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High-Fidelity Cyber and Physical Simulation of
Water Distribution Systems. II: Enabling

Cyber-Physical Attack Localization
Andrés Murillo1; Riccardo Taormina2; Nils Ole Tippenhauer3; and

Stefano Galelli, M.ASCE4

Abstract: A fundamental problem in the realm of cyber-physical security of smart water networks is attack detection, a key step towards
designing adequate countermeasures. This task is typically carried out by algorithms that analyze time series of process data. However, the
nature of the data available to develop these algorithms limits their capabilities: by relying on process data only, one cannot distinguish a
cyber-attack from the failure of a system’s component or identify the root cause of an attack. Here, we show that these limitations can be
addressed through the joint analysis of process and network data—with the latter representing the information exchanged between the
components constituting the Industrial Control System, such as sensors and Programmable Logic Controllers (PLCs). For this purpose,
we utilize a dataset generated by digital hydraulic simulator (DHALSIM)—a numerical modelling platform built on a two-way interaction
between EPANET version 2.2 and a network emulation tool—which is extended here to include a framework for launching cyber-physical
attacks. This paper presents a dataset with realistic network information of a smart water network under cyber-physical attacks and presents an
analysis of how that information can enable the development of better intrusion detection systems that can localize and identify attacks.
Through this analysis, the dataset provided here, and the open-source availability of DHALSIM, our work paves the way to a novel class of
analytics for actionable detection. DOI: 10.1061/JWRMD5.WRENG-5854. © 2023 American Society of Civil Engineers.

Author keywords: Water distribution systems; Smart urban water networks; Cyber-physical attacks; Cyber security; EPANET.

Introduction

The vulnerability of water distribution systems to cyber-physical
attacks is an unintended consequence of the progressive digitaliza-
tion of the urban water sector: the widespread deployment of
information and communication technologies allows utilities to
monitor and control, in (near) real-time, their entire value chain
(Makropoulos and Savić 2019), but also creates a digital ‘attack
surface’ that could be exploited by hackers (Rasekh et al. 2016).
The sense of urgency associated with this emerging threat is well
demonstrated by the increase in the frequency of cyber-physical
attacks, as well as their diversity and complexity (Hassanzadeh
et al. 2020). In turn, this calls for a holistic approach to cyber-
security, one that builds on a balanced combination of policy mea-
sures (Shapira et al. 2021) and analytics tasked with the problem of

identifying vulnerabilities, disclosing cyber-attacks, and designing
reactive measures (Tuptuk et al. 2021).

So far, the water community has focused on two main types of
analytics: numerical simulation models and intrusion detection sys-
tems. The former are a fundamental cornerstone (Berglund et al.
2020): by simulating the physical response of a water distribution
system to cyber-threats, we can support a multitude of tasks, such
as predicting the likely impact of attacks (Taormina et al. 2017) or
identifying the most unfavorable operational conditions (Shin et al.
2020). Currently, there are two models able to support the afore-
mentioned analyses, epanetCPA (Taormina et al. 2016, 2019) and
RISKNOUGHT (Nikolopoulos et al. 2020; Nikolopoulos and
Makropoulos 2021). The two models differ for various implemen-
tation details, but both rely on the same modelling concept, that is,
the combination of a hydraulic model [EPANET Rossman (2000)]
with a simplified representation of the Industrial Control System’s
components—i.e., sensors, actuators, Programmable Logic Con-
trollers (PLCs), and Supervisory Control and Data Acquisition
(SCADA) system. Simulation models also play a key role in the
development of intrusion detection systems, a particularly active
research domain [see the recent review by Addeen et al. (2021)].
Because long time series of observational data featuring cyber-
attacks are unavailable (Hassanzadeh et al. 2020), detection sys-
tems largely rely on simulated datasets, such as the BATADAL
(Taormina et al. 2018).

Notwithstanding this recent progress, more methodological ad-
vances are needed to design detection algorithms that can fully
characterize a cyber-physical attack, thereby leading to ‘actionable
detection’—using an expression introduced by Tuptuk et al. (2021).
A major challenge is the fact that the current class of intrusion de-
tection systems cannot distinguish a cyber-physical attack from an
anomaly caused by the failure of a system’s component, such as a
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malfunctioning pump or a defective communication link between
two PLCs (Taormina et al. 2018; Ahmed et al. 2020). In addition,
detection algorithms struggle to pinpoint the system components
that are under attack (Taormina and Galelli 2018). That means we
cannot identify the root cause of cyber-physical attacks, since the
same hydraulic response can be obtained by completely different
attack vectors (Taormina et al. 2017). Naturally, then, we cannot
react to an attack if we do not know where it originated—or
whether it is an attack at all. The explanation behind these limita-
tions lies in the nature of the data used to train detection algorithms
(Addeen et al. 2021): the datasets currently available are generated
with models that simulate only hydraulic processes and are based
on a simplistic representation of the networked infrastructure. But if
we do not also study—and model—the processes occurring within
the Industrial Control System, we cannot explain the true nature of
an attack.

