveniently obtained as a by-product of the FAS scheme
and can be calculated on the coarse grid in order to determine where the fine
grid needs to be refined. We use the following refinement condition

"t‘:“ Iy, y)) < 2_ptsup T, = sup

k-1
sup T (%)

{xy) € Gk_, (5_97)

where p is the order of consistency of the discretization, which in our case is
2. Clearly, if equation (5-97) is violated for some 'c’,:' Y(x, y) the correspond-
ing location (x,y) should be within a fine-grid refinement patch.

Effectively, we now have answered the question where to refine the grid
which leaves us to answer the question when to refine the grid. This question
can easily be answered by the following argument. The relative local trunca-
tion error T,’: +1 only approximates the actual truncation error ¥ if it is calcu-
lated by means of a converged fine-grid solution. Note that in this context
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converged means an algebraic error well below the discretization error. In
the FAS-FMG scheme this is achieved’ just before the solution is prolongat-
ed to the next finer grid. This means that the prolongation to the next finer
grid G, , ; must be preceded by a calculation of the relative truncation error
15~ 1 of the coarse grid G, _. The relative truncation error tf~ ! is then used
to decide where grid G, needs to be refined.

Note 5-12: The refinement of the coarse grid must be homogeneous because
at the coarse grid the relative local truncation error is not yet available.

This leaves us the task of the calculation of the relative truncation error in
the context of the mixed formulation of the problem.

5.6.1.3 Error Criteria Obtained from the Mixed Formulation

This section specifically deals with the calculation of the relative truncation
errors in the context of the mixed formulation. Clearly, for the mixed formu-
lation two relative truncation errors can be constructed; one for the potential
and one for the flux. The relative truncation error for the potential is associat-
ed with the interior of an element and the relative truncation error for the flux
is associated with the edges of an element. Clearly, the relative truncation er-
ror of the potential can be used to decide whether the interior of an element
needs to be refined, whereas the relative truncation error of the flux can be
used to decide whether an edge needs to be refined. The refinement of an
edge is implemented by refinement of the elements neighboring that edge.
Moreover, when several potentials and fluxes are defined, for each a relative
truncation error is constructed. The overall refinement criterium for the ele-
ments is defined by a linear combination of the relative truncation errors of
the potentials, and the refinement criterium for the edges is defined by a lin-
ear combination of the relative truncation errors of the fluxes.

We now calculate the relative truncation errors resulting from the mixed for-
mulation. We assume the mixed formulation on grid level & has the follow-
ing non-linear appearance

AFBY (UM [GH (0

MYU*, ®%) =
BLCH|®Y |FY o

(5-98)

where the matrix and vector entries possibly depend on the solution vector.
As in the case of the derivation of the relaxation operator, we take the subdo-
mains as shown in Figure 5-9 and Figure 5-10 as the starting point. After a
complete relaxation sweep the equations for the relative truncation errors on

9. If this is not achieved the FAS-FMG algorithm is not properly used and we need to increase
the number of cycles per level.

186 MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS




Adaptive Multigrid - 5.6

5.6.1.4

the elements TZ’fl and the edges T’ +k1 of the relaxation subdomain can be
written as

~u k
Tl _ (4 Bi|[Re o (Ut _{6H ]
9, k 2 ~d, k k+1 k
Tee1 Bk Ck 0 Rpyy ot F

~u, k 1 k+1 k+1
Rivr O [[|Aksy Bean||UTY| |G
~0,k 2 k+1 k+1

RY Bi,,C o F
0 k+1 k+1 “k+1 (5-99)

From which the relative truncation errors on the interior and edges of ele-
ment S, can easily be extracted.

Conclusions

Although the adaptive multigrid algorithm, described in the previous sec-
tions, is quite satisfactory (cf. Chapter 7) from the practical point of view, it
still has room for improvement. One obvious problem can be exemplified by
observing that when the FMG scheme is used for solving a regular problem
on a sequence of grids, the work invested on the coarse grids is usually
smaller then the work invested at the finest grids, despite the fact that the
coarse grids are relaxed many more times. This is because of the fact that the
coarse grids contain much less elements than the fine grids. For the FMG
scheme it can then be proven that the total amount of work needed to reduce
the error to below the truncation error is proportional to the total number of
elements in the computational domain. However, when local levels of refine-
ment are used, with finer levels covering much smaller subdomains, the
number of elements on coarser levels is not necessarily small in comparison.
The usual FMG scheme which makes a cycle (V,W,F) through all the coarser
grids per additional level of refinement, no matter how small the refined do-
main is, may easily end up in investing work which is no longer proportional
to the total number of elements. Especially, for semiconductor problems,
where the patches are strongly localized to the junctions, this is the case (cf.
Chapter 7). Although the total amount of work is less in comparison to the
case that local refinement is used, it clearly defeats the basic principle of the
multigrid method which is to ensure the linear relationship between the total
number of elements and the amount of work needed to reduce the algebraic
error to below the truncation error. Although from the practical point of view
one can be perfectly satisfied with the adaptive algorithm as presented in the
previous sections, from the theoretical point of view we know that in the
case of strongly localized patches we can do better.

A rather intuitive remedy to this problem is not to treat the patches simulta-
neously, as in the previous sections, but rather to start a localized FMG-cycle
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on each individual grid patch of a certain grid level. In this case the localized
cycle does not reach grid levels coarser than the level on which it was start-
ed, which alleviates the problem. In fact this idea can be applied recursively
and basically a nested FMG algorithm is obtained. Note that a localized
FMG-cycle returns to the patch on which it was triggered with either a con-
verged solution or an improved solution, which is then used in the FMG-cy-
cle that triggered the localized cycle. An advantage of this type of algorithm
is that the grid patches of a certain grid level can be processed in parallel,
which is advantageous on multi-processor computers. In this thesis we have
not yet fully investigated this type of algorithmlo, and therefore leave it for
future research.

5.7 Concluding Remarks

In this chapter we have discussed an adaptive multigrid solution method
which can be used to solve the discrete problems obtained from the mixed
discretization method discussed in Chapter 4. We thoroughly discussed the
Vanka relaxation operator for which we calculated its smoothing factor by
means of local mode analysis. It was concluded that the Vanka relaxation is
an effective error smoother. We also discussed the intergrid operators, for
which we concluded that the natural intergrid operators suggested by the
mixed discretization are sufficiently accurate, except for the prolongation
operator for the potentials. An improvement for this prolongation operator
was proposed based on a post-processing technique. Also the concept of
adaptive composite grids was thoroughly discussed and in particular the
multigrid error estimators in the context of the mixed discretization were de-
rived.

10.  As far as we know this type of multigrid algorithm has not yet becn investigated in the lit-
erature.
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Library design is language design,
Bell Labs proverb

and vice versa.
AR, Koenig

Issues Related to an Object-
Oriented Implementation Strategy

In the previous chapters, the emphasis was mainly on the algorithms and
methods used. In this chapter the focus is on some of the more interesting ba-
sic implementation issues. During the past 20 years, a strong tradition in the
“coding” of the finite element method, based on the procedural programming
paradigm, has evolved!. For example [Becker 1981][Carey 1983][Segal
1984a][Hughes 1987]. Languages support this paradigm by providing facili-
ties for passing arguments to functions and returning values from functions,
for example: Fortran 77, Algol 68, Pascal and C. A consequence of this is
that the focus is on processing, that is, the algorithms needed to perform the
desired computations. In procedural languages, no specific tools are offered
with respect to managing complexity. Especially, when one has to deal with
intricate problems, this is a severe limitation. Various suggestions to improve
the quality of software have been proposed over the past ten years. Perhaps
the most powerful one, and certainly the most popular one, is the Object-Ori-
ented Programming paradigm (OOP) with as examples, the programming
languages SmallTalk and C++ [Bourne 1992][Stroustrup 1991][Lippman
1981][Barkakati 1991]. In the past four years the application of OOP has re-
ceived a lot of attention in the scientific literature. However, to date OOP has
mainly been a university research vehicle and has not been widely accepted
as an industrial programming standard.

In this chapter, we depart from the “classical” view of finite element coding
by putting the entire scheme in the realm of OOP. In particular, we investi-
gate an efficient implementation of the low-level FEM features using OOP.
However, due to space limitations, we only describe some of the more inter-
esting low-level features. As is well known, OOP may significantly enhance
software development speed, ease of maintenance, reliability and reusability,
subjects which are also of major importance in the coding of a new genera-
tion of finite element programs, which are of a highly dynamic nature. How-
ever, using the OOP technique requires a way of thinking about the problem

1. For a prototype of a “classical” finite element program the reader may consult {Hughes
1987).
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6.1

to be implemented which substantially differs from the one used in more tra-
ditional programming strategies.

The structure of this chapter is as follows. In Section 6.1, we discuss some of
the essential ideas of Object-Oriented Programming. In Section 6.2, we ap-
ply OOP to the design of object-oriented finite element data structures. Fi-
nally, in Section 6.3, some concluding remarks are stated.

The Object-Oriented Programming Method

6.1.1

6.1.2

This section briefly recapitulates some of the essential ideas of OOP. The fo-
cus is on the C++ language, however, any language providing the essential
OOP features can be used. For a clear introduction to the OQOP philosophy
and terminology we refer to [Stroustrup 1991][Lippman 1991][Barkakati
1991].

Objects

The major difference between OOP and the more traditional procedural ori-
ented programming techniques is that in object-oriented design, a program
conceptually consists of a collection of interacting objects, each encapsulat-
ing data known as the object’s members, and functions known as the object’s
methods. The methods are used to manipulate the members. Part of the ob-
ject’s methods can be made publically available, forming a well-defined in-
terface to the object. A publically available method is invoked by sending a
message to the object, hence, an object that needs a service from another ob-
ject may achieve this by sending the appropriate message to the other object.
This technique is commonly referred to as the client-server model. At each
time instant, the state of an object is determined by the current actual values
of the object’s members. Moreover, publically available methods can be pro-
vided to alter the state of the object. In this sense, the messages the object re-
sponds to, drive the objects apparent behavior. More loosely, an object can
be characterized as a device capable of performing predefined actions, such
as storing and retrieving information, performing work, or providing access
to another object.

It goes without saying that the above point of view has a major impact on
program organization and that the application of this technique is in most
cases a non-trivial exercise.

Classes

Objects are created from object templates called classes in C++, that is, each
object is an instance of a class. A class is in fact a user-defined abstract data
type and is used to group related data and methods. In C++ these are called
the class members and we may distinguish member data (attributes) and
member functions (methods). Moreover, since a class encapsulates its class
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members, it can be used to set access privileges for the class members, re-
stricting the access to only those member functions which are designed to in-
terface to the class. These interface member functions may, for instance,
interrogate the state of the object or ask the object to perform a certain ac-
tion. Effectively, the interface member functions are invoked through the
message mechanism. From the preceding, it should be clear that in OOP the
class and not the function is the primary unit of system organization.

6.1.3 Class Hierarchies

Note that the above features, with a little discipline, are also conceivable in
ordinary programming languages. However, the language becomes object
oriented when such concepts as inheritance and polymorphism are support-
ed. The inheritance mechanism supports one of the most powerful intellectu-
al tools for managing complexity, which is hierarchical ordering. Hence, we
have the ability to organize related concepts into a tree structure with the
most general concept at the root of the tree (base class). In C++ this is effect-
ed by allowing a class to inherit features of one or more base classes, and it
is usually called a class hierarchy tree. Note that the inheritance mechanism
supports the re-use of code since newly to be added classes can inherit from
already existing classes.

6.1.4 Polymorphism

The polymorphism feature is even more important in OOP, because this al-
lows objects of different type to activate different methods when sent the
same message. The idea is that the object itself binds the received message to
one of the methods it encapsulates. We can distinguish between polymor-
phism using static or dynamic binding. The difference is that with static
binding, the method to bind to the received message is known at compile
time, in contrast to dynamic binding where the method is determined at run
time using a virtual function table (C++). The dynamic binding feature truly
supports object-oriented programming, because each object can be made self
supporting at run time. This allows us to define various objects that represent
the same concept, however, with some slight differences in behavior. Since
all objects represent a similar concept, the messages to invoke the methods
can be made the same. Sending messages to these objects to perform actions
is completely transparent, in the sense that each object itself knows how to
respond to the message received. Hence, low-level complexity can effective-
ly be hidden. Later on in this chapter, we will show that by using this tech-
nique we can achieve transparency with respect to the space dimension of a
problem to be solved, that is, at a certain level of abstraction it does not mat-
ter if we are solving a 1D, 2D or 3D problem.

Note that there is a run-time penalty on the excessive use of polymorphism
in combination with dynamic binding. This is because each method bound to

MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 191



Chapter 6: Issues Related to an Object-Orlented Impiementation Strategy
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a received message must be invoked through a function call and cannot be
expanded inline by the compiler. Hence, dynamic binding always involves a
speed penalty with respect to static binding. Only in the case where the func-
tion call overhead is negligible, in comparison with the work done by the
function, can the speed penalty be neglected. However, it is the authors ex-
perience that the dynamic binding mechanism implemented through a virtual
function table significantly outperforms the alternative implementation of
polymorphism by using a series of case statements.

