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H I G H L I G H T S

• A novel deep learning framework to forecast electricity prices is proposed.

• The framework leads to accuracy improvements that are statistically significant.

• The largest benchmark to date in electricity price forecasting is presented.

• 27 state-of-the-art methods for predicting electricity prices are compared.

• Machine learning models are shown to, in general, outperform statistical methods.

A R T I C L E I N F O
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A B S T R A C T

In this paper, a novel modeling framework for forecasting electricity prices is proposed. While many predictive
models have been already proposed to perform this task, the area of deep learning algorithms remains yet
unexplored. To fill this scientific gap, we propose four different deep learning models for predicting electricity
prices and we show how they lead to improvements in predictive accuracy. In addition, we also consider that,
despite the large number of proposed methods for predicting electricity prices, an extensive benchmark is still
missing. To tackle that, we compare and analyze the accuracy of 27 common approaches for electricity price
forecasting. Based on the benchmark results, we show how the proposed deep learning models outperform the
state-of-the-art methods and obtain results that are statistically significant. Finally, using the same results, we
also show that: (i) machine learning methods yield, in general, a better accuracy than statistical models; (ii)
moving average terms do not improve the predictive accuracy; (iii) hybrid models do not outperform their
simpler counterparts.

1. Introduction

Because of the liberalization of the electricity markets in the past
decades, the dynamics of electricity prices have become a complex
phenomenon with rare characteristics and important consequences. In
particular, when compared with other commodities, electricity trade
displays a set of attributes that are quite uncommon: constant balance
between production and consumption [1]; dependence of the con-
sumption on the time, e.g. hour of the day, day of the week, and time of
the year; load and generation that are influenced by external weather
conditions [2]; and influence of neighboring markets [3]. Due to these
characteristics, the dynamics of electricity prices have become very
complex, e.g. highly volatile prices with sudden and unexpected price
peaks [2].

In recent years, with the increasing penetration of renewable energy
sources (RES), the described behavior has aggravated. In particular,
while there are no questions regarding the contribution of RES to build
a more sustainable world, several concerns have been raised regarding
their influence on electricity prices and grid stability. More specifically,
as the penetration of RES increases, so does the dependence of elec-
tricity production w.r.t. to weather conditions and, in turn, the volati-
lity in electricity prices. This relation has been largely identified in the
literature: [4] studied the effect of wind power penetration on the New
England electricity market and concluded that price volatility increases
with increasing wind penetration. Similarly, [5] carried out a similar
study for the Texas market and also concluded that price volatility in-
creased with increasing wind penetration. Looking at the penetration of
solar power, [6] indicated that price spikes are expected to occur more
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frequently as the share of PV increases in the California system. Like-
wise, looking at the effect of increasing wind penetration in UK for the
year 2020, [7] reported that prices are expected to be more volatile
than at present.

Due to this effect, as the increasing integration of RES increases the
volatility of prices, the behavior of market agents becomes naturally
more unpredictable, sudden drops in generation and consumption are
more likely to occur, the imbalances between production and con-
sumption increase, and the electrical grid becomes more unstable.

In order to tackle the problems mentioned above, electricity markets
together with electricity price forecasting have become a central point
of research in the energy sector. In particular, by improving the fore-
casting accuracy, the negative effects of price uncertainty can be miti-
gated, the grid can be stabilized, and economic profits can be made.

1.1. Electricity price forecasting

The electricity price forecasting literature is typically divided into
five areas: (i) game theory models, (ii) fundamental methods, (iii) re-
duced-form models, (iv) statistical models, and (v) machine learning
methods [2]. Since statistical and machine learning methods have
showed to yield the best results [2], they are the focus of this review,
and in turn, of the benchmarking experiment that will be performed in
this paper.

Common statistical methods are: autoregressive (AR) and auto-
regressive with exogenous inputs (ARX) models [8], double seasonal Holt-
Winter (DSHW) models [9], threshold ARX (TARX) models [10], auto-
regressive integrated moving average (ARIMA) models [11,12], semi/non-
parametric models [8,13], generalized autoregressive conditional hetero-
scedasticity (GARCH) based models [14–16], or dynamic regression (DR)
and transfer function (TF) models [17]. In addition, hybrid versions of
the previous models are also common, e.g. wavelet-based models
[12,18,19].

A pitfall of statistical models is that they are usually linear fore-
casters, and as such, they might not perform good in data where the
frequency is high, e.g. hourly data with rapid variations. In particular,
while they show a good performance if the data frequency is low, e.g.
weekly patterns, the nonlinear behavior of hourly prices might become
too complicated to predict [20]. To address this issue and predict the
nonlinear behavior of hourly prices, different machine learning
methods have been proposed. Among them, multilayer perceptrons
(MLPs) [21–24], support vector regressors (SVRs) [25,26] and radial basis
function (RBF) networks [27] are the most commonly used.

While the academic literature comprises a much larger collection of
approaches, e.g. see [2,28], a complete review falls outside of the scope
of this paper.

1.2. Deep Learning

In the last decade, the field of neural networks has experienced
several innovations that have lead to what is known as deep learning
(DL). In particular, one of the traditional issues of neural networks had
always been the large computational cost of training large models.
However, that changed completely when [29] showed that a deep belief
network could be trained efficiently using an algorithm called greedy
layer-wise pretraining. As related developments followed, researchers
started to be able to efficiently train complex neural networks whose
depth was not just limited to a single hidden layer (as in the traditional
MLP). As these new structures systemically showed better results and
generalization capabilities, the field was renamed as deep learning to
stress the importance of the depth in the achieved improvements [30,
Section 1.2.1].

While this success of DL models initiated in computer science ap-
plications, e.g. image recognition [31], speech recognition [32], or
machine translation [33], the benefits of DL have also spread in the last
years to several energy-related applications [34–39]. Among these
areas, wind power forecasting is arguably the field that has benefited
the most: [34] shows how, using a deep belief network and quantile
regression, probabilistic forecasting of wind speed can be improved.
Similar to [34], [39] proposes a deep feature selection algorithm that,
in combination with a multi-model framework, improves the wind
speed forecasting accuracy by 30%. In the same area of research, [37]
proposes an ensemble of convolutional neural networks (CNNs) to obtain
more accurate probability forecasts of wind power.

In addition to wind power applications, DL has also shown success
in other energy-related fields. In the context of load forecasting, [36]
proposes a deep autoencoder in combination with an extreme gradient
boosting (XGB) model and shows how they forecast building cooling
load more accurately than alternative techniques; within the same re-
search paper, a deep neural network (DNN) to accurately forecast
building cooling load is also proposed. For a different application, [38]
proposes a DL model to detect islanding and to distinguish this effect
from grid disturbances; based on the obtained simulation results, [38]
indicates that the DL model can detect islanding with a very high ac-
curacy. In addition, [35] proposes a DL strategy for time series fore-
casting and shows how it can be used successfully to forecast electricity

Acronyms

AR autoregressive
ARIMA autoregressive integrated moving average
ARMA AR with moving average terms
ARX autoregressive with exogenous inputs
CNN convolutional neural network
DL deep learning
DM Diebold-Mariano
DNN deep neural network
DR dynamic regression
DSARIMAdouble seasonal ARIMA
DSHW double seasonal Holt-Winter
EPEX European power exchange
fARX full-ARX
fARX-EN fARX regularized with an elastic net
fARX-Lasso fARX regularized with Lasso
GARCH generalized autoregressive conditional heteroscedasticity
GRU gated recurrent unit
IHMARX Hsieh-Manski ARX

LSTM long-short term memory
MA moving average
MAPE mean absolute percentage error
MLP multilayer perceptron
RBF radial basis function
ReLU rectifier linear unit
RES renewable energy sources
RF random forest
RNN recurrent neural network
sMAPE symmetric mean absolute percentage error
SNARX smoothed nonparametric ARX
SOM-SVR SVR with self-organizing maps
SVR support vector regressor
TARX threshold ARX
TBATS exponential smoothing state space model with Box-Cox

transformation, ARMA errors, trend and seasonal compo-
nents

TF transfer function
WARIMA wavelet-ARIMA
XGB extreme gradient boosting
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consumption in households.

1.3. Motivation and contributions

Despite the success of DL in all these energy-related areas and time
series forecasting applications, there has not yet been, to the best of our
knowledge, an attempt to bring its ideas and models to the field of
electricity price forecasting. In particular, while neural networks have
been proposed, they have been traditionally limited to one-hidden-layer
networks, e.g. MLPs [21,22,40,41] and RBF networks [27,42], or to
simple versions of recurrent neural networks (RNNs), e.g. Elman net-
works [43,44]. While these simpler models are sometimes suitable,
there are at least three arguments suggesting that using deeper struc-
tures could potentially benefit predictive accuracy:

1. Advanced RNN structures, e.g. long-short term memory (LSTM) [45]
or gated recurrent unit (GRU) [46] networks, have shown to be a
much better alternative to accurately model complex nonlinear time
sequences [47–49], e.g. electricity prices.

2. While a single layer network can in theory model any nonlinear
continuous function, a network with more than one hidden layer
might be able to model the same function with a reduced number of
neurons. Therefore, deep networks might actually be less complex
and still generalize better than a simple MLP.

3. Considering the excellent results obtained in forecasting time series
in other energy-related applications [34–39], it is possible that
forecasting electricity prices might also benefit from using DL ar-
chitectures.