Here, we address this knowledge gap and lay the foundations for
a novel class of detection systems based on the joint analysis of
process and network data. In particular, we show that the availabil-
ity of high-resolution cyber and physical data enables us to pinpoint
the root cause of cyber-attacks and other observed anomalies. For
our analysis, we leverage a dataset generated by digital hydraulic
simulator (DHALSIM)—a numerical modelling platform built on a
two-way interaction between EPANET and a network emulation
tool (Murillo et al. 2022)—whose functionalities are expanded here
to include a framework for launching cyber-security experiments as
well as automated scripts for processing the network traffic data.
Our analysis is complemented by an introduction to the most
common vulnerabilities affecting the industrial communication net-
works commonly adopted in automated water distribution systems.

Background

We begin by providing background information on Industrial Con-
trol Systems (ICSs), industrial communication networks, and net-
work vulnerabilities. As we shall see, it is necessary to understand
the relationship between an industrial communication network and
a physical system being controlled by an ICS. Readers can gain
more in depth detail of ICS and industrial communication networks
from the background section of the companion paper (Murillo
et al. 2022).

Industrial Control Systems

ICSs are cyber-physical systems designed to guarantee that a physi-
cal process operates at all times based on a set of defined opera-
tional parameters (Humayed et al. 2017). ICSs are controlled by the
integration of a computing platform and an industrial communica-
tion network. The computing platform of an ICS is represented by
industrial computers called Programmable Logic Computers
(PLCs) and a SCADA server. The PLCs perform the following
operations: (1) measure the processes occurring in the physical
system; (2) exchange that information with other PLCs; (3) make
control decisions to maintain the physical process within config-
ured parameters; and (4) apply the control decisions through the
actuators. The SCADA server is used to centralize the information
exchanged by the PLCs and send configuration parameters to
the PLCs. This process is repeated periodically and is known as
a scan cycle.

Smart water networks are ICSs that automatically maintain
hydraulic and water quality parameters within pre-configured val-
ues. Fig. 1 shows a simple smart water network. In the network,
the level of Tank 1 (T1) is controlled by Pump 1 (P1), while two
PLCs (PLC1 and PLC2), one SCADA server, and the industrial

communication network make up the ICS. PLC1 uses a sensor
to measure the water level of T1; then, it sends this reading to
PLC2, which uses the reading to operate P1 (e.g., to decide whether
P1 needs to be turned on or off). This scan cycle is executed peri-
odically to maintain the tank level within the desired operational
parameters. In addition, the PLCs report the values of different var-
iables to the SCADA server, such as T1 level, P1 status, P1 flow,
or the pressure at the junctions. Also, note that each PLC is located
in a different substation. This means that each PLC is located
within a Local Area Network (LAN) and both networks are con-
nected using a Wide Area Network (WAN), represented in Fig. 1
by r0. Considering that water networks are typically distributed
across vast spatial domains, locating the PLCs in different substa-
tions is therefore a compelling network configuration. This is be-
cause PLCs and their local network need to be allocated near the
actuators or sensors that they are controlling, hence a single sub-
station is not enough for a water distribution system.

Industrial Communication Networks

Network communications are logically divided into layers. Each
layer has certain functionalities that can be offered by a specific
network protocol (Tanenbaum and Wetherall 2010). In this way,
protocols are designed to operate at a specific layer and for a
specific application; for example, IEEE 802.11b/g/n (commonly
known as “WiFi”) is a network link layer protocol for wireless net-
works. Another example is IEEE 802.3 (Ethernet), another network
link layer, but designed to be used on wired networks. In addition,
each protocol only provides a fraction of the complete functionality
required to have a complete communication service, so differ-
ent layers (with different protocols) are stacked together to offer
complete network applications. The term stack is used because
protocols at lower layers offer services to the upper layer, and
the uppermost layer is the one directly offering the final application.

An Industrial Communication Network (ICN) is a special type
of communication network used by PLCs and SCADA servers to
exchange information and enable them to control physical proc-
esses (Galloway and Hancke 2013). The difference between ICNs
and traditional communication networks lies in the protocols used
in ICNs. ICNs use industrial communication protocols to exchange
information between communication nodes. Two common proto-
cols used are Ethernet/IP (ENIP) and Common Industrial Protocol
(CIP). The latter is an application layer protocol that enables com-
munications between PLCs. Using CIP, PLCs exchange messages
containing sensor readings (i.e., tank water levels) or actuator status
(i.e., pump status). CIP is supported by ENIP, a protocol that offers
a communication session in which CIP messages are exchanged.

