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Abstract
As train speeds continue to increase, the dynamics of the interface between train and in-
frastructure is an increasingly important factor in current collection performance. European
legislation prescribes that assessment of the quality of the current collection system shall
be performed according to measurements and/or simulations. Due to the increase in com-
puter power in recent years, simulations have become increasingly attractive as an addition
or replacement to real line measurements.

The goal of this work is to judge current collection quality through dynamic time-history
simulations of the pantograph-catenary interface. First, the current state-of-art is reviewed,
subsequently a simulation approach is determined, applied and tested to the norm
EN50318:2002. Based on simulation results and comparison to measured values, the sim-
ulation approach is validated according to the norm EN50318:2002.

As a consequence of the large finite element models used in the valid model, a method
for enhancing the simulation speed without losing non-linearities is determined. Changes in
solver and contact model are identified as possible improvements, as is a modal reduction
of the model. In order to apply the proposed solver improvements, a test model is built in
Matlab. The valid Ansys model is used to test simulation times as different contact models
are used. A modal reduction approach is implemented in Matlab.

It is found that as a consequence of solver changes, simulation times may improve by
up to 40%. Furthermore, contact model changes may result in improvements of up to 77%.
Modal reduction, when applied to the current model, has been found inefficient due to high
amounts of interface DOF with respect to the full size of the model. Therefore, no results are
presented for the modally reduced system.

Non-optimized simulations currently require around 24 hours of simulation time. It is to
be expected that multiple simulations need to be executed in order to simulate all possible
pantograph combinations, thus performing all simulations may require days to weeks. This
situation is deemed undesirable. Based on the findings in this work, it is concluded that
simulation times may improve by a ratio [6:43] if solver and contact model are chosen wisely.
Therewith simulation times per simulation may be reduced to 3.4 hours.

v
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1
General Introduction

1.1. Research Goal / Context
The current work comprises 2 parts. These parts both focus on the Pantograph-Catenary
interaction problem, which is best described as a calculation of the contact forces which ex-
ist between a train’s pantograph and the overhead infrastructure whilst the train moves at
high velocities. Several (proprietary) simulation models exist which simulate this problem,
however, none of these is currently available at Ricardo Netherlands. Due to EU Legislation
incorporated in Technical specifications for Interoperability, simulations are increasingly re-
quired in train or infrastructure certification procedures. Due to the lack of such a model,
the simulation work must currently be outsourced. This is a situation Ricardo Netherlands
would like to change, therefore the current work attempts to create such a simulationmethod.
Validation of the simulation model will be based on the European norm EN50318:2002. This
norm contains 2 validation steps, the first being a validation by means of a reference model
and reference results, the second being a validation with real measured values. The research
goal is therefore formulated as follows: Build a Pantograph-Catenary interaction simulation
model, which is valid according to EN50318:2002.

Due to the extensive amounts of time required to perform a Pantograph-Catenary sim-
ulation, the research was extended to allow for a second research goal: To find and apply
a reduction method, which reduces computational effort whilst respecting dropper slackening,
non-linear sliding contact and wave propagation.

1.2. Thesis Outline
In order to clarify the contents of this thesis and the locations of the separate subjects, an
outline of the thesis is written below. Furthermore, a visual representation of the thesis can
be found in figure 1.1. The outline shows the chapters and their corresponding subject.
Furthermore, it shows towards which of the goals the chapter is written.

Part I of this thesis is focused on the first goal. Firstly, chapter 2 introduces the Pantograph-
Catenary interaction problem and the norm EN50318:2002. Secondly chapter 3 describes
the modelling process. Lastly, chapter 4 contains the simulation results and the validation
according to the 2 steps of EN50318:2002. Part II of this thesis is focused on the second goal.
Firstly, chapter 5 introduces the simulation time improvement process. Secondly, chapter 6
identifies possible methods to improve simulation times and describes which methods are to
be tested on the Pantograph-Catenary interaction problem. Thirdly, chapter 7 describes the
simplified models, upon which the simulation time improvements are tested. Results for the
improvement tests are then presented in both chapter 8 and 9. Lastly, chapter 10 contains
the conclusion, discussion and recommendations for both the first and second goal.

1



2 1. General Introduction

Figure 1.1: Visual representation of the Thesis Outline. Yellow blocks represent chapters, green blocks represent subjects
related to the first goal, blue blocks represent subjects related to the second goal.



I

Part I: EN50318 Simulation Model

Part I contains the EN50318 modelling and simulation process, from iden-
tification of the requirements and mapping the current state of the art up
to the validation of the model according to EN50318. This part is divided
into three chapters. Firstly, chapter 2 introduces the Pantograph-Catenary
system and its various parts. Secondly, chapter 3 describes the applied mod-
elling approach. Lastly, chapter 4 contains the model validation according to
EN50318.

Furthermore , chapter 10 contains the general conclusion, discussion and
recommendations for both the first and second goal.





2
Introduction to Pantograph-Catenary

simulation

2.1. Introduction
A robust current collection system is essential to a robust railway service. Sliding contact
between the pantograph and the catenary makes robust current collection possible. The
sliding contact however also induces wear. Increased amounts of wear may be introduced
in the system when ill designed or ill built systems are in use. Increased wear can result in
failure of either the pantograph or catenary (Figure 2.1). Failure results in service interrup-
tions and high repair costs. In order to harmonize the performance of current collector and
catenary, both infrastructure and rolling stock are subject to EU regulations. The European
rail legislation is governed by the Technical Specifications for Interoperability [1]. A series
of documents which provide specifications to which railway systems should be compliant,
in order to create a standard in railway infrastructure, energy, rolling stock, signalling and
traffic control systems. All toward improving the interoperability between the rail sectors in
the separate EU countries.

As trains increase in speed, the dynamics of the interface become increasingly important.
This, combined with the ever increasing computational abilities of computers, has provoked
research into Pantograph-Catenary interaction simulations. These simulations are also an
integral part of the EU regulations, and as such are incorporated in the TSI1 Energy and the
TSI LOC&PAS2.

Dropper

Messenger wire

Contact wire

Steady arm
Pantograph

Figure 2.1: Image of the Pantograph-Catenary interface

1Technical specification for interoperability
2Locomotive and Passenger train

5



6 2. Introduction to Pantograph-Catenary simulation

In the TSI Energy [1] in point 6.1.4.1 ”Assessment of dynamic behaviour and quality
of current collection”, it is stated that assessment of dynamic behaviour should be done
through measurement according to EN50317:2012 and through simulations according to
EN 50318:2002[2]. The schematic in figure 2.2 shows the legislation regarding the Euro-
pean railways and where the Pantograph-Catenary interaction simulations originate.

Figure 2.2: Schematic showing from which legislature the simulation requirement results[1]

2.2. State of the art simulation approaches
As the pantograph-catenary interaction is an important factor in the current collection sys-
tem, it has been researched plentiful. The complexity of a pantograph-catenary system is
increased due to nonlinearities such as:

• Non-linear contact

• Non-linear dropper stiffness[3]

• Geometric non-linearities [4]

• Electro-magnetic field influences

These influence the dynamic behaviour of the pantograph-catenary simulation[4]. Further
research [5–13, 22, 24, 25] handles these complex factors differently, Kumaniecka & Snam-
ina [5] do not incorporate dropper slackening and model the pantograph as a harmonically
differing but uniformly moving force. This takes the wave propagation in account but leaves
out the non-linearities. Further research such as Galeotti et al.[6, 7] assume the catenary
system as a sinusoidal displacement/stiffness, which is an effective way of reduction in de-
signing active pantograph systems. There are only a few methods in which the full response
of the catenary is also taken into account. These methods are of interest. In Vehicle Sys-
tem Dynamics Vol 53no3 the pantograph-catenary interaction simulation methods, which
are currently in use, are described and benchmarked in [14–24]. Three main methods can
be derived from these simulation programs. 2D Finite difference Method[19, 20], 2/3D Fi-
nite Element method[14, 16–24] and 2/3D Finite element method combined with Multi body
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dynamics[15, 20, 21]. Furthermore certain improvements may be implemented upon the
original method such as described in [22]. Here a fine FE mesh moves along the catenary at
the pantographs position to determine near field effects, far field has a much courser mesh.
This allows for effective near field calculations whilst keeping computation times at a mini-
mum. For a full review of the current state of the art refer to the benchmark by Bruni [24].
A comparative review of the methods which are in use can be found in table 2.1

Programme Catenary Pantograph
PrOSA FD/FE LUMPM/MBD3

PantoCat FE LUMPM/MBD
SPOPS FE LUMPM
CaPaSIM FE LUMPM
PCaDA FE LUMPM
Gasen-do FE FD/FE LUMPM
OSCAR FE LUMPM/MBD
TPL-PCRUN FE LUMPM/MBD
CANDY FE LUMPM
PACDIN FE LUMPM

Table 2.1: Methods applied for the current state of the art pantograph-catenary interaction programmes[14–24]

2.3. EN50318 validation criteria.
For the methods in table 2.1, all (excluding Gasen-do FE and TPL-PCRUN) are compliant
with the EN 50318:2002 norm. The EN50318:2002 specifies functional requirements in
order to ensure mutual acceptance of the in-and-output variables, a standardized subset of
test results for evaluation of these simulation methods, comparison with measurements and
comparison between simulation methods. The validation of simulation methods comprises
of 2 steps:

1. Confidence is gained through simulation and validation of a reference model (figure 2.3).

2. A simulation representing a real stretch of track is validated through EN 50317:2012
measurement data of the same situation on the same track.

(a) Reference catenary [2]

(b) Reference pantograph [2]

Figure 2.3: Reference model to be used in the first step of validation. source: [2]

The reference model consists of 10 spans of a simple overhead catenary and a 2 dimen-
sional pantograph, represented by a lumped mass spring damper system, and which can be
seen in figure 2.3a and 2.3b. The simulation is done at 250km/h and 300 km/h.
3Absolute Nodal Coordinate Formulation



8 2. Introduction to Pantograph-Catenary simulation

Validation of the reference simulation happens through comparison of statistical values.
All results should be within the ranges given in table 2.2. After this step is successfully passed
the method will be compared to real measured values. If the simulated values are within the
ranges in table 2.3 the simulation is validated. The complete process, from modeling to
validation, is shown in figure 2.4.

Reference Values
Speed [km/h] 250 300

Fm [N] 110-120 110-120
𝜎 (0-20Hz) [N] 26-31 32-40

Statistical maximum of contact force [N] 190-210 210-230
Statistical minimum of contact force [N] 20-40 -5-20
Actual maximum of contact force [N] 175-210 190-225
Actual minimum of contact force [N] 50-75 30-55
Maximum uplift at support [mm] 48-55 55-65
Percentage of loss of contact [%] 0 0

Table 2.2: Reference values for EN50318:2002 [2]

Parameter Required accuracy%
Standard deviation of the contact force 𝜎 ±20
Maximum uplift at the support ±20
Range of vertical displacement of the point of contact ±20

Table 2.3: Validation through measured values [2]

2.4. Pantograph-Catenary simulation applications
Regulations are the main promoter of simulation efforts. They prescribe what has to be done
to certify a new train on existing infrastructure and the other way around. If measurements
can be shortened or replaced by simulation, a lot of money can be saved. There are however
interesting applications beyond the regulatory simulations. Examples are:

• Upgrading: achieving higher operational speeds on current designs.

• Development: new (active) pantograph designs and new catenary designs.

• Failure prediction: as computational performance increases evermore, maintenance of
infrastructure can be done based on information from simulations in combination with
historical data. This way, capacity can be focused on the parts that need to be repaired.

• Capturing problems: in projects where a large investment (infra) has to be done, sim-
ulations can be done based on the design specifications to make sure the system does
not have flaws. Ensuring no faulty design gets built.

• Resolving problems: If an unusual amount of issues surface in a certain location, but
the problem is not directy visible, problem replication through simulationsmight provide
important insights toward a solution.
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Figure 2.4: EN50318 modeling, simulation and validation process





3
Simulation model

3.1. Introduction
Based on the simulation models in table 2.1 and the simulation facilities at Ricardo, a method
for simulation has to be chosen. Other important factors are the available software and the
complexity of the method. The simulation process can be divided in three separate processes:

• Pre processing: determining material properties, geometrical lay out and loading.

• Solver: calculation of the predetermined model and load case.

• Post processing: interpretation and processing of solver results.

For each of these processes the best method is chosen through a weighted decision. All
values arise from the basis that current state of art simulations use FE, therefore the methods
which are capable of FE are valued higher. This decision is based on package availability,
expected efficiency and if applicable, interface possibilities with the other processes,the actual
ranking is based on the rank of the pre/post processor, combined with the rank of the solver1.
Pro’s and cons of certain methods, as well as decision values, are described in appendix A

Solver / pre- and post-processor
C/C++/C# Matlab2 Ansys Simpack

Model definition and
data analysis

C/C++/C# 2 2 4 1
Matlab 4 4 6 3
Ansys - - 5 -
Simpack - - - 0

Table 3.1: Decision table

From table 3.1 the combination of Matlab pre- and post-processing, combined with an
Ansys solver emerges. This combination resulted in succesful EN50318[2] validation in prior
research such as [17]. Other research uses Matlab for all three processes but may use
additional non-standard toolboxes such as [20].
1A simple grading criterion is created, every method is awarded a grade for its usability as pre- and post-processor, as well as a
grade for its usability as solver, in the current research.

• -, denotes a situation which can not exist.
• 0, is awarded if a method is not suitable for the desired purpose at all.
• 1, is awarded if a method might be suitable but might require additional modules, or programming.
• 2, is awarded if the method is suitable but might require more work than necessary.
• 3, is awarded if the method is suitable and efficient.

Adding both values for pre- and post-processor and solver results in the total value for all combinations, highest value is the
’best’ method.

2Implementation of the Matlab solver may require an extra toolbox such as the SDTools Structural Dynamic Toolbox [20]

11
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3.2. Catenary modelling
The Ansys program, in combination with a Matlab pre-processing code, allows for easy mod-
elling and editing of models. Ansys provides a pre-existing contact model, removing the
necessity for creating such model. Ansys can also run from code (APDL) allowing for au-
tomation. It is usable for all the above models, and allows for automation in future use. The
Finite Element Method catenary model consists of the elements in table 3.2. The geometric
layout of the catenary can be seen in figure 3.1. An explanation of the elements and their
features resides in appendix B.

Element type(s)
Contact wire
Structural BEAM188

Contact wire
Contact TARGE170

Messenger wire BEAM188
Dropper COMBIN39
Steady arm BEAM188
Clamps MASS21

Table 3.2: Catenary elements Figure 3.1: Catenary model in Ansys

3.3. Pantograph modelling
The pantograph is modeled as a 3D Lumped Mass model. This type of model is supported
in the Ansys FE solver, and therefore does not require any interfacing or co-simulation. The
Lumped Mass pantograph model consists of the elements in table 3.3. Figure 3.2 shows the
model of the pantograph. The top horizontal line represents the contact element, the stars
are MASS21 Elements and the vertical lines are COMBIN14 elements. An explanation of the
elements and their features resides in appendix B.

Element type(s)
Masses MASS21
Springs COMBIN14
Dampers COMBIN14
Contact Elements CONTA176

Table 3.3: Pantograph elements Figure 3.2: Pantograph model in Ansys

3.4. Augmented Lagrange method most suitable contact model
Since the solver in use is Ansys, the contact can be modeled through readily available ele-
ments. The pantograph-catenary interface is modeled through the CONTA176 element on the
pantograph and TARGE170 element on the catenary. This contact pair allows for multiple
contact algorithms such as pure penalty, augmented Lagrange and pure Lagrange. For this
simulation the augmented Lagrange algorithm is chosen to ensure low penetration values
and contact compatability.

The augmented Lagrange contact formulation adds an extra value 𝜆, the Lagrange multi-
plier, to the penalty equation 3.1, resulting in equation 3.2. The extra value 𝜆 is calculated by
the Ansys solver to reduce the penetration. This reduces the contact’s sensitivity to the con-
tact stiffness 𝐾. In comparison to the full Lagrange method, which calculates the Lagrange
multipliers exactly. The augmented Lagrange method iteratively calculates multiple penalty
method calculations and augments the 𝜆 in every iteration to reduce the penetration. This
iterative process is repeated until a certain error/penetration threshold is reached [34].
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penalty function: 𝐹፜፨፧፭ፚ፜፭ = 𝐾፜፨፧፭ፚ፜፭ ∗ 𝑃ፂ፨፧፭ፚ፜፭ (3.1)
augmented Lagrange function: 𝐹፜፨፧፭ፚ፜፭ = 𝐾፜፨፧፭ፚ፜፭ ∗ 𝑃ፂ፨፧፭ፚ፜፭ + 𝜆 (3.2)

Additionally the pure Lagrange method is available. This method calculates the exact 𝜆
and does not require the specification of a contact stiffness 𝐾. Result of the exact 𝜆 is that
the exact solution is found and therefore zero penetration is enforced. The downside however
is that finding the exact solution for 𝜆 is very computationally expensive.

3.5. Contact force errors due to FE discretization
Normally, good Ansys practice is to overlay the contact elements over the most flexible sur-
face. In the case of a sliding non-linear contact however a discretization error occurs. In [20]
it is described as an ’element passing’ error. This error occurs when the contact between
target and contact element slides over the interface between 2 or more contact elements.

The amount of elements in contact is always counted for the CONTA176 element, the
TARGE170 element is only used as helper. Therefor, if a target element is used on the
pantograph, it will move past the contact elements, at the interface of 2 contact elements,
the algorithm may therefore find double contact, resulting in a force peak 2 times larger than
the signal itself. In figure 3.3 the element passing issue is visualised.

Contact element n Contact element n+1

Target element

Target element 
direction of motion

Node

Near field

Close-up

Target element in contact 
with both contact elements

Figure 3.3: Element passing error visualisation

The element passing problem is solved through overlaying the TARGE170 over the cate-
nary. Since these elements are never counted, the algorithm cannot find double contact.

3.6. Automated modeling/pre-processing
An efficient simulation method does not require a lot of time modeling every time a simulation
is done. In order to simplify the modeling process, multiple matlab scripts automate the pre-
and post-processing. The matlab script Preprocessor.m combines the catenary model and
the pantograph model, which are defined in .MAT files, as well as reads simulation settings.
This information is combined to create the simulation model and its loads. The process is
described in figure C.10.
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Figure 3.4: Automated simulation flow chart

3.7. Solving

For the time integration, an implicit Newmark method is used with time step: Δ𝑡 = 0.002𝑠,
this represents 25 times the frequency range of interest, a severely oversampled system which
allows the assumption that filtered results will not show aliasing. Integration parameters are
chosen: 𝛼ፍ = 0.25250625, 𝛿ፍ = 0.505, these are standard Ansys values. Damping coefficients
are prescribed in EN50318 [2] 𝛼 = 0.0125𝑠ዅኻ, 𝛽 = 0.0001𝑠. The non-linear transient dynamic
solver in Ansys is set to calculate the full matrices. Stiffness matrix 𝐾 is updated every
time step in order to incorporate the non linear droppers and contact elements. The solver
convergence criteria in table 3.4 are chosen in such a way that models of over 20 spans
will also converge without solver instabilities. These values are the result of an iterative
process, in which the solver parameters were tweaked in order to ensure solver stability and
accurate results. Furthermore, previous research such as [17] provided a good starting point
for getting to the current values.

Label Tolerance Norm
F 1E-6 INF
U 1E-6 INF
M 1E-6 INF
ROT 1E-6 INF

Table 3.4: Solver convergence criteria
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3.8. Post-processing
The post-processing script is a reasonably simple Matlab script. It’s process is as follows:

• Load the .csv result files into 2 by n arrays.

• Resample the arrays to create uniform time steps at 500Hz .

• Perturb displacement and force values to make them a function of location, not dis-
placement.

• Filter all results in the bands 0-20Hz, 0-5Hz, 5-20Hz.

• Cut results to respresent only the analysis section.

• Calculate all desired statistical values.

• Validate results or output which values are not within tolerance.





4
Results and Validation

4.1. Introduction
Now that the simulation method has been defined (chapter 3) the next step in the process
is validation of the proposed simulation method. Validation of the Pantograph-Catenary
interaction simulation method will be done by following the 2 steps, as described in the norm
EN50318:2002 [2]. The first step entails the validation of the simulation method through
building a reference model, defined in the norm EN50318:2002. The second step is to build
a real-world model, the dutch Prorail B4+ Catenary in combination with a commonly used
panto, this is explained in section 4.3.

4.2. EN50318 Validation of Step 1 / Reference Model Results
This reference model originates from the EN50318:2002 norm. The reference results, as
described in the norm, as well as the results obtained by the simulation method developed
in this work, can be found in table 4.1.

Results Reference Values
Speed [km/h] 250 300 250 300

Fm [N] 116.4 116.3 110-120 110-120
𝜎 (0-20Hz) [N] 29.9 33.4 26-31 32-40

Statistical maximum of contact force [N] 206.2 216.5 190-210 210-230
Statistical minimum of contact force [N] 26.6 16.0 20-40 -5-20
Actual maximum of contact force [N] 182.3 196.3 175-210 190-225
Actual minimum of contact force [N] 51.0 47.2 50-75 30-55
Maximum uplift at support [mm] 48.4-52.0 56.4-60.3 48-55 55-65
Percentage of loss of contact [%] 0 0 0 0

Table 4.1: Results for the EN50318:2002 reference model simulation

As can be concluded from the obtained results and the comparison to the reference values,
the currently developed simulation method complies with Step 1 of the EN50318:2002 norm.
Thus the method is deemed validated according to Step 1 of EN50318:2002. A visualization
of the results can be found in figure 4.1 for the 250 km/h simulation and in figure 4.2 for the
300 km/h simulation. Based on the validation of Step 1, the models’ methodology is deemed
valid.

4.3. EN50318 validation of Step 2 / Real model results
Since step 2 validations depend on the data available, validations are done within the scope of
this project to show that the simulation method is indeed applicable to real world situations.
Further EN50318:2002 step 2 validations will be done in the scope of projects in extension to

17
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the current project, for instance when less general models are required for simulation. Next
to the EN50318 validation there will also be charts which show how the simulation values
compare to a larger measurement set.

Step 2 validation has 4 requirements:

• Standard deviation of the contact force shall be within ±20% of the measured value.

• Uplift at the support shall be within ±20% of the measured value.

• Vertical displacement of the point of contact shall be within ±20% of the measured
value. Note: This value is a common result from simulation methods, but is usually
not measured in EN50317 measurements, if this value is not available, the validation is
done based on the following value: (𝑈፦።፝፬፞፜፭።፨፧ − 𝑈ፚ፭፬፮፩፩፨፫፭) ± 20%, where 𝑈 is the uplift
value measured.

• For the comparison the minimum length of the analysis section shall be defined, so that
the results are representative for the behaviour of the overhead contact line.

4.3.1. Prorail B4+ Catenary, 1 Pantograph, 140 km/h
In this section the simulation method is validated for the situation where 1 Pantograph (Ri-
cardo document:628573) moves below a Prorail B4+ catenary at 140 km/h. The simulation
results and the measurement results with which the simulation is validated can be found in
table 4.2. The analysis section is defined as the middle 2 spans, thus 114 m, to ensure no
end effects are taken into account. A visual representation of the results can be found in fig-
ure 4.3. Figure 4.4 shows how the simulated standard deviation compares to the measured
values, as well as to a competitive simulation package.

Simulation Results Measured Values
Speed [km/h] 140 140 140 140 141

Fm [N] 139.3 131 131 137 132
𝜎 (0-20Hz) [N] 25.6 22.6 30.1 26.4 23.8

Statistical maximum of contact force [N] 216.0 199 221 216 203
Statistical minimum of contact force [N] 62.6 63 41 58 61
Actual maximum of contact force [N] 215.3 - - - -
Actual minimum of contact force [N] 76.4 - - - -
Maximum uplift at support [mm] 19.7-20.6 19 19 19 19
Percentage of loss of contact [%] 0 0 0 0 0

Table 4.2: Results for the EN50318:2002 STEP 2 simulation [54]

Based on the normEN50318:2002, the validation values are found to be within the allowed
ranges. Thus the method is deemed validated according to Step 2 of EN50318:2002, for 1
Pantograph at 141 km/h below a PRORAIL B4+ catenary.

The method may therefore be used in the following simulations:

• 1 Pantograph, for allowed deviations see §10.2.1 of EN50318:2002 [2]

• Prorail B4(+) catenary or similar, for allowed deviations see §10.2.2 of EN50318:2002
[2]

• Speed; the validation speed + 5% of the wave propagation speed: 141 + 19.12 = 160.12
Km/h, §10.2.3 of EN50318:2002 [2].
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Figure 4.1: Valid en 50318:2002 simulation results at 250 km/h
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Figure 4.2: Valid en 50318:2002 simulation results at 300 km/h
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Figure 4.3: Valid en 50318:2002 step 2 simulation results at 140 kph
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II

Part II: Model reduction for efficient
simulation times

Part II describes the model reduction / simulation time improvement pro-
cess. The process, from identification of possible improvements through the
theoretical implementation up to the testing and concluding, is separated into
5 chapters. Firstly, chapter 5 introduces the simulation time improvement
process. Secondly, chapter 6 identifies possible methods to improve simula-
tion times and describes which methods are to be tested on the Pantograph-
Catenary interaction problem. Thirdly, chapter 7 describes the simplified
models, upon which the simulation time improvements are tested. Results
for the improvement tests are then presented in both chapter 8 and 9.