Based on these arguments, the focus and main contribution of this
paper is to propose a collection of different DL models that can be
successfully used for forecasting day-ahead electricity prices. In parti-
cular, the paper develops a DL modeling framework comprising four
models:

1. A DNN as an extension to the traditional MLP.
2. A hybrid LSTM-DNN structure.
3. A hybrid GRU-DNN structure.
4. A CNN model.

Then, considering a large benchmark comparison and a case study,
it shows that the proposed DL modeling framework leads to improve-
ments in predictive accuracy that are statistically significant.

In addition, as a second contribution, the paper also tries to estab-
lish an extensive benchmark of commonly used forecasters for pre-
dicting electricity prices. In particular, since even the largest bench-
marks in the literature [8,9,50,51] have been limited to 4–10 different
forecasters, the paper considers that a conclusion on the relatively ac-
curacy of the different forecasters cannot be drawn. With that moti-
vation, we aim at providing a large empirical evaluation of 27 common
forecasters for day-ahead electricity prices to bring new insights on the
capabilities of the various models.

The paper is organized as follows: Section 2 introduces the theore-
tical concepts and state-of-the-art methods that are used in the research.
Next, Section 3 presents the proposed DL framework. Section 4 defines
the base forecasters that are collected from the literature and con-
sidered in the benchmark. Next, Section 5 evaluates the base and DL
models in a case study, compares the obtained predictive accuracy by
means of hypothesis testing, and discusses the results. Finally, Section 6
concludes the paper and outlines the main results.

2. Preliminaries

In this section, the theoretical concepts and algorithms that are used
in the research are introduced.

2.1. Day-ahead forecasting

A type of power exchange that is widely used in many parts of the
world is the day-ahead electricity market. In its most general format,
bids are submitted for the 24 hours of day d before some deadline on
day −d 1. These bids are usually defined per hour, i.e. every market
player has to submit 24 bids. After the deadline has passed, the market
operator uses the submitted bids to compute the market clearing price
for each of the 24 hours. Then, all the market agents get an energy
allocation that depends on the market clearing price and the bids
submitted by the market agent.

Considering this market format, a useful forecaster should predict
the 24 market clearing prices of day d based on the information
available before the deadline on day −d 1.

2.2. Deep learning

In this section, we give a brief description of the DL structures
considered in the modeling framework. For the sake of conciseness, we
provide a large explanation of the DL models in Appendix A [94,95].

The basic DL model is the DNN [30], the natural extension of the
traditional MLP that uses multiple hidden layers. When compared with
a standard MLP, a DNN requires specific model changes to be efficiently
trained, e.g. activation functions different from the standard sigmoid.

Slightly more complex than DNNs are RNNs [30], a type of network
that builds additional mappings to hold relevant information from past
inputs and that are suitable for modeling time series data, e.g. elec-
tricity prices. The two state-of-the-art recurrent networks are LSTM
[45] and GRU networks [48]; unlike standard RNNs, they are able to
model a selective forget-remember behavior. While both structures are
very similar, GRUs have a simpler structure and they are faster to train.

A different type of DL structure are CNNs, a type of network that are
modeled using three building blocks: a convolution operation, a pooling
operation, and a fully connected layer. Given an array of data, the
convolution operation slides a filter across the data array and computes
local element-wise cross product between the filter and the data. As
different filters capture different properties, CNNs typically use various
filters to obtain different data arrays known as feature maps. In a
subsequent step, the pooling operation reduces the size of these feature
maps by reducing large areas into single values. Finally, after several
convolutions and pooling operations are done, the values of the last
feature maps are used as inputs for a fully connected layer.

2.3. Hyperparameter Optimization

Hyperparameters are model parameters that have to be selected
before the estimation process, e.g the number of neurons in a neural
network or the lag order in an ARIMA model. In the case of our
benchmark study, to objectively analyze and compare the accuracy of
each benchmark model, we optimize this selection following the same
automated procedure for each individual model. In particular, we em-
ploy the tree-structured Parzen estimator [52], a sequential model-
based optimization algorithm [53] within the family of Bayesian opti-
mization [54] methods.

2.4. Performance metrics

A performance metric is needed to evaluate and compare the ac-
curacy of the forecasters. In this paper, we consider the symmetric mean
absolute percentage error (sMAPE) [55] metric:

̂
̂∑=

−
+=N

y y
y y

sMAPE 100 | |
(| | | |)/2

,
k

N
k k

k k1 (1)

where … ⊤y y[ , , ]N1 are the real outputs to be predicted and ̂ ̂… ⊤y y[ , , ]N1 the
predicted values.
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As in [3], sMAPE is selected instead of the more traditional mean
absolute percentage error (MAPE) metric because of the issues that affect
MAPE [55].

2.5. Diebold-Mariano test

The sMAPE is a metric that can be used to compare which model has
a better accuracy. However, the fact that the accuracy of a model is
higher, is not enough to guarantee that the model is better. In parti-
cular, to have a minimum assurance that a model is better, the differ-
ence in accuracy should be statistically significant. To evaluate this, the
Diebold-Mariano (DM) test [56] is the statistical test that is typically
used.

Given a time series vector … ⊤y y[ , , ]N1 to be forecast, two prediction
models M1 and M2, and the associated forecasting errors … ⊤[ ]ε ε, ,M

N
M

1
1 1

and … ⊤[ ]ε ε, ,M
N
M

1
2 2 , the DM test builds a covariance stationary loss func-

tion L ε( )k
Mi and the associated loss differential:

= −d L ε L ε( ) ( ).k
M M

k
M

k
M,1 2 1 2 (2)

Then, in its one-sided version, the DM test evaluates the null hy-
pothesis H0 of M1 having an accuracy equal to or worse than M2, i.e.
equal or larger expected loss, against the alternative hypothesis H1 of M1

having a better accuracy, i.e.:

⎧
⎨⎩

⩾
<

H d
H d

One-sided DM test
: [ ] 0,
: [ ] 0.

k
M M

k
M M

0
,

1
,

1 2

1 2



 (3)

If H0 is rejected, the test concludes that the accuracy of the forecast
of M1 is statistically significantly better.

3. DL modeling framework

As indicated in the introduction, the main goal of this paper is to
propose a DL modeling framework as a forecasting tool for day-ahead
electricity prices. As a first step to achieve that, this section develops
the four DL models comprising the framework.

3.1. Market integration

Before describing each model separately, it is important to note that
a common feature to all DL models is market integration. In particular,
to improve the predictive accuracy, all the DL models simultaneously
predict electricity prices of various day-ahead markets. The idea behind
is that, as shown in [3], due to market integration and by multitasking,
i.e. predicting prices in different markets, the models can learn more
general features and integrate relations across neighboring markets.

In detail, regarding a local market L that is subject to study and a set
of c neighboring markets … cN1, ,N , each DL model predicts the fol-
lowing output:

= … … ⊤[ ]p p p p p, , , , , ,cL L N1 N1 24 1 24 (4)

where = … ⊤[ ]p pp , ,L L L1 24 is the vector of day-ahead prices in the local
market, and = … ⊤[ ]p pp , ,i i iN N N1 24 is the vector of day-ahead prices in the
neighboring market i.

3.2. DNN model

As a simple extension of the traditional MLP, the first DL model for
predicting day-ahead prices is a deep neural network with two hidden
layers. In particular, defining as = … ⊤x xX [ , , ]n1 the input of the model,
as n1 and n2 the respective number of neurons of the first and the second
hidden layer, and by = … … ⊤[ ]p p p pp , , , , ,L L N1 Nc1 24 1 24 the vector of day-
ahead prices that we intend to forecast, the corresponding model is
represented in Fig. 1.

3.3. LSTM-DNN model

The second DL model for predicting day-ahead prices is a hybrid
forecaster combining an LSTM and a DNN network. The motivation
behind this hybrid structure is to include a recurrent layer that can
learn and model the sequential relations in the time series data as well
as a regular layer that can learn relations that depend on non-sequential
data.

In detail, for this new model, the inputs are divided between those
that model sequential time data, e.g. past electricity prices, and those
that model regular data, e.g. day of the week or day-ahead forecasting
of the grid load. This division is necessary because the LSTM network
requires a sequence of time series values as an input. However, con-
sidering all the possible regressors for electricity price forecasting, it is
clear that some of them do not have that property.

In general, for the case of electricity prices, the distinction between
these two types of data can be done by considering the time information
represented in the data. Specifically, if the data represents a collection
of past values, it can normally be modeled as time sequential data and
used as an LSTM regressor. By contrast, if the data represents some
specific property associated with the day ahead, i.e. it represents direct
information of a future event, it cannot be modeled as a time sequence.
Examples of the first could be past day-ahead prices or the measured
grid load; examples of the second could be the day-ahead forecast of the
weather or whether tomorrow (day-ahead) is a holiday. Using this
distinction, the inputs of the model are divided between two groups:

• Input vector = … ∈⊤x xX [ , , ]n
n

F F1 F  representing future information.

• A collection =X{ }i
i
q

S 1 of q input sequences, where
= … ∈⊤x xX [ , , ]i i

N
i N

S S1 S  is a vector representing past information.

Using this separation, the model uses a DNN to process the inputs XF
and an LSTM to process the time sequences =X{ }i

i
q

S 1. Then, the outputs of
these two networks are concatenated into one vector and this vector is
fed into a regular output layer.

