Towards more effective residential retrofit interventions

Exploring an alternative monitoring approach to drive the effectiveness of residential energy efficiency retrofit interventions

M. Wolf

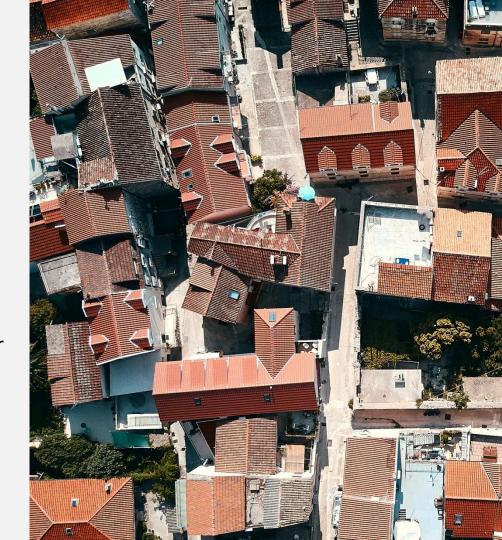
P5 | M.Sc. Graduation Thesis | BOLD Cities University of Technology Delft

I am going to show...

it is important to improve our understanding of the effects of energy efficiency interventions

we could improve our understanding by thinking in systems and using innovative technologies

an alternative
thinking approach
could look like when
applied to a specific
showcase


Context

- Humanity is facing large scale environmental challenges emerging from anthropogenic climate change
- GHG emissions are considered to be the main driver of change
- EU Members States agreed on significant reductions of GHG emissions (based on Paris Climate Agreement)

Context

- Success of efforts depends to large parts on the building sector (responsible for about 40% of the final energy consumption)
- Existing residential housing stock offers largest potential for reductions (75% of EU stock classified as inefficient)

European Residential Energy Transition

Objective

Cut GHG emissions of building sector by 90% until 2050

Strategy

Reduction of final energy consumption and improved energy efficiency

Increased share of renewable energy sources in overall consumption

Interventions

Policy (e.g. EU and MS legislation and regulations)

Programme (e.g. subsidies, loans)

Project (e.g. building envelope, building services)

European Residential Energy Transition

Objective

Cut GHG emissions of building sector by 90% until 2050

Strategy

Reduction of final energy consumption and improved energy efficiency

Increased share of renewable energy sources in overall consumption

Interventions

Policy (e.g. EU and MS legislation and regulations)

Programme (e.g. subsidies, loans)

Project (e.g. building envelope, building services)

MS Energy Efficiency Interventions (Germany)

Energy Conservation Ordinance (EnEV) Policy Legislation based on European Energy Performance of Buildings Directive (EPBD) **Energy-Efficient Refurbishment Programme** Low-cost loans and subsidies by the Programme government-owned development bank KfW **Individual Project** Project e.g. building envelope, building services

Feedback

mal

MS Energy Efficiency Interventions (Germany)

Energy Conservation Ordinance (EnEV) Policy Legislation based on European Energy Performance of Buildings Directive (EPBD) mal **Energy-Efficient Refurbishment Programme** Low-cost loans and subsidies by the Programme Feedback government-owned development bank KfW **Individual Project** Project e.g. building envelope, systems

Individual Project Level Interventions

Physical

(building envelope)

- Insulating envelope
- Upgrading transparent components
- Adding sun protection
- Improving the use of daylight and natural ventilation

Service

(building services)

- Replacing inefficient heating, lighting and cooling appliances
- Installing energy management systems

UN (a) environment UN Environment, 07.11.18

Greenhouse Gas Emissions Accelerate Like a 'Speeding Freight Train' in 2018

The New York Times

New York Times, 07.12.18

World must triple efforts or face catastrophic climate change, says UN

Rapid emissions turnaround needed to keep global warming at less than 2C, report suggests

The Guardian The Guardian, 27.11.18

'Brutal news': global carbon emissions jump to all-time high in 2018

Guardian

The Guardian, 05.12.18

CO2 emissions on the rise for first time in four years, UN agency warns

UN News

UN News, 27.11.18

Problem


Low take-up rate

Performance gap

٦% إ

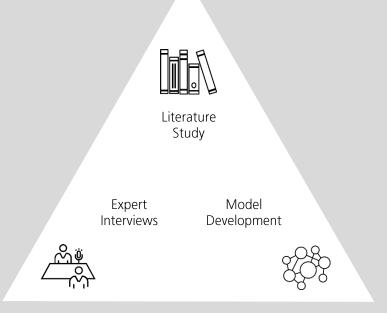
Poor understanding of the underlying drivers and dynamics