Furthermore , chapter 10 contains the general conclusion, discussion and
recommendations for both the first and second goal.





5
Introduction to Model Order Reduction

5.1. Introduction
A proper pantograph-catenary model can easily exist of more than 6000 elements [20] with
6 DOF’s per element, resulting in 36000 DOF’s in one model. The global sparse stiffness
matrix K has size 𝑚∗𝑚 where 𝑚 equals the total amount of DOF’s in the system. An increase
of the amount of nodes in the system by 𝛿 = 20% results in 𝛿∗𝑚 = 0.2𝑚𝛿+𝑚 = 1.2𝑚 increases
the size of the matrix K by (𝛿+𝑚)ኼ = 1.44∗𝑚ኼ. Furthermore the pantograph-catenary system
is non-linear. In order to remain in an acceptable region of accuracy, the stiffness matrix
requires updating in every N፭፡ substep.

It can be seen that the combination of a system with a high amount of DOF’s and non-
linear behaviour will become very time consuming to compute. Therefore, it is desirable to
create a system which allows for accurate simulation as well as low computational effort.
This means the model should be as small as possible, whilst remaining within a certain ac-
curacy. This process, known as model order reduction, is a collection of methods with which
a computationally expensive model is reduced to a less expensive model, while remaining in
the acceptable accuracy range. Model Order Reduction is a way of removing all non-essential
parts from a model, as they are just as expensive in computation times as essential parts.
They do however not play a significant role in the outcome of the system. This interpretation
is described by the first chapter of the book Model Order Reduction [26] where the process
is described as: ”Model Order Reduction tries to quickly capture the essential features of a struc-
ture. This means that in an early stage of the process, the most basic properties of the original model
must already be present in the smaller approximation. At a certain moment the process of reduction
is stopped. At that point all necessary properties of the original model must be captured with sufficient
precision.” A graphical representation of Model Order Reduction, also by [26] can be found in
figure 5.1.

5.2. Proposedmethods for reducing a Pantograph-Catenarymodel
MOR can be very effective, depending on the system and the desired results. For instance,
linear systems might reduce very well by projection onto the modal basis. Resulting in a
nearly perfect reproduction of results with big improvements in computation times. The
model which is described in this work, is (partially) non-linear due to the dropper cables
which slack under compression. The reduction of non-linear systems is less documented
than the reduction of linear systems and, as stated in [28] and [29] (non-linear circuits)
does not necessarily result in less computational effort. The reduction which is required for
the system as described in this work should therefore be capable of accurately representing
the non-linear behaviour of the catenary, as well as provide accurate contact behaviour.

25
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Figure 5.1: Graphical representation of Model Order Reduction source:[26]

For the pantograph-catenary interaction, a couple of reduction possibilities can be intro-
duced:

• Physical reduction

– Mesh coarsening
– Localized mesh refinement/moving mesh
– Dimension reduction 3D/2D
– Splitting linear and non-linear parts, quasi-linear reduction.

• Projection

– A priori methods, methods which require no information of the full model results
– A posteriori methods, methods which require information of the full model results.

all of which provide their own challenges.

5.3. Rating criteria for reduction methods
Reduction of the model through actual reducing of the amount of DOF’s, within the FEmodel,
is the easiest way of reducing the system. A smart choice of simulation parameters could
significantly reduce simulation times, without resulting in low accuracy. Projection based
reductions however introduce a new basis which represents the model. These methods could
describe the model behaviour accurately whilst greatly reducing the computational effort.
Due to the non-linear behaviour induced by dropper slackening, as well as sliding contact,
the applicability of certain methods might however prove to be difficult. Careful selection
of Model Order Reduction methods is therefore necessary. The reduction sections of this
research will therefore focus on finding applicable reduction methods. Keeping in mind the
features which may not be lost in reduction:

• Dropper slackening / non-linear dropper behaviour

• Non-linear sliding contact

• Wave propagation.

When applicable methods are found, tests can be done to determine their accuracy and CPU
time improvement. Furthermore the scalability of the methods can be determined. These
tests ensure the reduction method provides accurate results as well as acceptable computa-
tional effort. Based on this the goal of the reduction is determined.
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The main goal of the pantograph-catenary reduction:
To find and apply a reduction method, which reduces computational effort whilst respecting
dropper slackening, non-linear sliding contact and wave propagation.

To achieve this goal, the reduction performance will be measured through:

• Computational time differences

• Reduction scalability.

A basic understanding of Model Order Reduction methods and their applicability is gained
in chapter 6.





6
Methods for simulation time

improvement

6.1. Introduction
The EN 50318:2002 simulations from chapter 3 are running on a laptop specified in table
6.1. Simulation times for a full EN 50318:2002 reference model take approximately 15-20
hours of CPU time.

Computer MacBook Pro
CPU Core i7-4770HQ 2.20GHz 2(/4) Cores
Memory 1600MHz DDR3 8(/16)GB

Storage WD Elements USB3.0 2TB
WD Elements USB3.0 750GB

Extra Running in Parallels

Table 6.1: Computer spec for simulation

Improvement of the simulation times is necessary if multiple simulations runs need to be
done in a timely manner. The options to this regard are:

1. Improve model efficiency; editing the model to reduce the computational effort required
to perform simulation. The MOR methods are an example of this.

2. Improve computational power; this requires no changes to the model and might improve
simulation times drastically.

3. Improve time integration/solver; Choosing a solver which is optimized for the problem
at hand may improve simulation times.

4. Lower model criteria; using less stringent convergence criteria and lowering the result
accuracy may improve simulation speeds.

5. Change interface algorithm / contact model; the built-in Ansys contact module encom-
passes a large module which is capable of many types of contact. Choosing a simplified
contact method may improve simulation times.

all of which can be applied. Finding out whether or not these approaches work requires
careful examination of the possibilities. In this chapter the possibilities for all three of these
methods are explored. Model efficiency improvement is explored in section 6.3, computa-
tional power comparisons are not executed within the scope of this work. Furthermore, Time
integration methods are proposed in section 6.4 and model criteria comparisons in subsec-
tion 6.4.4. Lastly, contact model improvements are proposed in section 6.5 First, however,
the built-in Ansys reduction methods are discussed in section 6.2.

29
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6.2. Ansys built-in reduction methods
The Ansys program, which is used as solver in this project, contains 4 different reduction
methods. These reduction methods do not necessarily comply to the essential features as
described in section 6.3. They might however prove useful for application in other applica-
tions. Thus they are briefly described in this section. The Ansys program provides, under
the substructuring solver, options to reduce (substructure) the system. The methods which
can be applied are:

• Static condensation / Guyan reduction [35]

• Fixed-interface CMS / Craig-Brampton reduction [36]

• Free-interface CMS / Herting reduction [37]

• Residual-flexible free-interface (RFFB) CMS / Martinez reduction [38]

The static condensation method is, as the name suggests, is useful in static reduction. It
does not incorporate non-linear behaviour and does not provide useful vibration modes since
it does not incorporate inertial terms [35]. Fixed interface CMS or Craig-Brampton reduction
reduction determines the constraint modes, eigenvectors and eigen values with the master
degrees of freedom constrained [33, 36], this method will provide incorrect modes due to the
large amount of interfaces in the model. The free-interface CMS or Herting reduction deter-
mines eigenmodes and eigenvectors with the interfaces free (fixed interfaces possible through
constraints) [33, 37]. The RFFB or Martinez reduction, contains Residual Attachment Modes
which, in addition to the vibration modes capture the residual flexibility of the full system
[33, 38]. The use of these modes is also observed in other work [27, 32], therefore the mar-
tinez reduction may provide an accurate reduced order model. It must however be stated,
that for this model to work, the non-linear dropper behaviour should not be reduced with
the system, this would result in a similar reduction method with respect to the proposed
reduction method at the end of this chapter. The Martinez [38] reduction method has also
proven useful in interfacing Ansys and SimPack. The linear reduced system can be imported
into SimPack as flexible body through an .FBI file. For further research, such as active pan-
tograph design. This interface could prove useful. These methods are not discussed in the
remainder of this work since they are either not applicable, or they are incorporated in Ansys
and require small changes which Ansys will not perform.

6.3. Model efficiency improvements
Improving the computational performance of the full pantograph-catenary interaction model
through reduction would require significant time. Applying and reviewing reduction meth-
ods therefore requires a modified test-case: a model which contains all properties and non-
linearities, only much smaller and easier to compute. The model visualized in figure 6.1 is
used. In this model the upper wire is modeled as a rigid bar, non-linear springs are used
to represent the droppers. Contact will be modeled through a pure penalty method. This
method is implemented in matlab by checking the positions of the pantograph in X and Z
direction. The position of the catenary is checked as well. If penetration is found, the force
from equation 3.1 will be applied to both pantograph and catenary.

The testing model contains all the essential features for which the reduction method needs
to be tested.

• Dropper slackening / non-linear dropper behaviour

• Sliding contact

• Wave propagation / dynamics

6.3.1. Dimensionality reduction
Dimensionality reduction is a widely used method in data processing, for instance in image
classification. As large amounts of high dimensional data must be interpreted, the computa-
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Figure 6.1: Example system for reduction testing.

tional effort to perform this interpretation becomes too high. In order to perform these inter-
pretations, the dimensionality of the data is reduced. Simply removing dimensions however
is bad practice. Through feature extraction techniques such as Principal Component Analy-
sis (PCA), the dimensions which contain the largest variance remain [40], whilst the rest is
removed, resulting in lower dimensional data. All reduction methods work towards lowering
the dimensionality of the problem. Specifying a dimensionality reduction for the pantograph-
catenary model by PCA involves projecting the data onto a new set of basis vectors. Reduction
methods that project onto a new basis are described in section 6.3.3.

For the pantograph-catenary interaction model, with respect to the geometry, there are
three dimensions. These dimensions have two DOF’s each. The total geometric dimen-
sionality of this system is therefore 6D. As might be recalled from section 5.1, the size of
the stiffness matrix 𝐾 has size 𝑚 ∗ 𝑚 with 𝑚 being the amount of DOF’s, subsequently
𝑚 = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑚𝑜𝑢𝑛𝑡 ∗ 𝐷𝑂𝐹 ፥፞፦፞፧፭. Computational effort is linked to the size of this vector.
Reducing geometrical dimensions therefore reduces the computational effort.

6.3.2. Moving mesh reduction
Further reduction options include a dynamic/moving mesh [22], a model is created in which
the far-field catenary is modeled with a coarse FE mesh. Whereas the near-field catenary is
modeled with a much finer mesh. The fine mesh moves along the catenary together with the
pantograph. This method is implemented in Matlab [22]. Due to the lack of a FE toolbox
at Ricardo and the TU Delft, it is not possible to review this method within the scope of this
project.

6.3.3. Projection based Non-linear structural dynamic reduction
As stated by Lülf et al. [30], there are many different bases upon which the full non-linear
model can be projected. In [30] the methods which are described fall in one of 2 types: a
priori or a posteriori. A priori bases do not require any information from the result of the full
system. A posteriori reductions do require result information from the full system. Examples
of the former are: Linear Normal Modes (LNM), Ritz-vectors, the A Priori Reduction and the
Local Equivalent Linear Stiffness Method. Examples of the latter are: Proper Orthogonal
Decomposition, Smooth Orthogonal Decomposition and Centroidal Voronoi Tesselation. Not
all methods provide accurate results for all models, a clear choice has to be made based upon
which reduction is interesting for our system. Based on the comparative study as described in
[30], in which all the methods mentioned above are compared, a basic idea of which methods
are usable and which are not, is gained. The method, as described in [30] should mainly be
based on the type of excitation which is applied to the system. In our case this is the moving
contact. From [30, 31], it is found that the Proper Orthogonal Decomposition method is the
most accurate method of reduction of certain non-linear systems. From [30] however, it is
also concluded that all methods, including the POD method, lack robustness to changing
excitations, this is mostly applicable in the frequency range. Amplitude changes provide
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better robustness. Also the robustness is better if, the bases are defined on the critical values
and the changes in the excitation are less demanding (lower frequency or amplitude w.r.t.
the original excitation upon which the basis was made). The methods provided by [30, 31]
are, however, not the only applicable methods. Further research such as Tamarozzi [32] uses
eigenmodes and residual attachment modes to describe the moving contact behaviour in a
Parametric Model Order Reduction (PMOR). A more general review of PMOR applications,
which may be applicable to the current work resides in Benner et al. [39]. The work by
Géradin et al. [27] uses Rigid body Modes, Vibration Modes, Attachment Modes and Residual
modes to create a nodeless superelement, with which the moving contact problem can be
tackled, it is, however, applied to a linear FE model. Jain et al. [47] uses Vibration Modes
and the derivatives of the eigenvalue problem of small undamped vibrations with respect
to the modal amplitudes (Modal Derivative (MD)) to create a Quadratic Manifold, capable of
describing geometric non-linearities in systems. All of these methods will briefly be discussed
in this section, a small explanation of the theory will be given, as well as a preliminary
judgment on whether the method seems applicable in the current work.

Proper Orthogonal Decomposition
The Proper Orthogonal Decomposition (POD) is a reduction method, also known as the
Karhunen-Loève decomposition (KLD) or as Principal Component Analysis in statistical sci-
ences [42]. As described in section 6.3.3, the POD is an a posteriori reduction method, it
requires training data from the unreduced model to accurately represent the full model. It is
particularly interesting since the prior application of POD in reducing non-linear structures,
such as [42, 46]. The now following mathematical representation of the continuous POD as
described in this work was taken from G. Kerschen et al.[42] and Chatterjee [41], additional
content is based on [41, 42, 45].

Take 𝜃(𝑥, 𝑡) a random field on a domain Ω, it is decomposed into its mean and the time
varying components, equation 6.1.

𝜃(𝑥, 𝑡) = 𝜇(𝑥) + 𝜗(𝑥, 𝑡) (6.1)

At time 𝑡፤ the system displays a snapshot 𝜗፤ = 𝜗(𝑥, 𝑡፤). The POD will aim to fit the 𝜑(𝑥) to a
collection of snapshots 𝜗(𝑥, 𝑡), equation 6.2.

Maximize ⟨|(𝜗፤ , 𝜑፤)|ኼ⟩With ||𝜑||ኼ = 1 (6.2)

where

(𝑓, 𝑔) = ∫
጖
𝑓(𝑥)𝑔(𝑥)𝑑Ω

⟨.⟩ = Average

||.|| = (., .)
Ꮃ
Ꮄ = Norm

|.| = Modulus

The constraint ||𝜑||ኼ = 1 in equation 6.2 can be taken into account through a Lagrange
multiplier, resulting in equation 6.3.

𝐽[Ꭳ] = ⟨|(𝜗, 𝜑)|ኼ⟩ − 𝜆(||𝜑||ኼ − 1) (6.3)

In [45] it is shown that this condition results in the eigenvalue problem in equation 6.4.

∫
጖
⟨𝜗፤(𝑥)𝜗፤(𝑥ᖤ)⟩ 𝜑(𝑥ᖤ)𝑑𝑥ᖤ = 𝜆𝜑(𝑥) (6.4)

Where ⟨𝜗፤(𝑥)𝜗፤(𝑥ᖤ)⟩ is the averaged Auto-correlation function. The solution to equation 6.2
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is therefore the eigenfunction 𝜑።(𝑥) in equation 6.4.

𝜗(𝑥, 𝑡) =
ጼ

∑
።዆ኻ
𝑎።(𝑡)𝜑።(𝑥) (6.5)

Where:𝑎።(𝑡) = (𝜗(𝑥, 𝑡), 𝜑(𝑥))

These eigenfunctions are the Proper Orthogonal Mode (POM). The corresponding eigenvalues
𝜆። are the Proper Orthogonal Value (POV). The POM’s are used to decompose the original
field 𝜗(𝑥, 𝑡), resulting in equation 6.5. The coefficients 𝑎።(𝑡) are uncorrelated, meaning 𝑎። is
dependent of 𝜑። and no other 𝜑.

In practice however, the data is not continuous but discretized. The application of the POD
in a discrete way follows from [41, 42, 45, 46]. There are multiple methods with which the
POM and POV’s can be computed. The eigensolutions of the sample covariance matrix can be
computed [42, 46]. The Singular Value Decomposition (SVD) can be computed [41, 42, 46].
This method gives an insight into system dynamics and plays a role in model updating for
non-linear systems [44]. Due to this extra information, the SVD is interesting for the current
reduction problem.

To ensure uniformity, the method used in Kerschen et al. [42] is followed again. The
discretized data consists of 𝑛 amount of observations with 𝑚 dimensional data. The response
matrix 𝑋 in equation 6.6 is created.

𝑋 = [ 𝑥ኻ ... 𝑥፧ ] = [
𝑥ኻ1 ... 𝑥ኻ𝑛
... ... ...
𝑥፦1 ... 𝑥፦𝑛

] (6.6)

The SVD of response matrix 𝑋 is written as equation 6.7, alternatively 6.8.

𝑋 = 𝑈𝑆𝑉፭ Kerschen et al.[42] (6.7)
𝑋 = 𝑈Σ𝑉፭ Chatterjee. [41] (6.8)

Where: 𝑈 = an 𝑚 ×𝑚 orthonormal matrix
Where: 𝑆 and Σ = an 𝑚 × 𝑛 pseudo diagonal, semi-positive definite matrix

Where: 𝑉 = an 𝑛 × 𝑛 orthonormal matrix

The left singular vectors in the 𝑈matrix represent the Proper Orthogonal Mode’s. Whereas
the 𝑆 matrix contains the singular values, which are the square roots of the eigenvalues
of 𝑋𝑋ፓ. These therefore represent the Proper Orthogonal Value’s. The 𝑉 matrix’s columns
contain the time modulation of the respective POM, normalized by the corresponding POV
[46].

The Proper Orthogonal Decomposition is computed exclusively from the full system re-
sponses. Therefore the physical meaning of the POM’s does not necessarily relate to the
physical meaning of for instance the vibration modes. The POM’s are orthogonal to each
other whereas mode shapes are orthogonal w.r.t. the mass and stiffness matrix. Due to this
orthogonality relationship, the only way the POM’s and mode shapes are related is, if the
mass matrix is equal to the identity matrix, or the system is resonating in one of its vibration
modes [42].

Moving contact Reduction through a Parametric Model Order Reduction scheme
The reduction of a moving contact through a Parametric Model Order Reduction (PMOR) is
discussed in Tamarozzi et al. [32]. An extensive review of PMOR applications resides in [39].
The PMOR method proposed in [32] aims to reduce the reduction space of dynamical and
sliding contact problems by use of a time varying reduction space. The time-varying effect
in the reduction space capture the different locations where contact can be expected. The
following explanation follows the process of Tamarozzi et al. [32], sign conventions may differ
from earlier theory references to follow the conventions in [32]. The general description of
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the model in differential form is:

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝐵𝑢 (6.9)
Assuming Damping = 0

𝑀�̈� + 𝐾𝑥 = 𝐵𝑢 (6.10)

Where 𝑥 is the vector of nodal displacements, 𝑢 is the vector of input values, 𝑀 ∈ ℝ፧×፧ is the
mass matrix, 𝐾 ∈ ℝ፧×፧ is the stiffness matrix and 𝐵 ∈ ℝ፧ is the input matrix. The system is
projected onto its new basis by Galerkin projection with reduction space 𝑉 ∈ ℝ፧×፦

𝑉ፓ𝑀𝑉�̈� + 𝑉ፓ𝐾𝑉𝑥 = 𝑉ፓ𝐵𝑢 (6.11)

The reduced system has the same form as the full system in equation 6.10:

𝑀፫�̈�፫ + 𝐾፫𝑥፫ = 𝐵፫𝑢 (6.12)

Where 𝑀፫ ∈ ℝ፦×፦, 𝐾፫ ∈ ℝ፦×፦ and 𝐵፫ ∈ ℝ፦. Up until this point the reduced model is defined
by Galerkin projection of the original model by a reduced space 𝑉. This is applied in many
different reduction methods, it performs the mapping from the full to the reduced basis.
The accuracy and efficiency of the reduction method is dependent of the choice for 𝑉. In
the PMOR scheme, the reduction space 𝑉 is created by Vibration Mode’s (VM) denoted as
Φ, which describe the model dynamics, the dynamics that are included in the model are
therefore accurate up to the eigen frequency of the largest VM. Inclusion of moving contact
is added to the reduction space by adding Residual Attachment Modes (RAM) denoted as Ψ.
These RAMs are dependent of a parameter 𝑝, which will later be used to include the time
dependency of the corresponding RAM. The reduction space 𝑉 ∈ ℝ፧×፦ becomes:

𝑉 = 𝑉(p) = [ΦΨ(p)] (6.13)

Where thematrixΦ contains all non-parametrized shape vectors, Ψ(p) contains all parametrized
shape vectors. The model may have multiple time dependent, location dependent or other-
wise varying properties. These properties may all result in a parameter 𝑝። and (multiple)
corresponding shape vectors 𝜓።(𝑝።).

𝑉 = 𝑉(p) = [Φ𝜓ኻ(𝑝ኻ)𝜓ኼ(𝑝ኼ)..𝜓።(𝑝።)] (6.14)

Alongside proposing a new PMOR scheme, the work in [32] also uses a method for com-
parison, where the reduction space consists of VM’s and non-parametric RAMs, see equation
6.15.

𝑉 = [Φ𝜓ኻ𝜓ኼ..𝜓፣] (6.15)

If the contact location is the only parameter i.e. 𝑝ኻ in the PMOR scheme and all shape
vectors 𝜓፣ in equation 6.15 are residual attachment modes computed at locations where
contact will occur, equation 6.14 reduces to:

𝑉 = 𝑉(𝑝ኻ) = [Φ𝜓ኻ(𝑝ኻ)] (6.16)

If the original FE model uses linear shape functions, the parametric shape vector 𝜓ኻ(𝑝ኻ)
now contains linear combinations of the RAMs from equation 6.15. This means that the
amount of DOF’s used for robust contact behaviour, are reduced drastically from 𝑗 to 1. For
systems with large amounts of contact locations, where 𝑗 will indeed become large, the PMOR
reduces the amount of unknowns and equations of motion drastically with respect to the non-
parametrized method (equation 6.15). This results in significant speed improvements. For
this to be the case, the value for 𝑝 at a given time must, however, be known a priori, or
calculated during time integration. The former results in the lowest computation times. The
latter requires calculation of 𝑃, �̇� and �̈� during time integration. The PMOR scheme is created
for moving point loads and distributed loads, where velocities and amplitudes are defined a
priori. It can, therefore, be concluded from the work in [32], that the PMOR reduction scheme
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will provide accurate results for models under highly dynamic (known a priori) moving loads.
Towards applicability in this work the only unknown that arises from this method is the
following: How does the PMOR scheme proposed in [32] cope with loads from which the
amplitude as well as frequency is not predetermined.

Moving contact Reduction through a Nodeless Superelement formulation
In Gèradin et al. [27] a method is proposed, where a linear FE subsystem is reduced through
a nodeless superelement formulation. This method is applied in the context of flexible multi-
body dynamics, which is not the foreseen application of the current work. Nevertheless, the
work in Gèradin et al. [27] provides some insights which may be applicable in the current
work. The method, like the work in [32], uses residual attachment modes in order to correctly
describe the contact which may occur. The application of this contact may be of interest in
the current work. Therefore, the way the reduction space 𝑉 ∈ ℝፍ×፧ᑦዄ፧ᑧዄ፧ᑒዄ፧ᑣ (refered to as
modal reduction matrix in [27]) is determined becomes of interest.

For reasons of brevity the general description of the model, as well as the Galerkin pro-
jection method are not repeated here, for a review of these, please see equations 6.9-6.12.