Object Hierarchies

In OOP there is yet another way to express hierarchic relationship, called an
object hierarchy. Here we speak of a member relationship. Opposed to inher-
itance, which is a “is a” relationship, membership is a “has a” relationship.
A simple guideline in the use of inheritance or membership is to investigate
whether the concept one wants to model is similar to a previously modeled
concept, or whether it only needs an instance of a previously modeled con-
cept.

The member relationship can be enforced by three methods: inclusion, refer-
ence and pointer. When using inclusion, an instance of a class is created
within the object representing the concept to be modeled. In other words an
object contains another object. The other two methods are very similar, with
the difference that the object is not actually included, only a pointer or a ref-
erence to the object is stored. Note that in this case the object pointed to must
be explicitly initialized, opposed to the inclusion mechanism where the in-
cluded object is automatically initialized by calling the default initializer for
that object. The use of a reference or a pointer is very similar, the difference
being that a reference to an object needs to be initialized whereas a pointer
may be left uninitialized.

The above technique to create object hierarchies is, in a way, complementary
to the class hierarchy method, the difference being that a class hierarchy is
always static, whereas an object tree using pointers to other objects can be of
a dynamic nature. For instance, if the object pointed to is the root of a class
hierarchy with each of the leaves modeling a similar concept, we may, at run
time, bind the object pointer to each of the leaves of the class hierarchy. The
polymorphism and virtual function mechanism can then be used to identify
the object pointed to at run time. To give an example, suppose we have de-
signed a class modeling a generic semiconductor, which, amongst other
things, contains a pointer to a generic class modeling the doping configura-
tion. In order to be able to choose between several different doping configu-
rations (at run time) we make the class doping the root of a class hierarchy
where each of the leaves models a different doping configuration. This al-
lows us to bind a specific doping configuration to the class semiconductor at
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6.2

run time2. The polymorphism and virtual function mechanism ensure the
proper handling of the messages send to the class doping.

Object-Oriented Finite Element Data Structures

6.2.1

In the terminology set out in Chapter 2, a model of a certain problem was as-
sumed to consist of a computational domain Z, a set of model equations in
the form of a PDE, a set of boundary conditions and (if necessary) a set of in-
terface conditions. It seems logical to take an object of type Model as the
root of the object hierarchy. The data encapsulated by the class Model is the
data base representing the mode! in its discrete form.

The basic messages we can send to an object of type Model are: (1) initialize,
(2) solve and (3) show. When sending the message “initialize” to an empty
instance of an object of type Model, it takes a data file containing the specifi-
cation of the model, parses this file and initializes the data base accordingly,
that is, it builds the required object hierarchy. Similarly, sending the message
“solve” causes the object of type Model 10 determine the solution of the
problem it models. In a similar fashion, the message “show” causes the ob-
ject to display its solution. Note that when sending a message to an object,
the object itself knows how to take care of this message. In fact, this takes
place by sending messages to other objects at a lower level in the object hier-
archy. Again each of the objects knows locally how to deal with the message
it receives.

In this section, we are mainly concerned with that part of the class Model
which deals with the object-oriented representation of the computational do-
main, Effectively this comes down to the definition of a suitable object hier-
archy. Moreover, once the object hierarchy is defined, the representation of
the model equations, boundary and interface conditions is more or less self-
evident. Since it is impossible to list all details, only the general principles
are outlined below. For the actual implementation details (C++) we refer to
the software distribution (cf. Chapter 1).

Representation of a Computational Domain

The basic class for this purpose is the class Structure. Starting from this
class, the question is, of course, how we can set up the appropriate class and/
or object hierarchy. In doing so, we may follow the general principle of the
FEM, however, in addition, we must also take into consideration the use of
mixed-hybrid finite elements and the finite element based multigrid method
as discussed in Chapters 4 and 5. For instance, mixed-hybrid finite elements
need to have degrees of freedom defined in the interior and on the edges of
the elements, and the multigrid method needs sophisticated data structures to

2. This means we do not have to hard-code the doping model into the semiconductor model.
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support locally refined grids and efficient grid-scanning algorithms. These
features pose additional constraints on the design and implementation of the
class and object hierarchy.

In Chapter 2, Section 2.2, we argued that a convenient strategy towards the
modeling of an actual transducer configuration is to divide the computational
domain into K disjoint simply connected® subdomains QF with
(k=1,...,K), separated from each other by internal interfaces, and from
the outside world by boundary interfaces (cf. Figure 6-1). Note that the inter-
faces between subdomains are defined by

=0 na (6-1a)
and boundaries by
B =0~ () (6-1b)

where U is the one-, two-, or three-dimensional universe and X c U repre-
sents the space occupied by the transducer configuration. A convenient strat-

(a) BI sD: Q! ] SD: Q? BI
L 4 % ﬁAr
Bl
{b)
Bl SD: Q! Bi
BI I
Bl SD: @} I SD: 0? 8l
BI Bl

Figure 6-1

Two simple examples of a computational domain divided into a number of subdomains,
separated from each other by internal interfaces (li) and from the outside world by
boundary interfaces (Bl): (a) a 1D configuration, (b) a 2D configuration.

3. Note that we require a subdomain to be simply connected, however, we may always con-
struct a non simply connected domain by patching together simply connected subdomains.
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egy to define the class Structure is to introduce two additional classes, that
is, the class Domain and the class Interface. Now a class Domain can
uniquely be defined by means of an ordered list of pointers to objects of type
Interface. To be more precise, the class interface acts as the root of two de-
rived classes, which are the class Internallnterface and the class Boundary-
Interface. We may use polymorphism to distinguish between objects of type
Internalinterface and type Boundarylnterface at run time.

In order to define the problem to be solved on a domain, each domain also
contains a pointer to an object of type Problem. In its turn, the class Problem

" is the root of a class hierarchy defining various types of problems. In general,

the class Problem should, for example, provide methods to calculate material
parameters, set up the local element matrix and the right-hand side vector, or
in the case of multigrid, perform a local (Vanka) iteration. Note that this set-
up allows a different model to be defined on each domain and that we may
bind a model to a domain at run time. For instance, referring to Figure 6-1,
we might want to solve just the Poisson equation on subdomain Q!, and the
full semiconductor equations on subdomains Q2 and Q3.

Similarly, the classes Boundarylnterface and Internallnterface should pro-
vide methods for calculating the boundary conditions and (if applicable) the
interface conditions. One way to provide flexibility in this respect is not to
hard code the methods for calculating the boundary and interface conditions,
but rather to use pointers to user-definable functions. This is a standard pro-
cedure, well known to C and C++ programmers, so for details we refer to
{Barkakati 1981]. The UNIX (SVR4) operating system provides facilities to
compile these functions at run time and link them into the program by using
its dynamic linking features.

In order not to be burdened by too many implementation details, we impose
the restrictive condition that each domain can be represented by a geometri-
cally “simple” shape, that is, a straight line for 1D models, a convex polygo-
nal surface for 2D models, or a polyhedronal volume for 3D models®.
Effectively, this means that the boundary interfaces and internal interfaces of
the domain are piecewise “flat”. For 1D domains the interfaces are points in
1D space, for 2D domains the interfaces can be constructed as lists of
straight line segments in 2D space, and for 3D domains the interfaces can be
constructed from “flat” polygonal surfaces in 3D space. In its turn, a polygo-
nal surface in 3D can be represented by a list of straight line segments in 3D,
Finally, any straight line segment can be represented by the two nodes it con-
nects.

4. In the case of 2D and 3D models this a rather restrictive approximation, however, most pla-
nar silicon structures can adequately be modeled in this way. Moreover, the possibility of
curved geometrical objects can be added at a later stage.
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So basically, at the lowest level of the object hierarchy we need objects of
type Node located in 1D, 2D or 3D space. For this purpose we define a class
hierarchy with a generic class Node at the top of the tree. The 1D, 2D, 3D
variants of a node are derived from the root of the tree by inheritance. These
derived classes are called NodeR1, NodeR2 and NodeR3. An object of type
Line can then be constructed by using pointers to the objects of type Node it
connects. Thus again, we define a class hierarchy with a generic class Line at
the top of the tree, the 1D, 2D and 3D variants are derived from the root by
inheritance and are called LineR1, LineR2 and LineR3. By using the inherit-
ance mechanism it is also relatively easy to later on incorporate curved line
types in 2D and 3D space. Note that by definition the direction of a line is
from the first referenced node to the second referenced node.

Similarly, an object of type Surface can be constructed by (signed) pointers
to an ordered set of objects of type Line. Note that the sign of a pointer must
be such that it corrects the orientation of a line, when the original orientation
of the line is not in correspondence with the ordering of the lines defining the
surface. The orientation of a surface is always taken according to the right-
hand rule when traversing the boundary of the surface in the direction speci-
fied by the ordering of the lines defining the boundary. Note that we can have
surfaces in two- and tree-dimensional space, the class Surface therefore
again is the root of a class hierarchy with classes SurfaceR2 and SurfaceR3.
Note that we may later on add the possibility of curved surfaces in three-di-
mensional space.

Finally, an object of type Volume can be constructed by (signed) pointers to a
set of objects of type Surface which enclose the volume. Again, note that the
sign of the pointers is necessary to define the orientation of the surfaces with
respect to the volume, here we have the rule that the orientation of each sur-
face multiplied by the sign of the pointer must be directed outwards from the
volume.

Perhaps a last remark concerning the role of the various geometrical objects
defined above is in place. In the case of one-dimensional models, the basic
geometrical objects are the NodeR! and the LineR1. Here the object LineR1
represents the domain and the object NodeR! represents an internal interface
or a boundary interface. In the case of a two-dimensional model the basic
geometrical objects are the NodeR2, the LineR2 and the SurfaceR2. Here the
object SurfaceR2 represents a domain and the object LineR2 represents an
internal interface or a boundary interface. Finally, for three-dimensional
models the basic geometrical objects are the NodeR3, the LineR3, the Sur-
JaceR3 and the VolumeR3. Here the object VolumeR3 represents a domain
and the object SurfaceR3 represents an internal interface or a boundary inter-
face.
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Figure 6-2

6.2.2

6.2.3

Basic 2D and 3D finite element shapes: (a) triangle, (b) quadrilateral, {c) tetrahedron
and (d) hexahedron.

Representation of the Coarse Grid

The coarse grid is defined by a rather crude quasi-regular partitioning of the
domains Q* into elements. For this purpose, a generic class Element is intro-
duced, which is discussed in the following section. For each domain, the
coarse grid elements are stored in a linear element list which is pointed to by
the object of type Domain. For 1D domains the elements are straight line
segments. For 2D and 3D domains, the topology of the elements are restrict-
ed to those shown in Figure 6-2. Note that Figure 6-2 shows the reference el-
ements, meaning that all vertices of the element are taken at unit coordinates.
Elements with distorted’ geometry (not topology) can be obtained by means
of an affine 2D or 3D transformation (cf. Appendix C). This way the do-
mains and interfaces are constructed by patching together simple geometri-
cal objects.

Representation of an Element

Not surprisingly, the finite element is taken as the basic processing unit. The
general procedure is to loop through the list of elements and process each el-
ement according to its specific properties. As discussed in the previous sec-
tion, in 1D models the element is a straight line segment called an edge, in

5. The distortion is not entirely free, for instance, we should avoid triangles with obtuse angles
or quadrilaterals which are too weirdly shaped.
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2D models it is a (flat) surface called a face and in 3D models it is a volume
called a body. Therefore, the class Element is taken as the root of a tree of
derived classes, which are the classes EdgeR!, FaceR2 and BodyR3, and
polymorphism is used to determine the space dimension of the element. The
elements are indicated by the shaded entries in Table 6-1. In a similar fashion
as the definition of the domains, the classes EdgeR!, FaceR2 and BodyR3
can also be defined by means of pointers to a few primitive geometrical ob-
jects as indicated in Table 6-1. This table indicates, for each space dimension
of the model, the object hierarchy when reading from right to left. For exam-
ple, in the case of a 3D domain, an object of type BodyR3 is defined by
pointers to a set of objects of type FaceR3. In their turn the objects of type
FaceR3 are defined by pointers to an ordered set of objects of type EdgeR3.
The objects of type EdgeR3 are in their turn defined by pointers to objects of
type NodeR3. Similar arguments hold for the 2D and 1D case.

Now, in order to enable the use of geometrically different types of elements
for 2D and 3D models®, the classes FaceR2 and BodyR3 are taken as the
roots of class hierarchies as indicated in Table 6-2. Again polymorphism is
used to distinguish between the various types of elements at run time. An ex-
ample of the resulting object hierarchy for a tetrahedron is given in Figure 6-
3. Similar object hierarchies can be drawn for the other 2D and 3D element

types.

