
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Handling Interaction
Uncertainty in
Decentralized
Multi-Agent Task and
Motion Planning
Akansha Mukherjee

Handling Interaction
Uncertainty in
Decentralized

Multi-Agent Task
and Motion Planning

by

Akansha Mukherjee

Main Supervisor: Prof. Javier Alonso-Mora.
Daily Supervisor: Andreu Matoses-Gimenez.
Faculty: Robotics, Faculty of Mechanical Engineering, Delft.
Lab: Autonomous Multi-Robots Lab, TU Delft.

Acknowledgements

I would like to take a moment to acknowledge the people who made this thesis possible. I am grateful to my
daily supervisor, Andreu, for his guidance and support throughout the project. Thanks to our weekly meetings
reviewing my progress, brainstorming solutions and planning the next steps, I now have a far better understanding
of the ”do’s and don’ts” of research than when I started. I would also like to thank my main supervisor, Javier, for
taking a keen interest in my work and providing invaluable advice on the technical and non-technical aspects of
the project, despite his busy schedule. I am thankful to my friends, near and far, for keeping me company on days
I felt unmotivated. In particular, I would like to mention Banhisikha for always being one (or three) phone call(s)
away, and Anwesha and Abhyuday for the countless dinners over questionable TV shows. I am also grateful to
my Aunt and Uncle for our daily exchanges over text, their advice, and of course, the jokes. Last, but certainly
not the least, I would like to thank my parents and grandmother for calling daily to make sure living away from
home did not seem so daunting, for their encouragement and for keeping me grounded.

i

Abstract

We propose a framework that enables an agent to plan effectively under interaction uncertainty in decentralized
multi-agent task and motion planning settings for cooperative manipulation tasks. In decentralized systems, each
agent computes plans locally, based on local observations and assumptions on the other agents. Decentralization
leads to each agent being uncertain about the actions and behavior of the other agents in the scene. We refer to this
as ”interaction uncertainty”, as it arises from the implicit interaction between agents. This stems from limitations
of the perception system and the inherent ambiguity of actions, meaning that an agent is not certain about the
action being performed by the other agent(s). In other words, it is not certain if the other agents’ observed actions
will obtain desired outcomes. In addition, an agent cannot predict the future behavior of the other agents or how
this behavior is influenced by its own actions. The proposed framework addresses these two levels of interaction
uncertainty in two-agent settings by leveraging the partial observability of the other agent’s short-term intent
through ego’s perception system, and modeling the behavior of the other agent through an interactive MPD. The
uncertainty about the other agent’s short- and long-term intent is represented using probabilistic effects of joint
actions. The focus of the thesis is on high-level, symbolic uncertainty in action recognition and preferences of the
other agent, but may be extended to its low-level, geometric counterpart using existingmethods in task andmotion
planning. Experiments are performed for different behavior models of the unknown agent, from the perspective of
the protagonist or ego agent and are compared to baselines from sequential centralized planning. Formost settings,
the agents are able to eventually find the symbolic goal. Although the experiments are performed for a simple goal
with two agents, the consistent convergence to the symbolic goal indicates that this approach may be extended to
real-world settings with more complex ambiguity between actions and more agents acting collaboratively. The
code for this thesis is available at a public repository.

ii

https://github.com/akansha2001/tamp_multi_agent.git

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2

2 Research Objectives 3
2.1 Research Question . 3
2.2 Problem Statement . 3

3 Related Work 5
3.1 Task and Motion Planning (TAMP) . 5

3.1.1 Deterministic TAMP . 5
3.1.2 TAMP under Uncertainty . 6

3.2 Multi-Agent Task and Motion Planning . 6
3.2.1 Deterministic Multi-Agent TAMP . 6
3.2.2 Multi-Agent TAMP under Uncertainty . 6

3.3 Gap in the literature . 7
3.3.1 Summary of the literature . 7
3.3.2 Research Gap . 7

4 Preliminaries 8
4.1 Markov Decision Process . 8
4.2 Partially Observable Markov Decision Process . 9
4.3 Interactive Partially Observable Markov Decision Process . 10
4.4 Probabilistic Planning and Domain Definition Language . 11
4.5 Combining PPDDL and POMDPs . 11

5 Method 13
5.1 Interaction uncertainty . 13

5.1.1 Current action uncertainty . 13
5.1.2 Behavior uncertainty . 14

5.2 Self uncertainty . 14
5.3 Interactive MDP . 14

5.3.1 State space . 14
5.3.2 Action space . 14
5.3.3 Transition model . 15
5.3.4 Reward model . 15
5.3.5 Discount factor and planning horizon . 16
5.3.6 Solving for a policy . 16

5.4 Learning the transition model . 16
5.4.1 Model learning hyperparameters . 17
5.4.2 Interaction uncertainty . 17
5.4.3 Self uncertainty . 17

5.5 Example . 18

6 Experimental Setup 20
6.1 Behavior uncertainty . 20
6.2 Current action uncertainty . 20
6.3 Self uncertainty . 20

iii

Contents iv

7 Cleaning scenario 21
7.1 State space . 21
7.2 Action space . 22
7.3 Model learning and execution . 23

7.3.1 Random other agent . 23
7.3.2 Human other agent . 25
7.3.3 Inactive other agent . 26
7.3.4 Symmetric other agent . 26

8 Mug retrieval scenario 27
8.1 State space . 27
8.2 Action space . 28
8.3 Model learning and execution . 29

8.3.1 Random other agent . 29
8.3.2 Human other agent . 30
8.3.3 Inactive other agent . 31
8.3.4 Symmetric other agent . 32

9 Results 33
9.1 Baseline . 33
9.2 Problem complexity . 34
9.3 Effects of hyperparameters on learning . 38
9.4 Deadlocks and suboptimal behavior . 38
9.5 Computational performance for learning . 39

10 Conclusion 40
10.1 Discussion . 40
10.2 Limitations and future work . 41

References 42

1
Introduction

1.1. Motivation
Multi-agent systems (MAS) are a powerful way to solve complex task and motion planning problems in dynamic,
unstructured environments. Unlike single-agent systems which are limited by the capabilities of one robot, multi-
agent systems distribute tasks across multiple decision-makers or agents that jointly influence their environment.
Collaboration between agents offers the advantages of improved safety and reliability. MASs also improve effi-
ciency by parallelizing independent sub-tasks, reducing overall execution time, energy consumption and resource
utilization. This is especially important in time-sensitive applications such as warehouse automation, disaster re-
sponse, and so on. Centralized MASs operate with a single ”puppeteer” planner that governs the behavior of all
agents in the system. However, with an increase in the number of agents, the size of the joint state and action
space grows exponentially, making centralized planning intractable. Further, centralized approaches require con-
stant synchronization with all agents, which is a bottleneck in environments with unreliable networks and high
latency. Decentralized MASs enable individual agents to plan asynchronously based on their local observations,
thereby reducing the computational burden on a single planner.

However, decentralization is not without its challenges, one of the major ones being the uncertainty due to the
presence of other agents in the system. We will call this ”interaction uncertainty”, as it arises due to implicit
interactions between the agents. Since agents plan and act independently, they must reason under uncertainty
about what other agents are currently doing, what they may do in the future and how this changes in response
to the other agents’ actions. In order to ensure safe execution without conflicts, deadlocks or redundant actions,
an agent must reason about these uncertainties during planning. The many benefits of decentralized multi-agent
systems can only be realized if agents are able to reason robustly in the presence of others. This thesis proposes
a framework to address this gap by quantifying the interaction uncertainty surrounding other agents and incor-
porating it in the task and motion planning process, enabling decentralized teams to coordinate more effectively
without explicit communication.

1

1.2. Contribution 2

1.2. Contribution
This thesis presents a planning framework that incorporates interaction uncertainty about other agent into the
planning process of the ego agent in a two-agent setting. The ego agent reasons about two levels of uncertainty
surrounding the other agent: (i) current action uncertainty (short-term intent): the outcome of the other agent’s
ongoing action is uncertain, and (ii) behavior uncertainty (long-term intent): the ego agent is uncertain about
the other agent’s future plan and how it may change in response to ego’s actions. In addition, the ego agent also
accounts for uncertainty in the outcomes of its own actions. The key contributions of this thesis are:

C1: Modeling current action uncertainty: In a two-agent interaction, the other agent’s current action - and
thus the resulting intermediate state of the world - are only partially observable to the ego agent through
its action recognition system. A confusability assumption constrains the set of actions that can be mistaken
for one another in terms of their outcomes. Instead of maintaining a full belief over possible actions, the
uncertainty is represented as the set of possible outcomes of the most likely observed action of the other
agent.

C2: Modeling behavior uncertainty: Uncertainty about the other agent’s behavior - including preferences and
the effect of ego’s actions on its future plan - is learned through interaction under a subintentional fictitious
play assumption. This enables the ego agent to anticipate how the other agent will act, given the state of
the world and its own action.

C3: Bayes-optimistic model learning: We extend the Bayes optimistic model learning algorithm proposed in
[8] to decentralized multi-agent settings. Optimistic symbolic plans are generated assuming cooperative
behavior from the other agent, and desirable action outcomes, yielding short action sequences to achieve the
goal. High-information transitions sampled from these plans are used to approximate the true probabilities
of joint actions in an interactive MDP by focusing on task-relevant regions of the planning space.

2
Research Objectives

2.1. Research Question
How can an ego agent generate a decentralized task and motion plan under interaction uncertainty, arising from
partial observability of other agents’ current actions and unpredictability of their future behaviors, to enable
reliable multi-agent collaboration?

The following sub-questions are relevant:

• How can uncertainty about the current actions of other agents be modeled and solved?
• How can uncertainty about the future intentions of other agents be incorporated into the planning process?

2.2. Problem Statement
Given a symbolic goal, the capabilities of the agents in the scene and a deterministic state of the environment, the
goal is to obtain task and motion plans for the protagonist (ego) agent in a decentralized fashion while accounting
for the interaction uncertainty due to decentralization. In order to isolate the interaction uncertainty, the ego-agent
makes the following assumptions about all agents in the scene:

A1: Fully observable world state

(a) State of manipulable objects
(b) State of all agents

A2: Capabilities of agents

(a) Known a priori by other agents
(b) Stationary

A3: Behavior model of agents

(a) Follows some probability distribution
(b) Not known a priori by other agents (decentralized planning)
(c) Can be learned through interaction
(d) Stationary

A4: Current action of agents

(a) Partially observable to other agents
(b) Depends on world state and latest actions of other agents
(c) Observed at least once by other agents, mid-execution

3

2.2. Problem Statement 4

The proposed framework is evaluated in two scenarios (see Figure 2.1): the first is a collaborative cleaning task
where two manipulators coordinate to lift a block, clean the surface beneath it, and replace the block. The second
involves a mug retrieval task, where two (mobile) manipulators work together to open a cabinet door, retrieve a
mug, and close the door.

(a) Cleaning scenario (b)Mug retrieval scenario

Figure 2.1: Multi-agent collaboration scenarios

A decentralized TAMP algorithm runs on the ego-robot. The other agent can interact with the environment to
change the state of the world and is a source of uncertainty for the ego agent. The uncertainty arises from the fact
that the ego-agent cannot gauge the current action of the other agent or predict its behavior with certainty. The
ego agent’s goal is to solve for actions while accounting for this uncertainty.

3
Related Work

Performing long-horizon tasks autonomously requires an agent, or a collection of agents, to reason about what to
do and how to do it. Simultaneously reasoning about the discrete sequence of tasks and the continuous motions
required to accomplish each of the tasks is a hybrid planning problem, often addressed using integrated task and
motion planning (TAMP). The real world is replete with several forms of uncertainty in the environment of an
agent, as well as the effects of the actions executed by it, which must be incorporated in the planning stage. In
multi-agent settings, the collaboration between two or more agents is an additional source of uncertainty. In this
section, the literature on TAMP is reviewed in light of approaches for single- and multi-agent settings, with and
without uncertainty. For a more extensive review of the literature, please refer to the literature study conducted
before the thesis.

3.1. Task and Motion Planning (TAMP)
The problem of planning for a robot that operates in environments containing a large number of objects, taking
actions to move itself through the world, as well as to change the state of the objects, is known as task and
motion planning (TAMP) [14]. It is the joint symbolic and geometric planning in a way that captures the complex
interdependence between the task-level and motion-level aspects of the problem [43]. Several approaches employ
discrete AI task planning [16] to obtain a high-level, symbolic task plan, which is then refined to a low-level,
geometric motion plan, if feasible. The complex, often intractable planning problem is broken into a hybrid
symbolic search and a set of local motion planning problems, where solving each subproblem is tractable [46].

3.1.1. Deterministic TAMP
Typical TAMP formulations assume a fully observable environment or world and deterministic action outcomes.
These approaches often address long-horizon problems with sparse reward through temporal abstraction, factored
action models and primitive controller design [14, 13, 7]. A TAMP solution is a finite sequence of action instances
π = [a1, ..., ak] where each ai includes assigned values for all (symbolic and continuous) parameters satisfying
the action’s constraints. Selecting the action templates and the values for the discrete template variables specifies
the form of the solution (plan skeleton). The unassigned continuous variables are solved for such that they satisfy
the constraints imposed by the skeleton, to obtain a solution plan for the TAMP problem.

TAMP problems typically use PDDL [23, 41, 35], STRIPS [11] or some extension of these languages [35] to
formalize planning problems. Some key concepts relevant to formulating and solving TAMP problems are in-
troduced in [38, 27, 7]. There are three main classes of methods to solve TAMP problems: (i) constraint-based
TAMP [9, 40, 30, 14], (ii) sampling-based TAMP [13, 7] and (iii) optimization-based TAMP [42].