This reduction space 𝑉 in [27] uses rigid body modes 𝑈 ∈ ℝፍ×፧ᑦ , vibration modes Φ፯ ∈
ℝፍ×፧ᑧ , attachment modes 𝐺ፚ ∈ ℝፍ×፧ᑒ and residual modes 𝐺፫ ∈ ℝፍ×፧ᑣ . For the contact model,
the modes which are of interest are the Residual Attachment Mode 𝐺፫. The reduction space
𝑉 now looks as follows:

𝑉 = [𝑈Φ፯𝐺ፚ𝐺፫] (6.17)

The vibration mode matrix Φ፯ can vary in size, to include dynamics up to the highest cor-
responding eigen frequency. The RAMs are chosen to ensure a robust response to not fully
predictable external actions on the model. In the current work, this unpredictable action will
be the sliding contact between pantograph and catenary. In [27] the generation of the RAMs
happens through the application of static loads 𝐽፜ ∈ ℝፍ×፧ᑔ where 𝑟 ∈ 𝑐 to a cloud of nodes.
The nodes on which the load vector 𝐽፜ is applied are chosen when contact is likely to occur
at their location. The Attachment Modes (AM) 𝐺ፚ and RAMs 𝐺፜ are computed as follows:

𝐾 [𝐺ፚ𝐺፜] = [𝐽ፚ𝐽፜] (6.18)

Since the matrix K in [27] is singular, due to the chosen Dual Component Mode Synthesis
method, equation 6.18 needs to be solved using a Moore-Penrose Matrix inverse 𝐾ዄ, which
results in:

[𝐺ፚ𝐺፜] = 𝐾ዄ [𝐽ፚ𝐽፜] (6.19)

In the current work, assuming the flexible bodies are constrained sufficiently during reduc-
tion, the matrix will not be singular. Therefore the inverse of matrix 𝐾 can be computed,
which results in:

[𝐺ፚ𝐺፜] = 𝐾ዅኻ [𝐽ፚ𝐽፜] (6.20)

In [27], the next operation would be a mass orthonormalisation procedure. This is not rel-
evant in the current context of defining an applicable reduction subspace, since the final
reduction method is not yet known. Furthermore the amount of RAMs is finally reduced
from 𝐺፜ to 𝐺፫ with 𝑛፫ < 𝑛፜. For the current work the amount of RAMs does not need to be
truncated, since contact locations can be pre-computed and all 𝑛፜ are relevant. This results
in 𝑛፜ = 𝑛፫ resulting in:

𝐺፫ = 𝐺፜ (6.21)

Furthermore assuming the rigid body basis 𝑈 = [] since there is no rigid body motion in the
system. The final reduced basis is:

𝑉 = [Φ፯𝐺ፚ𝐺፜] (6.22)

Note that the submatrices 𝐺። in the work by Gèradin et al. [27] represent the same functions
as the submatrices 𝜓። in the work by Tamarozzi et al [32]. Assuming 𝜓። in equation 6.15 can
be an Attachment Mode, equations 6.15 and 6.22 are the same.
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Quadratic manifold / Linear manifold + Modal Derivatives
The reduction of a structural/geometrical non-linear system is proposed by Jain et al. [47].
The proposed method uses Vibration Modes to describe the linear part of the system, as well
as Modal Derivatives to describe the second order non-linearities of the underlying model.
The method is applied to thin plate models with geometric non-linearities, there is little re-
semblance between the models in [47] and the models to be reduced in the current work.
The method proposed in [47] will need to be extended in order to include sliding contact, for
instance by additional RAMs such as in [27, 32]. Furthermore, the method proposed in [47]
is capable of accurately describing second order non-linearities whereas the non-linearity in
the current work is a discontinuity between 2 linear regions. These differences make the ap-
plicability of the method proposed by [47] to the current work questionable. Nevertheless the
method is briefly discussed, since there are also large displacement (geometric non-linear)
effects in the current model. These geometric non-linearities are not discussed in the remain-
der of the reviewed methods. The methods described in [27, 32, 43] use a ’linear’ reduction
space, spanned by for instance the Vibration Modes and Residual Attachment Modes. The
method proposed in [47] also uses a reduction subspace containing the linear VMs, in ad-
dition to the VMs the method uses the Modal Derivatives (MD) of these VMs. These MDs
are used to describe the geometric non-linear (large displacement) behaviour of the system.
From [47] the following derivation of the modal derivatives is taken.

The system from which the MDs are derived is:

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝑓(𝑢(𝑡)) = 𝑔(𝑡) (6.23)

where

𝑢(𝑡ኺ) = 𝑢ኺ
�̇�(𝑡ኺ) = 𝑣ኺ

this system can be linearized around 𝑢፞፪ = 0 which results in:

𝑀�̈� + 𝐶�̇� + 𝐾|፞፪𝑢 = 𝑔(𝑡) (6.24)

where

𝐾|፞፪ =
𝜕𝑓(𝑢)
𝜕𝑢 |፮዆ኺ (6.25)

this can be written as a combination of Vibration Modes and eigen values:

𝑢(𝑡) =
፧

∑
።዆ኻ
𝜙።𝜂።(𝑡) = 0 (6.26)

The vibration modes belonging to equation 6.24 are then calculated with the generalized
eigenvalue problem.

(𝐾|፞፪ − 𝜔ኼ። 𝑀)𝜙። = 0 (6.27)

Here 𝜔ኼ። is the eigenfrequency squared and 𝜙። ∈ ℝ፧ are the eigenmodes of the full system.
For responses which remain close to the linearization 𝑢 = 0 the response of equation 6.24 is
accurate. In a situation where dynamics up to a certain frequency are required, the VMs can
be truncated to obtain the reduced order model.

𝑢(𝑡) ≈
፦

∑
።዆ኻ
𝜙።𝜂። = Φ𝜂(𝑡) (6.28)

where 𝑚 < 𝑛. It can be seen that the Φ calculated here represent the same VMs as the Φ፯
in Gèradin et al. [27] as well as Φ in Tamarozzi et al. [32]. These Φ are applicable for small
displacements from the linearization point. The Modal Derivatives are employed to capture
the non-linear behaviour when displacements are no longer ’small’. The stiffness matrix 𝐾፞፪
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in equation 6.24 is now replaced by the tangent stiffness matrix 𝐾, also known as Jacobi
matrix. And differentiated with respect to 𝜂፣, where 𝑀 is a constant mass matrix.

(𝐾|፞፪ − 𝜔ኼ። |፞፪𝑀))
𝜕𝜙።
𝜕𝜂፣

|
፞፪
+ ( 𝜕𝐾𝜕𝜂፣

|
፞፪
− 𝜕𝜔ኼ።
𝜕𝜂፣

|
፞፪
𝑀)𝜙።|፞፪ = 0 (6.29)

Here the MDs can be seen in ᎧᎫᑚ
Ꭷ᎔ᑛ

which is the derivative of mode 𝑖 in the direction of mode
𝑗. Physically this is the sensitivity of mode 𝑖 in direction 𝑗. These Modal Derivatives are not
simply obtained from the equation 6.29. The MDs are derived for a mass normalization:

𝜙ፓ። 𝑀𝜙። = 1∀𝑖 ∈ ℝ፦ (6.30)

is then differentiated with respect to the modal amplitude resulting in

𝜙ፓ። 𝑀
𝜕𝜙።
𝜕𝜂፣

+ 𝜙ፓ። 𝑀ፓ
𝜕𝜙።
𝜕𝜂፣

= 0∀𝑖, 𝑗 ∈ ℝ፦ (6.31)

Then the symmetry of 𝑀 is used in combination with evaluation at the equilibrium position,
resulting in

𝜙ፓ። |፞፪𝑀
𝜕𝜙።
𝜕𝜂፣

|
፞፪
= 0∀𝑖, 𝑗 ∈ ℝ፦ (6.32)

The MDs can then be calculated directly from equations 6.29 and 6.32:

[
[𝐾|፞፪ − 𝜔ኼ። |፞፪𝑀]፧×፧ − [𝑀𝜙።|፞፪]፧×ኻ
− [𝑀𝜙።|፞፪]

ፓ
ኻ×፧ 0ኻ×ኻ

] [
ᎧᎫᑚ
Ꭷ᎔ᑛ
|
፞፪

ᎧᎦᎴᑚ
Ꭷ᎔ᑛ
|
፞፪

] = [ −
Ꭷፊ
Ꭷ᎔ᑛ
𝜙።|፞፪
0

] (6.33)

The resulting MDs ᎧᎫᑚ
Ꭷ᎔ᑛ
|
፞፪

will then be part of a linear reduction space 𝑉 in addition to the

relevant Vibration Modes. This reduction space will then be:

𝑉 = [𝜙ኻ|፞፪𝜙ኼ|፞፪ ...𝜙፦|፞፪𝜃።፣|፞፪ ...] (6.34)

where 𝜃።፣ =
ᎧᎫᑚ
Ꭷ᎔ᑛ
|
፞፪

are the modal derivatives describing the non-linear behaviour.

The work by Jain et al. [47] then moves on from the linear mapping 𝑢 ≈ 𝑉𝑞 towards a
quadratic mapping 𝑢 ≈ Φ𝑞+ ኻ

ኼ(Ω𝑞)𝑞. Both the results given by a linear mapping including MDs
and the quadratic mapping provide accurate reductions of the non-linear example model.
The quadratic mapping does, however, provide a significant improvement of the amount
of DOF in the final reduced model, therefore resulting in lower computational effort. With
respect to the methods employed in [27, 32, 43], the current method focuses on the internal
effects of geometric non-linear behaviour. It does not take into account the effects which may
occur when external loads are applied at unknown locations. The application of the method
described in Jain et al. [47] to the current work is dependent of the chosen linearization
point and the deviation from this point. If a linearization point can be chosen suc, that the
stress-stiffening effects due to the large axial load are incorporated into the reduction space
a linear reduction space, using only VMs and RAMs might suffice. If this is not the case,
then the non-linear effects need to be incorporated using MDs. Furthermore, since RAMs
are not incorporated to cope with the sliding contact, the method must be combined with,
for instance, the work by [27, 32], which are part of a linear reduction space. The linear
mapping is therefore, for now, the only method of interest.

6.3.4. Proposed reduction scheme
Based on the reduction problem as defined in section 6.3 and the methods of reduction
described in the previous section 6.3.3 a reduction approach for the current work can be
formulated. Three essential features were identified in section 6.3:
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• Dropper slackening / non-linear dropper behaviour

• Sliding contact

• Wave propagation / dynamics

The proposed reduction method is first formulated, after which the inclusion of the three
essential features is discussed.

The full non-linear FE model consists of three independent elements: contact wire, mes-
senger wire and droppers, which mainly determine the dynamic model behaviour. In the
reviewed literature, there is no mention of cable slackening effects, thus this effect will need
to be implemented through a new method. The complete system will therefore first be sub-
structured into the three elements. Elements such as the steady arm and clamp masses are
also of importance, their masses will however, for reasons of simplification, be reduced with
their respective cable. The substructuring process splits the model in three parts, figure 6.2
shows where the model is split.

Figure 6.2: Substructuring process for 1 span

After this substructuring process, the relevant reduction spaces have to be defined for
each substructure. The contact wire subspace will contain:

• Vibration modesΦ። up to at least 𝜔። = 20Hz, evaluated at the static equilibrium position,
in order to include geometric non-linear behaviour in the linearization. This ensures
that wave propagation and dynamics up to 20 Hz are incorporated in the reduced order
model.

• Residual attachment modes 𝜓ፚ to describe the support behaviour.

• Residual attachment modes 𝜓፝ to describe the displacements resulting from dropper
forces.

• Residual attachment modes 𝜓፜ to describe the not fully predictable sliding contact.

it will therefore have the form:
𝑉፜ = [Φ𝜓ፚ፜𝜓፝፜𝜓፜፜] (6.35)

The messenger wire subspace will contain:

• Vibration modes Φ። up to at least 𝜔። = 20 Hz evaluated at the static equilibrium position,
in order to include geometric non-linear behaviour in the linearization. This ensures
that wave propagation and dynamics up to 20 Hz are incorporated in the reduced order
model.

• Residual attachment modes 𝜓ፚ to describe the support behaviour.

• Residual attachment modes 𝜓፝ to describe the displacements resulting from dropper
forces.

and thus have form:
𝑉፦ = [Φ𝜓ፚ፦𝜓፝፦] (6.36)
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Since the non-linear dropper behaviour was not described in previous literature, this part
will not be reduced. Each dropper will be represented by a stiffness 𝐾፝:

𝐾፝ =
⎡
⎢
⎢
⎣

𝐾፝,ኻ 0 0 0
0 𝐾፝,ኼ 0 0
0 0 ... 0
0 0 0 𝐾፝,።

⎤
⎥
⎥
⎦

(6.37)

During time integration all far-field 𝐾፝,። are assumed to be in tension and therefore 𝐾 =
100000𝑁/𝑚. This assumption results from the fact that the non-linear behaviour only hap-
pens to the droppers closest to the pantograph. Near field values are reviewed to check
whether the corresponding dropper is in compression using the following scheme:

get 𝑥 position pantograph
find closest dropper number 𝑗

calculate 𝑈፝ = [(𝑧ኻ,፣ዅኼ − 𝑧ኼ,፣ዅኼ − 𝑙፝,፣ዅኼ) ... (𝑧ኻ,፣ዄኼ − 𝑧ኼ,፣ዄኼ − 𝑙፝,፣ዄኼ)]
ፓ

for each 𝑈፝,፣ < 0 → 𝐾፝,፣ = 0

Where 𝑈፝ ∈ ℝ። is the strain vector, 𝑧ኻ,።, 𝑧ኼ,። are the z positions of respectively messenger and
contact wire at the dropper location. For a situation where 𝐾፝,፣ዅኻ → 𝐾፝,፣ዄኻ = 0 the updated
dropper stiffness matrix has the form

𝐾፝ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐾፝,ኻ 0 0 0 0 0 0 0 0 0
0 𝐾፝,ኼ 0 0 0 0 0 0 0 0
0 0 ... 0 0 0 0 0 0 0
0 0 0 𝐾፝,፣ዅኼ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝐾፝,፣ዄኼ 0 0
0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 𝐾፝,።

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.38)

from this updated stiffness matrix 𝐾፝ and the strain vector 𝑈፝, the non-linear dropper force
𝑓፧፥ is calculated

𝑓፧፥,። = 𝐾፝𝑈፝ (6.39)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑓፧፥,ኻ
𝑓፧፥,ኼ
...

𝑓፧፥,፣ዅኼ
0
0
0

𝑓፧፥,፣ዄኼ
...
𝑓፧፥,።

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐾፝,ኻ 0 0 0 0 0 0 0 0 0
0 𝐾፝,ኼ 0 0 0 0 0 0 0 0
0 0 ... 0 0 0 0 0 0 0
0 0 0 𝐾፝,፣ዅኼ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝐾፝,፣ዄኼ 0 0
0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 𝐾፝,።

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑈፝,ኻ
𝑈፝,ኼ
...

𝑈፝,፣ዅኼ
𝑈፝,፣ዅኻ
𝑈፝,፣
𝑈፝,፣ዄኻ
𝑈፝,፣ዄኼ
...
𝑈፝,።

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.40)

In comparison with the 𝐾 ∈ ℝ፧×፧ matrix for a full model , the updating of matrix 𝐾፝ ∈ ℝ።×።
is much less expensive since 𝑖 << 𝑛 furthermore, due to assuming far field to remain in the
linear region, the part of the matrix that must be edited contains only 5 unknowns. The final
reduced model then contains three subsystems: the contact wire, is reduced by Galerkin
projection:

�̃�፜ = 𝑉ፓ፜ 𝐾፜𝑉፜ (6.41)
�̃�፜ = 𝑉ፓ፜ 𝑀፜𝑉፜ (6.42)
̃𝐶፜ = 𝛼�̃�፜ + 𝛽�̃�፜ (6.43)
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where ̃𝐶፜, the damping matrix is a weighted (𝛼, 𝛽) linear combination of the mass and stiffness
matrices. Similarly the messenger wire reduces to:

̃𝐾፦ = 𝑉ፓ፦𝐾፦𝑉፦ (6.44)
̃𝑀፦ = 𝑉ፓ፦𝑀፦𝑉፦ (6.45)

̃𝐶፦ = 𝛼 ̃𝑀፦ + 𝛽 ̃𝐾፦ (6.46)

note that the values 𝛼 and 𝛽 in equations 6.43 and 6.46 are the same, since damping is
applied globally. The three essential features are all incorporated in this reduction space:

• Dropper slackening / non-linear dropper behaviour, as defined in this section the non-
linear dropper behaviour is separated from the contact and messenger wire, therefore
this part need not be reduced.

• Sliding contact, this is incorporated in the reduction space due to the Residual Attach-
ment Modes

• Wave propagation, this is incorporated in the reduction space through the Vibration
Modes.

The actual calculation of the reduction spaces 𝑉፜ and 𝑉፦ and the reduced order model pa-
rameters in equation 6.41 to equation 6.46 will be the subject of the subsequent thesis work.
Different reduction spaces may be introduced to further improve upon the currently proposed
space.

6.3.5. Assembly
Assembly of the full FE model can be achieved in a primal or a dual manner, both methods
are described briefly and both methods have their own pros and cons. Furthermore the
time integration method of choice further complicates the assembly method since it implies
that the results are not only dependent of the stiffness matrix, yet also from the mass and
damping matrices. Further on in the section this part will be discussed in full.

The full un-assembled system stiffness matrix consists of 2 different matrices. The block
diagonal beam element stiffness matrix 𝐾፛ which contains the Euler-Bernoulli beam stiff-
nesses and the geometric stiffness due to pre loading.

𝐾፛ =
⎡
⎢
⎢
⎣

𝐾፛,ኻ 0 0 0
0 𝐾፛,ኼ 0 0
0 0 ... 0
0 0 0 𝐾፛,።

⎤
⎥
⎥
⎦

(6.47)

Where 𝐾፛,። is a 4 by 4 element stiffness matrix related to the elemental displacement vector
𝑈፛ = [𝑢፛,ኻ𝜃፛,ኻ𝑢፛,ኼ𝜃፛,ኼ]. The block diagonal dropper element stiffness matrix 𝐾፝ contains the
dropper stiffness according to equation 6.38. The full un-assembled stiffness matrix 𝐾፛፥፨፜፤
is then made by putting 𝐾፛ and 𝐾፝ on the diagonal.

𝐾፛፥፨፜፤ = [
𝐾፛ 0
0 𝐾፝ ] (6.48)

In order to assemble the full system, a signed boolean matrix 𝐵 needs to be built, con-
taining a constraint equation in each row which determines which DOF are constrained to
eachother. This matrix is of size 𝑐 × 𝑛 where 𝑐 is the amount of constraint equations and 𝑛
the amount of DOF in the system.

The full system can be written as follows:

𝑀፛፥፨፜፤�̈� + 𝐶፛፥፨፜፤�̇� + 𝐾፛፥፨፜፤𝑢 = 𝑓 + 𝑔 (6.49)

where 𝑀፛፥፨፜፤ is the block diagonal mass matrix, 𝐶፛፥፨፜፤ = 𝛼 ∗𝑀፛፥፨፜፤+𝛽 ∗𝐾፛፥፨፜፤, f is the external
force vector and g is the internal force vector.
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Primal assembly
In a primal assembly the assembled system retains only the active (non-constrained) DOF.
Compatability is ensured by 𝐵𝑢 = 0, equilibrium is obtained through 𝐿ፓ𝑔 = 0. In order to
primally assemble the stiffness matrix, a boolean matrix 𝐿 = 𝑛𝑢𝑙𝑙(𝐵) is built, 𝐿 represents
the null space of boolean matrix 𝐵 and is of size 𝑛 × (𝑛 − 𝑐). The global stiffness matrix is
then assembled by pre- and post-multiplication of 𝐾፛፥፨፜፤ by respectively 𝐿ፓ𝑎𝑛𝑑𝐿. This section
is not a full derivation of the primal assembly method, it is meant to show how the current
system can be assembled with this method which is described in de Klerk et al. [48].

𝐾፠፥፨፛ = 𝐿ፓ𝐾፛፥፨፜፤𝐿 (6.50)

𝐾፠፥፨፛ is of size (𝑛 − 𝑐) × (𝑛 − 𝑐) and is non-singular, whereas 𝐾፛𝑙𝑜𝑐𝑘 was singular due to the
dropper stiffness 𝐾፝. Similar to the assembly of 𝐾፠፥፨፛, the assembled force vector and mass
and damping matrices may be created

𝐹፠፥፨፛ = 𝐿ፓ𝐹 (6.51)

𝑀፠፥፨፛ = 𝐿ፓ𝑀፛፥፨፜፤𝐿 (6.52)
𝐶፠፥፨፛ = 𝐿ፓ𝐶፛፥፨፜፤𝐿 (6.53)

The full assembled system is now:

{ 𝑀፠፥፨፛�̈� + 𝐶፠፥፨፛�̇� + 𝐾፠፥፨፛𝑞 = 𝐹፠፥፨፛𝐿ፓ𝑔 = 0 (6.54)

where 𝑞 = 𝐿ፓ𝑢.

Dual assembly
In a dual assembly all interface DOF are retained and equilibrium and compatability are
satisfied a priori by choosing the internal forces [48] 𝑔 = −𝐵𝜆 and equilibrium 𝐿ፓ𝑔 = 0. As
opposed to the primal formulation, no new system matrices need to be calculated, however,
Lagrange multipliers need to be calculated or eliminated.

{ 𝑀፛፥፨፜፤�̈� + 𝐶፛፥፨፜፤�̇� + 𝐾፛፥፨፜፤𝑢 + 𝐵
ፓ𝜆 = 𝐹፛፥፨፜፤

𝐵𝑢 = 0 (6.55)

6.4. Solver / time integration improvements
Time integration will be done using a Newmark-𝛽 method. The method explained here is a
HHT-𝛼 method, which for 𝛼 = 0 reduces to the desired Newmark-𝛽 method. The difference
between HHT-𝛼 and Newmark-𝛽 lies in the numerical damping, applied through changing the
𝛼 As an extension to this Newmark-𝛽 time integration an HHT-𝛼 integration can be done. This
method, as well as the Newmark-𝛽 method, is unconditionally stable. The finite difference
approximations which hold for both method are as follows:

𝑥።ዄኻ ≈ 𝑥። + ℎ�̇�። + ℎኼ [(
1
2 − 𝛽) �̈�። + 𝛽�̈�።ዄኻ] (6.56)

�̇�።ዄኻ ≈ �̇�። + ℎ [(1 − 𝛾) �̈�። + 𝛾�̈�።ዄኻ] (6.57)
The HHT-𝛼 equation of motion is

𝑀�̈�።ዄኻ + (1 − 𝛼)𝐶�̇�።ዄኻ + 𝛼𝐶�̇�። + (1 − 𝛼)𝐾𝑥።ዄኻ + 𝛼𝐾𝑥። = (1 − 𝛼)𝑓፞፱፭።ዄ። + 𝛼𝑓፞፱፭። (6.58)

This equation is unconditionally stable when

0 ≤ 𝛼 ≤ 1
3

𝛽 = (1 + 𝛼)ኼ
4

𝛾 = 1
2 + 𝛼
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Substitution of the Newmark-𝛽 finite difference approximations 6.56 and 6.57 in to equation
6.58 and grouping terms

[𝑀 + ℎ(1 − 𝛼)𝛾𝐶 + ℎኼ(1 − 𝛼)𝛽𝐾] �̈�።ዄኻ+

[ℎ(1 − 𝛼)(1 − 𝛾)𝐶 + ℎኼ(1 − 𝛼)(12 − 𝛽)𝐾] �̈�።+

[𝐶 + ℎ(1 − 𝛼)𝐾] �̇�።+
𝐾𝑥።

= (1 − 𝛼)𝑓፞፱፭።ዄ። + 𝛼𝑓፞፱፭።

(6.59)

For 𝛼 = 0, 𝛽 = ኻ
ኾ and 𝛾 =

ኻ
ኼ this formula reduces to

[𝑀 + ℎ𝐶2 + ℎ
ኼ𝐾
4 ] �̈�።ዄኻ+

[ℎ𝐶2 + ℎ
ኼ𝐾
4 ] �̈�።+

[𝐶 + ℎ𝐾] �̇�።+
𝐾𝑥።

= 𝑓፞፱፭።ዄ።

(6.60)

Rearranging results in

[𝑀 + ℎ𝐶2 + ℎ
ኼ𝐾
4 ] �̈�።ዄኻ = 𝑓፞፱፭።ዄ። − [

ℎ𝐶
2 + ℎ

ኼ𝐾
4 ] �̈�። − [𝐶 + ℎ𝐾] �̇�። − 𝐾𝑥። (6.61)

This can be solved for �̈�።ዄኻ, from the finite difference equations �̇�።ዄኻ and 𝑥።ዄኻ can then be
calculated.

6.4.1. Direct Newmark, with iteration matrix updates
The main issue of solving for �̈�።ዄኻ is solving the equation of motion. The exact solution can
be found by inverting the full system matrices and solving the equilibrium equation. In such
a way the new equation of motion becomes

�̈�።ዄኻ = [𝑓፞፱፭።ዄ። − [
ℎ𝐶
2 + ℎ

ኼ𝐾
4 ] �̈�። − [𝐶 + ℎ𝐾] �̇�። − 𝐾𝑥።] ∗ [𝑀 +

ℎ𝐶
2 + ℎ

ኼ𝐾
4 ]

ዅኻ

(6.62)

solving this equations requires computation of the inverse of [𝑀 + ፡ፂ
ኼ +

፡Ꮄፊ
ኾ ]multiple times

as the 𝐾 matrix changes during integration. This generally requires a lot of computational
effort as the system matrices 𝐾, 𝐶 and 𝑀 become large. To improve the efficiency of this
calculation, a preferable method is calculation of the inverse once, prior to time integration,
after which small, computationally efficient updating is applied. The method to achieve this
starts with the inverse to be calculated at time 0, for ease of use the inverse of [𝑀 + ፡ፂ

ኼ +
፡Ꮄፊ
ኾ ]

will be compacted to 𝐿ዅኻ.

