
APPENDECES
Master thesis
Frederik Ueberschär

Design for
Interaction

TU Delft
February 2021

APPENDIX 1

Design Brief

APPENDIX 2

Game analysis

APPENDIX 3

Design Cycle 1

Design Cycle 2

Additional Exploration

Final validation cluster & raw data

Testing Consent form

APPENDIX 4

Colab dataset code

Final prototype: Processing & Arduino Code

AI for Experience:

Designing with Generative Adversarial

Networks to evoke climate fascination

Master thesis

Design for Interaction

Frederik Ueberschär

February 2021

Delft University of Technology

Faculty of Industrial Design Engineering

Committee

Derek Lomas

Alessandro Bozzon

Contact details

frederik-ueberschaer.de

© Frederik Ueberschär 2021

APPENDIX 1

APPENDIX 2

Research & Design Activities //

Analysis of prior art

Education Experiences

Games with a building / climate aspect

Simulators

Research & Design Activities //

Analysis of prior art

Positive characteristics & mechanics:

1. Actions have a clear impact: immediate, with delay or as a surprise

2. There is always something happening, be it sound, little movements,
development of the landscape etc.

3. Time is present, but not linear nor realistic

4. Simplification is needed to make it manageable for the game to
simulate, but also for the player to comprehend

5. World can be shaped through: Painting on the landscape, causing world
events to happen, building infrastructure

6. Graphs and charts can be used to show hidden aspects

7. The player can move around, zoom in, zoom out and judge the situation
from different angles

Research & Design Activities //

Analysis of prior art

Main takeaways:

1. The most engaging games where the ones where
the climate was a mechanic, not the focus of the
game.

2. It is extremely hard to make a good, balanced game
and it has to be complete in order to work.

3. I can take a lot of inspiration and mechanics from
these games nonetheless

4. Educational experiences, probably due to budget
constraints, are often dull. I can’t really imagine
people playing those, if not forced to do so in a
classroom.

APPENDIX 3

Design Cycle 1: Concepts

Our New Planet
Premise
My climate research showed how complex a climate system is and how long changes need
to usually take place. Geoengineering requires a good understanding of these interplays and
might be a needed intervention to buy more time.

Game Description
Our New Planet is a simulation builder game where players are explorers of a new species
that have to geoengineer a new planet to give the last survivors a new home after the old
planet was used up.

Players start with a newly generated planet, that for some reason or the other is currently not
inhabitable for organic life. They can scan the planet and get a first estimation of what it
needs in order to become habitable. Through careful geoengineering the goal is to create a
balanced system again. For instance might a planet covered in ice need some artificially
introduced greenhouse gases in order to heat it up enough for plants to grow. Once they
reach the goal, they get a score of how many years of geoengineering were required for the
planet to become inhabitable, which will be many, many years. Their actions and progress
can be shared with others on social media.

Desired effects on the player
I would like the players to enjoy the experience of tinkering with a planet, and help them in
understanding how the different elements of a climate system work together. The story of
playing another species and starting with an inhabitable planet that gets shaped into a
hapitable, arguably desirable, environment again was supposed to detach the player from
our current reality and allow them to be immersed in the game without immediately being
scared off by the dystopian narrative. The high number of years needed to finish the process
was supposed to showcase the inertia of a global climate system, to not present
geoengineering as an easy solution for our current climate crisis. This was a potential pitfall
mentioned by two climate scientists from Hamburg and Delft when speaking about the idea
of a climate game.

Feedback
The feedback was gathered from multiple participants and condensed:

+ Looks appealing, and has a nice element of world building
+ The balancing act of different climate components, if simplified, is an interesting

game mechanic
+ The importance of measuring and adjusting your actions is great
− Geoengineering shouldn’t be seen as a solution

Carbon Capture
Premise
Vegetation, on land or in the water, has a huge impact on our climate by storing carbon, but
also naturally cooling the earth through the evaporation of water. However, not every tree is
equal and not every tree planting is good.