5

3.2. Multi-Agent Task and Motion Planning 6

3.1.2. TAMP under Uncertainty
The surroundings of an agent in the real world are often only partially observable due to occlusions, sensor noise,
etc. That is, the current state of the world is not known deterministically. Further, actions often have uncertain
effects due to the lossiness of symbolic abstractions, controller imperfections, etc. That is, the future state of the
world cannot be predicted with certainty. The uncertainty may be at the continuous controller level, i.e. low-level
geometric uncertainty in the poses of objects, their mass, coefficient of friction, etc. On the other hand, there may
exist high-level, symbolic uncertainty in the predicates that are currently active or become active as a result of
some action. The high-level uncertainty may have a low-level source - whether an object is inside a box depends
on the geometric pose of the box and the object; or it may be inherently symbolic - the material of an object, for
instance.

Future state uncertainty is addressed using Markov Decision Processes (MDP) to capture probabilistic transition
dynamics [22, 37]. Current state uncertainty is usually handled by planning in the belief space, where each belief
is a probability distribution over the possible world states [8, 25, 1, 20, 15]. Other forms of uncertainty include
temporal uncertainty due to scheduling mismatches [44], lossy abstractions [38], interaction uncertainty [33].

3.2. Multi-Agent Task and Motion Planning
Real-world scenarios often require several agents to collaborate in order to achieve a task or set of tasks. For
more than one agent, the planning may proceed in a centralized or decentralized fashion.

3.2.1. Deterministic Multi-Agent TAMP
Multi-agent pick-up and delivery (MAPD) is one of the main problems addressed in the literature on multi-agent
TAMP [29, 5]. [43] extends the framework from [42] for multi-agent centralized settings with high-dimensional
kinematics. [2] is a centralized, knowledge-based approach to TAMP that combines a heuristic task planner, a
physics-based motion planner and reasoning over ontologies that encode the knowledge about the problem.

3.2.2. Multi-Agent TAMP under Uncertainty
Multi-agent path finding under uncertainty (MAPFU) [44] presents an approach to solve the multi-agent path
finding (MAPF) problem while considering uncertainty only in the low-level motion planning stage. [34] pro-
poses an algorithm for multi-agent task planning under interaction uncertainty for competitive goals. [5] presents
a human-aware robot task planning approach based on a hierarchical task model, considering the uncertainty at
the symbolic task level alone. [10] proposes a tiered approach interleaving task planning, scheduling, assignment
and motion planning for multi-agent systems.

3.3. Gap in the literature 7

3.3. Gap in the literature
The articles reviewed during the literature study have been categorized on the basis of several properties relevant
to the objectives of this thesis. These include the nature of the task, the nature of uncertainty considered, the
presence and type of multi-agent interactions, etc. The main focus of the thesis is the research gap identified
during the literature review.

3.3.1. Summary of the literature

Citation Task Motion
Uncertainty Multi-Agent Nature of Tasks

World Action Interaction Temporal Centralised Decentralised Manipulation Navigation
[14], [13] 3 3 3 3

[9], [30], [42] 3 3 3

[7] 3 3 3 3

[38], [37] 3 3 3 3

[1] 3 3 3 3 3 3 3

[20], [24], [15] 3 3 3 3 3 3

[8] 3 3 3 3

[33] 3 3 3 3

[29], [5] 3 3 3 3

[43] 3 3 3 3 3

[2] 3 3 3 3 3

[44] 3 3 3 3 3 3

[34] 3 3 3 3 3

[6] 3 3 3

[10] 3 3 3 3 3 3 3 3

Thesis 3 3 3 3 3 3 3

Table 3.1: Summary of the reviewed literature.

Task and motion planning The first two columns identify whether the approaches address task planning, motion
planning or both.

Nature of uncertainty An agent may be uncertain about the state of the world, the outcomes of its actions, the
uncertainty about the behavior and actions of other agents and the completion times for actions.

Type of multi-agent systemsMulti-agent systems may be centralized, where a central planner plans for all agents
in the scene, or decentralized, where each agent plans independently.

Nature of tasks Manipulation tasks typically have a longer horizon than navigation tasks, requiring more com-
plex reasoning. Manipulation tasks may be further categorized as fixed-base manipulation tasks or mobile-
manipulation tasks. The latter may involve some degree of navigation. Navigation tasks do not cover any in-
stances of manipulation.

3.3.2. Research Gap
Although decentralized multi-agent systems have been explored in prior work [34, 6], some limitations remain.
The former considers two agents with conflicting objectives in a navigation context; however, their approach
does not extend to cooperative tasks involving complex long-horizon manipulation. Moreover, their method
requires a behavioral model for the other agent to be assumed. The latter proposes a task planning framework
that partitions tasks between agents based on strong assumptions about the other agent’s behavior. While [10]
considers interaction between tasks using synergy, it does so in a centralized fashion, not a decentralized one.

Existing research on multi-agent task and motion planning (TAMP) is limited in the exploration of cooperative
manipulation tasks within decentralized settings. A key challenge in such settings is the interaction uncertainty
that arises due to the absence of centralized coordination. This includes uncertainty about the current and future
actions of other agents, the impact of the actions of the ego agent on others, the influence of other agents on each
other, and the uncertainty due to the completion time of the other agents’ actions.

4
Preliminaries

Sequential decision-making problems under uncertainty are often modeled as Partially Observable Markov Deci-
sion Processes (POMDPs) [25]. Interactive POMDPs (IPOMDPs) extend this formulation to explicitly represent
uncertainty about the behavior of other agents [17]. Although deterministic symbolic planning is unsuitable for
stochastic environments, it can be used to generate optimistic plans that guide model learning by focusing on
task-relevant parts of the problem. These plans can be simulated to approximately learn the transition dynamics.
PPDDL, a symbolic planning language for domains with probabilistic effects, provides a convenient specification
format for such problems [35]. Recent work using Bayes-optimistic model learning for single-agent planning in
stochastic environments show promising results [8]. Building on these ideas, this thesis proposes a framework
that learns transition probabilities over the other agent’s behavior, its current action outcomes, and the ego agent’s
own action outcomes in a goal-directed way.

4.1. Markov Decision Process
A Markov Decision Process (MDP) is a model that captures the characteristics of sequential decision-making
under uncertainty [36]. The MDP may be defined as a tupleM =< S,A, T ,R, h, γ >.

Symbol Name Description
S State space The set of all possible states the environment can be in.
A Action set The set of actions the agent can execute.
T Transition model T (s′ | s, a) = P (s′ | s, a) specifies the probability of transition-

ing to state s′ when action a is taken in state s. Equivalent to the
transition function T : S ×A× S → [0, 1].

R Reward function R : S × A × S → R. The reward R(s, a, s′) specifies the
numerical reward received for taking action a in state s and tran-
sitioning to state s′.

h Horizon The number of time steps in the future over which rewards are
accumulated.

γ Discount factor γ ∈ (0, 1] such that the weight of future rewards is lower com-
pared to immediate ones.

Table 4.1: Components of a Markov Decision Process (MDP).

8

4.2. Partially Observable Markov Decision Process 9

a

s->s', rs'

Figure 4.1: Schematic representation of an MDP. At every stage, the agent takes an action and observes the resulting state s’

The agent’s policy π : S → A determines which action to take at a given state. By the Markov property,
future states are assumed to be conditionally independent of past states, given the present state and action:
p(st+1|st, st−1, ..., s1, at, at−1, ..., a1) = p(st+1|st, at). Thus, the agent’s policy only considers the current
state in its decision making. The agent seeks to find a policy that maximizes its utility, i.e., the expected sum of
rewards for horizon h ≥ 1 and a discount factor γ ∈ (0, 1].

U∗ = max
π

Eπ

[
h∑

t=1

rtγ
t−1

]
. (4.1)

Solving an MDP amounts to finding an optimal policy π∗ : S → A such that

π∗ ∈ argmax
π

Eπ

[
h∑

t=1

rtγ
t−1

]
. (4.2)

4.2. Partially Observable Markov Decision Process
Noisy or limited sensors often prevent the agent from observing the true state of the environment. Partially
Observable Markov Decision Processes (POMDPs) model this uncertainty [26] by extending MDPs to include
observations and their likelihood given the state of the environment. An agent does not know the true state of the
world but has a belief over states, i.e. it uses the history of observations to estimate the probability of each state,
and uses this information to decide on an action. A POMDP of agent i is given as< S,Ai, Ti,Ωi,Oi,Ri, h, γ >.

Symbol Name Description
S State space The set of all possible states of the environment.
Ai Action space The set of actions agent i can execute.
Ti Transition model Ti(s′ | s, a) = P (s′ | s, a) specifies the probability of transi-

tioning to state s′ when when action a is taken in state s.
Ωi Observation space The set of all possible observations for agent i.
Oi Observation function Oi : S × Ai × Ωi → [0, 1]. Oi(o | s′, a) specifies the prob-

ability that agent i receives observation o after taking action
a and transitioning to state s′.

Ri Reward function Ri(s, a, s
′) specifies the reward received by agent i for taking

action a in state s and reaching state s′.
h Horizon The number of time steps in the future over which rewards

are accumulated.
γ Discount factor γ ∈ (0, 1] that reduces the weight of future rewards relative

to immediate ones.

Table 4.2: Components of a Partially Observable Markov Decision Process (POMDP) for agent i.

4.3. Interactive Partially Observable Markov Decision Process 10

a

s->s', ro

Figure 4.2: Schematic representation of a POMDP. Instead of observing the resulting state s’, the agent receives an observation
o ∼ O(.|s, a)

4.3. Interactive Partially Observable Markov Decision Process
Interactive POMDPs (I-POMDPs) address the MAS from the subjective perspective of the protagonist agent, by
explicitly modeling the other agent in order to plan while accounting for their anticipated behavior [17]. Each
agent computes its plans locally. An I-POMDP of agent i is given as < ISi,A, Ti,Ωi,Oi,Ri, h, γ >.

Symbol Name Description
ISi Interactive state

space
The set of interactive states for agent i, ISi = S×Mj , where
S is the physical state space andMj is the set of possible
models of the other agent j.

Mj Model space of agent
j

Each modelmj ∈ Mj consists of a history of agent j (used
to estimate its belief) and a function mapping this history to
a probability distribution over j’s possible actions.

A Joint action space The set of joint moves for all agents, A = ×jAj .
Ti Transition model Ti(is′ | is, a) = P (is′ | is, a) specifies the probability of

transitioning from interactive state is to is′ when the joint
action a is taken.

Ωi Observation space The set of possible observations for agent i.
Oi Observation function Oi(o | is′, a) specifies the probability that agent i receives

observation o after joint action a is taken and the environment
transitions to interactive state is′.

Ri Reward function Ri(is, a, is
′) gives the reward to agent i for taking joint ac-

tion a in interactive state is and transitioning to is′. Rewards
depend only on the physical component of the interactive
state.

h Horizon The number of time steps in the future over which rewards
are accumulated.

γ Discount factor γ ∈ (0, 1] that reduces the weight of future rewards relative
to immediate ones.

Table 4.3: Components of an Interactive Partially Observable Markov Decision Process (I-POMDP) for agent i.

a

s->s', ro

Figure 4.3: Schematic representation of an I-POMDP. The agent reasons about the joint state of the environment and other agent(s).

4.4. Probabilistic Planning and Domain Definition Language 11

4.4. Probabilistic Planning and Domain Definition Language
The Planning Domain Definition Language (PDDL) is used to formalize planning problems [23]. It is a deter-
ministic transition system where state variables are boolean facts (predicates). Similar to STRIPS [11], a PDDL
action template is specified as a list of free parameters (:parameters), a set of preconditions as a logical formula
(:preconditions) specifying the conditions that must hold in a state for the action to be executable, and a set of
effects as a logical conjunction (:effects) describing how the action changes the state in which it is executed.
A state is a goal state if the goal logical formula holds in that state. Goal specifications, including those that
use existential (∃) or universal (∀) quantifiers can be encoded in a PDDL formulation using axioms [41]. Proba-
bilistic PDDL (PPDDL) introduces support for probabilistic effects to define probabilistic and decision-theoretic
planning problems [35]. Probabilistic effects indicate possible but unknown effects of executing some action.

Listing 4.1: PPDDL-style action with uncertain effects

1 (:action pick
2 :parameters (?o - object ?g - grasp)
3 :precondition (and (BVPose ?o) (BHandFree))
4 :effects (and (not (BVPose ?o)))
5 :uconds (and (BClass ?o @glass))
6 :ueffects (maybe (Broken ?o) (BGrasp ?o ?g))
7)

The action template for a ”pick” controller is shown, with a physical object ?o and a continuous grasp ?g as
parameters. The preconditions require the agent to know the pose of object ?o on the table with a high probability
and believe that its gripper is free. On execution, it is guaranteed that the object’s pose on the table will not be
known with high confidence. Possible but uncertain effects include the object being broken, and that the robot
grabs the object with grasp ?g. The probability distribution over these outcomes may depend on the material of
the object being glass (:uconds).

4.5. Combining PPDDL and POMDPs
Action space: When the action space comprises of primitive actions such as joint torques, the horizon for perform-
ing meaningful tasks is prohibitively long, making planning intractable. The POMDP is temporally abstracted
to obtain a belief space controller MDP, where the action space comprises of low-level short-horizon controllers
that operate on beliefs.

State space abstraction: The state space of a POMDP is the space of continuous probabilities or beliefs. Belief-
state abstraction is performed to group together operationally similar beliefs using propositions [25], discretizing
the state space.

Sparse abstract belief-space controller MDP: Preconditions may be specified for each controller, listing the
symbolic predicates that must be active in an abstract belief state for it to be applicable using PPDDL [35]. This
results in a sparse, abstract belief-space MDP.

Symbolic planning (PPDDL): A deterministic planner uses the preconditions and probabilistic effects to search
for a sequence of controllers to the goal state using all-outcomes determinization [39, 45]. This plan is overly
optimistic, being untethered from geometric and physical constraints, but is used to guide model learning.

Goal-directed model learning: High-information transitions are simulated from the optimistic symbolic plans
to learn the approximate transition dynamics by focusing exploration on task-relevant parts of the abstract belief
space.

Solving for optimal actions: Having approximately learned the dynamics, a probabilistic planner is used to solve
for a risk and uncertainty aware policy in the abstract belief space [21].