𝐿ዅኻኺ = [𝑀ኺ +
ℎ𝐶ኺ
2 + ℎ

ኼ𝐾ኺ
4 ]

ዅኻ

(6.63)

Where all stiffnesses are in the linear domain, since M does not change, K does and 𝐶 =
0.0125 ∗ 𝑀 + 0.0001 ∗ 𝐾 is a linear combination of both, the inverse is split in 2 parts, the
changing and the non-changing part

𝐿ዅኻኺ = [(1 + 0.0125 ∗ ℎ2 )𝑀ኺ + (
ℎኼ
4 + 0.0001 ∗ ℎ2 )𝐾ኺ]

ዅኻ

(6.64)
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accepting that a value for ℎ is chosen prior to time integration, the inverse is now of a form

𝐿ዅኻኺ = [𝑎𝑀ኺ + 𝑏𝐾ኺ]
ዅኻ (6.65)

the change in matrix 𝐾 is allways of rank 1 since a dropper element stiffness

𝐾፝,። = [
100000 −100000
−1000000 100000 ] (6.66)

is of rank 1, the difference between the previous and current stiffness matrix is thus

𝐾፝።፟፟ = 𝐾፩፫፞፯።፨፮፬ − 𝐾፜፮፫፫፞፧፭ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 ... 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝐾፝,። 0 0
0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.67)

where 𝑟𝑎𝑛𝑘(𝐾፝።፟፟) = 1 and thus

𝐿፝።፟፟ = [𝑎𝑀፩፫፞፯።፨፮፬ + 𝑏𝐾፩፫፞፯።፨፮፬] − [𝑎𝑀፜፮፫፫፞፧፭ + 𝑏𝐾፜፮፫፫፞፧፭] (6.68)

where 𝑎𝑀፩፫፞፯።፨፮፬ − 𝑎𝑀፜፮፫፫፞፧፭ = 0

𝐿፝።፟፟ = 𝑏 [𝐾፩፫፞፯።፨፮፬ − 𝐾፜፮፫፫፞፧፭] = 𝑏 [𝐾፝።፟፟] (6.69)

since 𝑏 is a scalar it is clear that 𝑟𝑎𝑛𝑘(𝐿፝።፟፟) = 1 In which case the Sherman-Morrison [49]
formula for rank-1 updates may be applied.

(𝐿፩፫፞፯ + 𝑢𝑣ፓ)
ዅኻ = 𝐿ዅኻ፩፫፞፯ −

1
1 + 𝑣ፓ𝐿ዅኻ፩፫፞፯𝑢

(𝐿ዅኻ፩፫፞፯𝑢𝑣ፓ𝐿ዅኻ፩፫፞፯) (6.70)

to compute 𝑢𝑣ፓ we need to take into account that:

𝑢𝑣ፓ = 𝐿፝።፟፟ (6.71)

and since the Singular Value Decomposition of 𝐿፝።፟፟

𝑈𝑆𝑉∗ = 𝐿፝።፟፟ (6.72)

combining equations 6.71 and 6.72 and taking note that due to rank of 𝐿፝።፟፟ = 1, the SVD
reduces to 1 singular value and 2 single-column vectors, and 𝑟𝑒𝑎𝑙(𝑉∗) = 𝑉ፓ.

𝑢𝑣ፓ = 𝑆(ኻ,ኻ)𝑈(∶,ኻ)𝑉ፓ(∶,ኻ) (6.73)

resulting in
𝑢 = 𝑆(ኻ,ኻ)𝑈(∶,ኻ) & 𝑣ፓ = 𝑉ፓ(∶,ኻ) (6.74)

The rank 1 updating equation 6.70 now reads

𝐿ዅኻ፜፮፫፫ = (𝐿፩፫፞፯ + 𝑆(ኻ,ኻ)𝑈(∶,ኻ)𝑉ፓ(∶,ኻ))
ዅኻ
= 𝐿ዅኻ፩፫፞፯ −

1
1 + 𝑉ፓ(∶,ኻ)𝐿ዅኻ፩፫፞፯𝑆(ኻ,ኻ)𝑈(∶,ኻ)

(𝐿ዅኻ፩፫፞፯𝑆(ኻ,ኻ)𝑈(∶,ኻ)𝑉ፓ(∶,ኻ)𝐿ዅኻ፩፫፞፯)

(6.75)
It can be checked that, for all matrices of rank 1, equations 6.74 and 6.75 hold, also after
modal reduction, where the rank of the matrix is not easily observed as 1, yet is definitely of
rank 1.
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This method delivers an exact solution �̈�።ዄኻ to equation 6.62, the accuracy of the result is
based on the (finite difference) approximations on which the equation relies. Due to the low
rank updating of the matrix inverse, time can be saved. The SVD decomposition of the full
matrix however is time consuming. This is compensated by the fact that only the first column
needs to be computed, nevertheless this means that for large systems, the currently proposed
method delivers faster results, whereas small systems are better off by simply calculating the
inverse. That being said, the currently proposedmethod will be applied to larger systems, and
will therefore provide improved performance. Furthermore, in situations like equation 6.67,
where the majority of the difference matrix is zero, a SVD of the 2 × 2 matrix 𝐾፝,።, combined
with an index search operation to determine the placement of the SVD results.

6.4.2. Direct Newmark, without iteration matrix updates
The direct Newmark solver, which does not update the iteration matrix, corresponds to the
Newmark solver for linear systems. The catenary system, on which the solver is applied, is
mainly linear. Some non-linearities exist in the beam elements, such as stress-stiffening,
may be pre-calculated by means of the geometric stiffness matrix (equation 7.2). Further-
more, the dropper decoupling, is a fairly straightforward matrix operation. Resulting in a
near-linear system which may be solved using a linear solver.

First an estimate of the state is done using the following predictor formulae:

𝑈∗፧ዄኻ = 𝑈፧ + ℎ ∗ �̇�፧ + (
1
2 − 𝛽) ∗ ℎ

ኼ ∗ �̈�፧ (6.76)

�̇�∗፧ዄኻ = �̇�፧ + (1 − 𝛾) ∗ �̈�፧ (6.77)

After this the value for �̈�፧ዄኻ is calculated by solving:

[𝑀፠፥፨፛ + ℎ ∗ 𝛾 ∗ 𝐶፠፥፨፛ + ℎኼ ∗ 𝛽 ∗ 𝐾፠፥፨፛] �̈�፧ዄኻ = 𝐹፠፥፨፛(ᑟᎼᎳ) − 𝐶፠፥፨፛ ∗ �̇�∗፧ዄኻ − 𝐾፠፥፨፛ ∗ 𝑈∗፧ዄኻ (6.78)

lastly the predicted values are updated:

𝑈፧ዄኻ = 𝑈∗፧ዄኻ + 𝛽 ∗ ℎኼ ∗ �̈�፧ዄኻ (6.79)
�̇�፧ዄኻ = �̇�∗፧ዄኻ + 𝛾 ∗ ℎ ∗ �̈�፧ዄኻ (6.80)

This solution procedure entails calculating the inverse of the iteration matrix
[𝑀፠፥፨፛ + ℎ ∗ 𝛾 ∗ 𝐶፠፥፨፛ + ℎኼ ∗ 𝛽 ∗ 𝐾፠፥፨፛]. The choice is made to refrain from updating this matrix,
which allows the inverse to be pre-calculated, thereby improving the in-loop computational
effort. Note that this method is identical to the method proposed in chapter 6. The difference
is the formulation of the equations due to the updating of the iteration matrix. For a linear
solver, this only works if the variational formulation is used.

6.4.3. Iterative Newmark + Newton-Rhapson, with and without iteration matrix
updates

In order to provide a correct comparison between the proposed solvers and the current An-
sys solver it is essential to build a representative Ansys solver. Based on the Ansys theory
reference [50], the following solver is built.

First an estimate of the state is done using the following predictor formulas:

𝑈∗፧ዄኻ = 𝑈፧ + ℎ ∗ �̇�፧ + (
1
2 − 𝛽) ∗ ℎ

ኼ ∗ �̈�፧ (6.81)

�̇�∗፧ዄኻ = �̇�፧ + (1 − 𝛾) ∗ �̈�፧ (6.82)
�̈�∗፧ዄኻ = 0 (6.83)

Where ℎ denotes the time step, �̈�፧, �̇�፧ and 𝑈፧ the acceleration, velocity and displacement
at time 𝑛, whereas 𝑈∗፧ዄኻ and its derivatives denote the predicted value at time 𝑛 + 1. Next the
residual value is calculated:

𝑅(�̈�∗፧ዄኻ, �̇�∗፧ዄኻ, 𝑈∗፧ዄኻ) = 𝐹፠፥፨፛ −𝑀፠፥፨፛ ∗ �̈�∗፧ዄኻ − 𝐶፠፥፨፛ ∗ �̇�∗፧ዄኻ − 𝐾፠፥፨፛ ∗ 𝑈∗፧ዄኻ (6.84)
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The value of ||𝑅(�̈�∗፧ዄኻ, �̇�∗፧ዄኻ, 𝑈∗፧ዄኻ)|| (||∗|| denotes the norm of ∗) is compared to a convergence
value 𝑒𝑟𝑟 = ||𝜂 ∗ 𝐹፠፥፨፛|| where 𝜂 is a value chosen to ensure the converged solution is close to
the actual solution.

The iterative solution is triggered through the comparison: while ||𝑅(�̈�∗፧ዄኻ, �̇�∗፧ዄኻ, 𝑈∗፧ዄኻ)|| >=
||𝜂 ∗ 𝐹፠፥፨፛||. The following updating / correction procedure is started and will iterate until the
residual norm is below the 𝑒𝑟𝑟 value:

the following equation is first solved for 𝛿𝑈∗፧ዄኻ

[ 1
𝛽 ∗ ℎኼ ∗ 𝑀፠፥፨፛ +

𝛾
𝛽 ∗ ℎ ∗ 𝐶፠፥፨፛ + 𝐾፠፥፨፛]∗𝛿𝑈

ኻ
፧ዄኻ = 𝐹፠፥፨፛(ᑟᎼᎳ) −𝑀፠፥፨፛ ∗ �̈�∗፧ዄኻ−𝐶፠፥፨፛ ∗ �̇�∗፧ዄኻ−𝐾፠፥፨፛ ∗𝑈∗፧ዄኻ

(6.85)
then the values for �̈�∗፧ዄኻ, �̇�∗፧ዄኻ, 𝑈∗፧ዄኻ are updated. To clarify, the * superscript denotes the

iteration number, thus the first correction results in the values:

𝑈ኻ፧ዄኻ = 𝑈∗፧ዄኻ + 𝛿𝑈ኻ፧ዄኻ (6.86)

�̇�ኻ፧ዄኻ = �̇�∗፧ዄኻ +
𝛾

𝛽 ∗ ℎ ∗ 𝛿𝑈
ኻ
፧ዄኻ (6.87)

�̈�ኻ፧ዄኻ = �̈�∗፧ዄኻ +
1

𝛽 ∗ ℎኼ ∗ 𝛿𝑈
ኻ
፧ዄኻ (6.88)

After the solution is converged, the process is repeated until the solution is finished. This
solver is used for systems, with and without matrix updates. The solution of equation 6.85,
only differs through the updating of the left hand side of the equation.

The solver as proposed here is one of the solvers available in Ansys when non-linear effects
are to be taken into account. There are some minor differences between this solver and the
Ansys solver which need to be taken into account:

• Ansys allows multiple convergence criteria, the currently proposed solver does not im-
plement this functionality.

• The prediction and correction functions here might differ slightly from the functions
used by ansys. This is due to the fact that these are not explicitly mentioned in the
Ansys theory reference. This is however only a matter of form, the solution algorithm is
the same.

6.4.4. Convergence criteria comparison
The optimization of model criteria, in essence, means loosening the convergence criteria to im-
prove computation times. This method, which can only be applied when the current simula-
tions return a stable catenary, improves computation times at the expense of solver stability.
The requirement of stable catenary simulations means this method can only be implemented
at the end of this project, thus, this method will be explored after the validated simulations
are completed. This will be tested together with the solver improvement tests, to see how the
proposed solvers scale as convergence criteria become stringent.

6.5. Contact method improvements
The contact methods are compared to each other, however, they can not just be compared
based on one model. As described in chapter 8, it is important to change relevant vari-
ables. Furthermore, the analyses are done with changing frequencies, thereby taking into
account scaling with time step. Moreover, velocity scaling is introduced by performing a sec-
ond analysis at 10 times the speed. The scaling with respect to the size of the model shall
be investigated through the addition of 2 and 4 spans at the end of the model, which are not
loaded. This will show whether the improvement scales in unison with the size of the model,
or whether it is absolute and therefore diminishes as the size of the model increases.
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6.5.1. Contact module
The contact module as used in the EN50318 validated model, is a penalty based beam-
to-beam contact model, in which the penalty stiffnesses and penetration are all governed
automatically by the solver. This is expected to cause high computational effort, thereby
resulting in prohibitive simulation times. In highly complex models where the contact com-
patibility is very important, a lot of elements are in contact simultaneously and results are
not filtered afterwards. This may be a trade-off worth making. However, in the current work
this is not the case. The contact exists between 2 elements, it will always be found at the
current position of the pantograph and penetration is allowed as long as the contact force is
correct. Furthermore, in low frequency situations the module may lose contact if the time
step results in over penetration of the catenary. It is expected that use of the contact module
results in increasingly difficult convergence behaviour as well as longer simulation times.

6.5.2. Direct Application
The direct application of forces onto the model requires multiple load steps to be defined. This
has to be implemented prior to the solution process, thereby it does not allow for calculation
of forces between steps. However, since an improved solution procedure will most likely be
executed outside Ansys, this is not an issue. For the sake of comparison, a constant force
will suffice. The Direct Application method is expected to be the faster contact method, first
of all due to the lack of force calculations, more so due to the lack of all contact module
overhead. Adversely, the method requires that every time the load moves a new load step
must be solved, this will slow down the calculation of the results slightly. In order to show
the effect this has, the Contact model simulation will also be calculated with multiple load
steps.

6.5.3. Validation of Comparison
The contact model has been modeled as a rigid rod with 14kg mass and an average upward
force of 150n whereas the Direct application has been modeled as an upward force of 150n at
all times. This entails that the loads applied on the system, when comparing the Direct Appli-
cation method and the Contact Module method are not completely equal. This is a necessary
evil however, since the contact element needs to be modeled with significant mass to reduce
the accelerations and respectively velocities on the element. The contact models, therefore,
do not result in an exact same situation. The settings in the contact module represent the
best case scenario when working with Ansys. However, at lower analysis frequencies, the
model still does not converge correctly and becomes unstable. This is mainly the result of
the element passing problem (see section 3.5). On the other hand, the Direct Application
method is the best case scenario for the other simulation methods. In order to be able to put
all these simulations in perspective, it is important to check the influence of the added mass
to the simulation results. To that extent the Contact Module simulation is performed once,
with a 14kg rod, and another time with a 7.5kg rod. The values in table 6.2 are the results
of these control simulations.

Contact Module 14kg Contact Module 7.5kg Improvement in %
500hz, 0.1m/step 483.05 483.69 0.13%

Table 6.2: Control simulation to check mass influence on simulation time, by simulation time [s]

Based on the values in table 6.2 it is concluded that the mass does not influence the
simulation time. Therefore, when Contact Module and Direct Application are compared, the
difference in simulation times can reliably be related to the used contact model.
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6.6. Conclusion
Based on reviewed literature, a new reduction method is proposed. This reduction method
contains all required features defined in the beginning of this chapter. It does not employ new
or unproven techniques, only different applications of currently available methods. There-
fore there is significant confidence that the method will provide accurate results, whilst being
applicable to the current model. Inclusion of the non-linear dropper effect in time integration
is ensured due to decoupling of the spring stiffness as the droppers are loaded in compres-
sion. Inclusion of this effect in the modal domain provides some questions which still need
answering. Even though deducting a dropper stiffness in the modal domain is as easy as
it is in the physical domain. The modes with which it is multiplied do not accommodate
high movements at the dropper location, therefore the reduction space 𝑉 will also need to
be adapted. Several methods for improvement of time integration have been proposed. In
the remainder of this research, these methods will be applied, tested and improved upon if
possible.

In order to achieve the second goal of this research, as defined in chapter 1: ”To find
and apply a reduction method, which reduces computational effort whilst respecting dropper
slackening, non-linear sliding contact and wave propagation.”. The following questions are
formulated:

• Does replacing the Ansys iterative solver by a direct solver which uses Iteration matrix
updates, result in lower simulation times, and do these represent a significant improve-
ment with respect to the Ansys method. Furthermore, how do these improvements
relate to other common solver types.

• Does replacing the Ansys contact module by another contact method result in lower
simulation times, and do these represent a significant improvement with respect to the
Ansys method .

• Does replacing a physical Finite Element Method model by a Reduced Order Model
throughModal Reduction improve simulation times, and do these represent a significant
improvement with respect to a full physical Finite Element Method model.





7
Model for improvement tests

7.1. Introduction
This chapter focuses on creating a simplified FE model in Matlab, upon which spring decou-
pling, solver improvements and contact model improvements can be applied. These improve-
ments will be described in chapters 8 and 9.

The remaining model building and decoupling process is as follows:

• Create simplified catenary Finite Element Method model.

• Write time integrator based on the Newmark - 𝛽 or HHT-𝛼 solvers, ensuring uncondi-
tional stability.

• Perform decoupling procedure

• Extend Finite Element Method model to incorporate messenger wire

The model, upon which the reduction process is applied is a very simplified version of the
full model. It consists of the basics which determine a catenary: Contact wire and droppers.
This model is built to test which improvements can be done to improve upon the Ansys version
of the model and to be able to judge these improvements in an inexpensive (time) manner.
Later, the model is extended to include the messenger wire in order to gain a complete model
upon which the solver can be executed.

7.2. Simplified model
To gradually create a more extensive catenary model, the first model that is built represents
a system as can be seen in figure 7.1. This model does not include the pantograph. In its
place a discrete moving load is applied. This helps isolating the simulation times as well as
convergence issues arising from the catenary system, which is one of the goals of this work.

7.2.1. Element choice and Matrix generation
The contact wire is a long slender beam, whose bending stiffness is based on both the bending
stiffness of the material and geometrical properties of the beam, as well as on the pre-tension
applied to this beam. Based on the loading of the beam occuring predominantly in the bend-
ing domain, the axial degrees of freedom will not be taken into account in the simplified
model. The bending stiffness of the matrix is based on the Euler-Bernoulli beam element.
The stiffness matrices belonging to these phenomena are as follows:

𝑍ፄ፮፥፞፫ዅፁ፞፫፧፨፮፥፥። = 𝐸፛ ∗ 𝐼፲፲,፛

⎡
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(7.1)
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F

x

Figure 7.1: Simplified catenary system

Which represents the bending stiffness of an Euler-Bernoulli beam, with 𝐸፛ is Young’s mod-
ulus, 𝐼፲፲,፛ is bending moment of inertia and 𝐿 is length of the beam element.
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(7.2)

Which represents the geometric stiffness of the beam under tension 𝑁 in newton, where 𝐿 is
length of the beam element. The dropper stiffness are defined as in equation 6.66. Assembly
of the system is performed using the Primal assembly method provided in section 6.3.5. This
results in assembled stiffness- mass- and damping matrices.

7.2.2. Decoupling procedure
The decoupling procedure as described in section 6.3.4 is applied through the following
pseudo script:

• if dropper force >=0 && previous dropper force <0

– Calculate block-diagonal stiffness matrix difference with 1 dropper removed
– Assemble stiffness matrix difference
– Compute new Assembled stiffness matrix
– Compute new Assembled damping matrix
– if Rank 1 updating of the tangent stiffness (equation 6.63) inverse is desired

⋄ Execute equation 6.64 to 6.75
– end if

• else if dropper force <=0 && previous dropper force >0

– Calculate block-diagonal stiffness matrix difference with 1 dropper reattached
– Assemble stiffness matrix difference
– Compute new Assembled stiffness matrix
– Compute new Assembled damping matrix
– if Rank 1 updating of the tangent stiffness (equation 6.63) inverse is desired

⋄ Execute equation 6.64 to 6.75
– end if

• end if



7.3. Extended model 51

7.2.3. Load application and Time integration
The simplified model is loaded by a constant force. The location of this force changes based on
the velocity input. This is implemented by continuously updating the load step to represent
the new load case, whilst performing the time integration. In future work this will also entail
the calculation of the amplitude of the force, based on the desired contact module as well as
the chosen pantograph model.

7.3. Extended model
The extension of the simplified model entails the addition of a second cable, the messenger
wire. The definitions of the wires can be reviewed in figure 2.1. The dropper stiffnesses
have to be disconnected from the ’world’ and connected to the messenger wire. A visual
representation of this system can be seen in figure 7.2.

F

x

Figure 7.2: Extended catenary system

To move from the system in figure 7.1 to the system in figure 7.2 the system matrices will
need to be changed in order to accompany the extra wire. Furthermore there will need to be
minor changes to the boolean matrix B, to accompany the dropper stiffnesses to attach to
the messenger wire correctly. The messenger wire stiffness matrix is constructed in a similar
manner to the contact wire, see equations 7.1,7.2. The stiffness matrix lay-out now becomes:

𝑍፬፲፬፭፞፦ = [
𝑍፜፨፧፭ፚ፜፭ 𝑂 𝑂
𝑂 𝑍፦፞፬፬፞፧፠፞፫ 𝑂
𝑂 𝑂 𝑍፝፫፨፩፩፞፫

] (7.3)

Mass and damping matrices’ lay-out will be comparable to the stiffness matrix lay-out.
Furthermore the decoupling procedure now requires the displacements of both contact wire
as well as catenary wire in order to correctly determine the moment of decoupling.

7.4. Modally reduced simplified model
The proposed substructuring method in chapter 6 is performed in Matlab r2017b. The modal
reduction which was proposed here, has already in an early stage not resulted in simulation
time improvements. This is mainly due to the large amount of interface locations and as
a consequence, a large amount of modes need to be kept in the system. Furthermore, the
load vector needs to be projected onto the modal domain every time-step, as physical model
sizes remain large, this means this a reasonably inefficient procedure. This results in less
simulation time improvement. Therefore, the decision has been made to not go too far into
detail in the main body of this work. The process however, has been recorded and can be
referenced in appendix D.
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Solver Implementation results

8.1. Introduction
In the previous chapters the possibility of improving the simulation time has been discussed
thoroughly. These improvements are tailored specifically to the problem at hand in this
simulation method, which can be described as a largely linear system with very local non-
linearities and pre-calculable stress-stiffening terms. This model, which is full of non-linear
elements, can be solved by multiple methods. These can be split in Implicit and Explicit
methods. Furthermore the system can be solved in a direct manner by solving the equation
of motion, or the system can be solved in an iterative manner by calculating the residual
and updating the guess. In general it can be stated that linear solvers usually entail a direct
solver, whereas non-linear solvers usually entail an iterative solver. The proposed solver
enhancements are to be tested on the simplified Finite Element Method model, this model is
described in chapter 7.

Linear solvers usually entail direct solvers whereas iterationmatrix �̂� as well as the System
matrices 𝐾, 𝐶 and 𝑀 are not updated. On the other hand, non-linear solvers usually entail
an iterative solution procedure where the system matrices are updated. In these iterative
solvers, the iteration matrix is not part of the solution and can therefore only improve the
convergence behaviour. In methods like the one proposed in this work, differences in the
iteration matrix are small, whilst updating this matrix requires high computational effort.
This may lead to the decision to refrain from updating this matrix in-loop. The four solvers
that will be tested are all Implicit solvers. The nature of the model has proven to be best
with implicit solution procedures, whereas the explicit solutions are unstable. Therefore the
solvers that are compared are as follows.

1. Iterative Newmark + Newton-Rhapson, with iteration matrix updates and 𝐾, 𝐶 and 𝑀
updates, ”Ansys” solver.

2. Iterative Newmark + Newton-Rhapson, without iteration matrix updates but with 𝐾, 𝐶
and 𝑀 updates.

3. Direct Newmark, with iteration matrix updates and 𝐾, 𝐶 and 𝑀 updates. (variational
form)

4. Direct Newmark, without iteration matrix updates but with 𝐾, 𝐶 and 𝑀 updates.
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8.2. Solver scaleability results
In order to compare the solving times qualitatively, the scaleability of a few important settings
can be tested:

• Mesh size; as the amount of dof’s increases the system matrices scale quadratically.

• Time step; lowering the time step causes more iteration steps, therefore increasing so-
lution times. However, in iterative solvers, the amount of equilibrium calculations may
be reduced.

• Pantograph velocity; increased velocities induce larger displacements, thus complicat-
ing equilibrium calculations, this effect should be less visible in the direct solver

• Convergence criterion; large models may or may not converge correctly when loose con-
vergence criteria are used, resulting in solver instability.

The main value of interest is the scaleability of the Ansys solver, versus the scaleability of
the fast, linear direct solver. The main interest here is to see which solver provides the best
results at different mesh sizes, in order to determine how the solution times scale with mesh
size.
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8.2.1. Mesh Scaleability
The solvers have all been used to solve the exact same model. Changing mesh sizes allows
for an initial comparison and an indication of the scaleability of the solvers as well. Solver
efficiency can be measured in many ways. In this chapter the solving time is used as the value
for efficiency. The values presented in table 8.1, as well as in figure 8.1 are averaged values,
each value is based on at least three simulations. The simulations values are collected in a
worksheet, parts of which can be found in appendix E.