Risk of ineffective resource allocations and missed opportunities to align goals

Goal

Develop an **alternative monitoring approach** for energy efficiency interventions to **improve the understanding** of their effects and dynamics

Thereby help to provide the evidence for more effective decision-making



Perspective: Policy-maker (achieve overall greatest benefit for society)

How can we monitor the performance of residential energy efficiency retrofit interventions more accurately to provide better evidence for decision-making?

Research Type, Design & Methods

- Exploratory research: Enable flexibility during the process and emphasise on the discovery if new ideas and insights
- Multi-method design: Enable exploration of the topic from different angles and increase reliability and robustness (data triangulation)

Research Process

Research Question(s)

Q1: DESIGN

Q2: DATA

How can we monitor the performance of residential energy efficiency retrofit interventions more accurately to provide better evidence for decision-making?

Background (WHY?)

Exploration (HOW?)

Expert

Interviews

Literature study

Anthropogenic climate change

Residential energy transition

Energy efficiency

Systems thinking

Data innovation

Integration (WHAT?)

Model development

Conceptual model showcasing the alternative approach (exemplary focus on the intersections of energy efficiency, energy affordability and health and wellbeing)

Research Approach

Conventional approach

Isolated and small

- Vague
- Simplified
- Fragmented
- Slow

Limitations to overcome

DESIGN: Isolated and narrow perspective on the physical intervention aspects

DATA: Availability gap, often time-delayed and inaccurate

Alternative approach

Connected and big

- Precise
- Real
- Holistic
- Timely

From isolated to connected

From Isolated to Connected

- Traditionally the effect o energy efficiency interventions is measured and assessed in terms of units of reduced energy demand and GHG emissions
- Research indicates that there is a wide range of other factors influenced that influence the actual net effect

e.g. Units of reduced GHG Intended effects emissions e.g. Health cost reductions Other positive due to healthier indoor. effects environments e.g. Units of increased Other negative GHG emissions due to effects changing demand Net effect

Environmental sustainability

GHG emissions Local air pollution Resource management

Prosperity

Asset value
Public budgets
Disposable income

Energy system security

Energy security Energy delivery Energy prices

Economic development

Macroeconomic development Industrial productivity

Energy-efficiency intervention

Social development

Energy access and affordability Health and well-being Employment

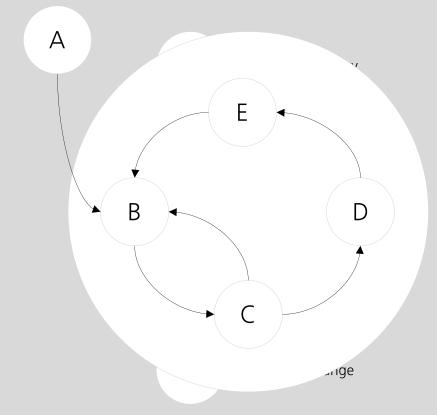
Environmental sustainability GHG emissions Local air pollution Resource management **Prosperity** Asset value Public budgets Disposable income

Energy system security

Energy security Energy delivery Energy prices

Economic development

Macroeconomic development Industrial productivity


Energy-efficiency intervention

Social development

Energy access and affordability Health and well-being Employment

From Linear to Systems Thinking

- Conventional linear thinking approach no longer adequate
- Systems thinking is based on the idea that a system is more the sum of its parts
- Instead of looking at single factors (e.g. GHG emissions) in isolation the aim is to understand relationships and dependencies with other factors

From small to big

From Small to Big

SMALL

- Local surveys
- Qualitative interviews
- Focus group
- Mobile phone generated data (user)

LARGE

- Census data
- Surveys
- Administrative reports
- Monitoring data
- Biometric and anthropometric data

DATA CONTINUUM

BIG DATA REVOLUTION

An explosion in the volume of data, the speed with which data is produced, the number of producers of data, [...] new technologies such as mobile phones [...] (UN, 2014)

From Small to Big

SMALL

- Local surveys
- Qualitative interviews
- Focus group
- Mobile phone generated data (user)

LARGE

- Census data
- Surveys
- Administrative reports
- Monitoring data
- Biometric and anthropometric data