4.5. Combining PPDDL and POMDPs 12

�������������

���������
������������ ������������

(b) Model Learning

���

(a) Deterministic Planning (c) Probabilistic Planning

Bayes Optimistic SDAC

Pr
og

re
ss

iv
e

w
id

en
in

g
&

fe
ed

ba
ck

 c
on

di
tio

ns

Figure 4.4: The TAMPURA pipeline.

Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness (TAMPURA) is an ap-
proach that combines these methods for Bayes optimistic model learning in single-agent settings [8]. First, the
continuous belief-space is abstracted, with 9 states. The preconditions and possible but uncertain effects of con-
troller execution are specified. All-outcomes determinization is performed and a symbolic planner solves for
several plans to the goal. Next, learning is performed to approximately learn the transition model. Lastly, the
MDP is solved for a policy that is uncertainty and risk-aware.

5
Method

The formalism of POMDPs may be extended to a decentralized MAS as decentralized POMDPs (Dec-POMDPs)
where each agent acts on basis of local observations [31]. However, this framework assumes all agents are fully
cooperative, with a common reward, and the joint optimal solution is computed centrally. We consider the MAS
from the subjective perspective of the ego agent using an interactive POMDP (IPOMDP) formulation, where the
ego agent maintains a model of the other agent to make decisions based on its expected behavior [17].

5.1. Interaction uncertainty
Decentralization of a multi-agent system causes the ego-agent to be uncertain about the role of the other agent(s)
in the execution of the plan. With two agents in the scene, the ego agent has two levels of uncertainty surrounding
the other agent: (i) current action uncertainty and (ii) behavior uncertainty.

5.1.1. Current action uncertainty
Due to imperfections in the ego agent’s perception system and the inherent ambiguity of some actions, the current
action of the other agent is only partially observable. The ego agent cannot be certain whether the action it
perceives is the other agent’s true action or whether that action will achieve its expected outcome. That is, the
ego agent is not certain about the intermediate state of the world that will result from the observed action. The
possibilities are illustrated below. All failure cases are equivalent to the ego agent.

Observed action: Observed action is true action: Fails: undesirable outcome or too slow.

Succeeds: expected outcome.

Observed action is not true action: Fails: confusability.

This may be modeled using a belief or probability distribution over the possible actions of the other agent:

b(an) = P (aother = an);
∑

an∈Aother

b(an) = 1.

However, in practice, only a small set of actions are confusable with each other and this uncertainty may be
modeled as the uncertainty about the outcome of the most likely current action of the other agent.

13

5.2. Self uncertainty 14

5.1.2. Behavior uncertainty
Even if the ego agent were able to mitigate the uncertainty about the current action of the other agent, there
remains the uncertainty of the ego agent about the long-term plan of the other agent and how this plan is adapted
in response to the ego agent’s actions. This requires the ego agent to have a behavior model for the other agent.

Agent j’s behavior model may be given as mj ∈ Mj where mj =< hj , fj >. hj ∈ Hj is the history of
the other agent and fj : Hj → △(Aj) is the function of agent j. Intentional models assume rational other
agents and are computationally expensive due to recursion [18, 17]. We consider a policy reconstruction-based
approach, assuming a subintentional, fictitious play model for the other agent, where its next action depends on
the current world state and ego’s action [4, 12]. This approach can learn arbitrary models for the other agent
through interaction but may require many observations to learn a complex model [3].

5.2. Self uncertainty
The ego agent accounts for the possibility that its own actions may have multiple outcomes due to a non-unique
mapping from the abstract predicate space to the continuous pose space. We assume full observability at the sym-
bolic level, ignoring low-level pose uncertainty that is typically modeled using beliefs or probability distributions.
The proposed framework treats this as action outcome uncertainty: the ego agent’s intended action may fail or
produce different results, consistent with TAMP literature [8, 25].

q ∼ pϕ(q | s).

Given the fully-known symbolic state s, continuous arguments q are assumed to follow some known probabil-
ity distribution pϕ. We simulate the action with variables sampled from this distribution [13] and estimate the
probability of success experimentally.

5.3. Interactive MDP
Since the world is assumed to be fully observable for all agents in the scene, and the uncertainty about the current
action of the other agent is modeled as action outcome uncertainty, we simplify the problem to be fully observable
and model it as an interactive MDP (see Chapter 4, Section 4.3)

IMDPego =< ISego,A, Tego,Rego, h, γ > .

The most likely action of the other agent, together with the ego agent’s chosen action, forms the joint action. The
ego agent selects its action by solving the interactive MDP while reasoning about: (i) the possible outcomes of
the other agent’s action, (ii) the anticipated behavior of the other agent, and (iii) the possible outcomes of its own
action. This joint action transitions the environment to a new interactive state [32, 17].

5.3.1. State space
The ego agent uses a modified interactive state representation for the other agent, using the partial observability
of the other agent’s current action:

ISego = S ×Aother,

where S is the abstract physical state of the world andAother is the set of actions of the other agent. An interactive
state is ∈ ISego is given as is = (s, aother), aother being the most likely action of the other agent which
determinizes the other agent’s action in the joint action.

5.3.2. Action space
The action space from the ego agent’s perspective is the space of joint actions:

A = Aother ×Aego.

5.3. Interactive MDP 15

A joint action a = (aother, aego) is the most likely action the other agent is performing and the ego agent’s
chosen action. Let Prea be the set of preconditions (predicates) for the joint action, Preother, Preego being the
preconditions for the other and ego agent. Similarly, let Effa be the set of guaranteed effects and UEffa be the
set of possible but uncertain effects for the joint action, etc.

• Prohibited: Joint actions where the expected ueff ∈ UEffother violates a precondition pre ∈ Preego are
prohibited. Example: both agents attempt to pick the same object.

• Dependent: Joint actions are where the expected ueff ∈ UEffother satisfies a precondition pre ∈ Preego
that would otherwise be false are dependent. Example: the other agent opens a cabinet, enabling the ego
agent to grasp a mug inside.

• Independent: For all remaining joint actions, Prea := Preother ∧ Preego, Effa := Effother ∧ Effego,
UEffa := UEffother ×UEffego.

5.3.3. Transition model
Bayes optimistic model learning is used to ensure the ego agent is initially optimistic about the compliance of the
other agent, and believes that the joint actions obtain their desired outcomes [8]. Probabilistic effects of PPDDL
action templates are used to indicate to the symbolic planner:

(i) Possible outcomes of the other agent’s observed action, arising from current action uncertainty (Section 5.1.1)
(ii) Possible next actions of the other agent, arising from behavior uncertainty (Section 5.1.2)
(iii) Possible outcomes of the ego agent’s action, arising from self uncertainty (Section 5.2)

The symbolic planner of the ego agent uses all-outcomes determinization to select favorable outcomes for joint
actions, including desirable, cooperative behavior from the other agent [45]. That is, it chooses a sequence of
actions and corresponding outcomes that lead to the goal state, regardless of whether these transitions are actually
feasible. This results in a deterministic transition model:

TAO : ISego × (A× ISego)→ ISego. (5.1)

This optimism leads to bad policies during execution, because the planner may choose actions that rely on unlikely
but useful outcomes. To discourage the planner from choosing such action-outcome pairs, cost weights J are
added to actions to penalize high risk pairs. Optimal open loop plans are obtained when J = −log(p), p being
the true outcome probability. Partial knowledge about T̄ (ist+1|ist, at) is modeled using a Beta(α, β) distribution,
with α = 1, β = 1 for the Beta prior. Given simulations of at from ist, the posterior is Beta(α + ns, β + nf)
where ns is the number of successes (ist+1) and nf is the number of failures. To enforce optimism against partial
knowledge about the transition model, a Bayesian upper confidence bound (UCB) criterion is used [28].

J(b̄t, ct, b̄t+1) = log[F−1
Beta(α+ns,β+nf)

(1− 1

i
)], (5.2)

where J(ist, ct, ist+1) is the cost applied to the transition (ist, ct) → ist+1 in all-outcomes planning, F−1 is
the inverse CDF of the Beta posterior and ns and nf are successes and failures. After model learning, the final
transition model is described as follows, where the function f of the other agent is incorporated in the overall
transition model:

Tego : ISego ×A× ISego → [0, 1]. (5.3)

5.3.4. Reward model
The reward function for the problem is sparse, i.e., the reward for a goal-state is 1.0, while other states have 0.0
reward. The reward model is described below, where only the physical state S is used for the reward computation:

Rego : ISego ×A× ISego → {0, 1}. (5.4)

5.4. Learning the transition model 16

5.3.5. Discount factor and planning horizon
Since the problem has a sparse reward structure, a high value is used for the discount factor γ = 0.95 to propagate
the reward to earlier states in long-horizon problems. At the same time, γ should not be 1.0 so the ego agent prefers
a shorter sequence of actions to the goal state, if it is reachable in different ways. The planning horizon h is not
fixed, as the length of the action sequence to the goal is unknown.

5.3.6. Solving for a policy
The interactive MDP is solved using LAO*, a cyclic graph heuristic search algorithm that extends basic solution
algorithms such as value iteration, policy iteration, etc. The algorithm alternates between state space expansion,
exploring states reachable under the current policy π, and policy optimization via Bellman backups, producing a
policy that maximizes expected cumulative reward while avoiding computation on irrelevant states.

5.4. Learning the transition model
The transition model probabilities are learned by simulating high-information (high-entropy) transitions from the
deterministic symbolic plans (Section 5.3.3). The ego agent learns simultaneously the probabilities associated
with (i) the other agents possible responses, (ii) the outcomes of the observed action and (iii) its own action
outcomes. The model learning pseudocode is shown in Algorithm 1.

Algorithm 1Model learning pseudocode [8]
Require: Parameters for Bayesian model learning prior α, β.
Require: Runtime parameters I,K, S.
Require: Planning problem (is0, G).
Require: State from the past iterations of model learningms.
1: if ms = ∅ then
2: N ← 0, D ← 0 ▷ Initialize counts of observed precondition-effect outcomes.
3: ISenc ← {is0} ▷ Initialize encountered set of states.
4: else
5: (N,D, ISe)← ms ▷ Restore previous model state.
6: end if
7: if Prob(Plan | ms) < envelope_threshold then ▷ Check plan probability.
8: for i = 1→ I do
9: (τk)

K
k=1 ← DeterminizedPlanner(is0,K,N,D,G) ▷ Generate K symbolic plans using model.

10: τ∗ ← {(is, op, is′) ∈ concat(τ1, . . . , τK) : is ∈ ISenc} ▷ Concatenate and filter trajectories.
11: Ψ⃗pre ← [[is[ψ] : ψ ∈ op.UCond] : (is, op, is′) ∈ τ∗] ▷ Preconditions of transitions.
12: Ψ⃗eff ← [[is′[ψ] : ψ ∈ op.UEffs] : (is, op, is′) ∈ τ∗] ▷ Effects of transitions.
13: c⃗← [op.c : (is, op, is′) ∈ τ∗] ▷ List of controllers.
14: n⃗s ← [D[x] : x ∈ zip(Ψ⃗pre, c⃗, Ψ⃗eff)] ▷ Number of successes observed.
15: n⃗f ← [N [Ψpre, c]− ns : (Ψpre, c, ns) ∈ zip(Ψ⃗pre, c⃗, n⃗s)] ▷ Number of failures.
16: H⃗ ← [H(α+ ns, β + nf) : (ns, nf) ∈ zip(n⃗s, n⃗f)] ▷ Compute entropy or information.
17: for j = 1→ S do
18: (is1, op, is2)← pop(τ∗, argmax H⃗) ▷ Select most uncertain transition.
19: is2 ← Simulate(is1, op.c) ▷ Controller simulation.
20: ISenc ← ISenc|{is2} ▷ Update encountered states.
21: Ψpre ← [is1[ψ] : ψ ∈ op.UCond]
22: Ψeff ← [is2[ψ] : ψ ∈ op.UEff]
23: N [Ψpre, op.c]← N [Ψpre, op.c] + 1
24: D[Ψpre, op.c,Ψeff]← D[Ψpre, op.c,Ψeff] + 1
25: end for
26: end for
27: end if
28: (T̂ , ISsparse)← Compile(D,N) ▷ Convert counts to sparse abstract MDP.
29: return (N,D, ISenc), T̂ , ISsparse ▷ Learned model and abstract MDP.

5.4. Learning the transition model 17

5.4.1. Model learning hyperparameters
Model learning is deemed successful when at least one goal state is encountered during training. The model-
learning algorithm has four main hyperparameters that determine success:

• num_skeletons (K): The number of determinized symbolic plans generated per batch of transitions. For
the initial state being close to a goal state, and the other agent being compliant with desired behavior, a low
value of num_skeletons is sufficient; however for an uncooperative other agent or unrealistic transitions,
a higher value is required to consider the other possibilities besides the desired outcomes.

• batch_size (S): The number of transitions per batch; must be large enough such that sufficientmeaningful
samples are transitioned in each batch. For a non-compliant other agent, it should be adjusted such that the
number of batches (num_samples

batch_size) and thus the number of times a new set of symbolic plans is generated with
risk-informed action costs is higher.

• num_samples (I∗S): The total number of transitions sampled (simulated) duringmodel learning; should be
high enough to learn a close approximation of the true transition model. An increase in problem complexity
necessitates a larger value of num_skeletons to account for different ways to reach a goal state. The total
number of transitions increases, requiring a higher value for num_samples.

• envelope_threshold: The minimum probability of being at the current state, given the executed se-
quence of actions, such that the previously learned model may be reused. A low value encourages model
reuse, speeding up computation. However, if this value is too low, the planner may have a false sense of
confidence about its current state, trusting the previous model when it should relearn a more reliable model
from the current state.

5.4.2. Interaction uncertainty
The ego agent must learn the probabilities associated with the (i) action outcomes (Section 5.1.1) and (ii) behavior
(Section 5.1.2) of the other agent. Ideally, the ego agent would learn this through direct physical or simulated in-
teractions with the other agent, observing its actions via the perception system and evaluating the actual outcomes
at the next step. In the absence of a perception system, we assume access to a query function that represents the
other agent’s behavior or policy. This function must indicate the apparent action of the other agent as well as its
true outcome. A human operator could provide these inputs, serving as the query function.

