

Wind-assist ship propulsion

Bordogna, Giovanni; van der Kolk, Nico; Huijsmans, Rene; Keuning, Lex; Fossati, F.V.

Publication date 2015 **Document Version** Final published version

Citation (APA) Bordogna, G., van der Kolk, N., Huijsmans, R., Keuning, L., & Fossati, F. V. (2015). Wind-assist ship propulsion.

Important note To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

WIND-ASSISTED SHIP PROPULSION

DEVELOPMENT OF A PERFORMANCE PREDICTION PROGRAM FOR COMMERCIAL SHIPS

G. Bordogna, N. J. van der Kolk, R.H.M Huijsmans, J.A. Keuning - Ship Hydromechanics and Structures, Delft University of Technology

F.V. Fossati - Dipartimento di Meccanica, Politecnico di Milano

INTRODUCTION

Wind energy as an auxiliary form of propulsion for commercial ships has again become of great interest as a possible solution to reduce fuel consumption, thereby reducing operating costs and emissions. However, the development of practical and commercially feasible wind-assisted ships is hampered by difficulties in modelling the sophisticated aerodynamic and hydrodynamic aspects involved.

PROJECT STRUCTURE

The goal is to deliver a Performance Prediction Program (PPP) that is founded on accurate physical models. This work is supported by the European Commission as part of the JOULES project. Industry partners include MARIN, DAMEN Group, and Dykstra Naval Architects. Expected delivery in 2018.

STRUCTURE OF THE PPP

The fundamental task of the PPP solver is to balance the aerodynamic and hydrodynamic forces acting on the wind-assisted ship under study to arrive at a sailing equilibrium. The PPP solver optimizes the equilibrium by maximizing fuel savings while maintaining operating speed, or by maximizing forward speed. The first option is now considered to be the most comercially viable.

THE PPP AS A DESIGN TOOL

The use of regression formulas based on databases, gives an easy-to-use, quick and reliable tool for initial exploration of the design space. During the advanced design stage, the PPP solver structure can also accept forces obtained by means of dedicated experiments and/or CFD computations, leading to more accurate results.

THE PPP WITHIN THE ECONOMIC/ENVIRONMENTAL EVALUATION

The reliable prediction of the performance of a wind-assisted ship is necessary to make a sound economic and evironmental evaluation.

1. PPP Output

2. Routing programs compute the fuel saving potential for a given shipping route

3. Economic and environmental evaluation

Challenge the future