Defining the number of neurons of the DNN and LSTM layers re-
spectively by nF and nS, and by zFi and ⊤z c[ , ]S Si i the internal state of
their neuron i, an example of the proposed model is represented by
Fig. 2.

Fig. 1. Deep neural network to simultaneously forecast day-ahead prices in
several countries.
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3.4. GRU-DNN model

The third DL model for predicting day-ahead prices is a hybrid
model combining a GRU and a DNN network. As with the LSTM-DNN
hybrid structure, the motivation behind this model is to include a layer
that is tailored to sequential data. However, to reduce the computa-
tional burden of the LSTM layer, a GRU layer is used instead to model
the time data sequences =X{ }i

i
q

S 1. Specifically, if in Fig. 2 the LSTM cell
states ⊤z c[ , ]S Si i are replaced by the corresponding GRU cell state zSi, the
modified figure would represent an example of the new proposed
model.

3.5. CNN model

The fourth DL model for predicting day-ahead prices is a CNN
network. As in the previous two cases, the inputs are divided between
those that model sequential past data and those that model information
regarding the day ahead. For the hybrid models, the division was ne-
cessary because the recurrent layers needed sequential data. In this new
case, the separation is required in order to group data with the same
dimensions as inputs for the same CNN. In particular, the data is se-
parated into two parts:

• The same collection =X{ }i
i
q

S 1 of q input sequences used for the hybrid
models. As before, = … ∈⊤[ ]x xX , ,i i i N

S S1 SN  is a vector representing
some sequential past information.

• A new collection =X{ }i
i
r

F 1 of r input vectors, where each vector
= … ∈⊤[ ]x xX , ,i i i

F F F
24

1 24  represents some future information of the
24 hours of the day ahead. These data are equivalent to the day-
ahead inputs = … ⊤x xX [ , , ]nF F1 F of the hybrid models. In particular,
the values in XF representing hourly day-ahead values, e.g. forecast
of the grid load, are directly mapped into the corresponding 24-
values sequence. By contrast, the values in XF representing some
day-ahead property, e.g. holidays, are repeated 24 times to build the
equivalent vector.

Given this separation, the model uses 2 parallel CNNs to model the
electricity price dynamics. In particular, a first CNN considers the r
input sequences =X{ }i

i
r

F 1 as r input channels. Then, a parallel CNN re-
gards the remaining q input sequences =X{ }i

i
q

S 1 as q input channels. Next,
both networks perform a series of convolution and pooling operations.
Finally, the feature maps at the end of both CNNs are connected into a
fully connected layer that models the day-ahead prices

= … … ⊤p p p pp [ , , , , , ]L L N1 Nc1 24 1 24 . As with the hybrid networks, the moti-
vation behind using this structure is to have a network with layers
tailored to sequential past data as well as with layers tailored to non-
sequential data.

Defining the internal states of both networks by z i j
F
,
k and z i j

S
,
k , with i

representing the layer of the network, j the specific feature map in layer
i, and k the state within the feature map j of layer i, Fig. 3 depicts an
example of this type of structure. For the sake of simplicity, the example
illustrates both CNNs performing just a single convolution and pooling
operation and using only two filters.

3.6. Selection of the network structure

To complete the modeling framework, the structure of the models
have to be selected; in particular, for each of the proposed forecasters,
there are many hyperparameters to be selected, e.g. the number of
neurons, the type of activation function, etc. However, while the
structure of the proposed models is general for any electricity market,
the specific architecture and implementation details might be not.
Specifically, hyperparameters such as the number of neurons might
depend on the market under study, and thus, they should be optimized
accordingly. As a result, in this section, we limit the explanation to
which hyperparameters are optimized. Next, in later sections, we in-
dicate the specific optimal selection for the case study.

3.6.1. Common hyperparameters
While some hyperparameters are model-specific, three of them are

common to the four models:

1. Activation function: Except for the output layer that does not use
any, all the layers within a network use, for the sake of simplicity,
the same activation function. This function is chosen with a single
hyperparameter, and in the case of the hybrid models, i.e. GRU-DNN
and LSTM-DNN, two hyperparameters are used so that each network
type can employ a different activation function.

2. Dropout: Dropout [57] is included as a possible regularization
technique to reduce overfitting and to improve the training perfor-
mance. To do so, at each iteration, dropout selects a fraction of the
neurons and prevents them from training. This fraction of neurons is
defined as a real hyperparameter between 0 and 1.

3. L1-norm penalization: In addition to dropout, the models can add
an L1-norm penalization to the network parameters as a different
way of regularizing. Defining the network weights by W and using
another binary hyperparameter, the models can choose whether to
add to the cost function the following term:

λ W‖ ‖ .1
2 (5)

If regularization is selected, λ becomes a real hyperparameter.

3.6.2. DNN hyperparameters
The DNN model uses two additional model-specific hyperpara-

meters:

• n1/n2: number of neurons in the first/second hidden layer.

3.6.3. LSTM-DNN/GRU-DNN hyperparameters
For the two hybrid models, there are three additional model-specific

hyperparameters:

Fig. 2. Hybrid DNN-LSTM network to simultaneously forecast day-ahead prices
in several countries.
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1. n n/LSTM GRU: number of neurons in the recursive layer.
2. nDNN: number of neurons in the DNN layer.
3. Sequence length: For the LSTM structure, each input is modeled as

a sequence of past values. Considering that values too far in the past
do not cause any effect in the day-ahead prices, selecting the right
length for the input sequences might remove unnecessary com-
plexities. Therefore, a third hyperparameter is used to select the
length of the input sequences.

3.6.4. CNN hyperparameters
Depending on which of the two CNN structures they affect, the

specific hyperparameters of the CNN model can be divided into three
groups:

1. The hyperparameters that are common and equal to the two CNN
structures:
(a) Pooling frequency: The pooling operation does not have to be

always performed right after every convolution. Therefore, an
integer hyperparameter is used to select how frequently, i.e.
after how many convolutional layers, pooling is performed.

(b) Pooling type: To enlarge the number of possible architectures, a
binary hyperparameter selects whether the model uses the
average pooling or the maximum pooling operation.

2. The hyperparameters that only apply to one of the two CNN struc-
tures:
(c) Channel length: For the CNN with past sequences, the length of

the input channels is selected as an integer hyperparameter. In
the case of the other CNN, the input channels have a length of 24
that correspond with the 24 hours of the day ahead.

3. The integer hyperparameters that, while employed in both net-
works, their value can be different.
(d) Filter size: the size of the filter of the convolution operation.
(e) Number of convolutions: the number of convolutional layers

in each CNN.
(f) Feature maps in first layer: The number of feature maps in

every layer is determined by selecting the number of feature
maps in the first layer. In particular, the number of feature maps
in successive layers is simply doubled every two convolutional
layers. This choice is used to reduce the total number of hy-
perparameters. In particular, a more general approach could be
to select the number of convolution layers, and then, to model
the number of features maps in each of these layers with a dif-
ferent hyperparameter. However, this approach is avoided as it
requires a much larger computational cost.

3.7. Model estimation

In the proposed framework, all the neural networks are trained by
minimizing the mean absolute error. In particular, given the training set

= =X p{( , )}k k k
N

1ST with N data points, the networks are trained via the
following optimization problem:

∑ −
=

Fp X wminimize ‖ ( , )‖ ,
k
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w 1

1
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where w represents the vector of all network weights and
→ +F: n c24( 1)  the neural network map. The selection of the mean

absolute error instead of the more traditional root mean square error is

Fig. 3. Hybrid DNN-LSTM network to simultaneously forecast day-ahead prices in several countries.
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done for a simple reason: as the electricity prices have large spikes, the
Euclidean norm would put too much importance on the spiky prices.
The optimization problem is solved using Adam [58], a stochastic
gradient descent method [59] that uses adaptive learning rates. The
advantage of using this optimization method is that the learning rate
does not need to be tuned online. Together with Adam, the proposed
models also considers early stopping [60] to avoid overfitting.

4. Benchmark models for electricity price forecasting

In order to have a large benchmark study, we consider, in addition
to the 4 proposed DL forecasters, a set of 23 different models that have
been proposed in the literature of electricity prices forecasting. In ad-
dition, to further enlarge the benchmark, we consider different versions
of each of the 27 individual models in order to have a benchmark of 98
models.

As the 23 models from the literature will be used to evaluate the
proposed DL models, they are referred to as base forecasters. Moreover,
as the aim of this study is not only the evaluation of the DL models but
also to establish a large benchmark within the community of electricity
price forecasting, we try to consider a fair selection of base models by
including the most common and known forecasters from the literature.
In particular, we use the excellent literature review of [2] and the
newest advances in the field to make the selection as complete as
possible. It is important to note that, while the main principles of each
base model are defined below, the model equations are not provided.
Instead, we refer to the original papers for full documentation.

Based on the model separation of [2], the 23 base forecasters are
divided into three different classes: statistical methods without exo-
genous inputs, statistical methods with exogenous inputs, and machine
learning methods.

4.1. Statistical methods without exogenous inputs

The first class of models comprises statistical methods that only use
past prices as input features. Among them, we make the distinction
between AR models, GARCH models, and exponential smoothing
methods.