5.4.3. Self uncertainty
Self uncertainty represents the outcome uncertainty surrounding ego’s own actions (Section 5.2). The ego agent
can obtain a realistic estimate of its own action outcome uncertainty by querying a physics-based simulator. Con-
sider the action pick_ego: the probability of success is learned from querying the IsaacLab simulator 1. First,
we must assume a probability distribution for the x and y coordinates of the 2D pose of the object on the table,
given its fully-known symbolic location sregion:

q ∼ pϕ(q | sregion),

where q is x or y. We assume that the ego robot has a perception system that can get the exact pose of the object
in the scene with a uniform random error, while its orientation is known with certainty:

xobs = xtrue +∆x, ∆x ∼ U(−0.010, 0.010).

yobs = ytrue +∆y, ∆y ∼ U(−0.025, 0.025).

During model learning, the simulator is queried only once for each action with a sufficient batch of instances to es-
timate psuccess, as repeated queries are expensive. This is an implementation limitation, not a methodological one.
A batch of 1000 simulations are run in parallel, with a Franka Emika-Panda arm 2mounted on a table, trying to pick
a small cube. Different probabilities are learned for picking an object from the neutral (region_stable_mug)
region and for picking from the cabinet (region_mug) (mug-retrieval scenario). The KLT bin asset in IsaacLab

1https://isaac-sim.github.io/IsaacLab/main/index.html
2https://robodk.com/robot/Franka/Emika-Panda

https://isaac-sim.github.io/IsaacLab/main/index.html
https://robodk.com/robot/Franka/Emika-Panda

5.5. Example 18

is used to represent a cabinet which may hinder the motion of the manipulator, leading it to fail more often than
it would for the unobstructed pick operation.

(a) The simple pick scenario (b) The cabinet pick scenario

Figure 5.1: Simulation settings for different pick actions: mug-retrieval scenario.

The success/failure (1/0) outcomes are assumed to be Bernoulli distributed Xi ∼ Bernoulli(psuccess), where
psuccess is the probability of success. The empirical estimate of psuccess is given below and is used to simulate
Bernoulli-distributed outcomes with a random number generator.

p̂success =
num_successes

num_simulations
.

Low-level motion planning is abstracted away to focus on interaction uncertainty, but may be incorporated to
generate hybrid task and motion plans. Transitions may be sampled from a physics-based simulator to learn their
quality and feasibility as transition probabilities [13, 8].

5.5. Example
To better understand the role of each kind of uncertainty in isolation, an example is illustrated for the mug retrieval
scenario. For simplicity, we assume the other agent (robot_2) can only open or close the door. The initial state
and action (top left) and possible next states are shown in Figure 5.2, with probabilities in red indicating infeasible
states (probability 0.0).

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
in_obj(mug, region_mug)
open_action(robot_2)

region_stable_mug

open_other*pick_ego(robot_2, robot_1, mug, region_mug)

robot_2 robot_1

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
in_obj(mug, region_mug)
open_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p1

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
in_obj(mug, region_mug)
close_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p2

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
holding(robot_1, mug)
open_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p3

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
holding(robot_1, mug)
close_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p4

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
holding(robot_1, mug)
open(door)
close_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p5

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
holding(robot_1, mug)
open(door)
open_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p6

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
in_obj(mug, region_mug)
open(door)
close_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p7

in_rob(robot_1, region_mug)
in_rob(robot_2, region_door)
in_obj(mug, region_mug)
open(door)
open_action(robot_2)

region_stable_mug

robot_2 robot_1

Probability: p8

Figure 5.2: Initial state and action (top left) and possible next states. Probability in red means infeasible next state.

5.5. Example 19

Current interactive state of ego Let ist be the current interactive state, where (i) the other robot (robot_2) is
near the door, (ii) the ego agent (robot_1) is near the mug inside a closed cabinet, and (iii) the ego agent observes
that robot_2 is opening the door. Thus, s and arobot_2 are as follows, such that the interactive state is defined as
is = (s, arobot_2):

s = in_rob(robot_2, region_door), in_rob(robot_1, region_mug),
in_obj(mug, region_mug), not(open(door))

arobot_2 = open_action(robot_2)

Joint action the ego agent attempts to pick up the mug, making the joint action at = (aother, aego):

a = open_other*pick_ego(robot_2, robot_1, mug, region_mug),

Next interactive state Let is′t+1 = (s′, a′robot_2) be the next interactive state of interest, in which (i) the door is
open, (ii) the ego agent is holding the mug, and (iii) the ego agent observes robot_2 to be closing the door:

s′ = in_rob(robot_2, region_door), in_rob(robot_1, region_mug),
holding(robot_1, mug), open(door)

a′robot_2 = close_action(robot_2)

The transition model specifies the joint outcome probability for this action as the probability: T (ist+1 | ist, a) =
P (ist+1 | ist, a) = p7, which jointly accounts for current action uncertainty, future action uncertainty and self
uncertainty. These may be isolated as illustrated below.

(i) Current action uncertainty The probability that the door will be open in the next state, given that the other
agent is observed to be opening the door in the current state. This depends on s and arobot_2, and on arobot_1 only
if it is a door-related action.

P (open(door) ∈ is′ | is, a) =
∑

is′:open(door)∈is′

P (is′ | is, a)

= p5 + p6 + p7 + p8 (5.5)

(ii) Future action uncertainty The probability that the next action of the other agent is to close the door, given
that the ego agent attempts to pick the mug. This depends on s, arobot_1, and the unobserved outcome of arobot_2
at the time of planning: if the other agent failed to open the door, closing it would be infeasible, which is indicated
by 0.0 probability for this outcome combination.

P (close_action(robot_2) ∈ is′ | is, a) =
∑

is′:close_action(robot_2)∈is′

P (is′ | is, a)

= p2 + p4 + p5 + p7 (5.6)

(iii) Self uncertainty The probability that the ego agent will be holding the mug in the next state, given that it
attempted to pick it from the current state. This depends on s, arobot_1, and the unobserved outcome of arobot_2:
if the other agent failed to open the door, pick would not succeed, indicated by probability 0.0 for the outcome
combination. The other agent only observes ego’s action before planning but does not know its outcome yet.

P (holding(robot_1, mug) ∈ is′ | is, a) =
∑

is′:holding(robot_1, mug)∈is′

P (is′ | is, a)

= p3 + p4 + p5 + p6 (5.7)

Given the other agent’s most likely action, the ego agent selects its action to maximize the probability of a high-
reward outcome from the joint action, while encouraging cooperative behavior from the other agent through its
action.

6
Experimental Setup

We evaluate the performance of the proposed framework for two scenarios

S1: Cleaning scenario (short-horizon) there is a dex cube (mug) on top of a red plate. The ego agent’s goal
is to have the dex cube at the same spot, but with the red plate removed. That is, the two robots must
collaborate to ”clean” the surface under the cube and place the cube again.

S2: Mug retrieval scenario (long-horizon) a mug is inside the cabinet with the door closed. The ego agent’s
goal is to have one of the robot’s holding the mug, with the door closed. Two (mobile) manipulators must
collaborate to open the door, retrieve the mug and close the door.

6.1. Behavior uncertainty
The following behavior models are explored for the other agent to demonstrate the ability of the framework to
plan under interaction uncertainty:

B1: Random: a subintentional, no information model, where the other agent is equally likely to be perform-
ing any action. The ego agent must be prepared for any contingency during execution and adapt its plan
accordingly.

B2: Human: a subintentional, fictitious play model where the other agent is somewhat rational, and bases its
decisions on the current world state and the ego agent’s observed action.

B3: Inactive: the other agent is always inactive, meaning the ego agent must perform all the subtasks on its
own.

B4: Symmetric: the other agent uses the same algorithm as the ego agent and is assumed to behave optimally
during execution.

Model learning is deemed successful if the ego agent is able to reach at least one goal state from its current state.
For a cooperative other agent, this is easy as the other agent complies with the symbolic plans. For uncooperative
(unhelpful or harmful) other agents, the ego agent must learn the true behavior over several samples to overcome
optimism.

6.2. Current action uncertainty
The uncertainty surrounding the observed action of the other agent. The observed action is the true action (thus
obtains the desired outcome) 90% of the time during model learning.

6.3. Self uncertainty
The ego agent obtains the desired outcome of its chosen action with 90% success during model learning for all
actions except ”pick”, for which the probability of success is learned from the simulator.

20

7
Cleaning scenario

7.1. State space
The state space of the world includes symbolic predicates describing the object’s location and the state of two
regions. The object may be in one of two regions or held by one of two robots. Each region may be clean or
unclean. Thus, the total number of symbolic world states is 4 × 2 × 2 = 16. In addition, the observed action
of the other agent may be: pick, place, clean or nothing (with appropriate arguments), which is included in the
interactive state. The states are specified using predicates. The green predicates are relevant to the physical state
of the world and the blue one indicates the most likely current action of the other agent.

is0 = {in_obj(mug, region_mug),
not(clean(region_mug)),
clean(region_stable_mug),
nothing_action(robot_2)}.

The goal state requires region_mug to be clean, with the mug placed there.

clean(region_mug), in_obj(mug, region_mug) ∈ isf .

(a) Initial state is0 (b) Goal state isf

Figure 7.1: Initial and goal states for scenario S1.

21

7.2. Action space 22

robot_1 robot_2

region_mug

region_stable_mug

in_obj(mug, region_mug)
clean(region_stable_mug)

(a) Initial state is0

robot_1 robot_2

region_mug

region_stable_mug

in_obj(mug, region_mug)
clean(region_stable_mug)
clean(region_mug)

Goal achieved

(b) Goal state isf

Figure 7.2: Symbolic initial and goal states for scenario S1.

7.2. Action space
Each robot is capable of performing the four actions listed below. The ego agent’s attempted action may either
succeed and obtain the desired outcome or fail, resulting in no change to the world state. When observing the
other agent’s action, it may obtain the expected outcome or an alternative outcome associated with confusable
actions.

Action Description Confusable with
pick("?rob","?obj","?reg") robot ”?rob” attempts to pick object ”?obj” from region ”?reg” place, nothing
place("?rob","?obj","?reg") robot ”?rob” attempts to place object ”?obj” in region ”?reg” pick, nothing
clean("?rob","?reg") robot ”?rob” attempts to clean region ”?reg” nothing
nothing("?rob") robot ”?rob” does nothing -

Table 7.1: Actions for each robot and confusable actions of other robot

Joint actions combine the other agent’s observed actionwith the ego agent’s chosen action. Prohibited joint actions
are those wherein the expected outcome of the other agent’s most likely action negates one or more preconditions
of ego’s action, making it infeasible (see Chapter 5, Section 5.3.2).

Prohibited joint action Condition
pick_other*pick_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”
pick_other*place_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”
place_other*place_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”
clean_other*clean_ego("?rob2","?reg2","?rob1","?reg1") ”?reg1” = ”?reg2”
place_other*clean_ego("?rob2","?obj2","?reg2","?rob1","?reg1") ”?reg1” = ”?reg2”

Table 7.2: Prohibited joint actions

For some actions, the expected outcome of the other agent’s most likely action satisfies one or more preconditions
of ego’s action (see Chapter 5, Section 5.3.2).

Dependent joint action Condition
pick_other*clean_ego("?rob2","?obj2","?reg2","?rob1","?reg1") ”?reg1” = ”?reg2”
place_other*pick_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”

Table 7.3: Dependent joint actions

7.3. Model learning and execution 23

7.3. Model learning and execution
During model learning, the ego agent learns a transition model encoding the behavior of the other agent and joint
outcome probabilities for the actions.

7.3.1. Random other agent
Model learning. Transition models learned using an other agent that picks any action with equal probability
are shown below. The rectangles represent interactive states and ovals represent joint actions. The sum of the
numbers on the arrows leaving each action joint action indicate the number of times it was sampled from the
interactive state with the blue arrow leading to it. For some interactive states, there are no plans to a goal state
(green) passing through them. This is either because the chosen action of the other agent in this interactive state
was infeasible from the world state, resulting in symbolic planning failure; or, the deterministic symbolic planner
did not generate plans through such interactive states because they were not ”goal-directed”.

Figure 7.3: Cleaning scenario: transition model for random other agent

Planning begins at the blue interactive state (ABelief -3021). Initially, the other agent is known to be idle,
doing nothing. The ego agent has two applicable actions: pick the object (mug) from region_mug, or do nothing.
On attempting pick, the ego agent may succeed or fail. Moreover, the other agent may pick one of 7 actions
at the next step (pick ×2, place ×2, clean ×2, nothing), resulting in 2*7=14 possible outcomes. Depending on
the world state after the first joint action, only few of the 6 actions will be applicable. ABelief 50422 is the
interactive state where pick ego succeeded and the other agent appeared to clean region_mug. The clean action
will be applicable, and the ego agent attempts place, from which a goal state may be reached if both components
of the joint action had the desired outcome. For a joint action, if ego’s action has numego possible outcomes,
the other agent’s action has numother possible outcomes and numactions denotes the number of actions the
other agent can pick at the next state, the total number of possible abstract states as a result of this action is
numego ∗ numother ∗ numactions.

7.3. Model learning and execution 24

Execution. During execution, the other agent behaves randomly and often chooses infeasible actions, resulting
in no change to the world state. It is observed that as long as the other agent takes some helpful action(s) such
that a goal state was reached through such behavior during model-learning, the goal is achieved.