Solver
Number of Elements Iterative, no upd Iterative, upd Direct, no upd Direct, upd
200 5.36 5.31 3.33 5.33
400 19.61 21.78 12.11 26.70
600 53.00 51.65 25.36 58.33
800 103.43 106.14 43.15 125.05
1000 206.44 213.54 75.80 225.87
1200 309.26 309.77 134.84 354.25
1400 460.77 470.63 233.18 572.07

Table 8.1: Solver comparison by simulation time [s]
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Figure 8.1: Solution times for all four solvers at different mesh sizes

Based on the graphical representation as show in figure 8.1, the simulation time increases
quadratically with the size of the problem, intuitively this should also be the case due to the
size of the matrices being 𝐷𝑂𝐹ኼ. The average improvement over all mesh sizes, when moving
from Iterative, no upd to Direct no upd is: 54.41%. There is no clear trend in the improvement
when related to the mesh size, it does however hover around 50% for all calculated result
values.
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8.2.2. Time Step Scaleability
Time step size can influence result accuracy significantly. Some solvers work well at high
time steps, whereas other solvers require lower steps to provide the same accuracy. The
time step size also affects the simulation times, as lowering the time step results in more
calculations per unit of time. The resulting values are presented in table 8.2 and figure 8.2.

Solver
Time Step size Iterative, no upd Iterative, upd Direct, no upd Direct, upd
0.01 1.24 1.41 0.52 1.05
0.005 1.49 1.59 0.69 1.18
0.002 3.22 3.08 1.85 2.87
0.001 5.34 5.39 3.39 5.07
0.0005 10.22 10.21 6.67 10.02
0.0002 23.83 22.91 15.59 22.77
0.0001 60.11 46.33 30.37 44.15

Table 8.2: Solver comparison by simulation time [s]
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Figure 8.2: Solution times for all four solvers at different time step sizes (Logarithmic horizontal scale!)

When solving the same simulation problem, but at different time steps, the results show
an increase in simulation times when time steps are lowered. The simulation times scale
near-linear with the amount of calculations that are done, therefore the simulation times
scale as

𝑡፬።፦ =
𝑎
𝑡፬፭፞፩

(8.1)

𝑎 is a scalar factor which can be determined for every solver. The solutions for the Time step
scaleability were gained using a 200 element mesh. The average improvement over all time
step sizes, when moving from Iterative, no upd to Direct no upd is: 43.97%.

For the Ansys solver, as well as the Direct, no upd solver the 𝑎 values have been calculated
at every time step. The range of this value shows how close to linear the system behaves.
Furthermore, based on these calculated values, a normative value for 𝑎 can be determined
for each solver, which can be used to make scaleability estimates for future simulations.
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Drawing a correct conclusion from table 8.3 requires the results for the two largest time
steps to be left out. These simulation times are so small that the results may easily be
influenced by other processes.

Solver
Time step [s] Iterative, no upd Direct, no upd
0.01 0.01240 0.005200
0.005 0.00745 0.003450
0.002 0.00644 0.003700
0.001 0.00534 0.003390
0.0005 0.00511 0.003335
0.0002 0.004766 0.003118
0.0001 0.006011 0.003037

Table 8.3: ፚ value calculation

The iterative solver shows some non-linear behaviour in the values of 𝑎. This may be
caused by the iterative solver requiring a different amount of equilibrium equations in differ-
ent time steps, therefore losing the direct relation between amount of calculations and the
size of the time step. The direct solver has reasonably comparable values for 𝑎 for nearly all
time steps. This is a result of the amount of calculations being directly linked to the time
step in a direct solver. If normative values are taken to be the average of the five remaining
results then 𝑎።፭፞፫ፚ፭።፯፞ = 0.00553, 𝑎፝።፫፞፜፭ = 0.00332. By definition, the improvements can then
be calculated as follows: (𝑎፝።፫፞፜፭ − 𝑎።፭፞፫ፚ፭።፯፞)/𝑎።፭፞፫ፚ፭።፯፞ = −40.0%.
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8.2.3. Pantograph Velocity
In order to isolate the effects of the pantograph velocity with respect to the simulation times,
it has been chosen to keep the locations at which the pantograph force is exerted on the cate-
nary model the same. This situation is created by increasing the velocity and proportionally
decreasing the time step and analysis time.

Solver
Load Velocity [m/s] Iterative, no upd Iterative, upd Direct, no upd Direct, upd
6 10.72 11.68 6.10 12.70
7.5 10.15 11.57 6.04 12.93
10 10.15 11.46 5.98 12.76
15 10.35 11.35 6.08 12.35
30 10.58 11.22 5.92 12.95
60 10.24 11.72 6.74 11.65
120 9.57 10.41 5.95 11.54

Table 8.4: Solver comparison by simulation time [s]
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Figure 8.3: Solution times for all four solvers at different load velocities in m/s

From the data in table 8.4 and figure 8.3 it can be concluded that the pantograph ve-
locity does not have significant influence on the simulation times. The hypothesis that a
higher pantograph velocity would result in higher differences between equations and thus
require more equilibrium equations is therefore rejected. The average improvement over all
pantograph velocities, when moving from Iterative, no upd to Direct no upd is: 40.34%
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8.2.4. Convergence criterion
Increasing the stringency of the convergence criteria slows down the simulation effort for the
’Ansys’ like solver. The direct solver does not perform equilibrium equations, thereby it does
not slow down as convergence criteria become stringent. The results for the simulations can
be found in table 8.5 whereas the graphical representation of the results can be seen in figure
8.4.

Solver
Convergence criterion Iterative, no upd Iterative, upd Direct, no upd Direct, upd
10 * ||F|| 3.16 2.9 6.08 12.89
1 * ||F|| 10.10 11.28 6.04 12.85
0.1 * ||F|| 9.79 10.79 5.85 11.86
0.01 * ||F|| 10.26 11.49 5.95 12.39
0.001 * ||F|| 11.71 14.98 5.92 11.08
0.0001 * ||F|| 14.42 19.17 5.99 13.22
0.00001 * ||F|| 16.81 21.94 5.91 12.61

Table 8.5: Solver comparison by simulation time [s], ||F|| denotes, norm of the external force
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Figure 8.4: Solution times for all four solvers at different Convergence criteria (Logarithmic horizontal scale!)

Based on the data gathered from the convergence criteria the conclusion can be made
that lowering the convergence criteria indeed increases the solution times of the iterative
solvers. It can also be seen that the solution time only increases marginally with respect to
the change in convergence criteria. This phenomenon can be described due to the quadratic
convergence of the newton-rhapson iterative procedure, thus resulting in marginal simula-
tion time increases. Furthermore it must be stated that, at 10 *|F|, both iterative solvers
provide wrong results. Therefore, these simulation times, even though they are very impres-
sive, should not be taken into account. Also, as convergence criteria become lower (≤0.001)
the Direct solver with Matrix updates provides better results than the iterative solvers. There-
fore it may be interesting to use such a solver when due to model size or complexity small
convergence criteria are required. The average improvement over all time step sizes, when
moving from Iterative, no upd to Direct no upd is: 45.26%. It can, however, also be stated
that the base improvement of about 40%, which is observed for convergence criterion as low
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as 0.01 ∗ ||𝐹||, is not affected up until this value. After this value however, the improvements
increase by 7-9% for every step, which results in the following equation:

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡ፂፂ∗||ፅ|| = (41 − 8 ∗ (𝐿𝑂𝐺ኻኺ(𝐶𝐶) + 2))% (8.2)

This equation will provide an acceptable approach to the actual improvement values whilst
remaining within the current range of convergence criterion (≤0.01). As convergence values
become smaller this relation will likely become inaccurate. Table 8.6 shows the measured
improvements as well as the calculated improvements when comparing Iterative, no upd to
Direct, no upd.

Improvements Improvements Calculated: eq 8.2
Convergence criterion
10 * ||F|| +92.4% -
1 * ||F|| -40.2% -
0.1 * ||F|| -40.2% -
0.01 * ||F|| -42.0% (41%)
0.001 * ||F|| -49.6% (49%)
0.0001 * ||F|| -58.4% (57%)
0.00001 * ||F|| -64.9% (65%)

Table 8.6: Solver comparison, Iterative, no upd to Direct, no upd , ||F|| denotes, norm of the external force

When reviewing the numbers in table 8.6 it can be concluded that equation 8.2 is a rea-
sonable approximation of the measured values.

8.3. Solver implementation Conclusion
Based on the results from all four solver comparison analyses, the following conclusions can
be drawn:

• The solution scales Quadratically with the mesh size for all solvers. The Direct solver
without updating shows the fastest simulation times.

• The solution scales linearly with the inverse of the time step for all solvers. The Direct
solver without updating shows the fastest simulation times.

• The solution does not scale noticeably with the velocity of the load for all solvers. The
Direct solver without updating shows the fastest simulation times.

• The solution does not scale noticeable with the convergence criterion for Direct solvers.
The solution scales inversely sub-linear with the convergence criterion. The Direct solver
without updating shows the fastest simulation times.

Therefore, it can be concluded that in all comparisons, the Direct solver without updating
shows the fastest simulation times, up to 50% improved with respect to the Ansys solver can
be reached. However, overall it can be seen that an improvement of 40% is reached nearly
always. Furthermore, the only comparison which shows clear differences in scaling between
different solvers is the convergence criterion comparison. The variable in this comparison
however, does not influence the direct solvers, thus it can be expected that as convergence
criteria become stringent, the direct solvers become more favourable. This also results in the
conclusion that the proposed solver (chapter 6) may turn out favourably in large simulations
for which the direct solver without matrix updates lacks accuracy.
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Contact model improvement results

9.1. Introduction
Ansys uses contact modules which can be applied to various complex contact problems.
However, in the current work the contact is simple. Therefore, this chapter answers the
question: Does replacing the Ansys contact module by another contact method result in
lower simulation times, and do these represent a significant improvement with respect to the
Ansys method.

Comparison can be made between two different implementations of a moving load:

• Application of a motion and a load through a contact element, upon which these bound-
ary conditions are applied.

• Direct Application of the loads on different nodes at different load steps.

Both methods will be implemented to gain an understanding of the impact of the contact
module on the simulation times. In the following sections each method is described briefly,
along with the expected pros and cons. After analysis of the methods in Ansys the results
will be compared and an estimate of the achievable improvements is made. The correct
measurement of time is performed by recording the Ansys cpu time based on the WALL
variable in the .MNTR file. This value is used for comparison of the contact models.

Themodel upon which this analysis is applied is a 2 span long, 100meter catenary system,
based on the Prorail B4 system, but altered to the point that the distance between droppers
is 5m. An analysis is performed in which the load moves below the system at a speed of 5
m/s at analysis frequencies of 1 to 50 Hz. A second analysis is performed in which the load
moves at 50 m/s at analysis frequencies of 10 to 500 Hz. Furthermore, the load is 150N in
positive Z direction for every simulation. The analysis is outlined as follows:

• Let catenary come to resting position.

• In case of using Contact module, the contact needs to be initiated.

• Perform moving load analysis, whilst altering Contact method and Analysis frequencies.

Analysis frequencies are taken into account since certain modules may perform optimal at
different frequencies. Frequencies are taken into account up to 50/500Hz to avoid prohibitive
simulation times.

9.2. Simulation Results
The results for the contact model improvement are presented on the next pages. To clarify,
one situation is presented per page. The corresponding Ansys result files are not saved,
therefore, the process by which these results are produced is declared in appendix F
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9.2.1. V = 5 m/s, 2 spans
The results for the contact model comparison analysis at 5 m/s are presented in table 9.1
and figure 9.1.

Method
Analysis frequencies Contact module Direct Application Improvement in %
1hz 5m/step 26.43 21.66 -18.04%
5hz 1m/step 87.65 68.78 -21.53%
10hz 0.5m/step 147.5 128.54 -12.85%
50hz 0.1m/step 547.73 503.73 -8.03%

Table 9.1: Contact Method Simulations at 5 m/s and 2 spans, by simulation time [s]
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Figure 9.1: Solution times at various frequencies for v = 5 m/s and 2 spans

The 5 m/s simulation results show small differences between the Contact model and the
Direct Application approach at higher frequencies. The explanation for this may be the low
differences in energy between the time steps. Therefore both contact models allow the solver
to converge almost directly. The lower frequency regions show higher differences of up to
-21.53%, which is mainly due to slower convergence of the Contact Module method with
respect to the Direct Application method.
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9.2.2. V = 50 m/s, 2 spans
The results for the contact model comparison analysis at 50 m/s over 2 spans are presented
in table 9.2 and figure 9.2.

Method
Analysis frequencies Contact module Direct Application Improvement in %
10hz 5m/step [not stable] 21.95 -%
50hz 1m/step [not stable] 60.54 -%
100hz 0.5m/step 152.45 [not stable] 104.30 -31.59%
500hz 0.1m/step 483.05 386.80 -19.93%

Table 9.2: Contact Method Simulations at 50 m/s and 2 spans, by simulation time [s]

The 50m/s simulation requires high sample frequencies for the catenary system to remain
stable. Therefore the contact module only provides results for 100hz and 500hz. Based on
the 100Hz results however, the system shows a beginning instability, from experience it is
known that such instability will only increase. The main reason for the Direct Application
approach staying stable is the fact that the force between 2 load steps is interpolated, rather
than applied at another position.
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Figure 9.2: Solution times at various frequencies for v = 50 m/s and 2 spans

With respect to the 5 m/s results, the 50 m/s results show higher simulation time dif-
ferences. This can be explained by the size of the energy differences between the time steps,
slowing down the Contact Module method. The results for the 100 Hz simulation are noted.
However, due to beginning instability which was observed in the simulation results, the -
31.59% improvement may also be the result of the solver having difficulties with the system’s
oscillations.
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9.2.3. V = 50 m/s, 4 spans
The 4 span model requires more load steps to achieve a resting position where the contact
module does not overpenetrate. Furthermore, this model, whilst consisting of 4 spans, is
only loaded on the first 2 spans.

Method
Analysis frequencies Contact module Direct Application Improvement in %
10hz 5m/step [not stable] 35.16 -%
50hz 1m/step [not stable] 87.29 -%
100hz 0.5m/step 271.93 [not stable] 205.21 -24.54%
500hz 0.1m/step 891.82 580.11 -34.95%

Table 9.3: Contact Method Simulations at 50 m/s and 4 spans, by simulation time [s]

The Contact Module loses stability at a frequency between 500 and 100Hz. Adversely, the
Direct application approach, which uses a less amount of interface locations remains stable,
even at 10 Hz frequencies. When comparing the results of the 4 span system to the results
of the 2 span system, it is observed that the simulation time improvements increase as the
model becomes larger, but the amount of the model that is loaded remains the same. In order
to check whether this improvement remains in simulations where the full system is loaded
at all times, a comparable simulation needs to be performed. This is done in the form of a
simulation of the same model, only loaded twice as long with the same load.

Contact Module Direct Application Improvement in %
500hz, 0.1m/step, 4 sec 1740.24 1096.06 -37.02%

Table 9.4: Control simulation to check improvement at 4 spans, by simulation time [s]
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Figure 9.3: Solution times at various frequencies for v = 50 m/s and 4 spans

From the comparable 4sec simulation, due to the improvement in table 9.4 being compa-
rable to the improvement in table 9.3, confidence is gained that the values presented in the
contact method simulations provide a correct reflection of the simulation time improvements
indeed.



9.3. Contact improvement conclusions 65

9.2.4. V = 50 m/s, 6 spans
This model, even though it consists of 6 spans, is only loaded on the first 2 spans. As a
consequence of the contact model losing stability at 100Hz in all previous simulations, the
current simulation is only performed for the 500Hz situation, as a result of this no figure is
provided.

Method
Analysis frequencies Contact module Direct Application Improvement in %
10hz 5m/step [not stable] [not computed] -%
50hz 1m/step [not stable] [not computed] -%
100hz 0.5m/step [not stable] [not computed] -%
500hz 0.1m/step 1164.55 717.18 -38.4%

Table 9.5: Contact Method Simulations at 50 m/s and 6 spans, by simulation time [s]

In comparison to the 4 and 2 span models and in line with the increase in improvements
from the 2 span to the 4 span model, the 6 span model provides a small improvement in
the simulation times. This provides certainty that the contact model improvements do not
diminish with larger model sizes. As well as the 4 span model, the 6 span model is also loaded
4 and 6 seconds, which represents loading of respectively 2/3፫፝ and 3/3፫፝ of the model.

Contact Module Direct Application Improvement in %
500hz, 0.1m/step, 4 sec 2339.95 1441.08 -38.4%
500hz, 0.1m/step, 6 sec 3439.6 2162.08 -37.1%

Table 9.6: Control simulation to check improvement at 6 spans, by simulation time [s]

The results in table 9.6 show that the calculated improvements remain constant when
larger parts of the system are loaded. Therefore, simulation time improvements which re-
sult from table 9.5 are substantiated. Furthermore, due to the minor differences observed
between the 4 and 6 span results, it is expected that the improvement limit will be 40%.

9.3. Contact improvement conclusions
The Direct Application approach performs op to -38% better than the Contact Module ap-
proach, when comparing at the same analysis frequency.

Moreover, improvements of up to -77% (ratio 1:4.3) can be achieved when comparing the
stable Direct Application results at 100 Hz versus the stable Contact Module results at 500
Hz (4 span model).

Furthermore, confidence is gained that these improvements will scale to a full size model
due to the sustained improvements as model sizes grow.
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10
Conclusion / Discussion

10.1. Conclusion
A Pantograph-Catenary interaction model has been built which is deemed valid according
to EN50318:2002. It has been found feasible that simulation times improve by means of
a direct solver, which may result in improvements of 40%. Adversely, the rank-1 updating
procedure of the iteration matrix inverse has not been found to improve simulation time for
most situations. Furthermore, it has been found feasible that simulation times improve when
simulations are executed bymeans of a modified contact model when analysis frequencies are
kept equal this may result in improvements of up to 40% . In addition, it has also been found,
that a modified contact model allows for lower analysis frequencies whilst the system remains
stable, a result which is not observed when using the Ansys contact module. This can result
in improvements of up to 77% based on the Direct Application results discussed in chapter 9.
From these results, a potential improvement of the simulation times based on Contact Module
and Solver improvement of [1:4.3](CM) * [3:5](SOLVER) = [6:43] can be achieved, speeding
up a 24h simulation to a mere 3.4 hours. Lastly, the modal reduction which was proposed
in this work, has not resulted in significant simulation time improvements. In conclusion, it
can be said that the two main goals of the current work are accomplished. A validated model
has been built. Moreover, a method has been found, which improves simulation times, whilst
respecting dropper slackening, sliding contact, and wave propagation.

10.2. Discussion / Recommendations
Both goals set out in chapter 1 have been achieved. The Ansys model has been validated
according to the norm EN50318:2002 and the reduction/improvement process has shown
that significant time can be saved. Based on the different aspects of the research the following
sections will discuss the results and consequently the conclusions.

EN50318 Model
• The valid EN50318 Ansys model is a reasonably slow model. This results from the fact
that catenary systems are large systems, in addition, the interface between the Panto-
graph and the Catenary demands that element sizes remain small. Furthermore, wave
propagation through the catenary results in wave reflection in short catenary systems,
which produces erroneous results. To ensure simulation times to remain acceptable,
it is important to use the Ansys model effectively. This may be achieved by minimising
the catenary length whilst making sure end-effects are neglectable. Furthermore, time-
step sizes may be optimized for certain catenary systems. 500 Hz has been found to be
a frequency at which every catenary is stable, certain systems might however also be
stable at lower frequencies.

• In extension to the currently validated EN50318 model, which builds a straight cate-
nary system without custom features, a method may be applied, which automatically
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implements custom features such as bridges, tunnels, current-less catenary locations
and more.

• In order to future-proof the validated Ansys model, demands of the prEN50318:2016
may be inventoried and, if applicable, applied.

• One of the main issues resides in model stability. The current models that are known
to be stable, may become unstable at the slightest change in model parameters. The
catenary models are, by design, very compliant, which is expected to be the reason for
this behaviour. This results in difficulties predicting whether a model, which has not
been simulated before, will be stable. Research into stability of catenary FE models may
provide further insights into how-and-why certain catenary systems lack stability with
respect to other models.

Model improvements
General

• In extension to the current work, implementation of the found improvements may be
applied to full systems consisting of multiple spans. Furthermore, pantograph models
and force calculations may be implemented towards finding more precise improvement
values.

Solver
• The Direct solver, which shows the largest simulation time improvements, is based on
the Newmark solver for linear systems. This solver has been found to improve the sim-
ulation times by up to 40%, which is a reasonable improvement. It must, however, be
stated that the solver is normally used in linear problems, whereas our simulation is
not. This results in accuracy loss, mainly when the pantograph moves at very high
velocities (>50m/s, >180 km/h). The bulk of Dutch catenary systems is built to allow
a maximum speed of 160 km/h therefore this is not expected to be an issue. However,
it must be noted that the solver should not be applied to dutch high speed train simu-
lations. Furthermore, implementation of the improved solver in Matlab is found to be
suboptimal. This is a consequence of the way Matlab files are executed. In order to ac-
tually improve the solution procedure, the improved solver will need to be implemented
in another programming language, i.e. C++.

• Application of the Direct solver with its solution procedure in Ansys might be interesting
since, it is also used in the valid EN50318 model. Performing such an analysis in An-
sys, whilst taking advantage of the linear solver, requires for the system to first perform
a large displacement transient analysis first, secondly a small displacement transient
analysis must be performed. This needs to happen whilst saving the stress-state of
the large displacement analysis. However, analysis types cannot be changed during a
restart procedure, neither can the procedure be changed from large to small displace-
ment between analyses. Another method would be to perturb the analysis, however the
perturbation procedure does not cater in an option to perturb a non-linear transient
analysis to another transient analysis [51]. Furthermore, even if a perturbation analy-
sis allows the second analysis to be a transient analysis, the COMBIN39 element will no
longer behave non-linearly [51]. Therefore, implementation of the improvements found
in this work in Ansys, is not deemed feasible.

• The solver, which was originally proposed in chapter 6, has not been able to improve
simulation times. However, its use may be found in the situation where stringent con-
vergence criteria are applied in combination with a very fast load (>50m/s, >180 km/h),
in which case the Iterative solvers are no longer an option due to the convergence issues,
whereas the fast Direct solver lacks accuracy.

• The direct solvers, which have been compared in chapter 8, use different solution pro-
cedures. The Direct solver with iteration matrix updates is written in variational form,
whereas the direct solver without iteration matrix updates is not. This is a result of the
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dropper decoupling procedure and consequently the rank-1 updating procedure. The
variational formulation is capable of handling iteration matrix updates, whereas the
general (weak) formulation is not. This results in odd displacements when the general
formulation is applied with iteration matrix updates. Future research may show that a
non-variational formulation exists for the direct solver, which is able to cope with the
iteration matrix updates. This may result in a method which is capable of improving
speed whilst minimizing accuracy loss.

Contact Model
• By making clever use of the properties of a changed contact model, the speed improve-
ments can not only be seen in the contact model, but also in the possibility of using
a reduced amount of interface locations. The use of less interface locations allows the
model to remain stable when loaded under high velocities and at lower frequencies.
This in return allows the analysis of more models in the same amount of time, which is
exactly the goal of the contact model change. Furthermore, lowering the amount of in-
terface locations provides opportunities for Reduced Order Models, since less interface
DOF leads to smaller Reduction Spaces resulting in smaller Reduced Order Models.

• The improvements calculated in chapter 9 exist between the Ansys Contact Module and
an empty contact model called the Direct Application approach. This Direct Application
approach does not contain any force calculation and therefore only applies a constant
force on the FE model. Modifications to incorporate in-loop force calculations will slow
down the Direct Application approach. Its impact is expected to be small but noticeable
due to the force calculation being a reasonably simple one 𝐹፜፨፧፭ፚ፜፭ = 𝐾፜፨፧፭ፚ፜፭ ∗ (𝑢፳,፩ፚ፧፭፨ −
𝑢፳,፜ፚ፭፞፧ፚ፫፲).

• Moreover, the pantograph model is not modeled in either Contact Module and Direct
Application approach. As a result, total simulation times will increase for both methods,
which may have a leveling effect on the improvements. However, pantographs usually
contain 3 DOF, whereas catenary systems’ DOFs are several orders larger. Therefore,
leveling effects are likely to diminish with respect to simulation times.

• In the Ansys environment the contact model possibilies have been found inferior. Two
methods exist, which allow for a Contact Module to be circumvented. The first method
entails all interface locations being equipped with time dependent force functions, all
of which need to be evaluated in every time step. This is expected to cost significant
amounts of simulation time. The question that is yet to be answered is whether these
functions can bemore than time dependent, and based on displacements in the previous
time step. Therefore, this method is deemed inferior to in-loop calculation of the new
contact force. The second method entails the solver solving one step at a time, after
which results are loaded. The contact force is calculated and applied in a new load step,
after which the solver calculates the next load step. This method is deemed inferior
to the in-loop calculation due to the amount of operations, which are not part of the
solution procedure. Therefore, implementation of a custom contact model has been
found undesirable within the Ansys environment.