Table 6-1

Table indicating the hierarchy of geometrical objects for a 1D, 2D and 3D domain.

space node edge face body

R1

NodeRt

R2

NodeR2

EdgeR2

R3

NodeR3

EdgeR3

FaceR3

Table 6-2

6.2.4

Table indicating the different types of 2D and 3D elements.

FaceR2

QuadrilateralR2

TriangleR2

BodyR3

HexahedronR3

WedgeR3

TetrahedronR3

Grid Refinement and Unrefinement

Obviously, the spatial discretization of the domain, as outlined in the previ-
ous section, is usually too crude to be very accurate. Therefore, each element
may on its turn be partitioned into a number of congruent sub-elements, that
is, a triangle into four congruent sub-triangles, a quadrilateral into four con-

6. Obviously, in the 1D case only one type of element is possible, which is an edge.
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EdgeR3 (1)
FaceR3 (1) EdgeR3 (2) NodeR3 (1)
FaceR3 (2) EdgeR3 (3) NodeR3 (2)
object3D
FaceR3 (3) | EdgeR3 (4) NodeR3 (3)
FaceR3 (4) EdgeR3 (5) NodeR3 (4)
EdgeR3 (6)

Figure 6-3

Abstract representation of a tetrahedron.

gruent sub-quadrilaterals, a tetrahedron into eight congruent sub-tetrahe-
drons, a wedge into eight congruent sub-wedges and a hexahedron into eight
congruent sub-hexahedrons’. This process is called basic refinement. The
additional elements created upon refining an element are called the child ele-
ments and the element generating the children is called a parent. The subdi-
vision of elements can (recursively) be repeated and in fact generates a
sequence of nested grids G'with (1=0,...,L—-1) indicating the level of re-
finement.

This feature can easily be implemented by adding pointers to objects of type
Element to the classes EdgeR1, FaceR2 and BodyR3. In the 1D case we ob-
viously need two pointers, in the 2D case we need four pointers and in the
3D case we need eight pointers. The entire grid may then be organized in a
multiple-rooted tree data structure (forest), where each root represents a do-
main, the nodes of the tree represent the elements and the edges of the tree
represent the child-parent relations. The leaves of the tree at a certain level

7. Higher order partitionings are also conceivable, for instance, the second order regular parti-
tioning of a triangle generates nine congruent subtriangles.
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represent the unrefined elements of that level. In the case of 1D grids the tree
is a binary tree, in 2D grids it is a quad tree, and in 3D grids it is an octal tree.
Note that arranging the grid levels this way allows easy implementation of
the intergrid transfer operators, because for each element the child-parent re-
lation is known an we may easily locally switch between a coarse-grid and a
fine-grid element.

Note that the process of grid refinement and unrefinement is a local process
and can be dealt with at the element level. Thus in order to refine the grid at
grid level [, each element at that level is sent the message “Refine”, upon re-
ceiving this message the element itself knows how to create and initialize its
child elements. Similarly, upon receiving the message “Unrefine” the ele-
ment destroys its child elements. It is perhaps superfluous, but also in this
case we use polymorphism to properly handle the “Refine” and “Unrefine”
messages for the various types of elements at run time. Note that in order to
refine a grid at level /, we scan the grid elements at level [, however, in order
to unrefine the grid at level /, the grid is scanned at level I-1.

It is not necessary to refine each element of a specific grid level. In order to
decide whether it needs refinement, the element first evaluates a local error
criterium (cf. Chapter 5). In other words, an element only needs to refine it-
self if the approximation to the “true” solution on that element is “not good
enough”. Similarly, if the local error criterium is below a certain threshold,
the element may decide to unrefine itself. This process is called adaptive re-
finement and unrefinement. For this purpose we may introduce the messages
“AdaptiveRefine” and “AdaptiveUnrefine”. Just as in the previous case, the
element itself knows how to deal with these messages. For instance, if we
send the message “AdaptiveRefine” or “Refine” to an element which is al-
ready refined, it simply ignores the message. However, if the message
“AdaptiveUnrefine” or “Unrefine” is sent to an element, it simply destroyes
its children, which then succesively destroy their children and so on.

We thus obtain locally refined grids and the set of elements created by refine-
ment of level / can be split into a number of disjunct patches to the grid at
level I. The union of all the patches constitutes the grid at level /+1. To keep
track of the patches at a certain grid level, we introduce the class GridPatch
which holds a pointer to the first element of a disjoint patch to the grid at lev-
el [-1, and the number of elements in the patch. Instances of the class Grid-
Patch themselves are managed by yet another class, the GridPatchList class.
This class is implemented as a doubly linked list of objects of type Grid-
Patch. Instances of the class GridPatchList are in their turn organized by a
class GridPatchArray, which, in fact, is itself a doubly linked list of objects
of type GridPatchList. A method to maintain this data structure is discussd
in the following section.

In order for this scheme to work, we need to store the topology of the grid at
each level. This means that each object of type Element needs to be able to
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store pointers to the neighbors located at its nodes, edges, or faces, depend-
ing on whether the element is embedded in 1D, 2D or 3D space. Since for
each patch, a pointer to an element of the patch and the topology of the patch
is available, it can be scanned by a scanning algorithm based on the topology
of the grid (cf. Section 6.2.5). Note that in this sense the coarse grid may be
viewed as a single patch to the union of the domains.

Note that each grid patch may have a boundary which not necessarily coin-
cides with the true internal and boundary interfaces of the domain. However,
when scanning a patch by using its topology, the patch boundary can easily
be detected because at this artificial boundary the elements do not have a
neighbor.

6.2.5 Grid Scanning

In this section, we discuss an algorithm for scanning the elements in quasi-
structured grids. For 1D grids the scan is trivial, however, for 2D and 3D
grids the situation is a lot more difficult. The easiest approach is to use an hi-
erarchical scan. In this method, we process each of the elements in the coars-
est grid recursively. This type of scan could be used to carry out the intergrid
transfer operators, however, for the relaxation operator this type of scan is
not very suitable for reasons of convergence. A better method, which can be
used on quasi structured grids of the type described in the previous section,
is described below.

This type of scanning strongly resembles the evolution of a wave front in
space-time. To make this type of scan possible, the topology of each level of
the grid must be available. The algorithm operates as follows. To scan the
grid at a certain level, or better, to scan a certain patch, it is first given a seed
element®. The pointers to the seed elements are stored in the patch lists. The
seed element is then pushed on to an element processing queue (FIFO)? and
a local element flag is set to mark the element as being on the queue. The
next step is to pop the next-to-be-processed element from the queu and set a
local element flag to mark the element as being processed. A message is sent
to this element to push, in the order determined by the local numbering of the
edgesw, those pointers to it neighbors which are not already processed or not
already on the queue. Obviously, when an edge has no neighbor, which
means that it is a boundary edge, nothing needs to be pushed with respect to
this edge. We may then send a message to the element to process itself ac-
cording to some internal method, e.g. relaxation, refinement, prolongation,
etc. Upon finishing this method, the next element is popped from the queue

8. The seed is not restricted to a single element, in 2D we may also give the elements lying at
a boundary as a seed.

9. The fact that we use a queue is important here, if we use a stack instead, the algorithm be-
haves in a totally different way.

10. Forthe 1D and 3D case we should read “nodes” and “faces”.
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and the same procedure is repeated. Thus a wave front of processed elements
cells travels through the domain until there are no more elements left to pro-
cess. For uniform rectangular grids, this manner of scanning the grid is iden-
tical to a forward or backward diagonal ordering of the elements as
described in [Wesseling 1992). Note that when we replace the queue in the
scanning algorithm with a stack, the scanning pattern is identical to forward
lexicographical ordering of the elements as described in [Wesseling 1992].

In fact, the grid at a certain level needs to be scanned many times. So, in or-
der to speed up this process, only the first scan of a grid at a certain level is
scanned by using the above method. During the first scan, a scan list is build
which is implemented as a doubly linked list. The doubly linked list enables
fast forward and backward traversing of the elements in a certain grid. The
link fields are implemented locally, that is, in the element itself and therefore
we do not have to maintain an additional data structure. Moreover, for a 2D
grid each link field needs at most two bits to indicate which neighbor is next
in the list. Remember, the pointer to the neighbor is already available in the
data structure, hence we only need to indicate which one to follow.

The entire scheme is implemented in a class GridScan. In order to scan the
grid at a certain level, for whatever purpose, e.g. relaxation, interpolation,
we just instantiate an object of type GridScan with the appropriate level
number and grid data structure (tree). We then send messages to this object
to request the next element. Effectively, this class hides the implementation
details, because outside the object we do not know wether the scan is made
by using the wavefront method or by traversing the scan list.

Patch ldentification

The same scanning algorithm can be used when scanning the grid at level /
for the purpose of grid refinement. However, note that in an adaptive grid re-
finement setting, we need to identify newly created grid patches. To achieve
this we use the following method. We start by scanning each patch of the
previously locally refined grid level [ by traversing the previously built scan
list. Note that the patches to be scanned belong to level I/, however, the newly
to be identified patches belong to level /+1. Each element scanned this way
is checked if it is already flagged as visited. If this is not the case, we check
whether it has children and if it does we need to check if its children are can-
didates for a new grid patch at level +1. In order to do so, we apply the wave
front scanning method with the given element as a seed.

Hence, the seed element is pushed on to the element processing queue
(FIFO) and a local element flag is set to mark the element as being on the
queue. The next step is to pop the next-to-be-processed element from the
queue and set a local element flag to mark the element as visited. A message
is sent to this element to examine its neighbors as to whether they should be
pushed on to the queue. Only those neighbors which have children, and have
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not already been visited or on queue are pushed on to the queue. Neighbors
which do not have children and have not yet been flagged as visited are
flagged as visited. Then the next element is popped from the queue and the
same procedure is repeated until the queue is empty. Thus all elements that
have children and are connected to the seed element are marked as visited.
Now a new object of type GridPatch can be created. Note that the stored to-
pology ensures that we can find all elements by using the seed element
stored in the object of type GridPatch.

We then proceed to the next element and repeat the procedure. In this way
we detect all seed elements for the grid patches in time proportional to the
number of elements in grid level /.

6.2.7 Allocation of Objects

As we have argued in the previous sections, the OOP approach to the coding
of the FEM significantly enhances software development speed, ease of soft-
ware maintenance, reliability and reusability. Its application to technical
software has increased significantly over the past few years. However, there
is also a serious drawback with respect to OOP. As pointed out earlier, a
FEM program in the context of OOP is a collection of objects encapsulating
their associated data and methods, and communicating with each other
through messages. Although each model is represented in terms of the same
set of objects, the number of each type of object can be different for each
model. Moreover, if we consider the local refinement or unrefinement of the
grid, we observe that it is highly desirable to be able to create and delete ob-
jects on the fly. Or to put it a little differently, the data structures are required
to be highly dynamic. For instance, the OOP features of C++ provide the
“new” and “delete” operators for this purpose. Clearly, the use of these oper-
ators is very convenient because memory is only consumed when an object
is created and is immediately available for reuse when the object is de-
stroyed. However, as a fact of experience, in the case of a large number of
small objects, as in our case, the standard “new” and “delete” operators of
C++ provide too much overhead. The reason for this is that the entire operat-
ing system machinery must be put in motion for each object to be created or
destroyed.

Most of the existing FEM programs written in Fortran-77 manage the free
store by means of user-written routines. Here the free store is a large block of
memory defined at compile time which cannot be changed at run time. Al-
though this technique is not very flexible, it does allow the memory manage-
ment routines to be optimized with respect to the application. A similar
approach could be used in C by using the memory management facilities of
the underlying operating system (UNIX). In this way we may allocate a large
block of memory at run-time, and again manage the block of memory by
user-written routines. Clearly, this enhances speed, however, usually, it is
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difficult to a priori estimate the amount of memory the program needs and,
hence we have to use some ad hoc size, which clearly can be a waste. What
we actually need is a mechanism offering a compromise between speed and
the amount of memory wasted.

To achieve this, we make use of the fact that we only have a limited number
of different objects of which we may take advantage to speed up the memory
allocation process. In short, this means that the first time an object of a cer-
tain type is created, a memory pool (heap) capable of containing a certain
number of this type of object is created. Each next time an object is created,
it is put in to its corresponding memory pool. Since the memory in the pool
was previously allocated, this process can be very fast. As soon as the pool is
filled, a new pool is created which is linked to the previously created pool.
Hence, the memory pool is effectively resized to twice the basic pool size.
Note that such a pool is maintained for each type of object created. An im-
portant parameter is the choice of the base size of each pool. Obviously, the
larger the pool size the faster the overall memory allocation can take place.
However, choosing the pool size too large is a waste of memory. Also there
exists a relationship between the number of allocated objects of each type.
For instance, in a 2D grid consisting of N triangles, the approximate number
of edges and nodes resp. is 3/2N and 1/2N respectively. Obviously, the rela-
tive basic pool sizes of the corresponding objects should be chosen accord-

ingly.