Game Description
Carbon Capture is an AR, real-world multiplayer game where players are explorers that have
to search and collect the biggest, most powerful trees in their area to create a personal
collection of trees with the highest carbon captured.

Events pop up on a digital map that show a location close to a player where a special tree
might be found and captured. The players have to find their way to the area, analyse the tree
and find the biggest carbon capturer in this area. Once scanned and collected, it contributed
to the score of the player and can be taken home to be placed with augmented reality (AR)
in the neighborhood of the player. The AR placement is uploaded to a shared map, so other
players can see your neighborhood be filled with trees again, too.

Desired effects on the player
I would like the players to explore their surroundings again, have fun doing so and learn
something about tree properties and history and abilities of different species on the way.
Having an ever growing score is supposed to contribute to long term motivation, and placing
it in your immediate surrounding in an augmented reality environment should showcase that
the shaping of our surroundings is a collaborative effort, and that you as an individual could
do your part.

Cloud Musician
Premise
Based on one of my conversations with a cloud modeling professor from TU Delft, I learned
that clouds have an immense impact on our climate, and are influenced by it in return. The
formation of a cloud is a fascinating process that starts on the micro level by tiny water
droplets forming around a dust particle, which then contributes to the structure of a cloud.
But not every cloud is equal. Different types of clouds have different effects on our climate,
for instance high lying clouds causing a warming effect, while low hanging ones cause a
cooling effect.

Game Description
Cloud musician is a music exploration game where players are a controller of forces that
have to influence the formation of clouds and play with the different working of parameters in
a simplified global world to create a harmonic music experience.

The players witness the life of a cloud, from its initial formation around a wave of dust to its
journey around the world and finally its end by raining on a terrain. Each chapter explores a
different theme, like the influence of dust, wind, height, temperature and terrain. The game is
an aesthetically pleasing experience, with simple swipe interactions to influence different
theme parameters. Changing visuals and a generative soundtrack give players feedback
over their actions.

Desired effects on the player
I want the players of this game to feel a sense of peace, wonder and fascination, while
learning something about the fundamentals of clouds. The experience should be enjoyable
in itself, with the idea to shape their understanding of the relation between clouds, our
actions and our climate without it feeling like an educational game.

Feedback
+ Through the interaction, it feels like a sandbox game that you only play for a short

time
+ Educational aspect / potential is clearly there
+ Visually interesting and abstract
− Perhaps not enough for a proper game
− Still quite vague in how it might feel and look like

Coastal
Premise
Sea level rise is one of the dangers of a changing and warming climate, with coastal towns
and tropical islands being the most affected. Water distribution around the world isn’t as
easy as you might initially think. It is influenced by different currents, which are equally
influenced by temperature changes, and even the gravitation of massive ice sheets in the
arctic and antarctic have an influence on the distribution of water around our globe.

Game Description
Coastal is a godlike tower defence where players are builders of a coastal town that have to
create a flourishing town and build it in adjustment to the rising sea to a local coastline to
keep their citizens safe.

The game explores the interplay between a small coastal city and the vast water system of
our earth. By zooming in and out, the player can explore the sea on the local as well as on
the global level and explore coastal cities other players build around the earth.

Desired effects on the player
I would like the player to enjoy the experience of building their own little coastal town, and
aid this through quick and fun interactions with the game. Starting in different regions of the
world, for instance a coast in north europe or an island in the tropics, is supposed to
showcase that our global water system is complex and solutions to sea level rise are not a
one-fits-them-all approach. I would like the player to understand more about how elements
of our climate play together and that with the right treatment the sea could be seen as a
partner instead of an opponent that needs repression.

Feedback
● Looks like a fun game
● Hard to see the big picture perhaps, and the other towns
● “You can’t just fix the climate yourself, so how do you see the impact you are

having?”
● It might be a good idea of zooming out and not having the pettz human perspective,

but focus on something bigger perhaps

Hindsight
Premise
Today’s world is shaped by past decisions and inventions, some of them being discovered
by pure luck. Often, things are taken as given and it can be hard to think of alternative
histories and futures our societies and planets might have taken. But what if you could go
back in time and alter some of our decisions made in the past?