• The change of the contact model, whilst improving simulation times drastically, may
introduce inaccuracies. It should therefore be applied with scrutiny. For instance,
lowering the amount of interface locations requires interpolation of forces and displace-
ments between nodes. The type of interpolation is of importance to the accuracy of the
results. In the current work, this interpolation has not yet been performed. However,
it is expected that a simple interpolation operation, i.e. Linear interpolation, will result
in poor accuracy, whereas more advanced interpolation operations such as Hermite or
Quadratic interpolation will provide good accuracy at the cost of lower simulation time
improvements.
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Reduced Order Model
• The modal reduction of the Pantograph-Catenary interaction model has not been found
feasible due to Reduced Order Model sizes becoming prohibitively large, which results in
diminishing improvements. The main drivers in determining the size of such reduced
order models are the size of the full model, the frequency range of interest and the
amount of interface DOF. Even though the transient modal simulation has not provided
correct results, the modally reduced system has shown correct results in the static
analysis. Therefore, it seems likely that a Reduced Order Model exists, which may
be used in Transient dynamical analyses. Furthermore, dropper stiffness decoupling
methods have been found applicable in modally reduced methods, therefore it is to be
expected that this will also be the case for other reduction methods. Therefore, even
though the modal reduction may not have provided useful results in the scope of this
work, these findings may prove useful in future research.

• Related to the interface between pantograph and catenary is the in-loop conversion of
the load vector from the physical to the modal domain. This conversion is required in
every load step as a consequence of the movement of the load. Due to this operation,
even though the modal system matrices might be significantly smaller than those of a
full physical system, the modal system performs slower. In situations where the amount
of interface DOF of the physical system are significantly lower than the total amount of
DOF in the contact wire, load vectors may become smaller and the conversion operation
may be improved.

• Substructuring of the model results in multiple smaller, easier to calculate systems.
The current model improvements have been based on a FE approach in which multiple
physical substructures have been connected via primal assembly. This work has shown
that a reduction of the contact wire provides difficulties. However, the catenary system
consists of more structures. Future research may focus on reducing structures other
than the contact wire. Thereby, changing the messenger wire from a full physical base
to a frequency base will likely provide less problems than the reduction of the contact
wire, as a result of fixed interface locations and predictable loads.
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A
Modelling method discussion

Since the pantograph-catenary interaction model consists of 2 components, which are to be
modeled in a completely different way, the ideal modeling programs for these models are
also different. In addition to this, the system will be simulating a dynamic situation which
is created by a motion of the two models with respect to each other. For the Catenary, the
most accurate modeling practice is the finite element method. For the Pantograph, a multi
body dynamics model would be the best, simplified lumped mass-spring-damper models are
however provided and can be used. The relative motion can be modeled relatively easy.
However the finite element analysis software does not like this. In order to make a choice
of how to model and simulate the system to the best accuracy, the best method will have to
be isolated. This includes looking into combining methods and programs. Possible ways of
modeling and simulating the pantograph-catenary interaction are provided below, as well as
the main argument in favour of this method and secondly the main argument against this
method. After this list, the different options are discussed to a deeper extent.

• Matlab

– All possible calculations, modeling and simulation requirements can be coded.

– Since everything will have to be made in code, the process of creating such program
will be very time consuming.

• Ansys

– FE-model of the catenary can be modeled in Ansys, removing a lot of coding work.
Model can be visualised in Ansys.

– Uncertainty wether or not the available Ansys 18.1 Mechanical APDL is capable of
dynamic simulation and loads.

• Matlab + Ansys co-simulation

– FE-model of the catenary will not need to be ’hard coded’

– co simulation package is not available at Ricardo, Possible use of Ansys As a server.

• Simpack

– Pure dynamical modeling increases the speed.

– Since FE model of catenary is very important to retain model accuracy the FE model
will need to be made in Simpack. This can be achieved with Simbeam, however,
this is not available at Ricardo.

• Simpack + Ansys co-simulation
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– Dynamic simulation done by the Simpack program, FE simulation done by the
Ansys program. Both programs run at the same time, increasing the resulting
accuracy significantly

– Probably requires an additional module, which currently does not exist.

• Simpack + Ansys (FE2FBI/FMI load in to Simpack)

– Dynamic simulation and FE simulation Done by the Simpack program. Modeling of
the catenary still done in Ansys and loaded into Simpack. No interaction between
two programs should increase simulation speed.

– Absolutely no guarantee whether or not this will work.

Determining which option is best requires determining which solution provides the best
chance for success. This is based on findings in literature and on modeling techniques of
which it is considered they can accurately model the situation. Time constraints are also
taken into account. Last but not least, the stake of Ricardo Netherlands B.V. should be
evaluated. Certain software is already available in house. These options require no extra
investment. Some packages require extra toolboxes or add ons to allow for the intended
modeling and simulation option.

To ensure the best possible method is used for simulation, a simple grading criterion is
created, every method is awarded a grade for its usability as pre- and post-processor, as well
as a grade for its usability as solver, in the current research.

• 0, is awarded if a method is not usable for the desired purpose at all.

• 1, is awarded if a method might be usable but might require additional modules, or
programming.

• 2, is awarded if the method is usable but might require more work than necessary

• 3, is awarded if the method is usable and efficient.

Note that co-simulation methods are not incorporated in this grading process since they all
require additional programmes or toolboxes in order to work. Pleas also note that this is
a subjective way of choosing the final method. The result might not be the absolute best
method. It does however keep in mind the competences of the researcher and the facilities
at Ricardo.

A.1. C/C++/CSHARP
C/C++/CSHARP is a versatile programming language. It benefits from a long history of li-
braries with which all kinds of calculations can be done. Documentation for these libraries
might lacks precision. As a pre- or post-processor, the C language would be useful. The
knowledge of C at Ricardo however, seems to be less than the knowledge of Matlab. It is also
less intuitive than Matlab. It does however not run directly from the code such as matlab,
therefore time profits can be gained from porting to C if pre- and post-processing times be-
come slow. The C language, for now does not seem interesting to pursue. The corresponding
decision values reside in table A.1.

C/C++/C# Decision value
Pre- and
post-processor 1

Solver 1

Table A.1: Decision C/C++/C#
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A.2. Matlab
The Matlab program allows for a high level of flexibility and functionality. In Matlab every
calculation which is required can be done. The dynamical simulation can be implemented
relatively easy. It does however require, that all calculations are written in code, including
the finite element analysis. Performing finite element analysis in Matlab is possible. It does
however not provide an intuitive environment for this type of calculations. Also the FE cal-
culations, which have to be written in code, will probably never be as good (with respect to
accuracy as well as computation time) as the calculations done by any commercial or open
source FEA package. With respect to pre-processing, the Matlab environment provides plenty
of opportunities for automating the modeling process, therefore it is very useful. With respect
to the solver, an FE library will need to be found. Creating the FE solver from nothing would
be too expensive and does not provide any guarantees that results will be correct, therefor
this would be a risky choice. Post-processing in Matlab can profit from the same benefits as
pre processing.The corresponding decision values reside in table A.2.

Matlab Decision value
Pre- and
post-processor 3

Solver 1

Table A.2: Decision Matlab

A.3. Ansys
Using only Ansys allows for a full Finite element model of both pantograph and catenary.
Full transient dynamic analyses can be run in Ansys [8]. The finite element method used
in Ansys also allows a good representation of the catenary system. The Ansys Parametric
design language is a serial language and is very well automated through creation of text
files in another programming language. Therefore, interfacing between programmes is not
necessary. Modeling in Ansys however is time consuming. Post processing does not allow
a lot of changes to the signals. Therefore it is very suitable to be used as solver, but not
as pre- or post-processor. The question that remains unanswered is which part of Ansys is
used for these results and whether these modules are installed at Ricardo Netherlands. The
corresponding decision values reside in table A.3.

Ansys Decision value
Pre- and
post-processor 2

Solver 3

Table A.3: Decision Ansys

A.4. Matlab + Ansys co-simulation
In [25] a method is described for co simulation of 2 programmes, one being a FEA model and
one being a MBD model. The biggest pro for such a 2 sided model is, that each model can
do what it does best. Since it is to be expected that the Ansys system will provide us with
an accurate catenary model and the Matlab system can model lumped mass damper models,
the expectation is that the this combination can meet the simulation goals within reasonable
time.

A.5. Simpack
Pure simpack simulation means using rigid bodies and model reduced flexible bodies. This
will not work positively for the catenary simulation. Using simpack as pre- or post-processor
is therefore also not applicable, since the pre- and post-processing abilities are tailored specif-
ically to data created by the Simpack solver. The corresponding decision values reside in table
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A.4.

Simpack Decision value
Pre- and
post-processor 0

Solver 0

Table A.4: Decision Simpack

A.6. Simpack + Ansys co-simulation
As in [25] this systen uses a MBD model for the pantograph and an FE model for the cate-
nary. Dynamic time integration is no problem in Simpack. The interface between Ansys and
Simpack will need to be acquired. This is however the method of choice for Ricardo Nether-
lands. Therefore this option will be looked at further. This is the preferred method, since it is
already widely used at the company and people understand the way the program works. Also
it can be extended reasonably easily to incorporate rail-car interactions and car dynamics in
future iterations of the method. All in all it can therefore be said, that this method will be
preferred, under the condition that the required packages and toolboxes can be acquired.

A.7. Simpack + Ansys (FE2FBI/FMI load in to simpack )
This option Models the catenary in Ansys and loads this model using FEMBS into Simpack.
This reduces the model however to a situation, where the actual simulation is no longer done
in an FE model, but in a reduced model. This results in a less desirable situation since all
current methods use FE models.
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Modelling of EN50318 Model

B.1. Summary
The simulation to support this research will be done in Ansys. The process of modeling
the Pantograh-Catenary dynamics is fully described in appendix C, throughout this chapter
references will be made to this Appendix. In this chapter the modeling choices and methods
which are used in the final model will be discussed, the way these methods were derived will
only be discussed briefly. Therefor, for a full explanation of the modelling process please read
Appendix C, in addition to this chapter.

B.1.1. General model
There are three main catenary systems, which should be modeled, as defined in the Norm
prEN50318:2016 [2] (this version is not used for validation!).These models are: AC Simple, AC
Stitched and DC simple. More systems do exist, they will however not be treated as separate
systems since small changes may be made to the three defined systems to create the other
systems. These models contain reasonably similar elements, their geometry and material
properties may vary. The Ansys program, in combination with a Matlab pre-processing code,
allows for easy modelling and editing of models. Ansys provides a pre existing contact model,
removing the necessity for creating such model. Ansys can also run off code (APDL) allowing
for automation. It is usable for all the above models, and allows for Automation in future
use.

B.1.2. Elements
The elements of which the model consists are as follows:

• Beam188, Timoshenko beam
The Beam188 element is a 2 node 6-7 DOF per node beam element which follows the
Timoshenko Beam theory, it represents the mechanical properties of the Catenary wire,
the contact wire and the steady arms.

• Combin39, Non-linear spring-damper
The Combin39 element is a 2 node 6 DOF Non linear spring element, which represents
the dropper cables in the catenary system. These elements do not have any mechanical
properties beyond the non-linear stiffnesses, and therefore do not describe the complete
dropper behaviour.

• Mass21, Mass-inertia in x,y,z,rotx,roty,rotz
The Mass21 element is a 6DOF Mass element, it represents all discrete masses such
as the Dropper and Steady arm clamps, but is also used to divide the dropper masses
over the contact and catenary wire, They are also used to represent the masses in the
pantograph

• Conta176, Line-line contact
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• Targe170, 3D Target element

• Combin14, Linear spring-damper

Stress stiffening.
The previous examples assume that the bending stiffness of the beam remains the same
throughout the bending. This is accurate as long as the small-deflection assumption holds.
This means the deflection of the beam should be relatively small to the original form, in
which case the stiffness matrix is determined by the stiffness of the original shape for all
calculations.

The actual contact line however is not only loaded in bending but also in tension. which
means that the system deflects axially and transversally. These two can impact eachother’s
stiffnesses and therefore require further research. The axial load that is applied, is relatively
large and therefore the expectation is that the deflection in the axial direction will also be
reasonably large, in which case the small displacement assumption will no longer hold. In
order to test this effect, the model of the simply supported beam will be improved and the
tension in the cable will be applied on the right side support, the resulting model can be seen
in figure C.4. This results in a system which should bend less in the Z direction.

The assumption of small displacements as described previously simplifies the situation
too much. The solution to this problem is, to do a (non linear) large displacement analysis.
This analysis does not assume the stiffness matrix to remain the same. The stiffness matrix
is updated in every step and therefore the influence of the axial load can be incorporated. The
value for UZ at node 6 has reduced to 0.000330 m. This seems more accurate for a simply
supported beam under tension where the axial load is much larger than the transversal load.

Now that we know intuitively that the large displacement solution is better than the small
displacement solution. We need to calculate whether or not the values that are output by
the large displacement solver are accurate. The easiest way to do this is to calculate the
’sag’ of the wire by use of the catenary equation. The sag of the wire is defined as being the
largest deflection in the negative Z direction, when a cable is under tension and carrying its
own weight. This is easier than using the normal beam equations, since those all assume
one load and do not couple the transversal and axial loads. Also, our ’simply supported
beam’ actually is a catenary wire, under tension and only carrying its own weight. In these
conditions the catenary equation applies.

The error between the calculation in formula C.12 and the UZ value from the large dis-
placement solver is only 0.21% or 6.95∗10ዅ዁ meter as can be seen in formula C.15. This error
is well below the desired precision of the model (0.1 mm) and therefore, we can conclude that
the large displacement solver has calculated the deflection in the tensioned cable sufficiently
accurate. The remaining error can be attributed to numerical error and rounding error in
the calculations. It can also be attributed to the inclusion of shear stress in the calculation
of the Timoshenko beam.

B.2. Contact modelling in Ansys
Modeling a Contact in ansys can be done through the available contact and target elements.
In our case the Line-to-Line Conta176 element is available. This element can model crossed
beam sliding contact. In order to determine contact the Conta176 Element will be coupled to
a Targe170 Element through a common set of real constants. These real constants contain
all parameters necessary to determine the contact. The Conta176 Elements will be overlaid
on the BEAM188 elements which represent the ocl’s material and geometrical properties. The
Target170 element will be RIGID by determining it between nodes (not over element nodes).
This results in a rigid-deformable contact pair which will be used in the simulation. The
contact however encounters some difficulties, which originate from the Contact elements
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B.3. Possible future problems
Connection Between Contact wire and steady arm is locked and does not allow independent
rotation. Investigation of this ’problem’ resulted in the conclusion that it does not influence
the model in a significant manner. Induced moments in the system were up to 0.8 nm, A
simple calculation of the moments tells us the lift created by this is no more than 0.7 N.

Constraint locked with modes. Locked modes: x 1:2 z 3:4 beta 19:20 gamma 5:13

B.3.1. Dynamic modelling problems
Ansys modeling Has successfully resulted in a correct static model of the A simple variety.
This model has been statically validated with the values in the norm EN50318:2016 The
step towards dynamic analysis was a big one. Problems were instability of the system when
scaling up from 2 or 4 spans to 10 or more spans. This problem occurred due to too large
solver constraints. To ensure correct convergence the values have been changed to F 0.0001
INF M 0.0001 INF U 0.0001 INF ROT 0.0001 INF

Secondly the system output after simulation was problematic. This was the result of too
coarse meshing. The model was meshed too an extent where it was not possible to bend the
contact wire sufficiently at the point of contact. This resulted in very high(and low) peaks
in the system. due to the discontinuities at the interface of the elements (elements behave
linearly). This was improved upon by increasing the amount of elements in the cable. Until
the discontinuities no longer form a big part of the end result.

Lastly the peak forces were a little big at points where the cable had a high amount of
bending (mostly around the first and last dropper). This was resolved by lowering the contact
stiffness.

B.3.2. Contact force issues
The Resulting model shows us that whilst displacements might be within the expectable
ranges this might not be true for the Forces. This is highly probably the result of mesh
refinement and especially the lack of element refinement.

Refinement
In the situation of low mesh refinement the system does not represent the true situation well.
This results in very noisy results as can be seen in figure C.9b

Contact issues
If the refinement is high enough another issue presents itself. The contact model, which
usually only sees one contact element, now sporadically sees multiple contact elements.
These elements will both have a contact relationship with the target element, this results
in a discontinuity in the contact relation. Which then results in an erroneous force. This
phenomenon is clearly visible in figure C.9. The 2 lines represent the force of 1 pantograph
on a catenary system with 2 contact wires.

(a) Amount of elements in contact (b) Contact force

Figure B.1: Contact force output showing unwanted peaks in the amount of contacts found
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These contact issues were eventually solved by switching the target and contact elements,
since if there is only 1 contact element, there can be only 1 contact. This step however, is
not recommended by the ansys program since the most rigid part should be the target.

This solution has also introduced another problem, which can be eliminated by improving
the mesh. For the issue is speed and refinement related formula B.1 was made. It represents
the frequency at which elements are being passed. This frequency needs to be above 20HZ
in order to be filtered away. In order to keep some safety margin, and be absolutely sure that
the error is filtered out, a boundary of 40hz is chosen.

ፋ፨፧፠፞፬፭ፃ።፬፭ፚ፧፜፞ፁ፞፭፰፞፞፧ፃ፫፨፩፩፞፫፬
ፑፄፅፈፍፄፌፄፍፓ

𝑉፬።፦
< 0.025𝑠 (B.1)

Formula B.1 uses the geometry, refinement and desired simulation velocities to determine
whether the simulation which is done is valid. If the result of this calculation ends up to be
false, the refinement value can be increased to accomodate the desired simulation velocity.

If the simulation velocity is between 0 and 40Hz the results will need to be checked man-
ually for noise due to the element lay-out. At very low speeds the noise may be irrelevant,
this can however not be assumed.

B.3.3. Automated Ansys modelling
In order to create a model which can be easily used by others, it is a requirement that the
model can be created without needing to go through the process of finding out how to make
it. With this in mind, it is important that the modeling turns into a simple process, where
settings are changed and the model is made. Also, the simulation process should be auto-
mated. These 2 will result in a simple (enough) process for everyone with some basic ansys
and matlab knowledge to run a full simulation with his or her OCL model or pantograph.

The automated modeling process will be done through a Matlab code. The basic geometry
of the OCL model will be input through a matlab file. In this file all the necessary geometric
and material properties can be entered. A second matlab file is used to enter the Pantograph
model, For both these files the running will result in a .mat file which is saved in the current
directory. If the models are required for future use they do not need to be entered anymore
but can be loaded from file.

The main .m file will then create the ansys code. Some basic settings such as amount of
spans, pantographs and simulation speed can be entered and the Running will result in 4
text files, which can be entered into Ansys to run the full simulation. After the simulation is
finished, results will be extracted and processed in the Post processor .M file. This process is
visualised in the flow chart as can be seen in figure C.10. Therein the names of the .m Files
and their version numbers can be found.

B.3.4. Large Model Simulation issues
During the process of modeling the system. The models with which simulations were run
became significantly larger. This induced an issue which was not of importance in smaller
models. The large system, using the same settings as smaller systems, becomes unstable.
This is not a result of the model, but instead a result of the solver settings. The solver would
find a converged situation where in reality the system became gradually more unstable. After
some research it was found to be the result of too loose convergence criterion (L2) Changing
to an infinite criterion, where every DOF needs to converge resulted in a stable system.

Model clarity
The reference models as defined in the norm EN50318:2016 lack some small parts of infor-
mation. Therefore sometimes results are inadequate. For instance steady arm inclinations
are not defined in the Reference models. After several attempts it was found that ten degrees
of inclination provides a static situation closest to the values described in the EN50318:2016
norm.
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Figure B.2: Automated simulation flow chart

Further Reading
As the modeling process is complicated and not all steps of which it consists can be seen
in the final model. Some steps, mostly initial validations of the correct workings of beam
elements and other modeling elements, are left out in this section. For a full summary of the
modelling process, please refer to appendix C



C
Ansys modelling log

Read first
This appendix is the unedited log of the modeling process in Ansys. From deciding upon
beam theories up to the static validation of reduced models. Furthermore it contains di-
rectives toward certain ansys applications. It is meant as a collection of knowledge, a way
to reconstruct certain behaviour in ansys. It will not be edited, even though certain parts
could use it, in order to keep all information. It may be referenced to determine wether or
not certain processes have been executed correctly. It is however in no way part of the report
and should therefore not be addressed as such.

The Modelling of the catenary will be done in the multi body dynamics package simpack.
This version of Simpack that will be used is version 9.7.

Since Co-simulation between Ansys and Simpack is not possible (Ansys <->Adams is pos-
sible) The modeling will have to be done with ansys and the simulation in SimPack. This
requires the creation of .Sub and .cdb files in Ansys. These files do in no case directly work
when loaded into Simpack and therefore require some formatting.

Firstly the FE model will need to be validated. This is done step by step in a manner which
allows validation of the elements used, but also it allows s for validation of the load step and
the solver options.

Beam Theories
There are 2 theories that can be used, The Euler-Bernouilli (or classical beam theory), and
the Timoshenko beam theory. The classical theory assumes the cross section is always per-
pendicular to the centerline, no shear stresses are included in this theory. Timoshenko beam
theory assumes that shearing is possible and therefore the cross section is not necessarily
perpendicular to the centerline. In theory it can be found that both theories approach each
other as the thickness to length ratio becomes small. Therefore a simple beam deflection
situation will be calculated which represents the geometry of the contact wire and model this
with a BEAM188 Timoshenko beam in Ansys. Comparison of these results will determine
whether the results are related (they should be). Secondly the BEAM188 will be modeled
in Ansys and compared to analytical calculations. This will be done to see, whether indeed
the differences between the models become negligible if the t:l ratio becomes small. If this
happens the models can be assumed to be valid in the static situation.

The reason Timoshenko beams are used in this section is as follows. The overhead contact
line that has to be modeled can be seen as a long and slender beam. It is under a bending
load as well as under an axial tension and it will be used to perform a dynamic analysis.
The Timoshenko beam is for such a situation the beam that will result in the most accurate
model. Transverse shear stress is taken into account in this element, this would not be
necessary since the beam is a (very) slender beam with thickness:length ratio of 0.001333
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which is well below the 0.1 value which is normally assumed the value below which shear
deformations can be neglected.

Figure C.1: Simple Cantilever Beam under a uniformly distributed load

Calculating the deflection of a cantilever beam by using Beam-Deflection formula’s with
one side completely constrained and one side freely moving:

𝛿(፱) =
𝑞𝑥ኼ
24𝐸𝐼 (𝑥

ኼ + 6𝐿ኼ − 4𝐿𝑥) (C.1)

Location of maximum deflection: 𝑥 = 𝐿 (C.2)

𝛿(ፌፚ፱) =
𝑞𝐿ኾ
8𝐸𝐼 (C.3)

E Modulus Copper: 124 gPa (C.4)

Bending moment solid cirular cross-section: 𝐼፲ =
𝜋𝑟ኾ
4 = 1.8065710ዅዃmኾ (C.5)

𝑞 = 𝜌 ∗ 𝐴 ∗ 𝑔 = 13.2435𝑁/𝑚 (C.6)
Fill in for L = 2m : 𝛿ፌፚ፱ = 0.11824m (C.7)

Modeling the exact same beam in Ansys should approach the same result as the analyt-
ical solution. Since Snsys uses numerical methods to approach the analytical solution, the
solution which it gives will approach the actual value, but it will not be exactly the same.
Improving the precision of the calculation can be done by increasing the amount of nodes
and elements in the simulation. The model of the cantilever beam can be seen in figure C.1.

The Results of solving this model should approach the result of equation C.7. In figure
C.2a The maximum deflection is found to be 0.11896 Meter. This is within 0.61% of the an-
alytical result in equation C.7. This difference can be expected since the analytical solution
does not take into account shear stresses, and therefore should result in slightly less defor-
mation as compared to the Ansys result. As an extra check the rotation at the end point can
be calculated with the following formula:

𝜃ፌፚ፱ =
𝑞𝐿ኽ
6𝐸𝐼 = 0.078665 Rad (C.8)

𝜃ፀ፧፬፲፬ = 0.079041 Rad (C.9)

This value can also be compared to the result from the Ansys model in figure C.2b The differ-
ence between these values is just below 0.48% This can be attributed to the shear deformation
and numerical error. Therefore it is concluded that modeling in Ansys with the Beam 188
element and the Linear Elastic isotropic material model produces accurate results.

To approach the static situation of the full contact wire, it will not only be enclosed at one
side. But rather will it be modeled as a simply supported beam. Therefore the Ansys model
will be extended to implement 2 supports, one which restricts all Translational DOF’s and
one which only restricts the y and z translations but allows for x direction motion. Taking
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(a) Displacements (b) Rotations

Figure C.2: Results of the static analysis for a cantilever beam

the deflection equation for such a beam and taking L = 2 gives :

𝛿ፌፚ፱ =
5𝑞𝐿ኾ
384𝐸𝐼 = 0.01231m (C.10)

𝜃፱዆ኺ = 𝑡𝑎𝑛(
𝑞𝐿ኽ
24𝐸𝐼 ) = 0.01970434Rad (C.11)

The images show the deflection of the simply supported beam as it is modeled, the values
resulting from the simulation correspond to the analytically calculated values.

(a) Displacements (b) Rotations

Figure C.3: Results of the static analysis for a simply supported beam

Stress stiffening.
The previous examples assume that the bending stiffness of the beam remains the same
throughout the bending. This is accurate as long as the small-deflection assumption holds.
This means the deflection of the beam should be relatively small to the original form, in
which case the stiffness matrix is determined by the stiffness of the original shape for all
calculations.

