
Measuring Visibility
and Legibility of
On-Screen Text Under
Varying Font and
Background
Conditions: An
Eyetracking Study
Khushboo Sharma

Measuring Visibility and Legibility of
On-Screen Text Under Varying Font and
Background Conditions: An Eyetracking

Study

by

Khushboo Sharma

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday 22nd of September, 2025 at 13.45

Msc. Mechanical Engineering
BMD - Biorobotics Track

September 15, 2025

Student number: 4593529
Thesis committee: Yke Bauke Eisma, TU Delft, Main supervisor, Chairman

Dimitra Dodou, TU Delft, Committee member
Joost de Winter, TU Delft, External examiner

Faculty of Mechanical Engineering (ME)
Delft University of Technology

2

Measuring Visibility and Legibility of On-Screen
Text Under Varying Font and Background

Conditions: An Eyetracking Study

Abstract—This study investigates how font size, text-drawing style, and drop shadow affect the visibility, legibility,
and comprehension of overlaid text. The purpose of this study is to better understand the role of these design factors
and to offer practical guidelines for presenting information effectively on see-through displays. Twenty-five
participants completed a visual search task, where they were asked to locate a target word presented under varying
conditions on a complex background. A full factorial design was employed, incorporating four font sizes (0.10°, 0.15°,
0.20°, and 0.60°), six text-drawing styles (plain green text, plain white text, white text on blue billboards with 30%,
50%, 75% or 100% opacity), and the presence or absence of a drop shadow. Performance was evaluated across
conditions in terms of noticeability (as a measure of visibility), processing time (as a measure of legibility), and word
identification accuracy to determine significant differences. Applying a drop shadow improved legibility in plain text,
while billboards lowered the upper performance threshold for font size. Although billboard conditions outperformed
plain text conditions, varying billboard opacity had no significant effect on processing time, word identification, or
noticeability. Overall, the findings suggest that font size, text styling, and background complexity interact to influence
text visibility and legibility.

Index Terms — Legibility, Noteacibility, Processing time, Font size, Text-drawing style, Billboard, Complex background, See-through

display

✦

1 INTRODUCTION

O Verlaid information on complex back-
ground has long been present in subtitles,

video games, and other leisure contexts where the
risks of reduced legibility are minimal. However,
the increasing use of see-through displays, such
as virtual reality (VR) glasses used in industrial
workbenches (Di Donato et al., 2015) and tele-
operated surgical procedures (Qian et al., 2017)
and head-up displays (HUDs) in cars (Guo et
al., 2020)(Ma et al., 2021), has introduced over-
lays into complex environments where safety is
critical. In these contexts, overlaid information
must integrate with the background. Poor con-
trast can degrade the legibility of the overlay,
while excessive emphasis on the overlay can
obscure important background details. Whereas
in entertainment applications the problem can
often be solved by simply adding a solid back-
ground or “billboard” behind the text, high-risk
environments demand solutions that preserve the
visibility of both the overlay and the underlying
background to ensure safety (Horrey et al., 2006).

Legibility in human–machine interfaces
(HMIs) refers to the ease with which users can

read and understand information presented on a
display while simultaneously engaging in other
demanding tasks. As digital displays become
increasingly integrated across domains, the
volume and complexity of overlaid information
continue to grow. In such contexts, legibility
is not merely a matter of convenience but a
critical factor for performance, efficiency, and
safety. Poorly legible information can increase
cognitive load, slow response times, and elevate
the risk of errors, particularly in high-stakes
environments where both the display content
and the background scene carry essential
information. While research on see-through
displays is expanding, there remains a lack of
studies focusing on the interaction of known
legibility affecting variables, with most of the
studies focusing solely on font size (Crundall
et al., 2016) or solely on text-drawing style
(Di Donato et al., 2015), and not taking complex
backgrounds into consideration. Previous
research on the long form of legibility has found
that legibility is affected by various factors.
Among these, typeface, font size, colour, contrast,
and position are the most researched variables

3

that play a key role in shaping visibility, legibility,
and comprehension. Legibility has traditionally
been measured in terms of reading speed, often
quantified as words per minute. While it has been
extensively studied in other fields (Rayner, 2009),
much of the previous research has focused on
simple, static backgrounds. However, complex
dynamic backgrounds introduce challenges that
have not previously been encountered. This
study investigates how font size, text-drawing
style, and dropshadow interact to affect users’
ability to accurately and efficiently notice and
process overlaid information in complex visual
settings.

The paper is structured as follows: first, Sec-
tion 2 discusses related work on legibility. Section
3 presents the method and describes the exper-
imental design. Section 4 presents the results of
the experiments conducted. Next, section 5 dis-
cusses the findings from the experiment. Section
6 gives the conclusions on the findings as well as
the limitations of this study and possible direc-
tions for future research.

2 RELATED WORKS

Much of the research on legibility has tradition-
ally focused on long-form reading on paper or on
uniform, static backgrounds. However, reading in
digital environments introduces additional vari-
ables that can affect readability, including back-
ground colour and complexity, stimulus position,
luminance, and crowding. Although factors such
as font size, font, contrast, line length, and case
are known to affect legibility, their impact needs
to be evaluated specifically for digital display
environments. In this section, we review studies
that examine how these factors influence legibil-
ity on digital displays.

2.1 Text Manipulation
Sawyer et al. (2017) studied the effect of text
width and case by measuring the presenta-
tion duration threshold, while Beier & Oderk-
erk (2021) studied the letter stroke by measur-
ing the letter recognition accuracy. Sawyer et al.
(2017) found that the regular width had a sig-
nificantly lower display threshold than the con-
densed case, and it was more pronounced in the
condition of the smaller font size of 0.25° (3 mm)
capital H-height. The uppercase typeface was
found to be more legible as the display threshold
was significantly lower than for the lowercase.
Beier & Oderkerk (2021) varied the letter stroke

by varying the font conditions that had either
high, medium, or low stroke contrast. Results
showed that the mean accuracy for the high letter
stroke condition was significantly lower than the
medium and low letter stroke conditions. The
low letter stroke condition performed the best
with the highest recognition accuracy. Studies
exploring the effect of font (Reimer et al., 2014;
Dobres et al., 2016) found that the font Frutiger
performed well due to its open, unambiguous
characters, as well as its compliance with the
legibility characters described above. From the
measured variables, Reimer et al. (2014) found
a significantly lower response time, glance time
and glance frequency for the font Frutiger than
for Eurostile, while no significant difference was
found for the error rate. Dobres et al. (2016)
measured the response accuracy, response time
and presentation duration threshold and found
that the presentation duration threshold was sig-
nificantly lower for the font Frutiger than for
Eurostile, whereas no significant differences were
found for response accuracy or response time.
Regarding font sizes, previous studies such as
Dobres et al. (2016)Sawyer et al. (2017) have
studied the effect of 3 mm and 4 mm capital H-
height, equivalent to 0.25° and 0.33°, respectively.
Dobres et al. (2016) found a significantly lower
display threshold for the 4 mm capital H-height
condition compared to the 3 mm condition, while
no significant difference was found for the re-
sponse accuracy and the response time. Similarly,
Sawyer et al. (2017) also found a significantly
lower display threshold for the 4 mm condition
compared to the 3 mm condition. While these
studies studied the effect directly for digital dis-
play applications, they were still quite limited
as they did not vary the background and sim-
ply studied plain text. Additionally, according to
(Legge & Bigelow, 2011), there is a fluency range
for the reading of text on displays, based on their
x-height. The above studies do not take this range
into account for their study, and only study 2 font
sizes. Converting the capital H-height of Frutiger
to x-height, using the reported ratio of 70.833%
(F. Ltd., n.d.), gives 0.18° and 0.24° for the font
sizes used in the studies above.

2.2 Background and Middle Layer Manipula-
tion
Early research exploring the effects of back-
ground on legibility includes Gabbard et al.
(2006), who displayed foreground text on see-
through augmented reality (AR) glasses with out-

4

door textured wallpapers as backgrounds. They
varied background textures and used static, in-
cluding billboard style and plain green text, and
active text-drawing styles. For the active style, the
text color changed depending on the background.
They reported interactions between background
and text-drawing style, with active styles show-
ing more pronounced effects. Performance de-
pended strongly on the specific combination: for
some backgrounds (red brick, granite, foliage),
it remained fairly consistent across active styles,
whereas for others (sky, pavement, sidewalk),
it varied considerably depending on the text
style. Overall, only billboard and green text were
effective across all backgrounds. However, the
backgrounds were not truly complex, and factors
such as opacity and font size were not examined.
Jankowski et al. (2010) extended this work by in-
corporating more complex backgrounds and ex-
amining plain and billboard-style text, but opac-
ity and font size were still not varied. Their study
employed a proofreading task, whereas applica-
tions in AR require short-form or glanceable read-
ing where information must be quickly accessible.
This study found no significant interactions. Both
studies did not vary the position of the stimuli,
and theerefore did not take the noticeability of
the stimuli into account.

Gattullo et al. (2015) used industrial indoor
backgrounds, including workbenches, and varied
text colour and style (solid billboard and plain
green text), finding no significant interaction be-
tween background and text style. For the stimuli,
they used a short string of letters, more compara-
ble to applications like AR. However, they did not
vary text position, therefore not taking into ac-
count the noticeability of the stimuli. Kruijff et al.
(2018) investigated complex indoor and outdoor
data and measured the effect of backgrounds on
label noticeability, looking at different label sizes
for different coloured billboard text, including
blue billboard. Opacity was not manipulated, and
they found that background and region did not
influence size selection for the optical see-through
(OST) display. They also found no main effect
of background on label noticeability. Interactions
with text-drawing style were not analysed, and
limited information was reported on the effect of
label size.

More recent studies include Topliss et al.
(2019) and Sawyer et al. (2020), who used com-
plex backgrounds but did not account for po-
sition expectancy. As a result, these studies fo-
cused on processing time rather than noticeabil-

ity and did not investigate interactions. Falk et
al. (2021) tested white text on blue billboards
with 50% opacity against a mixed-colour abstract
background, but font size was not varied, and
interactions were not examined. Hussain & Park
(2023) employed an indoor background described
as complex; however, large uniform areas made
it appear almost uniform. They reported interac-
tions between background and opacity.

Sawyer et al. (2020), Falk et al. (2021) and
Hussain & Park (2023) all study the billboard
opacity. Falk et al. (2021) only studied two levels
of opacity (50% and 100%), while Hussain & Park
(2023) tested five levels in increments of 25%.
Despite the difference in the levels studied, both
studies concluded that opacity level of 50% is
the most ideal for a balanced visibility of both
the foreground and background. While Falk et al.
(2021) measured the search time for the letter N,
Hussain & Park (2023) measured the error, task
completion time and button visibility. Sawyer
et al. (2017) measured the response accuracy as
an indicator of legibility, where 80% was taken
as the ideal legibility threshold. They measured
scrim levels in increments of 15%, with a max of
60%. They found that 30% already reaches this
threshold and simply recommend using this to
avoid background visibility from being compro-
mised. When using plain text, both Gabbard et al.
(2006) and Debernardis et al. (2013) found that
plain green text performs well in terms of the
response time and error rates. Sawyer et al. (2020)
also studied the effect of drop shadow on plain
text and found that it achieved an accuracy level
comparable to the ideal threshold reached with
30% scrim opacity.

Overall, while some studies employ complex
backgrounds, few combine truly complex back-
grounds with short-form reading tasks or exam-
ine critical factors such as font size, opacity, or po-
sition. While research suggests that drop shadows
can improve legibility in complex environments,
most existing studies have focused on billboards.
Most research focuses on legibility, with very lim-
ited investigation of noticeability. Furthermore,
none of these studies employed eye-tracking to
directly measure visual attention or first fixation
times. This highlights a gap in understanding
how known factors affecting legibility and notice-
ability interact in realistic, complex environments.

5

3 METHODS

3.1 Participants

25 participants took part in the experiment (13
men, 9 women, and 3 non-binary). Participants’
ages ranged from 17 to 54, with the mean age be-
ing 26.12 (SD = 8.31). Participants were screened
for colour vision deficiencies using a six-item
Ishihara test (Ishihara, 1972)(Bazilinskyy et al.,
2020). The test revealed that two participants had
minor red–green color deficiencies. They were
not excluded from the analysis, as the deficiency
was mild and the experiment does not have any
conditions relying solely on red–green contrast.
Moreover, including these participants was con-
sidered valuable for gaining additional insights.
One participant reported being dyslexic. How-
ever, as typographical errors were accounted for
using a typo-tolerant script in the later analysis,
this participant was not excluded. One partici-
pant wore glasses during the study. The results
showed no noticeable issues with tracking this
participant, and therefore, this participant was
not excluded from data analysis. All participants
gave written informed consent to perform the
experiment. The study was approved by the
Human Research Ethics Committee of TU Delft,
application number 5591.

3.2 Apparatus and Software

The experiment used a 24.5-inch monitor of the
model BenqQ XL2540-B, a screen resolution of
1920 × 1080px, a display area of 541 x 301
mm, and a refresh rate of 120 Hz. The eye-to-
screen distance was 93 cm. Eye movements were
recorded using the SR Research EyeLink 1000
Plus in the head-stabilised position (S. R. Ltd.,
2025), to maximise the sampling rate of the eye-
tracker to 2000 Hz. The eye tracker was placed 53
cm from the chinrest and captured monocular eye
movements of the right eye at a frequency of 2000
Hz. SR Research Experiment Builder was used for
the experiment design. All experimental stimuli
consisted of words systematically varied across
the levels of the independent variables. Python
was used for the generation of the stimuli and the
background. Matlab was used for data processing
and analysis.