4.1.1. AR-type models
The first subclass of forecasters assumes homoskedasticity, i.e.

constant variance and covariance functions, and models time correla-
tion in the time series using a linear model. Within this subclass, we
have selected four models:

1. The well-known wavelet-ARIMA model [18], a method that has
been regularly used in other empirical evaluations [42,61–63]. This
model will be denoted as wavelet-ARIMA (WARIMA).

2. The double seasonal ARIMA (DSARIMA) model [9], an ARIMA model
that considers the double seasonality, i.e. weekly and daily, of
electricity prices.

3. The AR model of [64], an autoregressive model with lags of 24, 48,
and 168 hours, that also models differences among days of the week.

4. The wavelet-ARIMA-RBF model [42], a forecaster that considers the
traditional wavelet-ARIMA structure but adds an RBF network to
model the residuals. This model will be denoted as WARIMA-RBF.

4.1.2. GARCH-based models
Unlike the AR-type models, GARCH-based models do not require

homoskedasticity in the time series. However, unlike the former,
GARCH models are not accurate in forecasting spot electricity prices in
standalone applications; particularly, they need to be coupled with AR-
type models to boost their predictive accuracy [2, Section 3.8.6]. As a
result, within this subclass, we regard the following hybrid model:

5. The ARIMA-GARCH model [15], a forecaster that considers a

standard ARIMA model with GARCH residuals.

4.1.3. Exponential smoothing methods
The last subclass is exponential smoothing, a family of algorithms

that make a prediction using an exponentially weighted average of past
observations. Among these methods, we have selected two different
forecasters:

6. The DSHW [65] model, an algorithm that was successfully used by
[9] for forecasting spot electricity prices.

7. The exponential smoothing state space model with Box-Cox transfor-
mation, ARMA errors, trend and seasonal components (TBATS) [66], a
forecaster that is able to model multiple seasonalities. While this
method has never been used before for electricity price forecasting,
it is a generalization of the DSHW model [66]. Therefore, it is an
interesting method to consider.

4.2. Statistical methods with exogenous inputs

The second class of models are statistical methods that consider
regressors to enhance the predictive accuracy. Typical regressors for
forecasting electricity prices are the grid load, the available capacity, or
the ambient temperature. Among these models, we can distinguish four
subclasses: ARX-type models, regime-switching models, semiparametric
models, and models with automated input selection.

4.2.1. ARX-type models
The first subclass is the natural generalization of adding exogenous

inputs to the AR-based models of Section 4.1.1. Like the AR models,
they also assume homoskedasticity of the data. For the benchmark, we
consider four ARX models:

8. The DR model [17], an ARX model that uses the grid load as a
regressor and that has been used in other empirical evaluations
[51].

9. The TF model [17], an ARX model with moving average terms that,
like the DR model, it uses the grid load as a regressor and it has also
been used in other comparisons [51].

10. The ARX model proposed in [64], an extension of the AR method
defined in Section 4.1.1 that uses the grid load as a regressor. We
will refer to this model as ARX.

11. The full-ARX (fARX) model [67], an ARX model that is an extension
of the previous ARX.

4.2.2. Regime-switching models
The second subclass, i.e. regime-switching models, considers that

the time series can be modeled by different regimes, that each regime
has an independent model, and that switches between regimes can be
modeled by the value of some variable. We consider a single regime
switching model:

12. The TARX model defined in [10], a model with two regimes that
separate normal prices from spiky dynamics. As decision variable,
the model uses the difference between the mean price of one day
and of eight days before. Then, each of the regimes is modeled with
an ARX model that uses the grid load as an exogenous input.

4.2.3. Semiparametric models
Semiparametric models are based on the premise that, given some

empirical data, a nonparametric kernel density estimator might lead to
a better fit than any parametric distribution. To benefit from this hy-
pothesis, they relax the assumption about the probability distribution
that is typically needed when estimating their parametric counterparts.
An example of semiparametric models are the semiparametric ARX
models, which have the same functional form as the equivalent ARX
models, but they relax the normality assumption needed for the
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maximum likelihood estimation [68,8]. For the benchmark, we regard
two different semiparametric models:

13. The Hsieh-Manski ARX (IHMARX) estimator, an algorithm origin-
ally analyzed in [68] and studied in the context of electricity price
forecasting in [8].

14. The smoothed nonparametric ARX (SNARX) estimator, a semipara-
metric model that was also originally analyzed in [68] and applied
to electricity price forecasting in [8].

4.2.4. Models with automated input selection
In the last subclass, we consider a set of models that automatically

select the important exogenous inputs. While this type of models are
instantiations of the previous three subclasses, we separate them in a
fourth subclass due to their special structure. For the benchmark, we
consider two of them:

15. The fARX regularized with Lasso (fARX-Lasso) [67] model, the fARX
model defined in the subclass of ARX models that uses Lasso [69] as
a regularization tool to automatically reduce the contribution of
unimportant inputs.

16. The fARX-EN [67] model, the same model but using elastic nets
[70] as a regularization tool.

4.3. Artificial intelligence models

The last class of models comprises the machine learning models, a
family of algorithms that, while also including exogenous inputs, are
able to model more complex nonlinear relations than the previously
defined models. Within this class, we can distinguish three subclasses:
models based on neural networks, SVR-based models, and ensemble
methods.

4.3.1. Neural network based models
This subclass can be seen as a family of simpler DL algorithms. For

the benchmark, we regard two different models:

17. The traditional MLP model, a standard neural network with a single
hidden layer widely used by many authors [9,21,22].

18. The RBF network, a model introduced in Section 4.1.1 as part of a
hybrid forecaster that has also had standalone applications [27].

4.3.2. SVR based models
Support vector regressors perform a nonlinear mapping of the data

to a higher-dimensional space where linear functions are used to per-
form regression. For the benchmark, we include the following three
models:

19. The plain SVR model as used in [71].
20. The SOM-SVR [25,72] model, a forecaster that first clusters data via

self-organizing maps (SOM) and then predicts prices using a different
SVR model per cluster.

21. The SVR-ARIMA [26] model, a hybrid forecaster that uses a SVR
model to capture the nonlinearity of prices and an ARIMA model
for the linearities.

4.3.3. Ensemble models
Within this final subclass, we include algorithms based on ensemble

methods. Particularly, we consider the two well-known algorithms
based on regression trees [73]:

22. The random forest (RF) [74] model, a forecaster that predicts data
by combining several regression trees. It is based on the principle of
bagging [73, Chapter 8], i.e. combining models with low bias and
high variance error in order to reduce the variance while keeping a
low bias.

23. The XGB [75] model, which also forecasts data by combining re-
gression trees, but it is based on the principle of boosting [73,
Chapter 10], i.e. combining models with high bias and low variance
in order to reduce the bias while keeping a low variance.

It is important to note that, while to the best of our knowledge, these
models have never been used for electricity price forecasting, we in-
clude them in the benchmark as they display reasonable results.

4.4. Modeling options

To have a more fair comparison, the mentioned models are not only
considered in their traditional form; particularly, for each model, three
modeling options with two alternatives per modeling option are con-
sidered, i.e. a model that could use the 3 modeling options would have

=2 83 model alternatives.

4.4.1. Modeling option 1: Spikes preprocessing
Due to the fact that the dynamics of electricity prices are char-

acterized by large, but infrequent, spikes [2], better models might be
obtained if spikes are disregarded during the estimation process. As a
result, when estimating the model parameters, we consider two model
alternatives:

1. MO1A1: A first alternative that limits the spike amplitude to the
mean plus/minus three times the standard deviation.

2. MO1A2: A second one that uses raw prices.

4.4.2. Modeling option 2: Feature selection
For all the models that include exogenous inputs, there are two

additional model alternatives:

1. MO2A1: A first alternative that uses the features from the original
paper. For all the base models, the original input is the day-ahead
grid load forecast given by the transmission system operator.

2. MO2A2: A second alternative where the features are optimally se-
lected considering all the available data in the market under study.
This step is done following the feature selection method described in
[3], where the features are optimally selected by minimizing the
sMAPE of the model in a validation set.

4.4.3. Modeling option 3: Market integration
As explained in Section 3, all the DL models simultaneously predict

electricity prices in various spot markets. This was done because, as
shown in [3], the accuracy of forecasting electricity prices can be en-
hanced by including market integration. Therefore, for all the fore-
casters that model the day-ahead prices in a single model, i.e. that do
not need 24 independent models, two additional model alternatives are
considered:

1. MO3A1: A first alternative where the models only predict the prices
in the local market.

2. MO3A2: A second alternative where the models consider market
integration and simultaneously predict the prices in various mar-
kets.

It is important to note that, while this modeling option is only
possible for some models, considering market integration is available
for many more. In particular, for any of the models with exogenous
inputs, market integration could be modeled using features from con-
nected markets as model inputs. Therefore, when evaluating the second
alternative of modeling option 2, i.e. MO2A2, market integration is im-
plicitly considered if features from connected markets are part of the
optimal set of inputs.
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4.5. Hyperparameter optimization

In order to have a fair comparison, not only different modeling
options should be considered, but also the hyperparameters of the
models should be optimized. In particular, considering that the hy-
perparameters of the DL models are tuned, the configuration of the base
models should also be tuned. As motivated in Section 2.3, this opti-
mization step is performed using Bayesian optimization. Examples of
hyperparameters in the base models are: the size of the lags in all the
AR-based models, the penalty coefficient in the SVR model, or the
number of trees in the random forest.