The use of ICNs to exchange information to control the physical
system creates a relationship between ICNs behavior and the state
of the physical system. As a consequence, faults or attacks on
different network nodes or links are likely to affect the physical
system in a particular manner (Sánchez et al. 2019). This is impor-
tant, because if enough information about the physical system
(e.g., water network architecture, control strategies) and network
behavior is available (e.g., network topologies, protocols used),
anomalies in the physical system behavior can be traced back to
network attacks, and vice-versa. In other words, high-quality infor-
mation about the behavior of the physical and cyber layers could
enable intrusion detection mechanisms that not only detect attacks,
but are also able to identify the nature and location within the net-
work of such attacks. This is one of the main reasons motivating
the need for modeling tools that combine an accurate representation
of physical processes with a realistic implementation of network
behavior.

© ASCE 04023010-2 J. Water Resour. Plann. Manage.
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Network Vulnerabilities and Attacks in Industrial
Communication Networks

A communication network vulnerability is a condition, or property,
of a protocol stack that creates an opportunity for launching a cyber
attack and compromising one security property of the network.
For example, Denial of Service Attacks (DoS) compromise the
availability property of a network, making some network nodes
(and their information) unreachable to other points of the network.
Another example is Man-in-the-Middle Attacks (MiTM), which
compromise the integrity of a network by allowing attackers to
manipulate the information exchanged in the network.

As an example of a network vulnerability and cyber attack, we
analyze a MiTM attack and then its impact in the context of smart
water networks. One way to implement an MiTM attack is to ex-
ploit one vulnerability of the Address Resolution Protocol (ARP).
By way of background, the ARP protocol allows network nodes to
learn the addresses of their neighboring devices and the gateways
to external networks. In Fig. 1, the ARP protocol could allow PLC2
to know the address of the SCADA server and the address of its
gateway, r2. The vulnerability in this protocol is that ARP proto-
col messages do not use any authentication or integrity protection
schemes. This would enable an attack to use ARP Spoofing to carry
out a MiTM attack. ARP Spoofing is a technique used by an at-
tacker to impersonate the gateway of a network node, and this

allows the attacker to potentially manipulate all the messages being
sent and received by the target. In the use case shown in Fig. 1, an
attacker located in LAN2 could use ARP spoofing to attack PLC2,
impersonating r2. Then, the attacker could manipulate the level of
T1 sent by PLC1 and received by PLC2, causing PLC2 to operate
P1 incorrectly (Urbina et al. 2016). Suppose that the attacker only
manipulates the readings reaching PLC2 and not PLC1: in this
case, the attack would generate information on the physical state
that might lead to the identification of the attack (P1 would be op-
erated incorrectly, according to the T1 level reported by PLC1,
which is unaffected by the attack). In addition, the network infor-
mation might reveal the nature of the attack through a set of mali-
cious ARP messages sent between a network node and r2.

Importantly, unexpected behaviors of the physical processes
are not necessarily due to cyber-attacks. Two important causes of
anomalous behaviors are network events and device attacks. The
former are non-malicious conditions that happen in a network,
such as a delay in the packets being exchanged or the loss of a
given fraction of packets. These conditions might be caused by
hardware or software failure at the networking equipment or by
network congestion. The latter cause an industrial device to behave
incorrectly—for example by activating a pump at an incorrect
moment or ignoring the configured control rules. In industrial net-
works, device attacks can also be the result of devices infected by
malware (Sandaruwan et al. 2013).

(a) (b)

(c)

Fig. 1. (a) Illustration of a water distribution system; (b) its industrial control system; and (c) the sequence of network messages exchanged when a
PLC obtains a sensor value from another PLC. The water level of Tank T1 is monitored by PLC1, which then relays the information to PLC2. The
latter finally controls Pump P1. The water source, or reservoir, is denoted as Re0. In the cyber layer, the two PLCs are located in their own substation.
This choice is explained by the spatially-distributed nature of water distribution systems. The PLCs are connected by a set of routers and switches.
Note the presence of an attacker located in Substation 2. (c) The network messages and interactions between the PLCs and an attacker performing an
ARP spoofing attack to manipulate the reading of Tank T1. After the ARP spoofing, the attacker can intercept all messages of PLC2: when PLC1
sends the T1 tank reading, the attacker manipulates the reading to make PLC2 erroneously activate P1.

