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Abstract. We propose to discretize the convective and diffusive operators in the (incom-
pressible) Navier-Stokes equations in such a manner that their symmetries are preserved.
The resulting spatial discretization inherits all symmetry-related conservation and stabil-
ity properties from the continuous formulation. In particularly, a symmetry-preserving
discretization is unconditionally stable, and conserves the energy in the absense of viscous
dissipation. In this paper, a fourth-order, symmetry-preserving discretization method is
described and tested successfully for direct numerical simulation of turbulent channel flow
(Reτ = 180).

1 SYMMETRY AND CONSERVATION

The Navier-Stokes equations provide an appropriate model for turbulent flow. In the
absence of compressibility (∇ · u = 0), the equations are

∂tu + (u · ∇)u + ν∆u + ∇p = 0, (1)

where u denotes the instantaneous fluid velocity field, p stands for the pressure, and
ν is the viscosity. Turbulence is basically the combination of nonlinear transport and
dissipation of energy. Very crudely put, energy is convected from the main flow into
the large eddies, and from them into the next smaller eddies, and so on until it reaches
the smallest scales of motion, where viscous dissipation is the most effective. In the
absence of external sources (such as body or boundary forces), the rate of change of the
total energy is neither influenced by convective transport nor by pressure differences; it is
solely determined by viscous dissipation. This basic property can readily be deduced from
the symmetries of the differential operators in (1). To that end, we consider the evolution
of the energy. In terms of the usual scalar product (u, v) =

∫

V u · vdx, the energy of a
fluid with velocity u and occupying a region V is given by |u|2 = (u, u). Differentiating
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(u, u) with respect to time and rewriting ∂tu with the help of (1) gives

d

dt
|u|2 = − ((u · ∇)u, u) − (u, (u · ∇)u) − ν (∆u, u) − ν (u, ∆u) − (∇p, u) − (u,∇p) .

Here, the convective contributions cancel, because the trilinear form ((u ·∇)v, w) satisfies

((u · ∇)v, w) = − (v, (u · ∇)w) , (2)

or, stated otherwise, because the convective operator (u · ∇) is skew symmetric:

(u · ∇) + (u · ∇)∗ = 0. (3)

The proof of (2) uses the identity

∇ · (fu) = f∇ · u + ∇f · u, (4)

which holds for any (differentiable) scalar f and vector field u. Taking f = v ·w, ∇·u = 0
and applying Gauß’s Divergence Theorem gives

∫

∂V
(v · w)(u · n)ds =

∫

V
∇ · ((v · w)u) dV =

∫

V
∇(v · w) · udV

=
∫

V
(u · ∇)v · wdV +

∫

V
(u · ∇)w · vdV,

which shows that (2) holds if the boundary term vanishes, e.g., if the normal velocity
u · n vanishes at the boundary ∂V , or if v ·w vanishes, or if periodic boundary conditions
apply. Likewise, by setting f = p in (4) and applying Gauß’s Divergence Theorem again,
we obtain that (∇p, u) = 0 if u · n = 0 at the boundary. Therefore, the pressure does not
contribute to the energetics (in the absence of in-/outflow boundaries). Thus after some
algebra, the energy equation reduces to

d

dt
1
2
|u|2 = −ν|∇u|2 (5)

When the Navier-Stokes equations are discretized in space, the discrete energy also evolves
according to Eq. (5) with u replaced by the discrete velocity, and ∇ by its discrete ap-
proximation, provided the underlying symmetries are preserved. That is, a symmetry-
preserving discretization of the incompressible Navier-Stokes equations conserves the dis-
crete energy exactly in case ν = 0, and decreases the discrete energy for ν > 0 (in the
absence of external sources).

1.1 1D example

To illustrate the need to preserve the skew-symmetry (3), we consider the linear con-
vection equation (in one spatial dimension)

∂tu + ∂xu = 0. (6)
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The spatial discretization problem reads: given three values of u, say ui−1 = u(xi−1),
ui = u(xi) and ui+1 = u(xi+1) with xi−1 < xi < xi+1, find an approximation of ∂xu in xi.
Traditionally, the approximation is constructed to minimize the local truncation error,
which results in

∂xu(xi) ≈
riui+1 − (ri − r−1

i )ui − r−1
i ui−1

xi+1 − xi−1
, (7)

where ri = (xi−xi−1)/(xi+1−xi). This approximation may also be derived by constructing
a parabola through the three given data points and differentiating that parabola at x = xi.
To analyze the energetics of the semi-discrete system given by Eqs. (6)-(7), we write it in
a finite-volume fashion,