3.3 Independent variables

The experiment included five independent vari-
ables: font size, text-drawing style, drop shadow,
background pixel size, and stimulus position. Of

these, font size (12, 18, 24, and 69 points - equiv-
alant to 0.10°, 0.15°, 0.20°, and 0.60° respectively),
text-drawing style (plain green text, plain white
text, white text on blue billboards with 30%,
50%, 75% or 100% opacity), and drop shadow
(present vs. absent) were the primary variables
of interest. These factors were systematically con-
trolled during the experiment. The colors for the
stimuli were generated using the Pillow library’s
ImageColor module, with “lime” (RGB: 0, 255, 0)
for the plain green text and “blue” (RGB: 0, 0,
255) for the billboard background. For conditions
with drop shadows, the shadow was offset by 5
pixels horizontally and 5 pixels vertically relative
to the text. To create randomised visual back-
grounds, we generated pixelated noise images
using a custom Python script (Pillow and NumPy
libraries). Each background was initialised as an
array of randomly sampled RGB values, with
each channel uniformly drawn from the range
of 0 to 255. The backgrounds were generated
with pixel sizes ranging from 1 to 25, with each
background corresponding to a single pixel size.
This controlled the granularity of the noise, where
smaller values produced fine-grained textures
and larger values produced coarser, block-like
patterns. This reflects diverse textures and object
sizes, and therefore represents a large spectrum
of background complexity. Expectancy increases
the noticeability of events Wickens (2015). There-
fore, we randomised the location of the stimuli.
During the experiment, the position and the pre-
generated backgrounds were randomised for the
trials within Experiment Builder. By controlling
the primary variables of interest, we were able
to examine their effects while accounting for the
variability introduced by the randomised factors.

3.4 Experimental task and procedure
All participants completed the experiment under
the same conditions, in a dimly lit room. The
illuminance of the room was within a range of
29.7-30.2 lux. Throughout the experiment, the
background was uniformly grey (RGB: 125, 125,
125), except for the noisy background that con-
tained the stimulus. The luminance of the noisy
background was within a range of 41-58 cd/m2,
and the luminance of the grey background was
56 cd/m2. The participants were provided with
a short oral instruction before the start of the
experiment. Once started, additional information
and instructions were provided on the screen.
The experiment employed a full-factorial within-

6

(a) (b)

(c) (d)

(e) (f)

Figure 1: Overview of the six text-drawing styles used in the
experiment with drop shadow. (a) Plain green text (b) Plain
white text (c) White text on 30% opacity blue billboard (d)
White text on 50% opacity blue billboard (e) White text on
75% opacity blue billboard (f) White text on 100% opacity
blue billboard

Figure 2: Stimuli overlaid on a complex, noisy
background with pixel size 10 and 50% opacity

billboard

subjects design. Participants were instructed to
press the spacebar as soon as they located and
read the target word presented on screen. On the
next screen, they were required to type the word
they had seen into a text field at their own pace. If
they were unable to locate the word within a 30-
second time limit, they were instructed to leave
the text field blank. If they located the word but
were unable to read it, they were asked to enter
the letter “p” instead.

Each participant completed four blocks, cor-
responding to four different font sizes. At the
beginning of each block, the eye tracker was
recalibrated. Each block consisted of 36 trials, in-
cluding 2 practice trials to familiarise participants
with the task. The practice trials used a simple
word and condition designed solely to illustrate
the task. The practice trials used the font Arial at
size 20. The stimulus word ’act’ was presented on
a billboard with 90% opacity against a 10 pixel
background, while the position of the stimulus
was randomized. This setup allowed participants
to become familiar with the task without being
exposed to the specific manipulations used in the

main experiment. Each trial began with a fixation
cross displayed for 2 seconds, which participants
were instructed to focus on. At the beginning
of each block, participants were allowed to take
a break, during which they could remove their
head from the headrest. Within each block, there
were also 2 short breaks; however, during these
breaks, participants were required to keep their
heads in the headrest. The block order was pre-
determined and counterbalanced across partici-
pants to control for order effects.

3.5 Dependent variables
The following dependent variables were mea-
sured during the study.

1) Accuracy (%): Represents the percent-
age of words read correctly. It serves as
the first indicator of legibility, as low
accuracy implies poor readability. Prior
research (e.g., Legge & Bigelow (2011),
Sawyer et al. (2020)) has often used 80%
correct word recognition as a threshold
for legibility. However, given our focus
on safety-critical applications, we adopt
a stricter criterion of 95% accuracy to
ensure reliability.

2) Noticeability (ms): Defined as the time to
the first meaningful fixation within the
Area of Interest (AOI). First meaningful
fixation was defined as the first fixation
within the final cluster of fixations lo-
cated inside the AOI prior to the spacebar
press of the participant. Earlier AOI fixa-
tions were ignored if they were not part
of this final sequence. This assumes that
only the last sustained look at the AOI
reflects the moment of stimulus recog-
nition and subsequent processing. This
measure indicates how quickly and easily
the target stimuli can be located, provid-
ing insight into the influence of different
experimental factors on visibility.

3) Processing time (ms): Processing time is
calculated as the response time for the
spacebar press minus noticeability. It re-
flects the time needed to interpret and
respond to a stimulus once it has been
detected, separating reading and cogni-
tive processing from the initial search or
detection phase.

3.6 Stimuli
Figure 3 shows the experimental setup. Stim-
ulus location was randomised to avoid spatial

7

expectancy. The stimuli were presented within an
area ranging from 202 to 1717 pixels horizontally,
and 62 to 1018 pixels vertically. These bounds
were chosen to ensure that even the largest stim-
uli could be fully presented on screen without
being clipped off, while still maintaining a margin
from the edges. The stimuli and background were
separately imported into the Experiment Builder
software and programmed to be randomly com-
bined. The location and condition of the stimuli
were randomised using SR Research Experiment
Builder. Previous research has shown that the
valence of words affects the text processing and
memory of words(Arfé et al., 2022). Therefore,
neutral valence words were selected from Kousta
et al. (2009). To maintain consistency in word
length, only words containing six or seven let-
ters were used. The font sizes that were used
were based on the fluency angles for reading
from Legge & Bigelow (2011). The fluent range
of angular reading size in displays refers to the
optimal angular size of text or content on a screen
that ensures comfortable readability for users
without causing strain or difficulty. This range
depends on factors like viewing distance, font
size, and display resolution. The fluency angle
ranges from 0.2° to 2° when using test reading.
For the RSVP method, where words are presented
in isolation, the speed vs. printsize graph already
starts declining after 1°. This makes sense, con-
sidering that for isolated words, there is only
1 fixation that samples the word, whereas the
scrolling method used for larger text allows for
more fixations to sample the words. While we
are not using the RSVP method, we can argue
that our method resembles this one more than
the scrolling method, as the participants are in-
structed to press spacebar as soon as they located
and read the word, and therefore do not allow for
more fixations. However, from Figure 2 in Legge
& Bigelow (2011) we can see that the peak for
the RSVP method lies around 0.2°. This means
that there is an upper critical threshold above
which there is no longer an improvement in leg-
ibility. Using the Visual Angle Calculator (Visual
Angle Calculator - Calculator Academy, 2023), we
determined that at a viewing distance of 93 cm,
0.2° equals 3.2463 mm. The literature found that
the better performing fonts had open and un-
ambiguous characters with ample character spac-
ing. Frutiger was specifically tested in multiple
studies, however, since Frutiger is a commercial
font, a free font with all the above properties
was chosen, namely the font Lato by Google.

According to Legge & Bigelow (2011), the point
size that should be equivalent to fluent visual
angles should be based on the x-height of the
lowercase letter x. For our screen with a display
area of 541 x 301 mm, and a resolution of 1920
× 1080 px, 1 mm = 3.61 px. Therefore, taking
the x height of the font Lato 3.25 mm, we need
a font size where the x-pixel size is equal to 12
px. This is equivalent to a font size of 24 pt. To
evaluate whether the larger fonts indeed have a
lower performance, we test the font size 69 pt
equivalent to 0.60°. However, because the critical
print size (CPS), below which the reading speed
sharply declines, of Legge & Bigelow (2011) was
based on plain text, this study was interested to
examine if the CPS is affected by the presence of
a billboard. Therefore, two smaller font sizes, 12
and 18 (corresponding to visual angles of 0.1° and
0.15°, respectively), were also included during
this study.

Figure 3: Setup of the experiment with the
corresponding distances

3.7 Data Analysis
The study employed a within-subject, full fac-
torial design. A custom fixation filter, based on
Nyström & Holmqvist (2010) and used in pre-
vious studies (De Winter et al., 2023), was used
to extract the fixations from the trials. A fixation,
defined as a continuous gaze of at least 100 ms,
with any overlapping blinks, was excluded from
analysis. Normality of the data was assessed us-
ing the Shapiro–Wilk test. From the total of 3400
experimental trials across 25 participants, 695 of
them were excluded for the noticeability and
processing time analysis. Trials were excluded if
no fixation occurred within the AOI, if the word
was not successfully read when found, or if the
trial duration was less than 100 ms. Because the
inability to read or find a word is in itself an
important metric, these trials were retained for
the accuracy analysis. Therefore, the only exclu-
sion criterion applied for the accuracy analysis

8

was a trial duration of less than 100 ms. This
resulted in 3396 trials for the accuracy analysis.
To account for minor spelling errors in partici-
pants’ typed responses, a typo-tolerance proce-
dure was applied. A custom function compared
each response to the correct target word using
the Levenshtein edit distance. Responses were
normalized (converted to lowercase and trimmed
of whitespace), and cases where the participant
gave up (empty response or entered “p”) were
marked as incorrect. A response was considered
correct if the edit distance from the target was
less than or equal to two character changes. This
approach ensured that minor typographical er-
rors did not artificially lower accuracy measures.
Because of the unbalanced data that resulted
from the trial exclusions, a Generalized Linear
Mixed Model (GLMM) was used to assess the
main and interacting effects. When significant
effects were detected, post hoc pairwise compar-
isons were performed using the Wilcoxon signed-
rank test. All post hoc results were adjusted for
multiple comparisons using the Bonferroni-Holm
correction. For the analysis of noticeability and
processing time, the data was analyzed in two
ways. For one analysis, the data was taken as a
whole, while for the other, it was divided into
plain text conditions and billboard conditions.
To analyze noticeability and processing time, we
fitted the GLMM with a gamma distribution and
log link. For both models, font size, condition,
and shadow, and their interactions were included
as fixed effects, while the stimuli position X and
Y served as covariates. Random intercepts were
specified for participant, and random slopes were
modeled within background. For the noticeability
model, random slopes were included for con-
dition, whereas for the processing time model,
random slopes were included for font size, in
order to improve the fit of each model. To further
examine the influence of background, separate
GLMM were fitted for both dependent variables.
Font size and background were taken as fixed
effects, while condition, shadow, and stimuli po-
sition were covariates. Random intercepts were
specified for participants. All models were fitted
using a gamma distribution with a log link func-
tion, and the significance of fixed effects was as-
sessed via ANOVA. All analyses were conducted
in MATLAB (version 2025a).

3.8 Hypothesis
Prior to conducting the study, we formulated the
following hypotheses:

1) In the absence of a billboard, green text
will be highly noticeable over complex
backgrounds.

2) In the absence of a billboard, apply-
ing a drop shadow will significantly im-
prove legibility, as measured by process-
ing time.

3) Billboard opacity will have a significant
effect on noticeability, while not signifi-
cantly impacting processing time or accu-
racy percentages in word identification.

4) Noticeability is expected to increase with
billboard opacity up to a threshold of
50%, beyond which no further improve-
ment will occur.

5) The upper font size threshold beyond
which there will be no further improve-
ment in legibility, as measured by pro-
cessing time, will be lower for the bill-
board condition compared to the plain
text condition.

4 RESULTS

This section presents the outcomes of the
statistical analyses examining the effects of font
size, text-drawing style, and drop shadow on
noticeability, processing time, and error rate. The
study employed a within-subject design with 25
participants.

4.1 Descriptive Statistics

Table 1 and Table 2 report mean values and stan-
dard deviations for noticeability and processing
time across font sizes and conditions. Standard
deviations indicate substantial variability across
participants, particularly for noticeability.

4.2 Accuracy Percentage

Figure 5 shows us the accuracy analysis of all the
conditions across the font sizes. It is clear that
the accuracy percentage is overall quite high. For
font size 12, the plain green and white text, and
30% opacity billboard conditions had an accuracy
under 95%. Font size 18 with condition green NS
also performed below the accuracy threshold of
95%. Except for font size 12 and the green NS
condition for fontsize 18, the text-drawing style
had no effect on the accuracy of the word iden-
tification. For the analysis where the data was
divided into plain text and billboard conditions,
font size 12 was excluded because of its low
accuracy.

9

Table 1: Mean and SD of processing times and noticeability per font size.

Font Size Noticeability Mean ProcessingTime Mean Noticeability SD ProcessingTime SD

f12 2480.8 786.27 4310.2 1003.6
f18 1195.5 553.02 2366.5 580.89
f24 708.85 480.73 1388.8 449.55
f69 286.32 433.59 236.4 399.86

Table 2: Mean and SD of processing times and noticeability per text-drawing style.

Condition Noticeability Mean ProcessingTime Mean Noticeability SD ProcessingTime SD

Green text 2463 712.22 4459.9 866.89
White text 1913.5 624.13 3511 911.52
30% billboard 926.2 546.29 1663.9 629.56
50% billboard 554.8 516.57 790.77 516.29
75% billboard 394.9 468.5 454.98 351.87
100% billboard 380.95 450.1 660.7 309.94

(a) (b)

Figure 4: Interaction effects of Font size and Condition shown for (a) Noticeability and (b) Processing Time.

4.3 Noticeability

The ANOVA results of the GLMM gamma-log
model with font size (f12, f18, f24, f69), text-
drawing style (green, white, 30% billboard , 50%
billboard, 75% billboard, 100% billboard), and
drop shadow (present, absent) as independent vari-
ables, are depicted in Table 3. Table 4 shows the
post-hoc results. Table 5 and 6 show the ANOVA
results for the separated plain text and billboard
analysis, where font size 12 is excluded.

• The full ANOVA results (Table 3) indi-
cate significant main effects for font size
(p < 0.001, η2 = 0.100), condition (p <
0.001, η2 = 0.088) and their interaction
(p < 0.001, η2 = 0.079). Figure 4a addi-
tionally shows the relationship between
font size and condition for noticeability.
While other interactions were also signif-
icant, their effect sizes were low. Post-
hoc comparisons further revealed that font
size 12 performed significantly worse than
the other font sizes, whereas font size
69 resulted in significantly better perfor-
mance for noticeability. In addition, both
plain text conditions performed signifi-

cantly worse than all billboard conditions,
while no significant difference in perfor-
mance was found between the billboard
conditions.