BIG

- Electronic transactions
- Social media
- Automatic sensors
- Satellite images
- Text
- Audio
- Video
- Phone records

DATA CONTINUUM

Exemplary Data Innovation Projects

- Common practise in the private sector (e.g. targeted marketing etc.)
- Remains under-utilized in the public sector and examples are scarce and in rather early stages

UN Global Pulse:

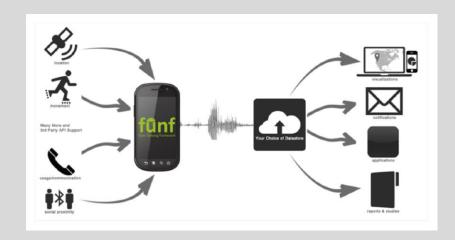
Integration of Data innovation in global development interventions

MIT Media Lab (Human Dynamics): Using data innovation to capture human behaviour

CBS Center for Big Data Statistics: Using data innovation to provide more nuanced information about policy interventions

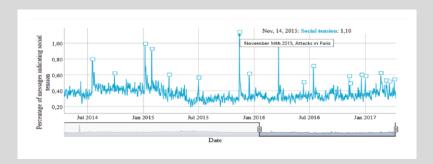
Basic Data Collection Badge

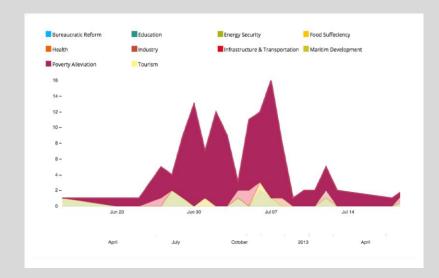
- Collection of large data sets and real-time feedback on the individual communication behaviours of people
- Based on location sensors, accelerometers, proximity sensors and a microphone


Possible application: Technological basis to collect behavioural and environmental data (e.g. through additional sensors)

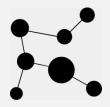
Universal Sensing Platform

- Open-source sensing framework using mobile phones for the continuous collection of data on social and behavioral activity
- Location data, credit card data, social media and daily polling of moods, stresses, sleep etc.)


Possible application: Technological basis to collect e.g. perceptions data (daily polls) and behavioural data



Public Policy Opinion & Sentiment


- Tools to measure the public opinion and thereby providing real-time feedback about policy interventions (throughout the policy cycle)
- Based on social media data (Twitter, Facebook etc.)

Possible application: Technological basis to collect citizen opinions data on policy and programme interventions

Major Challenges of Data Innovation

Causality and Theory

 Correlation does not imply causality which requires alternative to identify causal relationships

Privacy

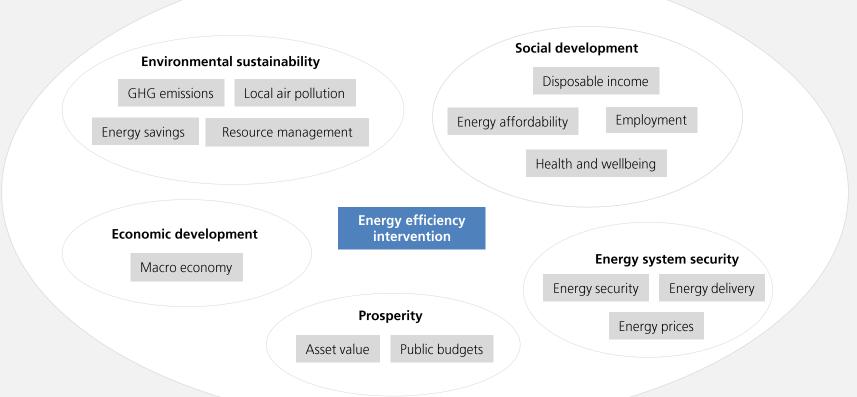
 Ensure personal privacy and freedom while enabling the use of data for the benefit of the whole society