In C++ terminology, the above is achieved by overloading the “new” and
“delete” operators. The implementation of equivalent operators using the C
operators “calloc” and “free” is straightforward. In principle, the equivalent
operator must check as to whether a memory pool already exists for the re-
quested type of object. If not, a memory pool is created by means of the “cal-
loc” operator. The memory pool can be managed by a pool header with
pointers to the bottom, top and next free entry of the pool. The entries which
become available after deletion of objects can be managed by adding them to
a (singly) linked list which is pointed to from the pool header. As soon as the
pool is filled, a second one is created and is added to the pool header in a
similar fashion. As soon as a pool is empty it is destroyed“.

Representation of the Global Solution

Some remarks on the representation of the local discrete solution are in order
at this point. As we have already pointed out, the approximate solution on an
element is defined by an expansion in terms of the element (local) basis
functions. Depending on how the basis functions are defined, the expansion

11. Obviously, there should be some hysteresis in this process, because the number of objects
needed might approximately be equal to the memory pool size. This will cause excessive
pool creation and deletion. A 10 % hysteresis seems to do well.
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coefficients can be associated with element vertices, the element edges, the
element faces or the element body. For this purpose, it is best to define an ob-
ject of type DofArray (degree of freedom) which can be pointed to from the
appropriate object. To give an example, in a 1D element, the element is an
object of type EdgeR1 with two pointers to objects of type NodeRI. Now, the
expansion coefficients defined on the element edge are stored in to an object
of type DofArray which is pointed to from the object EdgeRI. The expansion
coefficients defined at each of the two nodes of the edge are also stored in an
object of type DofArray, however, these objects are pointed to from the ob-
jects of type NodeR1 .

6.3 Concluding Remarks

The main purpose of this chapter was to present some guidelines in imple-
menting the FEM, featuring mixed hybrid finite elements and the multigrid
method, by means of an object-oriented programming language (OOP). A
brief introduction to OOP was presented and it was argued that the use of the
OOP features of the C++ languages can conveniently be used to construct an
elegant implementation of the FEM. It is the author’s experience that the ef-
fort needed to write a similar program in a traditional language such as For-
tran-77 is significantly greater. The OOP paradigm was subsequently applied
to the problem of the design of an object-oriented representation of the com-
putational domain, the grid levels, the elements and efficient grid scanning
algorithms. We emphasize that the approach forces strict locality, meaning
that no global storage is used. In other words solutions, residuals and stiff-
ness matrices are all stored element wise and are accessed by sending mes-
sages to objects of type element. Obviously, there are many more FEM
features which lend themselves to an object-oriented implementation, how-
ever, for the sake of brevity these have to be omitted.
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A GIimpSe of the Results

7.1

In Chapters 4, 5 and 6, we have discussed a general framework for the nu-
merical modeling of systems of (elliptic) partial differential equations in
mixed form. In this chapter we wish to show a glimpse of the results, in par-
ticular we show that by using the proposed framework, that is, a combination
of mixed finite element discretization and multigrid acceleration, the expect-
ed h-independent convergence can indeed be realized for the thermoelectric
problem. A typical problem of moderate apparent complexity that can be
used for this purpose is the 2D quarter diode test problem. Although this
problem is rather specific, we emphasize that the method in principle also is
applicable to more intricate semiconductor problems.

The structure of this chapter is as follows. In Section 7.1, the quarter diode
test problem is discussed. In Section 7.2, we discuss the general mixed for-
mulation of the thermoelectric problem. Next, in Section 7.3, the discrete
mixed variational form of the thermoelectric problem is discussed. A strate-
gy for solving the coarse grid problem is discussed in Section 7.4. In Section
7.5 some convergence results are discussed. Finally, in Section 7.6 some fi-
nal concluding remark are stated.

Quarter Diode Test-Problem

In this section we discuss a simple test configuration dealing with the self-
heating effects in a forward biased diode. For simplicity we restrict ourselves
to the two-dimensional problem. Moreover, for reasons of symmetry the
configuration is reduced to the one shown in Figure 7-1. For the material
properties we assume € = 1.036x107'2, ue = 700, u* = 700,
P® = 0.5x107, P" = 0.5x10%and K, = 1.5.For the generalized SRH
model we assume that the trap level is at the midpoint of the band gap and
that ¢ = t* = 10x107°,

With respect to the thermoelectric powers we should remark that the above
values are not very realistic because if we examine equations (3-50a) and (3-
50b) we observe that in P-type material P is rather large whereas P"is very
small. In N-type material the opposite is true. However, for the test problem
we are considering, the thermoelectric powers do not have a significant influ-
ence on the final results, so we do not use the more realistic model for the
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thermoelectric powers. The use of more realistic models for the material pa-
rameters is not expected to have much effect on the convergence results.

The doping profile is modeled as an abrupt junction

na) = {1x10‘8, llxll <0.5%107 7-12)
0, Il 2 0.5%107

-3
e = (© ]l £0.5x10 (7-1b)

1x10"%,  |xl>0.5x1073

From the physical point of view this type of doping profile is not very realis-
tic, however, from the numerical point of view it is quite a challenge. We can
safely state that once the method is capable of solving the problem with
abrupt junctions it is also capable of solving the problem with more realistic
doping profiles stated in terms of Gaussian distribution functions.

For the electrical Dirichlett boundary conditions we take Ef = Ef = -V,
and Ef = Ef = 0, respectively at the top and bottom contact, where V, is
the applied bias voltage. At both contacts the corresponding electrostatic po-
tential is, for each bias condition, obtained by (iteratively) solving ¢ from
the zero space charge condition: §(g, EY, EZ, T) = 0. This value serves as
the Dirichlett boundary condition for the Poisson equation. At the non-con-
tacted parts of the boundary homogeneous electrical Neumann boundary
conditions dg - ng, = j§ - ny = jﬁ - ny, = 0 are assumed. For the thermal Di-
richlett boundary conditions we take T = T, = 300 at the bottom contact.

At the remaining part of the boundary (including the top contact) we take ho-
mogeneous thermal Neumann boundary conditions j* - n, = 0.

y

A

Figure 7-1

Contiguration for calculating the self-heating effect of a forward biased diode.
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For the above problem we calculate the temperature 7, at the midpoint of the
junction as a function of the bias voltage (cf. Figure 7-1). Note, however,
that in the present context we are more interested in the convergence behav-
ior of the solution method than the actual solution.

Thermoelectric Problem in Mixed Form

The only step that separates us from the application of the mixed discretiza-
tion method, as discussed in Chapter 4, is the reformulation of the thermo-
electric model to the mixed form. For this purpose, we take the scaled model
equations, discussed in Section 3.5.1, as the starting point.

Clearly, for the thermoelectric problem we have four sets of potentials and
fluxes; a set corresponding to the Poisson equation, a set corresponding to
the electron continuity equation, a set corresponding to the hole continuity
equation, and a set corresponding to the heat balance equation. In principle,
the derivation of the corresponding mixed formulation is straightforward,
however, we make the following simplifying assumption

K, » qn°pe (P°) r K, » gnph (P*) r (7-2)
which is valid for not too high carrier densities (cf. Section 3.4.2.1.2). The
advantage of the above assumption is that the inverse of the transport matrix
(cf. equation (3-44)) has a simple and very appealing form
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(7-3)

which makes it very easy to add exponential fitting characteristics (upwind-
ing) to the discretization by means of the inverse type of averaging of the
matrix entries 1/x€ and 1/n" [Brezzi 1989a]. In the case the assumption in
equation (7-2) is violated the inverse of the transport matrix is more complex,
however, in that case the entire model needs to be revised in order to also in-
clude heavy doping effects.

Using the above result it is not very difficult to cast the entire thermoelectric
model in (scaled) mixed form, that is
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A B|A]_ |0 74
B'C A |F

with the vector of unknown potentials and fluxes respectively given by
T T
A= loEsERT] A, = [dgntnliy (7-5)
and the vector of source terms given by

Fefond

The matrices A, B and C are respectively given by

(7-7)

and

(7-8)
and

0 0

oo 0 0

C=l o 0 0 (7-9)
0 (#°+n5d,) ~(a"+nld) 0

Note that in the case P” = P® = 0 the submatrix A reduces to a diagonal
matrix. Clearly in this case the coupling between the electrical and thermal
domain is eliminated.
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7.3

Mixed Discretization of the Thermoelectric Problem

7.3.1

By using the methods described in Chapter 4, the reformulation of the above
system of equations into a discrete variational statement is straightforward.
The result is given by

I 1
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where U, and ®, respectively represent the vector of fluxes and the vector
of potentials associated with degrees of freedom &k = {¢, EJf, E}', T}. The
correspondence between equations (7-4) and (7-10) is evident. Each of the
submatrices A,, B, C,,, G, and F can be calculated according to the meth-
od described in Chapter 4. However, special care must be taken in the evalu-
ation of the submatrices A,, and A , .

At this stage we wish to emphasize that the implicit use of Fermi statistics in
the thermoelectric model poses some additional problems, which can be
identified as: (a) the efficient evaluation of the Fermi-Dirac integrals, (b) the
upwind characteristics of the discretization, and (c) the treatment of the non-
linearity of the mode! equations. An elegant solution to problem (a) can be
found in Appendix D. However, problems (b) and (c) remain to be dis-
cussed.

Exponential Fitting and Upwinding

In principle the set of equations {(cf. equation (7-4)), apart from the non-lin-
earity, is well behaved in the sense that a straightforward application of the
mixed discretization method leads to a stable discretization. No problems are
to be expected with respect to advection dominated flows, which need up-
wind discretization to produce stable results. However, we do face the prob-
lem that the coefficients of the PDE vary strongly with respect to the mesh
size. This results in a significant loss in accuracy which can only be resolved
by choosing the mesh-size extremely small. In order to achieve reasonable
accuracy without the need for excessively fine meshes we may resort to the
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exponential fitting technique. Note that exponential fitting in a way is equiv-
alent to upwinding [Polak 1988)]. Provided a special quadrature rule is used
the mixed discretization method introduces a natural upwind effect because
of the inverse averaging of the matrix entries 1/2° and 1/2" in equation (7-
7) [Brezzi 1989a]. Without getting into too much details we can state that the
inverse type of averaging introduces an artificial diffusion length of the order
of the mesh size h. Moreover, if the mesh size is sufficiently related to the
spatial variation in the potential-like degrees of freedom, the effect of the ar-
tificial diffusion is negligible. Hence the upwind effect adapts itself to the
spatial variations in the potential-like degrees of freedom.

Non-Linearity

For the sake of simplicity we only linearize with respect to the principal non-
linearity of the model which reflects itself through the explicit dependence of
the matrix elements of equations (7-7) and (7-9) upon the quantities n°, n” and
T. For simplicity we do not linearize with respect to the non-linearity of the
material parameters. Note that in the present setting the use of weakly non-
linear material parameters is not expected to pose any problems, however,
the results might be suboptimal with respect to the convergence properties of
the non-linear iteration.

In principle we may follow two basic strategies. In the first one we do not de-
couple the equations and apply a straightforward Newton linearization to the
entire system of equations. In principle this results in quadratic convergence
when the initial guess is sufficiently close to the true solution. However, the
Newton method can be rather unpredictable when used to solve the coarse-
grid problem. A more robust approach is to first decouple the system of
equations (cf. equation (7-10)). Various decoupling strategies come into mind
and at this stage it is rather unclear which one is the best possible choice.
However, if we assume that the thermoelectric powers are small which im-
plies that the coupling between the electrical and thermal domain is rather
weak, equation (7-7) approximates a diagonal matrix. This suggests a
straightforward Gauss-Seidel type decoupling method where we repeatedly
solve the following sequence of non-linear systems

[A qJ [Bw] [U«J _ [G‘;' (7-11a)

1 [ |[v] _ |l6.-auti-aav] (7-11b)
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7.4
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Each decoupled system is linearized by means of the Newton method and
subsequently solved by iteration. The solution of each solved system is used
to update the matrix entries and the right-hand-side of the next-to-be solved
system. The procedure is repeated until we have convergence.

Solution Method

7.4.1

Before we can apply the FMG algorithm it is necessary that we first obtain
an accurate solution to the non-linear coarse-grid problem. For this purpose
we use the Newton iteration method (cf. Section 4.5) in combination with a
continuation method. The continuation method is used to enhance the ro-
bustness of the iteration method. Basically, this means that we gradually step
up from a simple problem which is easy to calculate, to the final problem by
means of incrementing a continuation parameter, thereby using the result of
the previous continuation step as an initial guess to the current continuation
step. Note that in this respect the time dependent problem as discussed in
Section 4.4 can be regarded as an almost perfect continuation method, where
the time discretization index acts as a continuation parameter. For the ther-
moelectric problem the following coarse grid solution method is used. This
method can either be used to solve the time independent thermoelectric
problem, or to calculate the initial condition on the coarse grid needed in the
time dependent thermoelectric problem.