• Plain white text (M = 1913.5, SD = 3511)
performed better than plain green text
(M = 2463, SD = 4459.9). However, the
result was not statistically significant.

• The main effect of font size on noticeability
for plain text was significant, p < 0.001,
with the largest observed effect size, η2 =
0.186. Drop shadow also had a significant
effect, p < 0.001, η2 = 0.023. The other
variables were also significant, however,
the effect sizes were low.

• For the billboard conditions, font size re-
mained the largest effect for noticeability,
η2 = 0.056, p < 0.001, while text-drawing
style also had a moderate effect, p < 0.001,
η2 = 0.038, and the interaction of font size
and style was also significant, p < 0.001,
η2 = 0.020.

10

Figure 5: Accuracy (%) per font size and condition. The red dashed line indicates the 95% threshold.

Table 3: ANOVA results for Noticeability and Processing Time for FontSize×Condition×Shadow. Partial η2 values reported.
Significant p-values are marked in bold and p <0.001 are marked with *.

Term DF1 DF2 Noticeability Processing Time

F p η2
p F p η2

p

Font Size 3 2655 97.885 0.001* 0.100 24.13 0.001* 0.027
Condition 5 2655 50.963 0.001* 0.088 17.868 0.001* 0.033
Shadow 1 2655 0.613 0.434 0.0002 1.387 0.239 0.001
Font Size:Condition 15 2655 15.177 0.001* 0.079 3.731 0.001* 0.021
Font Size:Shadow 3 2655 3.500 0.015 0.004 2.832 0.037 0.003
Condition:Shadow 5 2655 3.554 0.003 0.007 2.016 0.073 0.004
Font Size:Condition:Shadow 15 2655 2.769 0.001* 0.015 1.621 0.061 0.009

4.4 Processing Time

A similar analysis was conducted for processing
time.

• The full ANOVA results (Table 3) indicate
significant main effects of font size (p <
0.001, η2 = 0.027), condition (p < 0.001,
η2 = 0.033), and the interaction between
font size and condition (p < 0.001, η2 =
0.021). Figure 4b, additionally shows the
relationship between font size and condi-
tion for processing time. Post-hoc compar-
isons revealed that for the font size, there
was only a significant difference between
the pair f12 and f24, and f12 and f69. For
the condition factor, all plain green text
conditions differed significantly from the
billboard conditions, except for the 30%
opacity level. The plain white text condi-

tion only differed significantly from the
full opacity billboard.

• For the plain text analysis, a significant
main effect was found for font size (p <
0.001, η2 = 0.054), condition (p = 0.004,
η2 = 0.012) as well as drop shadow (p =
0.002, η2 = 0.013). Post hoc comparisons
indicated a significant difference between
f18 and f24 (p = 0.002), and f18 and f24
(p = 0.005).

• For the billboard analysis, only a main
effect of font size, p < 0.001, η2 = 0.023,
was found. However, post hoc Holm-
Bonferroni corrected values, revealed no
significant differences in pairwise compar-
isons. The billboard opacity had no signif-
icant effect on the processing time.

11

Table 4: Post-hoc Wilcoxon signed-rank tests for Noticeability (N) and Processing Time (P). Only significant Holm-Bonferroni
corrected p-values are reported. P<0.001 are marked with *.

Comparison Corrected p (N) Corrected p (P)

f12 vs f18 0.034 -
f12 vs f24 0.001* 0.001*
f12 vs f69 0.001* 0.001*
f18 vs f69 0.001 -
f24 vs f69 0.003 -

Green vs 30% billboard 0.003 -
Green vs 50% billboard 0.001* 0.018
Green vs 75% billboard 0.001* 0.002
Green vs 100% billboard 0.001* 0.002
White vs 30% billboard 0.009 -
White vs 50% billboard 0.003 -
White vs 75% billboard 0.001* -
White vs 100% billboard 0.001* 0.047

Table 5: ANOVA results for plain text condition Noticeability (N) and Processing Time (P) for FontSize×Condition×Shadow,
with f18, f24, f69. Partial η2 values are reported. Significant p-values are marked in bold, and p <0.001 are marked with *.

Term DF1 F (N) DF2 (N) p (N) η2
p (N) F (P) DF2 (P) p (P) η2

p (P)

Font Size 2 80.124 699 0.001* 0.186 19.853 698 0.001* 0.054
Condition 1 10.608 699 0.001 0.015 8.2717 698 0.004 0.012
Shadow 1 16.166 699 0.001* 0.023 9.4243 698 0.002 0.013
Font Size:Condition 2 3.7589 699 0.024 0.011 0.90956 698 0.403 0.003
Font Size:Shadow 2 3.4343 699 0.033 0.010 2.5504 698 0.079 0.007
Condition:Shadow 1 5.8746 699 0.016 0.008 0.75239 698 0.386 0.001
Font Size:Condition:Shadow 2 3.9168 699 0.020 0.011 0.87085 698 0.419 0.002

Table 6: ANOVA results for billboard Noticeability (N) and Processing Time (P) for FontSize × Condition × Shadow, with
f18, f24, f69. Partial η2 values are reported. Significant p-values are marked in bold and p <0.001 are marked with *.

Term DF1 F (N) DF2 (N) p (N) η2
p (N) F (P) DF2 (P) p (P) η2

p (P)

Font Size 2 41.056 1376 0.001* 0.056 16.404 1373 0.001* 0.023
Condition 3 18.33 1376 0.001* 0.038 2.4982 1373 0.058 0.005
Shadow 1 4.0563 1376 0.044 0.003 1.0581 1373 0.304 0.001
Font Size:Condition 6 4.8065 1376 0.001* 0.020 1.1886 1373 0.310 0.005
Font Size:Shadow 2 2.8127 1376 0.060 0.004 0.97196 1373 0.379 0.001
Condition:Shadow 3 1.4794 1376 0.218 0.003 1.0571 1373 0.366 0.002
Font Size:Condition:Shadow 6 1.3136 1376 0.248 0.006 1.0795 1373 0.373 0.005

4.5 Background

Figure 6 and Figure 7 show us the relationship
between background and font size. From Table 7
we can see that background has a significant
effect on both the noticeability and processing
time, p < 0.001 and η2p = 0.045 and η2p = 0.047
respectively, while font size only has a significant
effect on processing time. The interaction also
has the largest effect for both noticeability and
processing time, with p < 0.001, and η2p = 0.057
and η2p = 0.052, respectively.

5 DISCUSSION

This study examined the effects of font size,
text-drawing style, and billboard opacity on no-

ticeability and legibility against complex back-
grounds. Compared to Sawyer et al. (2020), ac-
curacy percentages for the small-font conditions
in our study were relatively high. This is likely
due to our self-paced experimental design.

5.1 Text-drawing style

While previous literature, such as Gabbard et
al. (2006) and Debernardis et al. (2013), suggests
that green is the most effective colour when no
billboard is used, this paper did not find a similar
pattern. On the contrary, the mean processing
time and noticeability for the plain green text
condition were higher than the plain white text,
though the results were not significant. This find-

12

Table 7: ANOVA results for Noticeability (N) and ProcessingTime (P) for Background × Fontsize. Significant p-values are
marked in bold and p <0.001 are marked with *.

Term DF1 DF2 Noticeability Processing Time

F p η2
p F p η2

p

Font Size 3 2597 0.423 0.737 0.0005 15.724 0.001* 0.018
Background 24 2597 5.124 0.001* 0.045 5.351 0.001* 0.047
Font Size:Background 72 2597 2.176 0.001* 0.057 1.965 0.001* 0.052

Figure 6: Interaction effects of Background x Font size for noticeability.

Figure 7: Interaction effects of Background x Font size for processing time.

ing is particularly interesting given that green text
remains the standard for HUDs in aircraft.

This difference in finding can be explained
by differences in experimental conditions. Prior
studies, including Gabbard et al. (2006), typi-
cally used textured or patterned backgrounds
that were not highly complex. In contrast, the
current experiment employed a random noise
background with varying pixel sizes, providing
a truly complex visual environment.

Regarding billboard opacity, no significant

differences were observed in noticeability or pro-
cessing time, contrary to our hypothesis H4. This
suggests that reducing billboard opacity does not
negatively affect the legibility or visibility of the
stimuli. Consequently, unlike previous findings
from Falk et al. (2021) and Hussain & Park (2023),
our results indicate that billboard opacity can
be safely reduced to 30% without affecting per-
formance. This is particularly relevant in appli-
cations where the stimulus location is already
known, such as on a dashboard, where noticeabil-

13

ity becomes less critical. For these applications, it
may even be possible to reduce opacity further.

5.2 Font size
Previous research on font size has largely focused
on long-form reading contexts. While some stud-
ies, such as Dobres et al. (2016) and Sawyer et
al. (2017), have examined font size in glanceable
legibility tasks, they tested only two sizes—3
mm and 4 mm capital letter height. The mea-
sures reported in those studies are conceptually
equivalent to our processing time metric. They
observed a significant improvement in legibility
for plain text from 3 mm to 4 mm, equivalent
to 0.18° and 0.24°, respectively. Figure 4b shows
the interaction plot for processing time between
font size and condition. We can see in Figure
4b that the decline starts to slow from font size
0.2°. The statistical analysis found a significant
difference in processing time between f18 and f24
(0.15° and 0.20°), for the plain text condition, but
did not reveal a significant difference between
f24 and f69 conditions. This finding agrees with
Legge & Bigelow (2011) where the peak perfor-
mance for reading speed lies around 0.20° for
plain text. In the same Figure 4b, we see that the
slope of decline for the processing time is much
lower after 0.15° for the billboard conditions.
The statistical analysis confirmed that there was
no significant difference for the Holm-Bonferroni
pairwise comparison between the font sizes f18,
f24 and f69. This indicates that performance does
not improve further once font size exceeds 0.15°
in the billboard condition. This finding supports
H5, and shows that there is indeed a smaller up-
per font size threshold for the billboard condition
compared to the plain text.

5.3 Dropshadow
We found that drop shadow significantly affected
the processing time for stimuli when using plain
text, thereby supporting our hypothesis. From
the factors examined, drop shadow produced
the second-largest effect size, suggesting that,
when adjusting font size is not an option for
plain text, adding a drop shadow can provide
a subtle improvement in legibility. Interestingly,
our results also revealed a main effect of drop
shadow on noticeability for plain text, with a
fairly large effect size. One explanation for this
could be that applying a drop shadow effectively
adds an edge-like boundary around text, which
could have boosted noticeability by improving
separation and emphasizing contours.

5.4 Background

From the analysis, an interaction effect for back-
ground and font size was found for both the
noticeability and the processing time. However,
because of the large number of backgrounds, the
post-hoc pairwise comparison did not result in
a reliable outcome. From Figure 6, we can see
that for font sizes 18 and 24, the noticeability
time lies higher for smaller pixel sizes, whereas
for font size 12, the noticeability gradually in-
creases and reaches a peak at pixel size 11, after
which it declines again. This effect is caused
by a size-based interference. When the font size
approaches the same scale as the background’s
pixel noise, a crowding effect occurs, reducing
noticeability Whitney & Levi (2011). For the pro-
cessing time, Figure 7 reveals that font size 12
is less legible when the background has small
pixel sizes. Both Figure 6 and Figure 7 reveal that
the interaction between font size and background
stabilises as the font size increases.

6 CONCLUSION

This paper evaluated the effects of font size
and text-drawing style on noticeability and pro-
cessing time. Hypothesis H1, predicting higher
noticeability for green text over complex back-
grounds without a billboard, was not supported.
Hypothesis H4, predicting an increase in notice-
ability until a threshold of billboard opacity 50%,
was also not supported. Hypotheses H2 and H5
were confirmed: applying a drop shadow im-
proved legibility in plain text (H2) and apply-
ing a billboard decreased the upper performance
threshold for font size (H5). Hypothesis H3 was
partially confirmed. As predicted, billboard opac-
ity did not significantly affect processing time or
word identification accuracy. However, contrary
to our expectations, it also did not affect notice-
ability. The findings in this study suggest that
while applying billboards and larger fonts can
enhance text visibility, the interaction between
background complexity and font size also plays
a significant role.

This study is subject to several limitations.
With only 19 words available, repetition was nec-
essary and likely introduced a learning effect. Ad-
ditionally, in scenarios where word positions are
fixed, differences in noticeability may be reduced,
as expectancy has a strong influence on visual
scanning. Another limitation is that the study did
not account for visual clutter. Since real-world
applications frequently involve visually complex

14

environments, clutter is expected to have a con-
siderable impact. Future research should there-
fore extend these findings by examining notice-
ability and processing time under more crowded
visual conditions. Furthermore, this study was
conducted in a dimly lit environment. Future
work could build on these findings by repeating
the experiment under brighter lighting conditions
to study how increased luminance affects notice-
ability and processing time. Finally, while this
study examined the effect of opaque billboard
conditions on legibility and noticeability in order
to preserve background visibility, the background
visibility itself was not directly studied. There-
fore, future work should explicitly evaluate the
impact of these conditions on background visibil-
ity.