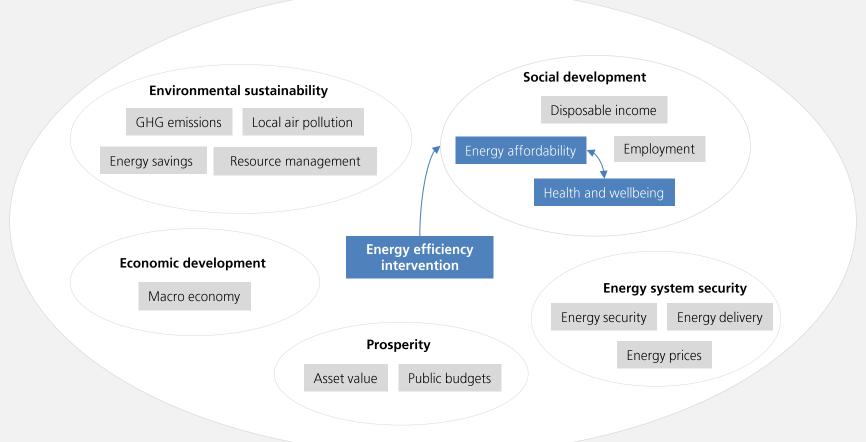
Accessibility

 Most data today remains in silos of private companies which requires new ways of sharing

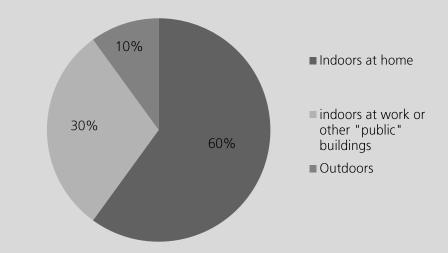
Concept of Exemplary Showcase

Connected systems thinking approach




Mixed methods (conventional + innovative data sources)

Focus on intersections of health and wellbeing + energy affordability


Aim: Illustrate alternative approach

Concept A: Health and Wellbeing

- Improved energy efficiency can support good health by creating healthy indoor environments (e.g. air quality, temperature, humidity level)
- Mental health: Anxiety, Stress and depression
- Physical health: Respiratory or cardiovascular conditions, rheumatism, allergies, winter mortality, risk of dehydration

Concept B: Energy Affordability

- Caused by a combination of low income, poor housing quality and high energy costs
- Associated with sub-optimal physical and mental health
- About 50 million households in the EU live in energy poverty (Major synergies with other policy areas possible)

Indicators and Data Sources

	Indicator	Source	Accessibility (Stakeholder)
Energy affordability	Energy demand and costs	Smart meter	Private (provider, household)
	Household income	Administrative data (tax statement)	Public
Health and wellbeing	Indoor environmental parameters	Non-wearable indoor ambient sensors	Private (household)
	Morbidity and mortality rate	Administrative data (register)	Private (insurance)
	Health parameters	Wearable physiological sensors	Private (household)
	Psychosocial wellbeing	Mobile phone digital survey	Private (household)
Energy efficiency	Intervention type and costs	Administrative data (report)	Public (programme coordinator)

Indicators and Data Sources

	Indicator	Source	Accessibility (Stakeholder)
Energy affordability	Energy demand and costs	Smart meter	Private (provider, household)
	Household income	Administrative data (tax statement)	Public
Health and wellbeing	Indoor environmental parameters	Non-wearable indoor ambient sensors	Private (household)
	Morbidity and mortality rate	Administrative data (register)	Private (insurance)
	Health parameters	Wearable physiological sensors	Private (household)
	Psychosocial wellbeing	Mobile phone digital survey	Private (household)
Energy efficiency	Intervention type and costs	Administrative data (report)	Public (programme coordinator)

Data Collection (non-wearable)

Smart meter

Detailed data on consumption patterns (electricity, gas)

Environmental Sensors

Detailed data collection on indoor air quality, temperatures and humidity

Data Collection (wearable)

Fitness tracker

Physiological parameters (body temperature and heartbeat, sleep, activity)