Coarse-Grid Problem

The following continuation strategy for the coarse grid problem has proven
to be effective. We start by setting the Dirichlett as well as the Neumann
boundary conditions to zero. This means that at the electrical Dirichlett
boundaries the electrostatic potential is set to the built-in potential and the
Fermi-levels are set to zero. At the thermal Dirichlett boundaries the temper-
ature is set to a reference temperature (e.g. the ambient temperature T,). At
the electrical Neumann boundaries the normal components of the dielectric
flux density, the electron and hole fluxes are set to zero. At the thermal Neu-
mann boundaries the normal component of the heat flux is set to zero. This
action forces the device into the state of thermodynamic equilibrium, hence,
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all thermodynamic potentials (E;,E }‘,T) are constant throughout the device.
This means that we have zero electrical and thermal currents, and as a result
only the non-linear Poisson equation needs to be solved to obtain the electro-
static potential at thermodynamic equilibrium.

According to singular perturbation theory [Markowich 1983)[Markowich 1990]
the built-in potential ¢,; can be used as a reasonable approximation to the
actual solution of the Poisson equation provided the spatial variation in the
doping and band gap is not too strong. We therefore use the built-in electro-
static potential @, as an initial guess for solving the non-linear Poisson
equation. The built-in potential is found from the zero space charge condi-
tion. In the case Boltzmann statistics and completely ionized shallow local-
ized states are assumed the built-in potential is found to be!

E&P EBP
d_ a\ = d_ a\? = vh
o) = (—kT) m| L (" : ]ez"T+ (" : ) e T +4[N—b) (7-12)
q 2 N¢ N¢ NE¢

Note that for uniform doping the above built-in potential is indeed the trivial
solution of the Poisson equation. So only close to a junction this approxima-
tion will not hold. For the (full) thermoelectric model using Fermi-Dirac sta-
tistics, and assuming incompletely ionized shallow localized states, the
above defined built-in potential (pg‘. does not hold. In principle, we can use
equation (7-12) as an initial guess to the Poisson equation, however, it is
cheaper to first calculate a better approximation to the built-in potential.
Since in this case an analytical expression is not available an iterative meth-
od must be used. We use a pointwise Newton method with equation (7-12) as
the initial guess, to solve the zero space charge condition

é((Pbi) =q [nh((Pbp T)- ne((Pbp T+ "f((Pb;» T)- na-((Pb,'v T)l =0 (713)

for @,; at the bar?'center of each element?. To obtain double-precision accu-
racy (8=2.2x10 2) approximately 16 iterations are necessary at T, = 50,
approximately 4 at T, = 77 and at room temperature and above the Newton
algorithm converges immediately.

We then have available the thermodynamic equilibrium solution on the
coarse grid. Next, the Dirichlett and Neumann boundary conditions are set to
their desired values and the corresponding globally linearized problem is
formulated with the thermodynamic equilibrium solution as the initial guess.
We solve for the state corresponding to the actual boundary conditions by
starting a global iteration where each iteration step uses the result of the pre-

1. For the numerical evaluation of this expression consult Section 3.5.2.

2. We also need to solve it at the electrical Dirichlett boundaries in order to find the correct
boundary condition for the electrostatic potential.

\
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74.2

vious step as the initial guess. If the iteration fails to converge within 10
steps, it is aborted and the algorithm starts an iteration for the simpler prob-
lem where the (actual) boundary conditions are multiplied by a factor a=1/2.
In general, each time the iteration fails to converge the multiplication factor
o for the boundary conditions is halved and a new iteration is started. As
soon as we have a convergent iteration the boundary conditions are set to
their desired values, however, the last multiplication factor o is stored and if
the iteration fails to converge the boundary conditions are multiplied by (o +
1/2(1-a)). This process is repeated until we have convergence for the desired
boundary conditions.

The global linearization of the system of equations uses a combination of the
Gauss-Seidel decoupling method (cf. Section 7.3) and the Newton lineariza-
tion method. Basically, we first solve the global non-linear (mixed) Poisson
equation by means of a Newton iteration where each iteration step is solved
by the repeated application of (linear) Vanka relaxation sweeps (cf. Section
5.4). The result is then used to initialize a Newton iteration on the electron
and hole continuity equations, where again each Newton step is solved by re-
peated application of Vanka relaxation sweeps. These results, on their turn,
are used to initialize a Newton iteration on the heat balance equation. The
process is repeated until a prescribed accuracy is achieved. Note that this it-
eration process is global and bears no immediate resemblance to the non-lin-
ear relaxation method discussed in Section 5.4.7.

Multigrid iteration

In order to reduce the algebraic error well below the truncation error on the
finest grid we use a Full Multigrid V-cycle as shown in Figure 5-2(d). In the
FMG-V cycle we use v, = v, = 1 which means that before each restric-
tion, and after each interpolation (prolongation), a single symmetric non-lin-
ear Vanka relaxation sweep is applied. Moreover, each coarse-grid problem
(except the first one) is approximately solved by applying Vv, = 2 non-linear
Vanka relaxation sweeps. Upon completion of the FMG-V cycle we continue
by applying F-cycles (cf. Figure 5-2(c)) until the scaled residuals on the fin-
est grid are sufficiently small. The residuals are scaled by the corresponding
diagonal entry of the Jacobian of the differential operator, hence the scaled
residuals approximately represent the corrections necessary to make the fine
grid solution exact.

For the thermoelectric problem the non-linear Vanka-type relaxation results,
for each element, in a small (20x20) non-linear system of equations. As in
the calculation of the coarse-grid problem we use a Gauss-Seidel decoupling
method in combination with Newton iteration to solve this system of equa-
tions. Note however, that each decoupled equation now is only linearized
with respect to the local unknown degrees of freedom. Clearly, this type of
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7.5

linearization is local and not global as in the calculation of the coarse-grid
solution. '

Convergence Results

In this section we analyze the convergence behavior of the solution proce-
dure as described in the previous sections. To demonstrate the mesh-size in-
dependent performance of the multigrid method for the test problem
proposed in Section 7.1 we solve the problem three times, the first time with
a finest grid with 16x16 elements (four grid levels), the second time with a
finest grid with 32x32 (five grid levels) elements and the third time with a
finest grid with 64x64 elements (six grid levels). In each case the coarsest
grid only consists of 2x2 elements. We calculate the (scaled) logarithm of the
max-norm of the residuals on the finest grid after completion of the FMG-V
cycle and after completion of each F-cycle. In Figure 7-2 the residuals are
shown for the electrostatic potential, the electron and hole Fermi-levels and
the temperature. Note that the residuals are scaled by the corresponding di-
agonal entry of the Jacobian of the differential operator, hence the scaled re-
siduals approximately represent the corrections necessary to make the fine-
grid solution exact.

For all three cases the behavior of the residuals is very similar (the resolution
of the graph is too small to show the differences). This clearly demonstrates
the mesh-size (4) independent convergence rate of the method. Consequent-
ly, because the number of cycles needed is independent of the finest grid size
and the amount of work involved in carrying out a single F-cycle is of O(n)
(cf. Section 5.2.8), the total amount of work needed to solve the problem in-
creases linear with the number of cells in the finest grid. Note that in Figure

n
A
-2 q‘
-4} T
g 50
=
=]
‘@ -8
g
k=) -10
-12
-14

~-16

0 2.5 5 7.5 10 12.5 15
number of cycles

Figure 7-2

Plot of the logarithm of the (scaled) residuals corresponding to the electrostatic
potential, the Fermi-levels and the temperature, as a function of the number of cycles.
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7-2 we continue to apply F-cycles until machine accuracy is achieved, how-
ever, in practice we may settle for much less accuracy, e.g. 107. In this case
we already have convergence after approximately four additional F-cycles.

Finally, (as promised) we calculate the temperature T ; at the midpoint of the
junction for several bias conditions (cf. Table 7-1). For this case we use nine
grid levels in order to assure sufficient accuracy in the neighborhood of the
junction. However, in order to keep the total number of cells limited we now
use the adaptive grid refinement criterium, as discussed in Chapter 5, which
uses the fine-to-coarse grid defect correction of the electrostatic potential to
locally refine the grid. Basically, before each prolongation is carried out in
the FMG-V cycle, the fine-to-coarse grid defect correction is calculated and
each cell for which the defect correction is above the threshold value (0.1) is
locally refined. This way we obtain the locally refined grid as shown in Fig-
ure 7-3.

Table 7-1

7.6

Temperature at the midpoint of the junction for several values of the bias voltage.

1% 0.0 0.2 04 0.6 0.7 0.8 0.9 1.0

a

300 300 300 300 305 320 350 405

o

Concluding Remarks

The major conclusion of this chapter is that the multigrid method in combi-
nation with the mixed discretization method in principle is a very effective
method for solving the thermoelectic problem in semiconductor materials, in

(b

Figure 7-3

Quarter diode test problem with locally refined grid.
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a sense that mesh-size independent convergence rates are obtained. So po-
tentially we have at our disposal a method that solves these problems opti-
mally efficient. This clearly is demonstrated by calculating the self-heating
effects for the quarter diode problem on a simple computational domain with
square grid cells.

It goes without saying that there are many more features that should be stud-
ied before the proposed method can withstand the demands that arise in
practical computations. This is inherent to the use of the multigrid method
which needs fine tuning for each type of problem to be solved. Therefore the
characteristic features of each type of problem must be extracted and tested
for their effect on the efficiency. In this respect we have shown the basic ap-
plicability for the thermoelectric problem, however, we have not yet ad-
dressed problems such as interface and surface charge, inhomogeneous
Neumann boundary conditions, small Neumann contacts that cannot be re-
solved by the coarsest grid, non-linear Dirichlett boundary conditions, inver-
sion layers, low and high temperature behavior, etc. Future research
obviously needs to deal with these cases in a structured approach in order to
obtain a simulator which besides being efficient is also generally applicable.

Although the proposed method is optimally efficient, in a sense that the
amount of work needed to solve the problem is C - n, we have not discussed
the size of the proportionality factor C. Clearly, we should pay sufficient at-
tention to the optimization of C. We can think of improving the local non-
linear Vanka relaxation which at present uses a Gauss-Seidel decoupling
method which was chosen for its robustness and not for its good conver-
gence rate. It is very likely that the multigrid iteration tracks the actual solu-
tion sufficiently close so that we can apply a straightforward Newton
linearization and hence obtain quadratic convergence in solving the local
non-linear equations. Also the effectivity of the relaxation process could be
improved by using different relaxation ordering schemes. It is well known
that a red-black ordering of the grid cells shows much better smoothing fac-
tors. However, on quasi-unstructured grids this type of relaxation is hard to
realize and it seems that on these types of grids the grid scanning algorithms
as presented in Chapter 6 are optimal.

In principle the method also works on quasi-unstructured domains with tri-
angular and parallelogramic elements. However, for these types of domains
itis hard to employ relatively coarse grids. The solution to this problem must
be found in the inherent use of grid adaptivity with respect to the irregular
internal interfaces and boundaries. This way we may still use relatively
coarse grids which not necessarily accurately approximate the computational
domain. During the actual solution process the coarse grid is refined in such
a way that it more and more approximates the true computational domain. It
is also possible to use a coordinate transformation which transforms the
computational domain of a problem to a square computational domain. This
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way the actual solver can be kept very simple, however, at this time it is un-
clear if this approach is truly beneficial.
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A-1

This appendix summarizes the most important issues related to Cartesian
tensor notation. First, a few general remarks are in place. The main advan-
tage of (Cartesian) tensor notation is its ease of algebraic manipulation.
However, the pure algebraic nature of tensor notation deprives us of the in-
troduction and use of high-level (symbolic) operators that could be treated as
mathematical objects. In respect to the implementation, one could say that
tensor notation is close to the procedural programming paradigm (cf. Chap-
ter 6), in the sense that the notation leads directly to a computer algorithm.
However, in an object-oriented environment, we rather wish to identify a
well-chosen set of high-level mathematical operators which are then treated
as objects. The mathematical object then may hide their procedural charac-
teristics. If these objects are available as programming tools, a more compact
high-level formulation of the problem is possible.

The Summation Convention

Repeated Greek subscripts imply summation, for example

@by = Y agby (A-1)
o

The Kronecker Delta Tensor

The definition of the Kronecker delta is as follows

L,i=j
Saﬁ = { (A-2)
0,i#j

The Levi-Civita Tensor

The definition of the Levi-Civita tensor of rank N is as follows

[ =
1o Oy

+ 1, even permutation of the subscripts
{ -1, odd permutation of the subscripts (A-3)

0, repeated subscripts
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A-4

The relation between the Kronecker delta and Levi-Civita tensor is given by
the relation

€opy Sanp = Opndp ~ 3p,02y (A-4)

Determinant of a Tensor of Rank Two

The determinant of a tensor of rank two is defined as
DCt(aaB) Ea]....aN = Qg B, 90,8, GBI.... By (A-5)

where N is the dimension of the tensor @qp. In two dimensional space N = 2,
and in three dimensional space N = 3.