REFERENCES
Arfé, B., Delatorre, P., & Mason, L. (2022, 10). Effects of negative

emotional valence on readers’ text processing and memory for
text: an eye-tracking study. Reading and Writing, 36(7), 1743–
1768. Retrieved from https://doi.org/10.1007/s11145
-022-10362-7 doi: 10.1007/s11145-022-10362-7

Bazilinskyy, P., Dodou, D., & De Winter, J. (2020, 10). External
Human-Machine Interfaces: Which of 729 Colors Is Best for
Signaling ‘Please (Do not) Cross’? 2022 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC), 3721–3728. Re-
trieved from https://doi.org/10.1109/smc42975.2020
.9282998 doi: 10.1109/smc42975.2020.9282998

Beier, S., & Oderkerk, C. A. (2021, 6). High letter stroke contrast
impairs letter recognition of bold fonts. Applied Ergonomics,
97, 103499. Retrieved from https://doi.org/10.1016/j
.apergo.2021.103499 doi: 10.1016/j.apergo.2021.103499

Crundall, E., Large, D. R., & Burnett, G. (2016, 5). A driving
simulator study to explore the effects of text size on the visual de-
mand of in-vehicle displays. Displays, 43, 23–29. Retrieved from
https://doi.org/10.1016/j.displa.2016.05.003 doi:
10.1016/j.displa.2016.05.003

Debernardis, S., Fiorentino, M., Gattullo, M., Monno, G., & Uva,
A. E. (2013, 5). Text Readability in Head-Worn Displays: Color
and Style Optimization in Video versus Optical See-Through
Devices. IEEE Transactions on Visualization and Computer Graphics,
20(1), 125–139. Retrieved from https://doi.org/10.1109/
tvcg.2013.86 doi: 10.1109/tvcg.2013.86

De Winter, J. C. F., Dodou, D., & Eisma, Y. B. (2023, 6). Re-
sponses to Raven matrices: Governed by visual complexity
and centrality. Perception, 52(9), 645–661. Retrieved from
https://doi.org/10.1177/03010066231178149 doi: 10
.1177/03010066231178149

Di Donato, M., Fiorentino, M., Uva, A. E., Gattullo, M., & Monno,
G. (2015, 3). Text legibility for projected Augmented Reality on
industrial workbenches. Computers in Industry, 70, 70–78. Re-
trieved from https://doi.org/10.1016/j.compind.2015
.02.008 doi: 10.1016/j.compind.2015.02.008

Dobres, J., Chahine, N., Reimer, B., Gould, D., Mehler, B., & Cough-
lin, J. F. (2016, 1). Utilising psychophysical techniques to
investigate the effects of age, typeface design, size and display
polarity on glance legibility. Ergonomics, 59(10), 1377–1391. Re-
trieved from https://doi.org/10.1080/00140139.2015
.1137637 doi: 10.1080/00140139.2015.1137637

Falk, J., Eksvard, S., Schenkman, B., Andren, B., & Brunnstrom,
K. (2021, 6). Legibility and readability in Augmented Re-
ality. International Conference on Quality of Multimedia Ex-
perience (QoMEX), 231–236. Retrieved from https://doi
.org/10.1109/qomex51781.2021.9465455 doi: 10.1109/
qomex51781.2021.9465455

Gabbard, J. L., Swan, J. E., & Hix, D. (2006, 2). The effects of text
drawing styles, background textures, and natural lighting on text
legibility in outdoor augmented reality. PRESENCE Virtual and

Augmented Reality, 15(1), 16–32. Retrieved from https://doi
.org/10.1162/pres.2006.15.1.16 doi: 10.1162/pres.2006
.15.1.16

Gattullo, M., Uva, A. E., Fiorentino, M., & Gabbard, J. L. (2015,
3). Legibility in industrial AR: text style, color coding, and illu-
minance. IEEE Computer Graphics and Applications, 35(2), 52–61.
Retrieved from https://doi.org/10.1109/mcg.2015.36
doi: 10.1109/mcg.2015.36

Guo, W., Yan, D., Liu, T., & Zhang, Z. (2020, 12). Technical challenge
and solution for vehicle-mounted AR-HUD mass commercial ap-
plication. International Conference on Optoelectronic and Microelec-
tronic Technology and Application, 187. Retrieved from https://
doi.org/10.1117/12.2586525 doi: 10.1117/12.2586525

Horrey, W. J., Wickens, C. D., & Consalus, K. P. (2006, 1). Modeling
drivers’ visual attention allocation while interacting with in-
vehicle technologies. Journal of Experimental Psychology Applied,
12(2), 67–78. Retrieved from https://doi.org/10.1037/
1076-898x.12.2.67 doi: 10.1037/1076-898x.12.2.67

Hussain, M., & Park, J. (2023, 5). Effect of transparency levels
and Real-World backgrounds on the user interface in augmented
reality environments. International Journal of Human-Computer In-
teraction, 40(16), 4265–4274. Retrieved from https://doi.org/
10.1080/10447318.2023.2212218 doi: 10.1080/10447318
.2023.2212218

Ishihara, S. (1972). Tests for colour-blindness. Tokyo:
Kanehara Shuppan Co., Ltd. Retrieved from https://
web.archive.org/web/20201208160704/http://
www.dfisica.ubi.pt/~hgil/p.v.2/Ishihara/
Ishihara.24.Plate.TEST.Book.pdf

Jankowski, J., Samp, K., Irzynska, I., Jozwowicz, M., & Decker,
S. (2010, 4). Integrating Text with Video and 3D Graphics.
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. Retrieved from https://doi.org/10.1145/
1753326.1753524 doi: 10.1145/1753326.1753524

Kousta, S.-T., Vinson, D. P., & Vigliocco, G. (2009, 7). Emotion words,
regardless of polarity, have a processing advantage over neutral
words. Cognition, 112(3), 473–481. Retrieved from https://doi
.org/10.1016/j.cognition.2009.06.007 doi: 10.1016/
j.cognition.2009.06.007

Kruijff, E., Orlosky, J., Kishishita, N., Trepkowski, C., & Kiyokawa,
K. (2018, 7). The influence of label design on search perfor-
mance and noticeability in wide field of view augmented reality
displays. IEEE Transactions on Visualization and Computer Graph-
ics, 25(9), 2821–2837. Retrieved from https://doi.org/10
.1109/tvcg.2018.2854737 doi: 10.1109/tvcg.2018.2854737

Legge, G. E., & Bigelow, C. A. (2011, 8). Does print size
matter for reading? A review of findings from vision science
and typography. Journal of Vision, 11(5), 8. Retrieved from
https://doi.org/10.1167/11.5.8 doi: 10.1167/11.5.8

Ltd., F. (n.d.). Setting your letter Heights - FontLab 8. Retrieved from
https://help.fontlab.com/fontlab/8/tutorials/
calfonts/3.%20Fitting%20and%20Spacing/03a%
20Setting%20Your%20Letter%20Heights/#:~:
text=The%20More%20Modern%20Take,is%2070.833%25%
20of%20the%20uppercase.&text=The%20area%20is%
2050.17%25.,changed%20to%20one%20of%20area.

Ltd., S. R. (2025, 8). EyeLink 1000 Plus - Eye Tracker - Fast,
accurate, reliable eye tracking. Retrieved from https://www.sr
-research.com/eyelink-1000-plus/

Ma, X., Jia, M., Hong, Z., Kwok, A. P. K., & Yan, M. (2021, 1). Does
Augmented-Reality Head-Up Display help? a preliminary study
on driving performance through a VR-Simulated Eye Move-
ment analysis. IEEE Access, 9, 129951–129964. Retrieved from
https://doi.org/10.1109/access.2021.3112240 doi:
10.1109/access.2021.3112240

Nyström, M., & Holmqvist, K. (2010, 2). An adaptive algo-
rithm for fixation, saccade, and glissade detection in eyetracking
data. Behavior Research Methods, 42(1), 188–204. Retrieved from
https://doi.org/10.3758/brm.42.1.188 doi: 10.3758/
brm.42.1.188

Qian, L., Barthel, A., Johnson, A., Osgood, G., Kazanzides, P.,
Navab, N., & Fuerst, B. (2017, 3). Comparison of optical see-
through head-mounted displays for surgical interventions with
object-anchored 2D-display. International Journal of Computer
Assisted Radiology and Surgery, 12(6), 901–910. Retrieved from
https://doi.org/10.1007/s11548-017-1564-y doi: 10
.1007/s11548-017-1564-y

Rayner, K. (2009, 5). The 35th Sir Frederick Bartlett Lecture:
Eye movements and attention in reading, scene perception, and

https://doi.org/10.1007/s11145-022-10362-7
https://doi.org/10.1007/s11145-022-10362-7
https://doi.org/10.1109/smc42975.2020.9282998
https://doi.org/10.1109/smc42975.2020.9282998
https://doi.org/10.1016/j.apergo.2021.103499
https://doi.org/10.1016/j.apergo.2021.103499
https://doi.org/10.1016/j.displa.2016.05.003
https://doi.org/10.1109/tvcg.2013.86
https://doi.org/10.1109/tvcg.2013.86
https://doi.org/10.1177/03010066231178149
https://doi.org/10.1016/j.compind.2015.02.008
https://doi.org/10.1016/j.compind.2015.02.008
https://doi.org/10.1080/00140139.2015.1137637
https://doi.org/10.1080/00140139.2015.1137637
https://doi.org/10.1109/qomex51781.2021.9465455
https://doi.org/10.1109/qomex51781.2021.9465455
https://doi.org/10.1162/pres.2006.15.1.16
https://doi.org/10.1162/pres.2006.15.1.16
https://doi.org/10.1109/mcg.2015.36
https://doi.org/10.1117/12.2586525
https://doi.org/10.1117/12.2586525
https://doi.org/10.1037/1076-898x.12.2.67
https://doi.org/10.1037/1076-898x.12.2.67
https://doi.org/10.1080/10447318.2023.2212218
https://doi.org/10.1080/10447318.2023.2212218
https://web.archive.org/web/20201208160704/http://www.dfisica.ubi.pt/~hgil/p.v.2/Ishihara/Ishihara.24.Plate.TEST.Book.pdf
https://web.archive.org/web/20201208160704/http://www.dfisica.ubi.pt/~hgil/p.v.2/Ishihara/Ishihara.24.Plate.TEST.Book.pdf
https://web.archive.org/web/20201208160704/http://www.dfisica.ubi.pt/~hgil/p.v.2/Ishihara/Ishihara.24.Plate.TEST.Book.pdf
https://web.archive.org/web/20201208160704/http://www.dfisica.ubi.pt/~hgil/p.v.2/Ishihara/Ishihara.24.Plate.TEST.Book.pdf
https://doi.org/10.1145/1753326.1753524
https://doi.org/10.1145/1753326.1753524
https://doi.org/10.1016/j.cognition.2009.06.007
https://doi.org/10.1016/j.cognition.2009.06.007
https://doi.org/10.1109/tvcg.2018.2854737
https://doi.org/10.1109/tvcg.2018.2854737
https://doi.org/10.1167/11.5.8
https://help.fontlab.com/fontlab/8/tutorials/calfonts/3.%20Fitting%20and%20Spacing/03a%20Setting%20Your%20Letter%20Heights/#:~:text=The%20More%20Modern%20Take,is%2070.833%25%20of%20the%20uppercase.&text=The%20area%20is%2050.17%25.,changed%20to%20one%20of%20area.
https://help.fontlab.com/fontlab/8/tutorials/calfonts/3.%20Fitting%20and%20Spacing/03a%20Setting%20Your%20Letter%20Heights/#:~:text=The%20More%20Modern%20Take,is%2070.833%25%20of%20the%20uppercase.&text=The%20area%20is%2050.17%25.,changed%20to%20one%20of%20area.
https://help.fontlab.com/fontlab/8/tutorials/calfonts/3.%20Fitting%20and%20Spacing/03a%20Setting%20Your%20Letter%20Heights/#:~:text=The%20More%20Modern%20Take,is%2070.833%25%20of%20the%20uppercase.&text=The%20area%20is%2050.17%25.,changed%20to%20one%20of%20area.
https://help.fontlab.com/fontlab/8/tutorials/calfonts/3.%20Fitting%20and%20Spacing/03a%20Setting%20Your%20Letter%20Heights/#:~:text=The%20More%20Modern%20Take,is%2070.833%25%20of%20the%20uppercase.&text=The%20area%20is%2050.17%25.,changed%20to%20one%20of%20area.
https://help.fontlab.com/fontlab/8/tutorials/calfonts/3.%20Fitting%20and%20Spacing/03a%20Setting%20Your%20Letter%20Heights/#:~:text=The%20More%20Modern%20Take,is%2070.833%25%20of%20the%20uppercase.&text=The%20area%20is%2050.17%25.,changed%20to%20one%20of%20area.
https://help.fontlab.com/fontlab/8/tutorials/calfonts/3.%20Fitting%20and%20Spacing/03a%20Setting%20Your%20Letter%20Heights/#:~:text=The%20More%20Modern%20Take,is%2070.833%25%20of%20the%20uppercase.&text=The%20area%20is%2050.17%25.,changed%20to%20one%20of%20area.
https://www.sr-research.com/eyelink-1000-plus/
https://www.sr-research.com/eyelink-1000-plus/
https://doi.org/10.1109/access.2021.3112240
https://doi.org/10.3758/brm.42.1.188
https://doi.org/10.1007/s11548-017-1564-y

15

visual search. Quarterly Journal of Experimental Psychology, 62(8),
1457–1506. Retrieved from https://doi.org/10.1080/
17470210902816461 doi: 10.1080/17470210902816461

Reimer, B., Mehler, B., Dobres, J., Coughlin, J. F., Matteson, S.,
Gould, D., . . . Levantovsky, V. (2014, 7). Assessing the im-
pact of typeface design in a text-rich automotive user inter-
face. Ergonomics, 57(11), 1643–1658. Retrieved from https://
doi.org/10.1080/00140139.2014.940000 doi: 10.1080/
00140139.2014.940000

Sawyer, B. D., Dobres, J., Chahine, N., & Reimer, B. (2017, 9). The
Cost of Cool: Typographic style legibility in reading at a Glance.
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 61(1), 833–837. Retrieved from https://doi.org/10
.1177/1541931213601698 doi: 10.1177/1541931213601698

Sawyer, B. D., Wolfe, B., Dobres, J., Chahine, N., Mehler, B.,
& Reimer, B. (2020, 5). Glanceable, legible typography
over complex backgrounds. Ergonomics, 63(7), 864–883. Re-
trieved from https://doi.org/10.1080/00140139.2020
.1758348 doi: 10.1080/00140139.2020.1758348

Topliss, B. H., Pampel, S. M., Burnett, G., & Gabbard, J. L.
(2019, 9). Evaluating Head-Up Displays across Windshield
Locations. International Conference on Automotive User Inter-
faces and Interactive Vehicular Applications, 244–253. Retrieved
from https://doi.org/10.1145/3342197.3344524 doi:
10.1145/3342197.3344524

Visual Angle Calculator - Calculator Academy. (2023, 7).
Retrieved from https://calculator.academy/
visual-angle-calculator/

Whitney, D., & Levi, D. M. (2011, 3). Visual crowding:
a fundamental limit on conscious perception and object
recognition. Trends in Cognitive Sciences, 15(4), 160–168. Retrieved
from https://pmc.ncbi.nlm.nih.gov/articles/
PMC3070834/#:~:text=vi)%20Temporal%20tuning,%
2C%20%5B16%2C%2021%5D). doi: 10.1016/j.tics.2011.02.005

Wickens, C. (2015, 01). Noticing events in the visual workplace:
The seev and nseev models. In (p. 749-768). doi: 10.1017/
CBO9780511973017.046

https://doi.org/10.1080/17470210902816461
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1080/00140139.2014.940000
https://doi.org/10.1080/00140139.2014.940000
https://doi.org/10.1177/1541931213601698
https://doi.org/10.1177/1541931213601698
https://doi.org/10.1080/00140139.2020.1758348
https://doi.org/10.1080/00140139.2020.1758348
https://doi.org/10.1145/3342197.3344524
https://calculator.academy/visual-angle-calculator/
https://calculator.academy/visual-angle-calculator/
https://pmc.ncbi.nlm.nih.gov/articles/PMC3070834/#:~:text=vi)%20Temporal%20tuning,%2C%20%5B16%2C%2021%5D).
https://pmc.ncbi.nlm.nih.gov/articles/PMC3070834/#:~:text=vi)%20Temporal%20tuning,%2C%20%5B16%2C%2021%5D).
https://pmc.ncbi.nlm.nih.gov/articles/PMC3070834/#:~:text=vi)%20Temporal%20tuning,%2C%20%5B16%2C%2021%5D).