Ω
duh

dt
+ Cuh = 0, (8)

where the semi-discrete velocities ui constitute the vector uh, the diagonal matrix Ω

is built of the control volumes 1
2
(xi+1 − xi−1) and tridiagonal matrix C contains the

coefficients of the convective discretization. The discrete energy ||uh||
2 = u∗

hΩuh of any
solution of the dynamical system (8) is conserved if and only if the right hand-side of

d

dt
||uh||

2 =
d

dt
(u∗

hΩuh)
(8)
= −u∗

h (C + C∗) uh

vanishes. This conservation property holds (for any uh) if and only if the coefficient
matrix C is skew symmetric. However, we see immediately that (7) leads to a coefficient
matrix C with nonzero diagonal entries for nonuniform grids (ri 6= 1). Hence, if the
local truncation error is minimized, the skew symmetry of the convective operator is lost
on nonuniform grids. This forms our main motivation to consider the skew-symmetric
discretization

∂xu(xi) ≈
ui+1 − ui−1

xi+1 − xi−1

, (9)

instead of (7). On uniform grids (ri = 1) we obtain, of course, the usual second-order dis-
cretization (7), but on nonuniform grids (7) and (9) differ. The two ways of discretization
are illustrated in Figure 1.

The symmetry-preserving discretization (9) may be derived by means of the coordinate
transformation x = x(ξ), which maps the nonuniform grid in x onto a uniform grid in
ξ. Prior to discretization, we rewrite the (partial) derivative of u with respect to x as a
quotient of derivatives with respect to ξ

∂u

∂x
=

∂u

∂ξ

dξ

dx
=

∂u

∂ξ
/
dx

dξ
.

The two ξ-derivatives in the right-hand side are discretized on the ξ-grid, which has a
uniform spacing denoted by h. Neglecting second-order terms in

∂u

∂ξ
(ξi) =

ui+1 − ui−1

2h
+ O(h2),
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Figure 1: Two ways of approximating ∂xu. In the left-hand figure the derivative is approximated by
means of a Lagrangian interpolation, that is by Eq. (7). In the right-hand figure the symmetry-preserving
discretization (9) is applied.

and
dx

dξ
(ξi) =

xi+1 − xi−1

2h
+ O(h2),

gives the approximation (9). This derivation illustrates the second-order accuracy of
the skew-symmetric discretization (9) on nonuniform grids, see also [1]-[2]. Therewith it
founds our choice for the skew-symmetric discretization (9).

1.2 Navier-Stokes equations

The example given above illustrates the importance of the skew symmetry of the dis-
crete convective operator. With this example in mind, we have developed a symmetry-
preserving discretization method for the incompressible Navier-Stokes equations. In
matrix-vector notation, the spatial discretization reads

Ω
duh

dt
+ C(uh)uh + Duh + M ∗ph = 0 Muh = 0, (10)

where ph denotes the discrete pressure, Ω is a (positive-definite) diagonal matrix repre-
senting the sizes of the control volumes and M is the coefficient matrix of the discretiza-
tion of the integral form of the law of conservation of mass. The matrices C(uh) and D

represent the convective and diffusive discretization, respectively.
If the convective coefficient matrix C(uh) is skew symmetric like the convective oper-

ator (u · ∇),
C (uh) + C (uh)

∗ = 0, (11)

compare (2) with (11), the evolution of the energy of any solution of (10) is governed by

d

dt
(u∗

hΩuh)
(10)
= −u∗

h(C (uh) + C (uh)
∗)uh − u∗

h(D + D∗)uh

(11)
= −u∗

h(D + D∗)uh.
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Here, the right-hand side is negative for any uh (not in the null space of D + D∗) if the
matrix D + D∗ is positive definite, like the continuous, diffusive operator −ν∆. Note
that the discrete pressure does not contribute to the evolution of the discrete energy since
(M ∗ph)

∗uh = p∗
hMuh = 0.

In conclusion, the rate of change of the discrete energy is not influenced by convective
transport if and only if the discrete convective operator satisfies (11). Then, the energy
decreases in time if the diffusive operator D is positive definite, and the matrix C (uh)+D

is regular, because all eigenvalues lie in the stable half-plane, i.e., a solution of (10) can
be obtained on any grid.

Both stability and conservation properties have a long standing in the analysis of
discretization methods for the (incompressible) Navier-Stokes equations. Recently, con-
servation properties are also pursued by other researchers, see [3]-[5], for example. The
current issue is how to construct a fully-conservative, fourth-order scheme on nonuniform
grids.