© ASCE 04023010-3 J. Water Resour. Plann. Manage.
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Digital Hydraulic Simulator

Background

Fig. 2 shows a simplified version of DHALSIM architecture.
The configuration files are parsed to create a virtual network top-
ology in Mininet, which is a platform for creating virtual net-
works running inside a single host machine (Lantz et al. 2010).
In DHALSIM, each of the Mininet nodes runs a script represent-
ing the PLCs, SCADA, and the water distribution system. The
latter node runs an EPANET simulation in a step-by-step fashion,
where the duration of each step is the ‘hydraulic time-step’ (con-
figured in EPANET) and the number of steps run is used as the
master clock for the simulation. In addition, if the user has con-
figured network events (e.g., delays in the communication net-
work) or cyber-physical attacks, additional scripts are launched
to execute them. These are easily configurable using optional files
that are explained below. Finally, the file generator module gen-
erates documentation for the events or attacks launched during
the simulation and includes the documentation in the result files.
Here, we have provided a detailed explanation of the modules
used to launch events and attacks and illustrate how to configure
experiments with device attacks, network attacks, or network
events. Additional details about DHALSIM are provided in
(Murillo et al. 2022).

Framework for Launching Cyber-Security Experiments

DHALSIM is a co-simulation environment that uses a distributed
approach to run experiments. With this approach, some experi-
ments can include running multiple pieces of code in different
Mininet nodes. In order to keep DHALSIM user-friendly and
the attacks it simulates configurable, we opted for a framework
that requires launching a simple command, instead of multiple
commands across multiple nodes. This is achieved using optional
configuration files that specify the parameters and types of attacks
or events to be launched.

All configuration files, except the EPANET input file, use
YAML (YAML Ain’t Markup Language). All experiments require
three mandatory files: experiment configuration file, EPANET in-
put file, PLCs configuration file. The experiment configuration
file defines the global options for a DHALSIM experiment; the
EPANET input file is a “standard” EPANET .inp file; and the
PLC configuration file indicates how many PLCs are present in
the smart water network and which variable they handle. Addi-
tional information regarding these files can be found in (Murillo
et al. 2022) and in the website documentation: https://github.com
/afmurillo/DHALSIM/blob/master/doc/configuration.rst. To launch

network attacks or events, the following optional files must be
provided:
• Attacks Configuration file: Attacks are configured in this op-

tional file. Attacks provide triggers that can be used to easily set
conditions that launch the attack. There are two types of trig-
gers: time triggers and value triggers. The former are activated
when the simulation master clock reaches a user specified value.
The latter triggers are activated when one sensor in the simula-
tion reaches the user-specified value. Using a value trigger,
a device attack could be triggered when a specific tank level
reaches the configured value. Two types of attacks are config-
ured in DHALSIM: device attacks and network attacks. Device
attacks are attacks running in PLC processes that can change the
way a PLC applies a control logic. Network attacks launch an
additional Mininet node running a script that exploits a network
vulnerability and affects the network and physical behavior.
These network attacks are activated by triggers. Attack scripts
that implement Denial-of-Service attacks and MiTM attacks are
provided in DHALSIM.

• Events Configuration file: Events are configured in this optional
file. Currently, only network events are supported. Network
events are events that affect the way a network link behaves.
An example of an event would be one that causes a percentage
of packets in a network link to be dropped. Events also use trig-
gers to launch their execution. Network events do not launch
additional Mininet nodes; instead, they run in the routers already
present in the Mininet network.
These configuration files are processed by the Parser, and addi-

tional scripts might be launched to execute the attacks or events
configured by the user. Fig. 3 shows the framework using these
files. Every event or attack launched requires a trigger to control
when the execution is started and finished. Triggers are based on
either physical variables or time. In the first case, DHALSIM starts
an attack if the actual value of a variable in the EPANET simulation
is below, above, or within a configured threshold. In the second
case, the attack starts when the experiment master clock reaches
the configured value. The module is the name of the attack or
event to be launched. DHALSIM provides a repository with some
attacks and events already configured and provides modules
that can be used by the community to create additional attacks or
events. All attacks and events modules extend a “synced_attack” or
“synced_event”module that offers all basic functionalities required
by these module. Finally, both attacks and events allow certain
options or parameters to be used during execution. For example,
for a network event of type “delay,” the delay in seconds and the
network link must be configured; meanwhile, for a MiTM attack,
the target PLC, the tag being manipulated, and the new tag value
must be configured.