Game Description
Hindsight is an adventure game where players are time travelers that have to manipulate
key events in history and alter the course of time to prevent the occurrence and effacing
impact of climate change.

Starting in a dystopian future, with the knowledge of the impact of different discoveries or
events on our climate, the player has to go back in time and manipulate these events in just
the right way to open up the path to an alternative future.

Desired effects on the player
I would like the player to be immersed in the story and develop an understanding of how we
got to the point we are today. Technological discoveries, like the discovery of the steam
engine, had a massive impact on our history and the world we live in today. Through going
back in time and understanding our technological impact on the climate, and opening up a
window to alternative realities, I would like the player to again start questioning the status of
our current society and feel like we have an agency over what happens in our future.

Feedback
● Would be interesting to experience and change concrete events and then speculate

what might have happened
● Difficult to avoid a set agenda from the game designers
● Easy to lose a target group by pushing an agenda

Landshapes
Premise
Our actions have an impact on the surface of our earth, and the properties of the surface
have an impact on our climate. It makes a difference if sunlight hits a reflective ice sheet, a
vegetated area or an asphalted city. We often can’t see the impact of our actions, either
because they are too small to notice or the effect happens elsewhere. To act against climate
change, we have to do it globally and do it together.

Game Description
Landshapes is a free exploration experience, where players can influence the surface of a
generated map tile through swipe interactions and shape it to their desires. The landscape
resulting from their individual actions is merged into a collaborative, physical art piece in a
remote exhibition.

The interactive experience is surrounded by stories about fascinating interactions with and in
our climate system that players can explore.

Desired effects on the player
I would like the players to enjoy the interaction with my experience, and have fun and be
engaged for as long as they want. The engagement can last from only a few seconds to a
few minutes or longer. I want them to feel a fascination for the shaping of landscapes and
our climate system again and understand that our actions and how we choose to shape the
world with our individual, as well as communal actions, does have an impact on the earth -
even if you can’t see it right away.

Feedback
● Very abstract, so you would need to see your impact and a sense of progress
● On this abstract level it is very interesting
● Aesthetically pleasing and fascinating
● Very nice and engaging visuals
● Catching the attention
● How would people take notice of this experience?
● “What will people take out of this experience?”
● Interesting message, but it has to be clear and sharp
● Might be difficult to balance between desired outcome and freedom
● Going to an exhibition is a lot of commitment for people
● Testing data

Cycle 2: Interaction Testing

The prototypes were tested remotely with three participants over Zoom and the feedback
gathered in an informal fashion to encourage conversation and free expression. After each
prototype test, the participant was asked to switch to a provided Miro board and give
qualitative feedback. This process was supported by the PrEmo tool (Laurans & Desmet,
2017) to help participants express the emotions felt while using a prototype.

Procedure

1. On Boarding​, explaining what the test will be about
2. Testing​ each prototype, sharing the screen at the same time and collecting

comments on the way
3. Evaluation​, collecting comments and feedback to each prototype on Miro
4. Creative session,​ collecting ideas and input

Questions asked during the interview:

1. How would you assess the aesthetic of the prototype?
2. How did this interaction feel to you?
3. What did you like? What didn't you like?

Analysis
The feedback of participants was combined and clustered into positive, neutral and negative
feedback towards each prototype and color coded to aid quick viewability.