2 SYMMETRY-PRESERVING DISCRETIZATION

In the previous section, we saw that conservation properties and stability are directly re-
lated to the symmetry of the discrete operators in Eq. (10). In this section, the symmetry-
preserving discretization is worked out in detail on staggered, nonuniform grids (in two
spatial dimensions to limit the length of the presentation).

2.1 Convective discretization

To prepare for the skew-symmetric discretization of the convective derivative, we recall
the transport theorem: for any function f , we have

d

dt

∫

Ω
fdV =

∫

Ω

∂f

∂t
dV +

∫

∂Ω
fu · ndS, (12)

where Ω is an arbitrary part of the fluid (at time t). The unit vector n denotes the outward
normal on the surface ∂Ω of Ω. The function f can have several meanings depending on
what is transported. Taking f equal to the mass density gives the law of conservation of
mass. For an incompressible fluid, it states that the net mass flux through the faces of
any grid cell [xi−1, xi] × [yj−1, yj] is zero,

ui,j + vi,j − ui−1,j − vi,j−1 = 0, (13)

where the mass fluxes through the faces are defined by

ui,j =
∫ yj

yj−1

u(xi, y, t)dy and vi,j =
∫ xi

xi−1

v(x, yj, t)dx. (14)

Note that the combination (13)-(14) does not yet contain a discretization error.
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The transport of momentum of a region Ω in an incompressible fluid is obtained if f
in Eq. (12) is replaced by the momentum. As mass and momentum are transported at
equal velocity, we will use the (14) for the transport velocity. Thus, the momentum flux
through a surface S is approximated by

∫

S
uu · ndS ≈ uS

∫

S
u · ndS,

where uS denotes a characteristic value of u at the surface S. At this stage, the integral
in the right-hand side (that is the mass flux through S) is not approximated. The control
volume Ωi+1/2,j for the component ui,j of the discrete velocity is defined as in the Marker-
and-Cell method [6]), that is Ωi+1/2,j = [xi−1/2, xi+1/2] × [yj−1, yj]; see Figure 2.
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Figure 2: The control volume Ωi+1/2,j for the discrete, horizontal velocity ui,j .

The transport of momentum through the faces of the control volume Ωi+1/2,j becomes
approximately

|Ωi+1/2,j |
dui,j

dt
+ ui+1/2,jui+1/2,j + ui,j+1/2vi+1/2,j

− ui−1/2,jui−1/2,j − ui,j−1/2vi+1/2,j−1. (15)

The first term in (15) represents the discretization of the volume integral in the right-
hand side of (12); the other terms form the approximation of the surface integral in (12)
with f = u. The non-integer indices in (15) refer to the faces of the control cell for ui,j.
For example, ui−1/2,j stands for a characteristic u-velocity at the interface of Ωi−1/2,j and
Ωi+1/2,j and vi+1/2,j denotes the (exact) mass flux through the common boundary of the
control volumes for ui,j and ui,j+1, etc.

The velocity at a control face is approximated by the average of the velocity at both
sides of it:

ui+1/2,j = 1
2
(ui+1,j + ui,j) and ui,j+1/2 = 1

2
(ui,j+1 + ui,j). (16)
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In addition to the set of equations for the u-component of the velocity u = (u, v), there
is an analogous set for the v-component. We conceive the combination (15)-(16) as an
expression for the velocities, where the mass fluxes form the coefficients. In matrix-vector
notation, we can write (15)-(16), together with an analogous set for the v-component, as

Ω
duh

dt
+ C(ū)uh, (17)

where the coefficient matrix C(ū) depends on the mass fluxes through the control faces.
Note that we make liberal use of its name: so far C was viewed as a function of uh,
whereas C is a function of exact mass fluxes here.

In the introductory section, we saw that (for D = 0) the spatial discretization (10)
conserves the energy u∗

hΩuh if and only if the convective coefficient matrix C (ū) is skew
symmetric. The matrix C (ū)− diag(C (ū)) is skew symmetric if and only if the weights
in the interpolation of u (and v) to the control faces are constant, as in Eq. (16). Therefore
we use (16) also on nonuniform grids. To make C (ū) skew symmetric, the interpolation
rule for u and v is determined by the requirement that the diagonal of C (ū) has to be
zero. By substituting the interpolation (16) into (15) we obtain the diagonal coefficient

1
2

(

ui+1/2,j + vi+1/2,j − ui−1/2,j − vi+1/2,j−1

)

.