4.6. Summary

We summarized in Table 1 all the considered benchmark methods
with their properties and modeling options. In particular, the first
column denotes whether a model is nonlinear, the second one whether
it considers exogenous inputs, and the last three whether the model can
make use respectively of modeling options 1, 2, and 3. It necessary to
remark that these three columns do not indicate which alternative is the
best; more specifically, they simply show whether a model can consider
the alternatives of each modeling option.

It is important to note that, while 27 individual benchmark models
have been defined, a total of 98 models are in fact included in the
benchmark. In particular, considering the three modeling options, a
total of + + =27·2(MO1) 14·2(MO2) 8·2(MO3) 98 forecasters are in-
cluded. However, as a comparison of 98 models would be too vast, the
results in the case study are directly given in base of the best alternative
for each of the 27 individual models. A description of which alternative
performs the best for each model is listed in Section 5.3.

5. Case study

In this section, we perform the empirical study to evaluate the
proposed DL models and to analyze the predictive accuracy of the
various base models. To do so, we consider the day-ahead market in
Belgium, i.e. European power exchange (EPEX)-Belgium, in the period
from 01/01/2010 to 31/11/2016. In particular, as a first step to ana-
lyze the models, we motivate the data that is considered. Then, we
perform the required hyperparameter optimization so that all the
forecasters employ an optimized structure. Next, after the hyperpara-
meters are optimized, we compare the predictive accuracy of the var-
ious forecasters using a year of out-of-sample data. From this compar-
ison, we are able to establish a first evaluation of the DL models as well
as to rank the benchmark models according to their performance.
Finally, the differences in performance are analyzed via statistical
testing.

5.1. Data

In general, when looking at the day-ahead forecasting literature,
several inputs have been proposed as meaningful explanatory variables,
e.g. temperature, gas and coal prices, grid load, available generation, or
weather [2].

5.1.1. Data selection
For this research, in addition to the past prices pB in the EPEX-

Belgium, we consider several exogenous inputs. As defined by the
second modeling alternative MO2 in Section 4.4.2, the specific subset of
inputs is given as either one of the following alternatives:

1. A first subset that considers as exogenous input the day-ahead grid
load forecast given by the transmission system operator. This se-
lection is done as this variable has been widely used in the literature
[8,10,67], and for all the base models, it is the exogenous input used
in the original papers.

2. A second subset that is obtained by regarding all the available in-
formation for the market under study and performing feature se-
lection. This step is done following the feature selection method
described in [3]. The available input features are:

(a) The day-ahead forecast lB of the grid load in the EPEX-Belgium.
(b) The day-ahead forecast gB of the available generation in the EPEX-

Belgium.
(c) Past prices pF in the neighboring EPEX-France market.
(d) The day-ahead forecast lF of the grid load in the EPEX-France.
(e) The day-ahead forecast gF of the available generation in the EPEX-

France.

We make the distinction between these two alternatives because,
while it is necessary to optimize each model for our case study, it is also
important to evaluate them in their original format, i.e. as they were
originally proposed in the literature.

It is important to note that, while we optimize the input features for
every model, discussing the results of the feature selection would be too
large to include within the manuscript (we evaluate 27 models, each
model predicts 24 hours, and there are available more than 750 in-
dividual input features that can be selected per hour and per model). As
a consequence, the main results of the feature selection, i.e. which
features are in general relevant to predict the different hours of the day,
are provided as supplementary material in Appendix B [94,95].

5.1.2. Data division
To perform the different experiments, we divide the data into three

sets:

1. Training set (01/01/2010–30/11/2014): these data are used for
training and estimating the different models.

Table 1
Compilation of methods considered in the benchmark. The first two columns
denote possible properties of the model. The last three columns respectively
denote whether a model can make use of the 2 alternatives of modeling option
1, the 2 alternatives of modeling option 2, and the 2 alternatives of modeling
option 3.

Properties Options

Model Non-linear Exog. inputs MO1 MO2 MO3

AR X
DSARIMA X
WARIMA X
WARIMA-RBF X X
ARIMA-GARCH X
DSHW X
TBATS X
DR X X X
TF X X X
ARX X X X
TARX X X X
IHMARX X X X
SNARX X X X
fARX X X X
fARX-Lasso X X X
fARX-EN X X X
MLP X X X X X
RBF X X X X X
SVR X X X X
SOM-SVR X X X X
SVR-ARIMA X X X X
RF X X X X
XGB X X X X
DNN X X X X
LSTM X X X X
GRU X X X X
CNN X X X X
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2. Validation set (01/12/2014–30/11/2015): a year of data is used to
select the optimal hyperparameters.

3. Test set (01/12/2015–30/11/2016): a year of data that is not used
at any step during the model estimation process, is employed as the
out-of-sample data to compare the models.

Considering that there are 24 electricity prices per day, the training
dataset comprises 43,536 data points. Likewise, both validation and test
datasets comprise 8,760 data points each.

5.1.3. Data processing
In order to obtain time series that are easier to forecast, the data

used for the statistical models are processed using a Box-Cox transfor-
mation [76]. This preprocessing step, which includes the log-transfor-
mation as a special case, is a standard one in the literature of electricity
price forecasting [9–11,19,51]. For the machine learning and DL
models, the data is respectively normalized to the intervals [0,1] and
−[ 1,1]. This transformation is done because, based on experimental
results using the validation set, these two preprocessing steps help to
obtain more accurate models.

It is important to note that these transformations are only applied
when estimating the parameters, not for computing metrics or statis-
tical significance.

5.1.4. Data access
For the sake of reproducibility, we have only considered data that

are publicly available. Particularly, the electricity prices can be ob-
tained from the ENTSO-E transparency platform [77]. Similarly, the
load and generation day-ahead forecasts are available on the webpages
of RTE [78] and Elia [79], the respective TSOs in France and Belgium.

5.2. Modeling implementation: frameworks and libraries

In order to implement the proposed DL framework, we use the Keras
[80] DL library in combination with the mathematical language Theano
[81]. The full framework is developed in python.

For the base models, the libraries employed differ more. In general,
most of the forecasters are also modeled in python. The only exception
are the DSHW and the TBATS forecasters, both of which are modeled
using the R language and its forecast library [82]. For the remaining 17
models, we can distinguish several groups according to the library/
framework used:

1. For the RF, the AR, the DR, the ARX, the TARX, the RBF, the three
fARX-based models, and the three SVR-based models, the scikit-
learn library [83] is used.

2. The XGB model is built using the xGBoost library [75] which is
developed by the same authors that proposed the algorithm.

3. The MLP is modeled using the same frameworks as the other DL
models.

4. The remaining models, i.e. the IHMARX, the SNARX, the TF, and the
4 ARIMA-based models, are estimated by solving the corresponding
maximum likelihood estimation problem. In particular, to solve the
various nonlinear optimization problems that arise from the max-
imum likelihood technique, we employ CasADi [84], a symbolic
framework for automatic differentiation and numerical optimiza-
tion. Within this group, we also model the ARIMA part of the SVR-
ARIMA model.

In addition, to solve the optimization problems that estimate the
models’ parameters, we distinguish between two different stopping
criteria:

1. Except for the neural network models, the stopping criterion is given
by the moment that a (local) minimum is reached. We assume that a
local minimum is reached when the gradient of the objective

function is lower than some tolerance; in our study, that was −10 6.
2. For the neural network models, we monitor the performance of a

validation set and we stop the training when the improvements on
this validation set cease (we assume that the improvement ceases if
the accuracy in the validation set worsens for ten consecutive
epochs). This criterion is called early stopping [60], and it is done
because neural networks would overfit to the training data and
would not generalize well if a (local) minimum is reached.

It is important to note that, for all non-convex models, the described
stopping criteria cannot ensure that the best model is found, i.e. the
optimal solutions are in local minima or in their vicinity. To improve
this situation, we have added multi-start optimization to the hy-
perparameter selection; by doing so, when optimizing the hyperpara-
meters, larger regions of the parameter space are explored and the
quality of the obtained local solution can be improved.

5.3. Best Alternative per Modeling Option

In Section 4.4, we have described the three modeling options that
are available for each benchmark model. In this section, we present and
explain the best alternative for each of the options when considering
the case study. It is important to note that all the results listed here are
based on the validation dataset.

The obtained results are listed in Table 2 where, for each benchmark
model and each modeling option, i.e. MO1, MO2, and MO3, the best
model alternative is shown. In particular, the optimal alternative is
given by one of the following labels:

• A1 (A2) to respectively denote that alternative 1 (2) performs the
best.

• NI (non-important) to denote that the modeling option has no effect,
i.e. both alternatives perform similarly.

• No label if the model cannot use the modeling option.

Table 2
Summary of which alternatives of the three modeling options perform the best
for each of the 27 individual models. The labels A1|A2 respectively denote the
case where alternative 1|2 performs the best. NI denotes the case where the
modeling option has no effect. An empty cell means that the model cannot use
the modeling option.