(a) t = 0: initial state (b) t = 0: robot_1 pick(mug) (c) t = 1: robot_2 infeasible (d) t = 2: robot_2 infeasible

(e) t = 3: robot_2 clean(r_mug) (f) t = 4: robot_1 place(mug, r_mug) (g) t = 5: goal achieved

Figure 7.4: Cleaning scenario: random other agent demo 1

(a) t = 0: initial state (b) t = 0: robot_1 pick(mug) (fail) (c) t = 1: robot_2 pick(mug) (d) t = 2: robot_1 clean(r_mug)

(e) t = 3: robot_2 place(mug,
r_stable)

(f) t = 4: robot_1 pick(mug) (g) t = 5: robot_1 place (mug,
r_mug)

(h) t = 6: goal achieved

Figure 7.5: Cleaning scenario: random other agent demo 2

7.3. Model learning and execution 25

7.3.2. Human other agent
Model learning. The behavior of the other agent is learned by querying a human user. For a consistent human
agent, the transition model is narrow and represents meaningful behavior. For a high number of symbolic plans,
the human operator query process is tedious as there are many high entropy transitions, several of them at the
early stages of the plan, far from the goal state. These ”earlier” transitions are sampled often and may result in
the goal not being encountered during model learning with too few samples. If the human agent is cooperative,
fewer plan skeletons are sufficient to encounter the goal during model learning as the agent complies with the
optimistic plans.

Figure 7.6: Cleaning scenario: transition model for human other agent

Execution. An apparently cooperative human agent execution scenario is shown where the operator pretends
to perform the cleaning action but without the intended outcome. Since this behavior was encountered during
model learning, and a goal state was reached through such behavior, the ego agent is able to adapt to it during
execution.

(a) t = 0: initial state (b) t = 0: robot_1 pick(mug) (c) t = 1: robot_2 clean(r_mug) (fail)

(d) t = 2: robot_1 place(mug,
r_mug)

(e) t = 3: robot_2 nothing (f) t = 4: robot_1 pick(mug)

(g) t = 5: robot_2 clean(r_mug) (h) t = 6: robot_1 place(mug,
r_mug)

(i) t = 7: goal achieved

Figure 7.7: Cleaning scenario: human other agent demo

7.3. Model learning and execution 26

7.3.3. Inactive other agent
Model learning. The other agent is consistently inactive, i.e. it chooses the nothing action.

Figure 7.8: Cleaning scenario: transition model for inactive other agent

Execution. The ego agent learns that the other agent is inactive and executes the entire plan on its own.

(a) t = 0: initial state (b) t = 0: robot_1 pick(mug) (c) t = 1: robot_1 place(mug,
r_stable)

(d) t = 2: robot_1 clean(r_mug)

(e) t = 3: robot_1 pick(mug) (f) t = 4: robot_1 place(mug, r_mug) (g) t = 5: goal achieved

Figure 7.9: Cleaning scenario: inactive other agent demo

7.3.4. Symmetric other agent
Model learning. We can assume that the other agent behaves in a cooperative way, similar to a centralized
planning approach. Alternatively, a random other agent model or a cooperative human agent model may be used:
as long as a goal state is encountered during learning through cooperative actions from the other agent, the ego
agent is able to successfully adapt to the other’s actions during execution. Here, we use a random other agent
for model learning, as we initially lack the final learned model.

Execution. When both agents use the same learned policy, the agents cooperate to find and execute the mini-
mum make-span plan consistently.

(a) t = 0: initial state (b) t = 0: robot_1 pick(mug) (c) t = 1: robot_2
clean(r_mug)

(d) t = 2: robot_1 place(mug,
r_mug)

(e) t = 3: goal achieved

Figure 7.10: Cleaning scenario: same algorithm for both agents

8
Mug retrieval scenario

8.1. State space
The state space of the world includes symbolic predicates describing the object’s location, the robots’ location and
the state of door. The object may be in one of two regions or held by one of two robots. Each robot may be in one
of three regions and the door may be open or closed. Since a suitable mobile manipulator model is not available
on IsaacLab, we use a fixed-base manipulator; the regions are defined by the vertical position of the end-effector.
Thus, the total number of symbolic world states is 4 × 3 × 3 × 2 = 72. In addition, the observed action of the
other agent may be: pick, place, open, close, transit, transfer or nothing (with appropriate arguments), which is
included in the interactive state.

is0 = {in_rob(robot_1, region_stable_mug),
in_rob(robot_2, region_stable_mug),
in_obj(mug, region_mug),
not(open(door)),
nothing_action(robot_2)}.

The goal state requires one of the robots to be holding the mug, with the door closed.

open(door) /∈ isf ,
(holding(robot_1, mug) ∈ isf
∨
holding(robot_2, mug) ∈ isf)

(a) Initial state is0 (b) Candidate goal state isf (c) Candidate goal state isf

Figure 8.1: Initial state and candidate goal states for scenario S2.

27

8.2. Action space 28

robot_1 robot_2 in_rob(robot_1, region_stable_mug)
in_rob(robot_2, region_stable_mug)
in_obj(mug, region_mug)

region_door
region_mug

region_stable_mug

(a) Initial state is0

in_rob(robot_1, region_door)
in_rob(robot_2, region_mug)
holding(robot_2, mug)
not(open(door))

region_stable_mug

Goal achieved

robot_1 robot_2

(b) Goal state isf

Figure 8.2: Symbolic initial and goal states for scenario S2. In the goal, either robot could be holding the mug.

8.2. Action space
Each robot is capable of performing the seven actions listed below. The ego agent’s attempted action may either
succeed and obtain the desired outcome or fail, resulting in no change to the world state. When observing the
other agent’s action, it may obtain the expected outcome or an alternative outcome associated with confusable
actions.

Action Description Confusable with
transit("?rob","?reg1","?reg2") robot ”?rob” attempts to move from ”?reg1” to ”?reg2” transit, nothing
transfer("?rob","?reg1","?reg2","?obj") robot ”?rob” attempts to transfer ”?obj” from ”?reg1” to ”?reg2” transfer, nothing
pick("?rob","?obj","?reg") robot ”?rob” attempts to pick ”?obj” from ”?reg” place, nothing
place("?rob","?obj","?reg") robot ”?rob” attempts to place ”?obj” in ”?reg” pick, nothing
open("?rob") robot ”?rob” attempts to open door close, nothing
close("?rob") robot ”?rob” attempts to close door open, nothing
nothing("?rob") robot ”?rob” does nothing -

Table 8.1: Actions for each robot and confusable actions of other robot

Prohibited joint actions for scenario S2 are listed below (see Chapter 5, Section 5.3.2).

Prohibited joint action Condition
pick_other*pick_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”
pick_other*place_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”
pick_other*transfer_ego("?rob2","?obj2","?reg2","?rob1","?reg1","?reg2","?obj1") ”?obj1” = ”?obj2”
place_other*place_ego("?rob2","?obj2","?reg2","?rob1","?obj1","?reg1") ”?obj1” = ”?obj2”
place_other*transfer_ego("?rob2","?obj2","?reg2","?rob1","?reg1","?reg2","?obj1") ”?obj1” = ”?obj2”
open_other*open_ego("?rob2","?rob1") -
close_other*close_ego("?rob2","?rob1") -
close_other*pick_ego("?rob2","?rob1","?obj1","?reg1") ”?reg1” = region_mug
close_other*place_ego("?rob2","?rob1","?obj1","?reg1") ”?reg1” = region_mug

Table 8.2: Prohibited joint actions

Dependent joint actions for scenario S2 are listed below (see Chapter 5, Section 5.3.2).

Dependent joint action Condition
open_other*pick_ego("?rob2","?rob1","?obj1","?reg1") ”?reg1” = region_mug
open_other*place_ego("?rob2","?rob1","?obj1","?reg1") ”?reg1” = region_mug
place_other*pick_ego("?rob2","?obj1","?reg1","?rob1","?obj2","?reg2") ”?obj1” = ”?obj2”

Table 8.3: Dependent joint actions

8.3. Model learning and execution 29

8.3. Model learning and execution
8.3.1. Random other agent
Model learning. Transition models learned using an other agent that picks any action with equal probability are
shown below.

Figure 8.3: Mug retrieval: transition model for random other agent

There are several abstract states (rectangles) from which there are no paths to a goal state (green). These are
either infeasible actions from the other agent for which symbolic plans cannot be generated. Or they are states
where the other agent’s action is unhelpful (not goal-directed) or has undesirable outcomes, and the symbolic
planner does not have plans that pass through such states. The other agent’s random action often ends up being
goal-directed, with goal-directed symbolic plans passing through such behavior-outcome combinations of the
other agent, meaning the optimism about the other agent is valid.

Execution. The other agent acts randomly and is equally likely to attempt any action, most of which are infeasible
(or unhelpful) for scenario S2. In essence, the other agent is consistently inactive, a situation not handled
during model learning, since repeatedly sampling a transition occasionally produced feasible, beneficial actions
that led to the goal, while infeasible branches were abandoned. In execution, infeasible actions are replaced by
nothing(), and the ego agent expects the other agent will eventually cooperate. For unhelpful actions, ego
adapts its plan, but still expects the other agent will cooperate at some point. However, helpful actions are very
unlikely, causing deadlocks and preventing the plan from reaching the goal on most occasions (≥ 90% of the
time).

8.3. Model learning and execution 30

8.3.2. Human other agent
Model learning. The behavior of the other agent is learned by querying a human user. Alternately, a query func-
tion may be used to simulate a bias similar to human bias. In the MDP below, the other agent prefers performing
door related tasks like transit to the door, open and close when suitable. The ego agent learns this preference
by sampling several transitions to overcome the optimism that the other agent will perform the tasks related to
retrieving the mug. For a consistent human agent, the transition model is narrow and represents meaningful
behavior.

Figure 8.4: Mug retrieval: transition model for biased other agent

Execution example. The human agent is somewhat uncooperative at first, moving to the door along with the
ego agent. The ego agent adapts its plan to move to the mug and retrieve it.

(a) t = 0: initial state (b) t = 0: robot_1 transit(r_door) (c) t = 1: robot_2 transit(r_door) (d) t = 2: robot_1 transit(r_mug)

(e) t = 3: robot_2 open door (f) t = 4: robot_1 pick(mug) (g) t = 5: robot_2 close door (h) t = 6: goal achieved

Figure 8.5: Mug retrieval scenario: human other agent demo

8.3. Model learning and execution 31

8.3.3. Inactive other agent
Model learning. The other agent is consistently inactive, i.e. it chooses the nothing action, requiring the ego
agent to achieve the goal without any assistance from the other agent.

Figure 8.6: Mug retrieval: MDP for inactive other agent

Execution. The ego agent learns that the other agent is inactive and executes the entire plan on its own.

(a) t = 0: initial state (b) t = 0: robot_1 transit(r_door) (c) t = 1: robot_1 open door (d) t = 2: robot_1 transit(r_mug)

(e) t = 3: robot_1 pick(mug) (f) t = 4: robot_1 transfer(mug,
r_stable)

(g) t = 5: robot_1 place(mug,
r_stable)

(h) t = 6: robot_1 transit(r_door)

(i) t = 7: robot_1 close door (j) t = 8: robot_1 transit(r_stable) (k) t = 9: robot_1 pick(mug) (l) t = 10: goal achieved

Figure 8.7: Mug retrieval scenario: inactive other agent demo

8.3. Model learning and execution 32

8.3.4. Symmetric other agent
Model learning. We can assume that the other agent behaves in a cooperative way. Alternatively, a random
other agent model or a cooperative human agent model may be used: as long as a goal state is encountered during
learning through cooperative actions from the other agent, the ego agent is able to adapt successfully during
execution. Here, we use a random other agent for model learning for the same reasons as in the previous
scenario.

Execution. When both agents use the learned policy, the agents cooperate to find and execute the minimum
make-span plan consistently.

(a) t = 0: initial state (b) t = 0: robot_1 transit(r_door) (c) t = 1: robot_2 transit(r_mug) (d) t = 2: robot_1 open door

(e) t = 3: robot_2 pick(mug) (f) t = 4: robot_1 close door (g) t = 5: goal achieved

Figure 8.8: Mug retrieval scenario: same algorithm for both agents

9
Results

This chapter evaluates the proposed decentralized approach against a sequential, non-deterministic centralized
planner benchmark, where two agents take turns executing actions. While decentralized multi-agent TAMP
under interaction uncertainty is an emerging area of research, existing methods in the literature are limited and
not readily adaptable for direct comparison. The centralized sequential planner serves as a meaningful baseline:
it has a global view of the system and addresses only one layer of uncertainty at a time, i.e., the uncertainty in
the current agent’s action outcome. This contrasts with the more complex uncertainty modeling required in joint
centralized planning (which must reason over joint action-outcome uncertainty), and the decentralized setting,
which has an additional layer of uncertainty due to the behavior of the other agent. We compare the quality of
solution and computational performance of the decentralized approach with its centralized, sequential counterpart.

9.1. Baseline
We compare the centralized baseline and the decentralized implementation based on the quality of the solution,
quantified as the average number of steps to reach the goal state during execution. While the total cost of
the plan would be a more accurate metric, we use the number of steps as a proxy, since low-level motion plan-
ning is not the focus of this thesis. The ”behavior” of the other agent in the decentralized scenarios is equivalent
to the ”skill” of the other agent for the non-deterministic centralized scenario, i.e., each agent’s relative ability
to perform some tasks better. The ego agent’s decentralized planner must learn about the behavior of the other
agent through interaction, while the centralized planner learns the (in)ability of an agent to perform some actions
through simulations. More specifically, we compare the performance of decentralized planning (ours) against a
centralized planning baseline. In centralized planning, each action of an agent has more than one possible out-
come and the agents take turns to act (sequential), meaning that the planner reasons about one level of uncertainty
at a time. The ”skill” of an agent performing some task is quantified through the probability of success when the
agent performs the task, and is estimated during model learning. During execution, the planner selects optimal
actions for each agent, given their skill set.

33

9.2. Problem complexity 34

9.2. Problem complexity
Within a fixed problem scenario (S1 or S2), the complexity or difficulty is determined by:

• Behavior model of other agent. As the other agent’s compliance with the desired behavior decreases,
or the other agent becomes increasingly uncooperative, the complexity increases. A higher number of
transitions must be sampled by the ego agent to overcome its optimism about the other agent’s behavior.