Mobile phone

Digital survey personal perception data

Energy efficiency intervention Energy affordability level

Energy affordability

Household income

Energy demand

Energy costs

Disposable income

Energy efficiency intervention

Energy efficiency level

Health and wellbeing leve

Energy affordability level

Energy affordability

Household income

Energy demand

Energy costs

Disposable income

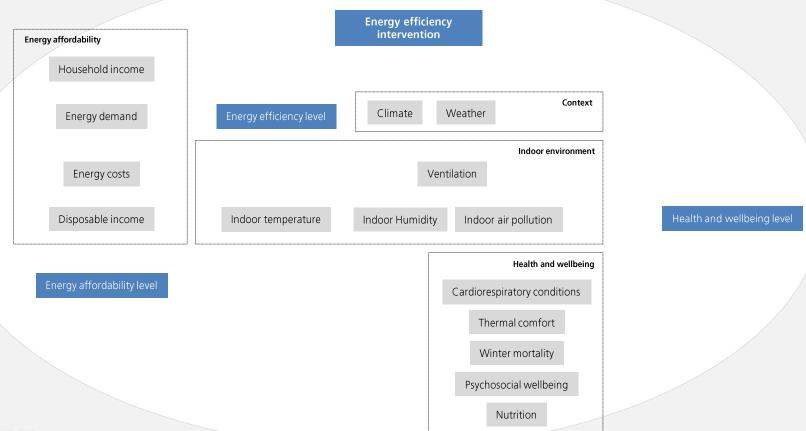
Energy affordability level

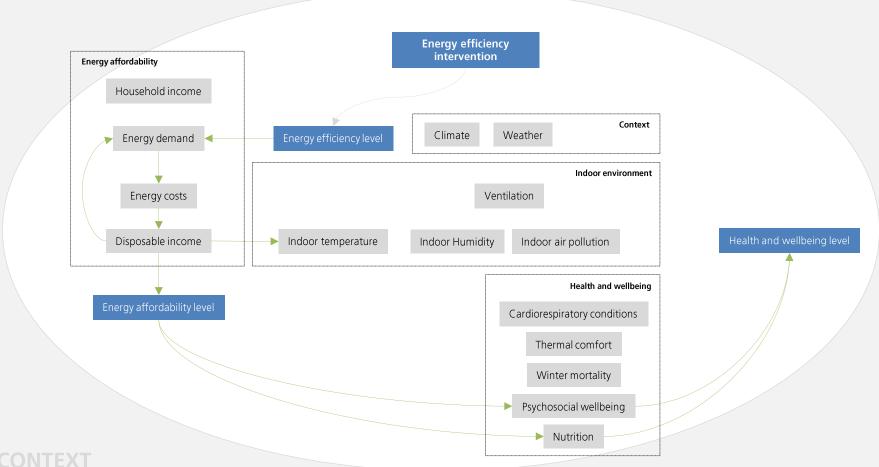
Energy efficiency intervention

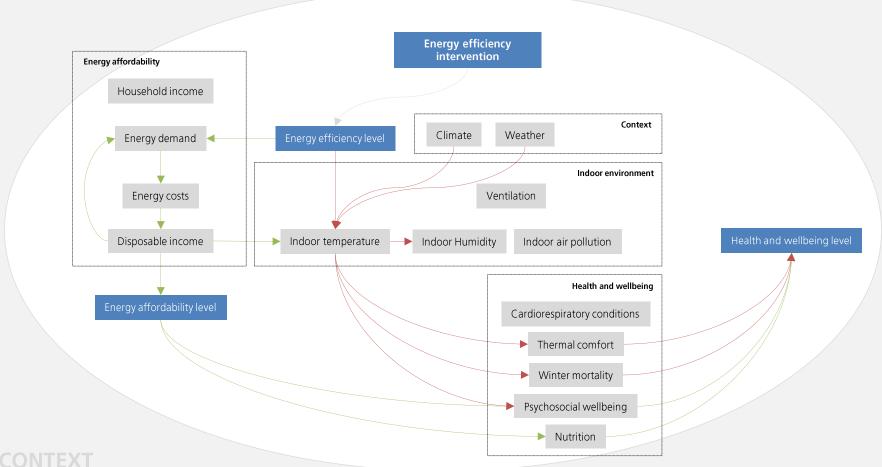
Energy efficiency level

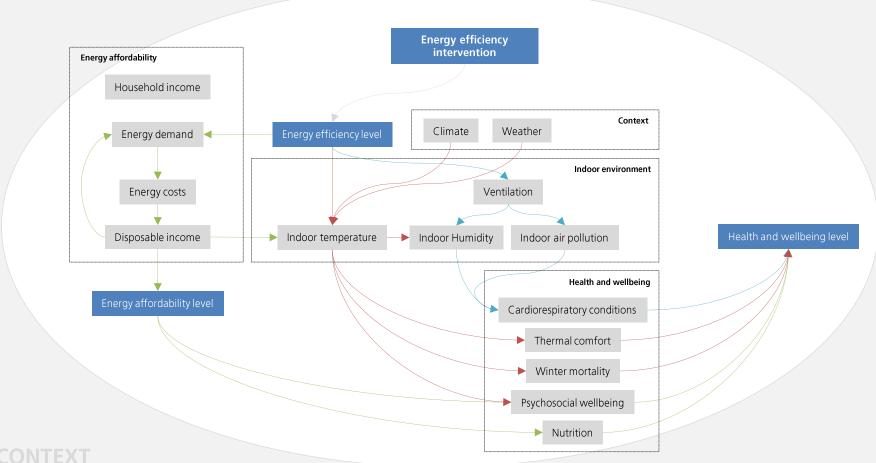
Health and wellbeing level

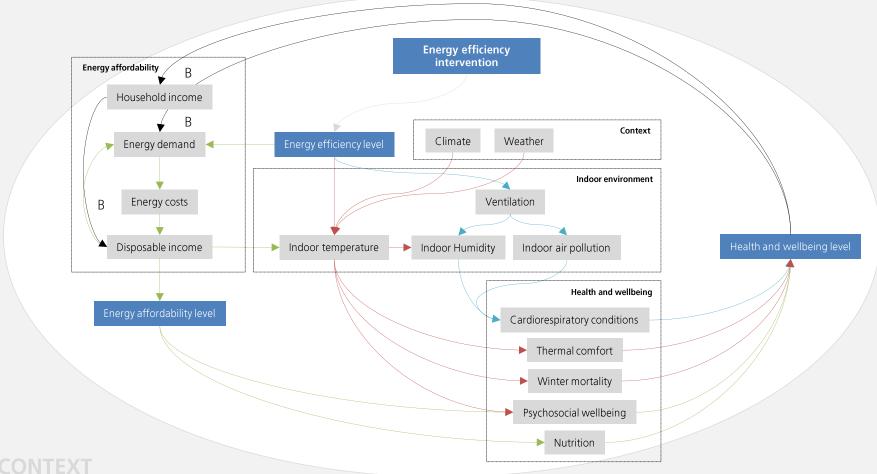
Health and wellbeing

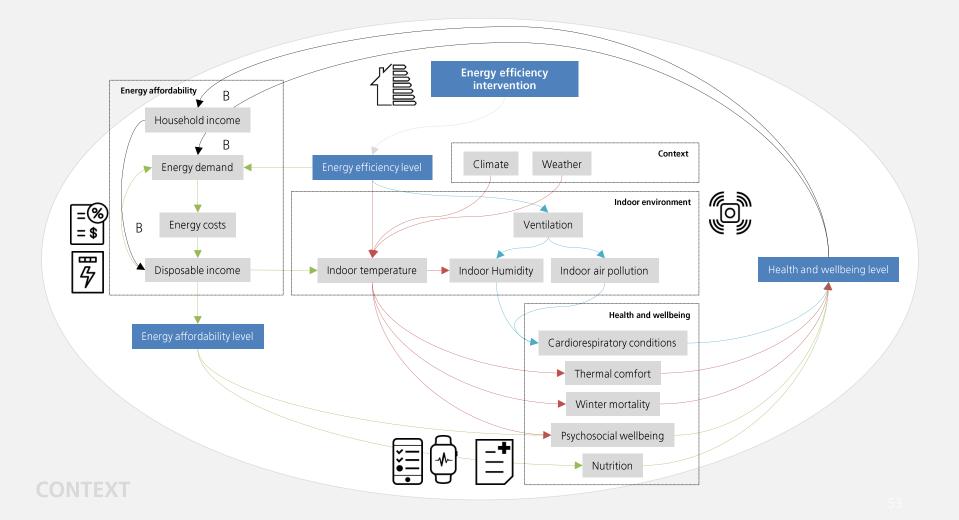

Cardiorespiratory conditions

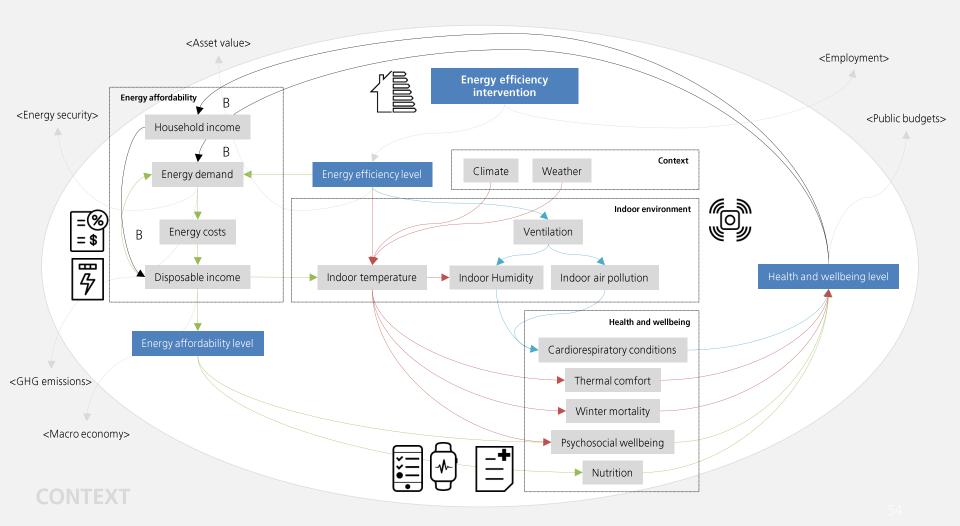