Symmetric and Anti-Symmetric Tensors

It is usually convenient to split a tensor of rank two into its symmetric and
anti-symmetric part, that is

Oy = Oop+ Oqp (A-6)

where

1
GfxB =5 (GaB+ GBQ)

1
O = 3 (g~ Opa) A

A further decomposition can be obtained by extracting the trace from the
symmetric part of the tensor, that is

Gup = Ohp+Oup + Oag (A-8)

where

1
- (§°un5un) aaB

QN
=
|

1 1
Oup = 3 (Oup+Opo) = (§°un8un)5uB

-1 (0,3~ Og,,)
of 2 \ap Ba (A-9)
From the above decomposition, it can be observed that a physical quantity,
determined by the nine independent elements of a tensor of rank two, can
also be characterized by a scalar equal to one third of the trace of the tensor,
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A-6

by five independent elements of the symmetric part (after substraction of the
trace), and by the three independent elements of the antisymmetric part.

Laminar and Solenoidal Vector Fields

Solenoidal and laminar vector fields are defined by the following property
1 _
aaF;" =0

lam __
EGBYBBFY =0 (A-10)
This means that the divergence of a solenoidal vector field is zero, and the
rotation of a laminar vector field is zero. Obviously, this allows us to write a
solenoidal field as the rotation of a vector field and a laminar field as the gra-
dient of a scalar field

sol _
Fa' = cupy9p®y

Flam - &
o Oy (A-11)

Cartesian Tensor Notation vs. Dyadic Tensor Notation

A table giving the correspondence between the (symbolic) dyadic notation
and the Cartesian tensor notation is given below.

Table A-1

The correspondence between dyadic and Cartesian tensor notation.

description dyadic notation cartesian notation
scalar a a

vector a 3y
dyadic ab agbp
scalar product a-b ayby
cross product axb € opydply
gradient of scalar Va 0,2
gradient of vector Va 94,3p
gradient of dyadic Vab dqapby
divergence of vector V.a 0e 8y
divergence of dyadic V.ab Ouybp
Laplacian of scalar V2a 04044
Laplacian of vector Va 009pap
cur of vector Vxa € opPpey
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Functional Spaces

In this appendix, we briefly discuss the functional spaces as used in the
mixed variational formulation as discussed in Chapter 4. The functional
spaces, to be discussed below, are used to classify the behavior of the solu-
tion expressed by the variational form of the PDE. We assume that the PDE
is defined on an open and simply connected computational domain  in R
(d=1,2,3) with a smooth boundary d€2 The boundary consists of a part 9Qy,
on which Dirichlett boundary conditions are prescribed, and a part 9Qy, on
which Neumann boundary conditions are prescribed. Moreover, we assume
that 0Q, N 0Qy =0 and 9, L IQy = Q. Further, the vector n is defined as
the outward normal vector on the boundary o€

The Lebesque space LZ(Q) of square-integrable scalar functions on Q is de-
fined as

L%Q) = {(6:Q >R |J'¢2d£z<w } (B-1)
Q

The Lebesque space LZ(Q) of square-integrable vector functions on £ is de-
fined as

LXQ) = {u:Q— R |J'1u;2d9<oo } (B-2)
Q

The Sobolev space H 1(Q) containing the square-integrable functions of
which the gradients are also square integrable is defined as

HY(Q) = {¢ € LXQ) |Voe L¥Q) } (B-3)

For vector functions a similar space is defined, however, the notation is a lit-
tle different

Hdiv;Q) = {u e LXQ) |V ue LAQ)} (B-4)

The above spaces are defined on €, similar Sobolev spaces can be defined on
dQ. If the trace operator 7, is defined to filter the values of ¢ at the Dirichlett
boundary from ¢, the following subspace can be defined
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H'?Q@Q) = {1,0[0e H'(Q} (8-5)

Similarly, a Sobolev space can be defined for the Neumann part of the
boundary

H'20Q) = {yu|ue Hdiv;Q) } (B-6)
It will prove to be convenient to define some subspaces in the above Sobolev

spaces given in Equations (B-3) to (B-6). Imposing zero boundary condi-
tions on the solutions we get the following subspaces defined on Q

Hp(@Q) = {¢ € H'(Q) |1,0=0} (B-7)
H\(div;Q) = {u € H(div;Q) |n-yu=0} (B-8)
and on the boundary dQ
HY*0Q) = {% e H/*9Q) [A=00n 9Q } (8-9)
HY20Q) = {1 € H2@Q) [u=00n 00 } (B-10)

Finally, the linear varieties, which define the solution spaces satisfying the
boundary conditions can be defined as

HA(Q) = {0 & H'Q) [¥p0 = 8p |gp € Hp "OD) } (B11)

Ha(div;Q) = {u € H(div;Q) |n-1u =gy |8n e HY0Q)}  (812)

This concludes the discussion on some of the basic notions of functional
analysis with respect to the mixed variational formulation.
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Affine Element Transformations

Calculations on finite elements can be substantially simplified if these are
made on a reference or master element S’. To achieve this, an affine transfor-
mation F : § — §’is used to project an element S in the mesh on to the refer-
ence element S% then the calculations are carried out on this reference
element. In this appendix, we consider such a transformation for triangles
and quadrilaterals, moreover, we also address the issue of how the operators
and the physical quantities on which they operate transform when going
from an element in the mesh to the reference element.

C-1 Transformations for Triangles

The reference triangle (cf. Figure C-1) is defined by its vertices at (0,0) (1,0)
and (0,1). An arbitrary element in the mesh can be described by the position
vectors of its vertices, which we denote as: x!, x* and x3. Note that we use the
convention to specify the vertices in an anticlockwise fashion.The transfor-
mation F(x') — x carrying any point x' € §' onto x € S can be constructed by
means of the following rule

3
x =) xyx,y) (C-1)
i=1

where the y; are the linear shape functions on the reference triangle, that is

(0,1

(0,0) (1,0)

Figure C-1 An arbitrary triangular element S and its transformation to a master element S".
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v y)=1-x'-y
Yy y) = x'
W'3(x'7 y') = y‘ (c_z)

Using equations (C-1) and (C-2) we may write the mapping F(x') — x as

[ﬂ ) {x 21 +y'(x3—x‘)} N [;C
X (P -y) +y 0P -y
That the above transformation indeed maps the triangle in the mesh to the

reference triangle can be easily verified by inspection. The functional matrix
b, the metric g and the functional determinant J of the transformation are

found to be
ox,(x") JO T O S
baB - axlﬂ B 2 1

-y y -y

1
. (C-3)

8op = bwbtﬂ

J = det(byp) = Jm (C-9)

Using the following rules, which are valid for an arbitrary triangle in the
mesh

L= |x? - x|
L= |Jc3 - x2|
. 3 (C-5)
Iy = ! - 7|
L= [l,l5c0s8
the metric and the determinant can be written as
ap = | | J = l1;sin@ (C-6)
L*5

Note that using the above notations we may write the transformation as a lin-
ear map, that is

Xy = ban'B+bu ba = (Xl,yl) (0'7)

Also note that when the vertices of the triangle in the mesh are numbered
counterclockwise and the triangle is non-degenerate (all angles < ), the Ja-
cobian (J) of the transformation is always positive, hence the transformation
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is invertible. According to equation (C-7) the inverse transformation can then
be stated as

X'y = bag- (x3—bp) (C-8)
C-2 Transformations for Quadrilaterals
The reference quadrilateral (cf. Figure C-2) is defined by its vertices at (0,0)
(1,0) (1,1) and (0,1). An arbitrary element in the mesh can be described by
the position vectors of its vertices, which we denote as: x!, x2, x> and x*. The
transformation can be constructed by means of the following rule
4
x= ) Xy, ) (c9)
i=1
where the , are the standard bilinear shape functions on a quadrilateral, that
is
v y) = (1=x") (1-y)
Vo, y) = x'(1-y")
\V'B(x" yl) = xly!
v,&,y) = (1-x)y (C-10)
We may then calculate the mapping F(x') — x as
v 2 ] v 41 gl 2,3 4 1
E’ - [x (Jc2 xl) +y (x4 xl) +x'y (x1 x2+x3 x4)} + kl} (C-11)
X =) +y T =y) +xy =y Yy -y)
That the above transformation indeed maps the quadrilateral in the mesh to
the reference square can easily verified by inspection. The functional matrix
©,1)
4
y!
M
0,0) (1,0
—_x
Figure C-2 An arbitrary quadrilateral element S and its transformation to a master element S*
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b, the metric g and the functional determinant J of the transformation are
found to be

Ax(x")

- - pl 2
baB = T.ﬂ = baﬂ+qu

pl. = '(xz—xl) (x“—xl)}
R I S N R
O =y) 0" =y)

g2 | O - —aty (e -
B0y Yy (- xhx

8of = bwb':B

J = det(byg) = Jdet(gyp) (C-12)

When the vertices of the quadrilateral in the mesh are numbered anticlock-
wise and all its interior angles are less than &, the Jacobian can be proven to
be positive for any x' € S', which means that the transformation is invertible.
However, stating the inverse transformation is, in general, a difficult task be-
cause of the non-linear character of the transformation.

Note that in the case of general quadrilaterals, opposed to the triangular case,
the transformation cannot be written as a linear mapping. Further, the func-
tional matrix, the metric and the functional determinant depend on x'. The
dependence on x' can be removed by restricting the type of quadrilaterals to
either parallelograms, rectangles or squares. Now the second part of the
functional matrix bgﬁ vanishes and as a result the transformation becomes
linear. Using the following rules, which are valid for an arbitrary paralello-
gram in the mesh

L= % — x|

I,= |l® - 2

L=x*-xY (C-13)
= lx' - 2
L = Jl;l,c0s8

the metric and the determinant can be written as

2 52
| 2L

= 5 o J = 1,1,sin® (C-14)

guf} =
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The transformation and its inverse can now be written as linear maps just as
in the triangular case

Xo = bopX'g+by by = (x,)) (C-15)

Xo = (bhp) " (xp=bp) (C-16)

Now that the transformations are completely defined, the question remains
how operators and the quantities on which they operate transform from an
arbitrary element in the mesh to the reference element. In the remainder of
this appendix, we assume that the quantities and operators are known on the
reference element.

C-3 Transformation of Scalars, Vectors and Tensors

Foliowing the transformation rules corresponding to the covariant and con-
travariant vector formalism [Weinberg 1972)[Spiegel 1974] we may state the
following rules (using tensor notation):

A scalar quantity ¢ transforms as

o(x) & 9'(x") (C17)

A vector quantity u, transforms as
Uy (¥) & T ) (bopx') - ' p(x")) (C-18)
A tensorial quantity Cq,...q, Of rank N transforms as
Co,..a,(*) © TN (bap, - bap ) C'p 5 (X)) (C-19)

C-4 Transformation of Differential Operators

Using the coordinate free formulations of the covariant gradient, divergence
and rotation operators [Weinberg 1972]{Spiegel 1974] the transformed opera-
tors can be written as

9, 0x) > bypx)d,. 0'(x') (C-20)
9, uex) & J 1 (x),. up (x') (c-21)
CapyOr,ly () Sapy, Uy &) (C-22)
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C-5 Transformation of Integral Operators

Volume elements, surface elements and line elements in R? transform ac-
cording to
dv e J(x)dVv'
nodS & J(x")bog(x")ny dS' (C-23)
TodL © bop(x)tg dL!
Similar rules can be derived in R3, Using the above rules, the various ele-

ment integrals as occurring in the finite element formulations in Chapter 3
transform according to

J' o(x)aV = J¢'(x')](x')dV' (C-24)
v v
f¢(x)axuua(x)dv = th'(x') B, Uplx)dV (C-25)
1% v
Jowuy@mgas = Joew eomas (C-26)
S S

J' Cap®ub(Ru (DAY = J' T (boobpiap®)) ) (£)uf (x)dV' (C27)
v V'

Equations (C-24)-(C-26) are more or less self-evident, however, equation (C-
27) requires some explanation. The tensor ¢4p(x") is obtained by the follow-
ing rule

Cap(x) = Cop(F(x) (C-28)

hence, this is not a usual tensor transformation but rather the transformation
resulting from the transformation of the integral. We could have followed the
transformation formalism more strictly, however, here there is no need to,
because it is on the element in the mesh that we know caB(x), not on the ref-
erence element.
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Numerical Evaluation of the
Fermi-Dirac Integrals

In this section, we discuss a very fast and accurate method to evaluate the
Fermi-Dirac integrals of arbitrary order. The proposed method is very attrac-
tive in comparison to the complicated analytical approximations that are
usually used.