• Goal-directed infeasible action outcomes. Some joint actions have outcome combinations that are in-
feasible but helpful in achieving the goal, such as pick_other*clean_ego (S1) where the other agent
fails to pick the object but ego succeeds in cleaning the surface under it and open_other*pick_ego (S2)
where the other agent fails to open the door but ego succeeds in picking the mug from the cabinet. A higher
number of transitions must be sampled by the ego agent to learn this infeasibility.

• Minimum horizon length solution. The minimum number of actions to the goal state, given the behavior
of the other agent. This depends on the initial state, the goal state and the behavior model of the other agent.
As the minimum horizon length increases, the number of ways to reach the goal increases, increasing the
difficulty of the problem.

Scenario S1: we consider three levels of problem complexity (difficulty) for scenario S1, increasing from D1 to
D3. robot_1 is the ego agent and robot_2 is the other agent. The cost of the path to the goal is the number of
actions to the goal state, including the nothing action.

D1: robot_2 behaves optimally. The lowest cost path to the goal is: (i) robot_1 picks the mug from region_mug,
(ii) robot_2 cleans region_mug, (iii) robot_1 places mug in region_mug.

D2: robot_2 only performs pick and place (100% success) but not clean. The lowest cost path to the goal is: (i)
robot_1 does nothing, (ii) robot_2 picks the mug from region_mug, (iii) robot_1 cleans region_mug, (iv)
robot_2 places mug in region_mug.

D3: robot_2 is inactive. The lowest cost path to the goal is: (i) robot_1 picks the mug from region_mug noth-
ing, (ii) robot_1 (temporarily) places the mug in region_stable_mug, (iii) robot_1 cleans region_mug, (iv)
robot_1 picks the mug from region_stable_mug, (v) robot_1 places mug in region_mug.

Difficulty Initial state Behavior model
of robot_2

Minimum
horizon
length

D1

is0 = {clean(robot_1, region_stable_mug),
in_obj(mug, region_mug),
nothing_action(robot_2)}.

optimal 3

D2

is0 = {clean(robot_1, region_stable_mug),
in_obj(mug, region_mug),
nothing_action(robot_2)}.

only performs
pick and place;

does not
perform clean

4

D3

is0 = {clean(robot_1, region_stable_mug),
in_obj(mug, region_mug),
nothing_action(robot_2)}.

inactive 5

Table 9.1: Difficulty as a function of initial state, other agent behavior, and horizon length

9.2. Problem complexity 35

Analysis the execution performance is evaluated over 20 trials on basis of the mean number of steps to the goal
and the variance. robot_1 is the ego agent, robot_2 is the other agent. The training and execution distribution
for decentralized planning is tabulated below. For centralized planning, the training and execution behavior is
aligned with the execution behavior for its decentralized counterpart in each setting.

Difficulty Training Execution
D1 robot_1: 90% success for chosen action; robot_2:

randomly chooses an action, 90% probability of ap-
parent action being the true action with desired out-
come

same algorithm for robot_1 and robot_2; robot_1:
90% success for chosen action; robot_2: 90% prob-
ability of apparent action being the true action with
desired outcome

D2 robot_1: 90% success for chosen action; robot_2:
randomly chooses an action, 100% probability of
apparent action being the true action with desired
outcome for pick and place, 0% for clean

robot_1: 90% success for chosen action; robot_2:
operated by human user, behavior aligned with
training behavior

D3 robot_1: 90% success for chosen action; robot_2:
inactive, always chooses nothing action

robot_1: 90% success for chosen action; robot_2:
inactive, always chooses nothing action

Table 9.2: Training and execution behavior for the two agents for decentralized planning

We observe the following Figure 9.1:

D1: The mean for both centralized and decentralized settings is substantially higher than the minimum number
of steps. Each robot has a 90% chance of succeeding at its task, meaning that the probability of a 3-step
path to the goal is (0.9)3 = 0.729. Moreover, if robot_2 fails to clean, the centralized planner requires
robot_1 to wait for robot_2 to retry and succeed. The decentralized planner of robot_1 instructs it to place
the mug, realizing at the next step that clean failed, and it has to pick up the mug again, resulting in a higher
variance for the decentralized planner.

D2: There is no uncertainty surrounding robot_2 and the performance is comparable for the centralized and
robot_1 using a decentralized planner, as expected. The mean is close to the minimum number of steps
as the probability of a 4-step path to the goal is 0.9 and there is only one level of uncertainty surrounding
robot_1’s actions.

D3: There is no uncertainty surrounding robot_2 and the performance is comparable for the centralized and
decentralized planners, as expected. Even though the probability of a 5-step path to the goal is (0.9)5 =
0.590, there is only one level of uncertainty surrounding robot_1’s actions and it does not have to wait for
robot_2 to retry actions, meaning that the mean is close to the minimum of 5 for both scenarios.

Figure 9.1: Centralized vs. decentralized planner for S1: number of steps to goal during execution

9.2. Problem complexity 36

Scenario S2: we consider four levels of problem complexity (difficulty) for scenario S2, increasing from D1 to
D4. robot_1 is the ego agent and robot_2 is the other agent. The cost of the path to the goal is the number of
actions to the goal state, including the nothing action.

D1: robot_2 behaves optimally. The lowest cost path to the goal is: (i) robot_1 opens the door, (ii) robot_2
picks the mug from region_mug, (iii) robot_1 closes the door.

D2: robot_2 behaves optimally. The lowest cost path to the goal is: (i) robot_1 transits to region_door, (ii)
robot_2 transits to region_mug, (iii) robot_1 opens the door, (iv) robot_2 picks the mug from region_mug,
(v) robot_1 closes the door.

D3: robot_2 is only performs door-related tasks like transit to region_door, opening and closing it, but never
performs mug-related tasks like transit to region_mug, pick, place, transfer. The lowest cost path to the
goal is: (i) robot_1 transits to region_mug, (ii) robot_2 transits to region_door, (iii) robot_1 does nothing,
(iv) robot_2 opens the door, (v) robot_1 picks up the mug, (vi) robot_2 closes the door.

D4: robot_2 is inactive. The lowest cost path to the goal is: (i) robot_1 transits to region_door, (ii) robot_1 opens
the door, (iii) robot_1 transits to region_mug, (iv) robot_1 picks the mug from region_mug, (v) robot_1
transfers the mug to region_stable_mug, (vi) robot_1 (temporarily) places the mug in region_stable_mug,
(vii) robot_1 transits to region_door, (viii) robot_1 closes the door, (ix) robot_1 transits to region_stable_mug,
(x) robot_1 picks the mug from region_stable_mug.

Difficulty Initial state Behavior model Minimum
horizon
length

D1
is0 = {in_rob(robot_1, region_door),

in_rob(robot_2, region_mug),
in_obj(mug, region_mug),
not(open(door)),
nothing_action(robot_2)}.

optimal 3

D2

is0 = {in_rob(robot_1, region_stable_mug),
in_rob(robot_2, region_stable_mug),
in_obj(mug, region_mug),
not(open(door)),
nothing_action(robot_2)}.

optimal 5

D3

is0 = {in_rob(robot_1, region_stable_mug),
in_rob(robot_2, region_stable_mug),
in_obj(mug, region_mug),
not(open(door)),
nothing_action(robot_2)}.

only performs
door-related

tasks:
transit(door),
open, close

6

D4

is0 = {in_rob(robot_1, region_stable_mug),
in_rob(robot_2, region_stable_mug),
in_obj(mug, region_mug),
not(open(door)),
nothing_action(robot_2)}.

inactive 10

Table 9.3: Difficulty as a function of initial state, other agent behavior, and horizon length

Analysis the execution performance is evaluated over 10 trials on basis of the mean number of steps to the goal

9.2. Problem complexity 37

and the variance. The training and execution distribution for decentralized planning is tabulated below. For cen-
tralized planning, the training and execution behavior is aligned with the execution behavior for its decentralized
counterpart in each setting.

Difficulty Training Execution
D1 robot_1: 90% success for chosen action; robot_2:

randomly chooses an action, 90% probability of ap-
parent action being the true action with desired out-
come

same algorithm for robot_1 and robot_2; robot_1:
90% success for chosen action; robot_2: 90% prob-
ability of apparent action being the true action with
desired outcome

D2 robot_1: 90% success for chosen action; robot_2:
randomly chooses an action, 90% probability of ap-
parent action being the true action with desired out-
come

robot_1: 90% success for chosen action; robot_2:
operated by human user, 100% probability of ap-
parent action being the true action with desired out-
come

D3 robot_1: 90% success for chosen action; robot_2:
only chooses transit to door, open or close actions,
conditioned on state of the world and ego’s at-
tempted action, 100% probability of apparent ac-
tion being the true action with desired outcome if
applicable

robot_1: 90% success for chosen action; robot_2:
operated by human user, 100% probability of ap-
parent action being the true action with desired out-
come

D4 robot_1: 90% success for chosen action; robot_2:
inactive, always chooses nothing action

robot_1: 90% success for chosen action; robot_2:
inactive, always chooses nothing action

Table 9.4: Training and execution behavior for the two agents for decentralized planning

We observe the following Figure 9.2:

D1: as for scenario S1, the mean is higher than the minimum horizon length with a high variance for the decen-
tralized case to deal with instances where robot_1 fails to open or close the door (plan length=5) or robot_1
closes the door when pick has failed, requiring robot_1 open, robot_2 pick, robot_1 close to be repeated
(plan length=9).

D2: similar to S2-D1, but robot_2 is deterministic, meaning that the mean for the decentralized case is closer
to the minimum horizon length compared to S2-D1 and variance is lower.

D3: robot_2 often prematurely closes the door on observing robot_1 performing pick, requiring robot_1 nothing,
robot_2 open, robot_1 pick, robot_2 close to be repeated (length=10 or 14). This results in a higher variance
(possible plan lengths: 6, 10, 12, 14, etc.) and the mean value being much larger than the minimum for
decentralized planning. The centralized sequential planner is able to access action outcomes immediately to
make informed decisions, resulting in lower variance and the mean plan length being close to the minimum.

D4: robot_2 is always inactive. There is no uncertainty surrounding robot_2 and the performance is comparable
for the centralized and robot_1 using a decentralized planner, as expected.

Figure 9.2: Centralized vs. decentralized planner for S2: number of steps to goal during execution

9.3. Effects of hyperparameters on learning 38

9.3. Effects of hyperparameters on learning
For each setting (D1-D4) for scenario S2, with the number of plan skeletons fixed as above, we study the
rate of model learning success as we vary the number of samples for 10 . A successful learning implies
a policy that generates plans which achive the goal 90% of the time. For D1 and D2, batch_size is the
same as num_samples, but for D3 and D4, batch_size=100 to have a higher number of total plan skeletons
(num_samples

batch_size ∗num_skeletons), and therefore transitions, to overcome the optimism surrounding the behavior of
the other agent. Optimal behavior is expected for num_samples >> num_transitions_total.

(a) S2-D1 (b) S2-D2

(c) S2-D3 (d) S2-D4

Figure 9.3: Success rate as a function of number of samples for different scenarios.

9.4. Deadlocks and suboptimal behavior
The centralized planner has a global view of all agents in the scene: its sequential nature ensures that each agent’s
action outcome is observed immediately after execution, and does not suffer from deadlocks. Using joint actions
presents the risk of infeasible actions, but it is expected that such cases will be resolved with ease. In the decen-
tralized case, ego observes the other agent’s action outcome after its execution, meaning that there is a higher risk
of infeasible actions or premature goal-directed actions like closing the door when the other agent is observed
to be performing pick, and pick fails (scenario S2). Infeasible actions, suboptimal, unhelpful behavior from the
other agent results in deadlocks where the plan is unable to converge to the goal.

When the other agent’s execution behavior is compliant with model learning behavior with sufficient probability,
such that a goal state was reached through such behavior during model learning, the ego agent can solve for
an optimal action, given the observed action of the other agent. However, if the other agent exhibits out-of-
distribution behavior during execution, the ego agent may not be able to adapt to it, resorting to inactivity or
suboptimal behavior. Further, since the actions are not informed with their true costs, the planner only considers
the number of actions to the goal state, which often results in suboptimal behavior from the ego agent.

9.5. Computational performance for learning 39

9.5. Computational performance for learning
Within a scenario, as the planning horizon increases, the number of possible action sequences to reach the goal
increases, requiring more plan skeletons to cover these possibilities. Consequently, a higher number of samples
is needed to adequately explore the increased number of transitions. As the difficulty increases due to unhelpful
behaviors from the other agent or infeasible action outcomes, more samples are needed to counteract overly
optimistic assumptions about such transitions. For the decentralized setting, the shorter-horizon cleaning scenario
(S1) is less complex than the longer-horizon mug retrieval scenario (S2). This is seen in the time required for
successful model learning across 5 trials for each difficulty level in each scenario.

Comparisonwith sequential centralized planning: The hyperparameter values that guarantee successful model
learning are compared for the sequential centralized and the decentralized case. The model learning time
increases with an increase in the number of samples, the number of plan skeletons and number of batches. Solving
the MDP is quick and takes 0.15± 0.043s for all cases.

Sequential centralized planner: Hyperparameters for ≥ 90% model learning success rate for different skills:

Hyperparameter D1 D2 D3 D1 D2 D3 D4

num_skeletons 10 10 10 10 10 10 10
num_samples 50 50 200 50 50 100 200
batch_size 50 50 50 50 50 100 50

Table 9.5: Centralized model learning hyperparameters. Clear blue is S1, dark blue is S2.

Decentralized planner: Reasons about three levels of uncertainty, requiring more transitions to be sampled to
learn a close approximation of the transition model. The values of hyperparameters for ≥ 90% model learning
success rate, and thus learning time are highly sensitive to the problem complexity.

Hyperparameter D1 D2 D3 D1 D2 D3 D4

num_skeletons 10 10 10 10 100 100 100
num_samples 50 500 2000 50 500 6500 5000
batch_size 50 100 100 50 500 100 100

Table 9.6: Decentralized model learning hyperparameters. Yellow is S1, orange is S2.