16

APPENDICES OVERVIEW

Here you can find the supplementary materials for this paper:
- **Appendix A:** Consent Form
- **Appendix B:** Post Experiment Questionnaire
- **Appendix C:** MATLAB Code – Scripts used for all analyses.

A CONSENT FORM

1

Visual attention: An eye-tracking experiment
Informed consent form for participants

Researchers
Khushboo Sharma, MSc student
E‐mail: k.sharma-2@student.tudelft.nl

Dr.ir. Y.B. Eisma
E‐mail: y.b.eisma@tudelft.nl

Location
Room F-0-640
Department of Cognitive Robotics
Faculty of Mechanical Engineering, Delft University of Technology
Mekelweg 2, 2628 CD Delft

This document describes the purpose of this study, the experimental procedure, the right to withdraw, and data
handling procedures. Read all sections carefully and answer the questions on page 2.

NOTE: The measurement equipment functions better with contact lenses than glasses. If possible, please
wear contact lenses instead of glasses.

Research purpose
The aim of this experiment is to investigate, by means of eye-tracking, the legibility of text on visually
complex backgrounds.

Experimental procedure
Before the experiment: You will be asked to rest your head on the support and look at specific places on
the screen so that we can calibrate the eye-tracking equipment.

During the experiment: First, you will be asked to locate and identify words that will appear on a visually
complex background.

After the experiment: You will be asked to complete a short questionnaire about basic demographic
characteristics, including gender, age, and whether you wear glasses/contacts.

Experimental setup with head support and eye-tracker.

Experiment duration
The experiment will take about 45 minutes.

2

Risk of participating
There are no known risks for you in this study. Some minor eyestrain or discomfort may arise from the
monitoring task. If at any point you begin to feel uneasy for any reason, please do not hesitate to inform
the experimenter so that you can take a break to counteract any such symptoms.

Data handling
All data in this study will be collected and stored anonymously. You will not be personally identifiable in
any future publications based on this work or in any data files that may be stored in an online repository
or shared with other researchers.

This signed consent form will be kept in a dedicated locker.

Right to withdraw
Your participation is completely voluntary, and you may stop at any time during the experiment for any
reason. You have the right to refuse to participate or to withdraw from the experiment at any point before
the end of your participation, without negative consequences and without having to provide any
explanation. Please note that because the data are collected anonymously, it will not be possible to
withdraw your data after your participation.

Please respond to the following statements
Statement Yes No
I consent to participate voluntarily in this study.
I have read and understood the information provided in this document.
I understand that I can withdraw from the study at any point before the completion of my
participation, without any negative consequences.

I agree that the data collected during the experiment as described above will be used for
academic research and may be anonymously presented in publications and public data
repositories.

Signature
Name:

Date:

Signature: ___________________

19

B QUESTIONNAIRES

* Required

* This form will record your name, please fill your name.

Post Experiment Questionnaire - Visual attention: An eye-
tracking experiment
Thank you for your participation in the eye-tracking experiment. Please fill in the questionnaire below as the final step. If
you have any questions or need clarification, feel free to ask the researcher.

Section 1: Participant information

Participant ID *

1

Age *

2

Woman

Man

Non-binary

Prefer not to say

Gender *

3

Yes, I wore glasses during the experiment

Yes, I wore contact lenses during the experiment

No, I usually wear glasses or contact lenses, but not during the experiment

No, I usually don't wear glasses or contact lenses

Did you wear any visual aids during the experiment? *

4

No

Not sure

Other

Do you have any reading disabilities (e.g., dyslexia)? If yes, please select 'other' and specify. *

5

Section 2: Color blindness check

Each of the six images below contains a circular plate made up of various coloured dots. A number can be seen in
most of the plates, although in some plates, you will see nothing else than unrelated dots. For each number, type
the number that you see, if any.

If you see a number in the image on the right,
type it here. If you do not see any number, type
'N'. *

6

If you see a number in the image on the right,
type it here. If you do not see any number, type
'N'. *

7

If you see a number in the image on the right,
type it here. If you do not see any number, type
'N'. *

8

If you see a number in the image on the right,
type it here. If you do not see any number, type
'N'. *

9

If you see a number in the image on the right,
type it here. If you do not see any number, type
'N'. *

10

If you see a number in the image on the right,
type it here. If you do not see any number, type
'N'. *

11

Section 3: General task experience

 On a scale from 1 ('Not at all focused') to 5 ('Completely focused'), how focused did you feel during
the task? *

12

1 2 3 4 5

Very easy

Easy

Neutral

Difficult

Very difficult

Overall, how difficult was it to find the words? *

13

Very easy

Easy

Neutral

Difficult

Very difficult

Overall, how difficult was it to read the words once you found them? *

14

Focus level

Section 4: Perceived variation during the task

No, they were all equally easy/difficult to find and read

Yes, some were slightly easier or harder to find and read

Yes, some were much easier or harder to find and read

Not sure / I didn’t notice

Did you notice differences in how easy or difficult it was to find and read the words during the
experiment? *

15

Background visual noise

Position of the word

Fontsize of the word

Color or shadow of the word

I didn’t notice any differences

Other

If you noticed differences in how easy or difficult it was to find and read the words, what do you
think caused these differences? (Select all that apply) *

16

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Section 5: Feedback and Impressions

Did anything make the task easier or harder? *

17

Was there anything about the color or shadow of the words that stood out to you, positively or
negatively? *

18

Did you use any search strategies during each trial? *

19

Do you have any feedback or other remarks about the experiment? *

20

28

C MATLAB CODE

1 clc; clear;
2

3 % Load fixation-annotated data
4 load(’Grouped_EyetrackingData_FixationsTrimmedCleaned.mat’, ’groupedByFontsizeAndCondition’);
5

6 % Define AOI sizes per font (+30 +30) on each side
7 aoiSizes.f12 = [147, 91]; %87 x 31 being the max pixel sizes % width, height in pixels
8 aoiSizes.f18 = [169, 96]; %109 x 36 being the max pixel sizes
9 aoiSizes.f24 = [192, 101]; %132 x 41 being the max pixel sizes

10 aoiSizes.f69 = [365, 144]; %305 x 84 being the max pixel sizes %30percent total vs 20 percent
11

12 fontsizeFields = fieldnames(groupedByFontsizeAndCondition);
13

14 % Loop through font sizes
15 for f = 1:numel(fontsizeFields)
16 fsField = fontsizeFields{f};
17 condStruct = groupedByFontsizeAndCondition.(fsField);
18 aoiSize = aoiSizes.(fsField); % Get AOI width and height for this font
19

20 condFields = fieldnames(condStruct);
21

22 % Loop through each condition
23 for c = 1:numel(condFields)
24 condField = condFields{c};
25 trials = condStruct.(condField);
26

27 for t = 1:numel(trials)
28 trial = trials{t};
29 if ~isfield(trial, ’Fixation_stats_struct’) || isempty(trial.

Fixation_stats_struct)
30 fprintf(’ Skipped trial %d in fontsize %s, condition %s no fixation

stats found.\n’, t, fsField, condField);
31 continue;
32 end
33

34 % Get stimulus position
35 stimX = trial.stimulusX;
36 stimY = trial.stimulusY;
37

38 % AOI boundaries
39 halfW = aoiSize(1) / 2;
40 halfH = aoiSize(2) / 2;
41

42 AOI_left = stimX - halfW;
43 AOI_right = stimX + halfW;
44 AOI_top = stimY - halfH;
45 AOI_bottom = stimY + halfH;
46

47 % Check each fixation
48 % Check each fixation in Fixation_stats_struct
49 for fx = 1:numel(trial.Fixation_stats_struct)
50 fix = trial.Fixation_stats_struct(fx);
51

52 % fix.x and fix.y are assumed scalar values for this fixation
53 inAOI = fix.x >= AOI_left & fix.x <= AOI_right & ...
54 fix.y >= AOI_top & fix.y <= AOI_bottom;
55

56 % Add the inAOI field to the struct element
57 trial.Fixation_stats_struct(fx).inAOI = inAOI;
58 end
59

60 % Save updated trial
61 groupedByFontsizeAndCondition.(fsField).(condField){t} = trial;
62 end
63 end
64 end

29

65

66 % Save updated structure
67 save(’Grouped_EyetrackingData_Fixations_WithAOI.mat’, ’groupedByFontsizeAndCondition’);
68 fprintf(’ Saved: Grouped_EyetrackingData_Fixations_WithAOI.mat\n’);

Listing 1: MATLAB Code to Extract fixations in AOI

1 clc; clear;
2

3 % Load data
4 load(’Grouped_EyetrackingData_Fixations_WithAOI.mat’);
5

6 fontsizeLabels = {’f12’, ’f18’, ’f24’, ’f69’};
7 conditionLabels = {’1S’, ’2S’, ’3S’, ’4S’, ’5S’, ’6S’, ...
8 ’1NS’, ’2NS’, ’3NS’, ’4NS’, ’5NS’, ’6NS’};
9

10 Results = struct();
11 %processingTimeResults = struct();
12 skippedDueToInvalidResponse = table([], [], [], ...
13 ’VariableNames’, {’TrialID’, ’ParticipantResponse’, ’CorrectResponse’});
14

15

16 for f = 1:numel(fontsizeLabels)
17 fontsize = fontsizeLabels{f};
18

19 for c = 1:numel(conditionLabels)
20 condition = conditionLabels{c};
21 fieldName = [’cond_’ condition];
22

23 % Initialize result containers
24 Results.(fontsize).(fieldName) = [];
25 %processingTimeResults.(fontsize).(fieldName) = [];
26

27 if ~isfield(groupedByFontsizeAndCondition.(fontsize), fieldName)
28 fprintf(’ Skipped: %s - %s (missing field)\n’, fontsize, condition);
29 continue;
30 end
31

32 trials = groupedByFontsizeAndCondition.(fontsize).(fieldName);
33 numTrials = numel(trials);
34 fprintf(’\ n Processing %d trials for %s - %s\n’, numTrials, fontsize, condition);
35

36 for t = 1:numTrials
37 trial = trials{t};
38

39 if ~isfield(trial, ’Fixation_stats_struct’) || isempty(trial.
Fixation_stats_struct)

40 fprintf(’ Trial %d skipped: missing Fixation_stats_struct\n’, t);
41 continue;
42 end
43

44 fs = trial.Fixation_stats_struct;
45

46 if ~isfield(fs, ’start’) || ~isfield(fs, ’inAOI’) || isempty(fs.start)
47 fprintf(’ Trial %d skipped: missing "start" or "inAOI"\n’, t);
48 continue;
49 end
50

51 response = strtrim(lower(trial.Participant_response));
52 correct = strtrim(lower(trial.correct_response));
53

54 % Before processingTime calculation
55 forceProcessingNaN = false;
56

57 % Check for no response or ’p’
58 if isempty(response) || strcmp(response, ’p’)
59 fprintf(’ Trial %d: participant did not see the word processingTime

set to NaN, noticeability recorded\n’, t);

30

60 forceProcessingNaN = true; % mark processing time missing, but do NOT skip
trial

61 % no continue; so trial proceeds
62 end
63

64 % Check for correctness with typo tolerance
65 if ~isCorrectResponse(response, correct)
66 fprintf(’ Trial %d: incorrect or invalid response processingTime

set to NaN, noticeability recorded\n’, t);
67

68 % Capture TrialID if available; fallback to ’Unknown’
69 if isfield(trial, ’TrialID’)
70 trialID = trial.TrialID;
71 else
72 trialID = sprintf(’%s_%s_Trial%d’, fontsize, condition, t);
73 end
74

75 % Append to skipped table (for your tracking)
76 newRow = {trialID, response, correct};
77 skippedDueToInvalidResponse = [skippedDueToInvalidResponse; newRow];
78

79 forceProcessingNaN = true; % mark processing time missing, but do NOT skip
trial

80 % no continue; so trial proceeds
81 end
82

83 % Identify last group of consecutive AOI fixations (from end)
84 fixationInAOI = fs.inAOI;
85 numFixations = length(fixationInAOI);
86

87 % Reverse loop to find the last group of AOI fixations
88 lastGroupStart = -1;
89 lastGroupEnd = -1;
90

91 for i = numFixations:-1:1
92 if fixationInAOI(i)
93 if lastGroupEnd == -1
94 lastGroupEnd = i; % Mark end of the group
95 end
96 lastGroupStart = i; % Keep updating to find the start
97 elseif lastGroupEnd ~= -1
98 % We just passed through the last AOI group
99 break;

100 end
101 end
102

103 % Check if an AOI group was found
104 if lastGroupStart == -1
105 fprintf(’ Trial %d skipped: no fixation in AOI\n’, t);
106 continue;
107 end
108

109 % Get noticeability from the first fixation in the last AOI group
110 timeToFirstFixation = fs.start(lastGroupStart);
111

112 % Reaction time values
113 rtVal = -1;
114 if isfield(trial, ’RT’) && ~isempty(trial.RT)
115 rtVal = trial.RT;
116 end
117

118 rtInvVal = -1;
119 if isfield(trial, ’RT_gaze_inside_invisible_boundry’) && ~isempty(trial.