The Fermi-Dirac integrals are defined by

S

-1 y
Fx = F(s+1)_,.[1+cxp (y—2x)
0

:ldy se {...,,-1,0,1, ...} (D-1)

We are specifically interested in the integrals F, ,2(x) and F_, ,,(x) which are
approximated as follows

exp (x) (x<-7)

Lookup Table (-7 <x<11.5)
F_i,,(x) = (D-2)

2
(‘—;)JE[x% %] (x> 11.5)

exp (x) (x<-6)
Lookup Table (-6<x<10)

Fl/z(x) = (D-3)
8
(3¥mx  (x210)
To construct the look-up table we make use of the following property
oF (x)
35 = Feo®@ (D-4)
Using this property, the integrals can be written as

F_yp(x+8x) = F_y ,)(X) + F_3 ,,(x)8x + 0.5F _g ,,(x)8x? (D-5)
Fip(x+8%) = F1 () + F_y ,,(x)8x + 0.5F 3 )o(x)8x? (D-6)
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Appendix D: Numerical Evaluation of the Fermi-Dirac Integrals

Now, in order to allow a fast and accurate calculation of F,,,(x} and
F_,,»(x), we tabulate the values F_s,(x;), F_3,5(xp), F_y,5(x,) and
F,,,(x,) in the range of —10 <x <15 with step size 8x = 0.1. Such a table
can easily be generated by the simple MATHEMATICA program shown in
Figure D-1.

(* make_frm table.m *)

F[s_,x_] := N[Re[Exp[x]LerchPhi[-Exp[x},s+1,1} 1,12]

s[m_] := StringForm(®“*‘ ‘' ‘‘ ‘¥, F[-5/2,m], F[-3/2,m],
F[_1/2Im]l F[+l/2lm]]

OpenWrite[“frmtab.dat”]

For[m=-10.0, m<=15.0, m+=0.1,
WriteString([“frmtab.dat”,s{m],”\n"]]

Close[“frmtab.dat”]

(* end *)

Figure D-1

Mathematica program to calculate the Fermi-Dirac table.

The idea is to round the value of x to the nearest tabulated x, value and ex-
tract the corresponding values of F_s,,(x,), F_3,,(x)), F_;,o(x;) and
F,,,(x,) from the table. By using the remainder 8x = x—x, and equation
(D-5) or (D-6) the values of F,,,(x) and F_, ,,(x) are obtained with less than 1
% error, when the table step size 6x = 0.1.

The entire scheme is implemented as a C++ class. Creating an instance of
the class automatically reads the table into core and we may then send mes-
sages to the object to instruct it to calculate and return the desired value of a
Fermi integral. The destruction of the object automatically frees the storage
occupied by the table.
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List of Symbols

This section first explains the main notational conventions used for the
various physical quantities. Next, the main intensive, extensive and
flux state variables and constitutive parameters are listed for each ener-
gy domain. This is done by grouping the table entries of a table; the
first group represents the intensive state variables, the second group the
extensive state variables and the third group the flux state variables. Fi-
nally, a fourth group represents the constitutive parameters which can
be either explicit or implicit.

Some effort has been made towards a unified notation of the various
physical quantities. The notation is somewhat different from the con-
ventional one, however, we think the present one is more productive.
For instance, energy densities are denoted by the symbol u and the en-
ergy of a component k is represented by u¥. In order to refer to a spe-
cific type of energy, e.g. electrical energy, an additional superscript is
used, e.g. ub"*, The following three tables summarize the conventions
used for the notation of various density, flow and source quantities.

Density: Particle Mass Charge Energy Heal Entropy
nt Pr=mint  E=gn @ # s

Flux: Particle Mass Charge Energy Heat Entropy
me=ntvi pi=ptvi B=8v & . 5

Source: Particle Mass Charge Energy Heat Entropy
* ph=miit Er=giat g 7 3*

Next, we list the main state variables and constitutive parameters for
the electromagnetic (radiant), electrical and thermal energy domains.

Electromagnetic:

Symbol  Description Sl Unit
ey electric field strength [V-em™]
by magnetic field strength [A-em™]
dy electric flux density [A-s-cm™?]
by magnetic flux density [V-s.cm™?)
Do, electric polarization [C-cm?)
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g, magnetic polarization [A-cm™]
scalar electric potential vl

a, vector magnetic potential [V-s.cm™])
€, electric current density [Acm?)
13 electric charge density [C-em™]
gext external electric current [A-cm?]
K2 external magnetic current [V-cm]
€ap permittivity tensor [-]
Hap permeability tensor (-]
Electrical: Symbol  Description Unit
Ef‘ Fermi energy of the electrons in the conduction band M
E}' Fermi energy of the electrons in the valence band [J1
E; intrinsic Fermi energy U]
ve chemical potential of the electrons in the conduction band 8))
o chemical potential of the holes in the valence band ]
vé electro-chemical potential of the electrons in the conduction band 71
vh electro-chemical potential of the holes in the valence band 71
¢° quasi Fermi-potential of the electrons in the conduction band vi
oF quasi Fermi-potential of the holes in the valence band vl
E}," Fermi energy of the electrons in a donor-like localized state 1
E}"‘ Fermi energy of the electrons in an acceptor-like localized state 1)
¢d" quasi Fermi-potential of the electrons in a donor-like localized state vl
¢% quasi Fermi-potential of the holes in an acceptor-like localized state vl
né electron density fem™)
n* hole density [cm™3}
e donor-like localized state density [cm™)
n’ acceptor-like localized state density [cm™]
nd:‘ ionized donor-like localized state density [em™3]
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n* ionized acceptor-like localized state density [cm™]
nd" neutral donor-like localized state density fem3]
n neutral acceptor-like localized state density [em™]
ng, electron flow [s'-em?]
nt hole flow fs-em?)
o electron contribution to charge flow [C-stcm™]
(’; hole contribution to charge flow [Cstem?
€y total charge current density [C-stcm 2]
A" netrecombination rate of electrons from the [s'-cm)
conduction band to the valence band
s 7 net recombination rate of electrons from the [s-cm
conduction band to a donor-like localized state
#° 7™ net recombination rate of electrons from the [s7'cm™3)
conduction band to an acceptor-like localized state
At net recombination rate of holes from the valence [stcm™)
band to a donor-like localized state
pih % net recombination rate of holes from the valence [s'cm™3]
band to an acceptor-like localized state
.d, L
A" 7% net recombination rate of electrons from a donor- [s'-em™)
like localized state to the conduction band
rid" ok net recombination rate of holes from a donor-like [scm™]
localized state to the valence band
.a, e . .
n" net recombination rate of electrons from an acceptor- [st-cm™)
like localized state to the conduction band
A7 h net recombination rate of holes from an acceptor- [s7'-cm™?]
like localized state to the valence band
ESP band gap 1
E°® conduction band edge (1]
E* valence band edge 0]
ES” conduction band edge at zero electrostatic potential m
E(")b valence band edge at zero electrostatic potential (1]]
X electron affinity [0)]
q° electron charge (@]
q hole charge [C]
m° electron rest mass [kg)
me® density-of-states effective mass of the conduction band kgl
MULTI SIGNAL-DOMAIN MODELING OF SOLID-STATE TRANSDUCERS 243



List of Symbols

m density-of-states effective mass of the valence band [kg]
mgg effective mass tensor of the electrons in the conduction band kgl
m;ﬂ effective mass tensor of the electrons in the valence band kg
ne electron mobility [cm?#Vs]
T hole mobility {[cm?/Vs)
Pt electron thermoelectric power [V/K]
P hole thermoelectric power [VK]
Thermal: Symbol  Description Unit
T® absolute temperature of the electron system K]
T absolute temperature of the hole system K]
T absolute temperature of the lattice system K]
T absolute temperature K]
T,T, reference temperature or ambient temperature [K]
s¢ entropy density in the electron system (K em)
s entropy density in the hole system K™ em]
s entropy density in the lattice system K -cm]
s total entropy density K em]
ht thermal energy density in the electron system [J-cm™)
A thermal energy density in the hole system (J-em™]
R thermal energy density in the lattice system [J-cm™)
h total thermal energy density [J-cm™}
ke, heat flow in the electron system {Jsem™?)
K heat flow in the hole system [J-s'-cm?)
KL, heat flow in the lattice system [J-s'-cm?)
X, total thermal conductivity st emK™]
P electron thermoelectric power (VK]
P" hole thermoelectric power VK]
e, Debye temperature K]
cf heat capacity of the electron system (K cm™)
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c heat capacity of the hole system (K em

¢! heat capacity of the lattice system IK'cm™]
Physical Constants: Symbol  Description Value Unit

c velocity of light 3.10° {m/s]

€ permittivity of vacuum 8.85.10" [AsVm]

Lo permeability of vacuum 471077 [Vs-A'-m]

q electron charge 1.60219-10® [C]

m electron rest mass 9.1095-10° kgl

k Boltzmann constant 1.3807-10°% [I/K]

h Planck constant 6.6262-10-% [J:s]
Mathematical: Symbol  Description

60. Dirac delta function

€ ik Levi-Civita tensor of rank three

n* average grid size for grid &

n error amplification factor

n smooting factor

ult coarse-grid solution

u* fine-grid solution

ut solution on grid level k

e coarse-grid residue

r" fine-grid residue

* residue on grid level &

uh* solution on patch ! at level k

w* approximate solution on grid level k

uh* approximate solution on patch [ at level &

G, grid at level &

P; grid patch I of grid level k

Lk discretized differential operator at level &

k: 1 k,,” restriction operators for tranferring solutions

Rf o Ri’ restriction operators for tranferring residuals

PE*1, P prolongation operators

£ 1 % interpolation operators
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Greek Alphabet: Symbol  Description

LA alfa, ALPHA

B.B beta,BETA

v gamma,GAMMA
8,A dela,DELTA

&E epsilon, EPSILON
e/ 2813, ZETA

n.H 2a,ETA

0.0 théta, THETA

Ll iota,JOTA

KK kappa,KAPPA
M lambda,LAMBDA
M mu,MU

v,N nu,NU

1) xi,XI

0,0 omnikron,OMNIKRON
7Tl pi,PI

p.P rho,RHO
gz sigma,SIGMA

1,T tau, TAU
vY upsilon,UPSILON
0,0 phi,PHI

1LX chi,CHI
(A 4 psi,PSI
0,Q omega,OMEGA
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MG
OO0P
PDE
RA
SOR
SSOR-CG
TH
TIP
TSM
WRM
WU
1D
2D
3D

Boundary Finite Element Method
Boundary Interface

Conjugate Gradient

Chemical Domain

Correction Scheme

Electrical Domain

Full Approximation Scheme
Finite Difference Method

Finite Element Method

Finite Volume Element Method
Finite Volume Method

Full Multigrid

Interface Condition

Internal Interface

Magnetic Domain

Mechanical Domain

Multigrid

Object-Oriented Programming
Partial Differential Equation
Radiant Domain

Successive Over Relaxation
Symmetric Successive Over-relaxation Conjugate Gradient
Thermal Domain
Thermodynamics of Irreversible Processes
Time-Stepping Method
Waveform Relaxation Method
Work Unit

One-Dimensional
Two-Dimensional
Three-Dimensional
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Chapter 1

In Chapter 1 a general introduction is presented which may help to put the
subject into perspective. In particular we motivate the choice of irreversible
thermodynamics as a consistent framework for the physical modeling of sol-
id-state transducers, and the use of the mixed discretization method and the
multigrid method for the numerical modeling of solid-state transducers.

Chapter 2

In Chapter 2 we present various aspects that are helpful to come to a unified
abstract description of a solid-state transducer configuration. In particular,
we discuss an abstract geometrical representation of a generic transducer
configuration in terms of regions, interfaces and boundaries. In order to de-
scribe their characteristic (physical) features appropriate model equations
are linked to each of the regions, interfaces and boundaries. With respect to
the construction of explicit model equations we argue and exemplify that the
thermodynamics of irreversible processes provides a powerful and consis-
tent physical modeling paradigm which can be applied to a variety of physi-
cal situations, including the physical modeling of solid-state transducers. We
also show that the entire field can conveniently be organized by means of the
signal or energy domains, with the tacit assumption that a certain region of a
transducer configuration operates in one or more energy domains. We also
discuss a generic abstract mathematical representation of the model equa-
tions and argue that, for the sake of simplicity, it is convenient to represent
apparently different physical models in the same abstract (canonical) mathe-
matical form. Also some attention is paid to the general treatment of inter-
face and boundary conditions.

Chapter 3

In Chapter 3 the objective is to derive the model equations for a region of the
transducer configuration operating in the thermal and/or electrical energy do-
main. By using the principles of the thermodynamics of irreversible process-
es a closed mathematical model, in terms of balance equations, equilibrium
equations of state, and non-equilibrium equations of state is derived. The
derivation uses the following simplifying assumptions,

# fixed chemical composition
isostress
mechanical rigidity
mechanical equilibrium
zero magnetic field
electrostatic conditions

® & ¥ % @
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Where appropriate, we also compile several useful (parametrized) constitu-
tive models from the available literature, however, it should be mentioned
that most of these models are not tested for their compatibility with the avail-
able fabrication process. Essentially, this means that for each semiconductor
fabrication process the parameters of each constitutive model should be cali-
brated to that particular process. This is an aspect often neglected in device
modeling.