MO1 MO2 MO3

AR A1
DSARIMA A1
WARIMA A1
WARIMA-RBF A1
ARIMA-GARCH A1
DSHW A1
TBATS A1
DR A1 NI
TF A1 NI
ARX A1 NI
TARX A1 NI
IHMARX A1 A1
SNARX A1 A1
fARX A1 A2
fARX-Lasso A1 A2
fARX-EN A1 A2
MLP NI A2 NI
RBF A1 A2 A1
SVR NI A2
SOM-SVR NI A2
SVR-ARIMA NI A2
RF A2 A1
XGB A2 A1
DNN A2 A2
LSTM A2 A2
GRU A2 A2
CNN A2 A2
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Based on the results of Table 2 we can draw the following conclu-
sions:

1. Considering the results of modeling option MO1, preprocessing
price spikes (Alternative A1) seems to be helpful for all statistical
models. In contrast, preprocessing seems to be irrelevant or decrease
the performance in the case of machine learning models. A possible
explanation for this effect is the fact that price spikes are nonlinear
effects, and as such, they can compromise the prediction quality of
statistical models since they are largely linear [20]. In contrast, as
machine learning models are able to model more complex nonlinear
relations, it is possible that they can predict up to certain degree
some of the nonlinear price spikes.

2. Observing the results of modeling option MO2, it is clear that, ex-
cept for the non-parametric models, when the input features are
optimally selected (Alternative A2) the accuracy of the models im-
proves. In particular, the models obtain better performance when,
instead of simply considering the load in the local market
(Alternative A1), the model also includes input features like the load
or generation in a neighboring market.

3. Analyzing the results of modeling option MO3, we can observe how
the accuracy improvements by predicting multiple markets at the
same time (Alternative A2) are restricted to the deep learning
models. As originally argued in [3], this result is due to multi-
tasking, a technique that can be successfully used to improve the
predictive accuracy of deep neural networks but that might not be
helpful for other models. In particular, when multi-tasking, deep
neural networks solve auxiliary and related tasks, e.g. predicting
neighboring markets, in order to generalize better and avoid over-
fitting.

5.4. Hyperparameter optimization

In Section 3.6, we have described the hyperparameters that should
be optimized for each DL model. In this section, we present the obtained
optimal configurations for the case study. For the base models, while
their hyperparameters are also optimized, including here the optimi-
zation results and hyperparameter definitions would require a huge
amount of space. As a result, for the sake of conciseness, the results and
definitions are listed in Appendix C [94,95].

When analyzing the results, it is important to keep in mind that all
the hyperparameter solutions (and in turn the model sizes) depend on
the current amount of data. In particular, as deep learning models
employ a large number of parameters, they also require large amounts
of data to accurately estimate their parameters. As a result, if the
amount of data is not enough to obtain the best model in terms of
prediction performance, the hyperparameter optimization could select
a smaller model that performs better with the current amount of data
but that is not the best model overall. As we argued in Section 5.7, this
effect might explain the lower empirical performance observed for the
most complex model, i.e. the CNN.

5.4.1. DNN model
For the DNN, the optimal structure consists of a first and second

hidden layers with respectively 239 and 162 neurons, the rectifier linear
unit (ReLU) as the activation function, and no regularization nor
dropout. The obtained optimal hyperparameters are summarized in
Table 3.

5.4.2. LSTM model
For the second proposed model, the optimal structure is an LSTM

layer with 83 neurons and a regular layer with 184 neurons. Moreover,
for the LSTM layer, the activation function is a hyperbolic tangent (tanh)
function and the sequence length of input values is 2 weeks of past data.
For the regular layer, the optimal activation is a ReLU function. In
addition, none of the two layers require regularization nor dropout. The

obtained optimal hyperparameters are represented in Table 4.

5.4.3. GRU model
Similar to the LSTM-DNN model, the optimal hyperparameters for

the GRU-DNN model are summarized in Table 5.

5.4.4. CNN model
Finally, for the CNN model, the network that processes past data

consists of three convolutional layers with respectively 64, 128, and 256
feature maps, each of them with a filter of size 3. After each of these
layers, a max pooling operation and a batch normalization are per-
formed. For the network that processes day-ahead data, the optimal
structure is exactly the same. Both networks use the ReLU as activation
function, a dropout factor of 0.31, and no regularization. The obtained
optimal hyperparameters are summarized in Table 6.

5.4.5. General observations
When analyzing the optimal hyperparameter results for the DL

models, we can observe two interesting results that are common to the
four models:

1. Except for the recurrent layers that require a tanh activation
function, the optimal activation function for all the other deep
learning layers is the ReLU function. This result agrees with the
general observations in the field of DL, see e.g. [30], where ReLU is
the default recommended activation function for any modern neural
network with the exception of the LSTM and GRU cells, which by
default require a tanh activation function.

2. Traditional regularization, i.e. performing dropout or penalizing
with a L1 norm the parameters of the neural network to impose
sparsity on the network parameters, is in general not helpful (the
only exception is the CNN model that does requires dropout). While
this result might seem surprising (considering the small size of the
datasets and the large number of parameters of the DL networks), it
can be explained due to the combination of two effects:
(a) While the proposed models are deep structures, they are less

deep than DL networks used for more traditional applications,
e.g. image or speech recognition. As a result, the number of
parameters is smaller, and thus, the regularization step is less
critical.

(b) The models are trained using early stopping. While this is not a
regularization technique by itself, it prevents overfitting. As a
result, the regularization step becomes less critical.

5.5. Comparing predictive accuracy

After describing the experimental setup and obtaining the optimal
model structures, we can compute and compare the predictive accuracy
of the various models. However, to have a meaningful and complete
assessment, not only the accuracy of the models should be computed,
but also the statistical significance of the results should be established.
In this section, we perform the first step of this analysis, i.e. we compute
the accuracy of the models. Next, in the following section, the statistical
tests are performed.

Table 3
Optimal hyperparameters for the DNN model.

Hyperparameter Value

Activation function ReLU
Dropout No
Regularization No
n1 239
n2 162
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5.5.1. Main results
To compare and analyze the predictive accuracy of the various

forecasters, we compute their sMAPE on the test set. In addition, to
guarantee that the assessment is similar to real conditions, i.e. that the
forecaster is re-estimated when new data is available, the models are re-
estimated on daily basis. The obtained results are listed in Table 7.

5.5.2. Observations
From the results displayed in Table 7, we can make various ob-

servations:

i. The DNN, GRU, and LSTM models, i.e. 3 of the 4 proposed DL
forecasters, seem to outperform all the considered literature
models.

ii. A line can be drawn between statistical models and machine
learning methods. In particular, except for the fARX-based models,
the other statistical methods perform worse than any artificially
intelligence model.

iii. According to their performance, the models seem to be divided in
eight clusters:
(1) The DNN model with a 12.3% sMAPE.
(2) The DL models with a recurrent layer, i.e. LSTM and GRU, with

a 13% sMAPE.
(3) The three SVR-based models and the MLP with a 13.3–13.4%

sMAPE.

(4) The CNN, the XGB, and the statistical models with automatic
feature selection with a sMAPE between 13.7% and 13.9%.

(5) The RF, the fARX, and the RBF models with a 14.7–15.3%
sMAPE.

(6) With a 16.7–17.9% sMAPE, the TBATS and the statistical
methods with exogenous inputs but without moving average
(except for the fARX).

(7) With a 19.3–19.4% sMAPE, the ARIMA-GARCH and 2 of the 3
models without exogenous inputs nor moving average.

(8) With a 22–23% sMAPE, the statistical methods with a moving
average term (except for the ARIMA-GARCH).

iv. Surprisingly, the models with moving average seem to perform
worse that their simpler AR counterparts.

v. The TBATS model appears to be the best alternative when no
exogenous inputs are available. In particular, it even matches the
performance of some statistical methods with exogenous inputs.

vi. From the considered models from the literature, SVRs and MLPs
perform the best.

vii. The SVR hybrid methods, i.e. SVR-ARIMA and SOM-SVR, perform
no different that the simple SVR model.

5.6. Statistical testing

In this section, we study the statistical significance of the differences
in predictive accuracy among the various forecasters.

5.6.1. Diebold-Mariano test
To assess this statistical significance, we use the DM test as defined

by (2) and (3), where the loss differential at time k is built using the
absolute error:

Table 4
Optimal hyperparameters for the LSTM model.

Hyperparameter Value

Activation function - DNN ReLU
Activation function - LSTM Tanh
Dropout No
Regularization No
nDNN 184
nLSTM 83
Sequence length 2weeks

Table 5
Optimal hyperparameters for the GRU model.

Hyperparameter Value

Activation function - DNN ReLU
Activation function - LSTM Tanh
Dropout 0.32
Regularization No
nDNN 166
nGRU 132
Sequence length 3weeks

Table 6
Optimal hyperparameters for the CNN model. The label D.A. refers to
the network that processes day-ahead data. The label Past refers to
the network for past data.

Hyperparameter Value

Activation function ReLU
Dropout 0.31
Regularization No
Pooling frequency 1
Pooling type Max pooling
Filter size - Past 3
Filter size - D.A. 3
Number of convolutions - Past 3
Number of convolutions - D.A. 3
Initial feature maps - Past 64
Initial feature maps - D.A. 64
Channel length 1week

Table 7
Comparison of the predictive accuracy of the various forecasters by means of
sMAPE. The labels ML and SM respectively refer to machine learning and sta-
tistical methods.