The time required to successfully learn the model is an estimate of the difficulty of the problem, as shown in Fig-
ure 9.4. The problem difficulty is much higher for decentralized planning compared to its centralized counterpart,
due to uncooperative behavior from the other agent and desirable but infeasible outcome combinations.

Figure 9.4: Model-learning time across different difficulties for scenario S1 and S2

10
Conclusion

10.1. Discussion
This thesis proposes an approach to handling interaction uncertainty for multi-agent task and motion planning,
where the protagonist (ego) agent must coordinate with another agent to achieve a shared goal without a prior
model of the other agent’s behavior or the dynamics of the environment, by learning these as an interactive
Markov Decision Process (I-MDP). Unlike intentional models that require complex reasoning, short-term intent
can be directly inferred through action recognition, allowing the ego agent to optimally select actions based
on the probability of different outcomes while also promoting cooperative behavior. The ego agent is initially
optimistic about the other agent’s cooperation, meaning it is able to learn simple, compliant behaviors with ease.
It is also able to learn more complex, longer term behaviors such as preferences for subtasks or inactivity over
several samples. Experimental results show that a random other agent behavior model prepares the ego agent
to adapt to a wide range of execution behavior including compliance, apparent compliance or even redundant,
unhelpful behaviors, as long as the other agent is cooperative eventually. Learning complex behaviors requires
extensive interaction to overcome the initial optimism about the other agent’s compliance: in some cases, different
behaviors from the other agent can yield desirable outcomes, leading to a significant increase in computational
expense. However, once the model stabilizes, solving the MDP is efficient. During execution, the resulting plan
lengths are close to those produced by a centralized sequential centralized planner and to the theoretical minimum
makespan. This confirms that the proposed approach can combine the autonomy of decentralized control with
performance approaching that of centralized planning.

Comparison with MDPs and game theory. The I-MDP formulation uses an explicit modeling of the other
agent through partial observability to predict its behavior, as opposed to the MDPs, which treat the other agent
as environmental noise. Each agent is autonomous and self-interested, locally computing their optimal actions
using a decision-theoretic framework based on their beliefs while interacting with others. This is in contrast with
classical game theoretic approaches that focusmore on stability (equilibrium) and describe agent’s optimal actions
only if, and when, an equilibrium has been reached (incompleteness). In contrast, using an I-MDP, each agent
computes its own optimal action by maximizing expected reward while accounting for the uncertainty about the
environment and the other agent. Unlike many decision-theoretic formulations, game-theoretic approaches do
not require assuming stationary behavior of the other agent, which can be advantageous scenarios where the other
agent is adversarial or adaptive. However, I-MDP the approach draws inspiration from the subjective approach
to probability in games by predicting the actions of the other agents and using this to inform the choice of its own
actions [17, 12].

40

10.2. Limitations and future work 41

10.2. Limitations and future work
While the proposed approach demonstrates promising results, it is not without limitations. These shortcomings
highlight important directions for future research in improving the robustness and applicability of the method.
Addressing them could significantly enhance its effectiveness in real-world multi-agent planning and execution
scenarios.

Infeasible outcome combinations: Certain joint actions present the symbolic planner with outcome combina-
tions that are desirable in theory but are infeasible in practice, thereby increasing the computational effort needed
to overcome the planner’s initial optimism. A more sophisticated planning framework could mitigate this by ex-
plicitly prohibiting such outcome combinations, ensuring they are excluded from consideration during symbolic
planning.

Perception system and sequential execution: At present, the system does not use a perception module: instead
of learning the other agent’s behavior through observation and interaction, a query function is used to acquire its
behavior. As a result, the other agent explicitly communicates its chosen action to the ego agent, and vice versa,
resulting in sequential execution. This contrasts with the goal of enabling parallel or staggered execution, but the
approach remains applicable in such settings, as the ego agent does not observe the other agent’s action outcomes
prematurely, and its decision is only informed by its observed action. Using a working action recognition module
could make the interaction more realistic from the perspective of both agents and enable staggered execution [19].

Subintentional behavior model for the other agent: The ego agent assumes a subintentional fictious play
behavior model for the other agent, reconstructing its policy through interaction. This reduces the applicability
of the approach in scenarios with intentional or adaptive agents. For an intentional other agent, finitely nested
recursive reasoning using a POMDP may yield better results. However, this would not account for the possibility
of the other agent’s observed action not obtaining the expected outcome.

Action execution costs: Since motion planning is abstracted away, actions are not informed by their true execu-
tion costs. The action-outcome pairs are only weighted by their risk, meaning the ego agent cannot distinguish
between actions on the basis of the cost of their execution, which leads to suboptimal behavior when different
action sequences have the same length to the goal state. This may be addressed by using anα-cost likelihood deter-
minized stochastic shortest path problem (α-CLDSSPP) for symbolic planning that leverages information about
the risk as well as execution costs of different actions using motion planners to generate joint-space trajectories
for the robots to achieve high level tasks like pick or transit [25].

Extension tomore agents: The proposed framework may be extended to deal with more agents by selecting joint
actions such that each agent performs the most likely observed action, the outcomes being verified at the next
step. This setting must additionally consider the effect of the agent’s actions on each other, in addition to ego’s
influence on them. More levels of uncertainty must be considered, making model learning more challenging for
the ego agent. However, having learned the model, the ego agent is expected to behave optimally as long as the
other agents’ execution behavior is aligned with training behavior.

References

[1] Aliakbar Akbari, Mohammed Diab, and Jan Rosell. “Contingent Task and Motion Planning under Un-
certainty for Human–Robot Interactions”. In: Applied Sciences 10.5 (Jan. 2020). Number: 5 Publisher:
Multidisciplinary Digital Publishing Institute, p. 1665. ISSN: 2076-3417. DOI: 10.3390/app10051665.
URL: https://www.mdpi.com/2076-3417/10/5/1665 (visited on 12/26/2024).

[2] Aliakbar Akbari, Muhayyuddin, and Jan Rosell. “Knowledge-oriented task and motion planning for mul-
tiple mobile robots”. In: Journal of Experimental & Theoretical Artificial Intelligence 31.1 (Jan. 2, 2019),
pp. 137–162. ISSN: 0952-813X, 1362-3079. DOI: 10.1080/0952813X.2018.1544280. URL: https:
//www.tandfonline.com/doi/full/10.1080/0952813X.2018.1544280 (visited on 02/14/2025).

[3] StefanoV.Albrecht and Peter Stone. “Autonomous agentsmodelling other agents: A comprehensive survey
and open problems”. In: Artificial Intelligence 258 (May 1, 2018), pp. 66–95. ISSN: 0004-3702. DOI:
10.1016/j.artint.2018.01.002. URL: https://www.sciencedirect.com/science/article/
pii/S0004370218300249 (visited on 07/24/2025).

[4] Dipyaman Banerjee and Sandip Sen. “Reaching pareto-optimality in prisoner’s dilemma using conditional
joint action learning”. In:Autonomous Agents andMulti-Agent Systems 15.1 (Aug. 2007). Publisher: Springer
Science and Business Media LLC, pp. 91–108. ISSN: 1387-2532, 1573-7454. DOI: 10.1007/s10458-
007-0020-8. URL: http://link.springer.com/10.1007/s10458-007-0020-8 (visited on
07/24/2025).

[5] Zhe Chen et al. “Integrated Task Assignment and Path Planning for Capacitated Multi-Agent Pickup and
Delivery”. In: IEEE Robotics and Automation Letters 6.3 (July 2021), pp. 5816–5823. ISSN: 2377-3766,
2377-3774. DOI: 10.1109/LRA.2021.3074883. arXiv: 2110.14891[cs]. URL: http://arxiv.org/
abs/2110.14891 (visited on 12/27/2024).

[6] Yujiao Cheng, Liting Sun, and Masayoshi Tomizuka. “Human-Aware Robot Task Planning Based on a
Hierarchical Task Model”. In: IEEE Robotics and Automation Letters 6.2 (Apr. 2021), pp. 1136–1143.
ISSN: 2377-3766, 2377-3774. DOI: 10.1109/LRA.2021.3056370. URL: https://ieeexplore.
ieee.org/document/9345470/ (visited on 02/13/2025).

[7] Aidan Curtis et al. Long-Horizon Manipulation of Unknown Objects via Task and Motion Planning with
Estimated Affordances. Aug. 10, 2021. DOI: 10.48550/arXiv.2108.04145. arXiv: 2108.04145[cs].
URL: http://arxiv.org/abs/2108.04145 (visited on 12/26/2024).

[8] Aidan Curtis et al. Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness.
Oct. 6, 2024. DOI: 10.48550/arXiv.2403.10454. arXiv: 2403.10454[cs]. URL: http://arxiv.
org/abs/2403.10454 (visited on 12/26/2024).

[9] Neil T Dantam et al. “An incremental constraint-based framework for task and motion planning”. In: The
International Journal of Robotics Research 37.10 (Sept. 2018), pp. 1134–1151. ISSN: 0278-3649, 1741-
3176. DOI: 10.1177/0278364918761570. URL: https://journals.sagepub.com/doi/10.1177/
0278364918761570 (visited on 02/05/2025).

[10] Marco Faroni et al. “Optimal task and motion planning and execution for human-robot multi-agent systems
in dynamic environments”. In: IEEE Transactions on Cybernetics 54.6 (June 2024), pp. 3366–3377. ISSN:
2168-2267, 2168-2275. DOI: 10.1109/TCYB.2023.3263380. arXiv: 2303.14874[cs]. URL: http:
//arxiv.org/abs/2303.14874 (visited on 01/21/2025).

[11] Richard E. Fikes and Nils J. Nilsson. “Strips: A new approach to the application of theorem proving to
problem solving”. In: Artificial Intelligence 2.3 (Dec. 1971), pp. 189–208. ISSN: 00043702. DOI: 10.
1016/0004-3702(71)90010-5. URL: https://linkinghub.elsevier.com/retrieve/pii/
0004370271900105 (visited on 02/03/2025).

[12] Drew Fudenberg and David Levine. “Learning in games”. In: European Economic Review 42.3 (May 31,
1998), pp. 631–639. ISSN: 0014-2921. DOI: 10 . 1016 / S0014 - 2921(98) 00011 - 7. URL: https :
//www.sciencedirect.com/science/article/pii/S0014292198000117 (visited on 07/25/2025).

42

https://doi.org/10.3390/app10051665
https://www.mdpi.com/2076-3417/10/5/1665
https://doi.org/10.1080/0952813X.2018.1544280
https://www.tandfonline.com/doi/full/10.1080/0952813X.2018.1544280
https://www.tandfonline.com/doi/full/10.1080/0952813X.2018.1544280
https://doi.org/10.1016/j.artint.2018.01.002
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://doi.org/10.1007/s10458-007-0020-8
https://doi.org/10.1007/s10458-007-0020-8
http://link.springer.com/10.1007/s10458-007-0020-8
https://doi.org/10.1109/LRA.2021.3074883
https://arxiv.org/abs/2110.14891 [cs]
http://arxiv.org/abs/2110.14891
http://arxiv.org/abs/2110.14891
https://doi.org/10.1109/LRA.2021.3056370
https://ieeexplore.ieee.org/document/9345470/
https://ieeexplore.ieee.org/document/9345470/
https://doi.org/10.48550/arXiv.2108.04145
https://arxiv.org/abs/2108.04145 [cs]
http://arxiv.org/abs/2108.04145
https://doi.org/10.48550/arXiv.2403.10454
https://arxiv.org/abs/2403.10454 [cs]
http://arxiv.org/abs/2403.10454
http://arxiv.org/abs/2403.10454
https://doi.org/10.1177/0278364918761570
https://journals.sagepub.com/doi/10.1177/0278364918761570
https://journals.sagepub.com/doi/10.1177/0278364918761570
https://doi.org/10.1109/TCYB.2023.3263380
https://arxiv.org/abs/2303.14874 [cs]
http://arxiv.org/abs/2303.14874
http://arxiv.org/abs/2303.14874
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://linkinghub.elsevier.com/retrieve/pii/0004370271900105
https://linkinghub.elsevier.com/retrieve/pii/0004370271900105
https://doi.org/10.1016/S0014-2921(98)00011-7
https://www.sciencedirect.com/science/article/pii/S0014292198000117
https://www.sciencedirect.com/science/article/pii/S0014292198000117

References 43

[13] CaelanReedGarrett, Tomás Lozano-Pérez, and Leslie PackKaelbling.PDDLStream: Integrating Symbolic
Planners and Blackbox Samplers via Optimistic Adaptive Planning. Mar. 23, 2020. DOI: 10.48550/
arXiv.1802.08705. arXiv: 1802.08705[cs]. URL: http://arxiv.org/abs/1802.08705 (visited
on 12/26/2024).

[14] Caelan Reed Garrett et al. Integrated Task and Motion Planning. Oct. 2, 2020. DOI: 10.48550/arXiv.
2010.01083. arXiv: 2010.01083[cs]. URL: http://arxiv.org/abs/2010.01083 (visited on
12/26/2024).

[15] Caelan Reed Garrett et al. Online Replanning in Belief Space for Partially Observable Task and Motion
Problems. Mar. 23, 2020. DOI: 10.48550/arXiv.1911.04577. arXiv: 1911.04577[cs]. URL: http:
//arxiv.org/abs/1911.04577 (visited on 12/26/2024).

[16] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and Acting. Cambridge: Cambridge
University Press, 2016. ISBN: 978-1-107-03727-4. DOI: 10.1017/CBO9781139583923. URL: https:
//www.cambridge.org/core/books/automated-planning-and-acting/E6DE5715A2190651352
DFB0869916BC3 (visited on 02/23/2025).

[17] P. J. Gmytrasiewicz and P. Doshi. “A Framework for Sequential Planning in Multi-Agent Settings”. In:
Journal of Artificial Intelligence Research 24 (July 1, 2005). Publisher: AI Access Foundation, pp. 49–
79. ISSN: 1076-9757. DOI: 10.1613/jair.1579. URL: https://jair.org/index.php/jair/
article/view/10414 (visited on 07/23/2025).