RT_gaze_inside_invisible_boundry)
120 rtInvVal = trial.RT_gaze_inside_invisible_boundry;
121 end
122

123 % Calculate processing time

31

124 if rtInvVal ~= -1
125 processingTime = rtInvVal - timeToFirstFixation;
126 else
127 processingTime = rtVal - timeToFirstFixation;
128 end
129

130 if (trial.timestamps(end) - trial.timestamps(1) >= 30000)
131 timeToFirstFixation = 30000;
132 processingTime = NaN;
133 end
134

135 % Override processingTime if flagged
136 if forceProcessingNaN
137 processingTime = NaN;
138 end
139

140 % Calculate trial length from timestamps (if not done yet)
141 if isfield(trial, ’timestamps’) && numel(trial.timestamps) >= 2
142 trialLength = trial.timestamps(end) - trial.timestamps(1);
143 else
144 trialLength = 0;
145 end
146

147 % Determine reactionTime with your new condition
148 if (trialLength >= 30000) || (rtInvVal == -1 && rtVal == -1)
149 reactionTime = 30000;
150 else
151 if rtInvVal ~= -1
152 reactionTime = rtInvVal;
153 elseif rtVal ~= -1
154 reactionTime = rtVal;
155 else
156 reactionTime = NaN; % fallback just in case
157 end
158 end
159

160 % Store results
161 %noticeabilityResults.(fontsize).(fieldName)(end+1) = timeToFirstFixation;
162 %processingTimeResults.(fontsize).(fieldName)(end+1) = processingTime;
163 participantID = trial.Session_Name_; % or trial.Participant_ID if available
164 Background = trial.Background;
165 PositionX = trial.stimulusX;
166 PositionY = trial.stimulusY;
167

168 % Store results in a table or struct array
169 entry = struct(...
170 ’Participant’, participantID, ...
171 ’Background’, Background, ...
172 ’Noticeability’, timeToFirstFixation, ...
173 ’ProcessingTime’, processingTime, ...
174 ’ReactionTime’, reactionTime, ...
175 ’X’, PositionX, ...
176 ’Y’, PositionY ...
177);
178

179 if ~isfield(Results.(fontsize).(fieldName), ’data’)
180 Results.(fontsize).(fieldName).data = [];
181 end
182

183 Results.(fontsize).(fieldName).data = [Results.(fontsize).(fieldName).data; entry
];

184

185

186 %fprintf(’ Trial %d: Noticeability = %.2f ms | ProcessingTime = %.2f ms\n’,
...

187 %t, timeToFirstFixation, processingTime);
188 end
189 % Extract numeric vectors from the struct array

32

190 dataEntries = Results.(fontsize).(fieldName).data;
191

192 if ~isempty(dataEntries)
193 % Convert struct array to table for easy numeric access
194 T = struct2table(dataEntries);
195

196 % Only use valid numbers (exclude NaNs)
197 noticeVals = T.Noticeability(~isnan(T.Noticeability));
198 procVals = T.ProcessingTime(~isnan(T.ProcessingTime));
199 rtVals = T.ReactionTime(~isnan(T.ReactionTime));
200

201 % Compute mean and std
202 meanNotice = mean(noticeVals);
203 stdNotice = std(noticeVals);
204

205 meanProc = mean(procVals);
206 stdProc = std(procVals);
207

208 meanRT = mean(rtVals);
209 stdRT = std(rtVals);
210

211 % Print nicely
212 fprintf(’\ n Summary for %s - %s\n’, fontsize, condition);
213 fprintf(’Noticeability: Mean = %.2f ms, Std = %.2f ms\n’, meanNotice, stdNotice);
214 fprintf(’ProcessingTime: Mean = %.2f ms, Std = %.2f ms\n’, meanProc, stdProc);
215 fprintf(’ReactionTime: Mean = %.2f ms, Std = %.2f ms\n’, meanRT, stdRT);
216 end
217

218 end
219 end
220

221 Results.(fontsize).(fieldName).Summary = struct(...
222 ’MeanNoticeability’, meanNotice, ...
223 ’StdNoticeability’, stdNotice, ...
224 ’MeanProcessingTime’, meanProc, ...
225 ’StdProcessingTime’, stdProc, ...
226 ’MeanReactionTime’, meanRT, ...
227 ’StdReactionTime’, stdRT ...
228);
229

230 %% Average per participant
231 averagedResults = struct();
232

233 for f = 1:numel(fontsizeLabels)
234 fontsize = fontsizeLabels{f};
235 for c = 1:numel(conditionLabels)
236 cond = conditionLabels{c};
237 fieldName = [’cond_’ cond];
238

239 if isfield(Results.(fontsize), fieldName)
240 data = Results.(fontsize).(fieldName).data;
241

242 % Convert struct array to table for easy grouping
243 if ~isempty(data)
244 T = struct2table(data);
245

246 % Exclude NaNs before grouping
247 T = T(~isnan(T.Noticeability) & ~isnan(T.ProcessingTime) & ~isnan(T.

ReactionTime), :);
248

249 % Group by Participant and average
250 grouped = groupsummary(T, ’Participant’, ’mean’, {’Noticeability’, ’

ProcessingTime’, ’ReactionTime’});
251

252 % Save averaged results
253 averagedResults.(fontsize).(fieldName).Participants = grouped.Participant;
254 averagedResults.(fontsize).(fieldName).Noticeability = grouped.

mean_Noticeability;

33

255 averagedResults.(fontsize).(fieldName).ProcessingTime = grouped.
mean_ProcessingTime;

256 averagedResults.(fontsize).(fieldName).ReactionTime = grouped.
mean_ReactionTime;

257 end
258 end
259 end
260 end
261

262 fprintf(’\n--- Normality Check for Noticeability (per participant means) ---\n’);
263 for f = 1:numel(fontsizeLabels)
264 fontsize = fontsizeLabels{f};
265

266 for c = 1:numel(conditionLabels)
267 cond = conditionLabels{c};
268 fieldName = [’cond_’ cond];
269

270 if isfield(averagedResults.(fontsize), fieldName)
271 values = averagedResults.(fontsize).(fieldName).Noticeability; % one value per

participant
272

273 if numel(values) > 4 % Lillietest needs a few samples
274 [h,p] = lillietest(values);
275 fprintf(’Font: %-4s | Condition: %-8s | H=%d | p=%.4f\n’, ...
276 fontsize, cond, h, p);
277 end
278 end
279 end
280 end
281

282 fprintf(’\n--- Normality Check for Processing Time (H=1 means NOT normal) ---\n’);
283

284 for f = 1:numel(fontsizeLabels)
285 fontsize = fontsizeLabels{f};
286

287 for c = 1:numel(conditionLabels)
288 cond = conditionLabels{c};
289 fieldName = [’cond_’ cond];
290

291 % Check if data exists
292 if isfield(averagedResults.(fontsize), fieldName)
293 values = averagedResults.(fontsize).(fieldName).ProcessingTime;
294

295 if ~isempty(values) && numel(values) > 4 % Minimum samples for reliable test
296 [h, p] = lillietest(values);
297 fprintf(’Font: %-4s | Condition: %-4s | H=%d | p=%.4f\n’, ...
298 fontsize, cond, h, p);
299 end
300 end
301 end
302 end
303

304 save(’Noticeability_ProcessingTime_Results.mat’, ’Results’, ’averagedResults’);
305 fprintf(’\ n Results saved to Noticeability_ProcessingTime_Results.mat\n’);

Listing 2: MATLAB Code Meaningful fixations and trial filtration

1 clear all; clc;
2

3 %% Typo tolerant
4 resultsFolder = ’C:\...\Cleaned_data\’; %% Folder path with the Results_file from Experiment

Builder
5 fileList = dir(fullfile(resultsFolder, ’RESULTS_FILE_*.txt’));
6

7 % Prepare storage
8 fontsizes = [12, 18, 24, 69];
9 groupedByFontsize = struct();

10 groupedByFontsizeAndCondition = struct();

34

11

12 % Initialize
13 for f = fontsizes
14 groupedByFontsize.(sprintf(’f%d’, f)) = [];
15 groupedByFontsizeAndCondition.(sprintf(’f%d’, f)) = struct();
16 end
17

18 % Loop through all result files
19 for i = 1:length(fileList)
20 fileName = fileList(i).name;
21 filePath = fullfile(resultsFolder, fileName);
22

23

24 tokens = regexp(fileName, ’RESULTS_FILE_(\d+)_(\d+)\.txt’, ’tokens’);
25 if isempty(tokens)
26 warning(’Filename does not match pattern: %s’, fileName);
27 continue;
28 end
29

30 participantID = str2double(tokens{1}{1}); % 19
31 fontsize = str2double(tokens{1}{2}); % 12
32 fsField = sprintf(’f%d’, fontsize); % "f12"
33

34

35 fprintf(’File: %s -> participantID=%d, fontsize=%d\n’, fileName, participantID, fontsize)
;

36

37

38 % Read table
39 T = readtable(filePath, ’Delimiter’, ’\t’);
40

41 % Initialize correctness vector
42 correct = false(height(T), 1);
43

44

45 % Apply typo-tolerant accuracy check
46 for r = 1:height(T)
47 target = string(T.correct_response{r});
48 response = string(T.Participant_response{r});
49

50 condition = strtrim(T.Current_TransparencyCondition{r});
51

52 % Use your isCorrectResponse function (fixed maxDistance = 2)
53 correct(r) = isCorrectResponse(response, target, 2);
54

55 % If incorrect, print details
56 if ~correct(r)
57 fprintf(’Incorrect trial in %s (row %d): Target="%s", Response="%s", Condition=%s

\n’, ...
58 fileName, r, target, response, condition);
59 end
60

61 % Store per condition per participant
62 if strcmpi(condition,’9I’), continue; end % skip 9I
63

64 condField = matlab.lang.makeValidName([’cond_’ condition]);
65

66 % Initialize condition struct if needed
67 if ~isfield(groupedByFontsizeAndCondition.(fsField), condField)
68 groupedByFontsizeAndCondition.(fsField).(condField) = struct();
69 end
70

71 % Initialize participant array if needed
72 participantField = [’p’ num2str(participantID)];
73 if ~isfield(groupedByFontsizeAndCondition.(fsField).(condField), participantField)
74 groupedByFontsizeAndCondition.(fsField).(condField).(participantField) = [];
75 end
76

35

77 % Append this trial correctness
78 groupedByFontsizeAndCondition.(fsField).(condField).(participantField) = ...
79 [groupedByFontsizeAndCondition.(fsField).(condField).(participantField), correct(

r)];
80 end
81

82

83 % Store per fontsize
84 groupedByFontsize.(fsField) = [groupedByFontsize.(fsField); correct];
85 end
86

87 % Define custom labels for the conditions
88 customLabels = {’Green NS’, ’Green S’, ’White NS’, ’White S’, ’30% NS’, ’30% S’, ’50% NS’, ’

50% S’, ’75% NS’, ’75% S’, ’100% NS’, ’100% S’}; % replace with your actual labels
89

90 figure;
91

92 figure;
93 for i = 1:numel(fontsizes)
94 f = fontsizes(i);
95 fsField = sprintf(’f%d’, f);
96

97 condStruct = groupedByFontsizeAndCondition.(fsField);
98 condNames = fieldnames(condStruct);
99 condAcc = zeros(1, numel(condNames));

100

101 for c = 1:numel(condNames)
102 % Extract participant-wise accuracies
103 participantStruct = condStruct.(condNames{c});
104 participantIDs = fieldnames(participantStruct); % <-- use fieldnames here
105 partAcc = zeros(1, numel(participantIDs));
106

107 for k = 1:numel(participantIDs)
108 pid = participantIDs{k};
109 trials = participantStruct.(pid);
110 partAcc(k) = mean(trials); % mean for this participant
111 end
112

113 % Now average across participants
114 condAcc(c) = mean(partAcc) * 100;
115 end
116

117 subplot(2, 2, i);
118 bar(categorical(condNames), condAcc);
119 xticklabels(customLabels); % custom x-axis labels, same for all subplots
120 title(sprintf(’Accuracy per Condition (Fontsize %d)’, f));
121 ylabel(’Accuracy (%)’);
122 ylim([0 100]); grid on;
123

124 % Add horizontal line at 95%
125 yline(95, ’--r’, ’LabelHorizontalAlignment’, ’left’, ...
126 ’LabelVerticalAlignment’, ’bottom’, ’LineWidth’, 1.5);
127 end

Listing 3: MATLAB Code Accuracy plot

1 clc; clear all;
2

3 load(’Noticeability_ProcessingTime_Factors.mat’, ’T’); %% Choose which factor levels to keep
4 selectedFonts = {’f12’,’f18’,’f24’, ’f69’}; %% Choose which factor levels to kee
5 selectedConditions= {’cond_1’,’cond_2’,’cond_3’, ’cond_4’, ’cond_5’, ’cond_6’};
6 selectedShadows = {’S’, ’NS’};
7

8 % Ensure categorical variables
9 T.FontSize = categorical(T.FontSize);

10 T.Condition = categorical(T.Condition);
11 T.Shadow = categorical(T.Shadow);
12 T.Participant = categorical(T.Participant); % clean participant ID

36

13 T.Background = categorical(T.Background); % assuming background column exists
14

15 % === Filter by selected factors ===
16 T_filtered = T(ismember(T.FontSize, selectedFonts) & ...
17 ismember(T.Condition, selectedConditions) & ...
18 ismember(T.Shadow, selectedShadows), :);
19