Fig. 2. DHALSIM Architecture. The architecture is composed of a parser, physical simulation, network emulation, an SQLite Database, and a File
generator.
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Experimental Setup

Case Study

For our analysis we use the case study of Anytown, which is
adopted in Murillo et al. (2022) to illustrate the key functionalities
of DHALSIM and to study the value of network and process data
under a broad range of normal operating conditions. Here, we com-
plement that analysis by unveiling the information that the same
type of data can provide for a system undergoing cyber-physical
attacks. As shown in Fig. 4, the physical layer of Anytown consists

of one reservoir, two tanks (T41 and T42), and two pumps (P78 and
P79) controlling the water level of the tanks. The monitoring and
control process relies on three PLCs. Specifically, PLC2 and PLC3
monitor the water level of the two tanks and send this information
to PLC1, which operates the pumps. Both pumps follow the same
control rule and are turned on when the water level in the tanks
drops below 5 m (the status of pump P78 is a function of tank T41,
while the one of pump P79 depends on tank T42). The SCADA
server and the three PLCs belong to separate substations (and
corresponding local area networks), thereby reflecting the spatially
distributed nature of the water distribution system.

All experiments are run for one week, using a hydraulic time-
step of five minutes and pressure-driven analysis (Douglas et al.
2019). We use the same initial tank levels and demand pattern
for all the experiments outlined below. Finally, the experiments
are carried out on an Intel Xeon (R) 81 W-2175 CPU 2.5 GHz with
128 GB of RAM running Linux Ubuntu 20.04 (Focal Fossa).
With this hardware, the run time for a single one-week simulation
with DHALSIM is about 24 min.

Normal Operating Conditions

In this experiment, all components of the cyber-physical system
(e.g., pumps, sensors, communication links) work in normal oper-
ating conditions. For this scenario, we run DHALSIM over a span
of seven days, starting on Monday at 00:00 and finishing at Sunday
at 23:59. We use this experiment to establish a baseline for the
system behavior and to illustrate the interactions between commu-
nication network and physical system.

Threat Model

We consider an attacker that can compromise the communication
link between PLC1 and r2. We assume that the attacker is familiar
with the smart water network and knows the control strategy used
to control the pumps. In addition, the attacker is able to parse
and modify the network messages of CIP/ENIP sent through the

Fig. 3. DHALSIM Attack and Events Framework. The framework
allows researchers to include optional attack or events configurations
files to run these attacks or events. Attacks and events execute scripts
that can be triggered by different conditions such as the simulation
clock or values of the physical variables.

(a) (b)

Fig. 4. (a) Physical layer; and (b) cyber-layer of the Anytown water distribution system. The physical layer consists of two tanks (T41, T42) con-
trolled by pumps P78 and P79 (a). Three PLCs control the system: PLC2 and PLC3 monitor the water level of the two tanks and send this information
to PLC1, which operates the pumps. Each PLC belongs to a substation. Note the presence of an additional substation, where the SCADA server is
located. During the cyber attacks, the attacker is located in Substation 2 (b).

© ASCE 04023010-5 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(5): 04023010 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
07

/1
8/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



network. We also assume that the attacker is not able to compro-
mise the PLCs in the network or the SCADA server.

Anomalous Operating Conditions

We created three modelling scenarios characterized by different
types of attacks but with the same hydraulic response. In particular,
we model a hypothetical situation in which tanks T41 and T42 are
temporarily empty: this is a challenging anomaly to analyze for an
operator relying only on SCADA readings, because of the many
potential causes behind the anomaly—e.g., cyber-physical attacks
or a sensor, pump, or network malfunction. Notice that the kind of
analysis presented here is only possible with a simulation tool or a
dataset that accurately models the network communication behav-
ior of an industrial control system. The scenarios have the follow-
ing specifications (see Table 1 for further details):
• Scenario 1 depicts a situation in which an attacker located in

Substation 2 [Fig. 5(a)] carries out a DoS attack. The attacker
first uses the ARP spoofing method to intercept all readings
arriving at PLC1 and then stops forwarding the messages to
the PLC, preventing it from receiving new readings on the tank
water levels. In turn, this forces PLC1 to make control decisions
based on outdated information, eventually leading to low water
levels in the tanks (Krotofil et al. 2014).

• Scenario 2 represents a MiTM attack carried out from Substa-
tion 2 [Fig. 5(b)]. This attack also relies on ARP spoofing to
intercept the messages arriving at PLC1. In this case, however,
the attacker manipulates the tank water level readings to make
PLC1 believe that the tanks are full. This forces PLC1 to turn
pump P78 and P79 off, emptying the tanks.

• Scenario 3 is a network malfunction scenario (i.e., no attack).
It represents a situation in which 100% of the packets arriving to
PLC1 are temporarily lost due to networking failure. Similarly
to Scenario 1, PLC1 is forced to control the pumps using

outdated information on the tank levels. In DHALSIM, we im-
plement this scenario using a Linux network tool called tc
(traffic control). This tool is integrated in DHALSIM and used
by the network events scripts. Moreover, this scenario is similar
to some of the network conditions analyzed in the Part 1 of this
paper (Murillo et al. 2022).
Although DHALSIM is capable of adding noise to the WDS

sensors, as explained in the Part 1 of this paper (Murillo et al.
2022), these experiments do not add noise, because we wanted
to make sure that the only impact in the physical results was caused
by the cyber attacks and anomalies.