The actual contact line however is not only loaded in bending but also in tension. which
means that the system deflects axially and transversally. These two can impact eachother’s
stiffnesses and therefore require further research. The axial load that is applied, is relatively
large and therefore the expectation is that the deflection in the axial direction will also be
reasonably large, in which case the small displacement assumption will no longer hold. In
order to test this effect, the model of the simply supported beam will be improved and the
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tension in the cable will be applied on the right side support, the resulting model can be seen
in figure C.4. This results in a system which should bend less in the Z direction.
If we assume small displacements, the nodal results of the solver are in the following output

Figure C.4: Simply supported Beam under a uniformly distributed load with axial tension T =20000N

list. It can be seen that the value for UZ at node 6 equals -0.012415 m. This is equal to
the UZ in the same beam without an axial load. The expectation would however be that the
deflection becomes less due to the stress stiffening effect.

Small Deflection

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 100
TIME= 100.00 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.21426E−003 0.0000 −0.38785E−002 0.38844E−002
3 0.42853E−003 0.0000 −0.73481E−002 0.73606E−002
4 0.64279E−003 0.0000 −0.10073E−001 0.10093E−001
5 0.85706E−003 0.0000 −0.11810E−001 0.11841E−001
6 0.10713E−002 0.0000 −0.12415E−001 0.12461E−001
7 0.12856E−002 0.0000 −0.11834E−001 0.11903E−001
8 0.14999E−002 0.0000 −0.10109E−001 0.10220E−001
9 0.17141E−002 0.0000 −0.73797E−002 0.75762E−002

10 0.19284E−002 0.0000 −0.38764E−002 0.43296E−002
11 0.20355E−002 0.0000 0.0000 0.20355E−002

MAXIMUM ABSOLUTE VALUES
NODE 11 0 6 6
VALUE 0.20355E−002 0.0000 −0.12415E−001 0.12461E−001
The assumption of small displacements as described previously simplifies the situation

too much. The solution to this problem is, to do a (non linear) large displacement analysis.
This analysis does not assume the stiffness matrix to remain the same. The stiffness matrix
is updated in every step and therefore the influence of the axial load can be incorporated. The
value for UZ at node 6 has reduced to 0.000330 m. This seems more accurate for a simply
supported beam under tension where the axial load is much larger than the transversal load.

Large Deflection

PRINT U NODAL SOLUTION PER NODE
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***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 15
TIME= 100.00 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.21458E−003 0.15920E−022−0.11347E−003 0.24273E−003
3 0.42917E−003 0.33754E−022−0.20722E−003 0.47657E−003
4 0.64376E−003 0.36471E−022−0.27476E−003 0.69995E−003
5 0.85837E−003 0.37939E−022−0.31582E−003 0.91463E−003
6 0.10730E−002 0.39348E−022−0.33039E−003 0.11227E−002
7 0.12876E−002 0.40799E−022−0.31846E−003 0.13264E−002
8 0.15022E−002 0.43011E−022−0.28002E−003 0.15281E−002
9 0.17168E−002 0.53262E−022−0.21492E−003 0.17302E−002

10 0.19314E−002 0.31468E−022−0.11916E−003 0.19351E−002
11 0.20386E−002 0.0000 0.0000 0.20386E−002

MAXIMUM ABSOLUTE VALUES
NODE 11 9 6 11
VALUE 0.20386E−002 0.53262E−022−0.33039E−003 0.20386E−002
Now that we know intuitively that the large displacement solution is better than the small

displacement solution. We need to calculate whether or not the values that are output by
the large displacement solver are accurate. The easiest way to do this is to calculate the
’sag’ of the wire by use of the catenary equation. The sag of the wire is defined as being the
largest deflection in the negative Z direction, when a cable is under tension and carrying its
own weight. This is easier than using the normal beam equations, since those all assume
one load and do not couple the transversal and axial loads. Also, our ’simply supported
beam’ actually is a catenary wire, under tension and only carrying its own weight. In these
conditions the catenary equation applies.

𝑇 = 𝑞𝐿ኼ
8𝑑 T: axial tension, q: load, L: length, d: sag (C.12)

20000 = 13.2435 ∗ 2ኼ
8𝑑 (C.13)

𝑑 = 0.0003310875 m (C.14)

Error = 𝜖 = 𝑈𝑍 − 𝑑
𝑑 = 0.21% (C.15)

The error between the calculation in formula C.12 and the UZ value from the large dis-
placement solver is only 0.21% or 6.95∗10ዅ዁ meter as can be seen in formula C.15. This error
is well below the desired precision of the model (0.1 mm ) and therefore, we can conclude that
the large displacement solver has calculated the deflection in the tensioned cable sufficiently
accurate. The remaining error can be attributed to numerical error and rounding error in
the calculations. It can also be attributed to the inclusion of shear stress in the calculation
of the Timoshenko beam.

Coupling of 2 beams
The next phenomenon we verify is, whether the sag of multiple connected beams with a
support in the middle does also follow the rules. For this check a model is made which
consists of 1 beam supported at 3 locations. The middle support is connected to node 11 of
the beam. In order to be able to use the beam equations, the axial load is removed.

It is proposed that if an Ansys beam model with 3 supports holds, the model can be
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extended to an infinite amount of middle supports and the validation will not need to be
done again.

In figure C.5, the model shows the contact wire up until the second dropper location X =
10.5 m. The middle support is located at X=5 m. With this setup, the sag of both wires can
be calculated.

Figure C.5: Triple support beam under a uniformly distributed load

The sag is calculated without Axial load with the small-deflection assumption. In section
C we have validated, that this method provides us with good results. Therefor, it can be used
for the deflection calculations in the following validation.

Since this is less straightforward than both previous calculations the validation will be
done as follows.

1. Solve the Ansys model;

2. Read the moment/torqua on node 11;

3. Calculate the sag caused by the moment/torque on both (partial) beams, using the beam
deflection formula’s (in Matlab);

4. Superpose the self-weight sag and moment sag over each other;

5. Compare to the UZ value of the Ansys model.

The solution of the Ansys model provides the following moments on the 11፭፡ and 12፭፡
node.

ELEM= 144 MX MY MZ
11 0.28435E−016 45.572 −0.31572E−015
12 −0.28435E−016 −24.888 0.31572E−015

The moment returned by Ansys is entered into a Matlab calculation file ?? which calcu-
lates the 3፫፝ and 4፭፡ step of the list.
For the 5 m beam the calculated maximum UZ = 0.1734 m
For the 5.5m beam the calculated maximum UZ = 0.3284 m

The Ansys model returns a minimum UZ = 0.17102 m at node 37, UZ = 0.32572 m at
node 17.

Error: 𝜖኿፦ =
0.17102 − 0.1734

0.1734 = 1.37% (C.16)

Error: 𝜖኿.኿፦ =
0.32562 − 0.3284

0.3284 = 0.7515% (C.17)

These errors seem to be non negligible. But they do show that the ansys model is 2.38mm
off at the 5 m beam and 2.68mm off at the 5.5m beam compared to the calculations which
were made by hand. since the Modeled elements are 0.5m long the sag is calculated at 8
points in the first beam and at 9 points in the second beam. this might be too little to catch
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the exact minimum caused by the added moment. The error could also lie with the beam de-
flection formula’s not being completely accurate for this situation since there might be some
additional forces and moment working on the system. The curvature of the beams also is of
importance in this derivation. The previous calculations have all had reasonably low curva-
tures compared to the curvature of this beam at the middle support. Since the Timoshenko
beam theory takes into account the shear stresses in the beam, these stresses (due to the
high amount of curvature) are likely to play a role in the calculation Ansys has made. The
classical beam theory which is used for the analytical calculations does not incorporate these
effects. Furthermore, the analytical calculations are applicable to systems with small deflec-
tions in them, as the stifness is not updated. This calculation is clearly no longer a small
displacement, therefore the analytical calculations can be expected to show larger errors. In
contrast to the first calculations the classical beam theory does no longer hold, the analytical
calculations should be done by means of the Timoshenko beam theory,

Difference between Euler-Bernoulli and Timoshenko beam theory in practice
In order to validate the Ansys model a matlab program was written which calculates de-
flections and slopes, for both a cantilever beam as well as a simply supported beam. The
calculation is done twice, once with Euler-Bernoulli Beam theory and once with Timoshenko
beam theory. The resulting deflections and slopes are plotted for both theories and they are
compared through their differences (error). These results can be seen in figure C.6 and figure
C.2b.

Figure C.6: Analytical deflection results for Euler-Bernoulli and Timoshenko beams

The chosen beam188 element in Ansys should represent reality well, to support this ex-
pectation the choice is validated through table C.1. The comparison between the Ansys and
Timoshenko calculation shows errors of up to 1%. These errors find their origin in the ca-
pacities of the applied analytical formulas. Analytical bending equations are very accurate
for small displacements, and they assume beams are loaded only in bending. As the beams
which are used in catenary systems are however very slender, using these theories will result
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Figure C.7: Analytical errors between Euler-Bernoulli and Timoshenko beams

in high displacements, in which case the beam theory loses accuracy. The Ansys system does
not suffer this problem, therefore as bending increases the error will also increase. To prove
that the error does converge as the beam becomes stubbier, the short ss beam has been added
for comparison. The displacements remain in the 1E-05m range where the errors become
less than 0.1%. From this it is reasoned that, these increasing errors occur from shortcom-
ings in the analytical solution. This leads to the conclusion that the Ansys model with
the BEAM188 element provides sufficiently accurate deflection characteristics even
when large displacements occur. Furthermore the cable will be loaded in bending as well
as in tension, therefore the tensioned ss beam deflection was calculated. Comparable re-
sults were observed between the analytical result and the Ansys model with a relative error
of 0.2107% resulting in an absolute error of 0.0006975mm. For the final simulation, verti-
cal resolution of 0.5mm is required, which is about 1% of the total vertical bandwith. The
acquired results in this calculation will allow these expectations to be met. Therefore it can
be stated that:the comparison of the Ansys model to analytically calculated deflections
under tension provides sufficiently accurate results with the BEAM188 element and
the large displacement solver.

Dynamical response and substructuring
Since the catenary system is the most complicated sytem in the simulation it is of the essence
that it is modeled correctly as well as substructured correctly. Since it has been shown that
the statical results for the system are accurate. The dynamical responses can be investi-
gated. Eigenmodes and eigenfrequencies will be determined for a model which consists of
three spans (180m). This has been chosen since the contact wire is not constrained at the
ends, which results in a response in the middle span which will approach the reaction in
a full length span (minus the wave propagation). Multiple analyses will be done, some will
include all droppers and some will be done minus droppers on some locations to determine
the responses and respectively the best way to model the system.
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Euler Timoshenko Error
Deflection Angle Deflection Angle Eu-Tim deflection Eu-Tim angle

Cantilever beam 0.1182 0.0788 0.1182 0.0788 4.1901E-06 0
Simply supported beam 0.0123 0.0197 0.0123 0.0197 1.0475E-06 3.4694E-18
Extended ss beam 0.3284

Ansys BEAM188 Timoshenko Error
Deflection Angle Deflection Angle Relative Absolute

Cantilever beam 0.118398 0.078929 0.1182 0.0788 0.1675% 0.198mm
Simply supported beam 0.012415 0.019655 0.0123 0.0197 0.8530% 0.105mm
Extended ss beam 0.325932 0.3284 0.7515% 2.468mm

Simpack Ansys BEAM188 Error
Deflection Angle Deflection Angle Relative Absolute

Cantilever beam 0.118398 0.078929
Simply supported beam 0.012415 0.019655
Extended ss beam 0.325932

Catenary eq Ansys BEAM188 tensioned Error
Deflection Angle Deflection Angle Relative Absolute

Tensioned ss beam 0.00033039 0.0003310875 0.2107% 0.0006975mm
Short ss beam 4.817E-05 4.815E-05 0.0415% 0.00002mm

Table C.1: Difference between analytical and numerical deflection calculations

Modal Analysis
Analysis of the Eigen frequencies and corresponding modes of the system provides knowledge
of the way the system will move under certain excitation frequencies. This knowledge can
then be used to determine which modes and frequencies are essential for simulation, and
which mode shapes will not be of such essence, therefor allowing an even more simplified
model and faster computation times. The Ansys mechanical environment provides us with
several possibilities for modal analysys

• Static condensation/Guyan Reduction

• Block Lanczos

• PCG Lanczos

• Supernode

• Subspace

• Unsymmetric

• Damped

• QR Damped

Since Ansys provides multiple options for modal analysis, an understanding of the differ-
ent options should be available in order to determine which of the different options provides
the most accurate results. In order to describe the dynamic behavior of the system properly,
the Mass participation factors need to be calculated. These values represent the amount of
energy/mass divided by the total energy/mass is available in one mode. Therefore, if a mode
has a high mass participation factor for a certain mode, this mode must be important for
describing the total dynamical behaviour of the system, in the direction which is described
by this value. Whereas modes with low mass participation factors influence this direction
less. Modes with low mass participation factors in X direction might however be important in
the Y, Z, ROTX, ROTY, ROTZ directions. And therefore, for each direction. Important modes
must be chosen which together, sum up to a Mass participation ratio of between 0.8 and 0.9.

The OCL model has a lot of non linearities, however, none of the modal analyses accounts
for these nonlinearities.
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Substructuring in ansys can be done one of four ways. the goal of the substructuring
process is reduction of the complete model in order to reduce computation time. It should
however reduce the model as well as retain as much information as possible. Therefor an
analysis of the different substructuring processes is necessary to determine the best choice
for our model. The ansys program provides the following options for substructuring:

• Substructuring

• Component mode synthesis - fixed-interface

• Component mode synthesis - free-interface

• Component mode synthesis - residual-flexible free-interface

These respectively translate to Guyan, Craig-Brampton, Herting and Martinez methods.
Guyan [35] reduction - also known as static condensation is a technique for reduction of

the systems which does not take into account inertial terms........
Craig-Brampton [36] reduction determines the eigenvectors and eigen modes with all the

master degrees of freedom constrained (interfaces fixed). This reduction is not useful for
reduction of this system since the modes of the system need to be determined for entire
system and the lowest modes are neglected when the master DOF’s are fixed in place.

Herting [37] reduction Free-interface substructuring is useful for systems where large
displacements are in effect. In this system it is particularly useful since it does not constrain
the interfaces (master DOF’s).

Martinez [38] reduction Residual-Flexible Free-Interface substructuring is useful towards
a system where large displacements.

Validation of the Eigenmode reduction in Ansys
To ensure the correct workings of the final system. It is necessary to determine whether the
eigenmodes are calculated correctly, or at least in a manner where logical derivation would
result in the same eigenmodes. Therefore a system has been conceived in which the first
representative eigenmode analysis can be done. It consists of three spans of the EN50318
overhead contact line. Where the middle span is completely built to spec, whereas the outer
two spans have fixed points to ensure the model is sufficiently constrained. The drawbacks
of this system will therefore be created by the fact that it is not a full length system, causing
the fixed points to be relatively close to the analysis section (middle section). Determining
whether Ansys correctly applies reduction to a model, and which reduction provides the best
result can be determined without application to a full model.

Implicit Dynamics
The reduction of the system allows for an interesting option. Modeling the complete system in
Ansys is no problem since it is designed to cope with a very high amount of degrees of freedom.
SimPack however is not created for high DOF systems. This is why reduction of the model is
necessary. In order to remove as much DOF’s as possible it is possible to reduce the system
to (explicitly) only exist of the contact wire, since this is the point where the pantograph and
the catenary system interface during simulation. To make sure the system reduction does
not leave out the relevant dynamics the pre-reduction system is a full catenary system. In
this case the dynamics of the full system will be taken into account (implicitly) in the reduced
contact wire system.

Validation of Flexible Modelling techniques in SimPack
In order to determine whether or not the model that was made in ansys and was validated
in ansys remains correct in SimPack after the reduction and FBI file creation process is an
important Factor. The SimPack Flexible body needs to do (exactly) the same as the Ansys
model. This is important since the Ansys results have been validated. Small differences,
if and when they occur, should be evaluated to see whether they are avoidable or within
acceptable margins. Expected differences might occur due to the Ansys model being a full
FE model whereas the Simpack wire is a Substructured and reduced model.
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this validation will also be used to find the correct way of substructuring an Ansys model.
Minute differences might occur while substructuring, it is therefore necessary to determine
carefull, for every simulation in Simpack, whether the error occurs due to Simpack or due to
the substructuring process in Ansys.

Modeling issues
EN50318 states that the supports should be fixed points, it also states that for both the
contact wire and the messenger wire the tension forces should be constant. For the contact
wire, this should not pose an issue, since it is attached to the support by means of the
registration arm. The end point of this arm is fixed, therefor the cable itself can be tensioned.

Renewed EN50318:2016
During the creation of the EN50318:2002 model. A newer version of the Norm was released
(only preliminary) This norm states much clearer, to which extent a model has to conform to
the reference in order for it to be usable.

Figure C.8: Three spans

Stress stiffening for a reduced 3 portal model.
In order to correctly introduce a FE model into Simpack the following process was followed.
The Model was made in Ansys, modeling the nodes so they would be at their desired position
when at rest. This position calculation can be found in the respective XLS file. Elements are
determined, materials consist of Linear isotropic properties, densities, and damping coeffi-
cients as determined in the Norm.

Real constants determine the dropper stiffness.
With the large deflection static calculation the static situation of the system is calculated.
When this is done. the solution environment is closed and reopened. The analysis type

tab is opened and Restart is selected. This will show the last LS and substep number, these
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will be remembered and the dialog will be closed.
The command line is fed with the folliwing info
——-
ANTYPE„RESTART,LSnumber,SSnumber,PERTURB
PERTURB,SUBSTR
SOLVE,ELFORM
——-
Next go Analysis type > Analysis opts Fill in the options below!
Which CMS opts are used (28-8-2017)

RFFB(this ensures the model does not need to come to rest in simpack)
300
0
100
Automatic
0
TCMS Transformn mx
YES
Port2016
STIFF+MASS+DAMP
LOADVECT+MATRIX
YES
YES
nothing[RIGID]

Next run SOLVE >current LS
This will create a SUB (and a TCMS if using free interface (not recommended)) file, A

third file is needed and this is the CDB file. In order to produce this file go Preproces-
sor>ArchiveModel>Write.

Go to the correct directory and copy the SUB, TCMS and CDB file to the Simpack com-
puter.

Loading Into simpack
After the substructuring process is complete, the ansys program will have created 2 files nec-
essary for creating the SimPack flexible body. These are The modelname.CDB and the mod-
elname.SUB files. In simpack the FBI (flexible body) file can be generated with the following
process. go to Utilities>FBI Files>Generation, use the + sign and select the modelname.CDB
and the modelname.SUB files (it might be necessary to change the extension search in the
drop down menu next to the path in order to see the files) open them, they will now show in
the dialog window. Then define the path for the .FBI file. Check both the Convert recovery
matrix and the retain rotational dofs boxes. and generate the .FBI file.

Next a body can be created of the Flexible type and the FBI file can be entered into this
body. Modes will need to be calculated (fmin=0 nmodes=150) Next all modes with odd shapes
(mostly ydirection modes) will need to be turned off. Markers can be generated with the
position connection type in the last tab, after applying all changes there should now be a
flexible body in the viewer (zoom fit).

The model that is currently in SimPack is not the exact replica of the model which was
created in ansys. This is a result of some shortcomings in the modeling and reduction pro-
cess.

The first difference is the end influences, Since a 2 portal model will always have some
influences at the end of the system. To counteract these influences the contact wires have an
applied force and moment at their first and last nodes. The values of this force and moment
are chosen in such a way that they mimic the situation had there been another portal after
it. In SimPack therefore these forces should be counteracted when two or more of the same
model are connected to each other.

The second difference is the dropper non-linearity. Whilst the full ansys model uses non
linear droppers, this can not be said for the reduced model. The reduced model uses the
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100000N/m stiffness for tension and compression. Since there is no way to change this in
the reduction process. The now linear behaviour will have to be compensated. This is done
by introducing a Non-linear force element which does nothing in tension (tension should be
100000N/m) and which has a stiffness of -100000N/m in compression (counteracting the
implicit stiffness of 100000N/m in compression).

The combination of two models into one is done by using multiple substructures. These
substructures will need to be connected to the Reference systemmarkers. these markers will,
in case of 56m spans, need to be offset 112m in the X-direction. After joining the Substructure
bodies to their respective Reference systemmarker, they should now be behind each other. At
this point there is however still no interaction between the different substructures. In order to
join the contact wires of the first structure to those of the second structure, a force element
(bushing) is defined between the corresponding markers (1 for each wire). This bushing
has very high stiffness in x,y,z,al,be,ga directions. Therefore linking the two markers solidly
together.

Contact modeling in Ansys
Modeling a Contact in ansys can be done through the available contact and target elements.
In our case the Line-to-Line Conta176 element is available. This element can model crossed
beam sliding contact. In order to determine contact the Conta176 Element will be coupled to
a Targe170 Element through a common set of real constants. These real constants contain
all parameters necessary to determine the contact. The Conta176 Elements will be overlaid
on the BEAM188 elements which represent the ocl’s material and geometrical properties. The
Target170 element will be RIGID by determining it between nodes (not over element nodes).
This results in a rigid-deformable contact pair which will be used in the simulation. The
contact however encounters some difficulties, which originate from the Contact elements

Possible future problems
Connection Between Contact wire and steady arm is locked and does not allow independent
rotation. Investigation of this ’problem’ resulted in the conclusion that it does not influence
the model in a significant manner. Induced moments in the system were up to 0.8 nm, A
simple calculation of the moments tells us the lift created by this is no more than 0.7 N.

Constraint locked with modes. Locked modes: x 1:2 z 3:4 beta 19:20 gamma 5:13

Dynamic modelling problems
Ansys modeling Has successfully resulted in a correct static model of the A simple variety.
This model has been statically validated with the values in the norm EN50318:2016 The
step towards dynamic analysis was a big one. Problems were instability of the system when
scaling up from 2 or 4 spans to 10 or more spans. This problem occurred due to too large
solver constraints. To ensure correct convergence the values have been changed to F 0.0001
INF M 0.0001 INF U 0.0001 INF ROT 0.0001 INF

Secondly the system output after simulation was problematic. This was the result of too
coarse meshing. The model was meshed too an extent where it was not possible to bend the
contact wire sufficiently at the point of contact. This resulted in very high(and low) peaks
in the system. due to the discontinuities at the interface of the elements (elements behave
linearly). This was improved upon by increasing the amount of elements in the cable. Until
the discontinuities no longer form a big part of the end result.

Lastly the peak forces were a little big at points where the cable had a high amount of
bending (mostly around the first and last dropper). This was resolved by lowering the contact
stiffness.

C.0.1. Contact force issues
The Resulting model shows us that whilst displacements might be within the expectable
ranges this might not be true for the Forces. This is highly probably the result of mesh
refinement and especially the lack of element refinement.
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Refinement
In the situation of low mesh refinement the system does not represent the true situation well.
This results in very noisy results as can be seen in the following figure.

Contact issues
If the refinement is high enough another issue presents itself. The contact model, which
usually only sees one contact element, now sporadically sees multiple contact elements.
These elements will both have a contact relationship with the target element, this results
in a discontinuity in the contact relation. Which then results in an erroneous force. This
phenomenon is clearly visible in figure C.9. The 2 lines represent the force of 1 pantograph
on a catenary system with 2 contact wires.

(a) Amount of elements in contact (b) Contact force

Figure C.9: Contact force output showing unwanted peaks in the amount of contacts found

C.0.2. Automated Ansys modeling
In order to create a model which can be easily used by others, it is a requirement that the
model can be created without needing to go through the process of finding out how to make
it. With this in mind, it is important that the modeling turns into a simple process, where
settings are changed and the model is made. Also, the simulation process should be auto-
mated. These 2 will result in a simple (enough) process for everyone with some basic ansys
and matlab knowledge to run a full simulation with his or her OCL model or pantograph.

The automated modeling process will be done through a Matlab code. The basic geometry
of the OCL model will be input through a matlab file. In this file all the necessary geometric
and material properties can be entered. A second matlab file is used to enter the Pantograph
model, For both these files the running will result in a .mat file which is saved in the current
directory. If the models are required for future use they do not need to be entered anymore
but can be loaded from file.

The main .m file will then create the ansys code. Some basic settings such as amount of
spans, pantographs and simulation speed can be entered and the Running will result in 4
text files, which can be entered into Ansys to run the full simulation. After the simulation is
finished, results will be extracted and processed in the Post processor .M file. This process is
visualised in the flow chart as can be seen in figure C.10. Therein the names of the .m Files
and their version numbers can be found.

C.0.3. Large Model Simulation issues
During the process of modeling the system. The models with which simulations were run
became significantly larger. This induced an issue which was not of importance in smaller
models. The large system, using the same settings as smaller systems, becomes unstable.
This is not a result of the model, but instead a result of the solver settings. The solver would
find a converged situation where in reality the system became gradually more unstable. After
some research it was found to be the result of too loose convergence criterion (L2) Changing
to an infinite criterion, where every DOF needs to converge resulted in a stable system.
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Figure C.10: Automated simulation flow chart

Model clarity
The reference models as defined in the norm EN50318:2016 lack some small parts of infor-
mation. Therefore sometimes results are inadequate. For instance steady arm inclinations
are not defined in the Reference models. In the end ten degrees of inclination are used, since
this results in the best pre-sag (read closest to the reference).