This expression is zero if the mass is conserved in the grid cells and the mass fluxes in
(15) are interpolated to the control faces with weights one half:

ui+1/2,j = 1
2
(ui+1,j + ui,j) and vi+1/2,j = 1

2
(vi+1,j + vi,j). (18)

2.2 The discrete divergence and gradient

Obviously, the mass flux ū needs to be expressed in terms of the discrete velocity
vector uh to close the discretization. The coefficient matrix becomes a function of the
discrete velocity then: C(uh) = C(ū(uh)). The matrix C(uh) is skew symmetric for
any relation between ū and uh. We take ui,j = (yj − yj−1)ui,j and vi,j = (xi − xi−1)vi,j.
Substituting these approximations into Eq. (13) yields the discrete continuity constraint,
which confines the discrete velocity to Muh = 0.

The discrete gradient matrix, describing the integration of the pressure gradient over
the control volumes Ω, is given by M ∗. Consequently, the pressure term in Eq. (10)
does not contribute to the evolution of the discrete energy. To make the velocity field
divergence-free, the pressure is computed from a Poisson equation, where the discrete
Laplacian −MΩ−1M ∗ is symmetric and negative definite.

2.3 Diffusive discretization

The method for discretizing the Laplacian in the Poisson equation for the pressure is
also applied to discretize the diffusive term ν∆u in Eq.(1). In short, the diffusive operator
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is viewed as the product of a divergence and gradient. The divergence is discretized and
the discrete gradient becomes the transpose of the discrete divergence (multiplied by a
diagonal scaling). Unfortunately, we can not re-use the approximation MΩ−1M ∗, since,
due to staggering of the grid, the control volumes for u and v differ from the grid cells
on which coefficient matrix M is based. Therefore, we have to introduce the matrices
Mu and M v. They stand for the discrete integration of the divergence over the control
volumes for u and v, respectively. Thus, the discrete diffusive operator in (10) becomes
symmetric, positive definite:

D = ν diag
(

MuΩ
−1
u M ∗

u, MvΩ
−1
v M ∗

v

)

. (19)

2.4 Fourth-order discretization

To turn Eq. (15) into a higher-order approximation, we write down the transport of

momentum of a region Ω
(3)
i+1/2,j = [xi−3/2, xi+3/2]× [yj−2, yj+1]. Here, it may be noted that

we can not blow up the ‘original’ volumes Ωi+1/2,j by a factor of two (in all directions)
since our grid is not collocated. On a staggered grid, three times larger volumes are the
smallest ones possible for which the same discretization rule can be applied as for the
‘original’ volumes. This yields

|Ω
(3)
i+1/2,j |

dui,j

dt
+ ¯̄ui+3/2,jui+3/2,j + ¯̄vi+1/2,j+1ui,j+3/2

− ¯̄ui−3/2,jui−3/2,j − ¯̄vi+1/2,j−2ui,j−3/2, (20)

where the mass fluxes

¯̄ui,j =
∫ yj+1

yj−2

u(xi, y, t)dy and ¯̄vi,j =
∫ xi+1

xi−2

v(x, yj, t)dy (21)

satisfy
¯̄ui+1,j + ¯̄vi,j+1 − ¯̄ui−2,j − ¯̄vi,j−2 = 0. (22)

The velocities at the control faces of the large volumes are interpolated to the control
faces in a way similar to that given by Eq. (16):

ui+3/2,j = 1
2
(ui+3,j + ui,j) and ui,j+3/2 = 1

2
(ui,j+3 + ui,j). (23)

We can recapitulate the equations above (together with the analogous set for the v-
component) by

Ω3
duh

dt
+ C3(¯̄u)uh, (24)

where the diagonal matrix Ω3 represents the sizes of the large control volumes and C3

consists of flux contributions (¯̄u and ¯̄v) through the faces of these volumes.
On a uniform grid the local truncation errors in Eqs. (17) and (24) are of the order

2 + d, where d = 2 in two spatial dimensions and d = 3 in 3D. The leading term in the
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discretization error may be removed through a Richardson extrapolation (just like in [7]).
This leads to the fourth-order approximation

(

32+dΩ − Ω3

) duh

dt
+

(

32+dC(ū) − C3(¯̄u)
)

uh.

The fourth-order approximation of the law of conservation of mass becomes

(32+dM − M 3)uh = 0, (25)

where M 3uh = 0 represents the discretization of (22) in matrix-vector notation.
Except for the diagonal, the linear combination 32+dC(ū)−C3(¯̄u) is skew-symmetric.