Results

Physical Response

Fig. 6 shows the water level in tanks T41 and T42 during normal
operating conditions and under Scenarios 1–3. The results show
that the hydraulic response of the water distribution system is rather
similar during the attacks and network malfunction. As mentioned
above, it would be challenging for an operator to identify the root
cause of this problem if relying only on SCADA data—e.g., time
series of the tank water levels. Notice that existing simulation tools
that only represent the physical system and do not accurately model
the industrial communication network would not be able to pro-
duce meaningful data to differentiate between these attacks. Thus,
the intrusion detectors developed with only physical system data
would not be able to localize or identify the nature of the attack
or anomaly.

Explaining the Physical Response

To fully characterize the nature of the observed anomalies in the
tank water levels, we base our analysis on all data generated by
DHALSIM, namely the process data retrieved from the SCADA
server and the network packet captures of the PLCs. With the
aid of these data, we create a diagnostic flowchart that illustrates
the different steps an operator could follow to pinpoint the root
cause of the anomaly (Fig. 7). The flowchart is divided in two
regions, marked by gray boxes. The first region represents the
analysis the operator could perform with SCADA data, and the sec-
ond region shows the analysis that would require access to network
data. Note that epanetCPA (Taormina et al. 2016; Taormina et al.
2019), Risknought (Nikolopoulos et al. 2020; Nikolopoulos and
Makropoulos 2021), and DHALSIM could all be used in the first
region, but only DHALSIM could be used for the second region,
as it is the only tool that provides network data. Also, note that
the steps are reported in increasing order of complexity—so only
the last ones require to analyze the network packet captures. For the
sake of simplicity, we assume that the communication between
SCADA and PLCs has not been compromised; another scenario
that could be simulated with DHALSIM. The network data are
stored in .pcap files. These files store all network messages sent
and received by one node in pcap format (DHALSIM generates
one.pcap file for each PLC and SCADA in an experiment).

(a) (b)

Fig. 5. Attacks in DHALSIM case study: (a) Denial-of-Service Attack;
and (b) MiTM Attack. In the Denial-of-Service Attack, the attacker
uses an ARP spoofing attack to intercept the messages arriving at
PLC1. Then, the attacker stops forwarding those messages to PLC1,
causing it to take control decisions with outdated information. In
the MiTM attack, the attacker uses an ARP spoofing attack to manip-
ulate the messages arriving at PLC1. The attacker manipulates the
water tank levels to cause PLC to take control decisions with incorrect
information.

Table 1. Scenarios deployed. All scenarios target PLC1 and start and end at the same time. The first two scenarios are cyber-attacks while the third one is a
network connectivity issue. Note that all scenarios are run using the same initial tank levels and demand patterns

Scenario Type Cause Starting time Ending time Target

Scenario 1 Attack ARP Spoofing DoS Wednesday, 06:00 Wednesday, 18:00 PLC1
Scenario 2 Attack ARP Spoofing MiTM Wednesday, 06:00 Wednesday, 18:00 PLC1
Scenario 3 Failure Linux Traffic Control Wednesday, 06:00 Wednesday, 18:00 PLC1
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Fig. 6. Physical response of Anytown to different anomalies. Trajectory of the tank water levels under four scenarios—normal operating conditions,
DoS attack (Scenario 1), MiTM attack (Scenario 2), and network failure (Scenario 3). Note that the two attacks and network failure cause a very
similar response.

Fig. 7. Diagnosis flowchart for anomalies in Anytown. The flowchart identifies all possible causes leading to the anomalous water level in Tank T41
and T42 illustrated in Fig. 6. This analysis is based on the assumption that the SCADA communication is still secure. The flowchart is divided in two
regions. On the left side, we illustrate the first steps of the diagnostic exercise, which could be carried out with the data produced by epanetCPA,
Risknought, or DHALSIM. On the right, we illustrate the remaining steps. Note that the latter can be supported only by DHALSIM.
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To process these .pcap files, we used a library named scapy
(Kobayashi et al. 2007) and two specific parsers for ENIP and
CIP (Urbina et al. 2016).