Future research in this field should obviously be directed towards the relax-
ation of the various simplifying conditions. This way we hopefully evolve
towards a complete modular computer implementation of the model, which
can be applied to various practical cases. As argued earlier the implementa-
tion of such a model should be modular, in a sense that the apparent com-
plexity of the model should be configurable. The rather new object-oriented
programming techniques can conveniently be used for this purpose. Also the
use of high-level compilers that compile the actual simulation program from
a high level problem definition language are expected to be useful. Despite
these interesting aspects we digress from the present subject, because we feel
that more substantial knowledge is necessary with respect to the implemen-
tation of the models. Therefore, in the following chapters the objective is to
define a convenient framework for the discretization, solution and imple-
mentation of the thermoelectric model equations. The proposed framework
can later on be extended to cope with extended physical models.

Chapter 4

In Chapter 4 the objective is to present a convenient framework for the dis-
cretization of the thermoelectric model equations. The discretization method
is based on the mixed formulation of the problem. The main reason for using
the mixed discretization method is that it naturally fits the form of the mod-
els resulting from thermodynamic systems theory. In particular, we discuss
the mixed discretization method for a non-linear parabolic partial differential
equation, representative for the thermoelectric problem as defined in Chapter
3. The mixed discrete equations are obtained by using the lowest-order Ravi-
art-Thomas element, which is discussed for the triangular and parallelogram-
ic case. Also the problem of the time-dependence and non-linearity of the
problem are discussed.

At this stage we have at our disposal all the necessary tools for the discreti-
zation of the thermoelectric problem, the following chapter must deal with
an effective numerical solution method for the resulting discrete model equa-
tions. We do not wish to use a standard solution method, because these have
proven to be rather ineffective. Instead, we focus on the formulation of a
multigrid method that can be used with the mixed discrete equations.
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Chapter 5

In Chapter 5 we discuss an adaptive multigrid solution method which can be
used to solve the discrete problems obtained from the mixed discretization
method as discussed in Chapter 4. Besides the more intricate details, we also
present a fairly complete introduction to the essential features of the multi-
grid method. With respect to the mixed discretization the Vanka-type relax-
ation operator and the intergrid operators are discussed. By means of local
mode analysis we show that the Vanka-type relaxation is an effective error
smoother. With respect to the intergrid operators we conclude that the natural
operators suggested by the mixed discretization method are sufficiently ac-
curate, except for the prolongation operator for the potentials. An improve-
ment for this prolongation operator is proposed based on a post-processing
technique which improves the prolongation operator to a piecewise linear in-
stead of a piecewise constant prolongation. Also the concept of adaptive
composite grids is discussed in great detail and in particular the multigrid er-
ror estimators in the context of the mixed discretization are derived.

Chapter 6

In Chapter 6 we present some guidelines for implementing the FEM, featur-
ing mixed finite elements and multigrid, by means of an object-oriented pro-
gramming language (OOP). A brief introduction to OOP is presented and it
is argued that the use of the OOP features of the C++ languages can conve-
niently be used to construct an elegant implementation of the FEM. It is the
author’s experience that the effort needed to write a similar program in a tra-
ditional language such as Fortran-77 is significantly greater. The OOP para-
digm is subsequently applied to the design of an object-oriented
representation of the computational domain, the grid levels, the elements and
efficient grid scanning algorithms. We emphasize that the approach forces
strict locality, meaning that no global storage is used. In other words solu-
tions, residuals and stiffness matrices are all stored element wise and are ac-
cessed by sending messages to objects of type element. Obviously, there are
many more FEM features which lend themselves to an object-oriented im-
plementation, however, for the sake of brevity these have to be omitted.

Chapter 7

In Chapter 7 we present a glimpse of the results. In particular, we show that
the optimal multigrid efficiency can indeed be obtained for the thermoelec-
tric problem. For this purpose we consider a simple test case dealing with the
self-heating characteristics of a forward biased diode. The mixed formula-
tion of the thermoelectric problem is discussed together with the application
of the mixed discretization method. The resulting discrete equations are
solved by means of the multigrid method and for the forward biased case the
convergence results are discussed. The results clearly show the grid-size in-
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dependent convergence behavior of the method. Clearly, many more features
need to be treated, however, this is left for future investigations.
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Hoofdstuk 1

In hoofdstuk 1 wordt een algemene introductie gegeven welke behulpzaam
is bij het in het perspectief plaatsen van het onderzoek. In het bijzonder mo-
tiveren we het gebruik van de irreversibele thermodynamica als een consis-
tent raamwerk ten behoeve van het fysisch modelleren van vaste stof
transducenten. Ook motiveren we het gebruik van de gemengde eindige dis-
cretizatie methode en de multirooster methode voor het numeriek modelleren
van vaste stof transducenten.

Hoofdstuk 2

Hoofdstuk 2 behandelt verschillende aspecten welke van belang zijn bij het
construeren van een abstracte beschrijving van een vaste stof transducent. In
het bijzonder wordt een abstracte geometrische beschrijving van een gene-
rieke “transducer” configuratie beschreven in termen van “regions”, “inter-
faces” en “boundaries”. Om de karakteristicke fysische eigenschappen van

ST

de “regions”, “interfaces” en “boundaries” te beschrijven wordt aan elk van
de “regions”, “interfaces” en “boundaries” een geschikt model gekoppeld.
Met betrekking tot de constructie van expliciete modelvergelijkingen propa-
geren we het gebruik van de irreversibele thermodynamica, welke een krach-
tig en consistent raamwerk voor het fysisch modelleren vormt en gebruikt
kan worden in diverse fysische configuraties, waaronder ook het fysisch mo-
delleren van vaste stof transducenten. Ook laten we zien dat het gehele veld
handig onderverdeeld kan worden in termen van energiedomeinen waartus-
sen informatie uitgewisseld wordt. Tevens beschrijven we een generieke ab-
stracte mathematische representatic van de modelvergelijkingen en
beargumenteren dat het om uniformiteitsredenen praktisch is om ogenschijn-
lijk verschillende fysische modellen in dezelfde abstracte mathematische re-
presentatie te formuleren. Tot slot wordt nog enige aandacht aan de
algemene behandeling van de “interface” en “boundary” condities besteed.

Hoofdstuk 3

Het doel van hoofdstuk 3 is het opstellen van de modelvergelijkingen die een
“region” van de “transducer” configuratie beschrijven welke in het thermi-
sche en/of elektrische energiedomein opereert. Op basis van de irreversibele
thermodynamica stellen we een gesloten mathematisch model op, in termen
van balansvergelijkingen, evenwichts toestandsvergelijkingen, en niet even-
wichts toestandsvergelijkingen. Hierbij worden de onderstaande simplifice-
rende aannamen gebruikt:

& niet veranderlijke chemische samenstelling
# uniforme stress
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mechanisch onvervormbaar
mechanisch evenwicht
geen magnetisch veld

# electrostatische condities

@ ® @

Tevens worden waar nodig verschillende (geparametrizeerde) constitutieve
modellen gecompileerd uit de beschikbare literatuur. Hierbij moet vermeld
worden dat deze modellen niet getest zijn op hun compatibiliteit met het be-
schikbare fabricageproces. In feite betekent dit dat voor elk fabricageproces
de parameters van elk constitutief model geijkt moeten worden aan dat spe-
cifieke proces. Dit is een aspect wat vaak verwaarloosd wordt.

Toekomstig onderzoek moet zich uiteraard richten op het elimineren van de
simplificerende aannamen. Op deze manier moet uiteindelijk een complete
en modulaire computerimplementatie tot stand gebracht worden, welke in
diverse praktische situaties gebruikt kan worden. Het is gewenst dat de im-
plementatie modulair is, d.w.z. de ogenschijnlijke complexiteit van het mo-
del moet configureerbaar zijn. De  object  georiénteerde
programmeermethode kan hier heel geschikt voor zijn. Ook hogere generatie
compilers welke het simulatieprogramma compileren aan de hand van een
probleemdefinitie taal kunnen uvitkomst bieden.

Ondanks deze interessante aspecten verlaten we het huidige onderwerp, om-
dat op dit moment meer kennis nodig is met betrekking tot de implementatie
van fysische modellen. In de volgende hoofdstukken is daarom het doel een
geschikt raamwerk te formuleren ten behoeve van het discretizeren, oplossen
en implementeren van de thermo-elektrische modelvergelijkingen. Dit raam-
werk kan in een latere fase uitgebreid worden met meer geavanceerde fysi-
sche modellen.

Hoofdstuk 4

Het doel van hoofdstuk 4 is om een geschikt raamwerk te formuleren voor
de discretizatie van de thermo-elektrische modelvergelijkingen. De discreti-
zatiemethode is gebaseerd op de gemengde formulering van het probleem.
De belangrijkste reden voor het gebruik van de gemengde discretizatieme-
thode is het feit dat deze nauw aansluit bij de modellen welke met behulp
van de irreversibele thermodynamica verkregen zijn. Hier beschrijven we de
gemengde discretizatiemethode voor het geval van een niet-lineaire parabo-
lische partiéle differentiaalvergelijking, welke representatief is voor het ther-
mo-elektrische probleem. De discrete gemengde vergelijkingen worden
verkregen met behulp van het Raviart-Thomas element van de laagste orde,
welke beschreven wordt voor een driehoek en een parallellogram. Ook
wordt aandacht besteed aan de tijdsafhankelijkheid en het niet-lineaire ge-
drag van het probleem.

In deze fase zijn alle benodigde gereedschappen ten behoeve van de discreti-
zatie van het thermo-elektrische probleem beschikbaar. Het volgende hoofd-
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stuk zal zich bezig houden met een effectieve numerieke oplosmethode voor
de discrete thermo-elektrische modelvergelijkingen. Hiervoor willen we
geen standaard oplosmethode gebruiken, omdat gebleken is dat deze niet ge-
schikt zijn.

Hoofdstuk 5

In hoofdstuk 5 behandelen we een adaptieve multirooster methode welke ge-
bruikt kan worden om de met behulp van de gemengde discretizatie methode
verkregen problemen effectief op te lossen. Voor de lezer die niet bekend is
met de multirooster methode wordt een introductie gegeven. In relatie tot de
gemengde discretizatie methode bespreken we de Vanka relaxatie operator
en de interrooster operatoren. Met behulp van “local mode analysis” laten
we zien dat de Vanka relaxatie een zeer efficiénte fout “smoother” is. Met
betrekking tot de interrooster operatoren laten we zien dat de natuurlijke in-
terrooster operatoren van de gemengde discretizatie voldoende nauwkeurig
zijn, behalve de prolongatie operator voor de thermodynamische potentialen.
Op basis van een “post-processing” techniek wordt de orde van deze prolon-
gatie operator verbeterd van stuksgewijs constant naar stuksgewijs lineair.
Ook wordt aandacht besteed aan adaptieve “composite” roosters, in het bij-
zonder worden de multirooster foutschatters in de context van de gemengde
discretizatie methode behandeld.

Hoofdstuk 6

Hoofdstuk 6 behandelt enkele richtlijnen voor de implementatie van de ein-
dige elementen methode, in combinatie met gemengde eindige elementen en
de muitirooster methode, met behulp van een object georiénteerde program-
meertaal. Een korte introductie tot object georiénteerd programmeren (OOP)
wordt gegeven. We demonstreren dat de eigenschappen van een object ge-
oriénteerde programmeertaal zeer goed gebruikt kunnen worden om een ele-
gante implementatie van de eindige elementen methode te realizeren. Het is
de ervaring van de auteur dat de moeite om een gelijkwaardig programma in
een traditionele taal te formuleren beduidend hoger ligt. De OOP methode
wordt daarna gebruikt voor het ontwerpen van de object georiénteerde repre-
sentaties van het “computational domain”, de “grid levels”, de elementen en
efficiénte grid-scanning algorithmen. We benadrukken dat deze aanpak strik-
te localiteit forceert, hetgeen betekent dat geen globale opslag gebruikt
wordt. Met andere woorden; oplossingen, residuen en stijfheidsmatrices
worden elementsgewijs opgeslagen en geadresseerd door boodschappen
naar objecten van het type element te zenden. Daar bij object georiénteerd
programmeren de standaard methode voor het alloceren van geheugen voor
de objecten tamelijk veel overhead kost worden ook mogelijkheden gegeven
om dit process efficiénter te maken.
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Hoofdstuk 7

In hoofdstuk 7 lichten we een tipje van de sluier op met betrekking tot de re-
sultaten. In het bijzonder laten we zien dat de optimale multirooster efficién-
tie inderdaad verkregen wordt voor het thermo-electrische probleem.
Hiervoor beschouwen we een testgeval welke het zelfverwarmingseffect van
een voorwaarts ingestelde diode modelleert. We formuleren het thermo-elec-
trische probleem in de gemengde vorm en passen de gemengde discretizatie
methode toe. De resulterende vergelijkingen worden numeriek opgelost met
behulp van de multirooster methode. Voor het genoemde testprobleem wor-
den de convergentieaspecten van de methode belicht. De resultaten demon-
streren duidelijk de rooster onafhankelijke convergentie eigenschappen van
de methode. Uiteraard zijn er veel meer eigenschappen te onderzocken, maar
dat is werk voor toekomstig onderzoek.
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