Model sMAPE [%] Class

DNN 12.34 ML
GRU 13.04
LSTM 13.06
MLP 13.27
SVR 13.29
SOM-SVR 13.36
SVR-ARIMA 13.39
XGB 13.74

fARX-EN 13.76 SM

CNN 13.91 ML

fARX-Lasso 13.92 SM

RBF 14.77 ML

fARX 14.79 ST

RF 15.39 ML

IHMARX 16.72 ST
DR 16.99
TARX 17.08

17.34
SNARX 17.58
TBATS 17.9
ARIMA-GARCH 19.3
AR 19.31
DSHW 19.4
WARIMA-RBF 22.82
WARIMA 22.84
DSARIMA 23.40
TF 23.57
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Moreover, we follow the procedure of [3,85,86] and we perform an
independent DM test for each of the 24 time series representing the
hours of a day. The reason for that is twofold: first, as we use the same
information to forecast the set of 24 day-ahead prices, the forecast er-
rors within the same day would exhibit a high correlation, and thus, the
full error sequence would be correlated. Second, as we study each hour
separately, the DM tests allow us to distinguish between three situa-
tions:

1. The accuracy of forecaster M1 is significantly better than the one of
forecaster M2.

2. The accuracy of M1 is significantly better than the accuracy of M2,
but at some hours, M2’s accuracy is significantly better.

3. M1’s accuracy is never significantly better than M2’s.

In detail, for each hour = …h 1, ,24 and for each model pair M1 and
M2, we perform a one-sided DM test, at a 95% confidence level, with the
null hypothesis of the predictive accuracy of M1 being equal or worse
than M2’s:
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,1 2 1 2 represents the vector of loss differentials at hour

h.1

Next, we perform the complementary one-side DM test with the null
hypothesis of M2 having the same or worse accuracy than M1:
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Finally, we establish that the predictive accuracy of M1 is sig-
nificantly better than M2’s if two conditions are met:

1. In at least one of the regular DMh tests the null hypothesis is re-
jected, i.e. the predictive accuracy of M1 is at least significantly
better in 1 of the 24 prediction windows.

2. None of the complementary ̂DMh tests rejects the null hypothesis,
i.e. the predictive accuracy of M2 is not significantly better in any of
the 24 prediction horizons.

If both M1 and M2 are at least significantly better in one of the 24
prediction windows, we perform a further DM test considering the full
vector of loss differential … ⊤d d[ , , ]N1 .2 Specifically, recalling that optimal
k-step-ahead forecast errors are at most −k( 1)-dependent [56], we
perform a DM test on the full loss differential considering serial cor-
relation of order 23:
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If the null hypothesis of DMsc is rejected, we consider that, while at
some hours M2’s accuracy is significantly better than M1’s, M1’s accuracy
is significantly better when considering the full error sequence.

5.6.2. Results
The obtained results are summarized in Table 8. There are three

possible scenarios:

1. Cells that display a represent the cases where the alternative hy-
pothesis is accepted with a 95% confidence, i.e. the predictive ac-
curacy of M1 is statistically significantly better than the one of M2.

2. Cells that display a represent the cases where, while the predictive
accuracy of M2 is at least significantly better in one of the 24 pre-
dictive horizons, the overall predictive accuracy of M1 when con-
sidering the full loss differential is still statistically significantly
better.

3. Empty cells represent the cases where M1 is not significantly better
than M2.

Considering the results listed in Table 8, we confirm the various
observations made in Section 5.5.2:

1. The DNN, LSTM, and GRU models, i.e. 3 of the 4 proposed fore-
casters, are indeed statistically significantly better than the rest. In
particular, the DNN shows a predictive accuracy that is statistically
significantly better than the accuracy of all others. In addition, the
LSTM and GRU models have an accuracy that is statistically sig-
nificantly better than all others except the MLP.

2. Except for the fARX-based models, the accuracy of the machine
learning methods is statistically significantly better than the accu-
racy of statistical methods.

3. Based on accuracy differences that are statistically significant, we
can observe a very similar group separation pattern as the one de-
scribed in Section 5.5.2.

4. The models with moving average terms have an accuracy that is
statistically significantly worse than their AR counterparts.

5. The TBATS model has an accuracy that is statistically significantly
better than any other model without exogenous inputs.

6. The accuracy of the SVR and hybrid-SVR models is not statistically
significantly different.

To illustrate the first observation, i.e. that the proposed DNN, GRU
and LSTM models are significantly better than the rest, we depict in
Figs. 4 and 5 the test statistics obtained when applied to the DNN and
GRU models. In these figures, at each hour h, the points above the upper
horizontal line accept, at a 95% confidence, the alternative hypothesis
in DMh, i.e. that the specific DL model has an accuracy that is statisti-
cally significantly better. Similarly, any point below the lower hor-
izontal line accepts, at a 95% confidence, the alternative hypothesis in

̂DMh, i.e. that the specific DL model has an accuracy that is statistically
significantly worse.

From Fig. 4 representing the DNN results we can observe how, ex-
cept for the LSTM and GRU models, for any other forecaster the DNN is
at least significantly better at one hour and never significantly worse. In
other words, the DNN is statistically significantly better than all other
models except the LSTM and GRU forecasters. When compared with
these two, while the DNN shows an overall accuracy that is statistically
significantly better, the LSTM’s accuracy is better at hours 01:00 and
22:00, and the GRU’s accuracy at hours 01:00, 02:00, 03:00, and 06:00.

From Fig. 5 representing the GRU results we can draw similar
conclusions. In particular, the GRU model is statistically significantly
better than all models except the DNN, LSTM, GRU, MLP, XGB and
fARX-EN. However, for the XGB and fARX-EN models, while their ac-
curacy is statistically significantly better at one hour, the GRU has an
overall accuracy that is significantly better. From Fig. 6 representing
the LSTM results, we can draw similar conclusions as the ones obtained
from Fig. 5.

For the sake of simplicity, Table 8 only represents a summary of all
the performed DM tests; particularly, as a total of 17550 DM tests were
performed ( 27 !

25 ! 2 !
model pairs × 50 DM test per model pair), it is im-

possible to list them all neither here nor even in an appendix [94,95].
To address that, we have created a website (goo.gl/FzA4Cb) where all
the DM test results can be obtained. In particular, following the same
structure as Figs. 4 and 5, we have upload 27 figures representing the
DM results for the 27 models. In addition, we have also uploaded an
excel sheet with all the p-values of the 17,550 DM tests.1 N/24 losses dh k, per hour h as there are N time points.

2 Notice that = − +d dh k
M M

k h
M M

,
1, 2

24( 1)
1, 2
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5.7. Discussion

To discuss the obtained results, we distinguish between three dif-
ferent topics: an analysis specific to the proposed DL models, an eva-
luation of the general results of the benchmark study, and a discussion
on why neural networks have usually failed to predict electricity prices
but in this paper they represent the best model.

5.7.1. DL models
From the results and observations that are drawn in the previous

section, we can conclude that the proposed DNN, GRU and LSTM
models are the best alternative for forecasting day-ahead prices in the
Belgian market. In particular, the benchmark is quite large and these 3
models outperform all the rest in a statistically significant manner.

Moreover, while the DNN is significantly better than the GRU and
LSTM forecasters, these two are better at some specific hours.
Therefore, if a highly accurate system is targeted, e.g. by combining
several forecasts, the three DL models are still necessary. However, if a
single model is to be used, e.g. due to limitations in computation, the
DNN is clearly the forecaster of choice.

Something that is interesting worthy to discuss is the reason why the
GRU, LSTM, and CNN models perform worse than the DNN. In parti-
cular, the four of them are deep structures with the potential to model
complex nonlinear patterns and, in the case of the GRU and LSTM
models, they are especially appropriate for modeling time series data.
So, how can it be that the DNN has an accuracy that is statistically

significantly better? There are two possible hypotheses:

1. The amount of data: DL models require large amounts of data to be
properly trained. When comparing the four DL models, the DNN has
fewer parameters than the other three; as a result, it might be easier
to train. This hypothesis also agrees with the fact that the CNN
performance is the worse of the four as it is the model with the
largest number of parameters.

2. A second possible reason is the structure of the networks. In parti-
cular, the GRU, LSTM, and CNN models separate the data corre-
sponding to the day-ahead and the past data in two different net-
works. As a result, if some past data and day-ahead data are heavily
related, none of the three structures is able to build these relations
properly. By contrast, the DNN model makes no assumption about
the input data and allows any possible relation to be built.

It is important to note that these are just hypothesis. In particular,
further research is necessary to properly explain this effect.

The last finding worthy to discuss is the performance of the CNN. In
particular, the fourth proposed DL model performs no better than
simpler machine learning methods like XGB or SVR. An extra hypoth-
esis (in addition to the provided two) to explain this effect is the fact
that the CNN uses local operations. In particular, given some layer, the
CNN does not interrelate all its values when making the connections to
the next layer, but performs local convolution operations that inter-
relate local groups of data. As a result, while this structure is very

Fig. 4. DM results for the DNN model. Top: test results for all 26 models. Bottom: test results for the top performing models. Values above the top dashed line
represent cases where, with a 95 % confidence level, the DNN is significantly better. Similarly, values below the lower dashed line accept at a 95 % confidence level
that the DNN is significantly worse.
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convenient to process some specific type of data, e.g. pictures, it might
not be appropriate if all the input data is highly correlated, e.g. seasonal
time series data like electricity prices.

5.7.2. Benchmark
Regarding the benchmark results, besides being the proposed DNN,

GRU, and LSTM models the best forecasters, several other effects need
to be discussed.