As shown in Fig. 7, the first condition an operator could check
are the states of pumps P78 and P79. If their state is coherent with
the one expressed by the control rules, then the tanks cannot be
empty (provided that the water demand is within normal parameters
and that there are no sudden infrastructural issues, such as a pipe
burst). The observed anomaly could therefore be explained by a
sensor malfunction in tank T41 and T42. If none of these two con-
ditions is verified—and so both pumps and sensors are working
properly—then the culprit must be the control actions applied by
PLC1. Such a situation could be due to three different reasons:
first, the PLC is receiving outdated information (Denial-of-Service
attack or network malfunction); second, the water level readings
received by the PLC have been manipulated (MiTM attack); third,
the PLC is malfunctioning or is under direct attack. To rule out each

condition, we must now analyze the network packet captures.
Notice that at this point, we would have to stop our analysis if we
were using epanetCPA or Risknought.

Using DHALSIM, we could continue by analyzing the total
number of packets received by PLC1 during all simulations (Fig. 8,
upper panel), an indicator of whether PLC1 is receiving outdated
information. The drop in packets in Scenario 3 is a good indication
that PLC1 might be operating with outdated information due to a
network connectivity issue or an attack. On the contrary, the num-
ber of packets for Scenario 2 hints that PLC1 might be receiving
updated information, but it is possible that this information is being
manipulated by an attacker. Finally, the anomalous increase in
packets of Scenario 1 could be caused by the network having to
resend multiple packets that did not arrived to their destination or
by a Denial-of-Service attack aimed at PLC1.

To further diagnose the cause of the scenarios, we analyze
the number of reset (RST) packets received by PLC1. These are

Fig. 8. Packets per hour received by PLC1. In the upper panel, we report the total number of packets received by PLC1. Note that in Scenario 1
(Denial-of-Service attack) the number of packets reaching PLC1 increases heavily. This is because the Denial-of-Service attack generates re-
transmission of packets and the unexpected ending of TCP connections (RST packets, shown in the middle panel). In Scenario 2 (MiTM), the
total number of packets remains the same. This is because the MiTM attack does not affect heavily the number of packets sent; rather, it manipulates
the payload (tank readings) of the packets sent in the network. In scenario 3 (Packet Loss), the total number of packets almost reaches zero, because
the network connectivity issue completely stops the traffic towards PLC1. In the bottom panel, we illustrate the number of ARP messages received by
PLC1. In normal operating conditions, PLC1 should only receive ARP messages at the beginning of the simulation. The spikes present between at the
beginning and ending of the anomaly indicate the presence of a possible ARP spoofing attack, which is associated to either a Denial-of-Service
(Scenario 1) or an MiTM attack (Scenario 2).
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packets sent by a network node when the connection is abruptly
finished (which could happen during a DoS attack). Fig. 8 (middle
panel) shows that Scenario 1 is the only one that has also an in-
crease in this number of packets. In addition, Scenario 2 has levels
similar to normal operating conditions, while Scenario 3 shows a
slight drop in the number of RST packets. So far, we have evidence
of an anomalous number of packets being received in Scenarios 1
and 3. Moreover, Scenario 3 presents a drop in the number of RST
packets, meaning that the anomalous physical response of Scenario
3 is most likely caused by a network connectivity issue.

How to further distinguish between Scenario 1 and Scenario 2?
To answer this question, we analyze the number of ARP messages
received by PLC1, a good indicator of Denial-of-Service (Scenario
1) and MiTM (Scenario 2) attacks. In normal operating conditions,
ARP messages are present only at the beginning of an experiment.
This is because, when an experiment begins, the PLCs do not know
the Media Access Control (MAC) addresses of their gateways and
so ARP messages are exchanged between the PLCs to get the MAC
address, which is stored in the ARP cache. (This is an artifact of
DHALSIM simulations, as real systems would have already ex-
changed this information.) Another situation that can trigger the
transmission of ARP messages is when nodes are not able to com-
municate with each other for long periods of time, causing the ARP
cache to expire. Notice that both DoS and MiTM require executing
an ARP spoofing attack, that is, the process of sending additional
ARP messages to poison the ARP cache of a PLC. As shown in
Fig. 8 (bottom panel), the signature of the two attacks is well re-
flected in a small number of ARP messages received by PLC1 right
at the beginning and ending of the attack. This means that in both
scenarios there was an ARP spoofing attack. However, we also
know that in Scenario 2 (MiTM) there was no increase in the total
number of packets received by PLC1 [Fig. 8 (upper panel)]. With
this, we can conclude that the ARP spoofing of Scenario 2 is a
MiTM attack: PLC1 receives roughly the same number of packets
with T41 and T42 readings, but these readings are manipulated to
cause PLC1 to operate the pumps wrongly. Meanwhile, in Scenario
1 (DoS), the ARP spoofing attack causes PLC1 to drop all the pack-
ets with T41 and T42 readings arriving at PLC1, causing an in-
crease in the number of RST packets (Fig. 8, middle panel).