Additional exploration

APPENDIX 4

import processing.serial.*;
import java.io.File;
import processing.video.Movie;

Movie myMovie;
float fps = 25;

int startTime = 1;
boolean ended;

int dWidth = 1920;
int dHeight = 1080;

boolean debug = false;
boolean goUp = false;

//Mask
PImage mask;
boolean masked = true;

boolean rotate = false;
float rotationAngle = 0;
float rotationIncrease = 0.1;

boolean automatic = true;
int autoTimer = 100;

Serial myPort;
String val;
int pos = 0;
int oldPos = 0;
float increment = 0.5;

void setup(){
 //size(1024,1024);

 myMovie = new Movie(this, “outputR1.
mov”);
 frameRate(24);
 myMovie.jump(startTime);
 myMovie.loop();

 fullScreen();
 println(width, height);
 mask = loadImage(“maskFS.png”);

 printArray(Serial.list());

 String portName = Serial.list()[4];
 myPort = new Serial(this, portName, 115200);
}

void draw()
{
 background(0);
 if (myPort.available() > 0)
 { // If data is available,
 val = myPort.readStringUntil(‘\n’); //
read it and store it in val

 if(val != null){
 try {
 pos = Integer.parseInt(val.trim());

 autoTimer = 100;
 automatic = false;

 myMovie.play();

 if(pos > oldPos){
 myMovie.jump(myMovie.time() + incre-
ment);
 goUp = true;
 //rotationAngle += rotationIncrease;
 }
 else{
 myMovie.jump(myMovie.time() - incre-
ment);
 goUp = false;
 //rotationAngle -= rotationIncrease;
 }
 myMovie.read();
 myMovie.pause();

 if(myMovie.time() >= myMovie.duration()
&& goUp){
 myMovie.jump(0.0);
 }

 if(myMovie.time() <= 0 && !goUp){
 myMovie.jump(myMovie.dura-
tion()-0.2);
 }

 oldPos = pos;

 } catch (NumberFormatException npe){

 }

Processing Code for Video Control

 }
 }

 if(autoTimer < 0 && automatic == false){
 automatic = true;

 println(“Switch on Automatic”);
 myMovie.loop();

 }

 if(automatic == true){
 myMovie.read();
 rotationAngle += rotationIncrease;
 }

 if(rotate){
 pushMatrix();
 translate(width/2,height/2);
 rotate(radians(rotationAngle));
 image(myMovie, -512, -512, 1024, 1024);
 popMatrix();
 }
 else{
 image(myMovie, width/2 - 512, height/2 -
512, 1024, 1024);
 }

 if(masked){
 stroke(255);
 strokeWeight(5);
 image(mask,0,0,width,height);
 }

 if(debug){
 text(pos, 20,80);
 text(autoTimer,20,60);
 text(frameRate, 20,20);
 }

 myPort.clear();

 //println(“Current Time = “ + myMovie.
time()+ “ || “ + “ Current Rotary Pos = “ + pos/
fps);

 autoTimer--;
}

/* Encoder Library - Basic Example
 * http://www.pjrc.com/teensy/td_libs_En-
coder.html
 *
 * This example code is in the public domain.
 */

#include <Encoder.h>

// Change these two numbers to the pins
connected to your encoder.
// Best Performance: both pins have inter-
rupt capability
// Good Performance: only the first pin has
interrupt capability
// Low Performance: neither pin has inter-
rupt capability
Encoder myEnc(2, 3);
// avoid using pins with LEDs attached

void setup() {
 Serial.begin(115200);
 Serial.println(“Basic Encoder Test:”);
}

long oldPosition = -999;

void loop() {
 long newPosition = myEnc.read();
 if (newPosition != oldPosition) {
 Serial.println(newPosition);
 oldPosition = newPosition;
 }
}

Arduino Code for Video Control

-*- coding: utf-8 -*-
“””210107-EE_Sentinel Export.ipynb

Automatically generated by Colaboratory.

Original file is located at
 https://colab.research.google.com/
drive/1EZ6FtuU7Y5pY9wtgeDTnmUGP8s-
0GOvI3

This notebook demonstrates how to save an
Earth Engine [image collection animation]
(https://developers.google.com/earth-en-
gine/ic_visualization) to Google Drive.