20 % === Remove rows with NaNs in the dependent variables ===
21 T_clean = T_filtered(~isnan(T_filtered.ProcessingTime) & ...
22 ~isnan(T_filtered.ReactionTime) & ...
23 ~isnan(T_filtered.Noticeability), :);
24

25 % === Drop unused factor levels ===
26 T_clean.FontSize = removecats(T_clean.FontSize);
27 T_clean.Condition = removecats(T_clean.Condition);
28 T_clean.Shadow = removecats(T_clean.Shadow);
29 T_clean.Participant = removecats(T_clean.Participant);
30 T_clean.Background = removecats(T_clean.Background);
31

32 % Convert positions from cell to numeric
33 T_clean.Xposition = cell2mat(T_clean.Xposition);
34 T_clean.Yposition = cell2mat(T_clean.Yposition);
35

36 % Define stimulus area bounds
37 H_min = 202; H_max = 1717; % horizontal
38 V_min = 62; V_max = 1018; % vertical
39

40 % Normalize positions
41 T_clean.HorNorm = (T_clean.Xposition - H_min) / (H_max - H_min);
42 T_clean.VerNorm = (T_clean.Yposition - V_min) / (V_max - V_min);
43

44 % Replace negative ProcessingTime values with NaN
45 negProcessIdx = T_clean.ProcessingTime < 0;
46 if any(negProcessIdx)
47 fprintf(’Setting %d negative ProcessingTime values to NaN.\n’, sum(negProcessIdx));
48 T_clean.ProcessingTime(negProcessIdx) = NaN;
49 end
50

51 %Noticeability
52 glme_notice = fitglme(T_clean, ’Noticeability ~ FontSize*Condition*Shadow + HorNorm + VerNorm

+ (1|Participant) + (1 + Condition|Background)’, ’Distribution’,’Gamma’,’Link’,’log’);
53 anova(glme_notice) % fixed effects
54 %disp(glme_notice) % model summary
55 meanValue = mean(T_clean.Noticeability);
56 stdValue = std(T_clean.Noticeability);
57 minValue = min(T_clean.Noticeability);
58 maxValue = max(T_clean.Noticeability);
59

60 fprintf(’Mean: %.2f, SD: %.2f, Min: %.2f, Max: %.2f\n’, meanValue, stdValue, minValue,
maxValue);

61

62 %Processingtime
63 glme_time = fitglme(T_clean, ...
64 ’ProcessingTime ~ FontSize*Condition*Shadow + HorNorm + VerNorm + (1|Participant) + (1 +

FontSize|Background)’, ...
65 ’Distribution’, ’Gamma’, ’Link’, ’log’); %(1 + FontSize|Background)
66 anova(glme_time)
67 %disp(glme_time)
68

69 %% Descriptive statistics
70 summaryVars = {’Noticeability’,’ProcessingTime’};
71

72 %% 1. Table with one row per FontSize (collapsed over Condition and Shadow)
73 summaryFont_Mean = varfun(@mean, T_clean, ...
74 ’InputVariables’, summaryVars, ...
75 ’GroupingVariables’, {’FontSize’});
76

77 summaryFont_SD = varfun(@std, T_clean, ...

37

78 ’InputVariables’, summaryVars, ...
79 ’GroupingVariables’, {’FontSize’});
80

81 % Merge mean and SD
82 summaryFont = join(summaryFont_Mean, summaryFont_SD, ’Keys’, {’FontSize’});
83

84 % Rename columns
85 summaryFont.Properties.VariableNames{’mean_Noticeability’} = ’Noticeability_Mean’;
86 summaryFont.Properties.VariableNames{’std_Noticeability’} = ’Noticeability_SD’;
87 summaryFont.Properties.VariableNames{’mean_ProcessingTime’} = ’ProcessingTime_Mean’;
88 summaryFont.Properties.VariableNames{’std_ProcessingTime’} = ’ProcessingTime_SD’;
89

90 disp(’Summary table: one row per FontSize’)
91 disp(summaryFont)
92

93 % 2. Table with one row per Condition (collapsed over FontSize and Shadow)
94 summaryCond_Mean = varfun(@mean, T_clean, ...
95 ’InputVariables’, summaryVars, ...
96 ’GroupingVariables’, {’Condition’});
97

98 summaryCond_SD = varfun(@std, T_clean, ...
99 ’InputVariables’, summaryVars, ...

100 ’GroupingVariables’, {’Condition’});
101

102 % Merge mean and SD
103 summaryCond = join(summaryCond_Mean, summaryCond_SD, ’Keys’, {’Condition’});
104

105 % Rename columns
106 summaryCond.Properties.VariableNames{’mean_Noticeability’} = ’Noticeability_Mean’;
107 summaryCond.Properties.VariableNames{’std_Noticeability’} = ’Noticeability_SD’;
108 summaryCond.Properties.VariableNames{’mean_ProcessingTime’} = ’ProcessingTime_Mean’;
109 summaryCond.Properties.VariableNames{’std_ProcessingTime’} = ’ProcessingTime_SD’;
110

111 disp(’Summary table: one row per Condition’)
112 disp(summaryCond)
113

114

115 %% Loop over conditions and plot mean per font
116 fontSizesDeg = [0.1, 0.15, 0.2, 0.6]; % X-axis labels
117 for j = 1:numel(conditions)
118 cond = conditions(j);
119 meanNotice = zeros(1,numel(fontSizesDeg));
120 for i = 1:numel(fontSizesDeg)
121 % Index for this FontSize x Condition combination
122 idx = (FontDeg == fontSizesDeg(i)) & (T_clean.Condition == cond);
123 meanNotice(i) = mean(T_clean.Noticeability(idx));
124 end
125 % Plot line for this condition
126 plot(fontSizesDeg, meanNotice, ’-o’, ’Color’, colors(j,:), ’Marker’, markerStyles{mod(j

-1,numel(markerStyles))+1}, ’LineWidth’, 1.5);
127 end
128

129

130

131 % Map FontSize categorical to visual angles
132 fontMapping = containers.Map({’f12’,’f18’,’f24’,’f69’}, [0.1, 0.15, 0.2, 0.6]);
133 FontDeg = zeros(height(T_clean),1);
134 for k = 1:height(T_clean)
135 FontDeg(k) = fontMapping(char(T_clean.FontSize(k)));
136 end
137

138 % Conditions (categorical or numeric)
139 conditions = unique(T_clean.Condition);
140

141 % Define your custom legend labels here
142 customLegend = {’Plain green text’, ’Plain white text’, ’30% billboard’, ...
143 ’50% billboard’, ’75% billboard’, ’100% billboard’};
144

38

145 % Prepare for plotting
146 colors = lines(numel(conditions)); % assign colors to conditions
147 markerStyles = {’o’,’s’,’^’,’d’,’v’,’>’}; % marker styles
148

149 %% NOTICEABILITY PLOT
150 figure; hold on;
151 fontSizesDeg = [0.1, 0.15, 0.2, 0.6]; % X-axis labels
152 for j = 1:numel(conditions)
153 cond = conditions(j);
154 meanNotice = zeros(1,numel(fontSizesDeg));
155 for i = 1:numel(fontSizesDeg)
156 % Index for this FontSize x Condition combination
157 idx = (FontDeg == fontSizesDeg(i)) & (T_clean.Condition == cond);
158 meanNotice(i) = mean(T_clean.Noticeability(idx), ’omitnan’);
159 end
160 % Plot line for this condition
161 plot(fontSizesDeg, meanNotice, ’-o’, ’Color’, colors(j,:), ...
162 ’Marker’, markerStyles{mod(j-1,numel(markerStyles))+1}, ’LineWidth’, 1.5);
163 end
164

165 xlabel(’Font size ()’);
166 ylabel(’Mean Noticeability (ms)’);
167 xlim([0.05 0.65]);
168 xticks(fontSizesDeg);
169 legend(customLegend, ’Location’, ’best’);
170 title(’Noticeability vs Font Size per Condition’);
171 grid on; box on;
172

173 %% PROCESSING TIME PLOT
174 figure; hold on;
175 for j = 1:numel(conditions)
176 cond = conditions(j);
177 meanProc = zeros(1,numel(fontSizesDeg));
178 for i = 1:numel(fontSizesDeg)
179 idx = (FontDeg == fontSizesDeg(i)) & (T_clean.Condition == cond);
180 meanProc(i) = mean(T_clean.ProcessingTime(idx), ’omitnan’);
181 end
182 plot(fontSizesDeg, meanProc, ’-o’, ’Color’, colors(j,:), ...
183 ’Marker’, markerStyles{mod(j-1,numel(markerStyles))+1}, ’LineWidth’, 1.5);
184 end
185

186 xlabel(’Font size ()’);
187 ylabel(’Mean Processing Time (ms)’);
188 xlim([0.05 0.65]);
189 xticks(fontSizesDeg);
190 legend(customLegend, ’Location’, ’best’);
191 title(’Processing Time vs Font Size per Condition’);
192 grid on; box on;
193

194

195

196 %% Post-hoc comparison
197

198 DV = T_clean.ProcessingTime; % or Noticeability
199 Subject = T_clean.Participant; % for within-subject pairing
200 Font = T_clean.FontSize;
201 Cond = T_clean.Condition;
202 Shadow = T_clean.Shadow;
203 glme = glme_time; % use for Processingtime
204 %glme = glme_notice; % use for Noticeability
205

206 all_pvals_posthoc = [];
207 all_pairs_posthoc = {};
208

209 %% FontSize
210 uniqueFont = categories(Font);
211 pFont = anova(glme); % p-value for FontSize from GLME
212 pFont = pFont.pValue(strcmp(pFont.Term,’FontSize’));

39

213

214 if length(uniqueFont) > 2 %&& pFont < 0.05
215 dataTable = table(Font, DV, Subject, ’VariableNames’, {’Font’,’DV’,’Participant’});
216 [pvals, pairs] = runWilcoxonPosthoc(dataTable, ’Font’);
217 all_pvals_posthoc = [all_pvals_posthoc, pvals];
218 all_pairs_posthoc = [all_pairs_posthoc, pairs];
219 else
220 fprintf(’FontSize has 2 or fewer levels, skipping Wilcoxon post-hoc.\n’);
221 end
222

223 %% Repeat for Condition
224 uniqueCond = categories(Cond);
225 pCond = anova(glme); % adjust to extract Condition p-value
226 pCond = pCond.pValue(strcmp(pCond.Term,’Condition’));
227

228 if length(uniqueCond) > 2 %&& pCond < 0.05
229 dataTable = table(Cond, DV, Subject, ’VariableNames’, {’Condition’,’DV’,’Participant’});
230 [pvals, pairs] = runWilcoxonPosthoc(dataTable, ’Condition’);
231 all_pvals_posthoc = [all_pvals_posthoc, pvals];
232 all_pairs_posthoc = [all_pairs_posthoc, pairs];
233 end
234

235 % Repeat for Shadow if needed
236 uniqueShadow = categories(Shadow);
237 pShadow = anova(glme); % adjust to extract Condition p-value
238 pShadow = pShadow.pValue(strcmp(pShadow.Term,’Shadow’));
239

240 if length(uniqueShadow) > 2 && pCond < 0.05
241 dataTable = table(Font, DV, Subject, ’VariableNames’, {’Font’,’DV’,’Participant’});
242 [pvals, pairs] = runWilcoxonPosthoc(dataTable, ’Font’);
243 all_pvals_posthoc = [all_pvals_posthoc, pvals];
244 all_pairs_posthoc = [all_pairs_posthoc, pairs];
245 end
246

247 fprintf(’=== Wilcoxon Signed-Rank Post-hoc Results ===\n’);
248 for k = 1:length(all_pvals_posthoc)
249 fprintf(’%s: p = %.6f\n’, all_pairs_posthoc{k}, all_pvals_posthoc(k));
250 end
251

252

253 if ~isempty(all_pvals_posthoc)
254 adj_pvals = holm_bonferroni(all_pvals_posthoc); % or FDR
255 for k = 1:length(all_pvals_posthoc)
256 fprintf(’%s: raw p = %.5f, corrected p = %.5f\n’, all_pairs_posthoc{k},

all_pvals_posthoc(k), adj_pvals(k));
257 end
258 end

Listing 4: MATLAB Code for statistical analysis Font size x Condition x Shadow

1 clc; clear all;
2

3 load(’Noticeability_ProcessingTime_Factors.mat’, ’T’); %% Choose which factor levels to keep
4 selectedFonts = {’f12’,’f18’,’f24’, ’f69’}; %% Choose which factor levels to kee
5 selectedConditions= {’cond_1’,’cond_2’,’cond_3’, ’cond_4’, ’cond_5’, ’cond_6’};
6 selectedShadows = {’S’, ’NS’};
7

8 % Ensure categorical variables
9 T.FontSize = categorical(T.FontSize);

10 T.Condition = categorical(T.Condition);
11 T.Shadow = categorical(T.Shadow);
12 T.Participant = categorical(T.Participant); % clean participant ID
13 T.Background = categorical(T.Background); % assuming background column exists
14

15 % === Filter by selected factors ===
16 T_filtered = T(ismember(T.FontSize, selectedFonts) & ...
17 ismember(T.Condition, selectedConditions) & ...
18 ismember(T.Shadow, selectedShadows), :);

40

19

20 % === Remove rows with NaNs in the dependent variables ===
21 T_clean = T_filtered(~isnan(T_filtered.ProcessingTime) & ...
22 ~isnan(T_filtered.ReactionTime) & ...
23 ~isnan(T_filtered.Noticeability), :);
24

25 % === Drop unused factor levels ===
26 T_clean.FontSize = removecats(T_clean.FontSize);
27 T_clean.Condition = removecats(T_clean.Condition);
28 T_clean.Shadow = removecats(T_clean.Shadow);
29 T_clean.Participant = removecats(T_clean.Participant);
30 T_clean.Background = removecats(T_clean.Background);
31

32 % Convert positions from cell to numeric
33 T_clean.Xposition = cell2mat(T_clean.Xposition);
34 T_clean.Yposition = cell2mat(T_clean.Yposition);
35

36 % Define stimulus area bounds
37 H_min = 202; H_max = 1717; % horizontal
38 V_min = 62; V_max = 1018; % vertical
39