Thermal comfort

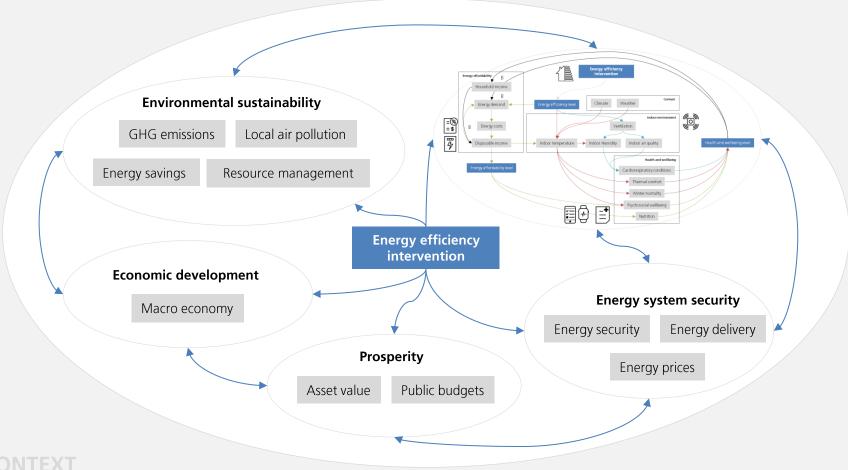

Winter mortality

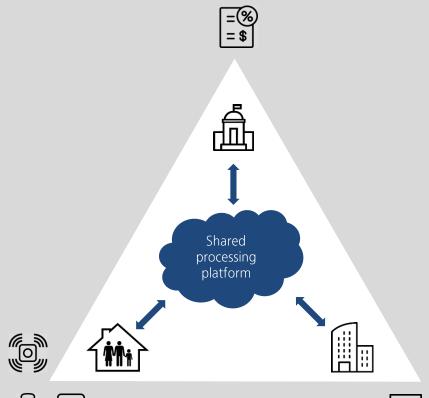

Psychosocial wellbeing


Nutrition








Conceptual Validation

- Due to the conceptual stage and the lack of data to test and calibrate the model all assumptions are based on prior research and expert knowledge
- ✓ System components
- Structure (dependencies + interactions)
- ✓ Input and data source

Taking a Look Ahead

- Enable a dynamic behaviourdriven policy-making process (fine-grained interventions, quick adaptations and overall more effective resource allocations)
- Public authority and private household would become partners in the process (exchange of data and services)

Further Research Recommendations

- The presented final product is the first stage in a huge process and requires further in-depth exploration of many aspects such as accessibility, security, privacy or causality and the role of theory
- In-depth verification of the conceptual model and assumptions followed by a transposition into an operational model
- Explore and link model to other sub-systems such as economic development or environmental sustainability
- Direct exchange (e.g. focus group) between involved disciplines could be very helpful to generate further insights

Thank you for your attention!

Author Student number E-mail Faculty M. Wolf 4624947 m.wolf-1@student.tudelft.nl

Architecture, Urbanism and Building Sciences

Delft University of Technology

Management in the Built Environment

AR3RÕ10 BOLD Cities

Dr.ir. Alexander Koutamanis

Dr. Andrea Mauri

January 30th 2019 V1.0

Track
Course
Graduation lab
Mentors

Presentation date