Setup Earth Engine
“””

import ee
import ee.mapclient

import urllib.request

ee.Authenticate()
ee.Initialize()

“””## Mount Google Drive to Colab VM”””

from google.colab import drive
drive.mount(‘/content/drive’, force_re-
mount=False)

“””# Sentinel 2 Export

“””

import pandas as pd
locations = pd.read_csv(‘/content/drive/
MyDrive/Studies/Design for Interaction/5. Se-
mester/Graduation/10 Data Collection/5000_
random_land(excluding extremes).csv’)
print(locations)
startLocation = 2087

for index, row in locations.iloc[startLocation:].
iterrows():
 print(index, row[‘id’], row[‘X’], row[‘Y’])

 longitude = row[‘X’]
 latitude = row[‘Y’]

 #longitute = -93.98257930473329
 #latitute = 77.5110301473185

 zoom = 8

 min = 0.0

 #change the image output based on snow
probabiliy of latitude
 if latitude < -61 or latitude > 65:
 print(“adjusted max”)
 max = 8000
 else:
 max = 3000

 # Create custom color palette
 palette = [
 “000000”, # Unknown
 “33FF99”, # Shrubs
 “33FF99”, # Herbaceous vegetation
 “33FF99”, # Cultivated and managed vege-
tation / agriculture
 “FF0000”, # Urban / built up
 “FFFF00”, # Cultivated land
 “CC33CC”, # Bare / sparse
 “CC33CC”, # Bare / sparse
 “ffffff”, # Snow and Ice
 “00FFFF”, # Permanent water bodies
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “00FF00”, # Forest
 “0000FF” # Ocean
]

 center = ee.Geometry.Point(longitude,lati-
tude)

 # Import Sentinel dataset
 s2 = (ee.ImageCollection(“COPERNICUS/
S2_SR”)
 .filterBounds(center)
 .sort(‘CLOUDY_PIXEL_PERCENTAGE’)
 .filterDate(‘2019-01-01’, ‘2019-12-30’)
 .first()
)

 # Import landcover usage set
 landcover = (ee.Image(“COPERNICUS/

Colab Code for Dataset creation

Landcover/100m/Proba-V-C3/Global/2019”).
select(‘discrete_classification’));

 # Working, but with getInfo()
 try:
 footprint = (ee.Geometry.Polygon((s2.
getInfo().get(‘properties’).get(‘system:foot-
print’).get(‘coordinates’))))
 except:
 print(“No Footprint found”)
 continue

 # Create a rectangular export area
 exportAreaLarge = (footprint.centroid().
buffer(40000).bounds());
 exportAreaMedium = (footprint.centroid().
buffer(25000).bounds());
 exportAreaSmall = (footprint.centroid().
buffer(10000).bounds());

 #print(footprint.contains(exportArea,1).
getInfo())

 if footprint.contains(exportAreaLarge,1).
getInfo() == True:
 print(“Large fits”)
 exportArea = exportAreaLarge
 elif footprint.contains(exportAreaMedium,1).
getInfo() == True:
 print(“Medium fits”)
 exportArea = exportAreaMedium
 elif footprint.contains(exportAreaSmall,1).
getInfo() == True:
 print(“Small fits”)
 exportArea = exportAreaSmall
 else:
 print(“No fit”)
 continue

 s2Vis = {
 ‘region’: exportArea,
 ‘crs’: (s2.select(‘B4’).projection()),
 ‘dimensions’: ‘1024x1024’,
 ‘format’: ‘jpg’,
 ‘min’: min,
 ‘max’: max,
 ‘bands’: [‘B4’, ‘B3’, ‘B2’]
 }

 landcoverVis = {
 ‘region’: exportArea,
 ‘crs’: (s2.select(‘B4’).projection()),
 ‘dimensions’: ‘1024x1024’,