[18] Piotr J Gmytrasiewicz and Edmund HDurfeet. “A Rigorous, Operational Formalization of Recursive Mod-
eling”. In: (1995).

[19] Nishad Gothoskar et al. Bayes3D: fast learning and inference in structured generative models of 3D objects
and scenes. Dec. 14, 2023. DOI: 10.48550/arXiv.2312.08715. arXiv: 2312.08715[cs]. URL: http:
//arxiv.org/abs/2312.08715 (visited on 02/24/2025).

[20] Dylan Hadfield-Menell et al. “Modular task and motion planning in belief space”. In: 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, Sept. 2015, pp. 4991–4998. ISBN:
978-1-4799-9994-1. DOI: 10.1109/IROS.2015.7354079. URL: http://ieeexplore.ieee.org/
document/7354079/ (visited on 01/31/2025).

[21] Eric A. Hansen and Shlomo Zilberstein. “LAO�: A heuristic search algorithm that finds solutions with
loops”. In: Artificial Intelligence 129.1 (June 2001), pp. 35–62. ISSN: 00043702. DOI: 10.1016/S0004-
3702(01)00106-0. URL: https://linkinghub.elsevier.com/retrieve/pii/S0004370201001
060 (visited on 07/31/2025).

[22] Jorg Hoffmann and Ronen I Brafman. “Contingent Planning via Heuristic Forward Search with Implicit
Belief States”. In: ().

[23] https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf. URL: https://www.cs.cmu.edu/
~mmv/planning/readings/98aips-PDDL.pdf (visited on 01/24/2025).

[24] Integrated task and motion planning in belief space. DOI: 10.1177/0278364913484072. URL: https:
//journals.sagepub.com/doi/epdf/10.1177/0278364913484072 (visited on 01/20/2025).

[25] Leslie P. Kaelbling and Tomas Lozano-Perez. Integrated Robot Task andMotion Planning in the Now: Fort
Belvoir, VA: Defense Technical Information Center, June 29, 2012. DOI: 10.21236/ADA564092. URL:
http://www.dtic.mil/docs/citations/ADA564092 (visited on 01/20/2025).

[26] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning and acting in partially
observable stochastic domains”. In: Artificial Intelligence 101.1 (May 1, 1998), pp. 99–134. ISSN: 0004-
3702. DOI: 10.1016/S0004- 3702(98)00023- X. URL: https://www.sciencedirect.com/
science/article/pii/S000437029800023X (visited on 07/23/2025).

[27] Leslie Pack Kaelbling and Tomas Lozano-Perez. “Hierarchical task and motion planning in the now”. In:
2011 IEEE International Conference on Robotics and Automation. 2011 IEEE International Conference
on Robotics and Automation (ICRA). Shanghai, China: IEEE, May 2011, pp. 1470–1477. ISBN: 978-
1-61284-386-5. DOI: 10.1109/ICRA.2011.5980391. URL: http://ieeexplore.ieee.org /
document/5980391/ (visited on 01/20/2025).

[28] Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier. “On Bayesian Upper Confidence Bounds for
Bandit Problems”. In: ().

https://doi.org/10.48550/arXiv.1802.08705
https://doi.org/10.48550/arXiv.1802.08705
https://arxiv.org/abs/1802.08705 [cs]
http://arxiv.org/abs/1802.08705
https://doi.org/10.48550/arXiv.2010.01083
https://doi.org/10.48550/arXiv.2010.01083
https://arxiv.org/abs/2010.01083 [cs]
http://arxiv.org/abs/2010.01083
https://doi.org/10.48550/arXiv.1911.04577
https://arxiv.org/abs/1911.04577 [cs]
http://arxiv.org/abs/1911.04577
http://arxiv.org/abs/1911.04577
https://doi.org/10.1017/CBO9781139583923
https://www.cambridge.org/core/books/automated-planning-and-acting/E6DE5715A2190651352DFB0869916BC3
https://www.cambridge.org/core/books/automated-planning-and-acting/E6DE5715A2190651352DFB0869916BC3
https://www.cambridge.org/core/books/automated-planning-and-acting/E6DE5715A2190651352DFB0869916BC3
https://doi.org/10.1613/jair.1579
https://jair.org/index.php/jair/article/view/10414
https://jair.org/index.php/jair/article/view/10414
https://doi.org/10.48550/arXiv.2312.08715
https://arxiv.org/abs/2312.08715 [cs]
http://arxiv.org/abs/2312.08715
http://arxiv.org/abs/2312.08715
https://doi.org/10.1109/IROS.2015.7354079
http://ieeexplore.ieee.org/document/7354079/
http://ieeexplore.ieee.org/document/7354079/
https://doi.org/10.1016/S0004-3702(01)00106-0
https://doi.org/10.1016/S0004-3702(01)00106-0
https://linkinghub.elsevier.com/retrieve/pii/S0004370201001060
https://linkinghub.elsevier.com/retrieve/pii/S0004370201001060
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://doi.org/10.1177/0278364913484072
https://journals.sagepub.com/doi/epdf/10.1177/0278364913484072
https://journals.sagepub.com/doi/epdf/10.1177/0278364913484072
https://doi.org/10.21236/ADA564092
http://www.dtic.mil/docs/citations/ADA564092
https://doi.org/10.1016/S0004-3702(98)00023-X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://doi.org/10.1109/ICRA.2011.5980391
http://ieeexplore.ieee.org/document/5980391/
http://ieeexplore.ieee.org/document/5980391/

References 44

[29] Minghua Liu et al. “Task and Path Planning for Multi-Agent Pickup and Delivery”. In: ().
[30] Tomas Lozano-Perez and Leslie Pack Kaelbling. “A constraint-based method for solving sequential manip-

ulation planning problems”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). Chicago,
IL, USA: IEEE, Sept. 2014, pp. 3684–3691. ISBN: 978-1-4799-6934-0 978-1-4799-6931-9. DOI: 10 .
1109/IROS.2014.6943079. URL: http://ieeexplore.ieee.org/document/6943079/ (visited on
02/05/2025).

[31] R Nair et al. “Taming Decentralized POMDPs: Towards Efficient Policy Computation for Multiagent Set-
tings”. In: ().

[32] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs. Springer-
Briefs in Intelligent Systems. ISSN: 2196-548X, 2196-5498. Cham: Springer International Publishing,
2016. ISBN: 978-3-319-28927-4 978-3-319-28929-8. DOI: 10.1007/978- 3- 319- 28929- 8. URL:
http://link.springer.com/10.1007/978-3-319-28929-8 (visited on 07/21/2025).

[33] Camille Phiquepal and Marc Toussaint. “Combined Task and Motion Planning under Partial Observabil-
ity: An Optimization-Based Approach”. In: 2019 International Conference on Robotics and Automation
(ICRA). 2019 International Conference on Robotics andAutomation (ICRA).Montreal, QC, Canada: IEEE,
May 2019, pp. 9000–9006. ISBN: 978-1-5386-6027-0. DOI: 10.1109/ICRA.2019.8793260. URL:
https://ieeexplore.ieee.org/document/8793260/ (visited on 01/22/2025).

[34] Camille Phiquepal and Marc Toussaint. “Multi-Agent Task and Motion Planning: An Optimization based
Approach”. In: ().

[35] Probabilistic PDDL. URL: https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/
younes05a-html/node2.html (visited on 07/24/2025).

[36] Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern approach. In collab. with Ernest Davis
and Douglas Edwards. Third edition, Global edition. Prentice Hall series in artificial intelligence. Boston
Columbus Indianapolis: Pearson, 2016. 1 p. ISBN: 978-0-13-604259-4 978-1-292-15397-1.

[37] Naman Shah et al. Anytime Integrated Task and Motion Policies for Stochastic Environments. May 29,
2020. DOI: 10.48550/arXiv.1904.13006. arXiv: 1904.13006[cs]. URL: http://arxiv.org/
abs/1904.13006 (visited on 12/26/2024).

[38] Tom Silver et al. Learning Symbolic Operators for Task and Motion Planning. July 15, 2021. DOI: 10.
48550/arXiv.2103.00589. arXiv: 2103.00589[cs]. URL: http://arxiv.org/abs/2103.00589
(visited on 12/26/2024).

[39] David Speck. “SymK - A Versatile Symbolic Search Planner”. In: ().
[40] Neil T. Dantam et al. “Incremental Task andMotion Planning: AConstraint-BasedApproach”. In:Robotics:

Science and Systems XII. Robotics: Science and Systems 2016. Robotics: Science and Systems Foundation,
2016. ISBN: 978-0-9923747-2-3. DOI: 10.15607/RSS.2016.XII.002. URL: http://www.robotics
proceedings.org/rss12/p02.pdf (visited on 01/20/2025).

[41] Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. “In defense of PDDL axioms”. In: Artificial In-
telligence 168.1 (Oct. 2005), pp. 38–69. ISSN: 00043702. DOI: 10.1016/j.artint.2005.05.004.
URL: https : / / linkinghub . elsevier . com / retrieve / pii / S0004370205000810 (visited on
01/30/2025).

[42] Marc Toussaint. “Logic-Geometric Programming: An Optimization-Based Approach to Combined Task
and Motion Planning”. In: ().

[43] Marc Toussaint andManuel Lopes. “Multi-bound tree search for logic-geometric programming in coopera-
tive manipulation domains”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA).
2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore: IEEE,
May 2017, pp. 4044–4051. ISBN: 978-1-5090-4633-1. DOI: 10.1109/ICRA.2017.7989464. URL:
http://ieeexplore.ieee.org/document/7989464/ (visited on 01/22/2025).

[44] GlennWagner and Howie Choset. “Path Planning forMultiple Agents under Uncertainty”. In: Proceedings
of the International Conference on Automated Planning and Scheduling 27 (June 5, 2017), pp. 577–585.
ISSN: 2334-0843. DOI: 10.1609/icaps.v27i1.13866. URL: https://ojs.aaai.org/index.php/
ICAPS/article/view/13866 (visited on 12/27/2024).

https://doi.org/10.1109/IROS.2014.6943079
https://doi.org/10.1109/IROS.2014.6943079
http://ieeexplore.ieee.org/document/6943079/
https://doi.org/10.1007/978-3-319-28929-8
http://link.springer.com/10.1007/978-3-319-28929-8
https://doi.org/10.1109/ICRA.2019.8793260
https://ieeexplore.ieee.org/document/8793260/
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/younes05a-html/node2.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/younes05a-html/node2.html
https://doi.org/10.48550/arXiv.1904.13006
https://arxiv.org/abs/1904.13006 [cs]
http://arxiv.org/abs/1904.13006
http://arxiv.org/abs/1904.13006
https://doi.org/10.48550/arXiv.2103.00589
https://doi.org/10.48550/arXiv.2103.00589
https://arxiv.org/abs/2103.00589 [cs]
http://arxiv.org/abs/2103.00589
https://doi.org/10.15607/RSS.2016.XII.002
http://www.roboticsproceedings.org/rss12/p02.pdf
http://www.roboticsproceedings.org/rss12/p02.pdf
https://doi.org/10.1016/j.artint.2005.05.004
https://linkinghub.elsevier.com/retrieve/pii/S0004370205000810
https://doi.org/10.1109/ICRA.2017.7989464
http://ieeexplore.ieee.org/document/7989464/
https://doi.org/10.1609/icaps.v27i1.13866
https://ojs.aaai.org/index.php/ICAPS/article/view/13866
https://ojs.aaai.org/index.php/ICAPS/article/view/13866

References 45

[45] Sungwook Yoon, Alan Fern, and Robert Givan. “FF-Replan: A Baseline for Probabilistic Planning”. In: ().
[46] Zhigen Zhao et al. “A Survey of Optimization-based Task and Motion Planning: From Classical To Learn-

ingApproaches”. In: IEEE/ASMETransactions onMechatronics (2024), pp. 1–27. ISSN: 1083-4435, 1941-
014X. DOI: 10.1109/TMECH.2024.3452509. arXiv: 2404.02817[cs]. URL: http://arxiv.org/
abs/2404.02817 (visited on 12/27/2024).

https://doi.org/10.1109/TMECH.2024.3452509
https://arxiv.org/abs/2404.02817 [cs]
http://arxiv.org/abs/2404.02817
http://arxiv.org/abs/2404.02817

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Contribution

	Research Objectives
	Research Question
	Problem Statement

	Related Work
	Task and Motion Planning (TAMP)
	Deterministic TAMP
	TAMP under Uncertainty

	Multi-Agent Task and Motion Planning
	Deterministic Multi-Agent TAMP
	Multi-Agent TAMP under Uncertainty

	Gap in the literature
	Summary of the literature
	Research Gap

	Preliminaries
	Markov Decision Process
	Partially Observable Markov Decision Process
	Interactive Partially Observable Markov Decision Process
	Probabilistic Planning and Domain Definition Language
	Combining PPDDL and POMDPs

	Method
	Interaction uncertainty
	Current action uncertainty
	Behavior uncertainty

	Self uncertainty
	Interactive MDP
	State space
	Action space
	Transition model
	Reward model
	Discount factor and planning horizon
	Solving for a policy

	Learning the transition model
	Model learning hyperparameters
	Interaction uncertainty
	Self uncertainty

	Example

	Experimental Setup
	Behavior uncertainty
	Current action uncertainty
	Self uncertainty

	Cleaning scenario
	State space
	Action space
	Model learning and execution
	Random other agent
	Human other agent
	Inactive other agent
	Symmetric other agent

	Mug retrieval scenario
	State space
	Action space
	Model learning and execution
	Random other agent
	Human other agent
	Inactive other agent
	Symmetric other agent

	Results
	Baseline
	Problem complexity
	Effects of hyperparameters on learning
	Deadlocks and suboptimal behavior
	Computational performance for learning

	Conclusion
	Discussion
	Limitations and future work

	References