5.7.2.1. Moving average models. One of the most important effects to be
examined is the fact that statistical models with moving average terms
perform worse than their AR-counterparts. In particular, as the moving
average terms provide an additional resource to model error
correlation, they should have the potential to be more accurate.
However, if we consider the structure of the model estimation, we
can observe that the former is not necessarily true: as the moving
average term leads to models that are estimated using non-convex
optimization, the global minima is not guaranteed and the resulting
models might have a lower performance.

Despite this explanation, the truth is that, when looking at the lit-
erature of electricity price forecasting, moving average models have
traditionally outperformed their AR counterparts. A possible explana-
tion for this performance mismatch between past studies and this paper
is the change in the dynamics of day-ahead electricity prices during the
last years. In particular, due to the increasing penetration of renewable
sources, day-ahead prices are becoming more volatile and price spikes

are occurring more often. Due to these effects, the resulting optimiza-
tion problems might be more nonlinear, and in turn, the global minima
might become harder to reach.

5.7.2.2. Machine learning vs. statistical methods. Another effect worth
discussing is the fact that machine learning methods clearly outperform
statistical methods. In particular, while several past studies led to
empirical results that showed that the accuracy of machine learning
methods was not better than the one of statistical methods, we can
clearly observe that this is not the case in the EPEX-Belgium market.
Possible explanations for this effect can be the following: as before, the
market under study has large nonlinearities and spikes, and thus, it
requires complex nonlinear models to accurately forecast the prices. In
addition, the computational power of recent years has dramatically
increased, and thus, more data can be used for parameter estimation
and the structure of the considered machine learning methods can be
more complex. The latter argument also agrees with the fact that DL
models have the best performance.

5.7.2.3. fARX-based models. An exception to the previous statement are
the fARX-based models. In particular, despite being statistical methods,
they clearly perform better than any other statistical method and even
better that some machine learning algorithms. These results confirm the
findings of [67] and show that this model is one of the best statistical
methods for predicting electricity prices. A possible explanation for this
performance is the combination of two characteristics:

Fig. 5. DM results for the GRU model. Top: results for all 26 models. Bottom: results for the top performing models. Values above the top dashed line represent cases
where, with a 95 % confidence level, the GRU is significantly better. Similarly, values below the lower dashed line accept at a 95 % confidence level that the GRU is
significantly worse.
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1. The structure of these models is very general and includes many
possible exogenous inputs, which makes them very flexible.

2. At the same time, they use automatic feature selection to reduce the
model complexity and make the models tailored to the market under
study.

5.7.2.4. Hybrid models. A fourth important consideration is the fact
that, in general, hybrid models do not outperform their regular
versions. In particular, nor SVR-ARIMA nor SOM-SVR outperform the
simpler SVR model. Likewise, WARIMA-RBF does not outperform the
simpler WARIMA. An exception might be the ARIMA-GARCH, which
outperforms the WARIMA and DSARIMA models.

5.7.2.5. TBATS. A final remark to be made is the fact that the TBATS
model is clearly the best choice to predict prices when no regressors are
available, and it even is a good choice when exogenous inputs exist.
This observation is very important as, to the best of our knowledge,
nobody has ever tested the accuracy of the TBATS model for predicting
day-ahead electricity prices.

5.7.3. Why do the proposed models improve the performance?
When we consider the literature of electricity price forecasting,

there are many examples where neural networks have been out-
performed by other forecasters [12,27,42,51,62,63,87–90]. The results
obtained in this paper lead to the opposite conclusion: in this case
study, neural networks outperform all other models. In this section, to
clarify this discrepancy, we provide the rationale behind the superior

performance of the proposed DL models. In particular, we examine four
features that past studies have typically not considered and we argue
that by not considering them the accuracy worsens.

5.7.3.1. Depth. As briefly motivated in the introduction, deep neural
networks can generalize and obtain better results than their shallow
counterparts. This effect is related to the universal approximation
theorem [91], which states that a neural network with a linear
output layer can approximate any continuous function on compact
subsets of n provided that it has enough neurons, but does not indicate
whether this number is tractable [30]. In particular, to approximate
some families of functions, the number of neurons required by a
shallow network can grow exponentially with the input size and in
turn become intractable [30]. In the same context, the family of
functions could be approximated by a tractable number of neurons if
the depth is larger than some threshold number d [30].

As a result, when approximating a target function, a deep network
might need a much smaller number of neurons than its shallow coun-
terpart, and thus, it might be able to approximate the function more
easily and better. In our case study, this effect is observed in Table 7,
where a shallow neural network, i.e. the MLP model, has a lower ac-
curacy than the DNN, GRU, and LSTM models.

If we look now at the literature of electricity price forecasting, the
neural networks that have usually been proposed have been shallow
networks [12,22,42,51,62,63,87–90]. Therefore, considering the above
argument, it might be normal for them to perform worse that the deeper
models than we propose.

Fig. 6. DM results for the LSTMmodel. Top: results for all 26 models. Bottom: results for the top performing models. Values above the top dashed line represent cases
where, with a 95 % confidence level, the LSTM is significantly better. Similarly, values below the lower dashed line accept at a 95 % confidence level that the LSTM is
significantly worse.
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5.7.3.2. Number of neurons. Intrinsically related to the previous
argument and to the universal approximation theorem [91] is the fact
that, in order for a network to correctly approximate a function, the
number of neurons needs to be large enough. However, when we
consider the literature of electricity price forecasting, most of the
studies have employed small MLPs with less than 50 neurons
[22,40–42,51,62,63,87,89,90] and have not performed any
hyperparameter optimization to select the required number of neurons.

If this case study, the empirical results show that the optimal
number of neurons for the MLP model is 117 (see Appendix C [94,95]).
While the optimal number will change from case to case, we can use it
as a reference to argue that the small-sized neural networks previously
proposed in the literature might not be large enough to model the
complex dynamics of electricity prices.

To strengthen our argument, we analyze this effect in our case
study: we consider a MLP with 50 neurons and we compare its per-
formance against the optimized MLP using 117 neurons. As it would be
expected, the MLP with 50 neurons fails to perform as good as the
optimized one: its accuracy on the test set drops from 13.27% to
14.30% sMAPE and this difference in accuracy is statistically sig-
nificantly for all 24 hours. In addition, another finding that reinforces
our argument is the fact that, if we were to use this smaller MLP in the
benchmark it would not be better than half of the models, which would
agree with the literature results.

5.7.3.3. Size of training dataset. Even if the network is large enough to
approximate the targeted function, the optimizer might fail to estimate
the right parameters [30]. In particular, a possible problem that the
optimizer might face is not having enough training data to estimate the
large number of parameters in a neural network, e.g. in our MLP model
with 117 neurons there are approximately 28,200 parameters.

When we examine the literature of electricity price forecasting,
studies have usually considered networks that were trained using 1 year
of data or less [12,22,27,42,51,62,63,87–90]. If we consider our case
study, that might not be enough: if trained with 1 year of data, the
accuracy of the DNN drops from 12.34% to 13.27% sMAPE, an accuracy
that is worse than the performance of many benchmark models, and
which might explain again some of the literature results.

5.7.3.4. Stochastic gradient descent. A second problem that might also
affect the parameter estimation regards the properties of the
optimization algorithm itself. In particular, in the literature of
electricity price forecasting, network parameters have traditionally
been estimated using standard gradient descent methods, e.g. batch
gradient descent (also known as back-propagation) or the Levenberg-
Marquardt optimization [2,22,40–42,51,88–90]. These methods, while
they might work well for small sized-networks, they display
computational and scalability issues and they often obtain worse
results [92].

A better alternative is the family of stochastic gradient descent
methods [92,93], which, instead of computing the gradient w.r.t. to the
whole training dataset, they do it w.r.t. to subsets of it. In our case
study, if batch gradient descent is used instead of adam, i.e. a type of
stochastic gradient descent method, the accuracy of the DNN drops
from 12.34% to 14.15%. Based on this empirical result and the argu-
ment above, it is clear that this effect might also account for some of the
discrepancies between our work and the literature.

6. Conclusions

In this paper, four different deep learning (DL) models to predict day-
ahead electricity prices are proposed. Moreover, a large benchmark
study is set up in order to compare the predictive accuracy of the
proposed models w.r.t. to other models in the literature. This bench-
mark is selected to comprise as many models as possible and to serve as
a reference within the field of day-ahead electricity price forecasting.

Three of the four proposed DL forecasters, i.e. the deep neural net-
work (DNN) model, the long-short term memory (LSTM) model, and the
gated recurrent unit (GRU) model, are shown to obtain a predictive ac-
curacy that is statistically significantly better than all other models. In
addition, among these three models, the DNN is able to outperform the
other two with a difference in accuracy that is statistically significant.
Despite this difference, the three models are necessary to obtain a high-
performing forecaster, as the accuracy of the GRU and LSTM models
still better at some specific hours.

Among the rest of the forecasters, it is observed a clear division is
observed between machine learning and statistical methods, where the
former display an accuracy that is statistically significantly better. In
addition, models with moving average terms are shown to suffer the
worst performance and hybrid methods are shown not to outperform
their simpler counterparts.

In future work, this research will be expanded with four further
investigations. First, the effect in forecasting accuracy of more ad-
vanced DL techniques, e.g. autoencoders, will be analyzed. Second, the
usage of expert advice to combine the individual benchmark models
will be studied. Third, the benchmark comparison will be extended to
other markets. Fourth, the effect of the dataset size for each model will
be extensively analyzed using a large number of experiments.
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