In order to maintain this property on nonuniform grids, the weights 32+d and −1 are to be
used on nonuniform grids too. The ū’s and ¯̄u’s are to be interpolated to the control faces
in such a manner that the diagonal of resulting convective matrix 32+dC(ū) − C3(¯̄u)
vanishes for all discrete velocities satisfying (25). To achieve this, we may interpolate
ūi+1/2,j in the following manner

ūi+1/2,j = 1
2
α(ūi+1,j + ūi,j) + 1

2
(1 − α)(ūi+2,j + ūi−1,j), (26)

where α is a constant, and interpolate v̄i+1/2,j , ¯̄ui+1/2,j and ¯̄vi+1/2,j likewise. As in Morinishi
et al. [3] we take α = 9/8 because all interpolations are fourth-order accurate then (on a
uniform grid).

Finally, it may be noted that a fourth-order, positive-definite discretization of diffusion
can be constructed in the same vein, see [8] for details.

3 RESULTS FOR TURBULENT CHANNEL FLOW

The symmetry-preserving discretization is tested for turbulent channel flow. The
Reynolds number is Reτ = 180 (based on the channel half-width and the wall-shear
velocity). This flow forms a prototype for near-wall turbulence. As usual, the flow is
assumed to be periodic in the stream- and spanwise direction. Consequently, the com-
putational domain may be confined to a channel unit of dimension 2π × 1 × π, where
the width of the channel is normalized. The computational grid consists of 64 (uniformly
distributed) streamwise points, 32 (uniformly distributed) spanwise points and Ny wall-
normal points. Fig. 3 shows a comparison of the mean velocity as obtained from our
fourth-order symmetry-preserving simulation (Ny = 64) with those of other direct numer-
ical simulations [9]-[10]. Here it may be stressed that the grids used by the DNS’s that
we compare with have about 16 times more grid points than our grid has.

To investigate the convergence of the fourth-order method upon grid refinement, we
have monitored the skin friction coefficient Cf as obtained from simulations on five dif-
ferent grids. We will denote these grids by A, B, C, D and E. Their spacings differ only
in the direction normal to the wall. They have Ny = 128 (grid A), Ny = 96 (B), Ny = 64
(C), Ny = 56 (D) and Ny = 48 (E) points in the wall-normal direction, respectively.
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Figure 3: Comparison of the mean velocity. The dashed lines represent the law of the wall and the log
law. The markers represent DNS-results that are taken from the ERCOFTAC Database.

The first (counted from the wall) grid line used for the convergence study is located at
y+

1 ≈ 0.72 (grid A), y+
1 ≈ 0.95 (B), y+

1 ≈ 1.4 (C), y+
1 ≈ 1.6 (D), and y+

1 ≈ 1.9 (E),
respectively. Figure 4 displays the skin friction coefficient Cf as function of the fourth
power of the local grid spacing (measured by y+

1 ). The convergence study shows that
the discretization scheme is indeed fourth-order accurate, on a nonuniform mesh. This
indicates that the underlying physics is resolved when 48 or more grid points are used
in the wall normal direction. The straight line in Figure 4 is approximately given by
Cf = 0.00836 − 0.000004(y+

1 )4. The extrapolated value at the crossing with the vertical
axis y+

1 = 0 lies in between the Cf reported by Kim et al. [9] (0.00818) and Dean’s cor-
relation of Cf = 0.073 Re−1/4 = 0.00844 [11]. Note that the extrapolation eliminates the
(leading term of the) discretization error in the wall-normal direction, but not the other
discretization errors in space and time.

The results for the fluctuating streamwise velocity urms are compared to the experi-
mental data of Kreplin & Eckelmann [12] and to the numerical data of Kim et al. [9] as
well as Gilbert & Kleiser [10] in Fig. 5. This comparison confirms that the fourth-order,
symmetry-preserving method is more accurate than the second-order method. With 48
or more grid points in the wall normal direction, the root-mean-square of the fluctuating
velocity obtained by the fourth-order method is in close agreement with the reference
data. However, the turbulence intensity in the sub-layer (0 < y+ < 5) predicted by the
simulations is higher than that in the experiment of Kreplin & Eckelmann. According to
the fourth-order simulation the root-mean-square approaches the wall like urms ≈ 0.38y+

(Ny = 64). The exact value of this slope is hard to pin-point experimentally. Hanratty et
al. [13] have fitted experimental data of several investigators, and thus came to 0.3. Most
direct numerical simulations yield higher values. Kim et al. [9] and Gilbert & Kleiser [10]
have found slopes of 0.3637 and 0.3824 respectively, which is in close agreement with the
present findings.
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Figure 4: Convergence of the skin friction coefficient Cf upon grid refinement. The figure displays Cf

versus the fourth power of the first grid point y+

1 .
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