 ‘min’: 0,
 ‘max’: 200,
 ‘palette’: palette,
 ‘format’: ‘jpg’,
 ‘bands’: [‘discrete_classification’]
 }

 s2_url = (s2.getThumbURL(s2Vis))
 landcover_url = (landcover.getThum-
bURL(landcoverVis))

 s2_name = “/content/drive/MyDrive/
Sentinel Landmass/RGB/S2_{}_{}*{}.jpg”.
format(row[‘id’], longitude,latitude)
 landcover_name = “/content/drive/MyDrive/
Sentinel Landmass/SEG/S2_{}_{}*{}.jpg”.
format(row[‘id’], longitude,latitude)

 urllib.request.urlretrieve(s2_url, s2_name)
 urllib.request.urlretrieve(landcover_url,
landcover_name)

 print(s2_url)
 print(landcover_url)

“””# Single export”””

longitute = -93.98257930473329
latitute = 77.5110301473185

zoom = 8

min = 0.0
max = 3000

center = ee.Geometry.Point(longitute,latitute)

Import Sentinel dataset
s2 = (ee.ImageCollection(“COPERNICUS/S2”)
 .filterBounds(center)
 .sort(‘CLOUDY_PIXEL_PERCENTAGE’)
 .filterDate(‘2020-01-15’, ‘2020-12-15’)
 .first()
)

Import landcover usage set
landcover = (ee.Image(“COPERNICUS/
Landcover/100m/Proba-V-C3/Global/2019”).
select(‘discrete_classification’));

Working, but with getInfo()
footprint = (ee.Geometry.Polygon((s2.getIn-
fo().get(‘properties’).get(‘system:footprint’).

get(‘coordinates’))))

Create a rectangular export area
exportAreaLarge = (footprint.centroid().
buffer(30000).bounds());
exportAreaMedium = (footprint.centroid().
buffer(20000).bounds());
exportAreaSmall = (footprint.centroid().
buffer(10000).bounds());

print(footprint.contains(exportArea,1).getIn-
fo())

if footprint.contains(exportAreaLarge,1).
getInfo() == True:
 print(“Large fits”)
 exportArea = exportAreaLarge
elif footprint.contains(exportAreaMedium,1).
getInfo() == True:
 print(“Medium fits”)
 exportArea = exportAreaMedium
elif footprint.contains(exportAreaSmall,1).
getInfo() == True:
 print(“Small fits”)
 exportArea = exportAreaSmall
else:
 print(“No fit”)
 #continue

s2Vis = {
 ‘region’: exportArea,
 ‘crs’: (s2.select(‘B4’).projection()),
 ‘dimensions’: ‘1024x1024’,
 ‘format’: ‘jpg’,
 ‘min’: min,
 ‘max’: max,
 ‘bands’: [‘B4’, ‘B3’, ‘B2’]
}

landcoverVis = {
 ‘region’: exportArea,
 ‘crs’: (s2.select(‘B4’).projection()),
 ‘dimensions’: ‘1024x1024’,
 ‘format’: ‘jpg’,
 ‘bands’: [‘discrete_classification’]
}

s2_url = (s2.getThumbURL(s2Vis))
landcover_url = (landcover.getThum-
bURL(landcoverVis))

s2_name = “/content/drive/MyDrive/Senti-
nel Coastline/RGB/S2_{}_{}*{}.jpg”.for-

mat(row[‘id’], longitute,latitute)
landcover_name = “/content/drive/MyDrive/
Sentinel Coastline/SEG/S2_{}_{}*{}.jpg”.
format(row[‘id’], longitute,latitute)

urllib.request.urlretrieve(s2_url, s2_name)
urllib.request.urlretrieve(landcover_url, land-
cover_name)

print(s2_url)
print(landcover_url)