Discussion and Conclusions

Our results show that the joint analysis of process data and network
traffic allows us to identify the root cause of cyber-physical attacks
and rule out other possible anomalies, such as a sensor malfunction
or a temporarily loss of information received by a PLC. This find-
ing has a direct implication on the field of attack detection algo-
rithms, which are currently designed to only analyze process data
[see, for example, Taormina and Galelli (2018), Abokifa et al.
(2019), Chandy et al. (2019), Ramotsoela et al. (2019), Kadosh
et al. (2020), and Tsiami and Makropoulos (2021)]. We can thus
envision a novel generation of algorithms that relies on data per-
taining to both hydraulic and network traffic, such as the packets
per hour illustrated in Fig. 8. In addition, the performance of these
algorithms could be tested in real-time on DHALSIM. For exam-
ple, DHALSIM could be extended to run a Python module with the
code of a detection algorithm that sits at the SCADA node to gather
real-time data on hydraulic and network processes. The distributed
nature of DHALSIM would make such analysis flexible, as one
could also deploy multiple detection algorithms in different nodes
(corresponding, for instance, to different PLCs) or even conceive
a scenario in which a detection mechanism is tested against an

adversarial algorithm tasked with the problem of conceiving its
attacks (Erba et al. 2020).

Naturally, the co-simulation of hydraulic and network processes
offered by DHALSIM lend itself to many other types of applica-
tions in the realm of cyber-physical security. For example, this
extended version of DHALSIM could be used to study the vulner-
ability of different network topologies to cyber-physical attacks—
that is, evaluating how alternate configurations of sensors and PLCs
or different distributions of substations and network topologies
connecting them may unintentionally expand the attack surface.
Such analysis is particularly important for medium- and large-scale
systems, where analysts may have to choose between many pos-
sible topologies (Shin et al. 2020). For a given system and number
of sensors, for example, a small number of PLCs would limit the
investment and operational costs associated to the ICS, but would
also require to connect multiple sensors to the same PLC. The latter
could therefore become a critical element, since the unavailability
of just a single PLC would impede the operators from monitoring
or controlling large portions of the water system. On the other hand,
increasing the number of PLCs would require to deploy multiple
local area networks—as well as network routing to interconnect
them—thereby exposing the cyber-physical systems to other vul-
nerabilities (Abe et al. 2016). Finding a reasonable trade-off be-
tween costs, vulnerabilities, and operational flexibility is thus a
complex task that could be tackled with DHALSIM. The opportu-
nities are many, from exploring alternate topologies via numerical
simulation to coupling DHALSIM with a global search algorithm
tasked with the problem of minimizing the vulnerability to cyber-
physical attacks.

It is worth noting that DHALSIM could also be used to run
advanced network analyses that use different network topologies
or networking tools, such as Netcat or Ettercap. These off-the-shelf
tools could be used to run network vulnerability analyses or net-
work attacks in a very similar way of how these activities are car-
ried out in the real world. For example, a researcher could use
Netcat to discover the protocol being used by the PLCs and then
Ettercap to launch an MiTM attack to hijack that communication.
Because there are many off-the-shelf tools for network analysis,
we preferred not to integrate them directly in DHALSIM, therefore
providing flexibility to the user to choose which network tool to
integrate—a task supported by DHALSIM’s configuration tools
and experiment triggers. We conclude with a final note on DHAL-
SIM and cyber security: the protection of any cyber security infra-
structure is a multi-layered approach that relies on multiple
mechanisms and practices working together to achieve objectives
such as integrity, confidentiality, and availability. In the case of tra-
ditional IT services, there is a more widespread practice of secure
protocols, integrity protection, and access control mechanisms.
Nevertheless, the adoption of such practices in ICS faces difficul-
ties. First, not all ICSs can deploy secure protocols because they
have legacy hardware that may not support them, or the protocols
used have constraints that do not make it possible to use such fea-
tures. One example of this issue is common field bus protocols
(Kayan et al. 2022; Dzung et al. 2005). Second, there is an endemic
gap between cyber security good practices and their actual imple-
mentation, especially in the water sector (Hassanzadeh et al. 2020),
as also demonstrated in the very recent attack on South Stafford-
shire Water (Labs 2022). As such, we believe it is still important
to create tools like DHALSIM that enable modellers to simulate
worst-case scenarios, where these secure protocols are not pre-
sented or misconfigured, or where an attacker has compromised the
identity of authorized nodes in the network. Cyber security does not
have a silver bullet; instead, it provides security through multiple
layers of defense and tools.
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Data Availability Statement

DHALSIM is available at https://github.com/afmurillo/DHALSIM.
Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
founder data retention policies. The dataset is available at https://
zenodo.org/record/6323248.
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