40 % Normalize positions
41 T_clean.HorNorm = (T_clean.Xposition - H_min) / (H_max - H_min);
42 T_clean.VerNorm = (T_clean.Yposition - V_min) / (V_max - V_min);
43

44 % Replace negative ProcessingTime values with NaN
45 negProcessIdx = T_clean.ProcessingTime < 0;
46 if any(negProcessIdx)
47 fprintf(’Setting %d negative ProcessingTime values to NaN.\n’, sum(negProcessIdx));
48 T_clean.ProcessingTime(negProcessIdx) = NaN;
49 end
50

51 %Noticeability
52 glme_notice = fitglme(T_clean, ’Noticeability ~ FontSize*Condition*Shadow + HorNorm + VerNorm

+ (1|Participant) + (1 + Condition|Background)’, ’Distribution’,’Gamma’,’Link’,’log’);
53 anova(glme_notice) % fixed effects
54 %disp(glme_notice) % model summary
55 meanValue = mean(T_clean.Noticeability);
56 stdValue = std(T_clean.Noticeability);
57 minValue = min(T_clean.Noticeability);
58 maxValue = max(T_clean.Noticeability);
59

60 fprintf(’Mean: %.2f, SD: %.2f, Min: %.2f, Max: %.2f\n’, meanValue, stdValue, minValue,
maxValue);

61

62 %Processingtime
63 glme_time = fitglme(T_clean, ...
64 ’ProcessingTime ~ FontSize*Condition*Shadow + HorNorm + VerNorm + (1|Participant) + (1 +

FontSize|Background)’, ...
65 ’Distribution’, ’Gamma’, ’Link’, ’log’); %(1 + FontSize|Background)
66 anova(glme_time)
67 %disp(glme_time)
68

69 %% Descriptive statistics
70 summaryVars = {’Noticeability’,’ProcessingTime’};
71

72 %% 1. Table with one row per FontSize (collapsed over Condition and Shadow)
73 summaryFont_Mean = varfun(@mean, T_clean, ...
74 ’InputVariables’, summaryVars, ...
75 ’GroupingVariables’, {’FontSize’});
76

77 summaryFont_SD = varfun(@std, T_clean, ...
78 ’InputVariables’, summaryVars, ...
79 ’GroupingVariables’, {’FontSize’});
80

81 % Merge mean and SD
82 summaryFont = join(summaryFont_Mean, summaryFont_SD, ’Keys’, {’FontSize’});
83

41

84 % Rename columns
85 summaryFont.Properties.VariableNames{’mean_Noticeability’} = ’Noticeability_Mean’;
86 summaryFont.Properties.VariableNames{’std_Noticeability’} = ’Noticeability_SD’;
87 summaryFont.Properties.VariableNames{’mean_ProcessingTime’} = ’ProcessingTime_Mean’;
88 summaryFont.Properties.VariableNames{’std_ProcessingTime’} = ’ProcessingTime_SD’;
89

90 disp(’Summary table: one row per FontSize’)
91 disp(summaryFont)
92

93 % 2. Table with one row per Condition (collapsed over FontSize and Shadow)
94 summaryCond_Mean = varfun(@mean, T_clean, ...
95 ’InputVariables’, summaryVars, ...
96 ’GroupingVariables’, {’Condition’});
97

98 summaryCond_SD = varfun(@std, T_clean, ...
99 ’InputVariables’, summaryVars, ...

100 ’GroupingVariables’, {’Condition’});
101

102 % Merge mean and SD
103 summaryCond = join(summaryCond_Mean, summaryCond_SD, ’Keys’, {’Condition’});
104

105 % Rename columns
106 summaryCond.Properties.VariableNames{’mean_Noticeability’} = ’Noticeability_Mean’;
107 summaryCond.Properties.VariableNames{’std_Noticeability’} = ’Noticeability_SD’;
108 summaryCond.Properties.VariableNames{’mean_ProcessingTime’} = ’ProcessingTime_Mean’;
109 summaryCond.Properties.VariableNames{’std_ProcessingTime’} = ’ProcessingTime_SD’;
110

111 disp(’Summary table: one row per Condition’)
112 disp(summaryCond)
113

114

115 %% Loop over conditions and plot mean per font
116 fontSizesDeg = [0.1, 0.15, 0.2, 0.6]; % X-axis labels
117 for j = 1:numel(conditions)
118 cond = conditions(j);
119 meanNotice = zeros(1,numel(fontSizesDeg));
120 for i = 1:numel(fontSizesDeg)
121 % Index for this FontSize x Condition combination
122 idx = (FontDeg == fontSizesDeg(i)) & (T_clean.Condition == cond);
123 meanNotice(i) = mean(T_clean.Noticeability(idx));
124 end
125 % Plot line for this condition
126 plot(fontSizesDeg, meanNotice, ’-o’, ’Color’, colors(j,:), ’Marker’, markerStyles{mod(j

-1,numel(markerStyles))+1}, ’LineWidth’, 1.5);
127 end
128

129

130

131 % Map FontSize categorical to visual angles
132 fontMapping = containers.Map({’f12’,’f18’,’f24’,’f69’}, [0.1, 0.15, 0.2, 0.6]);
133 FontDeg = zeros(height(T_clean),1);
134 for k = 1:height(T_clean)
135 FontDeg(k) = fontMapping(char(T_clean.FontSize(k)));
136 end
137

138 % Conditions (categorical or numeric)
139 conditions = unique(T_clean.Condition);
140

141 % Define your custom legend labels here
142 customLegend = {’Plain green text’, ’Plain white text’, ’30% billboard’, ...
143 ’50% billboard’, ’75% billboard’, ’100% billboard’};
144

145 % Prepare for plotting
146 colors = lines(numel(conditions)); % assign colors to conditions
147 markerStyles = {’o’,’s’,’^’,’d’,’v’,’>’}; % marker styles
148

149 %% NOTICEABILITY PLOT
150 figure; hold on;

42

151 fontSizesDeg = [0.1, 0.15, 0.2, 0.6]; % X-axis labels
152 for j = 1:numel(conditions)
153 cond = conditions(j);
154 meanNotice = zeros(1,numel(fontSizesDeg));
155 for i = 1:numel(fontSizesDeg)
156 % Index for this FontSize x Condition combination
157 idx = (FontDeg == fontSizesDeg(i)) & (T_clean.Condition == cond);
158 meanNotice(i) = mean(T_clean.Noticeability(idx), ’omitnan’);
159 end
160 % Plot line for this condition
161 plot(fontSizesDeg, meanNotice, ’-o’, ’Color’, colors(j,:), ...
162 ’Marker’, markerStyles{mod(j-1,numel(markerStyles))+1}, ’LineWidth’, 1.5);
163 end
164

165 xlabel(’Font size ()’);
166 ylabel(’Mean Noticeability (ms)’);
167 xlim([0.05 0.65]);
168 xticks(fontSizesDeg);
169 legend(customLegend, ’Location’, ’best’);
170 title(’Noticeability vs Font Size per Condition’);
171 grid on; box on;
172

173 %% PROCESSING TIME PLOT
174 figure; hold on;
175 for j = 1:numel(conditions)
176 cond = conditions(j);
177 meanProc = zeros(1,numel(fontSizesDeg));
178 for i = 1:numel(fontSizesDeg)
179 idx = (FontDeg == fontSizesDeg(i)) & (T_clean.Condition == cond);
180 meanProc(i) = mean(T_clean.ProcessingTime(idx), ’omitnan’);
181 end
182 plot(fontSizesDeg, meanProc, ’-o’, ’Color’, colors(j,:), ...
183 ’Marker’, markerStyles{mod(j-1,numel(markerStyles))+1}, ’LineWidth’, 1.5);
184 end
185

186 xlabel(’Font size ()’);
187 ylabel(’Mean Processing Time (ms)’);
188 xlim([0.05 0.65]);
189 xticks(fontSizesDeg);
190 legend(customLegend, ’Location’, ’best’);
191 title(’Processing Time vs Font Size per Condition’);
192 grid on; box on;
193

194

195

196 %% Post-hoc comparison
197

198 DV = T_clean.ProcessingTime; % or Noticeability
199 Subject = T_clean.Participant; % for within-subject pairing
200 Font = T_clean.FontSize;
201 Cond = T_clean.Condition;
202 Shadow = T_clean.Shadow;
203 glme = glme_time; % use for Processingtime
204 %glme = glme_notice; % use for Noticeability
205

206 all_pvals_posthoc = [];
207 all_pairs_posthoc = {};
208

209 %% FontSize
210 uniqueFont = categories(Font);
211 pFont = anova(glme); % p-value for FontSize from GLME
212 pFont = pFont.pValue(strcmp(pFont.Term,’FontSize’));
213

214 if length(uniqueFont) > 2 %&& pFont < 0.05
215 dataTable = table(Font, DV, Subject, ’VariableNames’, {’Font’,’DV’,’Participant’});
216 [pvals, pairs] = runWilcoxonPosthoc(dataTable, ’Font’);
217 all_pvals_posthoc = [all_pvals_posthoc, pvals];
218 all_pairs_posthoc = [all_pairs_posthoc, pairs];

43

219 else
220 fprintf(’FontSize has 2 or fewer levels, skipping Wilcoxon post-hoc.\n’);
221 end
222

223 %% Repeat for Condition
224 uniqueCond = categories(Cond);
225 pCond = anova(glme); % adjust to extract Condition p-value
226 pCond = pCond.pValue(strcmp(pCond.Term,’Condition’));
227

228 if length(uniqueCond) > 2 %&& pCond < 0.05
229 dataTable = table(Cond, DV, Subject, ’VariableNames’, {’Condition’,’DV’,’Participant’});
230 [pvals, pairs] = runWilcoxonPosthoc(dataTable, ’Condition’);
231 all_pvals_posthoc = [all_pvals_posthoc, pvals];
232 all_pairs_posthoc = [all_pairs_posthoc, pairs];
233 end
234

235 % Repeat for Shadow if needed
236 uniqueShadow = categories(Shadow);
237 pShadow = anova(glme); % adjust to extract Condition p-value
238 pShadow = pShadow.pValue(strcmp(pShadow.Term,’Shadow’));
239

240 if length(uniqueShadow) > 2 && pCond < 0.05
241 dataTable = table(Font, DV, Subject, ’VariableNames’, {’Font’,’DV’,’Participant’});
242 [pvals, pairs] = runWilcoxonPosthoc(dataTable, ’Font’);
243 all_pvals_posthoc = [all_pvals_posthoc, pvals];
244 all_pairs_posthoc = [all_pairs_posthoc, pairs];
245 end
246

247 fprintf(’=== Wilcoxon Signed-Rank Post-hoc Results ===\n’);
248 for k = 1:length(all_pvals_posthoc)
249 fprintf(’%s: p = %.6f\n’, all_pairs_posthoc{k}, all_pvals_posthoc(k));
250 end
251

252

253 if ~isempty(all_pvals_posthoc)
254 adj_pvals = holm_bonferroni(all_pvals_posthoc); % or FDR
255 for k = 1:length(all_pvals_posthoc)
256 fprintf(’%s: raw p = %.5f, corrected p = %.5f\n’, all_pairs_posthoc{k},

all_pvals_posthoc(k), adj_pvals(k));
257 end
258 end

Listing 5: MATLAB Code Background x Font size

1 function isCorrect = isCorrectResponse(response, correct, maxDistance)
2

3 if nargin < 3
4 maxDistance = 2;
5 end
6

7 % Convert strings to char arrays (for compatibility)
8 if isstring(response), response = char(response); end
9 if isstring(correct), correct = char(correct); end

10

11 % Normalize: lowercase, trim whitespace
12 response = lower(strtrim(response));
13 correct = lower(strtrim(correct));
14

15 % Special cases: empty or ’p’ = participant gave up
16 if isempty(response) || strcmp(response, ’p’)
17 isCorrect = false;
18 return;
19 end
20

21 % Exact match
22 if strcmp(response, correct)
23 isCorrect = true;
24 return;

44

25 end
26

27 % Levenshtein distance
28 distance = levenshtein(response, correct);
29 isCorrect = distance <= maxDistance;
30 end

Listing 6: MATLAB function for typo tolerance

1 function d = levenshtein(s, t)
2 % levenshtein - Compute Levenshtein distance between two char arrays
3

4 s = char(s);
5 t = char(t);
6

7 m = length(s);
8 n = length(t);
9 D = zeros(m+1, n+1);

10

11 for i = 1:m+1
12 D(i,1) = i-1;
13 end
14 for j = 1:n+1
15 D(1,j) = j-1;
16 end
17

18 for i = 2:m+1
19 for j = 2:n+1
20 cost = ~(s(i-1) == t(j-1)); % 0 if same, 1 if different
21 D(i,j) = min([
22 D(i-1,j) + 1, % deletion
23 D(i,j-1) + 1, % insertion
24 D(i-1,j-1) + cost % substitution
25]);
26 end
27 end
28

29 d = D(m+1, n+1);
30 end

Listing 7: MATLAB function for levenshtein 6

1 function adj_p = holm_bonferroni(pvals)
2 % Holm-Bonferroni correction
3 [p_sorted, sortIdx] = sort(pvals);
4 n = length(pvals);
5 adj = zeros(size(pvals));
6 for i = 1:n
7 adj(i) = min(1, (n - i + 1) * p_sorted(i));
8 end
9 % Ensure monotonicity

10 for i = 2:n
11 adj(i) = max(adj(i), adj(i-1));
12 end
13 % Return adjusted p-values in original order
14 adj_p = zeros(size(pvals));
15 adj_p(sortIdx) = adj;
16 end

Listing 8: My MATLAB Code for Holm-Bonferroni correction

	Introduction
	Related Works
	Text Manipulation
	Background and Middle Layer Manipulation

	Methods
	Participants
	Apparatus and Software
	Independent variables
	Experimental task and procedure
	Dependent variables
	Stimuli
	Data Analysis
	Hypothesis

	Results
	Descriptive Statistics
	Accuracy Percentage
	Noticeability
	Processing Time
	Background

	Discussion
	Text-drawing style
	Font size
	Dropshadow
	Background

	Conclusion
	Appendices
	Consent Form
	Questionnaires
	MATLAB Code