“””## Download the animation to Google
Drive”””

s2_name = “/content/drive/MyDrive/Sentinel
Coastline/RGB/S2_{}*{}.jpg”.format(longi-
tute,latitute)
landcover_name = “/content/drive/MyDrive/
Sentinel Coastline/SEG/S2_{}*{}.jpg”.for-
mat(longitute,latitute)

urllib.request.urlretrieve(s2_url, s2_name)
urllib.request.urlretrieve(landcover_url, land-
cover_name)

while True:pass

“””# Landsat Mosaic Export
Retrieved from https://developers.google.
com/earth-engine/datasets/catalog/USGS_
LIMA_MOSAIC#description
“””

saveFolder = ‘/content/drive/MyDrive/Antarc-
tica Coastline/coastline_large’

“””## Single Export”””

longitute = 164.619
latitute = -77.99

min = 0.0
max = 10000

center = ee.Geometry.Point(longitute,latitute)

Import Sentinel dataset
antarctica = (ee.Image(“USGS/LIMA/MOSA-
IC”)
 .select([‘B3’, ‘B2’, ‘B1’])
)

Create a rectangular export area
exportAreaLarge = (center.buffer(50000).

bounds());
#exportAreaMedium = (center.buffer(20000).
bounds());
#exportAreaSmall = (center.buffer(10000).
bounds());
“””
print(footprint.contains(exportArea,1).getIn-
fo())

if footprint.contains(exportAreaLarge,1).
getInfo() == True:
 print(“Large fits”)
 exportArea = exportAreaLarge
elif footprint.contains(exportAreaMedium,1).
getInfo() == True:
 print(“Medium fits”)
 exportArea = exportAreaMedium
elif footprint.contains(exportAreaSmall,1).
getInfo() == True:
 print(“Small fits”)
 exportArea = exportAreaSmall
else:
 print(“No fit”)
 #continue
“””
vis = {
 ‘region’: exportAreaLarge,
 ‘dimensions’: ‘1024x1024’,
 ‘format’: ‘jpg’,
 ‘min’: min,
 ‘max’: max,
}

image_url = (antarctica.getThumbURL(vis))

#With row row[‘id’]
image_name = “{}/A_{}_{}*{}.jpg”.for-
mat(saveFolder,0,latitute, longitute)

urllib.request.urlretrieve(image_url, im-
age_name)

print(“Saved”, image_url, “to “, image_
name)

“””## Multi Export”””

import pandas as pd
locations = pd.read_csv(‘/content/drive/
MyDrive/Studies/Design for Interaction/5.
Semester/Graduation/10 Data Collection/Ant-
arctica_coastline copy.csv’)
print(locations)
saveFolder = ‘/content/drive/MyDrive/Antarc-

tica Coastline/coastline_largest’

startLocation = 0

Import Sentinel dataset
antarctica = (ee.Image(“USGS/LIMA/MOSA-
IC”)
 .select([‘B3’, ‘B2’, ‘B1’])
)

for index, row in locations.iloc[startLoca-
tion::15].iterrows():
 #print(index, row[‘id’], row[‘X’], row[‘Y’])

 longitude = row[‘X’]
 latitude = row[‘Y’]
 id = index

 min = 0.0
 max = 10000

 center = ee.Geometry.Point(longitude,lati-
tude)

 # Create a rectangular export area
 exportAreaLarge = (center.buffer(200000).
bounds());
 #exportAreaMedium = (center.buf-
fer(20000).bounds());
 #exportAreaSmall = (center.buffer(10000).
bounds());

 vis = {
 ‘region’: exportAreaLarge,
 ‘dimensions’: ‘1024x1024’,
 ‘format’: ‘jpg’,
 ‘min’: min,
 ‘max’: max,
 }

 try:
 image_url = (antarctica.getThumbURL(vis))
 except:
 print(“Export not possible”)
 continue

 image_name = “{}/A_Largest_{}_{}*{}.jpg”.
format(saveFolder,id,latitude, longitude)

 urllib.request.urlretrieve(image_url, image_
name)

 print(“Saved”, image_url, “to “, image_
name)

	Binder1.pdf
	Landing.pdf
	Cryo.pdf
	Bio.pdf
	Litho.pdf
	Hydro.pdf
	Exhibition Main.pdf
	Atmos.pdf