D
Spring Decoupling and Time-history

analysis on Modal system

D.1. Introduction
In this chapter, the modal reduction is performed on the full physical system. In section
D.2, spring decoupling is to be tested in the modal domain. In section D.3, Time history
analysis results are presented for a small amount of analyses. Further time history analyses
have not been performed due to unpromising results in the early stages of time-history anal-
ysis of these models. Therefore, the modally reduced method is deemed inapplicable, w.r.t.
simulation time improvements, to the Pantograph-Catenary simulation model. Furthermore,
section D.5 contains the validation of the eigenmodes, the modes calculated in Matlab are
compared to the eigenmodes calculated by Ansys. Where beam elements are represented by
BEAM4 elements, and spring elements by COMBIN14 elements. BEAM4 elements do not
allow linear perturbation analyses, these are calculated without pretension.

D.2. Dropper Decoupling in the Modal domain
In order to ensure quick time history iterations in Matlab it is essential that the non-linear
dropper behaviour is added to the system without having to invert the entire admittance ma-
trix. Adaptation of the Modal basis to ensure correct dropper behaviour needs to be studied.
In figures D.1 and D.9b the first and sixth eigenmode of a fully coupled system, as well as
a system with the first non-linear spring decoupled are shown. The modes specific to the
decoupled spring, as they are found here in a controlled and small model, seem to show very
local behaviour linked to a frequency which is not found in the fully coupled system. From
this the preliminary conclusion can be drawn that the decoupled spring behaviour can easily
be isolated from the rest of the system response. A test is done in which a fully coupled
modal space 𝑉፜ is used to perturb a 1-spring-decoupled stiffness matrix 𝑍፝፜ in figure D.3b,
as well as a 1-spring-decoupled modal space 𝑉 ፜ to perturb a fully coupled stiffness matrix
𝑍፜ in figure D.4a. To clarify, the control tests 𝑉ፂ , 𝑍ፂ is in figure D.3a, 𝑉 ፜ , 𝑍፝፜ is in figure D.4b.

100
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(c) second spring decoupled
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Figure D.1: Mode 1
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(b) first spring decoupled Ꭶ ዆
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(c) second spring decoupled Ꭶ ዆
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Figure D.2: Mode 6



102 D. Spring Decoupling and Time-history analysis on Modal system

0 5 10 15 20 25 30

position [m]

-12

-10

-8

-6

-4

-2

sa
g 

[m
]

10 -3 MODAL basis S1 Coupled, Zin S1 Coupled

Displacements, axial tension:2200 newton

0 5 10 15 20 25 30

position [m]

-6

-4

-2

0

2

4

6

ro
ta

tio
n 

[r
ad

]

10 -3

Rotations

(a) Coupled Stiffness matrix
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(b) Decoupled Stiffness matrix

Figure D.3: Modal basis based on COUPLED stiffness matrix

Figure D.3b shows that when the modal basis does not incorporate movement at the
decoupled dropper location, the movement is not observed. Therefore, simply changing the
stiffness matrix is no longer sufficient when dealing with decoupling of droppers. In figure
D.4a it shows that in a decoupled modal basis, changing only the stiffness matrix provides a
result which approaches the fully coupled system 𝑉ፂ , 𝑍ፂ from figure D.3a very close. Therefore,
it can be concluded that decoupling, in a modal basis, does not work properly when the modal
basis itself is not altered. However, it can also be concluded that coupling, in a modal basis,
does work properly when the modal basis is not altered. For a validation of the eigenmodes
as they are calculated by matlab, a comparison is made to Ansys eigenmodes in appendix
D. The comparison is done for the non-pretensioned model. For the pretensioned model,
a comparison is not fully representational since the large axial load the Ansys model will
calculate axial strains as well, which is impossible for the Matlab model. Of this comparison
it can be said that modal shapes and frequencies are alike, however not the same. A check of
the proposed approach is in order, therefore a static simulation is done based on the first 40
modes of the fully coupled system, augmented with the 4 first modes of the decoupled system,
therefore resulting in a 44 DOF system. Effectively using these modes involves interpolating
between them every time step in order to create a continuously moving mode. In figure D.5 an
interpolation procedure is shown, this interpolation takes place between the first eigenmode
of the decoupled dropper numbers 2,3 and 4.
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(b) Decoupled Stiffness matrix

Figure D.4: Modal basis based on DECOUPLED stiffness matrix
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Interpolation based on position

Figure D.5: Interpolation between the first decoupled modes, for neighbouring droppers
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The interpolation, as shown in figure D.5, is performed using Hermite polynomials 1 and
3 (translational). This choice was made since these are also used to create the full FE ma-
trices and thus the newly interpolated mode retains important properties such as mass and
stiffness orthogonality with respect to the rest of the modes [32]. Furthermore, interpolation
between two modes, if not done correctly, may result in energy dissipation. An initial check
shows that the area encompassed by all interpolated modes remains the same between drop-
per 2 and 3. Towards dropper 4 a small decrease of 1.8 % is observed due to that mode being
closer to the support, thus lacking a ’tail’.

D.3. Time history analysis of a modally reduced OCL model
In order to check whether the Modal reduction performs as desired, it is compared to the
full system in a time history analysis over 30 meters of catenary. Dropper-decoupling is not
incorporated in this analysis. Firstly, the full system simulation is performed at 200 elements
(398 DOF), after which a reduction to 44 and 34 Vibration Modes is performed. At 34/44
Vibration modes, the modally reduced system shows reasonably good accuracy. Secondly,
the full system simulation is performed at 400 elements (798 DOF), after which a reduction
to 88 and 68 Vibration Modes is performed. Finally, the full system simulation is performed
at 600 elements (1198 DOF), after which a reduction to 132 and 102 Vibration Modes is
performed. The analyses are performed on exactly the same system every time, therefore, a
modal reduction to 34 DOF will, in this method always suffice. However, generally systems
will increase in size, thus increasing the amount of interface locations and required Vibration
Modes is necessary. This increase is simulated by increasing the modal base linearly with
the size of the full system. The results of these simulations are presented in table D.1.

Method
Elements Full Physical system Reduced Reduced
200 0.86 1.12 (34 modes) 1.2 (44 modes)
400 3.03 5.04 (68 modes) 5.84 (88 modes)
600 12.08 14.74 (102 modes) 17.66 (132 modes)

Table D.1: Modal reduction simulations, by simulation time [s]

Inclusion of the dropper-decoupling in the modal analysis will require a re-projection of
the stiffness matrix onto the modal basis. This will result in an increasing simulation time
delay versus the times presented in table D.1.

D.4. Conclusion
During a time history analysis the system is excited by amoving load. The amount of interface
DOFs is determined by the amount of locations where this excitation is applied. When using
a pure modal basis, 𝑉፦ = [𝜙ኻ𝜙ኼ...𝜙፦] the movement of the system is based on free vibration
shapes only. Very local excitations are not easily described by such systems. As a result, the
pure modal basis 𝑉፦ does not provide correct and accurate results when looking at the very
near field. Far field results are accurate starting from 30 Vibration Modes for a 30m long
system. The results have not shown significant simulation time improvements in this early
stage and do not seem to scale favorably to larger models.

Furthermore, improving the modal base by adding Residual Attachment Modes to im-
prove near-field behaviour, would require a RAM at every interface location (assuming non-
parametric Residual Attachment Modes). With simulations easily spanning 5 or more sec-
onds per run, at frequencies of 200-500 Hz this results in an added 1000 to 2500 or even
more DOFs. Assuming the Residual Attachment Modes may be executed parametrically,
this number could be improved. Unfortunately, the need to transform the load vector to
the modal domain to provide input, as well as the back transformation of the results to the
physical domain for visualisation purposes, provide high calculation overhead slowing down
the model to a situation where modal reduction is not interesting (see results in table D.1).
Further research will therefore no longer focus on modal reduction.
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D.5. Validation of Vibration Modes
On the following pages, the Vibration Mode calculated in matlab are compared to the VM
calculated in Ansys, see figures D.6 up to D.9. It can be seen that all VM are of similar
shape. Therefore it is concluded that the calculated modes are correct.
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Figure D.7: Mode 6 without axial load
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it,0 it,1 impl,0 impl,1
200
5.44 5.65 3.47 6.08
5.21 5.16 3.22 5.16
5.42 5.12 3.29 4.78
400
19.04 25.64 13.23 29.76
17.86 22.2957 11.526 25.3048
21.90 17.3871 11.5558 25.0213
600
53.16 51.45 26.18 59.91
53.28 51.64 25.05 58.9696
52.54 51.84 24.837 56.12
600
it,0 it,1 impl,0 impl,1
53.16 51.45 26.18 59.91
53.28 51.6419 25.0578 58.9696
52.54 51.84 24.837 56.12
800
96.54 101.6018 42.27 123.01
105.2856 105.9863 42.56 121.92
108.4528 110.821 44.59 130.21
1000
208.68 214.27 74.26 224.16
203.5068 211.60 79.73 230.62
207.148 214.72 73.40 222.81
1200
314.935 317.08 130.5325 353.69
299.577 306.74 140.8493 350.83
313.27 305.48 133.1515 358.21
1400
466.6155 477.16 237.12 575.75
455.5616 447.0093 238.26 547.96
460.13 487.73 224.15 592.49

Table E.1: Mesh scaleability in seconds [s]
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0 it,0 it,1 impl,0 impl,1
0.01 1.14 1.22 0.53 1.7417
0.005 1.68 1.56 0.6845 1.2482
0.002 3.33 3.0179 1.82 2.8045
0.001 5.32 5.77 3.274 5.06
0.0005 10.15 10.3217 6.34 10.112
0.0002 25.20 25.9404 17.57 24.8093
0.0001 52.96 53.75 32.48 47.2271

0 it,0 it,1 impl,0 impl,1
0.01 1.3431 1.68 0.49 0.7923
0.005 1.42 1.63 0.71 1.1833
0.002 3.16 3.2018 2.10 2.89
0.001 5.29 5.35 3.76 5.05
0.0005 10.28 10.18 6.82 10.74
0.0002 21.73 22.28 14.78 22.47
0.0001 63.197 43.36 29.18 42.09

0 it,0 it,1 impl,0 impl,1
0.01 1.52 1.5238 0.62 0.98
0.005 1.45 1.61 0.68 1.14
0.002 3.29 2.85 1.65 2.82
0.001 5.30 5.25 3.29 5.10
0.0005 10.13 10.17 7.12 9.63
0.0002 26.05 21.56 14.68 21.19
0.0001 57.73 44.03 29.70 42.68

0 it,0 it,1 impl,0 impl,1
0.01 0.97 1.18 0.43 0.69
0.005 1.39 1.56 0.67 1.14
0.002 3.09 3.24 1.82 2.93
0.001 5.42 5.18 3.25 5.07
0.0005 10.30 10.15 6.37 9.59
0.0002 22.31 21.85 15.33 22.60
0.0001 66.54 44.17 30.10 44.58

Table E.2: Time Step scaleability in seconds [s]
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vsim it,0 it,1 impl,0 impl,1
6 13.2658 11.45 5.84 11.7
7.5 10.11 11.49 5.97 12.88
10 10.15 11.4678 5.98 12.76
15 10.49 11.67 6.15 10.92
30 10.1096 11.19 5.94 13.17
60 9.80 11.09 6.11 9.86
120 9.34 10.51 5.87 10.17

it,0 it,1 impl,0 impl,1
6 10.07 11.71 6.28 13.39
7.5 9.97 11.46 6.16 12.93
10
15 10.05 11.25 6.4 12.75
30 9.25 11.02 5.92 12.94
60 12.31 12.29 5.97 11.93
120 9.66 10.22 5.94 10.19

it,0 it,1 impl,0 impl,1
6 9.38 11.89 6.22 12.81
7.5 10.37 11.75 6 12.97
10
15 10.41 11.23 5.88 12.7
30 9.99 11.3 5.94 13.04
60 10.3903 11.76 8.69 10.93
120 9.89 10.05 5.92 12.91

it,0 it,1 impl,0 impl,1
6 10.15 11.65 6.05 12.89
7.5
10
15 10.44 11.25 5.88 13.02
30 12.99 11.37 5.88 12.63
60 8.44 11.75 6.18 13.88
120 9.39 10.84 6.05 12.88

Table E.3: Velocity scaleability in seconds [s]
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CC it,0 it,1 impl,0 impl,1
10 3.13 2.87 5.78 13.61
1 9.89 11.27 6.06 13.04
0.1 10.1655 11.06 5.89 13.28
0.01 10.53 11.89 5.77 12.95
0.001 12.17 15.38 5.98 11.02
0.0001 14.7 17.43 5.84 13.2
0.00001 16.05 21.04 5.9 12.97
10 2.93 2.89 6.42 12.24
1 10.07 11.08 5.92 12.04
0.1 9.65 10.87 5.8 10.67
0.01 10.03 11.66 6.17 10.93
0.001 12.19 15.11 5.89 10.89
0.0001 14.66 19.75 6.01 13.11
0.00001 15.71 24.47 5.91 12.96
10 3.43 2.94 6.06 12.84
1 10.14 11.24 6.07 13.15
0.1 9.69 9.91 5.89 10.8
0.01 10.31 10.44 5.88 12.79
0.001 10.66 15.32 5.95 11.22
0.0001 14.79 19.68 5.85 13.7
0.00001 17.78 21.26 5.87 13.04
10
1 10.31 11.53 6.09 13.18
0.1 9.66 11.31 5.82 12.67
0.01 10.14 11.97 5.99 12.88
0.001 11.81 14.1 5.87 11.16
0.0001 13.54 19.8 6.26 12.85
0.00001 17.68 20.97 5.94 11.45

Table E.4: Convergence criterion scaleability in seconds [s]
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Contact model comparison simulation

process
In order to reduce the amount of files that need to be saved, the process for reproduction of
the results presented in chapter 9 is explained in the following sections.

NOTE that the exact same results will likely not be found twice since simulation perfor-
mance is dependent of the hardware as well as other circumstantial variables.

F.1. Contact model simulation process
This process is described compactly, therefore measures to ensure stability are not shown
here. It is assumed that people attempting to replicate this test are known with the Ansys
software and will take their own preventive measures if instability occurs.

1. Run LOADFILECREATOR_V_0_0_2 with settings and models

• OCLTYPE: B4+
• OCLVER: CONTACT
• PANTOVER: Generic
• PANTOTYPE: Panto
• PANTOAMOUNT: 1
• SPANS: 1/2, input value times 2 is the amount of spans that are made.
• REFINEMENT: 10
• CARRYREFINEMENT: 4

2. Note that a file named ”1run.txt” is made

3. Open ANSYS 18.1 and >file>read input from> 1run.txt,

4. Copy and paste the following in to the command window

• d,10,uz,0
• /SOL
!*
OUTPR,ALL,ALL,
ANTYPE,4
NLGEOM,1
DELTIM,0.00001,0.0000000001,0.1
OUTRES,ERASE

115
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OUTRES,NSOL,ALL
OUTRES,RSOL,ALL
OUTRES,V,ALL
OUTRES,A,ALL
OUTRES,ESOL,ALL
OUTRES,NLOA,ALL
OUTRES,STRS,ALL
OUTRES,EPEL,ALL
OUTRES,EPTH,ALL
OUTRES,EPPL,ALL
OUTRES,EPCR,ALL
OUTRES,FGRA,ALL
OUTRES,FFLU,ALL
OUTRES,MISC,ALL
ALPHAD,0.8
KBC,0
TIME,10
CNVTOL,U„0.000001,0
CNVTOL,ROT„0.000001,0
CNVTOL,F„0.000001,0
CNVTOL,M„0.000001,0
OUTPR,ALL,ALL,
NLHIST,pair,contactFORCREAR,cont,pres,10
NLHIST,pair,contactELEMSREAR,cont,ELCN,10
NLHIST,nsol,xcompREAR,u,x,10
nlhist,nsol,REARHEIGHT,u,z,10
NLHIST,pair,contactFORCFRONT,cont,pres,11
NLHIST,pair,contactELEMSFRONT,cont,ELCN,11
NLHIST,nsol,xcompFRONT,u,x,20
nlhist,nsol,FRONTHEIGHT,u,z,20

• LSWRITE,1
• ALPHAD,0.0125
• DELTIM,0.01,0.01,0.01 ! this value may be changed according to the frequency of
interest

• ddele,10,uz F,11,FZ,287.34 D,10,VELX,50

5. TIME,10.1

6. Then choose to load the system in 1 step or in multiple steps

• LSWRITE,4,
TIME,10.2
LSWRITE,5,
TIME,10.3
LSWRITE,6,
TIME,10.4
LSWRITE,7,
TIME,10.5
LSWRITE,8,
TIME,10.6
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LSWRITE,9,
TIME,10.7
LSWRITE,10,
TIME,10.8
LSWRITE,11,
TIME,10.9
LSWRITE,12,
TIME,11
LSWRITE,13,
TIME,11.1
LSWRITE,14,
TIME,11.2
LSWRITE,15,
TIME,11.3
LSWRITE,16,
TIME,11.4
LSWRITE,17,
TIME,11.5
LSWRITE,18,
TIME,11.6
LSWRITE,19,
TIME,11.7
LSWRITE,20,
TIME,11.8
LSWRITE,21,
TIME,11.9 LSWRITE,22,
TIME,12
LSWRITE,23,

• TIME,12 LSWRITE,2,

7. Then run either LSSOLVE,1,23,1

8. Or LSSOLVE,1,2,1

9. after the solver is finished, investigate the Jobname.MNTR file, there the WALL variable
shows the elapsed time at every Load- and sub-step.

F.2. Direct approach simulation process
1. Run LOADFILECREATOR_V_0_0_2 with settings and models

• OCLTYPE: B4+
• OCLVER: CONTACT
• PANTOVER: Generic
• PANTOTYPE: Panto
• PANTOAMOUNT: 1
• SPANS: 1/2, input value times 2 is the amount of spans that are made.
• REFINEMENT: 10
• CARRYREFINEMENT: 4

2. Note that a file named ”1run.txt” is made
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3. Open ANSYS 18.1 and >file>read input from> 1run.txt,

4. Copy and paste the following in to the command window

• d,10,uz,0
• /SOL
!*
OUTPR,ALL,ALL,
ANTYPE,4
NLGEOM,1
DELTIM,0.00001,0.0000000001,0.1
OUTRES,ERASE
OUTRES,NSOL,ALL
OUTRES,RSOL,ALL
OUTRES,V,ALL
OUTRES,A,ALL
OUTRES,ESOL,ALL
OUTRES,NLOA,ALL
OUTRES,STRS,ALL
OUTRES,EPEL,ALL
OUTRES,EPTH,ALL
OUTRES,EPPL,ALL
OUTRES,EPCR,ALL
OUTRES,FGRA,ALL
OUTRES,FFLU,ALL
OUTRES,MISC,ALL
ALPHAD,0.8
KBC,0
TIME,10
CNVTOL,U„0.000001,0
CNVTOL,ROT„0.000001,0
CNVTOL,F„0.000001,0
CNVTOL,M„0.000001,0
OUTPR,ALL,ALL,
NLHIST,pair,contactFORCREAR,cont,pres,10
NLHIST,pair,contactELEMSREAR,cont,ELCN,10
NLHIST,nsol,xcompREAR,u,x,10
nlhist,nsol,REARHEIGHT,u,z,10
NLHIST,pair,contactFORCFRONT,cont,pres,11
NLHIST,pair,contactELEMSFRONT,cont,ELCN,11
NLHIST,nsol,xcompFRONT,u,x,20
nlhist,nsol,FRONTHEIGHT,u,z,20

• LSWRITE,1
• ALPHAD,0.0125
• DELTIM,0.01,0.01,0.01 ! this value may be changed according to the frequency of
interest

• TIME,10.1
FDELE,100001,FZ
F,100011,FZ,150
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LSWRITE,2,
TIME,10.2
FDELE,100011,FZ
F,100021,FZ,150
LSWRITE,3,
TIME,10.3
FDELE,100021,FZ
F,100031,FZ,150
LSWRITE,4,
TIME,10.4
FDELE,100031,FZ
F,100041,FZ,150
LSWRITE,5,
TIME,10.5
FDELE,100041,FZ
F,100051,FZ,150
LSWRITE,6,
TIME,10.6
FDELE,100051,FZ
F,100061,FZ,150
LSWRITE,7,
TIME,10.7
FDELE,100061,FZ
F,100071,FZ,150
LSWRITE,8,
TIME,10.8
FDELE,100071,FZ
F,100081,FZ,150
LSWRITE,9,
TIME,10.9
FDELE,100081,FZ
F,100091,FZ,150
LSWRITE,10,
TIME,11
FDELE,100091,FZ
F,100101,FZ,150
LSWRITE,11,
TIME,11.1
FDELE,100101,FZ
F,100111,FZ,150
LSWRITE,12,
TIME,11.2
FDELE,100111,FZ
F,100121,FZ,150
LSWRITE,13,
TIME,11.3
FDELE,100121,FZ
F,100131,FZ,150
LSWRITE,14,
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TIME,11.4
FDELE,100131,FZ
F,100141,FZ,150
LSWRITE,15,
TIME,11.5
FDELE,100141,FZ
F,100151,FZ,150
LSWRITE,16,
TIME,11.6
FDELE,100151,FZ
F,100161,FZ,150
LSWRITE,17,
TIME,11.7
FDELE,100161,FZ
F,100171,FZ,150
LSWRITE,18,
TIME,11.8
FDELE,100171,FZ
F,100181,FZ,150
LSWRITE,19,
TIME,11.9
FDELE,100181,FZ
F,100191,FZ,150
LSWRITE,20,
TIME,12
FDELE,100191,FZ
F,100201,FZ,150
LSWRITE,21,

5. run LSSOLVE 1,21,1

6. after the solver is finished, investigate the Jobname.MNTR file, there the WALL variable
shows the elapsed time at every Load- and sub-step.


	List of terms
	General Introduction
	Research Goal / Context
	Thesis Outline

	I Part I: EN50318 Simulation Model
	Introduction to Pantograph-Catenary simulation
	Introduction
	State of the art simulation approaches
	EN50318 validation criteria.
	Pantograph-Catenary simulation applications

	Simulation model
	Introduction
	Catenary modelling
	Pantograph modelling
	Augmented Lagrange method most suitable contact model
	Contact force errors due to fe discretization
	Automated modeling/pre-processing
	Solving
	Post-processing

	Results and Validation
	Introduction
	EN50318 Validation of Step 1 / Reference Model Results
	EN50318 validation of Step 2 / Real model results
	Prorail B4+ Catenary, 1 Pantograph, 140 km/h



	II Part II: Model reduction for efficient simulation times
	Introduction to Model Order Reduction
	Introduction
	Proposed methods for reducing a Pantograph-Catenary model
	Rating criteria for reduction methods

	Methods for simulation time improvement
	Introduction
	Ansys built-in reduction methods
	Model efficiency improvements
	Dimensionality reduction
	Moving mesh reduction
	Projection based Non-linear structural dynamic reduction
	Proposed reduction scheme
	Assembly

	Solver / time integration improvements
	Direct Newmark, with iteration matrix updates
	Direct Newmark, without iteration matrix updates
	Iterative Newmark + Newton-Rhapson, with and without iteration matrix updates
	Convergence criteria comparison

	Contact method improvements
	Contact module
	Direct Application
	Validation of Comparison

	Conclusion

	Model for improvement tests
	Introduction
	Simplified model
	Element choice and Matrix generation
	Decoupling procedure
	Load application and Time integration

	Extended model
	Modally reduced simplified model

	Solver Implementation results
	Introduction
	Solver scaleability results
	Mesh Scaleability
	Time Step Scaleability
	Pantograph Velocity
	Convergence criterion

	Solver implementation Conclusion

	Contact model improvement results
	Introduction
	Simulation Results
	V = 5 m/s, 2 spans
	V = 50 m/s, 2 spans
	V = 50 m/s, 4 spans
	V = 50 m/s, 6 spans

	Contact improvement conclusions


	Conclusion / Discussion
	Conclusion
	Discussion / Recommendations

	Bibliography
	Modelling method discussion
	C/C++/CSHARP
	Matlab
	Ansys
	Matlab + Ansys co-simulation
	Simpack
	Simpack + Ansys co-simulation
	Simpack + Ansys (FE2FBI/FMI load in to simpack )

	Modelling of EN50318 Model
	Summary
	General model
	Elements

	Contact modelling in Ansys
	Possible future problems
	Dynamic modelling problems
	Contact force issues
	Automated Ansys modelling
	Large Model Simulation issues


	Ansys modelling log
	Contact force issues
	Automated Ansys modeling
	Large Model Simulation issues


	Spring Decoupling and Time-history analysis on Modal system
	Introduction
	Dropper Decoupling in the Modal domain
	Time history analysis of a modally reduced OCL model
	Conclusion
	Validation of Vibration Modes

	Simulation results for comparison
	Contact model comparison simulation process
	Contact model simulation process 
	Direct approach simulation process


